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Abstract

The analysis and vibration control is particularly important in many branches of
engineering, especially mechanical, civil, aeronautics and automotive. This is so
up to the point that almost this analysis is identified as a separate area within the
dynamic analysis of structures. Since the beginning, dissipative or damping forces
have been one of the most difficult to be represented. The viscous model, due to
its simplicity and versatility, has been and still is the great paradigm of damping
models. However, due to the introduction of memory materials in practical ap-
plications, it was necessary to improve the model to consider the viscoelasticity
phenomenon; the viscoelasticity, although closely related to the speed of response,
required the introduction of the so-called hereditary functions. These functions
allow us to express the dissipative forces not only as functions of the instantaneous
velocity, but also of the velocity history, from the beginning of the movement —
hence the term memory—. Naturally, such theoretical advance into the model is
also accompanied by computational disadvantages. In fact, before the response
was obtained as solution of a system of linear differential equations and now a a
system of integro-differential equations must be solved.

Analysis of the free vibrations of the viscoelastic damping systems leads to a
nonlinear eigenvalue problem, the main feature of which is a frequency-dependent
damping matrix. The study of the solution of eigenvalues and eigenvectors of this
problem becomes of special importance in order to know the structural modes
of vibration or if the frequency-domain response is sought. The eigenvalue set is
formed by complex-conjugate pairs and a real eigenvalues, the number of which
depends on the mathematical form of the damping function.

The main objectives of this Thesis are two: first, to deepen the knowledge of the
eigenvalue problem of viscoelastic systems through the proposal of new numerical
methods. Second, to develop a new viscous model that, under certain conditions,
can reproduce the response of the viscoelastic model accurately enough.

The document is divided into eight chapters, among them, the main body is con-
stituted by Chapters 2 to 7. All of them are research articles that have either
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been published or are under review in sources included in the Journal Citation
Reports (JCR). For this reason, all chapters retain the intrinsic structure of an
article, including introduction and bibliography.

The first four chapters (2 to 5) are focused on the study of the aforementioned non-
linear eigenvalue problem with two numerical methodologies proposed. The first
is an iterative procedure based on the fixed-point scheme, specially developed for
proportional or lightly non-proportional systems (those with decoupled or almost-
uncoupled modes). The second methodology, presented in two separate chapters,
is called parametric since the fundamentals are based on the perturbation of cer-
tain damping parameter and allows us to construct almost-analytical solutions
of the eigenvalues, both for single and multiple degree-of-freedom systems. The
study of the eigenvalue problem is completed by a chapter on real eigenvalues, also
called non-viscous eigenvalues. To this end, a new mathematical characterization
of these eigenvalues is presented and a new concept is introduced: the non-viscous
set.

In the last two chapters (6 and 7) an equivalent viscous model is developed. The
approach has been proposed as an approximated substitute of the response of
viscoelastic systems. The analysis is performed with the study of the transfer
function in the frequency domain. In a first stage (Chap 6), the related math-
ematical nature is analyzed. It is shown that the exact transfer function of a
viscoelastic model can be expanded as a sum of a transfer function, characteristic
of certain viscous model, plus a residual term. The latter is directly dependent
on the induced damping level and on the modal coupling (non-proportionality of
the damping matrix). In a second stage (Chap. 7), an real structural application
formed by plane frame structures with free damping layers of viscoelastic material
is developed. In this chapter the equivalent viscous model and an improved para-
metric method to compute the eigenvalues are applied, achieving the conjunction
of the two objectives of the present Thesis.
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Resumen

El análisis y el control de las vibraciones cobra especial importancia en muchas
ramas de la ingenieŕıa, en especial la ingenieŕıa mecánica, civil, aernonáutica y
automoviĺıstica. Tal es aśı que prácticamente se identifica como un area indepen-
diente dentro del análisis dinámico de estructuras. Desde los comienzos de esta
teoŕıa, las fuerzas disipativas o de amortiguamiento han sido uno de los fenómenos
más dif́ıciles de modelizar. El modelo viscoso, por su sencillez y versatilidad ha
sido y sigue siendo el gran paradigma de los modelos de amortiguamiento. Sin em-
bargo, como consecuencia de la aparición de materiales con memoria se introdujo
el fenómeno de la viscoelasticidad; Ésta, si bien está también ı́ntimmamente ligada
a la velocidad de la respuesta, necesitó de la introducción de las denominadas fun-
ciones hereditarias, que permiten poner a las fuerzas disipativas como función no
solo de la velocidad instantánea sino de la historia de velocidades desde el comienzo
del movimiento, de ah́ı el término memoria. De forma natural, el avance teórico
introducido en el modelo supone también una complicación computacional, pues
donde antes teńıamos un sistema lineal de ecuaciones diferenciales ahora tenemos
un sistema de ecuaciones integro-diferenciales.

El análisis de las vibraciones libres de los sistemas con amortiguamiento vis-
coelástico conduce a un problema nolineal de autovalores donde la caracteŕıstica
principal es una matriz de amortiguamiento que depende de la frecuencia de ex-
citación. El estudio de la solución de autovalores y autovectores de este problema
es importante si se desean conocer los modos de vibración de la estructura o si se
pretende obtener la respuesta en el dominio de la frecuencia del sistema. El obje-
tivo fundamental de esta Tesis Doctoral es doble: Por un lado, profundizar en el
conocimiento del problema de autovalores de sistemas viscoelásticos proponiendo
para ello nuevos métodos numéricos de resolución. Por otro, desarrollar un nuevo
modelo viscoso que, bajo ciertas condiciones, reproduzca la respuesta del modelo
viscoelástico con suficiente aproximación.

La Tesis se divide en ocho caṕıtulos, de ellos el cuerpo principal se encuentra en
los seis centrales (Caṕıtulos 2 a 7. Todos ellos son art́ıculos de investigación que,
o bien han sido publicados, o bien están en proceso de revisión en revistas con-
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tenidas en el Journal Citation Reports (JCR). Por esta razón, todos los caṕıtulos
conservan la estructura intŕınseca de un art́ıculo, inclúıdas una introducción y una
bibliograf́ıa en cada uno.

Los cuatro primeros caṕıtulos (Caṕıtulos 2 a 5) se centran en el estudio del prob-
lema no lineal de autovalores. Se proponen dos metodoloǵıas de resolución: la
primera es un procedimiento iterativo basado en el esquema del punto-fijo y de-
sarrollado para sistemas proporcionales o ligeramente no-proporcionales (aquellos
en los que los modos se presentan desacoplados o casi desacoplados). La segunda
metodoloǵıa (presentada en dos caṕıtulos diferentes), denominada parametrica,
permite obtener soluciones casi-anaĺıticas de los autovalores, tanto para sistemas
de un grado de libertad como para sistemas de múltiples grados de libertad y
dentro de éstos, para sistemas proporcionales y no proporcionales. El estudio del
problema de autovalores se completa con un caṕıtulo dedicado a los autovalores
reales, también denominados autovalores no viscosos. En él se demuestra una
nueva caracterización matemática que deben cumplir dichos autovalores y que
permite proponer un nuevo concepto: el conjunto no-viscoso.

Los dos últimos caṕıtulos (Caṕıtulos 6 y 7) analizan el Modelo Viscoso Equivalente
como propuesta para la modelización de la respuesta de sistemas viscoelásticos.
El análisis se realiza desde el dominio de la frecuencia estudiando la función de
transferencia. En una primera etapa (penúltimo caṕıtulo), de naturaleza más
matemática, se demuestra que la función de transferencia exacta de un mod-
elo viscoelástico se puede expresar como suma de una función de transferencia
propia de un modelo viscoso más un término denominado residual, directamente
dependiente del nivel de amortiguamiento inducido y del acoplamiento modal (no-
proporcionalidad de la matriz de amortiguamiento). En una segunda etapa (último
caṕıtulo), se desarrolla una aplicación para estructuras reales formadas por entra-
mados planos de elementos 1D amortiguados con capas de material viscoelástico.
Este tipo de estructuras ha permitido usar una variante mejorada del método
paramétrico para la obtención de los autovalores, de forma que en este último
caṕıtulo ha servido como nexo de unión de las metodolǵıas más importantes de-
sarrolladas en la Tesis.
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Resum

L’anàlisi i el control de les vibracions cobra especial importància en moltes bran-
ques de l’enginyeria, especialment l’enginyeria mecànica, civil, aernonáutica i au-
tomobiĺıstica. Tal és aix́ı que pràcticament s’identifica com una àrea independent
dins de l’anàlisi dinàmic d’estructures. Des dels començaments d’aquesta teoria,
les forces dissipatives o d’amortiment han estat un dels fenòmens més dif́ıcils de
modelitzar. El model viscós, per la seva senzillesa i versatilitat ha estat i con-
tinua sent el gran paradigma dels models d’amortiment. No obstant això, com a
conseqüència de l’aparició de materials amb memòria es va introduir el fenomen
de la viscoelasticitat, Aquesta, si bé està també ı́ntimmamente lligada a la ve-
locitat de la resposta, va necessitar de la introducció de les anomenades funcions
hereditàries, que permeten posar a les forces dissipatives com a funció no només de
la velocitat instantània sinó de la història de velocitats des del començament del
moviment, d’aqúı el terme memòria. De forma natural, l’avanç teòric introdüıt en
el model suposa també una complicació computacional, doncs on abans teńıem un
sistema lineal d’equacions diferencials ara tenim un sistema d’equacions ı́ntegre-
diferencials.

L’anàlisi de les vibracions lliures dels sistemes amb esmortëıment viscoelàstic con-
dueix a un problema nolineal de autovalors on la caracteŕıstica principal és una
matriu d’amortiment que depèn de la freqüència d’excitació. L’estudi de la solució
d’autovalors i autovectors d’aquest problema és important si es volen conèixer les
maneres de vibració de l’estructura o si es pretén obtenir la resposta en el do-
mini de la freqüència del sistema. L’objectiu fonamental d’aquesta tesi doctoral
és doble: d’una banda, aprofundir en el coneixement del problema d’autovalors de
sistemes viscoelàstics proposant per a això nous mètodes numèrics de resolució. De
l’altra, desenvolupar un nou model viscós que, sota certes condicions, reprodueixi
la resposta del model viscoelàstic amb suficient aproximació.

La Tesi es divideix en vuit caṕıtols, dels quals el cos principal es troba en els
sis centrals (caṕıtols 2 a 7). Tots ells són articles d’investigació que, o bé han
estat publicats, o bé estan en procés de revisió en revistes contingudes al Journal
Citation Reports (JCR). És per això que tots els caṕıtols conserven l’estructura
intŕınseca d’un article, incloses una introducció i una bibliografia a cada un.
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Els quatre primers caṕıtols (caṕıtols 2 a 5) es centren en l’estudi del problema no
lineal de autovalors. Es proposen dues metodologies de resolució: la primera és un
procediment iteratiu basat en l’esquema del punt-fix i desenvolupat per a sistemes
proporcionals o lleugerament no-proporcionals (aquells en que les maneres es pre-
senten desacoblats o gairebé desacoblats). La segona metodologia (presentada en
dos caṕıtols diferents), anomenada paramètrica, permet obtenir solucions quasi-
anaĺıtiques dels autovalors, tant per a sistemes d’un grau de llibertat com per a
sistemes de múltiples graus de llibertat i dins d’aquests, per a sistemes propor-
cionals i no proporcionals. L’estudi del problema d’autovalors es completa amb un
caṕıtol dedicat als autovalors reals, també anomenats autovalors no viscosos. En
ell es demostra una nova caracterització matemàtica que han de complir aquests
autovalors i que permet proposar un nou concepte: el conjunt no-viscós.

Els dos últims caṕıtols (caṕıtols 6 i 7) analitzen el model viscós Equivalent com a
proposta per a la modelització de la resposta de sistemes viscoelàstics. L’anàlisi
es realitza des del domini de la freqüència estudiant la funció de transferència.
En una primera etapa (penúltim caṕıtol), de naturalesa més matemàtica, es de-
mostra que la funció de transferència exacta d’un model viscoelàstic es pot expres-
sar com a suma d’una funció de transferència pròpia d’un model viscós més un
terme denominat residual, directament dependent del nivell d’amortiment indüıt
i l’acoblament modal (no-proporcionalitat de la matriu d’amortiment). En una
segona etapa (últim caṕıtol), es desenvolupa una aplicació per estructures reals
formades per entramats plans d’elements 1D esmortëıts amb capes de material
viscoelàstic. Aquest tipus d’estructures ha permès utilitzar una variant millorada
del mètode paramètric per a l’obtenció dels autovalors, de manera que en aquest
últim caṕıtol ha servit com a nexe d’unió de les metodolǵıas més importants de-
senvolupades en la Tesi.
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1
Introduction

“I think that it is a relatively good approximation to truth —which is much too
complicated to allow anything but approximations— that mathematical ideas

originate in empirics. But, once they are conceived, the subject begins to live a
peculiar life of its own and is governed by almost entirely aesthetical motivations”

John von Neumann, 1947

1.1 Motivation and objectives

The nature of the energy dissipation mechanisms in a vibrating structure has al-
ways been of very difficult explanation: the damping models have been developed
trying to fit experimental and mathematical results. In this sense, the viscous
approach by Rayleigh with dissipative forces proportional to the velocity of the
system degrees of freedom (dof), has survived to today as the most used damping
modeling for the great majority of structural solid materials (metals, concrete,
wood, glass, masonry,...). The weakness of the pure viscous model is evident in
application of the so-called viscoelastic materials, formed by polymer derivatives,
rubbers and rubber-like materials and characterized by a time-dependent consti-
tutive model and by frequency-dependent Young and shear moduli. In fact, these
mechanical properties are usually called complex moduli since they present real
and imaginary part. When these materials are part of a more complex struc-
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Chapter 1. Introduction

ture, the constitutive relationships lead to a frequency-dependent stiffness matrix.
Viscoelastic materials have extensively been used for vibrating control in almost
all areas of engineering: mechanical, architecture, civil, industrial, aeronautics
and automotive. Among other applications, it must be mentioned the viscoelastic
dampers or the viscoelastic layers (unconstrained or constrained) perfectly bonded
on a base material. Although the term viscoelastic damping has traditionally been
used, in the last years the concept non-viscous damping is also found in the bib-
liography, since this behavior can be considered as a generalization of the more
basic viscous damping.

The first ideas of this thesis were born as consequence of the author’s special
interest on viscoelastic models for energy dissipation of vibrating systems and on
the necessity to develop new numerical approaches for their analysis. The time–
and frequency–dependence of the constitutive relationships and the application of
the laws of dynamics lead to

1. In the time domain, a system of integro-differential equations.

2. In the frequency domain, a nonlinear eigenvalue problem for the solution of
the free motion equations.

The work is focused on the second item, i.e. the analysis of the nonlinear eigen-
value problem and its applications. The main motivation has been the research
of approximated solutions of the viscoelastic problem through the response of cer-
tain equivalent viscous model, the construction of which is in fact based on the
eigenproblem. The principal objectives of the current thesis can be summarized
in two items

O1 To propose new and efficient numerical methods to obtain the eigensolutions
of the nonlinear eigenvalue problem of linear viscoelastic systems.

O2 To develop a new viscous model, called Equivalent Viscous Model, from the
information provided by the previous eigensolutions and capable to accu-
rately reproduce the response of the viscoelastic model under certain condi-
tions.

A common purpose in each chapter has always been to give mathematical sup-
port to each obtained conclusion or result, although they intuitively could be
applied without proof. Thus, rigorous convergence analysis or error-order studies
are attached with every numerical algorithm. In this introduction the theoretical
fundamentals of dynamic systems with viscoelastic damping are summarized, to
later present a brief abstract of the key ideas related to the contributions made.

2



1.2 Dynamics of viscoelastic structures

1.2 Dynamics of viscoelastic structures

Let us consider an N degrees–of–freedom (dof) vibrating system. The dofs’ time-
domain response is represented by a vector u(t) ∈ R

N . With help of the Finite
Element Method the mass and the stiffness matrices of the system, denoted re-
spectively by M,K ∈ R

N×N , can be assembled. In general, M,K are symmetric
and positive definite and semi-definite respectively. The viscoelastic damping is
introduced in the system assuming that the dissipative forces fd(t) ∈ R

N are
proportional to the history of the dofs’ velocities via kernel hereditary functions.
These functions are the entries of a matrix denoted by G(t) ∈ R

N×N , also assumed
symmetric.

fd(t) =

∫ t

−∞

G(t− τ) u̇(τ) dτ (1.1)

This representation of the hereditary behavior was originally introduced by Boltz-
man [1] at the end of XIX century. Its application to viscoelastic materials and
to damping of vibrating systems was studied by different authors in the middle
of the XX century. Among them, it is worth mentioning Gross [2–4], Volterra [5]
and specially Biot [6–8] whose multi-exponential hereditary model given by

G(t) =

k
∑

j=1

Cjµje
−µjt (1.2)

has widely been used for modeling viscoelastic damping materials. An interest-
ing survey of the beginning and evolution of these models can be found in the
paper of Bert [9]. The fundamentals of viscoelasticity, a thorough study on the
time-dependence constitutive models and its application for modeling damping
materials can be found in books such as Fluegge [10], Nashif [11] and Jones [12].
In the book of Sun [13] analytical solutions for different configurations are provided
together with the implementation within finite element models. Other mathemat-
ical forms of G(t) ∈ R

N×N can be proposed, although they should be subjected to
some restrictions to guarantee a strictly dissipative free motion; in mathematical
terms the dynamic system defined by Eq. (1.3) is stable. Such conditions have
been studied by Golla and Hughes in the reference [14], with a description of the
constitutive viscoelastic models and their related implementation within the finite
element method. Hence, a damping model characterized by the matrix G(t) or by
its Laplace transform G(s) = L{G(t)} will lead to a strictly dissipative response
if the following conditions are satisfied

1. Gjk(t) = Gkj(t)

2. Gjk(t) is decreasing in t ≥ 0

3. lim
t→∞

G(t) = 0

3
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4. ℜ{G(iω)} > 0 , ∀ω > 0

After Biot’s model other hereditary forms have been proposed, several of them
cited in the work of Golla and Hughes. A more complete set including some re-
cent proposals is listed in Table 2.1 of Chapter 2. Among these hereditary forms,
the damping functions characteristic of the so-called fractional models must be
emphasized. Such models assume constitutive relationships based on differential
equations on fractional derivatives of stress and strain. The applications to struc-
tural dynamics is due to Bagley and Torvik [15–19], works that are considered
pioneers in the field. The research of Pritz [20–25] on the four-parameter model
and on the behavior of complex properties of rubbers and rubber-like materials
has also been of great influence. A review on the application of fractional calculus
to structural dynamics can be found in [26].

Assuming small displacements, the motion equations linearly relate the dynamic
balance among inertia Mü, elastic Ku, damping fd(t), and external forces fe(t).
The general form of the system of integro-diferential equations can be written by

Mü+

∫ t

−∞

G(t− τ) u̇(τ) dτ +Ku = fe(t)

u̇(0) = v0 , u(0) = u0 (1.3)

Early research on this equation quickly led to the Ph.D. dissertation of Sondipon
Adhikari [27] and particularly to his paper Dynamics of Non-viscously Damped
Linear Systems, 2002 [28], also included in his thesis. In this work Adhikari con-
structs the exact solution of Eq. (1.3) from the information given by the nonlinear
eigenproblem assuming that the damping matrix adopts the general form

G(s) =

r
∑

j=1

Pj(s)

Qj(s)
Kj (1.4)

where Pj(s), Qj(s) are s-polynomials defined so that the resulting rational expres-
sion is either of order s−1 or, in the case of viscous damping, constant. Under these
conditions the modes of the system can be obtained as the non-trivial solutions of
the free–motion problem obtained considering fe(t) = v0 = u0 = 0 in Eq. (1.3).
Thus, checking functions of the form u(t) = u est we obtain

[

s2M+ sG(s) +K
]

u ≡ D(s)u = 0 (1.5)

where D(s) : C → C
N×N is the so called dynamic stiffness matrix. Eq. (1.5) is the

the nonlinear eigenvalue problem of a viscoelastically damped vibration system.
The eigenvalues are then the roots of the equation

det [D(s)] = 0 (1.6)
4
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Assuming that the elements of G(s) are rational functions in which the afore-
mentioned characteristics hold, it is clear that Eq. (1.6) can always be reduced to
a polynomial. The set of eigenvalues contains in general 2N + q distinct values
distributed as

{λ1, . . . , λN , λ∗1, . . . , λ∗N , σ1, . . . , σq} (1.7)

where λj , λ
∗
j ∈ C, 1 ≤ j ≤ N are N conjugate complex pairs, corresponding to the

modes with oscillatory nature. The rest, σj ∈ R
− 1 ≤ j ≤ q are negative real num-

bers that represent overcritically dammped modes, called non-viscous since they
are a feature of non-viscous systems. Associated to each eigenvalue there exists
an eigenvector: we denote uj ,u

∗
j ∈ C

N , 1 ≤ j ≤ N to the complex eigenvectors

associated to λj , λ
∗
j , and aj ∈ R

N , 1 ≤ j ≤ q to the eigenvector associated to the
real eigenvalue σj .

In the analysis and search of solutions of the eigenproblem, the proportionality
of an N -dof system, i.e. the modal decoupling capability, becomes of special
importance. As known, the undamped problem obtained from G(t) ≡ 0 can
always be diagonalized in the modal space of matrices M and K. Denoting by
φj ∈ R

N to the jth mass-homogenized real mode (in column) and by ωj to its
associated natural frequency, the classical orthogonal relations can be written as

φT
j Mφk = δjk , φT

j Kφk = ω2
j δjk (1.8)

where δjk is the Kronecker delta. The modal matrix Φ groups in columns the
N undamped modes and is used to change the dof’s to the modal coordinates by
u = Φq. Hence, Eq. (1.5) can be expressed as

[

s2IN + sΓ(s) +Λ
]

q = 0 (1.9)

where Λ = ΦTKΦ = diag
[

ω2
j

]

is the diagonal squared natural frequency ma-

trix, and Γ(s) = ΦTG(s)Φ the damping matrix in the modal space. In general,
the latter is not diagonal although under certain conditions it could become so.
The systems with this property are called proportional, since the necessary and
sufficient conditions for the modal decoupling are directly related with propor-
tional relationships between the damping matrix G(s) and the dynamic matrices
M,K [29]. In some cases of non-proportionality, the matrix Γ(λj) is diagonally
dominant but not purely diagonal, fact which is equivalent to assume as true

N
∑

l=1
l 6=k

|Γkl(λj)| < |Γkk(λj)| , ∀ 1 ≤ k, j ≤ N (1.10)

The system is then said to be lightly non-proportional. This property is commonly
assumed in many problems related to non–viscous damping [28, 30–32], and allows
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to approximate the determinant as product of the terms of its main diagonal as

det
[

s2IN + sΓ(s) +Λ
]

≈
N
∏

j=1

(

s2 + sΓjj(s) + ω2
j

)

(1.11)

Hence, the set of eigenvalues can be obtained from the following N decoupled
equations

Dj(s) = s2 + sΓjj(s) + ω2
j = 0 , 1 ≤ j ≤ N (1.12)

With the availability of eigensolutions, the exact solution of the transfer function
H(s) = D−1(s), defined as the inverse of the dynamic stiffness, can be obtained.
According to the developments of Adhikari, for symmetric systems H(s) has the
following expression

H(s) =

N
∑

j=1

[

γjuju
T
j

s− λj
+
γ∗ju

∗
ju

∗T

j

s− λ∗j

]

+

q
∑

j=1

ηjaja
T
j

s− σj
(1.13)

where

γj =

(

uT
j

∂D(λj)

∂s
uj

)−1

, 1 ≤ j ≤ N , ηj =

(

aTj
∂D(σj)

∂s
aj

)−1

, 1 ≤ j ≤ q

(1.14)

As shown in the two previous equations, the information provided by the modal
space of the nonlinear eigenproblem becomes of great importance to construct the
exact solution, the analytic expression of which is available in [28]. The challenge
remains to find new efficient computational tools to solve the eigensolutions of
Eq. (1.5).

Presented the fundamentals of the dynamics of viscoelastic systems, the key points
of the contributions developed in the current thesis are described in the next
section.

1.3 Thesis organization

In order to achieve the objectives of the thesis, six research papers have been
written, constituting the main body of the document in six self-contained chapters,
from Chapter 2 to Chapter 7. Each one of them is therefore organized like a
research article, including introduction, conclusions and bibliography. A brief
summary with the key results of each paper is presented now.

6



1.3 Thesis organization

1.3.1 A new recursive scheme to eigenvalues’ computation

In Chapter 2 a novel iterative method to solve the eigenvalue problem of propor-
tional or lightly non-proportional viscoelastic systems is presented. This work has
been published in the paper

Mario Lázaro, José L. Pérez Aparicio, Marcel Epstein. Computation of
eigenvalues in proportionally damped viscoelastic structures based on the
fixed–point iteration. Applied Mathematics and Computation, 2012, 219(8),
pp 3511-3529 [33].

As known, the nonlinear eigenproblem under the assumption of proportionality
can be reduced to the solution of N nonlinear equations as in Eq. (1.12). Hence, it
is reasonable to present the theoretical developments for a single dof viscoelastic
oscillator characterized by mass m, elastic rigidity k and hereditary viscoelastic
function G(t) with Laplace transform G(s) = L{G(t)}. The eigenvalues are then
the roots of the equation

ms2 + sG(s) + k = 0 (1.15)

in general formed by a pair of conjugate complex numbers and several real eigen-
values (non-viscous) that depends on the number of hereditary exponential kernels
in the damping function. The original idea of this paper is to manipulate Eq. (1.15)
in order to express it as follows

ms2 + sG(s) + k = m [s−X(s)] [s− Y (s)] (1.16)

where X(s), Y (s) are certain functions that depend on the eigenparameter s only
via the damping function G(s). Immediately it is clear that any eigenvalue, either
complex or real, is fixed point either of X(s) or Y (s). Therefore, some of the
following recursive schemes can intuitively lead to a solution.

xn = X(xn−1) , yn = Y (yn−1) (1.17)

The mathematical results show that both sequences converge when they start in
a nonreal complex number, i.e. with no-null imaginary part. The sequence {xn}
stays always in the complex upper half plane (ℑ{z} > 0) and converges to the
eigenvalue with positive imaginary part while the sequence {yn} behaves equally
but in the complex lower half plane converging to the conjugate complex. The
convergence conditions are rigorously studied, using for it results of the Fixed Point
Theory beyond the Banach contraction principle. It is proved that the success of
the method is almost ensured when the initial point verifies ℑ{x0},ℑ{y0} 6= 0, in
fact failure cases have not yet been found. It is additionally proved that the local
convergence velocity is linear and directly depends on the level of damping and
on the viscoelasticity, understanding the latter as the level of variation ∂G(s)/∂s
evaluated at the eigenvalue. Systems lightly damped converge very quickly whereas

7
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systems strongly damped do much more slowly. The numerical simulation shows
that the method converges even for overdamped systems, which only have real
eigenvalues.

1.3.2 The non-viscous set

In Chapter 3 the real eigenvalues (also called non-viscous eigenvalues) of viscoelas-
tic systems are studied. The work is currently under review

Mario Lázaro, José L. Pérez Aparicio. Characterization of Real Eigenvalues
in Linear Viscoelastic Oscillators and the Non-viscous Set. Submitted to
Journal of Applied Mechanics, transactions of the ASME, paper ID JAM-
12-1529, under review.

The main contribution is the proof of a new property of these eigenvalues: if σ ∈ R

is a real eigenvalue of a viscoelastic oscillator with mass m, rigidity k and damping
function G(s), then |G(σ)| ≥ 2

√
km. This property can be considered a generaliza-

tion of the inequality c ≥ ccr = 2
√
km, i.e. the necessary and sufficient condition

for real eigenvalues in pure viscous oscillators. However, in viscoelastic systems if
a real eigenvalue satisfies the above relation, this does not imply overdammping of
the system. In fact, non-viscous eigenvalues coexist with an oscillatory state pro-
vided by the pair of conjugate complex eigenvalues. Since the mathematical form
of G(s) is a priori known, at least theoretically it is always possible to construct
the following set within the real numbers.

B =
{

s ∈ R
− : |G(s)| ≥ 2

√
km
}

(1.18)

It can be assured that this set contains all real eigenvalues, and is named non-
viscous set. This is so since the only real eigenvalues of non-overcritically damped
viscoelastic systems are those corresponding to the non-viscous modes. It is
demonstrated that B is union of N closed intervals when the damping function
obeys a Biot’s model of N exponential hereditary kernels. Exact solutions of the
limits of such intervals are developed in the paper for the particular cases of N = 1
and N = 2 kernels. Approximated solutions are proposed for the general case of
N kernels; these solutions are valid for lightly and moderately damped systems.
Finally, the information provided by the non-viscous set is used for the other im-
portant contribution of this paper: the proposal of a new analytical expression to
approximate the non-viscous eigenvalues. The method is validated and compared
with other one-step approximation methods available from the literature, one of
them proposed in this thesis, in Chapter 4.

8
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1.3.3 The parametric method: single dof systems

In Chapter 4, the fundamentals of the parametric method to compute complex and
real eigenvalues for single dof viscoelastic oscillators are presented. This research
is currently under review

Mario Lázaro, José L. Pérez Aparicio. Parametric solutions of the eigenvalue
problem for single–degree–of–freedom viscoelastic systems. Submitted to
AIAA Journal, paper ID 2012-03-J051941, under review

The function G(s) characterizes the damping of a single dof oscillator in the fre-
quency domain. As mentioned, different mathematical forms (see Table 2.1) have
been proposed, the expressions of which do not only depend on the eigenparam-
eter s, but also on one or more damping parameters, generally obtained fitting
experimental and model data of the complex modulus in frequency-domain. The
central idea of this work is to assume as variable one of these damping parameters,
so that the damping function can be considered as a two-variable function G(s, θ).
Thus, the nonlinear equation for the eigenvalues can be written as

ms2 + sG(s, θ) + k = 0 (1.19)

whose solutions are not complex numbers but complex functions of the form s =
λ(θ) : R → C. Let us assume that an explicit solution of Eq. (1.19), say λ0, is
known when the damping parameter is evaluated at certain initial point θ = θ0.
The difference h = |θ − θ0| can be considered as a numerical perturbation of
the initial state, λ0 = λ(θ0), so that an approximate expression of λ(θ) can be
constructed by asymptotic expansion up to order O(hk+1) as

λ(θ) ≈ λ0 +

k
∑

n=1

λ(n)(θ0)

n!
(θ − θ0)

n (1.20)

In addition, it is demonstrated that the first derivative of the eigenvalue λ′ = dλ/dθ
always can be written as

λ′ = −λΨ(λ, θ) (1.21)

where the mathematical form of Ψ(s, θ) : C × R → C is known. In the paper,
the asymptotic expansion of Eq. (1.20) is combined with Eq. (1.21), obtaining a
quasi-closed form for the eigenvalue

λ̂k(θ) = λ0 e
−Z(θ) (1.22)

where, for the evaluation of Z(θ), a numerical integration by quadrature is nec-
essary (hence the term quasi-closed form). Moreover, the contributions of this
paper are complemented by a study of the order of approximation, obtaining
∣

∣

∣λ̂k(θ)− λ(θ)
∣

∣

∣ ≤ O(hk+2). Consequently, the solution of the asymptotic expan-

sion is improved one order. The numerical examples validate the theoretical results
9
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showing that effectively the error does not only depend on the distance h = |θ − θ0|,
but also on the level of damping and on the viscoelasticity induced by the viscoelas-
tic model. Thus, light damping (combined in general with low viscoelasticity) leads
to more accurate approximations. The analysis is completed with the calculation
of closed-form expressions for the non-viscous eigenvalues by the asymptotic ex-
pansion.

1.3.4 The parametric method: multiple dof systems

The fundamentals of the parametric method presented in the previous section
are generalized in Chapter 5 for non-proportional multiple dof systems with a
multiparametric representation of the damping matrix. This research has been
published in the paper

Mario Lázaro, José L. Pérez Aparicio. Multiparametric Computation of
Eigenvalues for Linear Viscoelastic Structures. Computers & Structures,
2013, 117, pp 67-81 [34].

Let us consider a N -dof viscoelastic system controlled by the dynamic matrices,
M, K and G(s,θ). Now, the damping matrix is assumed to be a function G(s,θ) :
C × R

p → C
N×N that depends on a parametric array or multiparametric vector

θ ∈ R
N . The nonlinear eigenproblem can be stated as

[

s2M+ sG(s,θ) +K
]

u ≡ D(s,θ)u = 0 (1.23)

equation that defines the eigenvalues and eigenvectors as multivariable functions
λj(θ) : R

N → C y uj(θ) : R
N → C

N . For the great majority of the viscoelastic
models, a particular point in the parametric domain (also named initial point θ0)
can always be chosen so that the eigenproblem D(s,θ0)u = 0 becomes linear or at
least quadratic in s. For these problems, several and efficient numerical methods
are available in the literature. Chosen the initial point with these characteristics,
the first-order approximations are

λj(θ) = λ0j + (θ − θ0)T ∇λ0j +O(h2)

uj(θ) = uj(θ0) +

p
∑

r=1

∂uj(θ0)

∂θr
(θr − θr0) +O(h2) (1.24)

where

∇λj =

{

∂λj
∂θ1

, . . . ,
∂λj
∂θp

}T

(1.25)

is the eigenvalue’s gradient respect to the multiparametric vector and h = ‖θ − θ0‖
the perturbation measure in the parametric domain. With help of the eigensen-
sitivity expression respect to the damping parameters, an improved solution with
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1.3 Thesis organization

order of approximation O(h3) as solution of certain differential equation can be
constructed. The mathematical results predict that the accuracy of the method
directly depends on the level of damping, on the viscoelasticity (as occurred in sin-
gle dof systems) and, in addition, on the level of non-proportionality, i.e., how high
the modal coupling is. Several numerical examples (for discrete and continuous
structures) are presented in order to validate the theoretical foundations

1.3.5 The Equivalent Viscous Model

In Chapter 6 the Equivalent Viscous Model is presented as a new approach to
approximately represent the response of a multiple dof viscoelastic system. The
fundamentals and the theoretical developments are presented in

Mario Lázaro, José L. Pérez Aparicio, Marcel Epstein An Equivalent Viscous
Model for Linear Viscoelastic System. Submitted to Mechanical Systems and
Signal Processing, paper ID MSSP12-63, under review.

