TABLE OF CONTENTS

Abstract
Resumen
Resum

1. INTRODUCTION
1.1 DISCOVERY AND ROLE OF ABA IN PLANT PHYSIOLOGY.
1.1.1 THE ROLE OF ABA IN ABIOTIC STRESS
1.1.2 THE ROLE OF ABA IN BIOTIC STRESS
1.1.3 THE ROLE OF ABA IN PLANT GROWTH AND DEVELOPMENT
1.2 CORE ELEMENTS OF THE ABA SIGNALING PATHWAY.
1.2.1 PROTEIN SERINE/THREONINE PHOSPHATASES 2C (PP2C)
1.2.2 ABA RECEPTORS IDENTIFIED UP TO NOW
1.2.3 SNF1-RELATED PROTEIN KINASES 2 (SNRK2s)
1.3 MECHANISM OF ACTION OF THE ABSCISIC ACID AGONIST PYRABACTIN

2. OBJECTIVES

3. RESULTS: CHAPTER 1
Modulation of abscisic acid signaling *in vivo* by an engineered receptor insensitive protein phosphatase type 2C allele.

4. RESULTS: CHAPTER 2
Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors.

5. RESULTS: CHAPTER 3
PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root.

6. RESULTS: CHAPTER 4
A chemical genetic approach directed to isolate new agonists of the abscisic acid.
7. GENERAL DISCUSSION

7.1 MOLECULAR FEATURES OF THE INTERACTION BETWEEN PP2Cs AND PYR/PYL/RCARS.

7.2 CHARACTERIZATION OF A SUBBRANCH OF THE CLADE A PP2Cs

7.4 THE ROLE OF ABSCISIC ACID AS A GROWTH PROMOTER

7.5 THE ROLE OF ABA IN THE HYDROTROPIC RESPONSE

7.6 ISOLATION OF NEW ABA AGONISTS THROUGH CHEMICAL GENETICS.

8. CONCLUSIONS

9. REFERENCES

10. APPENDIX 1

11. APPENDIX 2