As shown, the transfer function of a viscoelastic system contains all information
of the response in the frequency domain and a closed-form expression from the
complete solution of the nonlinear eigenproblem can be constructed as

H(s) =

N
∑

j=1

[

γjuju
T
j

s− λj
+
γ∗ju

∗
ju

∗T

j

s− λ∗j

]

+

p
∑

j=1

ηjaja
T
j

s− σj
(1.26)

where {λj ,uj} 1 ≤ j ≤ N are the complex eigenpairs and {σj ,aj} 1 ≤ j ≤ p
the non-viscous eigenvalues. The rest of coefficients are explained in Eq. (1.14).
The idea of developing a viscous model that reproduces the exact response, arises
from the satisfactory numerical experiences carried out with the following transfer
function

He(s) =
N
∑

j=1

φjφ
T
j

s2 + 2sωejζej + ω2
ej

(1.27)

where the characteristics of the jth mode, ζej and ωej , are expressed as function
of the jth complex pair as

ζej = −
λj + λ∗j

2
√

λj λ∗j

, ωej =
√

λj λ∗j (1.28)

Notice that Eq. (1.27) is a transfer function of a viscous system characterized by
certain specially developed dynamic matrices Me, Ce and Ke. These matrices can
be constructed from the complex eigenvalues {λj} and from the real modes {φj}
of the undamped problem. The empirical experiences observed by the numerical
simulations shown that the level of accuracy depends on two factors. On one hand

11



Chapter 1. Introduction

the non-proportionality of the system, measured through an index denoted by
α ≥ 0; α = 0 represents total decoupling and proportional damping. On the other
hand, how strong the damping induced by the model G(s) is and how high is the
viscoelasticity or, equivalently, the level of variation ∂G(s)/∂s. Both phenomenons
are quantified by the index β ≥ 0, so that β = 0 represents the undamped state.
The main contribution of this paper is to demonstrate that effectively the exact
transfer function can be expressed as

H(s) = He(s) + δH(s) = He(s) +O(α, β) (1.29)

The accuracy of the equivalent viscous model is evaluated through several numer-
ical examples, using discrete systems with different levels of damping and pro-
portionality. This method is very useful in the analysis of structures with light
non-proportionality for for which an efficient form for computing the complex
eigenvalues is available. Such case is described in Chapter 7, summarized in the
following section.

1.3.6 An application to frame structures with free viscoelastic

layers

In Chapter 7 the equivalent viscous model is applied to frame structures damped
with free viscoelastic layers. In addition, a new variant of the parametric method is
proposed deriving new closed-form expressions for the complex eigenvalues. These
contributions have been developed in the paper

Mario Lázaro, José L. Pérez Aparicio. Dynamic analysis of frame structures
with free viscoelastic layers: new closed-form solutions of eigenvalues and
a viscous approach. Submitted to Engineering Structures,Structures, paper
ENGSTRUCT-D-12-01352, under review

The studied structures are frames formed by one dimensional beams with bonded
unconstrained viscoelastic damping layers. The layers are perfectly bonded on the
top and/or on the bottom of the base material, in general metallic. With this
layout the damping material works under tension-compression mechanisms. The
constitutive relationships between stress σx and strain ǫx for the damping material
is based on the fractional derivatives.

σx + τα
dασx
dtα

= E0

(

ǫx + c τα
dαǫx
dtα

)

(1.30)

where E0 is the static Young modulus and α, c, τ the parameters that control the
dissipative mechanisms. The above expression can be expressed in the Laplace
domain as

σ̂x(s) = E0
1 + c(sτ)α

1 + (sτ)α
ǫ̂x(s) ≡ Êv(s) ǫ̂x(s) (1.31)

12



1.3 Thesis organization

With the help of the finite element method and the virtual work principle the
motion equation in the frequency domain are constructued. Although the damping
model has three parameters, only the storage coefficient c is assumed to be variable.
According to the parametric method the eigenvalues, considered now functions of
the form λj(c), are solutions of certain differential equation. Since the variation of
these eigenvalues with the storage coefficient is specially smooth, the developments
lead in this case to closed-form expressions. Consequently, no computational effort
is required for their calculation except the one needed for the undamped linear
eigenproblem solution. Furthermore, closed-forms of the new viscous damping
and stiffness matrices, Ce and Ke, are specially developed. Again, the accuracy
of the proposed method is checked and validated by two numerical examples, for
that different materials under several levels of damping.
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2
Computation of eigenvalues in

proportionally damped

viscoelastic structures based on

the fixed–point iteration

Applied Mathematics and Computation, 219-8 (2012), 3511-3529

2.1 Introduction

Materials of viscoelastic nature are widely used for engineering applications such
as vibration isolation or as devices to mitigate earthquake effects in buildings. In
order to predict the behavior of such structures, the models must reproduce the
response as accurately as possible. In the most general case, the structures that
include viscoelastic materials are characterized by hereditary energy dissipation
mechanisms: the damping forces depend on the history of the velocity response.
Mathematically, this fact is represented by convolution integrals that involve the
velocities of the degrees–of–freedom (dof) over certain kernel functions. In general,
the dof response u(t) ∈ R

q is governed by the following system of linear integro-
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differential equations

Mü+

∫ t

−∞

G(t− τ)u̇ dτ +Ku = F(t) (2.1)

where M ∈ R
q×q and K ∈ R

q×q are the mass and stiffness matrices assembled
using the finite element method. We assume M to be positive definite and K

positive semidefinite; G(t) ∈ R
q×q is the viscoelastic damping matrix in the time

domain.

Checking solutions with form u(t) = u0e
st in the free–motion equation (2.1) with

F(t) ≡ 0, the following nonlinear eigenvalue problem is obtained
[

s2M+ sG(s) +K
]

u0 = 0 (2.2)

where G(s) = L{G(t)} is the damping matrix in the Laplace domain. Many
real structures modeled by Eq. (2.1) present a proportional —or lightly non–
proportional— damping matrix, that is, G(s) becomes diagonal —or diagonally-
dominant— in the modal space of the undamped problem. The diagonalization
greatly simplifies the calculation of the eigenvalues, since the characteristic equa-
tion can be approximated as a product of q decoupled modal equations. The
knowledge of the eigensolutions of the previous problem is a key issue in the anal-
ysis and study of viscoelastic structures, hence the importance of the development
of efficient tools oriented to their numerical computation.

The seminal work of Biot [7] was a starting point in the variational justification of
hereditary constitutive models based on exponential decay. Subsequently, experi-
mental results led to extend these models with the introduction of the fractional
derivative as a highly effective tool. Papers of Bagley and Torvik [15, 16] estab-
lished the theoretical basis for the application of fractional derivatives in structural
dynamics. Since then, a great number of papers have studied the resulting dif-
ferential equations in fractional derivatives; among others [26] the works of Ray
et al. [35–37] are of special interest. Both Biot’s and fractional derivative mod-
els are associated with a different damping function G(t). The conditions under
which this function defines a strictly dissipative motion were studied by Golla and
Hughes [14]. Thus, new models could be introduced provided that they satisfy the
requirements from [14]. For instance, Buhariwala [38, 39] generalized Biot’s model
with another in which the relaxation parameters are distributed in an interval. Of
special interest are models based on the state–space approach such as the GHM
approach of Golla, Hughes and McTavish [14, 40] or the Anelastic Displacement
Field of Lesieutre and Mingori [41]. Both of them are characterized by the intro-
duction of new internal variables. Adhikari and Woodhouse [42, 43] proposed new
viscoelastic functions in the context of viscous and non–viscous damping identi-
fication for dynamic systems. These viscoelastic functions are the most used in
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the field of structural dynamics and all of them are strictly decreasing in the time
domain. However, kernels not necessarily decreasing can also be compatible with
viscoelastic problems as it has been demonstrated in the works of Medjden and
Tatar [44] and Tatar [45].

Since the linearity is preserved in viscoelastic structures, it is logical to consider
the associated eigenvalue problem. The main difference between the models of
these systems and those of viscous ones is that for the former the damping matrix
is frequency–dependent, see Eq (2.2), and that the eigenvalue problem is nonlin-
ear. Among the numerical methods oriented to solve this problem, we mention
first the works of Yang [46] and Singh [47], developed for any form of the tran-
scendental matrix —named dynamic stiffness matrix in our context—. Both of
them are based on the widely used Newton–Raphson method; although the itera-
tive scheme is locally convergent with quadratic speed, the effectiveness depends
on the chosen starting point. Another method from Williams and Kennedy [48]
suggested a parabolic interpolation of the determinant of the dynamic stiffness ma-
trix. Asymptotic techniques based on perturbation of the damping matrix were
proposed by Daya and Potier–Ferry [49] and by Duigou et al. [50]. Voss [51, 52]
introduced two methods based on the Arnoldi’s shift-and-invert technique and on
the Jacobi–Davidson method, respectively. Abdel–Aziz and El–Sayed [53] studied
the sensitivity analysis of the eigenvalue functions of non–linear eigensystems un-
der the assumption that such functions are continuous nondifferentiable. Specific
methods aimed at solving the problem when the damping function is rational can
be found. For instance, Muravyov and Menon [54–56] developed approaches that
essentially transform the nonlinear problem into a larger linear one. Although their
solution is exact, the numerical complexity increases with the polynomial degree of
the damping function denominator. For proportional or lightly non–proportional
systems, Adhikari and Pascual [31, 32] proposed several iterative methods based
on Taylor series expansion of the damping function to compute complex and real
eigenvalues. Friswell and Adhikari [57] proposed a new non–local viscoelastic foun-
dation model for beams and obtained the eigensolutions using the finite element
method. The introduction of eigenvalues’ derivatives in viscoelastic structures [58,
59] has allowed the development of new numerical methods for the computation of
the eigensolutions. Cortés and Elejabarrieta [60, 61] developed an approach using
the eigenvalue sensitivities, even applicable for highly damped systems. Martinez-
Aguirre and Elejabarrieta [62] used higher order eigensensitivities to propose a
new numerical procedure for the modal analysis of viscoelastic damped struc-
tures. Lázaro and Pérez–Aparicio [34, 63] have carried out recently new proposals
based on considering a parametric treatment of the eigensolutions; in them the
eigenvalue problem is transformed into an ordinary differential equation.

21



Chapter 2. Computation of eigenvalues based on the fixed-point iteration

The present paper develops a new numerical method to compute the eigenvalues
of linear viscoelastic structures with proportional —or lightly non–proportional—
damping. The key idea is to build two complex–valued functions of a complex
variable, whose fixed points are the eigenvalues. These functions uniquely depend
on the damping and do not require the calculation of derivatives for their construc-
tion. It is shown that the use of the fixed–point iteration always allows to find
the complex eigenvalues; moreover, it is demonstrated that the level of damping is
directly related to the speed of convergence. Under certain conditions the method
can also be applied to the computation of the non–viscous real eigenvalues. Finally,
theoretical results are illustrated with two numerical examples. First, a single dof
system with an exponential damping model is analyzed; since the overdamped
region of this system can be analytically defined, this example allows to relate the
level of damping and the speed of convergence. Second, a four–dof system with
viscoelastic links is analyzed to validate the method for multiple dof systems with
proportional damping.

2.2 Single Degree–of–Freedom Systems

2.2.1 Eigenvalue Problem and Recursive Functions

The theoretical fundamentals of the proposed method are developed for single
degree–of–freedom systems (sdof). As mentioned, for non–viscously damped sys-
tems the dissipative forces are history–dependent on the velocity of the dof u̇(t)
via a kernel function G(t), a characteristic of the damping model. The sdof free
motion equation is the counterpart of Eq. (2.1)

mü+

∫ t

−∞

G(t− τ)u̇ dτ + ku = 0 (2.3)

where m and k are the mass and the linear stiffness associated with the sdof,
respectively. Checking solutions with the form u(t) = u0e

st, the previous equation
is transformed into the following in terms of the variable s

ms2 + sG(s) + k = 0 (2.4)

where again G(s) = L{G(t)} is the viscoelastic damping function. Golla and
Hughes [14] gave the necessary conditions on G(s) to define a strictly dissipative
viscoelastic behavior. Several authors [28, 64] have shown that the characteristic
Eq. (2.4) has 2 + p (p ≥ 0) eigenvalues with form {λ, λ∗, σ1, . . . , σp}. The roots
λ, λ∗ are a pair of complex–conjugate numbers associated with exponential–decay
oscillatory modes. The rest σr, 1 ≤ r ≤ p, are negative real numbers named non–
oscillatory or non–viscous eigenvalues since they are associated with overcritically
damped modes, [28].
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The eigenvalues of the undamped problem G(s) ≡ 0 are ±iωu, where ωu =
√

k/m
is the undamped natural frequency. Introducing the new non–dimensional function

J(s) =
G(s)

2mωu
(2.5)

and using k = mω2
u, Eq. (2.4) can be written as

s2 + 2ωusJ(s) + ω2
u = 0 (2.6)

The key issue of the method is to transform this equation so that the result-
ing structure permits to apply a recursive scheme. For that, let us assume that
Eq. (2.6) may be expressed in the form

s2 + 2ωusJ(s) + ω2
u ≡ [s+A(s)]

2
+B(s) (2.7)

There exist infinite solutions for the unknown functions A(s), B(s); in particular
one pair can be obtained identifying the coefficients of the terms s0 = 1, s1 = s.
Thus,

A(s) = ωuJ(s)

B(s) = ω2
u

[

1− J2(s)
]

(2.8)

Notice that the solutions given in Eq. (2.8) are not unique, and as will be shown,
this proposed solution has important properties. Using the new functions, further
changes can be achieved in Eq. (2.7) to obtain a more suitable expression. Eq. (2.7)
together Eq. (2.8) produces a difference of two squares, resulting in

s2 + 2ωusJ(s) + ω2
u = [s+ ωuJ(s)]

2
+ ω2

u

[

1− J2(s)
]

= [s+ ωuJ(s)]
2 −

(

iωu

√

1− J2(s)
)2

= [s−X(s)] [s− Y (s)] (2.9)

where i =
√
−1 is the imaginary unity and the complex functions X(s), Y (s) are

defined as

X(s) = ωu

(

−J(s) + i
√

1− J2(s)
)

, Y (s) = ωu

(

−J(s)− i
√

1− J2(s)
)

(2.10)

In the previous definition,
√• must be understood as the principal square root of

a complex number. Eq. (2.9) states that, if a ∈ C represents any eigenvalue of
the viscoelastic system, then either a = X(a) or a = Y (a), that is, a is a fixed
point of some of the two functions X(s) or Y (s). The objective is now to provide
the conditions under which these functions may be used in a recursive scheme to
calculate the eigenvalues. Previously, some definitions are given to present the
hypotheses assumed for the damping function J(s). Let us define the sets

C+ = {x+ iy ∈ C : y > 0} , C− = {x+ iy ∈ C : y < 0} (2.11)
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The complex plane excluding real numbers is named C = C+ ∪ C− = C \ R.

As mentioned, we assume that G(s) = 2mωuJ(s) verifies the required conditions
given by [14] to induce a dissipative motion. In addition, the following two hy-
potheses are required for the purposes of the current work

H1. G(s) is analytical in a domain with form C \M, where M ⊂ R is a subset
of real numbers

H2. G(s) ∈ C , ∀ s ∈ C. Expressed in set operations: G(C) ⊂ C

The set M introduced in H1 may adopt different forms depending on the type of
damping function considered. Table 2.1 shows the most used damping functions
from the bibliography and their associated sets M. It can be observed that, al-
though H1 assumes the most general case M ⊂ R, for real systems M ⊂ R

−∪{0}
in order to guarantee the energy decay during the free motion.

Damping functions, G(s) Set M Author, Year, Reference

n
∑

k=1

ak

s + bk
, bk > 0 {−bk}

n
k=1 Biot, 1955 [7]

c
b−a log s+b

s+a , 0 < a < b [−b,−a] Buhariwala, 1982 [38, 39]

1
s

E1sα−E0bsβ

1+bsβ
, 0 < α, β < 1 R

− ∪ {0} Bagley & Torvik, 1983 [16]

G∞
s

[

1 +
n

∑

k=1

αk
s2+2ζkωks

s2+2ζkωks+ω2
k

]

{−pk,−qk}
n
k=1 ∪ {0} Golla & Hughes, 1983 [14]

pk, qk = −ωk

(

ζk ±
√

ζ2
k − 1

)

McTavish & Hughes, 1993 [40]

1

s

[

1 +
n

∑

k=1

∆ks

s + βk

]

, βk > 0 {−βk}
n
k=1 ∪ {0} Lesieutre & Mingori, 1990 [41]

c 1−e−st0
st0

∅ Adhikari, 1998 [42]

c es
2/4µ

[

1 − erf
(

s
2
√

µ

)]

∅ Adhikari & Woodhouse, 2001 [43]

Table 2.1: Damping functions from the bibliography and their corresponding sets
M ⊂ R

The functions X(s), Y (s) introduced in Eqs. (2.10) are directly related with the
dimensionless damping function J(s) = G(s)/2mωu. In order to define mathe-
matically the region where X(s) and Y (s) are analytical, let us introduce the set

B = {x ∈ R : |J(x)| ≥ 1} (2.12)
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Assuming that G(s) satisfies H1, H2, the following properties for X(s), Y (s) can
be established (see 2.5 for the proof details)

P1. The functions X(s), Y (s) are analytic in the set A = C \ (M∪B)

P2. X∗(s) = Y (s∗), ∀ s ∈ A

P3. Let a ∈ A be a complex number. Then, a = X(a) if and only if a∗ = Y (a∗)

P4. X(C) ⊂ C+ , Y (C) ⊂ C−
P5. If J(R) ⊂ R then X(B) ⊂ R , X(R \ B) ⊂ C+ and also Y (B) ⊂ R ,

Y (R \ B) ⊂ C−

The five properties constitute the starting point to analyze the numerical solution
of Eq. (2.4) from a recursive point of view.

2.2.2 Complex Eigenvalues

The properties P1–P5 allow to state that, if λ ∈ C+ and λ∗ ∈ C− are the complex
conjugate pair solution of Eq. (2.4), then λ = X(λ), λ∗ = Y (λ∗). In other words,
λ, λ∗ are fixed points of functions X and Y , respectively. Let us consider two any
complex numbers x0 ∈ C+, y0 ∈ C− and let {xn}, {yn} be the recursive sequences
of iterates defined for n ≥ 1 as

xn = X(xn−1) , yn = Y (yn−1) (2.13)

The question is whether these sequences converge or not to fixed points, and
therefore, to solutions of the nonlinear eigenvalue problem. An affirmative answer
to this question would allow us to use Eqs. (2.13) as an efficient numerical tool to
compute the complex eigenvalues. This subsection is aimed to find answers to the
following questions:

• Under what conditions the existence of complex fixed points of X(s), Y (s)
can be ensured?

• Can a recursive scheme be constructed so that it converges to these fixed
points, regardless of the starting point?

• What is the speed of convergence of the recursive scheme?

The problem of the existence of fixed points will be solved using a known result
in Fixed Point Theory due to Goebel, Sekowski and Stachura [65]. For that, it is
necessary to define the concept of strict inclusion in sets.
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Definition 1 (Strict inclusion). Let S, T ⊂ C two complex sets; S is said to lie
strictly inside T if there exists a real positive number ǫ > 0 such that B(w, ǫ) ⊂ T ,
∀ w ∈ S. Here, B(w, ǫ) is the closed ball centered at w with radius ǫ

Lemma 1 (Goebel, Sekowski and Stachura [65]). Let h : D → D be an analytic
self–mapping defined in the open unit ball D = {w ∈ C : |w| < 1}. Let wn =
h(wn−1) be the sequence of iterates of function h(w). Then h has a fixed point in
D if and only if there exists a point w0 ∈ D such that strictly {wn}n≥1 ⊂ D

In addition, to answer the second question another result in Fixed Point Theory
due to Reich [66] will be applied. This result is focused on the approximation to
fixed points of holomorphic functions in the complex unit ball.

Lemma 2 (Reich [66]). Let h : D → D be an analytic self–mapping with a fixed
point, and let u0 ∈ D. Then the sequence {un} where 0 < θ < 1

un =
u0
nθ

+

(

1− 1

nθ

)

h (un−1) , n ≥ 1

converges strongly to a fixed point of h(w).

Based on these results Theorem 1 states that, under relatively weak conditions,
X(s), Y (s) have fixed points in C+ and C−, respectively. Furthermore, an approx-
imation sequence to the fixed points can be generated, regardless of the chosen
initial point.

Theorem 1. Let G(s) be a damping function that satisfies the hypothesis H1, H2.
Let {xn} be the sequence introduced in Eq. (2.13). Then:

i) The viscoelastic system given by Eq. (2.3) has a complex eigenvalue λ ∈ C+
if and only if there exists an initial x0 ∈ C+ such that

lim
n→∞

xn /∈ R

ii) Moreover, for all z0 ∈ C, there exists a sequence {zn} ⊂ C+ , with z1 = X(z0)
such that

lim
n→∞

zn = λ

Proof. i) As a stratightforward result of the hypothesis, {xn} can not have ac-
cumulation points in R. From property P4, X(xn) ∈ C+ holds, ∀ n ≥ 0 and
∀ x0 ∈ C+. Consequently, there exists a real positive number ǫ > 0 such that
B(xn, ǫ) ⊂ C+, for n ≥ 1. Hence, it follows that the set {xn}∞n=1 lies strictly inside
the set C+.
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2.2 Single Degree–of–Freedom Systems

To apply the Lemma 1, the domain C+ can be transformed into the open unit ball
by the Cayley transformation ψ : C+ → D, defined through the conformal mapping

ψ(s) =
iωu − s

iωu + s
(2.14)

that transforms the upper half complex plane, C+ into the open unit ball D. For
instance, the point iωu is transformed into the origin, and the boundary ∂C+ = R

into the circumference ∂D = {w ∈ C : |w| = 1}. Now, let us define by composition
the following complex function

U = ψ ◦X ◦ ψ−1 : D → D (2.15)

where

ψ−1(w) = iωu
1− w

1 + w
∈ C+ ∀ w ∈ D (2.16)

Immediately, ψ, ψ−1 are holomorphic in C+ and D, respectively. Since X is also
holomorphic in C+ ⊂ A, it follows that U is holomorphic in D. Moreover, from
property P3, it is verified that X(C+) ⊂ C+, and therefore U(D) ⊂ D. A sequence
{wn} associated to {xn} can be generated, with elements that are images under
ψ in D, i.e. wn = ψ(xn) ∈ D for n ≥ 0. Let us verify that wn = U(wn−1) holds,
using the definition of U(w)

wn = ψ(xn) = ψ
(

X(xn−1)
)

= (ψ ◦X) (xn−1)

= (U ◦ ψ) (xn−1) = U
(

ψ(xn−1)
)

= U(wn−1) (2.17)

Since the complete sequence {xn}∞n=1 lies strictly inside C+, it is verified {wn}∞n=1 ⊂
D strictly. Therefore, from Lemma 1 there exists a fixed point γ ∈ D of the func-
tion U , i.e., U(γ) = γ, so that the anti–image λ = ψ−1(γ) ∈ C+ is a fixed point of
X. Indeed, using again the definition of U

λ = ψ−1(γ) = ψ−1
(

U(γ)
)

=
(

ψ−1 ◦ U
)

(γ)

=
(

ψ−1 ◦ ψ ◦X ◦ ψ−1
)

(γ) = X
(

ψ−1(γ)
)

= X(λ) (2.18)

Finally, since the viscoelastic problem characterized by G(s) has at most one eigen-
value in C+ (see subsection 2.2.1), λ is the unique fixed point of X in C+. From the
property P3, λ∗ = ψ−1(γ∗) is a fixed point of the function Y (s) and consequently
the other complex eigenvalue of the viscoelastic system.

To finish the first part of the proof, let us consider reciprocally that λ ∈ C+ is a
complex eigenvalue of the viscoelastic system. Therefore, γ = ψ(λ) ∈ D is a fixed
point of U . Applying Lemma 1, {wn}∞n=1 ⊂ D strictly and, hence

lim
n→∞

xn = lim
n→∞

ψ−1(wn) /∈ R (2.19)
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Chapter 2. Computation of eigenvalues based on the fixed-point iteration

ii) Assuming now that the system is not overdamped, there exists a unique eigen-
value λ ∈ C+ that is fixed point of X. As shown in the previous proof, γ = ψ(λ) is
fixed point of the holomorphic self–mapping U : D → D defined in Eq. (2.15). Let
z0 ∈ C be any complex number (excluding reals), from property P4, z1 = X(z0) ∈
C+ and let u1 = ψ(z1) ∈ D. The following sequence

un =
u1
nθ

+

(

1− 1

nθ

)

U(un−1) (2.20)

for n ≥ 2 can be constructed in D, where θ can be any real number in the open
interval 0 < θ < 1. From Lemma 2, we can ensure that the sequence {un}
converges to γ. Consequently the sequence {zn} generated as

zn = ψ−1(un) (2.21)

will converge to λ.

Theorem 1 allows us to ensure the existence of complex eigenvalues as fixed points
of X(s), Y (s). A recursive scheme towards the fixed point can be generated from
Eqs. (2.20), (2.21), but it is not established whether the sequences of iterates {xn},
{yn} from Eq. (2.13) converge always to eigenvalues. It seems logical to assume
that when {zn} converges also does {xn}, but it is an unproven conjecture. In
fact, if the conditions of Theorem 1 are satisfied, theoretically a fixed point of X(s)
could coexist with a non–convergent sequence {xn}. In such case, the recursive
scheme would lie in an infinite non–convergent loop contained strictly inside D.
However, the authors have not found any case with this behavior. Furthermore,
for all analyzed cases the sequence {xn} has converged successfully to the complex
eigenvalue for any considered initial point x0 ∈ C+. An explicit proof for this
convergence is not currently available when the requirements of the function J(s)
are just the hypothesis H1, H2.

Despite this formal lack of proof and motivated by a justification for the efficiency
of the numerical scheme {xn}, new additional conditions on the function J(s) are
going to be introduced. First, the following Theorem 2 proves local convergence to
fixed points of X(s), Y (s). Second, Theorem 3 establishes the necessary conditions
to ensure global convergence of sequences {xn}, {yn} to fixed points in a closed
ball centered at the undamped eigenvalues ±iωu, respectively. Moreover, these
theorems will allow us to predict the speed of convergence, aspect not possible
just with Theorem 1. The statement and proofs of these theorems are presented
for the function X(s). The application for Y (s) can be obtained as a direct con-
sequence of properties P1 to P5.

28



2.2 Single Degree–of–Freedom Systems

Theorem 2. Let λ ∈ C+ be the complex eigenvalue of the viscoelastic system (2.3).
If

∣

∣

∣

∣

∂J(λ)

∂s

∣

∣

∣

∣

<

∣

∣

∣

∣

1

ωu
+
J(λ)

λ

∣

∣

∣

∣

(2.22)

then there exist two positive real numbers δ > 0, 0 < ρ < 1, such that the sequence
{xn} converges to λ for any initial point x0 ∈ B(λ, δ) = {s ∈ C : |s− λ| ≤ δ}.
Furthermore,

|xn − λ| ≤ ρn

1− ρ
|X(x0)− x0| (2.23)

Proof. The proof is based on verification of the function X(s) satisfying Banach’s
contraction mapping principle [67, 68]. As well known, this principle constitutes
one of the most important results in mathematical analysis. Applied to the com-
plex domain, it states that every contraction self–mapping on a closed set has a
unique fixed point. Moreover, the principle allows the bounding of the computed
error after n iterations. The proof of this theorem can be organized into two steps:

i) X(s) is contractive in the closed ball B(λ, δ). The derivative of X(s) from
Eqs. (2.10) is

∂X

∂s
= −∂J

∂s

(

1 +
iJ(s)

√

1− J2(s)

)

ωu (2.24)

Using the inequality given by Eq. (2.22) and X(λ) = λ
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∣
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√
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∣
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ωu
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∣

∣
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∣
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∣
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∣

∣

∂J(λ)
∂s

∣

∣

∣

∣
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∣

1
ωu

+ J(λ)
λ

∣
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(2.25)

Since X(s) is analytical at s = λ ∈ C+, the absolute value of its derivative,
|∂X/∂s| ≡ |X ′(s)| is continuous in a neighborhood of λ. Then, there exist a
positive real number δ > 0 so that the maximum value in B(λ, δ) is

ρ = max
|s−λ|≤δ

∣

∣

∣

∣

∂X(s)

∂s

∣

∣

∣

∣

< 1 (2.26)

In real analysis, the previous conclusion is sufficient to prove that X(s) is con-
tractive by straight application of the mean value theorem. In complex analysis
this theorem can not be applied in the same terms, but an analog for analytical
complex functions was demonstrated by McLeod [69]: let u, v ∈ B(λ, δ) be two any
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complex numbers. Since the ball is obviously a convex set, the complex segment
between them is [u, v] = {ξu + (1− ξ)v : 0 ≤ ξ ≤ 1} ⊂ B(λ, δ). According to the
reference [69], there exists a real number 0 ≤ ξ0 ≤ 1 and two complex numbers
s1, s2 ∈ [u, v] such that

X(u)−X(v) = (u− v)

[

ξ0
∂X(s1)

∂s
+ (1− ξ0)

∂X(s2)

∂s

]

(2.27)

Consequently, taking the absolute value of Eq. (2.27) and using the bound given
by Eq. (2.26), the Lipschitz continuity of X(s) can be proved by

|X(u)−X(v)| =

∣

∣

∣

∣

(u− v)

[

h
∂X(s1)

∂s
+ (1− h)

∂X(s2)

∂s

]∣

∣

∣

∣

≤ |u− v|
[

h

∣

∣

∣

∣

∂X(s1)

∂s

∣

∣

∣

∣

+ (1− h)

∣

∣

∣

∣

∂X(s2)

∂s

∣

∣

∣

∣

]

≤ [h ρ+ (1− h) ρ] |u− v| = ρ |u− v| (2.28)

Since the Lipschitz coefficient verifies ρ < 1, the function X(s) is contractive.

ii) X(s) is a self–mapping if given any s ∈ B(λ, δ) i.e. |s− λ| ≤ δ, its image X(s)
also lies inside the ball, i.e. X(s) ∈ B(λ, δ) or equivalently |X(s)− λ| ≤ δ. The
previous inequality can be proved just using the contraction property in B(λ, δ)

|X(s)− λ| = |X(s)−X(λ)| ≤ ρ |s− λ| ≤ ρ δ < δ (2.29)

Therefore, the hypotheses from Banach’s fixed point theorem, see [68], are satisfied
and the convergence of the sequence {xn} from Eq. (2.13) to the (unique) fixed
point of X(s) in the ball B(λ, δ) is ensured. Furthermore, the error decay rate in
each iteration can be bounded by

|xn − λ| ≤ ρn

1− ρ
|X(x0)− x0| , ∀ x0 ∈ B(λ, δ) (2.30)

In view of the previous results, it can be demonstrated, see [70], that the speed of
convergence of a fixed point iteration scheme is asymptotically linear. In fact, it
is verified that

lim
n→∞

|xn+1 − λ|
|xn − λ| = ρ < 1 (2.31)

Notice that the hypotheses of Theorem 2 are expressed in terms of the unknown
eigenvalue λ. Therefore, there is no information a priori on the error rate |xn − λ|
since ρ depends on the unknown |X ′(λ)|. In order to improve this theorem, the
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subsequent Theorem 3 demonstrates the convergence of {xn} using again Banach’s
contraction principle, but now in a closed ball centered in the undamped eigenvalue
iωu. In addition, this theorem will allow us to relate the speed of convergence with
the damping model characteristics, giving a physical insight into the mathematical
results. For that, let us introduce two preliminary definitions: given a positive real
number r > 0, and let Hr = {s ∈ C : |s− iωu| ≤ r} be the closed ball centered in
iωu with radius r. The following numbers are bounds defined as

αr = max
s∈Hr

|J(s)| , βr = ωu max
s∈Hr

∣

∣

∣

∣

∂J

∂s

∣

∣

∣

∣

(2.32)

The existence of αr, βr is guaranteed provided that Hr lies inside the analyticity
domain C \ M of J(s). The presence of Hr allows us to express the necessary
conditions of Theorem 3 in terms of αr, βr.

Theorem 3. Let αr, βr be the bounds defined by Eq. (2.32). If

αr < 1 , βr

(

1 +
αr

√

1− α2
r

)

≡ κr < 1 ,
|X(iωu)− iωu|
r (1− κr)

≤ 1 (2.33)

then there exists an unique fixed point λ of X(s) in the set Hr and the rate of
convergence of the sequence xn = X(xn−1) is

|xn − λ| ≤ κnr
1− κr

|X(x0)− x0| , ∀ x0 ∈ Hr (2.34)

Proof. Since the domain Hr ⊂ C is a closed set in the complex domain, it is
a complete set. To apply again Banach’s contraction principle to the function
X : Hr → C, the proof is again organized in two steps.

i) The function X(s) is contractive in the set Hr. From Eq. (2.32), (2.34) left,
|J(s)| ≤ αr < 1 for any s ∈ Hr. Consequently, the ball Hr lies inside the region
where X(s) is analytic, that is, Hr ⊂ A = C \ (M∪B). The contractivity of X(s)
can be proved as in Theorem 2, thus, it is only required that the bound of |X ′(s)|
is strictly less than one in Hr. Using the definitions from Eq. (2.32) and Eq. (2.24)
we have ∀ s ∈ Hr
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(2.35)

where the last inequality holds from Eq. (2.33) middle. In the previous develop-
ment, αr < 1 has been used to express the bound of 1/

√

1− J2(s) in terms of αr

through its series expansion. It can be concluded the complex function X(s) is
contractive in the set Hr.

ii) The function X(s) is a self–mapping of the set Hr, i.e., X(Hr) ⊂ Hr. We focus
now on the verification of X(s) ∈ Hr, ∀ s ∈ Hr. Thus, let us consider a s ∈ C

such that |s− iωu| ≤ r, hence, X(s) ∈ Hr holds if |X(s)− iωu| ≤ r. Using the
hypothesis from Eq. (2.33) right, it follows

|X(s)− iωu| = |X(s)−X(iωu) +X(iωu)− iωu|
≤ |X(s)−X(iωu)|+ |X(iωu)− iωu|
≤ κr |s− iωu|+ |X(iωu)− iωu|
≤ κr r + |X(iωu)− iωu|
≤ κr r +

(

1− κr
)

r = r (2.36)

In summary, the function X(s) and the ball Hr verifiy the following three proper-
ties

• Hr is closed and therefore a complete subset in the complex domain

• X(Hr) ⊂ Hr

• X(s) is contractive in Hr with Lipschitz coefficient κr < 1
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Therefore, the Banach’s contraction principle can to be applied again for X(s),
now in Hr assuring the uniqueness of the fixed point λ ∈ Hr. Furthermore, the
speed of convergence of the sequence xn → λ is linear and the error can be bounded
by

|xn − λ| ≤ κnr
1− κr

|X(x0)− x0| , ∀ x0 ∈ Hr (2.37)

Notice that no reference to the eigenvalue λ in the three hypotheses has been made,
then, given a radius r > 0, they can easily be tested a priori provided that αr,
βr are available. These bounds depend on the mathematical form of the damping
function J(s) and they must be searched in the boundary of Hr, according to the
maximum modulus theorem for analytical complex functions. Assuming now that
the necessary conditions of Theorem 3 are satisfied, the mathematical expression
of the Lipschitz coefficient

κr = βr

(

1 +
αr

√

1− α2
r

)

(2.38)

contains relevant qualitative information. On one hand, as shown in Theorem 3, κr
controls the convergence speed. On the other, its expression, given by Eq. (2.38),
depends directly on the bounds of the (dimensionless) viscoelastic function J(s)
and its derivative J ′(s). The physical meaning of these values is directly related
with the characteristics of the damping model: a) αr is the damping function (in
absolute value) maximum in Hr. Low values of J(s) are associated with lightly
damped systems and αr is a measure of the level of damping; b) βr/ωu directly
represents the bound of J ′(s), derivative directly related with the level of viscoelas-
ticity. Mathematically, a system has small viscoelasticity if the damping function
J(s) does not present large variations with respect to s so that βr measures the
viscoelasticity in Hr. A more complete study of the viscoelasticity quantification
may be found in the work of Adhikari and Woodhouse [71]. Since the real valued
function κ(α, β) = β

(

1 + α/
√
1− α2

)

is always increasing in the range β > 0,
0 < α < 1, it is expected that lightly damped systems with low viscoelasticity
will present faster convergence to the fixed points. Hence, the higher the damping
level in the system the slower the convergence to the eigenvalue using the proposed
recursive method. This affirmation will be validated throughout the numerical ex-
amples.
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2.2.3 Real Eigenvalues

Assuming that the damping function G(s) induces a dissipative motion, energy
loss may result in either a decreasing amplitude oscillatory motion (complex eigen-
values) or a non–oscillatory motion with exponential decay (real negative eigen-
values). For the first, the system is said to be underdamped and for the second
overdamped. In the latter no complex number in the set C = C \ R exits as fixed
point of the functions X(s), Y (s). Therefore, as a corollary of Theorem 1 both
recursive sequences will converge to the same real eigenvalue. Starting from a
point x0 ∈ C+ the elements of {xn} will be contained in the upper half–plane of
the complex domain and will converge to a negative number. At the same time,
{yn} will also converge to the same eigenvalue but through the lower half–plane
starting now in x∗0 ∈ C−. However, in underdamped systems non–viscous real
eigenvalues coexist with the complex conjugate eigenvalues pair and the question
arises whether the recursive functions, X(s), Y (s) are able to converge to some
real eigenvalue.

Property P5 of the recursive functions states that X(B) ⊂ R and Y (B) ⊂ R,
provided that J(R) ⊂ R. Therefore, the functions X,Y : B → R are well defined
and real valued. Obviously, any real eigenvalue must be a fixed point of some
of the recursive functions, X or Y . Once more, the fixed point theory provides a
result due to Schröeder [70, 72] giving the necessary conditions for the convergence
(local in this case), to a fixed point. This theorem states that the sequence of
iterates tn = X(tn−1) is locally convergent to a fixed point σ ∈ R if the derivative
fulfills |∂X(σ)/∂t| < 1. The same conclusion can be established for the function
Y (t). The notation t is used for the real independent variable and should not be
confused with time, which only appears in Eq. (2.3). Since X(t) is continuously
differentiable in a neighborhood of σ, there exists an interval centered in this point,
I = [σ − δ, σ + δ] such that

ρ = max
t∈I

∣

∣

∣

∣

∂X(t)

∂t

∣

∣

∣

∣

< 1 (2.39)

It can be easily proved that any sequence {tn}∞n=0 that starts in the interval I
remains in I. Thus, the difference between the nth term and the fixed point can
be bounded by

|σ − tn| = |X(σ)−X(tn−1)| ≤ ρ |σ − tn−1| ≤ · · · ≤ ρn |σ − t0| (2.40)

which proves the convergence, limn→∞ xn = σ. This theorem can be considered as
a weak version of the Banach’s contraction principle in the real domain and, like
Theorem 2, does not provide practical hypotheses due to its dependence on the
(unknown) fixed point. However, the numerical examples will show that, under
certain conditions, X(t), Y (t) can present low derivative values. Consequently,
testing the convergence of the iterative process starting from some point t0 ∈ R,
would permit to find non–viscous eigenvalues.
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2.3 Multiple Degree–of–Freedom Systems

The main objective of this section is to apply the previously obtained results
for single dof systems to multiple ones. Let us name M ∈ R

q×q, K ∈ R
q×q,

u(t) ∈ R
q to the mass and to the elastic stiffness matrices, and to the vector

grouping the dof’s. Damping in non–viscous (or viscoelastic) dynamic systems
is modeled by dissipative forces that depend on the history of the dof velocities
via kernel functions. The equilibrium of the free motion results in a system of
integro–differential equations that can be expressed in matrix form as follows

Mü+

∫ t

−∞

G(t− τ)u̇ dτ +Ku = 0 (2.41)

where the matrix G(t) ∈ R
q×q contains the viscoelastic kernel functions in time

domain. Testing solutions of the form u(t) = u0e
st, the previous system becomes

the nonlinear eigenvalue problem
[

s2M+ sG(s) +K
]

u0 = 0 (2.42)

where G(s) = L{G(t)} ∈ C
q×q. Let Φ = [φ1, . . . ,φq] ∈ R

q×q be the matrix group-
ing the eigenvectors associated with the undamped system defined by matrices M,
K. The classical orthogonal relations can be written as

ΦTMΦ = M̃ = diag [mj ] , ΦTKΦ = K̃ = diag [kj ] (2.43)

Changing the variable u0 = Φz0 and using the orthogonal relations, Eq. (2.42)
may be expressed as

[

s2M̃+ sΓ(s) + K̃
]

z0 = 0 (2.44)

where Γ(s) = ΦTG(s)Φ is the damping matrix in the modal space. In general,
this matrix is not diagonal, only non–viscous proportional damping presents this
property. The necessary and sufficient conditions for proportional damping in
non–viscous systems have been studied by Adhikari [29]. For the current paper
purposes, the hypothesis of light non–proportional damping is considered, i.e., the
matrix Γ(λj) is diagonally dominant, that is equivalent to assume as true that

q
∑

l=1
l 6=k

|Γkl(λj)| < |Γkk(λj)| , ∀ 1 ≤ k ≤ q (2.45)

where λj is the jth eigenvalue. This assumption is commonly assumed in many
problems related with non–viscous damping [28, 30–32] and it allows the approx-
imation of the determinant as the product of the terms of its main diagonal, that
is

det
[

s2M̃+ sΓ(s) + K̃
]

≈
q
∏

j=1

(

mjs
2 + sΓjj(s) + kj

)

(2.46)
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Chapter 2. Computation of eigenvalues based on the fixed-point iteration

Hence, the set of eigenvalues can be obtained from the following q equations

Dj(s) = mjs
2 + sΓjj(s) + kj = 0 , 1 ≤ j ≤ q (2.47)

In general, the number of eigenvalues of an oscillatory viscoelastic (underdamped)
system is 2q+p, with p ≥ 0; there are 2q complex eigenvalues formed by q complex
conjugate pairs. In addition, the set of eigenvalues must be completed with p real
and non–viscous roots. This set is formed by negative numbers associated with
overcritical modes, of non–oscillatory nature. The total number of non–viscous
roots can be written as p = p1 + · · · + pq, where pj ≥ 0, 1 ≤ j ≤ q is the number
of non–viscous roots of the jth characteristic equation.

In order to apply the recursive scheme, let us define the dimensionless damping
functions

Jj(s) =
Γjj(s)

2mjωj
, 1 ≤ j ≤ q (2.48)

Following the same procedure as before, the jth equation can be expressed as

Dj(s)

mj
= s2 + 2sJj(s)ωj + ω2

j = [s−Xj(s)] [s− Yj(s)] (2.49)

where

Xj(s) = ωj

(

−Jj(s) + i
√

1− J2
j (s)

)

Yj(s) = ωj

(

−Jj(s)− i
√

1− J2
j (s)

)

(2.50)

are the functions used in recursive form to compute the complex eigenvalues.
The fixed point theory provides a sequence defined by Eq. (2.20) contained in
the complex unit ball that strongly converges to the fixed point. However, the
sequences

xn = Xj (xn−1) , yn = Yj (yn−1) , n ≥ 1 (2.51)

behave very well and in practice can efficiently be used to obtain the fixed point.
As described in the previous section, the speed of convergence depends on damping
level and on viscoelasticity. As the starting point of the algorithm, the undamped
eigenvalue iωj is in general a good choice; however any suitable initial point can
be used as long as it belongs to C = C \ R.

Finally, for the eigenvectors’ computation, two procedures can be used [28]. From
the approximated eigenvalue obtained with the recursive process described above
λj , the components of the jth associated eigenvector, say uj , can be computed.
First, from the ill–conditioned linear system of equations

[

λ2jM+ λjG(λj) +K
]

uj = 0 (2.52)
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This method can be computationally inefficient for large size systems because
it involves the calculation of an inverse submatrix of dimension q − 1; in any
case it is specially recommended for non–viscous eigenvectors associated to non–
viscous eigenvalues, for which no alternative method is currently available. Second,
for the complex eigenvectors, the hypothesis of non–proportional damping allows
the use of approximate expressions. The complex eigenvectors are expanded in
terms of the off–diagonal terms of matrix Γ(λj) = ΦTG(λj)Φ. Let us name
Dj(s) = Dj(s)/

√
mj to the expression given by Eq. (2.49) and ψj = φj/mj to

the mass–normalized jth undamped eigenvector, for 1 ≤ j ≤ q. The second order
approximation of the jth eigenvector is expressed as linear combination of the
undamped eigenvectors {ψ1, . . . ,ψq}, which forms a base of the space R

q.

uj ≈ ψj − λj

q
∑

k=1
k 6=j

Γkj(λj)

Dk(λj)
ψk + λ2j

q
∑

k=1
k 6=j

q
∑

l=1
l 6=j 6=k

Γkl(λj)Γlj(λj)

Dk(λj)Dl(λj)
ψk (2.53)

2.4 Numerical Examples

2.4.1 Example 1: Single Degree–of–Freedom Systems

In order to validate the theoretical developments a single dof system is analyzed.
For that, the Biot’s viscoelastic model [7] with one exponential kernel as the hered-
itary damping function is used.

G(t) = cvµe
−µt (2.54)

where µ > 0 is the relaxation parameter and cv the damping coefficient of the limit
viscous model when µ→ ∞. Let us denote by ζ = cv/2mωu the damping ratio of
the limit viscous model, then the Laplace transform of the damping function is

G(s) = 2mωuζ
µ

s+ µ
(2.55)

The characteristic equation is of the form

s2 + 2sωuζ
µ

s+ µ
+ ω2

u = 0 (2.56)

Multiplying the previous equation by s + µ, it is transformed into a third order
polynomial. Introducing now the new variables z = s/ωu, ν = ωu/µ the following
non–dimensional equation is obtained

(νz + 1)(z2 + 1) + 2zζ = 0 (2.57)
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Chapter 2. Computation of eigenvalues based on the fixed-point iteration

Several authors [55, 64, 73, 74] have studied the dynamics of the described vis-
coelastic oscillator through the solutions of the previous polynomial. The three
roots will be either a complex conjugate pair together with a single real number
or three negative real numbers. The so–called overdamped region is defined by the
set of damping parameters ν, ζ that induce an overdamped motion, i.e. Eq. (2.57)
gives three negative real roots. Adhikari [74] carried out a rigorous analysis of the
ν, ζ domain. Among other properties, the reference obtained closed expressions
of the region boundary in terms of ν, ζ. In Fig. 2.1 left the representation of the
overdamped (OD) region is drawn as a grey area. The rest (white area) will be
the underdamped region (UD).

The availability of an explicitly defined overdamped region has motivated us to
adopt Biot’s damping model with one kernel. Convergence properties of the pro-
posed recursive method and damping characteristics will be related. By means of
straightforward operations, it can be verified that the particular function J(s) =
ζµ/(s + µ) satisfies H1, H2. If the sequence xn = X(xn−1) does not converge to
the set R for some initial point x0 ∈ C+, then Theorem 1 ensures the existence of a
complex fixed point of the function X(s). Furthermore, if the damping model in-
duces an overdamped motion, the sequence converges to a real eigenvalue but the
theorem does not give information about the convergence speed. At this regard,
Theorems 2 and 3 state that the Banach’s contraction principle can be applied
under certain conditions. The theoretical results have shown that lightly damped
systems with low viscoelasticity present faster convergence to the eigenvalue.

Given a pair (ζ, ν) the recursive scheme xn = X(xn−1) can be carried out to
approximate the eigenvalue, starting always from the initial point x0 = iωu. Since
yn = x∗n, the sequence {yn} is not of interest provided that y0 = x∗0. It is considered
that the method has reached a solution when the error defined by

ǫn =

∣

∣

∣

∣

xn − xn−1

x1 − x0

∣

∣

∣

∣

(2.58)

is lower than the prefixed value ǫmax = 10−12. If λ(ζ, ν) is the eigenvalue obtained
as the limit of {xn}, the density plot of

∣

∣X ′
(

λ(ζ, ν)
)∣

∣ is drawn in Fig. 2.1 right
for ωu = 10 rad/s. It should be noted that for all pairs (points in the plot) the
sequence is convergent since the absolute value of the derivative is always less
than the unity. The lowest values of

∣

∣X ′
(

λ(ζ, ν)
)∣

∣ are located in the UD area
with factor 0 < ζ < 1 and in the OD region. Therefore, it is expected that the
recursive method is faster in these zones whereas the derivative values close to
one (on the OD contour) are related with very slow convergence. To illustrate the
convergence of the different zones, nine different cases associated with points C1
to C9 represented in Fig. 2.1 left.
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Figure 2.1: Left: underdamped UD, overdamped OD regions in parametric domain
(ζ, ν) of Example 1 and points C1 to C9 defined for numerical cases. Right: density plot
of |X ′ (λ(ζ, ν))| for complex eigenvalue λ(ζ, ν).

In Table 2.2 the approximated eigenvalue xN (N is the number of iterations for
ǫN < ǫmax) obtained from the recursive sequence are listed for the nine cases in
the fourth column. Due to the special relevance of the recursive function deriva-
tive X ′(s) = ∂X/∂s, its absolute value evaluated in xN and in the undamped
eigenvalue are listed in the last two columns. As expected, C5, C8 require a great
number of iterations since the related values of |X ′(λ)| are close to one. On the
contrary, low values of |X ′(λ)| as for C1, C2, C3, C6, C9 produce very fast con-
vergence. Points C6, C9 converge to real eigenvalues since they are inside the OD.
The number of iterations for C4, C7 is one order of magnitude higher due to the
closeness of |X ′(λ)| to unity.

In Fig. 2.2, (first nine plots) the complex–domain paths of the computed sequences
have been represented together (last three plots) with the error–iterations plots
for each numerical case. The initial guess x0 is signaled by a circle and the con-
verged eigenvalue by a square. It can be observed that Cases C1to C3 need few
iterations to approach a neighborhood of the final eigenvalue. In these cases, the
Theorem 3 can be applied and a suitable value of radius r could be found. In the
rest of cases, the sequences always converge but the speed of convergence could be
predicted only in a neighborhood of the eigenvalue by means of Theorem 2.

To complete this example, a few remarks on the application of the method to
non–viscous eigenvalues computation will be made. As known, in a context of
oscillatory motion a single dof viscoelastic model can have real eigenvalues (non–
viscous eigenvalues), as well as a single complex conjugate pair. In subsection 2.2.3
it has been demonstrated that under certain conditions the sequences {xn}, {yn}
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Figure 2.2: Example 1: Complex path of recursive sequence xn from initial guess
x0 = iωu = 10i, point ⊙, up to the limit eigenvalue ⊡, top nine plots. Associated
error–iteration ǫn curves, bottom three plots, all for cases in Fig. 2.1 left.
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Case ζ ν xN N |X ′(xN )| |X ′(iωu)|
C1 0.50 0.35 −6.49 + 11.88i 27 0.3309 0.2025
C2 0.50 0.20 −6.21 + 9.72i 18 0.1677 0.1212
C3 0.50 0.05 −5.26 + 8.82i 10 0.0315 0.0296
C4 2.00 0.35 −13.07 + 31.76i 193 0.8619 1.3188
C5 2.00 0.08 −61.19 + 32.18i 2983 0.9907 0.3422
C6 2.00 0.03 −43.76 + 0.00i 18 0.1678 0.1291
C7 3.00 0.35 −13.48 + 39.86i 278 0.9025 1.9178
C8 3.00 0.05 −99.15 + 43.96i 9800 0.9972 0.3083
C9 3.00 0.02 −67.97 + 0.00i 18 0.1643 0.1236

Table 2.2: Example 1: Approximated complex eigenvalues xN from sequence xn =
X(xn−1) with initial point x0 = iωu = 10i. N number of iterations for error ǫN < 10−12.

may converge to some non–viscous eigenvalue. For the current example, to reach
this convergence the derivatives need to verify either |X ′(σ)| < 1 or |Y ′(σ)| < 1,
where σ ∈ R is any non–viscous real eigenvalue. The analytical expression of these
derivatives can be calculated, if X(σ) = σ or Y (σ) = σ then

X ′(σ) = Y ′(σ) =
ζ σµ ωu

(σ + µ) [σ(σ + µ) + ζµωu]
(2.59)

For lightly damped systems, non–viscous eigenvalues σ are located close to the
pole −µ of the kernel function, [31]. Then, since the expression σ+µ ≈ 0 appears
in the Eq. (2.59) denominator, it follows that the lighter the damping the higher
the absolute value of the derivatives. For light damping, it is expected that the
sequences {xn}, {yn} will not converge to real numbers. A high level of damping
can facilitate the convergence, resulting in low derivative absolute values that may
evenbe less than one. For the current example, the application of the method to
obtain non–viscous eigenvalues gives results that are shown in Table 2.3; the same
initial point has been taken for both sequences, i.e., x0 = y0. The recursive results
are considered successful if they converge to a real number with iterations that
stay within the real domain, but it can be observed that for all cases the sequence
xn = X(xn−1) does not satisfactorily converge to non–viscous eigenvalues. For
example, for cases C1, C2, C3, C7, the sequence {xn} does not stay in the real do-
main and finally converges to complex eigenvalues. Cases C6, C9 are over–damped
and their sequences also escapes from the real numbers line before returning to
converge to a real number. The sequences of cases C4, C5, C8 remain inside the
real numbers but enter a non convergent infinite loop.
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The sequence yn = Y (yn−1) produces quite different results. Convergence occurs
for all high damping cases (C4–C9, in bold) towards non–viscous eigenvalues σ,
verifying yn ∈ R, ∀ n ≥ 0. Therefore, the sequence reaches the real numbers
remaining in the real axis and obviously |Y ′(σ)| < 1. The rest of cases C1, C2, C3
converge to complex eigenvalues as with xn = X(xn−1).

Iteration sequence of X(s) Iteration sequence of Y (s)
Case x0, y0 xN N |X ′(xN )| yN N |Y ′(yN )|
C1 -21.43 −6.49 + 11.88i 29 0.3309 −6.49− 11.88i 28 0.3309
C2 -37.50 −6.21 + 9.72i 26 0.1677 −6.21− 9.72i 18 0.1677
C3 -150.00 −5.26 + 8.82i 11 0.0315 −5.26− 8.82i 11 0.0315
C4 -14.29 – n.c. 1.4452 −2.422 15 0.1042
C5 -62.50 – n.c. 1.0456 −2.615 10 0.0245
C6 -166.67 −43.76 + 0.00i 18 0.1678 −2.655 8 0.0092
C7 -14.29 −13.48 + 39.86i 276 0.9025 −1.613 12 0.0631
C8 -100.00 – n.c. 0.3078 −1.700 8 0.0091
C9 -250.00 −67.97 + 0.00i 18 0.1643 −1.710 7 0.0036

Table 2.3: Example 1: Results for non–viscous eigenvalues; cases converging to non–
viscous eigenvalues emphasized in bold. N number of iterations, |X ′(xN )|, |Y ′(yN )| re-
cursive function derivative evaluated in sequence limit. Non convergent sequences named
“n.c.”

In this example, it has been shown that the proposed method not only can be
used to compute efficiently complex eigenvalues but also non–viscous ones. Fur-
thermore, the convergence to the latter is achieved when the damping induced in
the system is high. This duality is an important advantage, because the published
methods that are oriented to the calculation non–viscous eigenvalues [31, 32] often
assume light damping.

2.4.2 Example 2: Multiple Degree–of–Freedom Systems

To complete the validation of the numerical method, a four–dof discrete system
with four masses and two types of viscoelastic links is studied, as shown in Fig. 2.3.
Links A relate internal forces with relative displacements and velocities of consec-
utive masses (each one an active dof) through a five–kernels Biot’s model; links B
directly constraint each mass through a four–parameter viscoelastic model based
on the fractional derivatives [20]. Indexes j = 0, 5 of fixed boundaries are related
with zero dof’s so that u0 = u̇0 = u5 = u̇5 = 0. Thus, the constitutive equations
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Figure 2.3: Example 2: Lumped–mass dynamical system with viscoelastic links. Links
A follows the Biot’s model with five kernels, links B based on the fractional derivatives.

relating reactions and displacements are

Links A, 1 ≤ j ≤ 5 : Rj−1,j = ka(uj − uj−1) +

∫ t

−∞

Ga(t− τ)(u̇j − u̇j−1) dτ

Links B, 1 ≤ j ≤ 4 : Qj + T γ
r

dγQj

dtγ
= kb

(

uj + c T γ
r

dγuj
dtγ

)

(2.60)

where c, γ and Tr are the parameters of the damping model based on the fractional
derivatives and for real materials c > 1, 0 < γ < 1, Tr > 0. The coefficients ka,
kb are the linear, static rigidities of links A and B, respectively and the function

Ga(t) =
cv
5

5
∑

l=1

µle
−µlt (2.61)

is the kernel that controls the damping behavior of links A. The damping coeffi-
cient cv = 2mωaζ is expressed as function of a certain damping ratio ζ and of the
reference frequency, ωa =

√

ka/m. Its Laplace transform is directly

Ga(s) =
cv
5

5
∑

l=1

µl

s+ µl
(2.62)

resulting for links A the following frequency–dependent stiffness relation between
internal forces and dof’s

R̂j−1,j(s) =
[

ka + s Ga(s)
] [

ûj(s)− ûj−1(s)
]

(2.63)

where R̂j−1,j(s) = L{Rj−1,j(t)} and ûj(s) = L{uj(t)} are the Laplace transform
of the internal forces and of the dof’s, respectively.

For viscoelastic links B based on fractional derivatives, an explicit expression of
the kernel function Gb(t) is not analytically available. However, the damping
function in the Laplace domain Gb(s) can easily be calculated simply applying
to the fractional derivatives of Eq. (2.60) the Laplace transform and using its
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Mass (kg) Rigidities (N/m) Natural frequencies (rad/s)
m ka kb ω1 ω2 ω3 ω4

103 105 5×104 9.391 13.718 17.658 20.293

Table 2.4: Example 2: Mass, static rigidities and modal natural frequencies for the
4–dof undamped system.

properties. If Q̂j(s) = L{Qj(t)} is the Laplace transform of the reactions at links
B, then

Q̂j(s) = kb
1 + c (Trs)

γ

1 + (Trs)
γ ûj(s) ≡

[

kb + s Gb(s)
]

ûj(s) (2.64)

where

Gb(s) =
kb
s

(c− 1)(Trs)
γ

1 + (Trs)
γ (2.65)

The free–motion equations in the Laplace domain can be obtained assembling the
mass and the stiffness matrices associated with the structural configuration shown
in Fig. 2.3, resulting in an equilibrium similar to that of Eq. (2.2)

[

s2M+ sG(s) +K
]

û(s) = 0 (2.66)

where M = mI4, K = kaΠa + kbΠb and G = Ga(s)Πa +Gb(s)Πb, with auxiliary
matrices

Πa =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2









, Πb = I4 (2.67)

Table 2.4 showns the values of mass m, static rigidities ka, kb of the springs and
natural frequencies of the undamped system. Notice that the damping matrix
G(s) can be expressed as linear combination of the stiffness and mass matrices in
the following form

G(s) =
Ga(s)

ka
K+

kaGb(s)− kbGa(s)

ka m
M (2.68)

Under these conditions, the viscoelastic damping matrix G(s) is said to be pro-
portional, [29], and it can be assured that Γ(s) = ΦTG(s)Φ is diagonal. Thus,
according to the theoretical results presented in Sec. 2.3 and after some operations,
the non–dimensional function Jj(s) is

Jj(s) =
φT

j G(s)φj

2mjωj
=
Ga(s)

2ka
ωj +

kaGb(s)− kbGa(s)

2ka m ωj
(2.69)
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where ωj is the undamped frequency of the jth mode. Consequently, the functions
Xj(s), Yj(s) defined in Eqs. (2.47) can be constructed to compute the complex
eigenvalues using the iterative process defined by the sequence of iterates

x
(n)
j = Xj

(

x
(n−1)
j

)

, y
(n)
j = Yj

(

y
(n−1)
j

)

, 1 ≤ j ≤ 4 (2.70)

As shown in Theorem 3, the convergence speed depends on the damping level
induced in the system by the viscoelastic model. For this reason, in the current
example three separated cases corresponding to three different damping levels will
be studied: lightly damped (LD), moderately damped (MD) and strongly damped
(SD) systems. In order to numerically differentiate these levels, the loss factor peak
will be used as damping index. As known [11, 12, 21, 22, 75], the loss factor of a
frequency–domain constitutive equation is a real–valued and frequency-dependent
function defined as the quotient between the imaginary and the real part of the
complex stiffness. Here, the complex stiffness associated with the viscoelastic links
of the structure shown in Fig. 2.3 are

k̂a(iω) = ka + iω Ga(iω) = Ma(ω) + iLa(ω) = Ma(ω) [1 + iηa(ω)]

k̂b(iω) = kb + iω Gb(iω) = Mb(ω) + iLb(ω) = Mb(ω) [1 + iηb(ω)]

whereMa(ω), Mb(ω) are the real part of the complex stiffness or dynamic modulus;
La(ω), Lb(ω) the imaginary part or loss modulus and finally ηa(ω) = La(ω)/Ma(ω)
, ηb(ω) = Lb(ω)/Mb(ω) the loss factors. In general, for real solid materials, the
loss factor presents one maximum peak [20]. The function takes at the peak a
representative value of the induced level of damping ηm named loss factor peak.
For the current viscoelastic links, the loss factor peaks are defined as

ηmA = max
ω≥0

ηa(ω) , ηmB = max
ω≥0

ηb(ω) (2.71)

Pritz [21] studied the frequency dependence of the loss factor for real solid ma-
terials. According to the experimental evidence, the reference gave the following
classification by order of ηm level:

• Stiff structural materials present light damping with low 0.001 ≤ ηm ≤ 0.01

• Moderately damped materials, such as plastics, with medium 0.01 ≤ ηm ≤
0.10

• Rubbers and rubber–like materials used for vibrations control, induce high
damping level and consequently 0.10 ≤ ηm ≤ 1.0

This classification is used in the current example to differentiate the three numer-
ical cases. The relaxation parameters of the Biot’s multiexponential model (links
A) are µl = {5, 10, 13, 18, 40} rad/s. For links B, the relaxation time is Tr = 10−3

s and the rest of parameters, say ζ, c, γ are chosen so that the computed loss
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Links type A Links type B
Cases ζ ηmA c γ ηmB

Lightly Damped 0.007 0.0100 1.135 0.20 0.0100

Moderately Damped 0.078 0.1001 1.860 0.40 0.1003

Strongly Damped 2.000 1.0012 94.00 0.60 1.0091

Table 2.5: Example 2: Numerical cases and computed loss factor peaks of the viscoelas-
tic links for {µl}

5
l=1 = {5, 10, 13, 18, 40} rad/s, Tr = 10−3 s.

factor peaks given by Eq. (2.71) take the values: LD is associated with ηm ≈ 0.01,
MD with ηm ≈ 0.10 and SD with ηm ≈ 1.00. Table 2.5 shows the parameters and
the calculated loss factor peak values for each link type, which will be used in the
following.

The results of the recursive scheme are presented in Table 2.6. For each mode,

the initial value is the undamped eigenvalue x
(0)
j = iωj . As before, the itera-

tion sequence continues until the non–dimensional iterative error ǫ
(n)
j defined as in

Eq. (2.58) is lower than the prefixed value ǫmax = 10−12. The number of computed
iterations N shown in the last column increases with the level of damping and as
predicted, lightly damped systems present faster convergence. In Fig. 2.4 the path

traced by the elements of the sequence {x(n)j }Nn=0 in the complex plane has been
drawn for each of the four modes, top figures. In addition, the error versus iteration
curves have been plotted, bottom figures. For LD, MD the recursive sequences in
the complex plane do not present excessive numerical oscillations around the fixed
point (square). However, the path for SD behaves similarly as those of the highly
damped cases from Example 1. In this case, the first iterations fluctuate, and the
error does not decay linearly, a characteristic of contractive functions. Only when
the elements of the sequence are close enough to the fixed point, the rate of decay
remains constant.

2.5 Conclusions

In this paper, a new numerical method to compute the eigenvalues of linear
viscoelastic structures is developed. The method can be implemented for sin-
gle or multiple degree of freedom systems with a proportional, or lightly non–
proportional, damping matrix. Several transformations in the characteristic equa-
tion lead us to find two relevant complex functions to be used in a recursive scheme.
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Mode Initial value Nth-Approx. # Iterat.

Cases j x
(0)
j x

(N)
j N

Lightly Damped 1 9.391i −0.0395 + 9.5017i 7
2 13.718i −0.0637 + 13.8311i 7
3 17.658i −0.0865 + 17.7910i 7
4 20.292i −0.1012 + 20.4453i 7

Moderately Damped 1 9.391i −0.3504 + 9.7831i 9
2 13.718i −0.6568 + 14.3957i 10
3 17.658i −0.9195 + 18.7015i 11
4 20.292i −1.0804 + 21.6179i 11

Strongly Damped 1 9.391i −12.4924 + 25.1788i 41
2 13.718i −13.6958 + 37.8174i 56
3 17.658i −14.0601 + 49.3423i 68
4 20.292i −14.1392 + 56.9869i 74

Table 2.6: Example 2: Approximated eigenvalues xN after N iterations. Sequence is
considered to converge if relative error satisfies ǫ

(N)
j < 10−12.

The main theoretical conclusions are presented in three theorems. With the help
of fixed point theory, Theorem 1 demonstrates the existence of complex eigen-
values considered as fixed points of the recursive functions. Theorems 2 and 3
analyze the convergence of the recursive sequence by means of the Banach fixed
point theorem. It is shown that the convergence speed of the proposed recursive
method depends on the level of damping and on the viscoelasticity. It is proved
that systems with low–damping together with low viscoelasticity present in gen-
eral faster convergence. For strongly damped structures the iterative process is
slower although the convergence is ensured.

To illustrate and validate the theoretical results, two numerical examples are an-
alyzed. First, a single degree of freedom viscoelastic system with a Biot damping
model is studied. Since the overdamped region is available, the level of damping
and the speed of the numerical method can be related. In all the numerical cases
considered, the recursive sequence has always converged, even when the system
is overdamped. Moreover, this example shows that under certain conditions the
method may also be used to obtain non–viscous eigenvalues. As predicted by
the theory, the cases associated with low damping systems converged faster, and
conversely, high damping systems converged slowly. Second, in order to study mul-
tiple degree of freedom systems, a four–mass discrete structure with proportional
damping is examined. The damping is introduced through viscoelastic links using
again Biot’s model with five kernels and a damping model based on the fractional
derivatives. With the objective to relate the level of damping with the convergence
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Figure 2.4: Example 2: Four mode paths in complex plane of iterates’ sequence from
initial point ⊙ to limit eigenvalue ⊡ for Lightly, Moderately and Strongly Damped, top
figures. Associated error ǫ

(n)
j , bottom figures.

three cases with different levels are studied. Further research is currently being
developed by the authors for the generalization of the method for multiple degrees
of freedom systems including a damping matrix whose non–proportionality cannot
be neglected.

Appendix 2.A. Proof of properties P1 to P5

Proof of P1 The complex functions X(s), Y (s) defined in Eqs. (2.10) can be
considered a composition of analytical functions. Hence, X = ωu(f ◦ J), Y =
ωu(g ◦ J), where

f(z) = −z + i
√

1− z2 , g(z) = −z − i
√

1− z2 (2.72)

are analytical functions for any z ∈ C except in the set {z ∈ R : |z| ≥ 1}. There-
fore, from the functions’ composition properties, X(s), Y (s) are analytical in the
set where J(s) is, except in points of the region B = {z ∈ R : |J(z)| ≥ 1} where
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the square root is not analytical.

Proof of P2 Since X(s), Y (s) are analytical and consequently holomorphic in the
set A, then

X∗(s) = ωu

[

−J(s) + i
√

1− J2(s)
]∗

= ωu

[

−J(s∗) + (−i)
√

1− J2(s∗)
]

= Y (s∗)

(2.73)

Proof of P3 Let z ∈ A be a fixed point of X(s), then z = X(z). Taking the com-
plex conjugate of both terms and using P2, it follows that z∗ = X∗(z) = Y (z∗),
from where z∗ is a fixed point of Y (s). It is clear that using the same principle
the reciprocal also holds.

Proof of P4 From the hypothesis H3, J(s) ∈ C, ∀ s ∈ C. Due to X = ωu(f ◦ J),
it follows that X(C) ⊂ C+ holds only if f(C) ⊂ C+. Taking a complex number
z = x+ iy ∈ C, it is necessary to prove that ℑ{f(z)} > 0. By the definition of the
imaginary part of a complex number

ℑ{f(z)} =
f(z)− f∗(z)

2i
=

1

2i

(

−z + i
√

1− z2 + z∗ − (−i)
√

1− z∗2
)

= −z − z∗

2i
+

√
1− z2 +

√
1− z∗2

2i
= −ℑ{z}+ ℜ{

√

1− z2}(2.74)

Let now u+ iv ∈ C be the main square root of 1− z2, then (u+ iv)2 = 1− z2 =
1 − (x + iy)2 where u = ℜ{

√
1− z2} ≥ 0. Let us calculate u by identification of

real and imaginary parts in the previous equality

u2 − v2 = 1− x2 + y2 , uv = −xy (2.75)

From the expression, an equation in only the variable u may be deduced. Thus,
the real part u may be computed as a root of the four–order polynomial u4 −
ρu2 − (xy)2 = 0, where ρ = 1 − x2 + y2. Therefore, cases x = 0, x 6= 0 must be
considered separately.

If x = 0 then ρ = 1+ y2 and the polynomial equation leads to u2(u2−1− y2) = 0,
hence, either u = 0 or u2 = 1 + y2. For the first, it is verified from Eq. (2.75)
that −v2 = 1 + y2 > 0, a contradiction; consequently u2 = 1 + y2. The negative
solution is not of interest since u is defined by a main square root. Therefore

u = ℜ{
√

1− z2} =
√

1 + y2 > y = ℑ{z} ⇒ ℑ{f(z)} > 0. (2.76)

If x 6= 0, the solutions of the four–order polynomial can be expressed in the form

u2 =
(

ρ±
√

ρ2 + 4(xy)2
)

/2. Since u2 > 0, the solution ρ −
√

ρ2 + 4(xy)2 < 0
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must be rejected. Now, let us suppose that u = ℜ{
√
1− z2} ≤ y = ℑ{z} in order

to arrive to a contradiction

0 ≤ u ≤ y ⇒ 2u2 ≤ 2y2 ⇒ ρ+
√

ρ2 + 4(xy)2 ≤ 2y2 ⇒
√

ρ2 + 4(xy)2 ≤ 2y2 − ρ ⇒ ρ2 + 4(xy)2 ≤ 4y2 − 4y2ρ+ ρ2 ⇒
x2 ≤ y2 − ρ = y2 − 1 + x2 − y2 ⇒ 0 ≤ −1(2.77)

The last inequality is the contradiction, for this reason necessarily ℑ{f(z)} =
u − y > 0 also for x 6= 0. Therefore, ℑ{X(s)} > 0, ∀ s ∈ C that is equivalent to
X(C) ⊂ C+.

Now, if s ∈ C, then X(s∗) ∈ C+ and ℑ{X(s∗)} > 0. Therefore ℑ{X∗(s∗)} =
ℑ{Y (s)} < 0 that proves the property for the function Y (s).

Proof of P5 Let us consider an element x ∈ B ⊂ R. From the definition of the set
B, |J(x)| ≥ 1 is verified and from the main hypothesis of the propery J(R) ⊂ R,
therefore, z = J(x) ∈ R. Thus, the number 1− z2 ≤ 0 and

√
1− z2 = i

√

|1− z2|
is pure imaginary. Hence, the value of the function is f(z) = −z −

√

|1− z2| ∈ R

so that X(B) ⊂ R.

Now, let us consider a number x ∈ R\B and by definition |J(x)| < 1 and 1−z2 > 0.
Consequently, ℑ{f(z)} =

√
1− z2 > 0 whence ℑ{X(x)} > 0 or, in set inclusion

notation, X(R\B) ⊂ C+. For statements Y (B) ⊂ R and Y (R\B) ⊂ C−, the same
procedure as that of X(s) can be used.
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[72] E. Schroeder. “Über unedlich viele Algorithmen zur Auflösung der Gle-
ichungen.” In:Mathematische Annalen 2 (1870), pp. 317–365 (cit. on p. 34).

[73] A Muravyov and SG Hutton. “Free vibration response characteristics of a
simple elasto-hereditary system.” In: Journal of Vibration and Acoustics-
Transactions of the ASME 120.2 (1998), 628–632 (cit. on pp. 38, 58, 160,
162).

[74] S Adhikari. “Qualitative dynamic characteristics of a non-viscously damped
oscillator.” In: Proceedings of the Royal Society A-Mathematical Physical
and Engineering Sciences 461.2059 (2005), 2269–2288 (cit. on pp. 38, 58,
84, 121).

[75] JJ de Espindola, JMD Neto, and EMO Lopes. “A generalised fractional
derivative approach to viscoelastic material properties measurement.” In:
Applied Mathematics and Computation 164.2 (2005), 493–506 (cit. on p. 45).

55





3
Characterization of Real

Eigenvalues in Linear Viscoelastic

Oscillators and the Non-viscous

Set

3.1 Introduction

The dissipative forces of any single degree-of-freedom (dof) viscoelastic oscillator
depend on the time history of the velocity via the convolution integral with a
kernel function. In Fig. 3.1, m is the dof related mass with response u(t), k the
linear stiffness and F (t) the applied external force. The dynamic equilibrium of
forces directly produces the motion equation, expressed as

mü+ Fd(t) + k u = F (t) (3.1)

where

Fd(t) =

∫ t

−∞

G(t− τ) u̇(τ) dτ (3.2)

is the internal dissipative forces. The hereditary function G(t) is named damp-
ing function in time domain, whereas its Laplace transform G(s) = L{G(t)} is
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Figure 3.1: Single degree–of–freedom oscillator with a viscoelastic damper and associ-
ated free–body diagram.

the damping function in frequency domain. These functions control the damping
mechanisms in a more general way than those of the viscous model, the simplest,
classical and most used model of damping. In contrast, the mathematical com-
plexity and storage requirements of the problem significantly increase: Eqs. (3.1),
(3.2) lead to an integro-differential equation to be solved in u(t). In order to
obtain analytical solutions, a key issue is to know the set of eigenvalues of the ho-
mogeneous problem, F (t) ≡ 0. Testing then solutions with the form u(t) = u0e

st,
Eq. (3.1) is transformed into the following characteristic equation

ms2 + sG(s) + k = 0 (3.3)

It is well known that the number of roots of the previous equation is 2 + N and
that they can be noted as {λ, λ∗, σ1, . . . , σN}, where λ, λ∗ is a complex conjugate
pair and σ1, . . . , σN are N negative real numbers named non-viscous eigenvalues
The name is chosen precisely because they are characteristic of non-viscous or vis-
coelastic models. The number of these non-viscous eigenvalues will depend on the
nature of the damping function, particularly on the number of hereditary expo-
nential kernels. The complex conjugate pair forces the solution to be oscillatory,
whereas the other eigenvalues are associated with overdamped, non-oscillatory
modes. The latter modes decay rapidly and in general are not important for the
system response. Perhaps this is the reason for which references focused on their
theoretical study are rarely found in the bibliography.

The Biot’s multiexponential model [7] possibly was the first to provide theoretical
fundamentals based with variational principles to the viscoelastic behavior of ma-
terials. Other works have later been published based on this principle, mostly for
its implementation in the finite element method [14, 40, 41]. Woodhouse [30], ob-
tained approximated solutions of the transfer function for linear viscoelastic struc-
tures based on the residue-pole expansion. This work has been complemented by
Adhikari [28] extending the modal analysis to general non-viscously damped sys-
tems, including the effect of the non-viscous modes. Muravyov [54] obtained ana-
lytical solutions in the time domain taking into account the non-viscous modes and
using operational calculus. Adhikari [74, 76], Muravyov [73] and Muller [64] ana-
lyzed and discussed the problem of a single dof viscoelastic oscillator with a single
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exponential kernel damping. They also established the overdamped region, i.e., the
set of parameters that induce an overdamped motion without complex eigenvalues.
Adhikari and Pascual [77] developed an approximated method to obtain both com-
plex and non-viscous eigenvalues for proportionally damped structures and based
onto expanding the characteristic equation. In [32], the same authors improved the
method introducing an iterative process. Lázaro and Pérez-Aparicio [63] obtained
closed-form expressions of the non-viscous eigenvalues considering the eigenvalues
as functions of the damping parameters. Also, they developed in [33] an efficient
method based on the fixed-point iteration; under certain conditions, this scheme
can also be applied to extract the non-viscous eigenvalues.

In the present paper, a mathematical characterization of the real eigenvalues re-
lated to a linear viscoelastic oscillator is presented. From this characterization,
the existence of a set containing all real eigenvalues is derived, see Section 3.2.
If the damping is governed by Biot’s model with N exponential kernels, this set
–the non-viscous set– is formed by the union of N closed intervals. Analytical
and general solutions of the limits for these closed intervals are obtained for cases
N = 1 and N = 2 in Section 3.2.1. In addition and only for light damping,
in Section 3.2.2 approximated solutions for the general case of N kernels are de-
veloped. Another contribution, Section 3.3, is the use of the non-viscous set to
obtain a closed-form expression that estimates each non-viscous eigenvalue. The
method is based on a quadratic interpolation of the characteristic equation in an
interval of the non-viscous set using the proposed approximated limits. Finally,
the two proposed contributions are validated with a numerical example in Section
3.4. The results of the non-viscous eigenvalues approximation are compared with
other existing approaches from the bibliography.

3.2 Location of real eigenvalues; the non-viscous set

The present section is focused on giving a mathematical characterization for any
real eigenvalue belonging to a single dof viscoelastic system. For that, Eq. (3.3)
is rewritten in terms of the undamped natural frequency ωn =

√

k/m and of the
new dimensionless damping function defined as

J(s) =
G(s)

2mωn
(3.4)

With the new variables, the characteristic Eq. (3.3) becomes

s2 + 2sJ(s)ωn + ω2
n = 0 (3.5)
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Let us name σ ∈ R to any real eigenvalue of Eq. (3.5). We assume that the left
hand side evaluated in s = σ can be expressed in the following form

σ2 + 2σJ(σ)ωn + ω2
n = [σ +A(σ)]

2
+B(σ)

= σ2 + 2σA(σ) +A2(σ) +B(σ) (3.6)

where A(σ), B(σ) are two unknowns functions of σ to determine. Obviously,
infinite solutions exist for these unknowns, but those obtained by identifying the
three coefficients of Eq. (3.6) to 1, σ and σ2 present important properties for the
current purposes. It can easily verified that in such case

A(σ) = J(σ)ωn , B(σ) =
[

1− J2(σ)
]

ω2
n (3.7)

and the characteristic equation is

[σ + J(σ)ωn]
2
+
[

1− J2(σ)
]

ω2
n = 0 (3.8)

Assuming that the damping function is real-valued in the real domain, i.e. J(R) ⊂
R, then σ+ J(σ)ωn ∈ R. Thus, rearranging the above equation it can be deduced
that

1− J2(σ) = −
[

σ

ωn
+ J(σ)

]2

≤ 0 (3.9)

equivalent to |J(σ)| ≥ 1. Note that this inequality is verified for any real eigen-
value and constitutes a mathematical characterization that can be resumed in the
proposition: If σ is a real eigenvalue of Eq. (3.5), then |J(σ)| ≥ 1. As a direct
consequence, defining the following set

B =
{

s ∈ R
− : |G(s)| ≥ 2mωn

}

(3.10)

assures that every real eigenvalue lies inside B. This conclusion is valid even if
the system is overdamped, with 2 + N real eigenvalues all of them contained in
B. However, these systems are not of interest for the present paper and it will be
considered that every real eigenvalue is non-viscous. Consequently, it is reasonable
to assign the name non-viscous set for B. Notice that B is defined as a subset of
the negative real numbers because positive eigenvalues and dissipative behavior
can not coexist.

The theoretical results presented have been obtained for any form of the damp-
ing function: No specification has been imposed on G(s) except the necessary
conditions given by Golla and Hughes [14] to define a strictly dissipative mo-
tion. Hereinafter, it will be assumed that the viscoelastic damping obeys a Biot’s
model with N exponential kernels, restriction commonly assumed in engineering
applications. The expression of the normalized damping functions in time and in
frequency domain are respectively

G(t) = cv
N

N
∑

j=1

µj e
−µjt , G(s) =

cv
N

N
∑

j=1

µj

s+ µj
(3.11)
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3.2 Location of real eigenvalues; the non-viscous set

where µj > 0 with 1 ≤ j ≤ N are the relaxation or non-viscous parameters, and
cv = limµj→∞G(s) the damping coefficient of the limit viscous model when the
relaxation parameters become large. The damping function is normalized so that
the integral over the whole time history is

cv =

∫ ∞

0

G(t) dt (3.12)

It is common practice to use a damping ratio ζ = cv/2mωn instead of cv, then the
function J(s) adopts the form

J(s) =
ζ

N

N
∑

j=1

µj

s+ µj
(3.13)

so that the set B is function only of the damping parameters. The following
questions arise now

Q1. Under what conditions are analytical expressions for B available?

Q2. May approximated expressions for B always be obtained?

Q3. May the information provided by B be used for the numerical computation
of non-viscous eigenvalues?

The rest of the paper aims to answer these questions. Previously, some remarks for
the general structure of B are introduced with the help of an example. Choosing
the relaxation parameters µj = {3, 5, 8, 12} rad/s, the function J(s) is represented
in Figs. 3.2 for different values of the damping ratio: Left figure ζ = 0.2 and right
ζ = 0.5, sufficiently separated for the example purposes. From the definition from
Eq. (3.10), the negative values s that verify J(s) ≥ +1 or J(s) < −1 lie inside B.
The different zones are defined by the intersection points between J(s) and the
horizontal lines with ordinates +1 and −1. As shown in the figure, these zones
correspond to four closed intervals around the four poles, and the definition of the
intervals can be generalized for any number N . Indeed, for any pole −µj it is
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Non–viscous set B
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Figure 3.2: Dimensionless damping function J(s) and intersection with ordinates 1 and
-1 for µj = {3, 5, 8, 12} rad/s.

verified that

lim
ǫ→0+

J(−µj + ǫ) = lim
ǫ→0+

ζ

N

N
∑

k=1

µk

−µj + µk + ǫ

= lim
ǫ→0+

ζµj

N ǫ
+

ζ

N

N
∑

k=1
k 6=j

µk

µk − µj
= +∞

lim
ǫ→0+

J(−µj − ǫ) = lim
ǫ→0+

ζ

N

N
∑

k=1

µk

−µj + µk − ǫ

= − lim
ǫ→0+

ζµj

N ǫ
+

ζ

N

N
∑

k=1
k 6=j

µk

µk − µj
= −∞ (3.14)
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and therefore, the points close to s = −µj are always contained in B. Naming
Bj = [aj , bj ] to the interval associated with −µj , it is verified that

B =

N
⋃

j=1

Bj =

N
⋃

j=1

[aj , bj ] (3.15)

Since J(s) is continuous, continuously differentiable and monotonically decreasing
(except at s = −µj for 1 ≤ j ≤ N), the right limits bj > −µj are obtained as solu-
tion of J(s) = +1; the left limits aj < −µj as solution of J(s) = −1. Furthermore,
the intervals do not intersect each other, Bj ∩ Bk = ∅ for j 6= k. The intervals’
limits are directly related with the damping ratio so that bj − aj decreases with ζ,
becoming zero, i.e. aj , bj → −µj , in the limit ζ → 0. This trend can be observed
in Figs. 3.2 and will later be demonstrated.

The above presented developments can be generalized for multiple-dof structures
with proportional damping matrix. The response is a p–dimensional vector u(t) ∈
R

p verifying the system of integro-differential equations

Mü+

∫ t

−∞

G(t− τ)u̇dτ +Ku = F(t) (3.16)

where M,K ∈ R
p×p are the assembled mass and stiffness matrices. The time func-

tion G(t) ∈ R
p×p is the viscoelastic damping matrix and contains the hereditary

functions controlling the dissipative forces. In proportional damping it is assumed
that M, G(t), K become diagonal in the orthogonal base of the undamped prob-
lem, say {φ1, . . . ,φp}; a detailed study on the conditions for proportional damping
in non–viscous systems can be found in [29]. The response can be then decomposed
in terms of the modal coordinates as u(t) =

∑p
i=1 φi qi(t). The well known orthog-

onal eigenrelations are φT
i Mφk = miδik, φ

T
i Kφk = kiδik and φT

i Gφk = Gi(t)δik,
where δik is the Kronecker delta, mi, ki and Gi(t) are the mass, stiffness and
damping function associated to the mode i, respectively. These relations allow us
to reduce the homogeneous Eq. (3.16) for F(t) = 0 to p single-dof free oscillators
in qi(t) for 1 ≤ i ≤ p

mi q̈i +

∫ t

−∞

Gi(t− τ) q̇i(τ) dτ + ki qi = 0 (3.17)

Following the same procedure as before for single dof’s, Eq. (3.17) is transformed
into the nonlinear equation

s2 + 2sJi(s)ωi + ω2
i = 0 (3.18)

where ωi =
√

ki/mi is the ith natural frequency and Ji(s) = Gi(s)/2miωi is the
ith modal dimensionless damping function. It is clear that any real eignevalue
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σ ∈ R
− of Eq. (3.18) verifies |Ji(σ)| ≥ 1. Using a parallel notation, the number

of non–viscous eigenvalues is Ni and the non–viscous set associated to the mode

i is defined as B(i) = {s ∈ R
− : |Gi(s)| ≥ 2miωi} = ∪Ni

j=1B
(i)
j . Consequently

the complete non–viscous set of a structure with a damping function defined by
exponential kernels

B =

p
⋃

i=1

B(i) =

p
⋃

i=1

Ni
⋃

j=1

B(i)
j =

p
⋃

i=1

Ni
⋃

j=1

[

a
(i)
j , b

(i)
j

]

(3.19)

Since the analysis of proportional damping systems can be reduced to a single dof
oscillator, hereinafter the proposed method for the calculation of aj and bj and
that for the computation of the non–viscous eigenvalues will be presented using
the notation of the single dof system.

3.2.1 Exact Limits of the Non–viscous Set

It has been shown that the jth interval limits aj , bj around the pole −µj are
functions of the damping parameters and can be calculated as the roots of the
equations (negative for aj and positive for bj)

ζ

N

N
∑

j=1

µj

s+ µj
= −1 ,

ζ

N

N
∑

j=1

µj

s+ µj
= +1 (3.20)

Each of the equations can be reduced to an Nth-order polynomial simply multi-
plying both sides by

∏N
j=1(s + µj). Exact solutions are available only for values

1 ≤ N ≤ 4. In particular, polynomials N = 1, 2 allow the direct extraction and
discussion of aj , bj due to the simplicity of the resulting expressions; therefore,
these polynomials will be analyzed separately. Although for N = 3, 4 analytical
solutions can also be found, their roots (third and fourth order polynomials) are
not manegable and do not provided useful additional information.

Case N = 1: One exponential kernel. The damping function includes a single
kernel and consequently only one relaxation parameter µ. The set B = [a, b] is a
closed interval so that limits a < −µ < b for ζ > 0 are solutions of Eqs. (3.20)
particularized with N = 1

ζ
µ

s+ µ
= −1 → s = −µ(1 + ζ) ≡ a

ζ
µ

s+ µ
= +1 → s = −µ(1− ζ) ≡ b

While the left limit is always a negative number, the right one lies inside the
positive real numbers set if ζ ≥ 1. By definition B ⊂ R

−, therefore the right limit
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can suitably be redefined as b = min{0,−µ(1 − ζ)}. Finally, the set B is defined
as

B =











[−(1 + ζ)µ , −(1− ζ)µ] if 0 < ζ < 1

[−(1 + ζ)µ , 0] if ζ ≥ 1

(3.21)

Notice that the interval tends to point −µ when ζ → 0; on the contrary the size
of B increases with ζ so that limζ→∞ B = R

−

Case N = 2: Two exponential kernels. Without loss of generality, let us assume
that the relaxation parameters are 0 < µ1 < µ2. The non-viscous set is then
formed by the union of two closed intervals B1 = [a1, b1] and B2 = [a2, b2] verify-
ing aj < −µj < bj for j = 1, 2.

The left limits a1, a2 are the roots of

ζ

2

(

µ1

s+ µ1
+

µ2

s+ µ2

)

= −1 (3.22)

Multiplying the previous equation by (s+µ1)(s+µ2) after straight operations the
second order polynomial is

s2 + s(2 + ζ)µm + (1 + ζ)µ2
g = 0 (3.23)

where µm = (µ1+µ2)/2 and µg =
√
µ1µ2 are the arithmetic and geometric means

of the relaxation parameters. The roots of Eq. (3.23) can be expressed as

s1, s2 = −µm

2
(2 + ζ)

(

1±
√

1− η
)

(3.24)

where

η ≡ 4(1 + ζ)

(2 + ζ)2

(

µg

µm

)2

(3.25)

is a bounded auxiliary value 0 < η < 1. Indeed since the inequality µg < µm

always holds, η verifies

η =
4 + 4ζ

4 + 4ζ + ζ2

(

µg

µm

)2

< 1 · 1 = 1 (3.26)

The roots from Eq. (3.24) are always negative for any value of the damping pa-
rameters. Since −µ1 > −µ2, the left limit must verify 0 > a1 > a2, and their
expressions are

a1, a2 = −µm

2
(2 + ζ)

(

1∓
√

1− η
)

(3.27)
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The right limits b2 < b1 < 0 are the roots of

ζ

2

(

µ1

s+ µ1
+

µ2

s+ µ2

)

= +1 (3.28)

By the same procedure as before, the following second order polynomial is deduced

s2 + s(2− ζ)µm + (1− ζ)µ2
g = 0 (3.29)

with roots

s1, s2 = −1

2

[

(2− ζ)µm ±
√

(2− ζ)2µ2
m − 4(1− ζ)µ2

g

]

(3.30)

In order to assign s1 and s2 to the limits b1, b2 the inequality b2 < b1 < 0 and the
different values of ζ must be into account. A more detailed analysis requires three
different cases i) to iii) with the help of the function

ρ =
4 |1− ζ|
(2− ζ)2

(

µg

µm

)2

(3.31)

i) Range 0 < ζ ≤ 1 for which |1− ζ| = 1 − ζ and using the same reasoning as
before, 0 < ρ ≤ 1 can be easily proved. Indeed

ρ =
4− 4ζ

4− 4ζ + ζ2

(

µg

µm

)2

< 1 · 1 = 1 (3.32)

Therefore, since 0 > b1 > b2 the right limits take the following values as function
of ρ

b1, b2 = −µm

2
(2− ζ)

(

1∓
√

1− ρ
)

(3.33)

ii) Range 1 < ζ ≤ 2. When ζ = 1, Eq. (3.33) gives b1 = 0, b2 = −µm. When ζ > 1
one of the roots from Eq. (3.30) remains negative and the other positive. In the
range of study, |1− ζ| = −(1− ζ) and the roots are

s1, s2 = −µm

2
(2− ζ)

(

1±
√

1 + ρ
)

(3.34)

Since B must be always negative and again b1 > b2, the positive root can not be
assigned to any limit. If the negative root is assigned to b2 then

b1 = 0 , b2 = −µm

2
(2− ζ)

(

1 +
√

1 + ρ
)

(3.35)
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iii) Range 2 < ζ < +∞. Again |1− ζ| = −(1− ζ) but 2− ζ is now negative. The
roots can be rewritten as

s1, s2 = −µm

2
(ζ − 2)

(

−1±
√

1 + ρ
)

(3.36)

Rejecting the positive root again and assigning the negative one to b2, the limits
are

b1 = 0 , b2 = −µm

2
(ζ − 2)

(

√

1 + ρ− 1
)

(3.37)

The results are arranged in the Table 3.1. Note in the first row that limζ→0 B =

B1

a1 b1
ζ → 0 −µ1 −µ1

0 < ζ ≤ 1 −µm

2 (2 + ζ)
(

1−√
1− η

)

−µm

2 (2− ζ)
(

1−√
1− ρ

)

1 < ζ ≤ 2 −µm

2 (2 + ζ)
(

1−√
1− η

)

0
2 < ζ <∞ −µm

2 (2 + ζ)
(

1−√
1− η

)

0

ζ → ∞ − µ2
g

µm
0

B2

a2 b2
ζ → 0 −µ2 −µ2

0 < ζ ≤ 1 −µm

2 (2 + ζ)
(

1 +
√
1− η

)

−µm

2 (2− ζ)
(

1 +
√
1− ρ

)

1 < ζ ≤ 2 −µm

2 (2 + ζ)
(

1 +
√
1− η

)

−µm

2 (2− ζ)
(

1 +
√
1 + ρ

)

2 < ζ <∞ −µm

2 (2 + ζ)
(

1 +
√
1− η

)

−µm

2 (ζ − 2)
(√

1 + ρ− 1
)

ζ → ∞ −∞ − µ2
g

µm

Table 3.1: Exact solutions for limits of non-viscous set B = B1 ∪ B2 with a model of
two exponential kernels. Expressions of η, ρ from Eqs. (3.25) and (3.31)

{−µ1,−µ2} and in this case the non-viscous set is reduced to two points. In
the last row limζ→∞ B = R

−, result that can be extended to any number N of
exponential kernels.

3.2.2 Approximated Limits of the Non–visocus Set

Analytical solutions for the general case of N > 4 exponential kernels are not
available; in the present paper and exploiting the physical meaning of the damping
ratio, approximated solutions are proposed. In general, ζ > 0, however in practice
for the majority of real physical systems 0 < ζ ≤ 1. Therefore, if the limits of the
jth non-viscous subset Bj = [aj , bj ] are considered as functions of the parameter
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ζ, then aj(ζ), bj(ζ) can be expanded around ζ = 0 as

aj(ζ) = aj(0) +
∂aj(0)

∂ζ
ζ + · · ·+ ∂naj(0)

∂ζn
ζn

n!
+O(ζn+1)

bj(ζ) = bj(0) +
∂bj(0)

∂ζ
ζ + · · ·+ ∂nbj(0)

∂ζn
ζn

n!
+O(ζn+1) (3.38)

It is expected that the Taylor approximation will provide good results in the
mentioned damping ratio range, but becoming poorer when ζ approximates the
unity. The objective is now to obtain the expansion coefficients of Eqs. (3.38). For
that, evaluating Eqs. (3.20) at s = aj(ζ), bj(ζ) results in

ζ

N

N
∑

k=1

µk

aj(ζ) + µk
= −1 ,

ζ

N

N
∑

k=1

µk

bj(ζ) + µk
= +1 (3.39)

Multiplying these equations by aj(ζ)+µj and bj(ζ)+µj , respectively, the following
implicit equations in aj(ζ) and bj(ζ) can be obtained.

f(ζ) ≡ µj
ζ

N
+

[

ζ

N
Hj

(

aj(ζ)
)

+ 1

]

[aj(ζ) + µj ] = 0

g(ζ) ≡ µj
ζ

N
+

[

ζ

N
Hj

(

bj(ζ)
)

− 1

]

[bj(ζ) + µj ] = 0 (3.40)

where the function Hj(s) is defined as

Hj(s) =

N
∑

k=1
k 6=j

µk

s+ µk
(3.41)

Since f(ζ), g(ζ) are identically null for any value of ζ, their derivatives up to any
order also vanish

f ′(ζ) = 0 , f ′′(ζ) = 0 , . . . g′(ζ) = 0 , g′′(ζ) = 0 , . . . (3.42)

From f(0) = g(0) = 0, the first terms of the expansions aj(0) = bj(0) = −µj can
directly be obtained. The successive derivatives of aj(ζ), bj(ζ) evaluated at ζ = 0
can recursively be computed from f ′(0) = f ′′(0) = f ′′′(0) = 0, . . .. After some
operations the first four derivatives are

∂aj(0)

∂ζ
= −∂bj(0)

∂ζ
= −µj

N
∂2aj(0)

∂ζ2
=

∂2bj(0)

∂ζ2
=

2µj

N2
Hj(−µj)

∂3aj(0)

∂ζ3
= −∂

3bj(0)

∂ζ3
= −6µj

N3

[

H2
j (−µj) + µj

∂Hj(−µj)

∂s

]

∂4aj(0)

∂ζ4
=

∂4bj(0)

∂ζ4
=

12µj

N4

[

2H3
j (−µj)

+ 6µjHj(−µj)
∂Hj(−µj)

∂s
+ µ2

j

∂2Hj(−µj)

∂s2

]

(3.43)
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By recursion, the nth derivatives ∂naj(0)/∂ζ
n and ∂nbj(0)/∂ζ

n can be calculated
from f (n)(0) = g(n)(0) = 0 using the information obtained in the previous step.
As shown in Eq. (3.43) the results will depend on the powers and derivatives of
Hj(s) evaluated at s = −µj

∂nHj(−µj)

∂sn
=

N
∑

k=1
k 6=j

(−1)
n
n!µk

(µk − µj)
n+1 (3.44)

3.3 Numerical Computation of Non-viscous Eigenvalues

Since the damping function with N exponential kernels is given by Eq. (3.13),
the non-viscous eigenvalues are the N real roots of Eq. (3.5). The terms s + µj

for 1 ≤ j ≤ N are at the damping function denominators; possible singularities
are avoided multiplying Eq. (3.5) by

∏N
j=1(s + µj), obtaining the N + 2th order

polynomial

P (s) =
(

s2 + ω2
n

)

N
∏

j=1

(s+ µj) + 2 s ωn
ζ

N

N
∑

j=1

µj

N
∏

k=1
k 6=j

(s+ µk) (3.45)

There are many iterative methods available to obtain the N real roots of the
previous polynomial. However, in the present paper we are interested in the one-
step methods to estimate the solution using an explicit expression.

3.3.1 Existing One-Step Methods

To the best of our knowledge, two one-step estimations exist: one due to Adhikari
and Pascual [31] and another recently proposed by Lázaro and Pérez-Aparicio [63].
The former applies the first iteration of Newton’s method with s = −µj as the
initial point. Assuming that −µj+∆j is close to the solution, ∆j can be explicitly
calculated by expanding P (s) up to the first oder around the initial point

0 ≈ P (−µj +∆j) ≈ P (−µj) +
∂P (−µj)

∂s
∆j (3.46)

After some simplifications, the expressions of [31] can be rewritten in terms of the
current notation as

σj ≈ −µj −
P (−µj)

∂P (−µj)

∂s

= −µj +
µ2
jpj

µjpj − µj(rj + µjqj) +
Npj
2ωnζ

(

µ2
j + ω2

n

)

(3.47)
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where

pj =

N
∏

k=1
k 6=j

(µk −µj) , qj =

N
∑

k=1
k 6=j

N
∏

r=1
r 6=j,k

(µr −µj) , rj =

N
∑

k=1
k 6=j

µj

N
∏

r=1
r 6=j,k

(µr −µj) (3.48)

Assuming light damping ζ ≪ 1 the root always lies close to −µj , therefore it is
expected that the solution from Eq. (3.48) represents a close approximation.

The reference [63] considers the eigenvalues as functions of the damping parame-
ters. In particular, assuming that the jth non-viscous eigenvalue σj = σj(ζ) can
be written in terms of the damping ratio, a new approximation based on a Taylor
expansion up to the second order is proposed

σj ≈ σj(0) +
∂σj(0)

∂ζ
ζ +

∂2σj(0)

∂ζ2
ζ2

2

= −µj +
2µ2

jωn ζ

N(µ2
j + ω2

n)
+

4µ3
jω

2
n ζ

2

N2(µ2
j + ω2

n)
2

[

µ2
j − ω2

n

µ2
j + ω2

n

+Hj(−µj)

]

(3.49)

where Hj(s) is the function defined by Eq. (3.41). As in [31], this expression
accurately estimates the exact eigenvalue around ζ = 0, i.e. for lightly damped
systems. Moreover, the error between the approximation Eq. (3.49) and that of
the exact one is bounded by a term O(ζ3).

3.3.2 Proposed Method

In this subsection, the question Q3 pointed in Sec. 3.2 is addressed. As proved in
Section 3.2, each non-viscous eigenvalue is bounded by an interval [aj , bj ], where
the limits aj , bj can be approximated by Eqs. (3.38), (3.43) for the general case of
N exponential kernels. The main objective is to build a new one-step numerical
approximation of σj using the information provided by its non-viscous set Bj =
[aj , bj ]. In order to avoid singularities, we define a new characteristic equation
associated with the jth non-viscous multiplying Eq. (3.5) by s+ µj , resulting

Dj(s) = (s2 + ω2
n)(s+ µj) + 2sωn

ζ

N

[

µj + (s+ µj)Hj(s)
]

= 0 (3.50)

The function Dj(s) vanishes at s = σj and is continuous with continuous first
derivative at s = −µj but not at s = −µk ∈ Bk, ∀ 1 ≤ k ≤ N and for k 6= j.
Furthermore, since Bj ∩ Bk = ∅, Dj(s) is also continuously differentiable inside
Bj . The key idea is to quadratically interpolate Dj(s) with three data points
s = aj ,−µj , bj . Since exact expressions for aj , bj are not available for N kernels, it
is necessary to use the approximated expressions obtained above. Taking the linear
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expression aj , bj ≈ −µ (1± ζ/N) the approximated and sought jth characteristic
equation can be written in terms of Lagrange’s polynomials as

Dj(s) ≈ Dja La(s) +Djµ Lµ(s) +Djb Lb(s) ≡ D̃j(s) (3.51)

where the polynomials are

La(s), Lb(s) =
1

2µ2
jν

2
(s+ µj) [s+ µj(1∓ ν)]

Lµ(s) =
1

µ2
jν

2
[s+ µj(1− ν)] [s+ µj(1 + ν)] (3.52)

The new variable ν = ζ/N has been introduced for notation convenience. The
values Dja, Djb, Djµ are obtained evaluating Dj(s) at the data points s = −µj(1±
ν),−µj

Dja = Dj

[

− µj(1 + ν)
]

= −µjν
{

[ωn + µj(1 + ν)]
2 − 2µjωnν(1 + ν)Hja

}

Djb = Dj

[

− µj(1− ν)
]

= µjν
{

[ωn − µj(1− ν)]
2 − 2µjωnν(1− ν)Hjb

}

Djµ = Dj(−µj) = −2µ2
jνωn (3.53)

and

Hja = Hj

(

− µj(1 + ν)
)

=

N
∑

k=1
k 6=j

µk

µk − (1 + ν)µj

Hjb = Hj

(

− µj(1− ν)
)

=
N
∑

k=1
k 6=j

µk

µk − (1− ν)µj
(3.54)

After some operations, the coefficients of the second order polynomial D̃j(s) can
be expressed in the form of

D̃j(s) = Cj

(

s2 + 2µjαj s+ µ2
j βj

)

(3.55)

where

Cj =
Dj a +Djb − 2Djµ

2µ2
jν

2

αj = 1 +
ν

2

Djb −Dja

Djb +Dja − 2Djµ

βj = 1 + ν
Djb −Dja + 2νDjµ

Djb +Dja − 2Djµ
(3.56)
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Assuming Dja+Djb− 2Djµ 6= 0, the non-viscous eigenvalue can be approximated

by one of both roots of D̃j(s) = 0, thus

σj ≈ −µj

(

αj ±
√

α2
j − βj

)

= −µj



1 +
ν

2

Djb −Dja ±
√

(Djb −Dja − 4Djµ)
2 − 8DjaDjµ

Djb +Dja − 2Djµ





(3.57)

The previous expressions give two real numbers provided that
(

Djb −Dja − 4Djµ

)2
≥

8DjaDjµ but a priori it is not possible to know which one is the proposed estima-
tion. Theoretically, the one closest to the exact non-viscous eigenvalue should be
chosen, but this comparison is obviously not possible. In practice, the closest to
the quadratic approximation from Eq. (3.49) is generally a good choice. Other se-
lection criteria may be proposed, for example to adopt the root with lowest value
Dj(s) or the one lying inside the set B, i.e. |J(σj)| ≥ 1.

If Dja +Djb − 2Djµ = 0, the interpolation curve degenerates into a straight line
whose intersection with the horizontal axis is the approximation, and is given by

σj ≈ −µj +
4µ3

jν
2ωn

Djb −Dja
(3.58)

3.4 Numerical Example

In order to validate the theoretical developments, a single dof viscoelastic oscilla-
tor (see Fig. 3.1) with a four-exponential model is analyzed. The mass and linear
stiffness of the system are m = 1 kg, k = 100 N/m and the non-viscous parame-
ters µj = {4, 9, 16, 22} rad/s. Since the quality of the proposed methods is directly
related with the damping level, the results are shown as function of this damping.
The two contributions of this paper are presented separately: First, in Figs. 3.3
the limits of the non-viscous set are obtained from the proposed method and com-
pared with the exact ones computed from polynomial root finding. Second, in
Figs. 3.4, the approximated non-viscous eigenvalues are compared with the exact
ones and with those from the one-step methods by [77] and [63].

As mentioned the model includes four exponential kernels, therefore for each
ζ the non-viscous set is formed by the union of four closed intervals, B(ζ) =
∪4
j=1Bj(ζ) = ∪4

j=1 [aj(ζ), bj(ζ)]. The exact and approximated limits aj(ζ), bj(ζ)
from Eqs. (3.38), (3.43) are represented in Figs. 3.3 for 0 ≤ ζ ≤ 1, shading the
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region comprised by both limits to highlight the non-viscous subsets. Since for the
great majority of practical materials the damping ratio lies inside the mentioned
interval, the abscissa has been log-scaled for a clear representation. Let us denote
by lj(ζ) the length of Bj , that is, the vertical distance between curves aj(ζ), bj(ζ)
in Figs. 3.3. Notice that lj(ζ) increases with the damping level, see Figs. 3.2 left
and right, therefore Bj becomes larger with damping. This fact can be mathemat-
ically verified if lj(ζ) is computed from the quadratic approximation of the limits,
see Eq. (3.43), obtaining

lj(ζ) = bj(ζ)− aj(ζ)

≈
[

−µj +
ζ

N
µj +

ζ2

N2
Hj(−µj)

]

−
[

−µj −
ζ

N
µj +

ζ2

N2
Hj(−µj)

]

=
2ζ

N
µj (3.59)

It can be observed that for this approximation order, lj(ζ) is directly propor-
tional to ζ. Obviously an improved expression for the limits may be obtained
adding higher order terms, although no relevant additional information would be
obtained from a qualitative point of view. Since lj(ζ) is also proportional to µj ,
with ζ fixed the higher µj the wider the associated interval Bj . This fact can also
be appreciated in Figs. 3.2, where the intervals clearly become wider when moving
away from the origin. On the contrary, when ζ → 0 the Bj intervals reduce to the
four points −µj = {−4,−9,−16,−22} as predicted by the theory.

In Figs. 3.3, it can be appreciated that the linear approximation generates non-
viscous intervals symmetric respect to −µj and satisfactorily predicts the exact
limits through 0 ≤ ζ ≤ 0.1. If a similar accuracy is needed for a wider range of the
damping level, higher orders terms must be added. Hence, the fourth order Taylor
polynomial approximation has been plotted, observing that the validity range ap-
proximately extends to 0 ≤ ζ ≤ 0.6. After that, the approximation diverges and
is not valid.

It is interesting to comment the influence of the non-viscous parameters in the ap-
proximation of the jth non-viscous subset. The linear approximation is accurate
close to ζ = 0, i.e. aj(ζ), bj(ζ) ≈ −µj(1 ± ζ/N). These limits only depend on
µj and not on the rest of µk, 1 ≤ k ≤ N and j 6= k, that appear in the higher
order terms via Hj(s) and its derivatives, Eq. (3.43). This dependency implies
that the interaction between non-viscous parameters is relevant for high damping.
Furthermore, several numerical cases examined have shown that if the non-viscous
parameters are relatively close to each other, the quality of the proposed solutions
is lower. This is due to the possibility of some of the Hj(s) summands in the
denominator becoming large, see Eqs. (3.41), (3.44). Therefore, high-order terms
of aj(ζ), bj(ζ) take a greater relevance and they can not be neglected. Otherwise,
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Figure 3.3: Non-viscous subsets Bj(ζ) for µj = {4, 9, 16, 22} rad/s as function of damp-
ing ratio ζ. Exact and proposed limits aj(ζ), bj(ζ) (1st and 4th order Taylor approxima-
tions).
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when the set {µj} is uniformly distributed, the weight of terms associated with
Hj(s) is less important and the solution can be estimated with low-order terms.

As described before, the introduction of the new non-viscous set B has motivated
us to search a novel one-step numerical procedure, to develop an explicit expres-
sion to estimate the non-viscous eigenvalues of the system. The method is based
on the quadratic approximation of the characteristic equation inside the subset Bj .
In plots Fig. 3.4(a) to 3.4(d), the approximated non-viscous eigenvalues from the
two published and the present methods have been represented together with the
exact values. The latter methods are calculated by iteration of the characteristic
Eq. (3.45). In Figs. 3.4(e) to 3.4(h), the relative percentage errors of the four
non-viscous eigenvalues are shown using logarithmic scale. Since the accuracy of
the three approaches is conditioned by the level of damping, the error increases
with the damping ratio as observed in the figures. The relative minima are due
to the coincidence of the approximated and exact curves at certain points. As
predicted by the theory, the three methods present good fit with the exact values
for low damping, 0 ≤ ζ ≤ 0.1: The differences are imperceptible in this range,
but the relative error of the proposed method is several orders of magnitude lower
than the other two. Furthermore, the current method approximates well along all
the range 0 ≤ ζ ≤ 1 with a generally lower relative error. Only for the fourth
non-viscous eigenvalue and high damping, Figs. 3.4(d) and 3.4(h), better results
are found with the solution of [63].

As shown for aj , bj , the eigenvalue numerical solutions depend on the set of non-
viscous parameters, µj with 1 ≤ j ≤ N . If their distribution is not uniform
and the distances between them are relatively small, the function Hj(s) values
are relevant and contradict the hypothesis of regularity needed to substitute the
characteristic Eq. (3.50) by a quadratic curve. Therefore, it is expected that for
relatively small distances the results of any of the three approximated methods
are questionable, specially for high damping ratios. This fact has been validated
with several numerical examples not shown here.

3.5 Conclusions

One of the main differences between the analyses of viscous and non-viscous single
degree-of-freedom dynamic oscillators is that the latter one can present negative
real eigenvalues (named non-viscous) besides the two complex-conjugated roots.
In this paper a new mathematical characterization of the non-viscous eigenvalues
is proposed, introducing the novel concept of “non-viscous set”. It can be assured
that his set includes all non-viscous eigenvalues and it is formed by the union of
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Figure 3.4: Approximated and exact non-viscous eigenvalues as function of damping
ratio, figures (a)-(d). Relative error in percentage of approximated methods, figures
(e)-(h). Reference [31] from Adhikari & Pascual and [63] from Lázaro & Pérez–Aparicio.
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closed intervals that are negative real numbers.

The developed theoretical results have been applied to the widespread Biot’s model
of damping, based on the assumption that the kernel hereditary function is a sum
of N exponentials. For this type of damping function, analytical expressions of the
non-viscous set have been obtained for N = 1 and 2 exponential kernels. For the
general case N > 2, approximated solutions based on the Taylor series expansion
of the interval limits have been proposed, and in particular analytical solutions up
to the fourth order are given.

The non-viscous set provides new information on the location of the non-viscous
eigenvalues, allowing us to develop analytical expression for their estimation. Also,
the new methodology for the computation of the jth non-viscous eigenvalue is
based on the approximation of the associated characteristic equation by a quadratic
curve using Lagrange polynomials. Thus, the numerical approximation can be eas-
ily calculated as a second order polynomial root.

In order to validate the theoretical results, a numerical example under a four ex-
ponential kernels’ model is analyzed. Firstly, the limits of the non-viscous subsets
are calculated as function of damping ratio. It is also verified that the proposed
fourth order solution estimates with great accuracy the exact limits in a wide
range of the damping ratio. Secondly, exact and proposed non-viscous eigenvalues
are obtained and compared with two published one-step numerical methods. It is
shown that the proposed method not only is very close to the exact one in almost
the complete range of damping, but also presents the lowest relative error for most
of the studied cases with variable damping parameters. As predicted by the the-
ory, the error increases with the oscillator damping level. New research oriented
to find different properties of the real eigenvalues for multiple degree-of-freedom
viscoelastic structures is currently being carried out, particularly for overdamped
systems.

77





Bibliography

[7] M.A. Biot. “Variational Principles in Irreversible Thermodynamics with
Application to Viscoelasticity.” In: Physical Review 97.6 (1955), 1463–1469
(cit. on pp. 3, 20, 24, 37, 58, 82, 93, 192).

[14] D.F. Golla and P.C. Hughes. “Dynamics of Viscoelastic Structures - A
Time-domain, Finite-element Formulation.” In: Journal of Applied Mechanics-
Transactions of the ASME 52.4 (1985), 897–906 (cit. on pp. 3, 20, 22, 24,
58, 60, 82, 84, 118, 160, 162, 164, 192).

[28] S. Adhikari. “Dynamics of Non-viscously Damped Linear Systems.” In:
Journal of Engineering Mechanics 128.3 (2002), 328–339 (cit. on pp. 4–6,
22, 35, 36, 58, 84, 94, 121, 125, 129, 131, 160–162, 165, 168, 170, 171, 203).

[29] S. Adhikari. “Classical normal modes in non-viscously damped linear sys-
tems.” In: AIAA Journal 39.5 (2001), pp. 978–980 (cit. on pp. 5, 35, 44,
63, 84, 121).

[30] J. Woodhouse. “Linear Damping Models For Structural Vibration.” In:
Journal of Sound and Vibration 215.3 (1998), 547–569 (cit. on pp. 5, 35,
58, 121, 170, 171).

[31] Sondipon Adhikari and Blanca Pascual. “Eigenvalues of linear viscoelastic
systems.” In: Journal of Sound and Vibration 325.4-5 (2009), 1000–1011
(cit. on pp. 5, 21, 35, 41, 42, 69, 70, 76, 83, 119, 120, 141, 151, 152, 193).

[32] Sondipon Adhikari and Blanca Pascual. “Iterative Methods for Eigenval-
ues of Viscoelastic Systems.” In: Journal of Vibration and Acoustics 133.2
(2011), pp. 021002.1–021002.7 (cit. on pp. 5, 21, 35, 42, 59, 83, 108, 119,
171, 193).
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4
Parametric solutions of the

eigenvalue problem for

single–degree–of–freedom

viscoelastic systems

4.1 Introduction

The importance of mathematical modeling for structural dynamic systems in fields
such as Aerospace or Civil Engineering is well known. One of the most studied
issues in the last 50 years has been the search of robust and efficient models for
energy dissipation mechanisms. In this sense, the linear viscoelastic models have
been profusely used, covering a wide range of structural systems. A large num-
ber of analysis methods for these models depend on the solution of the associated
eigenvalue problem. This dependency has motivated us to investigate efficient nu-
merical methods to solve the eigenvalue problem of linear viscoelastic systems.

The most general case of a viscoelastic system with one degree of freedom, say
u(t), can be modeled with a single mass, say m, attached to a fixed point by a
viscoelastic constraint. Fig. 4.1 shows the schematic configuration mass–spring–
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viscoelastic damper and the corresponding free body diagram with the applied
forces of the mass. Hence, the reaction force produced in the mass, say R(t), is
related with the displacement by

R(t) =

∫ t

−∞

G(t− τ)u̇(τ)dτ + ku(t) (4.1)

where G(t) is the dissipative kernel or damping function, characteristic of the
considered viscoelastic model, and k is the constant of the linear–elastic spring.
Notice that the dissipative force depends on the past history of velocities, via
convolution integral over the kernel.

F (t)F (t) R(t)

G(t)

mm

k

u(t)

Figure 4.1: The Single–Degree–of–Freedom model with viscoelastic behavior

The motion equation can be deduced from the dynamic equilibrium

mü+

∫ t

−∞

G(t− τ)u̇(τ)dτ + ku(t) = F (t) (4.2)

u(0) = u0 , u̇(0) = v0

where u0 and v0 are the initial position and velocity of the mass and F (t) is the
external, time dependent, applied force.

With reference to the mathematical form of G(t), several works have been pub-
lished, proposing different expressions basically in the Laplace domain. The most
popular is due to Biot [7] and called multi–exponential model, which assumes that
the viscoelastic function is a linear combination of exponential functions. Also,
the models based on the fractional derivative proposed by Bagley and Torvik [15,
16] have been widely used. Other viscoelastic models of special interest, again
based on state–space methods, are the GHM approach of Golla, Hughes and Mc-
Tavish [14, 40] or the Anelastic Displacement Field of Lesieutre and Mingori [41].
The reference [14] gave the required conditions of G(t) to describe a real dissipative
motion. Adhikari and Woodhouse [43, 78] proposed viscoelastic functions in the
context of damping identification in dynamic systems.

The main objective of the present work is to propose a numerical method to solve
the eigenvalue problem associated with the Single–Degree–of–Freedom (SDOF)
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system described by Eq. (4.2). As known, the approximation not only embraces
physical systems with only one degree of freedom, but also Multi–Degree–of–
Freedom (MDOF) systems with proportional nature, i.e., those in which the dy-
namic matrices become diagonal in the modal space. The Laplace transform of
the free–motion equation leads to a nonlinear eigenvalue problem in the Laplace
variable s. The form of this problem will depend on the nature of the viscoelastic
function transform, named G(s) = L{G(t)}. Several methods to solve the general
nonlinear eigenvalue problem exist in the bibliography. Yang [46] and Singh [47]
proposed some based on Taylor series expansion of the transcendental matrices
combined with Newton’s eigenvalue iteration method. Williams and Kennedy [48]
developed a numerical procedure based on the parabolic interpolation of the de-
terminant that governs the eigenvalue problem. Daya and Potier–Ferry [49] used
asymptotic numerical techniques to determine the natural frequencies and the loss
factors of viscoelastic damped sandwich structures. Voss [51, 52] proposed two
methods based on the shift-and-invert Arnoldi’s technique and on the Jacobi–
Davidson method, respectively. In both references, an iterative process is used to
compute a few eigenvalues that lay close to a given point. An important subset of
viscoelastic models, in which G(s) has a rational expression, have been published.
In them, the nonlinear eigenvalue problem can be transformed into a linear one, in-
troducing new internal variables and using state–space approaches, see for instance
the works of Muravyov and Menon [54–56]. However, these methods become com-
putationally expensive for large systems. In addition, the physical insight of the
problem can also be lost due to the introduction of the new variables. Recently,
Adhikari and Pascual [31, 32] have published efficient iterative methods to solve
the eigenvalue problem for SDOF, and proportional damping systems based on
the Taylor series expansion of G(s).

Several authors have studied the eigensolutions as functions of the parameters
involved in the dynamic matrices. The main results are related to numerical
methods for the computation of eigenvalues and eigenvector derivatives respect to
certain design parameter. Fox and Kapoor [79] published an important work in
which analytical solutions of the derivatives were given. However, in their results
the complete set of eigenvectors of the modal space are involved, and again the
computations become expensive for large–order systems. Nelson [80] gave an alter-
native and efficient method to obtain the derivatives requiring only the eigenvector
and eigenvalue of interest. Wang [81] and later Zhang and Zerva [82] introduced
improved methods in truncated systems. Murthy and Haftka [83] published a
survey of methods for the calculation of the derivatives applied to general non–
Hermitian matrix problems. The same authors in [84] studied the computational
efficiency of different approximations based on eigenvalue derivatives, generalized
Rayleigh quotient and the trace theorem. The generalization of the eigensolution
derivatives for non–viscous systems was studied by Adhikari [59, 85]. Cortés and
Elejabarrieta [60, 61] used Adhikari’s solutions in an iterative numerical method
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Chapter 4. Parametric solutions for single dof systems

to compute eigensolutions, applicable even for highly damped systems.

The current paper is aimed to numerically compute the eigenvalues of SDOF
viscoelastic systems. As known, a dynamic model is governed by m, k, and several
damping parameters that are included in the viscoelastic function. The newly
developed eigenvalues will be functions of a single damping parameter, called valid
parameter, leaving the others fixed. The key idea is to transform the characteristic
equation into a differential one with separated variables. The methodology is
applied to widely used viscoelastic systems and also illustrated with numerical
examples to validate the theoretical results and to show the limits of application.

4.2 Dynamics of Single Degree–of–Freedom Viscoelastic

Systems

The characteristic equation of the eigenvalue problem can be obtained trying so-
lutions with the form u(t) = u0e

st in the free–motion equation obtained from
Eq. (4.2).

ms2 + sG(s) + k = 0 (4.3)

Here, as mentioned, G(s) is the Laplace transform of the kernel function G(t).
Note that the eigenvalue problem in MDOF systems with proportional damping
can be reduced to a set of SDOF problems, therefore, the method described in
this paper can also be applied to these MDOF dynamic systems. Adhikari [29]
gave the necessary and sufficient conditions under which non–viscous systems have
proportional damping. The previous equation can be mass–normalized to

D(s) = s2 + sΓ(s) + ω2
n = 0 (4.4)

The damping function Γ(s) = G(s)/m, and the natural frequency of the undamped
system ωn =

√

k/m have been introduced. Golla and Hughes [14] gave the neces-
sary conditions that G(s) has to fulfil in order to define a real dissipative motion.
Assuming that G(s) verifies these conditions, it can be assured [64, 74] that the
characteristic Eq. (4.4) has 2 + q eigenvalues, with q ≥ 0. These can be arranged
in a set with the form

{s0, s∗0, s1, · · · , sq} (4.5)

where s0, s
∗
0 are a pair of complex conjugate roots that induce oscillatory motion.

The rest {sj}qj=1 are named non–viscous eigenvalues [28], and are negative real
numbers associated with over–critical damped responses.

According to Adhikari [28], if the set of eigenvalues is available, the complete
solution of the integro–differential Eq. (4.2) can be expressed in terms of these
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4.3 Parametric computation of the eigenvalues

eigenvalues in the form

u(t) = γ0a0(t) + γ∗0a
∗
0(t) +

q
∑

j=1

γjaj(t) (4.6)

where the function and coefficient are

aj(t) =

∫ t

0

esj(t−τ) [F (τ)− G(τ)u0] dτ +mesjt (v0 + sju0)

γj =

[

∂D(sj)

∂s

]−1

, 0 ≤ j ≤ q (4.7)

Due to the relevance of the eigenvalues in the final solution, the availability of
efficient tools for its numerical extraction is important. We propose a new method
to compute the roots of Eq. (4.3), based on a parametric treatment of the char-
acteristic equation. In the next section the theoretical foundations of the method
are introduced.

4.3 Parametric computation of the eigenvalues

4.3.1 Fundamentals of the method

As explained in Sec. 4.2, the eigenvalues are the roots of the characteristic equation
given by Eq. (4.4). The key idea of the method is to consider that the function
Γ = Γ(s, p1, . . . , pr) depends not only on the variable s, but also on a set of damp-
ing parameters {p1, . . . , pr} that controls the viscoelastic behavior of the system.

In the general case, any eigenvalue λ = λ(p1, . . . , pr) can be considered as function
of the damping parameters. Let us consider one of these parameters as variable,
while the rest remain fixed. Without loss of generality, it can be assumed that this
is p1. Denoting as θ = p1, let us assume now that there exists a particular value
(or initial point) of θ, say θ0, so that the characteristic equation can be solved
analytically in terms of p2, p3, . . . , pr, obtaining the related initial eigenvalue λ0

λ20 + λ0Γ(λ0, θ0, p2, . . . , pr) + ω2
n = 0 → λ0 = λ0(θ0, p2, . . . , pr) (4.8)

Under these conditions the parameter θ = p1 is named valid parameter for the
purposes of the current paper. Since the rest of parameters are fixed, the eigen-
value λ = λ(θ) can be considered as single–variable function of θ. The conditions
of existence and uniqueness of such function are given by the implicit function
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Chapter 4. Parametric solutions for single dof systems

theorem. As known, the equation

D(λ, θ) = λ2 + λΓ(λ, θ) + ω2
n = 0 (4.9)

defines an implicit function λ = λ(θ) around the point θ = θ0 if

∂D(λ0, θ0)

∂λ
= Γ(λ0, θ0) + λ0

[

2 +
∂Γ(λ0, θ0)

∂λ

]

6= 0 (4.10)

Under this hypothesis, it is also guaranteed that there exist: (i) an open interval
I = ] θ0 − h/2, θ0 + h/2 [ with h > 0, and (ii) an open neighborhood around the
point λ0 in the complex domain B ⊂ C, such that the function λ(θ) will be unique
and continuously differentiable in I and its graph verifies

{(θ, λ(θ)) : θ ∈ I} = {(s, θ) ∈ B × I : D(s, θ) = 0} (4.11)

Notice that the damping function has been represented directly as Γ(s, θ) in the im-
plicit function theorem, due to the fact that the parameters p2, . . . , pr are assumed
fixed. The main challenge of this paper is to construct approximated solutions of
the function λ(θ). In the next subsection the methodology to obtain its kth–order
Taylor series will be developed. Moreover, this approximation will be used in a
further step to improve the solution.

4.3.2 Taylor expansion of the eigenvalues

Assuming that the necessary conditions for the existence of the function λ = λ(θ)
are satisfied, the Taylor series expansion up to the kth order can be obtained
around the initial point θ0, provided that the derivatives evaluated at this point
are available.

λk(θ) = λ0 +
k
∑

r=1

λ(r)(θ0)

r!
(θ − θ0)

r (4.12)

with

λ(r)(θ0) =
drλ

dθr

∣

∣

∣

∣

θ=θ0

(4.13)

The computation of λ(r)(θ0) can be carried out from the characteristic Eq. (4.9), in
which consecutive derivatives can be taken respect to θ. The first order derivative
is calculated as

dD

dθ
= 2λλ′ + λ′Γ + λ (Γ′

λλ
′ + Γ′

θ) = 0 (4.14)

whence solving λ′ results in

λ′ =
−λΓ′

θ

Γ + λ [2 + Γ′
λ]

(4.15)
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and

Γ′
λ =

∂Γ

∂λ
, Γ′

θ =
∂Γ

∂θ
(4.16)

Using the same procedure to compute the second derivative, the term λ′′ is ex-
tracted. After some simplifications, this second derivative results in

λ′′ = − R(θ, λ, λ′)

(Γ + λ [2 + Γ′
λ])

2 (4.17)

where

R(θ, λ, λ′) = (λ′)
2
(2 + 2Γ′

λ + λΓ′′
λλ) + 2λ′ (Γ′

θ + λΓ′′
λθ) + λΓ′′

θθ (4.18)

and now

Γ′′
λλ =

∂2Γ

∂λ2
, Γ′′

λθ =
∂2Γ

∂λ∂θ
, Γ′′

θθ =
∂2Γ

∂θ2
(4.19)

To find more terms of the series would be possible if higher order derivatives were
calculated. However, for the proposes of the present work, only the explicit ex-
pressions of the first two derivatives are necessary. Note that both are well defined
since the denominators of Eqs. (4.15), (4.17) are never nil due to Eq. (4.10).

As will later be described, in some cases Eq. (4.12) suffices when the objective is
to calculate the eigenvalue at the proximities of point θ0. However, the availability
of the solution in a wider interval of the parameter θ is sometimes necessary. For
these situations, an improved solution is presented in the next subsection.

4.3.3 Improving the solution. Eigenvalue differential equation

The challenge now is to use the previously obtained results to improve the esti-
mation accuracy of λ(θ) in a wider range of θ. To describe the procedure, the
expression of the first order derivative λ′(θ) given in Eq. (4.15) is rewritten in the
form

λ′ = −λ Ψ(λ, θ) (4.20)

where the new function Ψ(λ, θ) is defined by

Ψ(λ, θ) =
Γ′
θ(λ, θ)

Γ(λ, θ) + λ [2 + Γ′
λ(λ, θ)]

(4.21)

From a mathematical point of view, Eq. (4.20) can be considered an ordinary
differential equation to be complemented with the initial condition λ0 = λ(θ0).
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Obviously, its solution is the same as that of the characteristic Eq. (4.8). The fun-
damental objective of the current method is to transform this ordinary differential
equation into another with separated variables. For that, the kth order solution of
the Taylor series obtained in Eq. (4.12), namely λk(θ), will be used to approximate
the value of λ inside the function Ψ(λ, θ). So

Ψ(λ, θ) ≈ Ψ(λk(θ), θ) ≡ ψk(θ) (4.22)

Hence, the new function ψk(θ) depends only on a single variable. The accuracy of
the approximation is related to the quality of the assumption made in Eq. (4.22),
that in turn is conditioned by the level of viscoelasticity of the system. In other
words, depends on the variability of the viscoelastic function Γ(s, θ) with respect
to s; a viscoelastic system with low viscoelasticity does not present large vari-
ations in the s–domain. More details about the study of the viscoelasticity in
non–viscous dynamic systems can be found in the work of Adhikari and Wood-
house [71]. Here it will be shown that, under certain conditions, the approximation
Ψ(λ, θ) ≈ Ψ(λk(θ), θ) will produce results close to the exact ones. With regard
to the order of the approximation, in the next subsection it will be demonstrated
that the proposed method improves the error order respect to that of the Taylor
approximation. However, as will be shown with the numerical examples, the order
does not ensure a better mean–approximation in the wider range of the parameter.

Under the aforementioned assumptions, the differential equation can be expressed
as

λ′

λ
= −ψk(θ) , λ(θ0) = λ0 (4.23)

whose solution will be denoted by λ̂k(θ). The subindex indicates the k–order
Taylor series approximation. An explicit expression can be represented by

λ̂k(θ) = λ0e
−Z(θ) (4.24)

where the exponential function is defined by

Z(θ) =

∫ θ

θ0

ψk(ϑ) dϑ (4.25)

When the function λ̂k(θ) is obtained from the first order approximation of the
Taylor series expansion k = 1, the solution will be named Improved Linear So-
lution (ILS). If the second order approximation is used k = 2, the name will be
Improved Quadratic Solution (IQS). The functions Ψ(s, θ) and ψk(θ) will be called
exact and approximated integrand function, respectively. The next subsection is
aimed at the analysis of the truncation error.
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4.4 Analysis of the error

Sec. 4.3 was focused on the methodology exposition to compute the function λ̂k(θ)
as approximation of the exact eigenvalues λ(θ). It has already been mentioned
that intuitively, the proposed function will be a good estimation provided that
the error between the functions Ψ(λ(θ), θ) and ψk(θ) is not important. In this
subsection more quantitative information is provided, finding a bound of the error
|λ̂k(θ)−λ(θ)|. The necessary conditions to calculate this bound are directly related
with the properties of the viscoelastic function G(s, θ) = mΓ(s, θ) and will be given
by three hypotheses:

H1 If (λ0, θ0) is the initial point verifying Eq. (4.8), then Γ(λ0, θ0) + λ0[2 +
Γ′
λ(λ0, θ0)] 6= 0

H2 Let I,B be the neighborhoods of θ0, λ0, respectively; the existence of these
sets is assured by the implicit function theorem. Then G(s, θ) is a continuous
and differentiable function respect to the variables s, θ up to order k + 1 in
the set B × I. In addition, G(s, θ) and its partial derivatives respect to s, θ
up to order k + 1 are bounded in the set B

H3 The function Ψ(s, θ) defined by Eq. (4.21) is Lipschitz continuous respect to
the first variable s in the set B, with constant q > 0

|Ψ(s1, θ)−Ψ(s2, θ)| ≤ q |s1 − s2| ∀ s1, s2 ∈ B

The hypothesis H1 allows to assure the existence of the function λ(θ) : I → B in
the interval I = ] θ0 − h/2, θ0 + h/2 [ . One of the thesis of the implicit function
theorem is the existence of the set B ⊂ C in which the image of λ(θ) is defined.
Under this considerations, hypotheses H2, H3 are well stablished because they are
based on the existence of such sets. The main conclusions of the current subsection
will be presented in Theorem 1. Previously, two Lemmas are formulated since they
will be necessary later in the demonstration of the main theorem.

Lemma 1. If Ψ(s, θ) is a function from Eq. (4.21), then a real and positive number
exists, p > 0, such that |Ψ(s, θ)| ≤ p ∀ (s, θ) ∈ B × I

Lemma 2. Let λ(θ) be the eigenvalue as function of the parameter θ ∈ I. Then
for any integer k ≥ 0 there exists a real and positive number, ρk > 0, such that
|λ(k)(θ)| ≤ ρk ∀ θ ∈ I

Notice that with the previous nomenclature λ(0)(θ) = λ(θ). The proof of Lemmas
1 and 2 are found in Appendices 4.6 and 4.6
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Theorem 1. Let λ(θ) be the eigenvalue and λ̂k(θ) the approximation calculated
from Eqs. (4.22) to (4.25) with k ≥ 1. Assuming that hypotheses H1, H2 and H3
are satisfied, there exist two positive real numbers, ρk > 0, p > 0 such that

∣

∣

∣
λ̂k(θ)− λ(θ)

∣

∣

∣
≤ q |λ0|

ρk
(k + 1)!

hk+2 eph ∀ θ ∈ I (4.26)

Proof. From Eq. (4.20), the exact eigenvalue λ(θ) verifies the relation

λ(θ) = λ0e
−Y (θ) (4.27)

where

Y (θ) =

∫ θ

θ0

Ψ(λ(ϑ), ϑ) dϑ (4.28)

For demonstration purposes, it is necessary to bound the difference norm |Zn(θ)−
Y n(θ)| for any natural number n ≥ 1.

First, using H3 and the subtraction λ̂k(θ) − λ(θ) in Taylor series, the previous
norm for n = 1 is

|Z(θ)− Y (θ)| ≤
∫ θ

θ0

|Ψ(λk(θ), θ)−Ψ(λ(θ), θ)| dϑ

≤
∫ θ

θ0

q |λk(θ)− λ(θ)| dϑ ≤ q

∫ θ

θ0

|λ(k+1)(ξ)|
(k + 1)!

|ξ − θ0|k+1dϑ

≤ q
|λ(k+1)(ξ)|
(k + 1)!

hk+2 ≤ qρk
(k + 1)!

hk+2 (4.29)

where ξ ∈ I defines the truncation residual of the Taylor series up to the order
k. For the last inequality Lemma 2 has been used. In general, a bound of the
functions Z(θ), Y (θ) can be calculated using Lemma 1. From the definitions, one
directly obtains

|Z(θ)| ≤
∫ θ

θ0

|Ψ(λk(θ), θ)| dϑ ≤ ph

|Y (θ)| ≤
∫ θ

θ0

|Ψ(λ(θ), θ)| dϑ ≤ ph (4.30)
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Second, using Eqs. (4.29), (4.30) for n ≥ 1

|Zn(θ)−Y n(θ)| =

∣

∣

∣

∣

∣

∣

[Z(θ)−Y (θ)]
n
∑

j=0

Zn−j(θ)Y j−1(θ)

∣

∣

∣

∣

∣

∣

≤ |Z(θ)−Y (θ)|
n
∑

j=1

|Z(θ)|n−j |Y (θ)|j−1

≤ |Z(θ)−Y (θ)|
n
∑

j=1

(ph)n−j(ph)j−1

= |Z(θ)−Y (θ)|n(ph)n−1 (4.31)

Now the error can be calculated; using the definitions of both functions

∣

∣

∣λ̂k(θ)−λ(θ)
∣

∣

∣ = |λ0|
∣

∣

∣

∣

∣

∞
∑

n=1

(−1)n

n!
[Zn(θ)− Y n(θ)]

∣

∣

∣

∣

∣

≤ |λ0|
∞
∑

n=1

1

n!
|Zn(θ)− Y n(θ)|

≤ |λ0| |Z(θ)− Y (θ)|
∞
∑

n=1

n(ph)n−1

n!

≤ |λ0| |Z(θ)− Y (θ)|
∞
∑

n=1

(ph)n−1

(n− 1)!

≤ |λ0| |Z(θ)− Y (θ)| eph

≤ q |λ0|
ρk

(k + 1)!
hk+2eph (4.32)

The theorem states that the approximation order of the improved solution is
O(hk+2), while approximating with Taylor series up to the kth term gives O(hk+1).
This result allows us to assure that an improvement of the solution in a neighbor-
hood of the initial point exists.

To illustrate the efficiency of the proposed method, the next Section describes its
implementation for systems with a Biot’s model–based viscoelastic function. Cases
with one exponential kernel and with more than one will be also developed. In ad-
dition, the viscously damping systems are analyzed, since the current methodology
allows to find analytical solutions.
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4.5 Analysis of particular cases

4.5.1 The viscous model

The viscous model is a special case of viscoelastic behavior whose kernel is propor-
tional to the Dirac delta, G(t) = cv δ(t), where cv is the viscous damping coefficient.
The Laplace transform of the kernel function becomes the s–independent function
G(s) ≡ cv. In general, for SDOF systems instead of cv the damping ratio ζ is
commonly used. Both are related by the well known expression cv = 2mωnζ, and
consequently the mathematical model depends only on the single parameter θ ≡ ζ.
The mass–normalized characteristic Eq. (4.3) can be rewritten as

s2 + 2sζωn + ω2
n = 0 (4.33)

where now Γ(s, ζ) = 2ζωn. The classical exact solution of Eq. (4.33) is the pair of
complex numbers

λ(ζ) = −ωnζ ± iωn

√

1− ζ2 (4.34)

Although the exact solution is here available, the application of the proposed
method is of interest, due to the availability of analytical solutions for Eq. (4.23)
considering Taylor series up to the linear order λ1(ζ) or up to the quadratic one
λ2(ζ).

Taking ζ0 = 0 as the initial point, the solution of the characteristic equation
corresponds to that of the undamped system, λ(0) = λ0 = ±iωn. Using now the
eigenvalue with positive imaginary part, the derivatives of λ(ζ) can be deduced
from Eqs. (4.15), (4.17)

λ′(ζ) = − ωnλ(ζ)

ωnζ + λ(ζ)
→ λ′(0) = −ωn

λ′′(ζ) = −λ′(ζ)2ωn + λ′(ζ)

ωnζ + λ(ζ)
→ λ′′(0) = −iωn (4.35)

The Taylor series expansion of the function λ(ζ) up to the second order can be
obtained as

λ2(ζ) = iωn − ωnζ −
iωnζ

2

2
≡ λ1(ζ)−

iωnζ
2

2
(4.36)

It can be verified that the three first terms of the Taylor expansion (Eq. (4.34))
coincide with Eq. (4.36). In view of the theoretical results of the previous section,
the improved solutions ILS (k = 1) and IQS (k = 2) can be computed solving the
following differential equation

λ′ = −λ ωn

ωnζ + λk(ζ)
, λ(0) = iωn (4.37)
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Substituting in Eq. (4.37) the first order approximation of the root λ1(ζ) from
Eq. (4.36), the ordinary differential equation leads to

λ′ = iλ , λ(0) = iωn (4.38)

and a closed expression for ILS is obtained

λ̂1(ζ) = iωne
iζ (4.39)

It is also interesting to deduce the improved solution corresponding to the quadratic
approximation λ2(ζ) from Eq. (4.36); the differential equation results in

λ′ = λ
i

1− ζ2/2
, λ(0) = iωn (4.40)

and the explicit expression of IQS can also be easily integrated, resulting in

λ̂2(ζ) = iωn

(√
2 + ζ√
2− ζ

)
i√
2

(4.41)

Both improved solutions together with the exact one are plotted vs. the damping
ratio ζ in Fig. 4.2. This ratio is represented in logarithmic scale since the great
majority of dynamic systems are lightly damped, with range 0.001 ≤ ζ ≤ 0.2. For
this numerical example an undamped natural frequency ωn = 1 rad/s has been
chosen. The improved solutions are close or very close to the exact one through
almost the complete range of ζ, even for high damped systems. The noticeable
differences are for ζ > 0.6, far from the initial value ζ0 = 0 as mentioned at the
end of Sec. 4.4.

Moreover, it can be noted that the improved solutions and the exact one lay along
the same complex domain circumference when the parameter ζ varies. This fact
can easily be verified calculating the absolute value of Eqs. (4.39), (4.41)

∣

∣

∣λ̂1(ζ)
∣

∣

∣ =
∣

∣

∣λ̂2(ζ)
∣

∣

∣ = |λ(ζ)| = ωn , ∀ ζ ≥ 0 (4.42)

that coincides with the absolute value of the exact root for any damping ratio.

4.5.2 The Biot’s exponential model

This model was introduced by Biot [7] and has been extensively used for the
analysis of viscoelastic systems. It is based on the assumption that dissipative
forces depend on the history of the velocities of the degrees of freedom via an
exponential kernel with form

G(t) = cvµe
−µt , µ, t ≥ 0 (4.43)
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Figure 4.2: Eigenvalues of viscous model vs. ζ. Continuous line for exact values and
dotted for Improved Solutions; square tick for Linear (ILS), bullet for Quadratic (IQS).

where µ is the relaxation parameter, also called non–viscous parameter. Notice
that for high values of µ the viscoelastic model tends to the viscous model, mathe-
matically expressed by limµ→∞ G(t) = cvδ(t). Therefore, the non-viscous behavior
will be controlled by µ, so that when µ >> ωn the damping model is viscous with
coefficient cv [28, 71]. Otherwise, when µ << ωn the behavior is highly non-
viscous. The characteristic equation in the Laplace domain can be written as

ms2 + sG(s) + k = 0 (4.44)

where G(s) = cvµ/(s + µ). The coefficient of the limit viscous model can again
be expressed in terms of the damping ratio cv = 2mωnζ. Under these conditions,
the viscoelastic model can be written as function of the two parameters, ζ, µ as
follows

λ2 + 2ωnζ
µ

λ+ µ
λ+ ω2

n = 0 (4.45)

Introducing a new parameter τ = 1/µ with µ > 0, the previous characteristic
equation can be rewritten as

λ2 + 2ωnζ
1

τλ+ 1
λ+ ω2

n = 0 (4.46)

Eqs. (4.45), (4.46) allow to define the eigenvalues λ = λ(θ) as single–variable
functions of either θ = µ, θ = τ or of θ = ζ. Table 4.1 shows information related
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4.5 Analysis of particular cases

with the three cases and the eigenvalues evaluated at the initial values (λ0, θ0). In
the present subsection the first two cases will be developed. The third one will be
considered for a model with N exponential kernels in subsection 4.5.3.

Parameter, θ θ = µ θ = τ θ = ζ

Function λ(θ) λ(µ) λ(τ) λ(ζ)
Initial par., θ0 µ0 = 0 τ0 = 0 ζ0 = 0

Initial eig., λ0 = λ(θ0) ±iωn −ωnζ ± iωn

√

1− ζ2 ±iωn

Subseccion 4.5.2 (Case 1) 4.5.2 (Case 2) 4.5.3
D(λ, θ) Eq. 4.47 Eq. 4.52 Eq. 4.59
Results Figs. 4.3–4.5 Figs. 4.6–4.8 Figs. 4.9–4.11

Table 4.1: Biot’s exponential model. Damping parameters, considered eigenvalue func-
tions and initial values of the proposed method.

Case 1, θ = µ. The function λ(µ) is implicitly defined by

D(λ, µ) = λ2 + 2ωnζ
µ

λ+ µ
λ+ ω2

n = 0 (4.47)

As an initial point, any root of the equation D(λ, 0) = λ2 + ω2
n = 0 can be taken.

Without loss of generality we will use the positive imaginary part λ0 = iω. From
Eqs. (4.15), (4.17) the values of λ′(0), λ′′(0) can be computed, obtaining after some
operations the expressions

λ′(0) = iζ , λ′′(0) = −ζ(2 + ζ)

ωn
(4.48)

Hence, the second order Taylor polynomial is

λ2(µ) = iωn + iζµ− ζ(2 + ζ)

2ωn
µ2 , µ ≥ 0 (4.49)

The improved solutions ILS and IQS constructed from linear and quadratic Taylor
approximations respectively, can be calculated with Eq. (4.24). For that, the
expression of the approximated integrand function must be considered

ψk(µ) =
λk(µ)ζωn

λk(µ) [λk(µ) + µ]
2
+ ζµ2ωn

(4.50)

where λk(µ) is defined by Eq. (4.12). As described before, the quality of the

approximated eigenvalue function λ̂k(µ), depends on the accuracy of the assump-
tion over the integrand function Ψ (λ(µ), µ) ≈ ψk (µ) given by Eq. (4.22). The
method can be implemented calculating the integral given in Eq. (4.25) through
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Chapter 4. Parametric solutions for single dof systems

numerical quadrature for each parameter value. The results have been repre-
sented in Figs. 4.3–4.5, where the functions λ̂1(µ), λ̂2(µ) have been plotted vs. µ
for a SDOF system with natural frequency ωn = 1 rad/s. Three damping ra-
tios ζ = {0.01, 0.05, 0.10} have been considered for comparison. In addition, the
relative error of the exact integrand function Ψ(λ, µ)

ǫk(µ) =

∣

∣

∣

∣

Ψ(λ(µ), µ)− ψk (µ)

Ψ (λ(µ), µ)

∣

∣

∣

∣

(4.51)

is shown. Notice that the exact eigenvalue λ(µ) from Eq. (4.45) is required for the
error computation.

Figs. 4.3–4.5 shows that as expected, close to the initial point µ = 0 the proposed
method eigenvalues are very accurate for all damping levels. Moreover, it can be
seen that ǫ2(µ) < ǫ1(µ) in the range 0 < µ < 1, inequality that as predicted from
the theory of Sec. 4.4, implies that IQS is more precise than ILS. On the contrary,
when µ > 1 the errors are ǫ1(µ) < ǫ2(µ) and in addition, while ǫ2(µ) increases
monotonically, ǫ1(µ) remains almost constant. Therefore in this range ILS is more
accurate and stable than IQS so that the eigenvalues calculated with ILS are in
average closer to the exact solution over the considered range of µ. For a fixed
µ, the higher the damping the poorer the approximation, specially for IQS that
completely fails for high values of µ and ζ. The divergence of IQS in this situations
can be avoided with a different choice of the parameter as will be explained in the
next case.

This example suggests that the improved solution with quadratic approximation
is not always the best option when the results are required in a wide range.

Case 2, θ = τ = 1/µ. The solution of this case is somewhat equivalent to the
expansion of the eigenvalues in their Taylor series around µ → ∞, or τ = 0. As
will be seen, the use of this parameter results in a significant improvement of the
results from those of the previous case. The function λ = λ(τ) is now implicitly
defined by the equation

D(λ, τ) = λ2 + 2ωnζ
1

τλ+ 1
λ+ ω2

n = 0 (4.52)

The complex roots of this equation for τ0 = 0 have already been presented in
Table 4.1. As before, Eqs. (4.15), (4.17) are used to analytically calculate the
derivatives evaluated at the initial point

λ′(0) =
ζλ20ωn

λ0 + ζωn

λ′′(0) = −ζλ30ωn
2λ20 + ζλ0ωn − 2ζ2ω2

n

(λ0 + ζωn)3
(4.53)
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Figure 4.3: Case θ = µ. Relative error ǫk(µ) = |Ψ− ψk| / |Ψ| of the integrand function
(top). Eigenvalues vs. parameter µ (middle, bottom) for ζ = 0.01; continuous line for
exact values and dotted for Improved Solutions; square tick for Linear (ILS), bullet for
Quadratic (IQS).
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Figure 4.4: Case θ = µ. Relative error ǫk(µ) = |Ψ− ψk| / |Ψ| of the integrand function
(top). Eigenvalues vs. parameter µ (middle, bottom) for ζ = 0, 05; continuous line for
exact values and dotted for Improved Solutions; square tick for Linear (ILS), bullet for
Quadratic (IQS).
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Figure 4.5: Case θ = µ. Relative error ǫk(µ) = |Ψ− ψk| / |Ψ| of the integrand function
(top). Eigenvalues vs. parameter µ (middle, bottom) for ζ = 0.10; continuous line for
exact values and dotted for Improved Solutions; square tick for Linear (ILS), bullet for
Quadratic (IQS).
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With these expressions, the second order Taylor series expansion of λ(τ) is

λ2(τ) = λ0 +
ζλ20ωn

λ0 + ζωn
τ − 2λ20 + ζλ0ωn − 2ζ2ω2

n

2(λ0 + ζωn)3
ζλ30ωnτ

2 (4.54)

defined in the range ζ, τ ≥ 0. Now, the improved solutions ILS, IQS can be calcu-
lated with the methodology described in subsection 4.3.3. First, in this particular
case

ψk(τ) = − λk(τ)ζωn

λk(τ) [1 + τλk(τ)]
2
+ ζωn

(4.55)

Second, for each value of the parameter τ , the eigenvalue λ̂k(τ) = λ0e
−Z(τ) can

be estimated by numerical quadrature of the integral

Z(τ) =

∫ τ

0

ψk(t)dt (4.56)

Figs. 4.6–4.8 show the error and the complex eigenvalues vs. τ from the exact and
the two improved solutions. To compare the results with those of the previous ex-
ample, the same µ–axis has been used, taking the inverse of τ . It is clear that the
choice of τ produces better results for all ζ and for the complete range of µ. The
distributions of ǫ1(µ), ǫ2(µ) reverse their relative position but now both tend to
zero for high values of µ. Except close to the origin µ = 0 (τ → ∞), the estimated
eigenvalues are very close to the exact ones. The ILS is again the best solution,
although the IQS presents now an almost perfect behavior, even for high damping.

4.5.3 The Biot’s multi–exponential model

This model arises as a natural generalization of the Biot’s single–exponential
model. Using the same nomenclature as in the previous subsection (Eq. (4.43)) ,
the viscoelastic kernel function can be written as

G(t) = cv
N

N
∑

j=1

µje
−µjt, µj , t ≥ 0 , 1 ≤ j ≤ N (4.57)

where µj are the relaxation parameters and cv = 2mωnζ is, as before, the damping
coefficient of the viscous model when µj → ∞. The Laplace transform of Eq. (4.57)
can be expressed as

G(s, ζ, µ1, . . . , µN ) =
2mωnζ

N

N
∑

j=1

µj

s+ µj
(4.58)
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Figure 4.6: Case θ = τ = 1/µ. Relative error ǫk(τ) = |Ψ− ψk| / |Ψ| of the integrand
function (top). Eigenvalues vs. parameter µ (middle, bottom) for ζ = 0.01. Continuous
line for exact values and dotted for Improved Solutions; square tick for Linear (ILS),
bullet for Quadratic (IQS).
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Figure 4.7: Case θ = τ = 1/µ. Relative error ǫk(τ) = |Ψ− ψk| / |Ψ| of the integrand
function (top). Eigenvalues vs. parameter µ (middle, bottom) for ζ = 0.05. Continuous
line for exact values and dotted for Improved Solutions; square tick for Linear (ILS),
bullet for Quadratic (IQS).
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Figure 4.8: Case θ = τ = 1/µ. Relative error ǫk(τ) = |Ψ− ψk| / |Ψ| of the integrand
function (top). Eigenvalues vs. parameter µ (middle, bottom) for ζ = 0.10. Continuous
line for exact values and dotted for Improved Solutions; square tick for Linear (ILS),
bullet for Quadratic (IQS).
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Directly, the mass–normalized characteristic equation takes the form

λ2 + 2λ
ωnζ

N

N
∑

j=1

µj

λ+ µj
+ ω2

n = 0 (4.59)

Note that the previous equation can be transformed into a polynomial of order
2 + N . The set formed by the 2 + N eigenvalues can be separated, on one side,
in a subset with the two complex conjugate eigenvalues and, on the other, in
another with the N non–viscous eigenvalues that in general are real and negative.
The parameters µj cannot be used with the proposed method because analytical
solutions at the initial point for N kernels are not available. However, if the
damping ratio ζ is used as parameter, the choice of initial value ζ0 = 0 permits
to obtain closed solutions for both the complex eigenvalues and the non–viscous
ones.

Complex eigenvalues. The value ζ0 = 0 produces the eigenvalues of the undamped
system in Eq. (4.59), i.e. λ0 = ±iωn. Expanding the solution in its Taylor series
around this point, the proposed method allows to obtain λ = λ(ζ). The first and
second derivatives, λ′(0), λ′′(0) can be calculated from Eqs. (4.15), (4.17). After
some operations

λ′(0) = −ωn

N

N
∑

j=1

µj

λ0 + µj

λ′′(0) = λ′(0)





λ′(0)

λ0
+

2

N

N
∑

j=1

ωnµj

(λ0 + µj)
2



 (4.60)

The second order Taylor series become function of ζ: λ2(ζ) = λ0 + λ′(0)ζ +
λ′′(0)ζ2/2 ≡ λ1(ζ) + λ′′(0)ζ2/2. As in the previous cases, this approximation can
be improved solving the differential Eq. (4.23), for which

ψk(ζ) =















ζ + λk(ζ)

1− ζωn

N

N
∑

j=1

µj

(λk(ζ) + µj)
2

ωn

N

N
∑

j=1

µj

(λk(ζ) + µj)















−1

(4.61)

The method is implemented for a numerical example with N = 5 kernels. The re-
laxation parameters are taken as µj = {2, 4, 6, 10, 15} rad/s. Three different natu-
ral frequencies ωn = {0.2, 2, 20} rad/s have been considered, to validate the results
when the system is near–viscous µj >> ωn or, otherwise non–viscous µj ≈ ωn.
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ωn = 0.20 rad/s
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Figure 4.9: Case θ = ζ for Biot’s multiexponential model µj = {2, 4, 6, 10, 15} rad/s.
Relative error ǫk(ζ) = |Ψ− ψk| / |Ψ| of the integrand function (top). Eigenvalues vs. pa-
rameter ζ (middle, bottom) for ωn = 0.20 rad/s. Continuous line for exact values and
dotted for Improved Solutions; square tick for Linear (ILS), bullet for Quadratic (IQS).
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ωn = 2.00 rad/s
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Figure 4.10: Case θ = ζ for Biot’s multiexponential model µj = {2, 4, 6, 10, 15} rad/s.
Relative error ǫk(ζ) = |Ψ− ψk| / |Ψ| of the integrand function (top). Eigenvalues vs. pa-
rameter ζ (middle, bottom) for ωn = 2.00 rad/s. Continuous line for exact values and
dotted for Improved Solutions; square tick for Linear (ILS), bullet for Quadratic (IQS).
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ωn = 20.0 rad/s
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Figure 4.11: Case θ = ζ for Biot’s multiexponential model µj = {2, 4, 6, 10, 15} rad/s.
Relative error ǫk(ζ) = |Ψ− ψk| / |Ψ| of the integrand function (top). Eigenvalues vs. pa-
rameter ζ (middle, bottom) for ωn = 20.0 rad/s. Continuous line for exact values and
dotted for Improved Solutions; square tick for Linear (ILS), bullet for Quadratic (IQS).
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Figs. 4.9–4.11 show the errors of the integrand function and the approximated
eigenvalues λ̂1(ζ), λ̂2(ζ) as before. The damping ratio ζ has again been represented
log-scaled. As in the previous case ǫ2(ζ) < ǫ1(ζ) (several orders of magnitude)
∀ ζ ∈ [0, 1], obtaining better approximations for IQS than for ILS. For both viscous
and non–viscous system the agreement is very good, except for ζ ≈ 1 and ωn = 0.20
rad/s (viscous behavior), where the slope of the imaginary part becomes almost
vertical.

Real eigenvalues It is expected that the real eigenvalues of Eq. (4.58) will be rel-
atively close to the parameters µj in lightly damped systems, as described by
Adhikari and Pascual [32]. Naming λ = λ(ζ) to the non–viscous eigenvalue as-
sociated with a particular parameter µr, then λ0 = limζ→0 λ(ζ) = −µr. Indeed,
multiplying Eq. (4.59) by λ+ µr results in

[λ(ζ) + µr]
[

λ2(ζ) + ω2
n

]

+2λ(ζ)
ωnζ

N
µr ++2λ(ζ)

ωnζ

N

N
∑

j=1
j 6=r

λ(ζ) + µr

λ(ζ) + µj
µj = 0 (4.62)

Taking limits ζ → 0 in the previous expression

(λ0 + µr)
(

λ20 + ω2
n

)

= 0 (4.63)

Since λ0 ∈ R for the non–viscous eigenvalues, λ20 + ω2
n > 0 and consequently λ0 +

µr = 0. Therefore, the non–viscous eigenvalue associated with µj can be expanded
around the point λ0 = λ(0) = −µj . Without loss of generality, it can always be
assumed that λ(ζ) is associated with the first parameter µ1. Thus, for any value
ζ > 0, the Taylor series expansion is now λ2(ζ) = −µ1 + λ′(0)ζ + λ′′(0)ζ2/2.
Since the viscoelastic function and its derivatives are not defined in s = −µj (see
Eq. (4.58)), the derivatives from Eqs. (4.15), (4.17) can not be calculated. To
avoid this problem, Eq. (4.62) with r = 1 will be used. Thus, λ′(0), λ′′(0) can be
calculated taking derivatives respect to ζ in the expression

[λ(ζ) + µ1]
[

λ2(ζ) + ω2
n

]

++2λ(ζ)
ωnζ

N



µ1 +

N
∑

j=2

λ(ζ) + µ1

λ(ζ) + µj
µj



 = 0 (4.64)

Evaluating Eq. (4.64) at ζ = 0 and after some operations, the following results are
obtained

λ′(0) =
2ωnµ

2
1

ω2
n + µ2

1

λ′′(0) =
8ω2

nµ
3
1

(ω2
n + µ2

1)
2





µ2
1 − ω2

n

ω2
n + µ2

1

+

N
∑

j=2

µj

µj − µ1



 (4.65)

The computation of the improved solutions from the differential Eq. (4.20) requires
that G(s) is well defined at the initial point. Since λ0 = −µj is a pole of G(s)
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and of ∂G(s)/∂s, the Taylor series up to the first and second order will be used to
estimate the eigenvalues.

Fig. 4.12 shows results for a numerical example with ωn = 3 rad/s and Biot’s
model with N = 3 kernels and µj = {1, 5, 10} rad/s. As expected, the eigenvalues
show very good accuracy for damping range 0 ≤ ζ ≤ 0.20. Better results could
be achieved through expansion of the Taylor series up to higher orders. For that,
successive derivatives λ′′′(0), λIV (0), . . . from Eq. (4.64) can be extracted and new
terms added.
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Figure 4.12: Exact solution and Taylor series approximation (quadratic, linear) of the
non–viscous eigenvalues vs. damping ratio ζ. Biot’s model with N = 3 kernels and
non–viscous parameters µj = {1, 5, 10} rad/s.

4.6 Conclusions

A novel numerical method to compute the eigenvalues of single degree–of–freedom
linear viscoelastic systems is developed. The damping is introduced via a convolu-
tion integral with kernel functions that ensure that the dissipative forces depend
on the history of the degree–of–freedom velocities. Each damping model is con-
trolled by a kernel involving a set of parameters; the eigenvalues can be considered
single–variable functions of some of these damping parameters. The application
of the method requires to find only a particular value of the damping parameter
and its corresponding eigenvalue. Under certain conditions, the eigenvalue can
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be expanded in its Taylor series and explicit expressions of the first and second
derivatives are calculated.

The main contribution of this paper is the development of a numerical approach
that improves the solution given by the Taylor series expansion. For that, it is
shown that the characteristic equation always can be transformed into an ordinary
differential equation with separated variables, so that the eigenvalue can be esti-
mated by direct numerical integration. In addition, the order error of the proposed
method is analyzed; while the kth order Taylor series expansion presents O(hk+1),
it is demonstrated that the current method presents O(hk+2).

To illustrate the results, the method is applied to two commonly used damping
models: viscous damping and non–viscous damping with exponential kernels. For
the former, the method obtains approximated eigenvalues as analytical solutions
of the proposed differential equation. For the latter, several forms of the damping
parameters are presented, finding again analytical solutions for the Taylor expan-
sions for all forms. The numerical examples show that the lower the damping
level, the better the accuracy of the proposed solutions is. The best results are
always obtained when the parameter value is close to the considered initial point.
Further research could be oriented in two directions: (a) the implementation of
the proposed method with other damping functions, for instance those based on
the fractional derivative; (b) the extension for multiple degrees–of–freedom along
with a multivariable parameter. Both directions are currently being developed.

Appendix 4.A Proof of the Lemma 1

The function Ψ(s, θ) is well defined, provided that the denominator

∣

∣

∣

∣

Γ(s, θ) + s

(

2 +
∂Γ

∂s

)∣

∣

∣

∣

> 0 ∀ s, θ ∈ B × I (4.66)

Hence, let L0 be a positive real number, such that

L−1
0 = min

{

∣

∣

∣Γ(s, θ) + s

(

2 +
∂Γ

∂s

)

∣

∣

∣ : s, θ ∈ B × I

}

(4.67)

In addition, according to the hypothesis H2, the function G(s, θ) = mΓ(s, θ) and
its derivatives respect to θ are bounded in the set B × I. Thus, a positive real
number r0 exists, such that

∣

∣

∣

∣

∂Γ

∂θ

∣

∣

∣

∣

≤ r0 , ∀ (s, θ) ∈ B × I (4.68)
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Therefore, taking into account Eq. (4.67), (4.68) the function Ψ(s, θ) can be
bounded by the positive real number p = r0L0

|Ψ(s, θ)| =

∣

∣

∣

∣

Γ′
θ(s, θ)

Γ(s, θ) + λ [2 + Γ′
s(s, θ)]

∣

∣

∣

∣

≤ r0L0 = p ∀s, θ ∈ B × I (4.69)

Appendix 4.B Proof of the Lemma 2

The function λ(θ) is solution of the characteristic equation, therefore the following
expression is verified

σ2(θ) + σ(θ)
G(λ(θ), θ)

mωn
+ 1 = 0 (4.70)

where the function σ(θ) = λ(θ)/ωn. By hypothesis, the function G(s, θ) is bounded
in the set B × I. Hence, there exists a real positive number α > 0 such that
|G(s, θ)| ≤ 2αmωn, ∀s, θ ∈ B × I. Reordering Eq. (4.70) and taking absolute
values

|σ(θ)|2 =
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σ(θ)
G(λ(θ), θ)

mωn
+ 1
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≤ |σ(θ)|
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G(λ(θ), θ)

mωn

∣

∣

∣

∣

+ 1

≤ 2α |σ(θ)|+ 1 (4.71)

As a consequence, the function σ(θ) verifies the inequality

|σ(θ)|2 − 2α |σ(θ)| − 1 ≤ 0 (4.72)

The roots of the second order polynomial x2 − 2αx− 1 = 0 are the real numbers
α±

√
1 + α2. Therefore, the function |σ(θ)| is bounded by the interval

0 ≤ |σ(θ)| ≤ α+
√

1 + α2 (4.73)

because α−
√
1 + α2 < 0. Finally, the expression of the eigenvalue bound leads to

|λ(θ)| ≤ ωn

(

α+
√

1 + α2
)

= ρ0 ∀ θ ∈ I (4.74)

In order to bound the derivatives |λk(θ)|, k ≥ 1, Eq. (4.20) relates the first with
functions λ(θ), Ψ(s, θ), whose bounds have already been calculated by Eqs. (4.69),
(4.74). Thus,

|λ′(θ)| ≤ |λ(θ)| |Ψ(λ(θ), θ)| ≤ ρ0p = ρ1 ∀ θ ∈ I (4.75)
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Higher derivatives of Ψ(λ(θ), θ) respect the parameter θ will be expressions func-
tion of the successive derivatives of the viscoelastic function Γ(λ(θ), θ) that, from
the hypothesis H2, are bounded in the interval I. Consequently, once calculated
ρ0 and ρ1, the numbers ρk for k = 2, 3, . . . can be obtained by induction.
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5
Multiparametric Computation of

Eigenvalues for Linear Viscoelastic

Structures

Computers & Structures, 117 (2013), 67-81

5.1 Introduction

The mechanisms of energy dissipation in mechanical systems are complex in na-
ture, due to the difficulty to translate the interactions between particles from the
microscopic to the macroscopic level. The most used models are based on linear
relationships between the dissipative forces and the degree-of-freedom (dof) ve-
locities. Among these models, the viscous is still the simplest and traditionally
the most popular for practical applications of aeronautical, industrial and civil en-
gineering. When traditional materials are involved, the stress–strain constitutive
relationships are frequency–dependent; it is then necessary to use the so called non-
viscous or viscoelastic models and the related dissipative forces are proportional to
the history of the dof velocities via convolution integrals involving kernel functions.
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The response of any multiple dof system satisfies the dynamic equilibrium given
by the following system of integro–differential equations

Mü+

∫ t

−∞

G(t− τ)u̇dτ +Ku = F(t) (5.1)

where M,K ∈ R
N×N are the assembled mass and stiffness matrices. It is com-

monly assumed that M is positive definite and K is positive semidefinite. The
function G(t) ∈ R

N×N is the viscoelastic damping matrix that must satisfy the
necessary conditions given by Golla and Hughes [14] to induce a dissipative motion
in the system. The denominated viscous damping is a particular case for which
G(t) ≡ Cδ(t), where C is the viscous damping matrix and δ(t) the Dirac’s func-
tion. The solution of the nonlinear eigenvalue problem associated to Eq. (5.1) has
a special importance for the analysis of viscoelastic structures. This importance
has motivated the development of new numerical techniques to extract complex
eigenvalues. The essential of the proposed method is to consider those eigenvalues
as functions of certain multi-dimensional vector composed of damping parameters.
In the development of the methodology, the knowledge of the eigenvalue deriva-
tives is a key point.

In general, universal techniques for the resolution of nonlinear eigenvalue problems
are not available. Current methods are usually oriented to find solutions close to a
given initial value. Yang [46], Singh and Ram [47] proposed methods based on lin-
earization via Taylor series expansion of a transcendental matrix around a point.
The convergence is achieved with a Newton’s iterative scheme and requires a good
initial approximation. Voss [51, 52] proposed two numerical approaches based on
Arnoldi’s shift-and-invert and on Jacobi-Davidson methods, respectively. In both
of them, an iterative process is used to compute a few eigenvalues close to a given
value. Williams and Kennedy [48], obtained solutions proposing polynomial inter-
polation of the determinant, with the advantage of not requiring derivatives.

The particular form of the nonlinear eigenvalue problem of a viscoelastic structure
allows for the use of specific methods as described in this paragraph. The free mo-
tion equation can be deduced imposing F(t) ≡ 0 in Eq. (5.1). Trying solutions of
the form u(t) = u0 e

st, this equation reduces to the following nonlinear eigenvalue
problem

[

s2M+ sG(s) +K
]

u0 = 0 (5.2)

whereG(s) is the Laplace Transform of G(t). Although direct integration methods
in time domain are available in the literature [86, 87], state–space approach based
methods are widespread when G(s) adopts a rational form. In such cases, the
state–space approach transforms the nonlinear problem into a linear one through
the introduction of new internal variables. Relevant state–space approaches are the
GHM model proposed by Golla, Hughes and McTavish [14, 40] and the Anelastic
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Displacement Field of Lesieutre and Mingori [41]. Other state–space methods are
those of Muravyov [54, 55] and Menon [56]. The augmentation of the linear prob-
lem depends on the viscoelastic nature of the function G(s); when the original size
is relatively large the problem can become computationally inefficient. Moreover,
the introduction of new variables reduces the physical intuition of the problem.
Duigou, Daya and Potier-Ferry. [49, 50] developed two methods to compute the
eigensolutions of vibrating viscoelastic structures, using perturbation techniques
and high order iterative algorithms. In the context of proportional damping sys-
tems, Adhikari and Pascual [31, 32] developed iterative methods based on the
Taylor series expansion of the viscoelastic function.

Possibly, Rayleigh [88] was the first author to study the natural frequency sensi-
tivity of a dynamic system, sensitivity that arises due to small variations of the
model design parameters. Since then, many authors have studied the eigensolu-
tions (eigenvalues and eigenvectors) as functions of the dynamic matrices parame-
ters. Fox and Kapoor [79] published a relevant work involving analytic expressions
of the derivatives, but with the necessity of the full eigensolution set. Nelson [80]
improved [79] computing the derivatives with the help of only the eigensolutions of
interest. Wang [81] and later Zhang and Zerva [82] proposed methods to calculate
the derivatives of truncated systems. Murthy and Haftka [83] published a method
survey for derivative calculations applied to general problems with non–Hermitian
matrices. Murthy [84] studied the computational efficiency of different approx-
imations based on eigenvalue derivatives, generalized Rayleigh quotient and the
trace theorem. The generalization of the eigensolution derivatives to non–viscous
damped systems was performed by Adhikari [58, 59, 85]. Cortés and Elejabarri-
eta [60, 61] proposed an iterative numerical method to compute the eigensolutions
again based on the derivatives, including highly damped systems. Lázaro et al. [33]
have recently developed a recursive scheme for proportionally systems, which does
not need derivatives; furthemore, this approach presents global convergence for
any chosen initial point.

The present paper aims to develop a new numerical approach to solve the non-
linear eigenvalue problem associated with linear viscoelastic structures. It is as-
sumed that the damping model depends on a certain array of parameters, so that
the eigenvalues may be considered multivariable functions of them. The assess-
ment of the eigenvalue derivatives with respect to the parameter array allows to
construct the Taylor linear approximation. The proposed method transforms the
characteristic equation into an ordinary differential equation and provides an ap-
proximated solution. It is rigorously demonstrated that this solution improves
the Taylor linear solution. The numerical scheme is developed for proportional as
well as non–proportional damping systems. For the latter, two alternatives based
on the procedure to compute the eigenvalue derivative are proposed: 1) the first
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alternative uses the determinant of the dynamic stiffness matrix (DETD) and 2)
the second alternative, computationally more efficient, uses an approximation of
the associated eigenvector (EIGD) .

To illustrate the theoretical results three numerical examples are studied: Ex-
amples 1 and 2 analyze discrete systems with proportional and non–proportional
damping, respectively. For both examples, it is concluded that the use of eigenval-
ues associated with values relatively close to a chosen initial point shows a better
approximation, as demonstrated by theoretical results. Example 3 validates the
proposed method for a continuous beam with free damping layers with a discrete
viscoelastic damper. The obtained results for each example are compared with
those of the numerical approach of Adhikari and Pascual [31], valid for propor-
tional damping. In general, the stronger the induced damping the less accurate is
the approximated solution.

5.2 The Eigenvalue Problem in viscoelastic structures

5.2.1 The Set of Eigenvalues

Consider the undamped eigenvalue problem associated with the general nonlinear
problem given by Eq. (5.2)

[

s2M+K
]

u0 = 0 (5.3)

As well known, the eigenvalues of the previous problem are the complex num-
bers {iωj ,−iωj}Nj=1, where ωj are the natural frequencies. The mass–normalized

undamped eigenvectors {φj}Nj=1 ∈ R
N verify the classical orthogonal relations

φT
j Mφk = δjk ; φT

j Kφk = δjk ω
2
j (5.4)

where δjk represents the Kronecker delta and the superscript (·)T transpose. Let
denote byΦ = [φ1, . . . ,φN ] the matrix whose columns are the undamped eigenvec-
tors. Introducing the change of variable u0 = Φq0 in Eq. (5.2) and pre-multiplying
the resulting equation by ΦT , the nonlinear eigenvalue problem takes the form

[

s2IN + sΓ(s) +Λ
]

q0 ≡ D(s)q0 = 0 (5.5)

where D(s) ∈ C
N×N is the Dynamic Stiffness Matrix in the modal space, Λ =

diag[ω2
j ] contains the squares of the undamped frequencies and the damping matrix

in the modal space is
ΦTG(s)Φ = Γ(s) (5.6)
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The eigenvalues are the roots of the characteristic equation given by the determi-
nant

D(s) = det [D(s)] = 0 (5.7)

If Eq. (5.2) has normal modes, the three dynamic matrices involved in the system
become diagonal in the same space. In such case, the elements of the damping
matrix verify Γjk(s) = 0, j 6= k and the determinant can be expressed in the form

D(s) =

N
∏

j=1

[

s2 + sΓjj(s) + ω2
j

]

=

N
∏

j=1

Dj(s) = 0 (5.8)

For this case, the damping matrix G(t) is said to be proportional. Necessary and
sufficient conditions for the existence of normal modes in non-viscous systems
have been studied by Adhikari [29]. Any other system is characterized by com-
plex modes and the previous decoupling is not applicable. However, if the matrix
Γ(s) is diagonally dominant the system can be considered lightly non-proportional,
and the jth eigenvalue may be approximated by the the root of Dj(s) = 0. The
method proposed in this paper differentiates between systems with proportional
and non-proportional damping, see section 5.3.

Assuming that the general damping function G(t) induces a dissipative motion, it
can be demonstrated [64, 74] that the viscoelastic system has 2N + q eigenvalues,
q ≥ 0, ordered as

{

λj , λ
∗
j

}N

j=1
∪ {σj}qj=1 (5.9)

Symbols λj , λ
∗
j , 1 ≤ j ≤ N represent N pairs of complex–conjugate numbers.

The modes associated with these eigenvalues are oscillatory with exponentially
decreasing amplitude. The rest {σj}qj=1 are the so–called non–viscous eigenval-
ues [28], negative real numbers and therefore, associated with over–damped modes.
In general, the effect of the non–viscous modes in the response of the system is
not relevant and they may be neglected in the analysis [30]. The current method
is exclusively focused on the computation of the complex eigenvalues.

5.2.2 Parametric formulation of the Eigenvalues

In viscoelastic models, energy dissipation mechanisms are governed by a set of
parameters included in the damping matrix. Thus, this matrix can be considered
as a multivariable function G = G(s, θ1, . . . , θp), where θ1, . . . , θp are damping
parameters. For the purposes of the present paper, these p parameters does not
necessarily fill the complete set of damping parameters. Under this assumption,
the nonlinear eigenvalue problem can be expressed as

[

s2M+ sG(s, θ1, . . . , θp) +K
]

u0 = 0 (5.10)
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whence the jth complex eigenvalue λj is also a function of the parametric ar-
ray θ1, . . . , θp. The analytical computation of λj = λj(θ1, . . . , θp) is in general
not possible; however, a suitable particular choice of the damping parameters
(θ10, . . . , θp0) ∈ R

p always can lead to a null (or s–independent) damping matrix,
so that the eigenvalue problem

[

s2M+ sG(s, θ10, . . . , θp0) +K
]

u0 = 0 (5.11)

becomes linear (undamped problem) or quadratic (viscous problem). For these
problems the eigenvalues, named λ0j = λj(θ10, . . . , θp0) in accordance with the
new functional notation, can be calculated using very efficient computational
tools. Hereinafter, the damping parameters are ordered in a p–dimensional point
θ = {θ1, . . . , θp} ∈ R

p and the damping and dynamic stiffness matrices will be
noted as G(s,θ) and D(s,θ), respectively.

5.3 Eigenvalues’ Differential Equations

Under the assumptions presented in the previous section, the complex eigenvalues
λj = λj(θ) of the problem presented in Eq. (5.5) are multivariable functions of
the parametric array θ ∈ R

p. Moreover, for the jth eigenvalue, the eigenvector
qj = qj(θ) associated to point θ can be computed. Thus, evaluating dynamic
stiffness matrix at s = λj(θ) the the following equality holds for 1 ≤ j ≤ N and
for any value of θ

D
(

λj(θ),θ
)

qj(θ) = 0 (5.12)

In this section, the principles of the proposed numerical method are developed.
The method can be applied to systems with proportional as well as with non-
proportional damping; both types are discussed in the different subsections.

Some remarks must be pointed in reference to the notation: the pair (s,θ) is used
to represent any point in the space C × R

p, that is, s and θ are assumed to be
independent of each other. The notation λj(θ) is used for the complex eigenvalues
of the damped problem that is governed by G(s,θ). In some expressions, and if
they are not confusing, (λj ,θ) will be used instead of (λj(θ),θ). The function
λj(θ) evaluated at θ = θ0 is denoted by λ0j . Finally, ωj represents the jth natural
eigenfrequency of the undamped problem given by Eq. (5.3).
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5.3.1 Proportional Damping

As described, for a multi–dof system with proportional damping the characteristic
equation can be decoupled intoN modal equations. The damping matrix Γ(s,θ) in
the modal space of the undamped problem is then diagonal, and the jth equation
can be rewritten as

Dj(λj(θ),θ) = λ2j (θ) + λj(θ) Γjj(λj(θ),θ) + ω2
j = 0 (5.13)

where the complex eigenvalue λj(θ) : Rp → C is implicitly defined. As known,
the previous statement is true if the necessary conditions of the implicit function
theorem are satisfied.

Let θ0 = (θ10, . . . , θp0) be a certain point in the parametric domain and let λ0j =
λj(θ0) be its associated eigenvalue. As described in Section 5.2.2, the choice of θ0
allows the computation of λ0j from a easily–to–solve eigenvalue problem, say linear

or quadratic. The function Dj(s,θ) : C × R
p → C vanishes at the point (λ0j ,θ0).

Assuming that this function is continuously differentiable in an open neighborhood
of (λ0j ,θ0) and that

∂Dj(λ
0
j ,θ0)

∂s
= Γjj(λ

0
j ,θ0) + λ0j

[

2 +
∂Γjj(λ

0
j ,θ0)

∂s

]

6= 0 (5.14)

the implicit function theorem assures that there exist two positive real numbers
r > 0, h > 0 and a unique continuously differentiable function λj(θ) : Rp → C,
such that

{(λj(θ),θ) : θ ∈ U} = {(s,θ) ∈ Vj × U : Dj(s,θ) = 0} (5.15)

where

U = B(θ0, h) = {θ ∈ R
p : ‖θ − θ0‖ < h}

Vj = B(λ0j , r) =
{

z ∈ C :
∣

∣s− λ0j
∣

∣ < r
}

(5.16)

are the open balls centered in points θ0 and λ0j , respectively. An approximated
expression of the function λj(θ) can obtained through expansion in its Taylor
series around the point θ = θ0. Thus, if θ ∈ U then

λj(θ) = λ0j + (θ − θ0)T ∇λ0j +O(h2) ≡ λ̃j(θ) +O(h2) (5.17)

where λ0j ≡ λj(θ0) and

∇λj(θ) =

{

∂λj
∂θ1

, . . . ,
∂λj
∂θp

}T

(5.18)
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Chapter 5. Multiparametric Computation of Eigenvalues

is the gradient of λj(θ). An explicit expression of ∇λj(θ) can be calculated just
applying the ∇–operator to the characteristic Eq. (5.13), obtaining

2λj∇λj +∇λjΓjj + λj

(

∂Γjj(λj ,θ)

∂s
∇λj +∇Γjj

)

= 0 (5.19)

whence, solving for the gradient of the jth eigenvalue

∇λj =
−λj∇Γjj(λj ,θ)

Γjj(λj ,θ) + λj

[

2 +
∂Γjj(λj ,θ)

∂s

] ≡ −λjΨj(λj ,θ) (5.20)

Due to Eq. (5.14), the denominator does not vanish for any θ ∈ U . The evaluation
of the gradient at point (λ0,θ0) is required to compute the first–order approxi-
mation λ̃j(θ) from Eq. (5.17). As well known, the approximation of the function
λj(θ) with a Taylor linear expansion in the neighborhood of U produces an error
of order O(h2). The main objective of this paper is to propose in this section a

new function λ̂j(θ) that will improve the error order to O(h3).

Let α(ξ) : [0, 1] → [0, 1] be a continuously differentiable and injective curve such
that α(0) = 0, α(1) = 1. The set of points in the parametric domain that lies in
the linear segment between θ0 and a generic θ can be expressed for 0 ≤ ξ ≤ 1 as

ϑ(ξ) = θ0 + α(ξ)(θ − θ0) (5.21)

The eigenvalue for any value of the parameter ϑ(ξ) ∈ R
p, can be written as

λj(ξ) = λj(ϑ(ξ)) and considered as a function of the single real variable ξ. The
derivative of the eigenvalue with respect to ξ can then be carried out using the
chain rule

dλj
dξ

= ∇
Tλj ·

dϑ

dξ
(5.22)

Using now the expression of the gradient calculated in Eq. (5.20) results in

dλj
dξ

= −λj ΨT
j

(

λj(ξ),ϑ(ξ)
)

· (θ − θ0) α′(ξ) (5.23)

In what follows, the scalar product notation between vectors will be omitted for
clarity. With the value θ = ϑ(1) fixed, the previous equation is a nonlinear
ordinary differential equation to be solved for function λj(ξ). The initial–value
problem must be completed with the initial value given by λj(0) = λ0j . Obviously,
the exact solution is given by Eq. (5.13) in implicit form, but the challenge is
to transform Eq. (5.23) into another of separated variables, whose solution can
be considered a good approximation of the exact one. To this end, the following
approach is proposed

Ψj

(

λj(ξ),ϑ(ξ)
)

≈ Ψj

(

λ̃j(ξ),ϑ(ξ)
)

(5.24)
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where λ̃j(ξ) is the first–order approximation of the eigenvalue in the neighborhood
of point θ0. The approximation is reasonable under the hypothesis of low vis-
coelasticity: the function Ψj(s,θ) defined in Eq. (5.20) depends on the viscoelas-
tic function Γjj and its derivative ∂Γjj/∂s. Mathematically, the quantification of
viscoelasticity in the system is directly related to the variation of the damping
function G(s,θ) with respect to s [28, 71]. Hence, using the small viscoelasticity
assumption, it is expected that Γjj(s,θ) does not present strong variations, so that

the use of the linear approximation λ̃j(ξ), instead of the exact value in Ψj(s,θ)
does not induce a significant error, specially around the initial point θ0 (ξ = 0).
This approach allows to transform the general differential Eq. (5.23) into

dλj
dξ

= −λj
[

(θ − θ0)T fj(ξ)
]

(5.25)

where now the one–variable function

fj(ξ) = Ψj

(

λ̃j(ξ),ϑ(ξ)
)

α′(ξ) (5.26)

can be computed analytically and the initial–value differential Eq. (5.25) can be

directly integrated. The solution of this equation will be denoted by λ̂j(ξ) and rep-
resents the main contribution of this paper. Its closed expression for proportional
damping has the form

λ̂j(ξ) = λ0j exp
{

−(θ − θ0)Txj(ξ)
}

(5.27)

in which

xj(ξ) =

∫ ξ

0

fj(η)dη (5.28)

may be calculated for each value of ξ ∈ [0, 1] by simple numerical quadrature. In
particular, for ξ = 1 the previous developments give the approximated expression
to compute the eigenvalue at the point θ of the parametric domain

λ̂j(θ) = λ0j exp
{

−(θ − θ0)Txj(1)
}

(5.29)

5.3.2 Non–proportional Damping

The nature of non-proportional damping systems forces variations in the method
from the previous section, although essentially the fundamentals are the same as
those of proportional damping systems. When the hypothesis of proportionality
in the damping matrix is no longer valid, the eigenproblem must be considered in
its general form. The eigenrelations from Eq. (5.13) must be expressed as

D(λj ,θ) qj =
[

λ2jIN + λjΓ(λj ,θ) +Λ
]

qj = 0 (5.30)

where {λj = λj(θ)}Nj=1 and {qj = qj(θ)}Nj=1 are the complex eigenvalues and
eigenvectors, respectively, expressed as functions of the parameters θ ∈ R

p. The
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Chapter 5. Multiparametric Computation of Eigenvalues

determinant of the dynamic stiffenss matrix vanishes when it is evaluated in the
eigenvalues for 1 ≤ j ≤ N

D(λj(θ),θ) = det [D(λj(θ),θ)] = 0 (5.31)

As in the previous section, Eq. (5.31) defines the function λj(θ) : R
p → C

in implicit form provided that the necessary conditions of the implicit function
theorem are satisfied. Let θ = θ0 be a suitable point in the parametric domain
such that the eigenvalues λ0j = λj(θ0) for 1 ≤ j ≤ N can be calculated from a linear
or a quadratic eigenproblem (see section 5.2.2). The function D(s,θ) : C× R

p →
C vanishes at the point (λ0j ,θ0). Assuming that this function is continuously

differentiable in the open neighborhoods of λ0j and θ0 and that for 1 ≤ j ≤ N

∂D(λ0j ,θ0)

∂s
6= 0 (5.32)

then the implicit function theorem can be applied assuring that there exist two
positive real numbers r > 0, h > 0 and N unique continuously differentiable
functions λj(θ) : R

p → C such that

{(λj(θ),θ) : θ ∈ U} = {(s,θ) ∈ Vj × U : D(s,θ) = 0} (5.33)

where

U = B(θ0, h) = {θ ∈ R
p : ‖θ − θ0‖ < h}

Vj = B(λ0j , r) =
{

z ∈ C :
∣

∣s− λ0j
∣

∣ < r
}

(5.34)

are the open balls centered in points θ0 and λ0j for 1 ≤ j ≤ N . As before, the
first–order approximation of the Taylor series may be performed provided that the
gradient of the eigenvalue is available at the point θ = θ0. Thus, if θ ∈ U

λj(θ) = λ0j + (θ − θ0)T ∇λ0j +O(h2) ≡ λ̃j(θ) +O(h2) (5.35)

Now, the expression of ∇λj(θ) may be obtained taking derivatives with respect
to the parameters of the characteristic Eq. (5.31) and applying the chain rule

∂D(λj ,θ)

∂s
∇λj +∇D(λj ,θ) = 0 (5.36)

and hence, the gradient of the eigenvalue can be expressed as function of the
derivatives of the determinant as

∇λj = − ∇D(λj ,θ)

∂D(λj ,θ)

∂s

(5.37)

There is another way to obtain these derivatives; Adhikari [59] developed a method
for non–viscous systems to find the derivative of the jth eigenvalue with respect
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5.3 Eigenvalues’ Differential Equations

to certain design parameter. Let λj = λj(θ), qj = qj(θ) be the jth eigenvalue
and its associated eigenvector, for a certain value of the parameters θ. According
to the reference, the derivatives can alternatively be expressed as

∇λj = −
qT
j ∇D(λj ,θ) qj

qT
j

∂D(λj ,θ)

∂s
qj

(5.38)

where

qT
j ∇D qj =

{

qT
j

∂D

∂θ1
qj , . . . ,q

T
j

∂D

∂θp
qj

}T

(5.39)

Just as in the case of proportional damping, the expression of the gradient of
the jth eigenvalue is the starting point of the proposed method. Here, two dif-
ferent expressions of the derivatives are available from Eqs. (5.37) and (5.38).
Consequently two variants are possible, related to the use of the expression of the
eigenvalue derivatives derived in terms of the stiffness matrix determinant –DETD
method–, or with the use of the dynamic stiffness matrix and the eigenvectors qj

–EIGD method–.

Method based on the determinant of the dynamic stiffness matrix

The function D(s,θ) is the determinant of the dynamic stiffness matrix. Its general
expression in the case of non–proportional damping systems, for any value s ∈ C

and for any array of parameters θ ∈ R
p, is

D(s,θ) = det
[

s2IN + sG(s,θ) +Λ
]

(5.40)

For the undamped problem, the expression of the determinant of the dynamic
stiffness matrix Du(s) is

Du(s) = det
[

s2IN +Λ
]

=

N
∏

j=1

(

s2 + ω2
j

)

(5.41)

Obviously this function does not depend on the damping parameters. Evaluating
both determinants at s = 0

D(0,θ) =
N
∏

j=1

ω2
j = Du(0) (5.42)

Consequently, it can be assumed that there exists a function J (s,θ) such that

D(s,θ) = Du(s) + sJ (s,θ) (5.43)
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Since the function Du(s) does not depend on the array of damping parameters,
the gradient can be directly written as

∇D(s,θ) = s∇J (s,θ) (5.44)

Introducing now this expression in Eq. (5.37), the gradient of the jth eigenvalue
can be expressed as

∇λj = −λj
∇J (λj ,θ)

∂D(λj ,θ)

∂s

≡ −λjΨj(λj ,θ) (5.45)

Due to the similarities, the same symbol Ψj(s,θ) as in proportional damping sys-
tems has been used, although the expression is different. Therefore, the gradient
in Eq. (5.45) has exactly the same structure as that of Eq. (5.20). These corre-
spondences allow the applying of the same mathematical development as before
to obtain the function λ̂j(θ), through the integration of the ordinary differential
Eq. (5.25). The evaluation of the new Ψj(s,θ) requires the computation of the
partial derivative of a determinant, computationally expensive for relatively large
systems. For these cases, the partial derivatives may be numerically calculated by
means of finite differences.

Method based on the eigenvectors approximation

The method developed in this subsection uses the expression of the eigenvalue
derivatives given by Eq. (5.38). This method requires the estimation of the associ-
ated eigenvector, therefore it is named EIGD. The partial derivatives with respect
to the damping parameters and also with respect to s can be calculated. Rewriting
the dynamic stiffness matrix in its general form as function of the array θ

D(s,θ) = s2IN + sΓ(s,θ) +Λ (5.46)

with which the partial derivatives will be

∇D(s,θ) = s∇Γ(s,θ)

∂D

∂s
= Γ(s,θ) + s

(

2IN +
∂Γ

∂s

)

(5.47)

Substituting the previous expressions in Eq. (5.38) an equation with structure

∇λj = −λjΨj(λj ,θ) (5.48)

is again obtained, for which now

Ψj(λj ,θ) =
qT
j ∇Γ(λj ,θ) qj

qT
j

[

Γ(λj ,θ) + λj

(

2IN +
∂Γ(λj ,θ)

∂s

)]

qj

(5.49)
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In order to implement EIGD, it will be necessary to approximately estimate the
eigenvector qj . For that, several steps have to be carried out. Consider the linear
eigenvalue problem of the dynamic stiffness matrix

[D(s,θ)− ν(s)IN ]w(s) = 0 (5.50)

where ν,w represent the eigensolution associated with value s ∈ C. Adhikari [28]
used this eigenvalue problem to describe the theoretical basis of the non–viscously
damped systems. The reference demonstrated that evaluating s = λj(θ) on the
linear eigenvalue problem Eq. (5.50), there exists an eigensolution given by νj , wj

–without loss of generality it can be denoted as the jth eigensolution–, such that

νj(λj(θ)) = 0 , wj(λj(θ)) = qj (5.51)

As shown in Eq. (5.17), the difference between the exact and the linear approxi-
mation of the complex eigenvalues around θ = θ0 can be bounded by

∣

∣

∣
λ̃j(θ)− λj(θ)

∣

∣

∣
≤ rjh

2 (5.52)

for some positive real number rj > 0. h is the radius of the open ball U = B(θ0, h)
defined in Eq. (5.34). Since λ̃j(θ) is an approximation of the exact eigenvalue,

then νj(λ̃j(θ)) 6= 0. But it is expected that |νj(λ̃j(θ))| << 1 in the neighborhood
U of the initial point θ0; In fact νj(λ

0
j ) = 0 is verified. Taking into account the

bound given by Eq. (5.53), |νj(λ̃j(θ))| may also be bounded in terms of h. Indeed,
assuming that ν(s) is Lipschitz continuous with constant cj , then ∀ θ ∈ U

∣

∣

∣
νj

(

λ̃j(θ)
)∣

∣

∣
=

∣

∣

∣
νj

(

λ̃j(θ)
)

− νj

(

λj(θ)
)∣

∣

∣

≤ cj

∣

∣

∣λ̃j(θ)− λj(θ)
∣

∣

∣ ≤ cjrjh
2 (5.53)

These arguments lead to propose an approach to obtain the vector qj for Eq. (5.49).

Let λ̃j(θ) be the linear approximation of the jth complex eigenvalue for certain

value of the parametric domain. It can be denoted by aj(θ) = νj(λ̃j(θ)) to the

minimum eigenvalue (in the sense of absolute value) of matrix D(λ̃j(θ)), i.e.

|aj(θ)| = min
{

|z| : det
[

D
(

λ̃j(θ)
)

− z IN

]

= 0
}

(5.54)

Under this conditions the jth eigenvector qj(θ) of the eigenvalue λj(θ) will be
approximated by the eigenvector q̃j(θ) associated to aj(θ), that is

[

D
(

λ̃j(θ)
)

− aj(θ)IN

]

q̃j(θ) = 0 (5.55)
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Therefore, the function Ψj will be redefined as

Ψj

(

λ̃j(θ),θ
)

=
q̃T
j ∇Γ(λ̃j ,θ) q̃j

q̃T
j

[

Γ(λ̃j ,θ) + λ̃j

(

2IN +
∂Γ(λ̃j ,θ)

∂s

)]

q̃j

(5.56)

5.4 Approximation of eigenvectors

As known, the modal space of proportional damped systems equals that of the
undamped, i.e. both share eigenvectors that form an orthogonal base of RN . For
a non–proportional damping matrix, the eigenvectors are N -dimensional complex
arrays. Assuming that λ̂j(θ) is the jth complex eigenvalue estimated with the
proposed method from Eq. (5.29), the associated complex eigenvector can be eval-
uated from different numerical techniques. In this section, three will be described:
(i) Direct solution of the ill–conditioned linear system, (ii) Adhikari’s approach
for lightly non–proportional damping and (iii) First order approximation valid for
‖θ − θ0‖ ≪ 1, . Each depend on the obtained eigenvalue and therefore, it is
expected that a better approximation of it will give better accuracy for the eigen-
vector computation. In this sense, and as will be shown in the numerical examples,
EIGD is more suitable than DETD because in general presents lower error.

5.4.1 Solution of the ill–conditioned linear system

Using the same nomenclature as in Eq. (5.10), uj denotes the jth eigenvector, that
can be written as a linear combination of φ1, . . . ,φN as

uj =

N
∑

k=1

a
(j)
k φk (5.57)

Since any vector proportional to uj is also an eigenvector, the value a
(j)
j = 1 is

fixed without loss of generality. The aim is to calculate the N − 1 coefficients a
(j)
k

for 1 ≤ k ≤ N and k 6= j. Obviously, from uj = Φqj , these coefficients are the
components of qj , that is

qT
j = {a(j)1 , . . . , a

(j)
j−1, 1, a

(j)
j+1, . . . , a

(j)
N }

≡ {a(j)
T

1 ,a
(j)T

2 (= 1),a
(j)T

3 } (5.58)

and they can be obtained solving the linear system Eq. (5.30). The eigenvalue

λ̂j(θ) calculated with the proposed method is assumed to be close to the exact
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one, so that the linear system D(λ̂j(θ),θ) qj(θ) ≈ 0 becomes ill–conditioned.

This system can be written in terms of the sub-matrices of D(λ̂j(θ),θ) generated
from the partition of qj , resulting





Dj11 Dj12 Dj13

Dj21 Dj22 Dj23

Dj31 Dj32 Dj33















a
(j)
1

a
(j)
2

a
(j)
3











=







0

0

0







(5.59)

Hence, the coefficients ajk can be solved as

{

a
(j)
1

a
(j)
3

}

= −
[

Dj11 Dj13

Dj31 Dj33

]−1{
Dj12

Dj32

}

(5.60)

This method is valid for any non–proportional system and gives the exact solution
for the eigenvector provided that the associated eigenvalue is exact. However, it
requires the inversion of an N − 1 order matrix. In the following two subsections
more efficient approaches are described, but only valid under the assumption of
light non–proportionality and under light damping.

5.4.2 Approximation for lightly non–proportional damping

For light non–proportional damping, approximate eigenvectors have been proposed
by Adhikari [28] based on the Neumann expansion, resulting in closed–form ex-

pressions functions of the off–diagonal terms from Γ(λ̂j ,θ) = ΦTG(λ̂j ,θ)Φ. The
second order approximation of the jth eigenvector can be expressed as a linear
combination of the undamped eigenvectors

uj(θ) ≈ φj − λ̂j

N
∑

k=1
k 6=j

Γkj(λ̂j ,θ)

Dk(λ̂j ,θ)
φk

+ λ̂2j

N
∑

k=1
k 6=j

N
∑

l=1
l 6=j 6=k

Γkl(λ̂j ,θ)Γlj(λ̂j ,θ)

Dk(λ̂j ,θ)Dl(λ̂j ,θ)
φk (5.61)

where Dj(s,θ) = s2 + sΓjj(s,θ) + ω2
j . Note that the above expression provides

closed–forms of the coefficients a
(j)
k introduced in Eq. (5.57), so that no matrix-

inversion is required.
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5.4.3 Approximation for light damping

As described in Section 5.2.2, the damping parameters can always be chosen so
that from the initial value θ0 the undamped problem G(s,θ0) = 0 is obtained;
see for instance the numerical examples 2, 3 for non–proportional damping. For
this initial value, the hypothesis of light damping is equivalent to assume that
the distance between the real damping parameters and the initial values verifies
‖θ − θ0‖ ≪ 1. Therefore, it seems logical to approximate the complex eigenvectors
with the first order Taylor expansion

uj(θ) = uj(θ0) +

p
∑

r=1

∂uj(θ0)

∂θr
(θr − θr0) (5.62)

Since G(s,θ0) = 0, ∀ s ∈ C, then uj(θ0) = φj and λj(θ0) = iωj . The analytical
expression of the eigenvector derivative has been developed by Adhikari [59].

∂uj(θ0)

∂θr
= −αjr

2γj
φj −

N
∑

k=1
k 6=j

βkjr φk

γk(iωj − iωk)
(5.63)

where the coefficients γj , αjr, βkjr for 1 ≤ j, k ≤ N and 1 ≤ r ≤ p are given by

γj = φT
j

∂D(iωj ,θ0)

∂s
φj = iωj

(

2 +
∂Γjj(iωj ,θ0)

∂s

)

αjr = φT
j

∂2D(iωj ,θ0)

∂s∂θr
φj =

∂Γjj(iωj ,θ0)

∂s
+ iωj

∂2Γjj(iωj ,θ0)

∂s∂θr

βkjr = φT
k

∂D(iωj ,θ0)

∂θr
φj = iωj

∂Γkj(iωj ,θ0)

∂θr
(5.64)

Notice that the obtained expressions depend explicitly on the undamped eigenso-
lution and on the elements of the damping matrix Γ(iωj ,θ0) described in modal
coordinates. Therefore, the needed current algorithm effort for eigenvectors’ com-
putation is similar to that for lightly non-proportional systems.

5.5 Analysis of the error and computational complexity

The two methods used for non-proportional damping systems require greater com-
putational effort than the one for proportional: EIGD needs to calculate the eigen-
value problem from Eq. (5.50) and DETD needs to evaluate the determinant to
obtain its derivatives. A comparison of the computational complexity of both
methods along with the error analysis of the proposed improved functions is pre-
sented in this section.

132



5.5 Analysis of the error and computational complexity

5.5.1 Analysis of the error

The previous subsection focused on the methodology to build the functions that es-
timate the complex eigenvalues, λ̂j(θ). For both proportional and non–proportional
damping, closed expressions have been developed with the general form

λ̂j(θ) = λ0j exp
{

−(θ − θ0)Txj

}

(5.65)

where

xj =

∫ 1

0

Ψj

(

λ̃j(ϑ(ξ)),ϑ(ξ)
)

dξ

ϑ(ξ) = θ0 + (θ − θ0) ξ (5.66)

The curve α(ξ) = ξ has been considered to represent the set of values in the
parameter domain between the points θ0, θ. The function Ψj(s,θ) may take any
expresion from Eqs. (5.20), (5.45) or (5.49). This section is focused on obtaining
the error order between improved and exact solutions, requiring to adopt some
hypothesis about Ψj(s,θ). Let (λ

0
j ,θ0) be the initial point of the proposed method

and let U , Vj be the neighborhoods of (θ0, λ
0
j ), defined in Eqs. (5.16), (5.34). Also

assume that the function Ψj(s,θ) : Vj × U → C
p verifies the following properties

H1 is bounded in the set Vj ×U ; thus there exists a real positive number κj > 0
such that ∀ s ∈ Vj , θ ∈ U

‖Ψj(s,θ)‖ ≤ κj

H2 is Lipschitz continuous with constant ρj > 0, with respect to the first variable
s in the set B, i.e., ∀ u, v ∈ Vj , θ ∈ U

‖Ψj(z,θ)−Ψj(w,θ)‖ ≤ ρj |z − w|

Given a point θ ∈ U , the exact eigenvalue λj(θ) verifies

λj(θ) = λ0j exp
{

−(θ − θ0)Tyj

}

(5.67)

where now

yj =

∫ 1

0

Ψj

(

λj(ϑ(ξ)),ϑ(ξ)
)

dξ (5.68)

The aim is to bound the expression |λ̂j(θ) − λj(θ)| in terms of the radius h > 0
of the ball U centered in θ0. First, the following values depending on θ

Aj(θ) = (θ − θ0)T xj , Bj(θ) = (θ − θ0)T yj (5.69)
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can be defined. Since these functions are directly related with Ψj(s,θ) (see
Eqs. (5.66),(5.68)), then |Aj(θ)| ≤ hκj , |Bj(θ)| ≤ hκj hold for any θ ∈ U . There-
fore, a bound of

∣

∣An
j (θ)−Bn

j (θ)
∣

∣ may be calculated using the expansion of the
difference of n–order powers. In fact, for n ≥ 1

∣

∣An
j (θ)−Bn

j (θ)
∣

∣

=
∣

∣[Aj(θ)−Bj(θ)]
∑n

k=0A
n−k
j (θ)Bk−1

j (θ)
∣

∣

≤ |Aj(θ)−Bj(θ)|
∑n

k=1 |Aj(θ)|n−k |Bj(θ)|k−1

≤ |Aj(θ)−Bj(θ)|
∑n

k=1(κjh)
n−k(κjh)

k−1

≤ |Aj(θ)−Bj(θ)|n(κjh)n−1

≤ ‖θ − θ0‖ ‖xj − yj‖n(κjh)n−1

≤ ‖xj − yj‖nh(κjh)n−1

(5.70)

Since the error order between the exact eigenvalue and the first–order approxima-
tion is O(h2), there exists a real positive number rj > 0 such that |λj(θ)−λ̃j(θ)| ≤
rjh

2. Then, ‖xj − yj‖ may be bounded using the Lipschitz continuity of Ψj(s,θ)

‖xj − yj‖

=

∥

∥

∥

∥

∫ 1

0

[

Ψj

(

λ̃j(ϑ(ξ)),ϑ(ξ)
)

−Ψj

(

λj(ϑ(ξ)),ϑ(ξ)
)]

dξ

∥

∥

∥

∥

≤
∫ 1

0

∥

∥

∥Ψj

(

λ̃j(ϑ(ξ)),ϑ(ξ)
)

−Ψj

(

λj(ϑ(ξ)),ϑ(ξ)
)∥

∥

∥ dξ

≤
∫ 1

0

ρj

∣

∣

∣
λj(ϑ(ξ))− λ̃j(ϑ(ξ))

∣

∣

∣
dξ ≤ ρjrjh

2

(5.71)
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5.5 Analysis of the error and computational complexity

These results allow the calculation of the error between λ̂j(θ), λj(θ) using their
definitions from Eqs. (5.65), (5.67)

∣

∣

∣λ̂j(θ)− λj(θ)
∣

∣

∣

=
∣

∣λ0je
−Aj(θ) − λ0je

−Bj(θ)
∣

∣

=
∣

∣λ0j
∣

∣

∣

∣

∣

∣

∑∞
n=1

(−1)n

n!

[

An
j (θ)−Bn

j (θ)
]

∣

∣

∣

∣

≤
∣

∣λ0j
∣

∣

∑∞
n=1

1

n!

∣

∣An
j (θ)−Bn

j (θ)
∣

∣

≤
∣

∣λ0j
∣

∣ ‖xj − yj‖h
∑∞

n=1

n(κjh)
n−1

n!

≤
∣

∣λ0j
∣

∣ ρjrjh
3
∑∞

n=1

(κjh)
n−1

(n− 1)!

≤
∣

∣λ0j
∣

∣ ρjrjh
3eκjh

(5.72)

The previous bounding states that the approximation order of the improved so-
lution is O(h3), meanwhile using the Taylor series linear approximation the order
would be O(h2). This ensures that, indeed, there is an improvement in the calcu-
lation of the eigenvalue with the proposed method.

5.5.2 Computational Complexity

This subsection aims at comparing the computational complexities of DETD and
EIGD. When a point θ ∈ R

p is fixed, the evaluation of the function λ̂j(θ) requires

the numerical integration of the vector–valued function Ψj(λ̃j(θ),θ). Therefore,
since both methods essentially differ in the form of this function, the computational
differences can be established by calculating the complexity of a single evaluation.

It can be assumed that the calculation of the partial derivatives of the determi-
nant D(s,θ) are evaluated numerically with central finite differences. Hence, one
partial derivative requires to compute the determinant two times; since the numer-
ator has p components, one evaluation of Ψj(λ̃j(θ),θ) for DETD requires 2p+ 2
determinant evaluations. The computational complexity to evaluate a N–order
determinant using the LU decomposition is O(N3) [89], therefore the complexity
of computing one evaluation of Ψj is O(2(p+ 1)N3).
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On the contrary, EIGD requires to solve an N–order linear eigenvalue problem for
each point θ. This type of problem also has a complexity of O(N3), [89]. When the
eigenvector q̃j is found, the rest of operations are matrix multiplications. Thus,
in the numerator there are p matrix products while in the denominator there is
only one. Each numerator product from Eq. (5.56) has the form vTAv where v,
A have sizes N × 1, N ×N , respectively. Hence, to evaluate Ψj has a complexity
of O(N3 + 2(p+ 1)N2).

For systems of relatively large size, the computation times are of the form 2a(p+
1)N3 and bN3 for DETD and EIGDmethods respectively, for certain a, b positives.
It is expected the EIGD method becomes faster than DETD method provided that
a ≈ b. Although the latter equality has not been demonstrated in this paper, a
comparison of computation times has been included in the numerical examples in
order to verify the better efficiency of EIGD than DETD.

To illustrate the efficiency of the developed method, three numerical examples will
be analyzed in the following section for discrete (proportional and non–proportional)
and continuous (non–proportional) structures.

5.6 Numerical Examples

5.6.1 Example 1. Discrete structures with proportional

damping

In order to validate the proposed method in structures with proportional damping,
a mass–lumped dynamical system with N = 6 dof is analyzed. Fig. 5.1 shows the
structural configuration. Each mass m = 103 kg is attached to the next with a
linear spring k = 105 N/m together with a non–viscous damper characterized by
the kernel function G(t). A Biot’s model with two exponentials is used to model
the damper non–viscous behavior. Thus,

G(t) = cv
2

(

µ1e
−µ1t + µ2e

−µ2t
)

(5.73)

where cv is the damping coefficient of the limit viscous model obtained when
µ1, µ2 → ∞. The damping ratio ζ = cv/2mω0 is commonly used instead of cv,
where ω0 =

√

k/m is a reference frequency. The Laplace transform of G(t) results
in the viscoelastic damping function

G(s) =
cv
2

(

µ1

s+ µ1
+

µ2

s+ µ2

)

(5.74)
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Figure 5.1: Example 1. Proportional Damping. Structural configuration with 6 dis-
crete masses m = 103 kg and stiffness k = 105 N/m. Biot’s damping model with two
exponential kernels, G(t) = cv

(

µ1e
−µ1t + µ2e

−µ2t
)

/2.

The mass matrix of the system is directly M = mI6. The banded stiffness matrix
is

K = k

















2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

















(5.75)

and, consequently, the damping matrix is G(s) = G(s)K/k. Since G(s) is pro-
portional to the stiffness matrix, it becomes diagonal in the modal space. The
elements of the matrix Γ(s) = ΦTG(s)Φ are

Γjk(s) = φT
j Kφk

G(s)

k
= 0 , j 6= k

Γjj(s) = φT
j Kφj

G(s)

k
=
ω2
jG(s)

k
(5.76)

Using Eq. (5.8), the characteristic equation for the jth mode is

Dj(s) = s2 + sΓjj(s) + ω2
j = 0 (5.77)

The damping is controlled by the three parameters {ζ, µ1, µ2}. However, µ1, µ2

can be replaced by two non–dimensional parameters β1 = ω0/µ1, β2 = ω0/µ2.
Then, the damping function adopts the form

G(s) =
cv
2

(

ω0

β1s+ ω0
+

ω0

β2s+ ω0

)

(5.78)

When µ1, µ2 → ∞, the new parameters β1, β2 → 0 and the damping function
degenerates in the limit to the viscous coefficient, G(s) → cv = 2mω0ζ; the char-
acteristic equation of the jth mode leads to the second order polynomial

s2 + 2sαjωjζ + ω2
j = 0 (5.79)
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Figure 5.2: Example 1. Approximation of the 1st eigenvalue λ̂1(β1, β2), as function of
damping parameters β1 = ω0/µ1, β2 = ω0/µ2, ζ = 0.05. Real part (left) and imaginary
part (right).

which solution is the pair of complex conjugate numbers

λ0j = −ωjαjζ ± iωj

√

1− (αjζ)
2

(5.80)

where 1 ≤ j ≤ N and αj = ωj/ω0. As a result, at the point (β1, β2) = (0, 0) a
close solution of the jth eigenvalue can be found as explicit function of ζ. This
allows to use the two–dimensional array θ = (β1, β2) as a multi-variable parameter
so that the eigenvalues may be the functions λj = λj(β1, β2). The initial point
θ0 = (0, 0) and its associated initial solution λ0j have been calculated in Eq. (5.80).
In order to apply the proposed method, it is necessary to compute the derivatives
of the function Γjj(s,θ) evaluated in (s,θ) = (λ0j ,θ0)

Γjj(λ
0
j ,θ0) = αjωjζ

∂Γjj(λ
0
j ,θ0)

∂s
= 0

∂Γjj(λ
0
j ,θ0)

∂β1
=

∂Γjj(λ
0
j ,θ0)

∂β2
= −α2

jλ
0
jζ (5.81)

Therefore, using Eq. (5.20) it can be verified that the components of ∇λj(λ
0
j ,θ0)

are equal

∂λj(λ
0
j ,θ0)

∂β1
=
∂λj(λ

0
j ,θ0)

∂β2
=

α2
jζ
(

λ0j
)2

2λ0j + αjωjζ
(5.82)
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Hence, the Taylor series expansion of λj(β1, β2) around the point β1 = β2 = 0
may be written explicitly as

λ̃j(β1, β2) = λ0j

(

1 +
α2
jλ

0
j (β1 + β2)

2λ0j + αjωjζ
ζ

)

(5.83)

Essentially, the current approach is based on the estimation of the functionΨj(s,θ)
introduced in Eq. (5.20) through the particularized expression.

Ψj(λj , β1, β2) ≈ Ψj

(

λ̃j(β1, β2), β1, β2

)

(5.84)

Using Eq. (5.29), the value of λ̂j(β1, β2) can be computed, that represents an im-
proved approximation with respect to that of the Taylor series expansion (5.83).

Fig 5.2 shows the real and imaginary part of the first eigenvalue as functions of
(β1, β2) in the range 0 ≤ β1, β2 ≤ 10. The form of the surface is essentially the
same for the other modes due to the damping matrix proportionality. The real
part monotonically increases with the parameters whereas the imaginary part al-
ways presents a maximum whose location varies with the mode. Notice that the
real part is always negative, to ensure the decay of the response. Also, that for
this eigenvalue, from Eq. (5.80) it can be appreciated that the components of λ01
will be the intersection of the surfaces with the vertical axis.

To compare the eigenvalues from the proposed method and from the exact, the
surfaces’ contours are plotted for the modes j = 1, 2, 3 in Fig. 5.3, continuous
line for exact and discontinuous for our approach. The former are obtained solv-
ing Eq. (5.77) that degenerates into a fourth order polynomial, and the latter
from the procedure in Section 5.3, Eq. (5.29). Real (left column) and imaginary
(middle) values are superimposed, meanwhile the right column shows the error in
percentage, as function of the parameters as

ǫj(β1, β2) =

∣

∣

∣λj(β1, β2)− λ̂j(β1, β2)
∣

∣

∣

|λj(β1, β2)|
(5.85)

The left and middle contour plots show that the calculated surfaces obtained
with the proposed method are very close to the exact ones, specially around
β1 = β2 = 0, where Eq. (5.72) predicted that the error order is O(h3). This
can clearly be observed in the error density plot: the smaller the parameters the
lower the error; even far from the origin very good agreement between the curves
is observed.

139



Chapter 5. Multiparametric Computation of Eigenvalues

Mode 1

10−2

10−1

100

101

Exact

Proposed

β
2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Mode 2

10−2

10−1

100

101

β
2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Mode 3

10−2

10−1

100

101

10−2 10−1 100 101

β1

β
2

10−2 10−1 100 101

β1
10−2 10−1 100 101

β1

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Figure 5.3: Example 1. Contours of eigenvalues, 1st, 2nd, 3rd modes for damping ratio
ζ = 0.05. First column real part; second imaginary part; third relative error (%).
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It is also interesting to obtain a norm of the error for the considered range βmin ≤
β1, β2 ≤ βmax to compare the approximations for different modes. For that, the
maximum error associated with the jth mode can be introduced as

ǫmax,j = max{ǫj(β1, β2) : βmin ≤ β1, β2 ≤ βmax} (5.86)

Thus, the maximum error in the range of study is small for the first three modes:
ǫmax,1 = 0.07%, ǫmax,2 = 0.40% and ǫmax,3 = 0.80%, respectively.

The maximum error defined in Eq. (5.86) is a good indicator to compare the pro-
posed and the Adhikari and Pascual’s methods [31] (ADPA), with similar charac-
teristics than the current: a) the computation of the eigenvalues is carried out by
a non–iterative procedure and b) it is valid for proportionally damped structures.
ADPA assumes that the jth eigenvalue can be expressed as sj = s0j+δ, where s0j
is certain point adequately chosen and δ is a value to be obtained. The unknown
δ is calculated expanding the characteristic equation Dj(s) from Eq. (5.9) around
s0j up to the second order. Then, solving the resulting second order polynomial

0 = Dj(s0j + δ)

≈ Dj(s0j) +
∂Dj(s0j)

∂s
δ +

∂2Dj(s0j)

∂s2
δ2

2
(5.87)

The lowest of the two roots (in absolute value) is chosen. ADPA proposes as initial

guess s0j = −ξjωj+iωj

√

1− ξ2j , where ξj = lims→0 Γjj(s)/2ωj , provided that this

limit exists. Note that this method results in a closed–form expression funtion of
the damping parameters although the correct root of Eq. (5.87) cannot be known
a priori.

In Fig. 5.4(a), ǫmax,j has been represented for each mode using four values of the
damping ratio, from ζ = 0.01 (lightly damped) to ζ = 0.5 (strongly damped).
The results show that the accuracy of the proposed method depends directly on
the level of damping: higher damping ratios worsen the approximation. Further-
more, for a fixed damping ratio the higher the mode the larger the error. The
explanation of this fact can be found in the expression of the jth mode damping
function, Γjj(s) = ω2

jG(s)/k from Eq. (5.76). Taking into account that the modes
are ordered as ωj < ωj+1, it is clear that |Γjj(s)| < |Γj+1,j+1(s)|. This inequality
can be interpreted as mode j + 1 being more damped than mode j, that is, the
quality of the results of the proposed method is expected to become poorer as
shown in Fig. 5.4. Although the error for ζ = 0.5 is large, this level of damping is
not usual in real structures that typically range in ζ < 0.2.

In Fig. 5.4(b), the maximum error for ADPA is shown. Note that the increasing
trend of the error is again repeated due to the proportionality of the system. This
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method has proved to be more accurate than the proposed one for each mode
because the difference between the exact and the estimated solution is of order
O(δ3); this fact implies that the associated iterative scheme has cubic convergence.
However, ADPA loses accuracy for non–proportional damping as will be shown in
the following example.
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Figure 5.4: Example 1. Maximum error ǫmax,j(ζ) for proportional damping systems
through 0.01 ≤ β1, β2 ≤ 10. Proposed method (a), Adhikari-Pascual method (b).
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5.6.2 Example 2. Discrete structures with non-proportional

damping

mm mmmm
kk

k
kkkk
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Figure 5.5: Example 2. Non–proportional Damping. Structural configuration with 6
discrete masses m = 103 kg, and stiffness k = 105 N/m. Damping functions Gv(t) =
c1δ(t) (viscous) and Gb(t) = c2

(

νe−νt + γe−γt
)

/2 (non–viscous). Parameters ν = 5,
γ = 15 rad/s.

In this example, the DETD and EIGD methods are compared and validated.
For that end, the 6–dof lumped-mass discrete system represented in Fig. 5.5 is
analyzed. The mass and linear spring values are m = 103 kg, k = 105 N/m, as
in Example 1. Two different dampers are located between the clamped end and
the first mass and between masses 4, 5. The first is pure viscous, while the second
is viscoelastic associated to a Biot’s model with two exponential kernels. The
damping functions for both dampers are

Gv(t) = c1 δ(t)

Gb(t) =
c2
2

(

νe−νt + γe−γt
)

(5.88)

where c1, c2 are the damping coefficients; the second is obtained for ν, γ → ∞.
The damping ratios are ζ1 = c1/2mω0, ζ2 = c2/2mω0, where ω0 =

√

k/m is a
reference frequency. The Laplace transforms of the damping functions are

Gv(s) = c1 = 2mω0ζ1

Gb(s) = mω0ζ2

(

ν

s+ ν
+

γ

s+ γ

)

(5.89)

The mass and stiffness matrices are the same as those of Example 1, but the
damping matrix G(s) depends on the location of the dampers. Thus,

G(s) = Gv(s)Q1 +Gb(s)Q2 (5.90)

where

Q1 =

















1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















, Q2 =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 −1 0
0 0 0 −1 1 0
0 0 0 0 0 0
















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The damping model is governed by the parameters {ζ1, ζ2, ν, γ}. When ζ1 =
ζ2 = 0, the eigensolution can be directly computed because the system becomes
undamped. Hence, it is reasonable to chose the parameters θ = (ζ1, ζ2) so that
the eigenvalues will be functions with form λj(ζ1, ζ2). The application of the
proposed method requires the evaluation of the function λj(ζ1, ζ2) at the initial
point θ0 = (0, 0) and the calculation of derivatives with respect to ζ1 and to ζ2.
Therefore, the jth eigenvector is uj(θ0) = φj . From Eq. (5.38) and after some
operations

λj(0, 0) = λ0j = ±iωj

∂λj(0, 0)

∂ζ1
= −ρj1ω0

∂λj(0, 0)

∂ζ2
= −ρj2ω0J(λ

0
j )

qj(0, 0) = (0, . . . , 0,
j

1, 0, . . . , 0)T

(5.91)

where

ρj1 = m2φT
j Q1φj

ρj2 = m2φT
j Q2φj

J(s) =
1

2

(

ν

s+ ν
+

γ

s+ γ

)

(5.92)

The Taylor series expansion of λj(ζ1, ζ2) around the point θ0 = (0, 0) is

λ̃j(ζ1, ζ2) = λ0j − ω0

(

ρj1 ζ1 + J(λ0j ) ρj2 ζ2
)

(5.93)

valid in a neighborhood of the initial values of the parameters ζ1 = ζ2 = 0.

Figs. 5.6, 5.7 show the real (left) and imaginary (middle) part of the exact and
of the EIGD approximated eigenvalues, in superimposed form. Both have been
calculated for the range 0.01 ≤ ζ1, ζ2 ≤ 1. The first three modes (see Fig. 5.6)
present a better fit in the contours, specially in the low range of the damping ratios
(lightly damped systems). Furthermore, the accuracy is much more sensitive with
respect to the parameter ζ1. In fact, the error may be considered almost negligible
(less than 1%) when 0 ≤ ζ1 ≤ 0.6 regardless of the ζ2 value. This characteristic can
not be generalized to the rest of modes; indeed, for modes 4th, 5th, 6th represented
in Fig. 5.7, the error has a significant dependency on ζ2, specially for the 5th, 6th.
For example, for the 6th, it can be noticed that the results are almost independent
of the first damping ratio ζ1. In general, the results plotted in Figs. 5.6, 5.7
validate EIGD for non–proportional systems and for lightly damped systems. In
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Figure 5.6: Example 2. Contours of eigenvalues, 1st, 2nd, 3rd modes; approximated
solution by EIGD and relaxation parameters ν = 5, γ = 15 rad/s. First column real
part; second imaginary part; third relative error (%).
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Figure 5.7: Example 2. Contours of eigenvalues, 1st, 2nd, 3rd modes; approximated
solution by EIGD and elaxation parameters ν = 5, γ = 15 rad/s. First column real part;
second imaginary part; third relative error (%).
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order to visualize the relationship between the error of the two proposed methods
and the modes, the maximum error for each mode can be computed using the
same procedure as before

ǫmax,j = max{ǫj(ζ1, ζ2) : ζmin ≤ ζ1, ζ2 ≤ ζmax} (5.94)

In Fig. 5.8, the values of ǫmax,j corresponding to EIGD and DETD are represented
together with those obtained with ADPA. Since EIGD takes into account the non–
proportionality, its estimation of eigenvalues is more accurate than both ADPA
and DETD for all modes. In view of these results, it cannot be decided if DETD
or ADPA is best since the former presents lower error for the 1st, 4th and 5th
modes and the latter for the rest.

From a computational point of view, EIGD seems a priori to be more efficient
than DETD as shown in Section 5.5.2. In order to validate this affirmation, Ta-
ble 5.1 lists the computation times for both methods. In the last column it can be
observed that EIGD is 1.5 to 2 times faster than DETD for this example. It fol-
lows that the application of DETD should be kept to small systems for which the
analytical expression of the determinant D(s,θ) is known. Only in this situation
both methods may be competitive.
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Figure 5.8: Example 2. Maximum error ǫmax,j for non–proportional damping systems
calculated in the range 0.01 ≤ ζ1, ζ2 ≤ 1.
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Mode # EIGD DETD Ratio
1 1.705 2.773 0.61
2 2.018 3.007 0.67
3 2.819 5.715 0.49
4 2.274 3.452 0.66
5 2.012 3.250 0.62
6 2.290 4.029 0.57

Table 5.1: Comparison between computation times (in seconds) for the EIGD and
DETD methods; ratio between them.

5.6.3 Example 3. Continuous structures with non–proportional

damping

In this example, the proposed method is applied to a continuous steel beam with
Young modulus E = 200 GPa and density ρs = 7.85 t/m3. The cross section is
rectangular with dimensions 20×2 mm2 (width × height) and the length 600 mm.
Fig. 5.9 shows the setup and boundary conditions. The damping is introduced
through two mechanisms: (i) two distributed unconstrained damping layers and
(ii) a discrete viscoelastic damper located at the right end.

Figure 5.9: Example 3. Continuos beam with two free viscoelastic layers and a vis-
coelastic damper. Dimensions in mm.

The two damping layers are 1 mm thick and perfectly bonded on the top and
bottom surfaces at the central region as shown in Fig. 5.9. Since damping is
induced from tension–compression in the layers, the constitutive equations relates
longitudinal strain with stresses as

σx(t) = E0 ǫx(t) +

∫ t

−∞

Gv(t− τ) ǫ̇x(τ) dτ (5.95)

148



5.6 Numerical Examples

Taking the Laplace transform of the previous expression the integro-differential
relations are transformed into the algebraic expressions

σ̂x(s) = [E0 + sGv(s)] ǫ̂x(s) ≡ Êv(s) ǫ̂x(s) (5.96)

where s = iω is the Laplace eigenparameter and Êv(s) is the complex Young
modulus. Gv(t) and Gv(s) are the damping functions in time- and frequency-
domain, respectively. For this example the damping material named 3M-ISD-112
(described in [90]) is chosen. This material has static Young modulus E0 = 204
kPa and density ρv = 0.97 t/m3. The assumed damping function is a Biot’s
multiexponential model formed by Ne = 8 hereditary kernels, resulting

Gv(t) =
E0

1− g

Ne
∑

n=1

gne
−t/τn (5.97)

where g =
∑N

n=1 gn. Hence, the complex modulus can be written as Êv(s) =
E0 [1 + sϕv(s)], where the function ϕv(s) = Gv(s)/E0 is given by

ϕv(s) =
1

1− g

Ne
∑

n=1

gnτn
1 + τns

(5.98)

The parameters E0 and gn, τn, for 1 ≤ n ≤ 8 have been obtain by fitting the model
and experimental data, and are shown in Table 5.2. More details on this damping
material and on the fitting methodology can be found in [90, 91].

The vertical force in the viscoelastic damper RC and the associated displacement
vC are related by the following fractional differential equation

RC + Tα
r

dαRC

dtα
= kd vC + k∞ Tα

r

dαvC
dtα

(5.99)

The parameter α with 0 < α < 1 is the fractional exponent, Tr > 0 is the
relaxation time and k∞ > kd is the storage rigidity. This rigidity is commonly
replaced by the dimensionless storage coefficient c = k∞/kd > 1. The complex
rigidity K̂d(s) = R̂C(s)/v̂C(s) relates the above magnitudes in the Laplace domain.
Taking the Laplace transform of Eq. (5.99), straight operations lead to

K̂d(s) = kd
1 + c(Trs)

α

1 + (Trs)α
≡ kd [1 + sϕd(s)] (5.100)

where

ϕd(s) =
c− 1

s

(Trs)
α

1 + (Trs)α
(5.101)

For the current example, the values kd = 1.5 kN/m, α = 0.70, c = 103, and
Tr = 5 × 10−7 s. have been chosen. For this combination, these values produce
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n gn τn(s)
1 3.1030E−03 6.0730E−01
2 6.9000E−03 1.5110E−01
3 1.2310E−02 3.0380E−02
4 3.5340E−02 8.1720E−03
5 6.5620E−02 1.8210E−03
6 1.5410E−01 4.8100E−04
7 2.6120E−01 1.2010E−04
8 4.5400E−01 3.0140E−05

Table 5.2: Damping parameters of the Biot’s model for viscoelastic layer defined in
Eq. (5.97). Relaxation time τn in seconds, gn dimensionless coefficient.

a relatively high damping, derived from the calculation of the loss factor peak,
ηm = 1.72. More details on this damping model and on the relation between
the loss factor peak and the parameters α, c, Tr are available in the works of
Pritz [20–22].

The beam is discretized in 1D, two–node finite elements of length 30 mm. The
mass and stiffness matrices are obtained applying the usual assumptions for beams
with unconstrained viscoelastic layers, studied by Oberst [92]. Hence, the motion
equation in frequency domain can be written in the standard form as

[

s2M+ sG(s) +K
]

û(s) = F̂(s) (5.102)

where M = Ms +Mv is the mass matrix, K = Ks +Kv +Kd the elastic stiffness
matrix and G(s) = ϕv(s)Kv +ϕd(s)Kd the damping matrix. In these expressions
the subscript s is referred to the steel part, v to the viscoelastic layers and d to
the discrete damper at section C.

In order to compute the eigenvalues with the proposed EIGD method, a multipara-
metric array θ is required. For the current example, the vector θ = (τ1, . . . , τ8, c)
with the initial value θ0 = (0, . . . , 0, 1) is chosen. Note that the viscoelastic non
linear eigenproblem evaluated at θ0 is transformed into the linear undamped prob-
lem. This transformation allows the calculation of the initial solution, i.e. natural
frequencies ωj and real eigenvectors φj , with relatively low computational effort.
The eigenvalues are also obtained from the ADPA. However, as can easily be ver-
ified lims→0 Γjj(s)/2ωj = ∞, therefore since the proposed method starts at the
undamped problem, it seems logical to choose s0j = iωj as the initial point to
evaluate Eq. (5.86).

As before, the exact complex eigenvalues must be calculated to check the accuracy
of the proposed and the ADPA methods. For that, the iterative approach of
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Proposed EIGD Adhikari-Pascual [31]
Mode Exact Eigenvalue Error (%) Eigenvalue Error (%)

1 −54.99+303.10i −48.10+322.38i 6.644 −134.08+221.27i 36.946
2 −45.27+595.16i −43.95+604.53i 1.585 −101.27+550.03i 12.051
3 −210.12+764.26i −203.98+726.63i 4.810 −116.59+767.28i 11.806
4 −68.78+1,619.07i −69.73+1,618.22i 0.079 −63.43+1,616.56i 0.364
5 −82.47+1,960.61i −82.28+1,959.05i 0.080 −63.47+1,979.69i 1.372
6 −51.51+3,299.74i −51.70+3,299.59i 0.007 −48.48+3,300.88i 0.098
7 −55.32+3,822.46i −55.39+3,822.25i 0.006 −46.87+3,830.06i 0.297
8 −43.09+5,647.99i −43.17+5,648.01i 0.002 −41.49+5,648.74i 0.031
9 −45.91+6,319.85i −45.98+6,319.87i 0.001 −40.76+6,324.06i 0.105

10 −37.54+8,594.64i −37.55+8,594.78i 0.002 −36.37+8,595.31i 0.016
11 −38.47+9,446.52i −38.48+9,446.66i 0.001 −35.20+9,449.02i 0.044
12 −34.47+12,253.32i −34.50+12,253.50i 0.001 −33.69+12,253.76i 0.007
13 −35.33+13,256.88i −35.37+13,257.07i 0.002 −32.92+13,258.62i 0.022
14 −32.14+16,543.38i −32.09+16,543.65i 0.002 −31.48+16,543.77i 0.005
15 −31.68+17,741.02i −31.65+17,741.29i 0.002 −29.92+17,742.24i 0.012

Table 5.3: Eigenvalues for example 3. Exact, proposed (EIGD) and Adhikari–Pascual
methods with relative errors.

Ruhe [93] based on the generalization of Newton’s method for nonlinear eigenvalue
problems is used. The key idea is to transform the general problem of Eq. (5.3)
into a linear one by expansion of the dynamic stiffness matrix D(s) around an
initial guess, say s0j . The value s0j + δ is assumed to be very close to the jth
eigenvalue and hence, D(s0j + δ)uj ≈ 0. Expanding this matrix up to the first
order in terms of the unknown δ results in

[

D (s0j) + δ
∂D (s0j)

∂s

]

uj ≈ 0 (5.103)

This is a linear eigenvalue problem in δ that does not have to be solved entirely,

since only the minimum (in absolute value) eigenvalue δ
(0)
j needs to be found; the

next iteration is calculated as s
(1)
j = s0j + δ

(0)
j . The iterative process consist on

building the sequence {s(n)j }, which is locally convergent with quadratic speed.
The initial guess is taken as the undamped eigenvalue s0j = iωj and shall be ter-
minated when the relative error from one iteration to the next is less than 10−10.
The solution thus obtained is considered exact.

In Table 5.3, the complex eigenvalues and the associated relative errors for EIGD
and ADPA are listed for the first 15 modes. In view of the results, the eigenvalues
calculated from EIGD present good agreement with the exact, specially for modes
4th and subsequents with error lower than 0.1 %. In addition, for the 15 modes
shown, the EIGD error is lower than that of ADPA. This improvement is due to
the non–proportionality of the damping matrix, that comes from the non–regular
distribution of the viscoelastic layers together with the presence of the viscoelastic
damper. The errors of both methods seems to have a monotonically decreasing
trend and a question arises: Does exist a mode for which the ADPAmethod is more
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accurate than EIGD?. To answer this question, the relative error has been plotted
in Fig. 5.10 extending the modal range up to mode 40th. For the first modes the
trend reflected in the figure is the same as that observed at Table 5.3, however the
error of ADPA seems to decrease faster than EIGD. In addition, the latter presents
strong error decreases at modes 18th, 25th, 31th, 35th and 39th in disagreement
with the observed trend. By inspection of the modal shapes, it is verified that
these modes are precisely the extensional modes, while the rest are the flexural
ones. Since the dof associated to the damper at C only affects the flexural be-
havior, the extensional problem consequently presents lighter non–proportionality.
This fact obviously improves the ADPA approximation at extensional modes.

10−8

10−6

10−4

10−2

100

102

5 10 15 20 25 30 35 40

R
el
at
iv
e
er
ro
r
(%

)

# Mode

Proposed EIGD
Adhikari–Pascual [31]

Figure 5.10: Example 3. Percentage error for proposed EIGD and for Adhikari–Pascual
methods.

Considering now only flexural modes, the EIGD error is lower than that of ADPA
for the first 21 modes and between the 21th and 24th both methods are similar.
For 26th and subsequents the ADPA error follows a decreasing trend while EIGD
error is constant, approximately equal to 0.001%. Since the dof associated to the
damper (principal cause of non–proportionality) becomes less active for higher
modes, the damping matrix tends to be diagonally dominant with the mode num-
ber; this is the reason for which ADPA’s error slightly improves for these almost
proportional modes.
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5.7 Conclusions

The nonlinear eigenvalue problem in linear viscoelastic structures becomes of spe-
cial importance for the time– and the frequency–domain solution of dynamic prob-
lems. In the present work, a new computational method to solve this eigenvalue
problem in multi degree–of–freedom (dof) systems is proposed. The central idea
is to consider the eigenvalues as function of certain multi–dimensional array θ,
formed by damping parameters contained in the non–viscous damping function
G(s,θ). From these functions, the eigenvalues can be expanded in their Taylor se-
ries. The proposed method transforms the eigenrelations into ordinary differential
equations with separate variables, so that the resolution is reduced to numerical
integration, for which, quadrature methods can be used.

The technique is described for multi–dof systems, differentiating two cases: 1) pro-
portional damping and 2) non–proportional damping. In the second, two variants
of the method are proposed; the first, named DETD is based on the study of the
determinant of the dynamic stiffness matrix and the second, named EIGD, uses
the complex eigenvectors of the dynamic stiffness matrix. In order to study the
numerical properties, the approximation order of the proposed solution has been
evaluated. It is shown that this order is O(h3), greater than the O(h2) of the
Taylor expansion. In addition, the computational complexity of the method is
studied for non–proportional damping systems.

Three numerical examples are used to illustrate and validate the theoretical re-
sults. Proportional and non–proportional damping discrete systems are analyzed
separately for a six–dof system. The results are compared with those of the non–
iterative method of Adhikari and Pascual (ADPA), valid only for proportional
or lightly non-proportional damping. As expected from the error analysis, good
agreements between the approximated and the exact solution are obtained, spe-
cially around the chosen initial point. For proportional damping systems the
higher the mode the greater the error. For non–proportional, a comparative anal-
ysis between EIGD, DETD and ADPA has been carried out; for any mode, the
first presents better accuracy than the others due to the special eigenvector ap-
proximation.

Finally, a continuous beam with non–proportional damping is analyzed. In this
example, EIGD presents better accuracy than ADPA for modes with high non–
proportionality. Further research is currently incorporating new numerical tech-
niques oriented to avoid the numerical quadrature required for the eigenvalue es-
timation.
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6
An Equivalent Viscous Model for

Linear Viscoelastic Systems

6.1 Introduction

The simplest and most widespread mathematical representation of structural damp-
ing is the viscous model, whereby the dissipative forces are assumed to be propor-
tional to the instantaneous velocities of the degrees of freedom (dof) of the system.
Under the assumption of a small-deformation regime, the governing equations of
the viscous model are of the following form

Mü+Cu̇+Ku = F(t) (6.1)

where M, C, K ∈ R
N×N are, respectively, the constant mass, damping and stiff-

ness matrices, and where u(t) and F(t) are the vectors of displacements and ex-
ternal forces, generally dependent on the time variable t. The exact or approxi-
mate solution of this system of linear simultaneous ODEs can be carried out by
a variety of methods, including classical modal analysis. Modern multipurpose
computer codes incorporate these methods and couple them, for example, with
powerful finite-element techniques of structural analysis.
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However, in many applications, particularly in those pertaining to aerospace en-
gineering, the simple viscous paradigm is inadequate. The main reason for this
deficiency is the experimentally verified fact that the dissipative forces depend in
an essential way on the history of the deformation, rather than just on the instan-
taneous velocity. While adhering to the linearity of the system, it is possible to
incorporate the history dependence by means of a hereditary integral containing
a kernel that depends on the backward-running time variable, as follows

Mü+

∫ t

−∞

G(t− τ)u̇dτ +Ku = F(t) (6.2)

where G(t) ∈ R
N×N is the matrix kernel. In practice, the kernel decays rapidly

in time, which is a manifestation of the phenomenon of fading memory, accord-
ing to which the events in the recent past are more significant in determining the
present state than those in the distant past. Mathematically speaking, the damp-
ing forces in Eq. (6.2) have been expressed by means of a convolution integral.
Somewhat imprecisely, we will refer to the hereditary paradigm as the viscoelastic
model (VEM), reserving the name of viscous model (VM) for the particular case
described by Eq. (6.1).

Several works have been focused on improving the viscoelastic models applied to
mechanical systems; the works of Flugge [10], Nashif [11] and Jones [12] are of
special relevance, containing the main contributions in this field. The non–viscous
models are characterized by integro–differential equations and require new solution
methods. In this sense, the vast majority of the methods aimed at solving Eq. (6.2)
use techniques based on the state–space approach. Thus, Golla & Hughes [14] and
McTavish & Hughes [40] introduced the GHM method using new internal vari-
ables. Muravyov [55, 94] and Muravyov and Hutton [54, 73] formulated a general
Laplace domain–based method for isotropic and homogeneous hereditary mate-
rials with exponential kernels, analyzing the forced as well as the free vibration
response. Menon and Tang [56] proposed a solution for viscoelastic problems with
multi–exponential kernels based on the transformation of the characteristic equa-
tion into a certain polynomial. Hence, the order of the system was augmented as
many times as the number of the exponential kernels that were used. A work of
special importance in the last years concerning dynamics of non–symetric, non–
viscous systems is due to Adhikari [28], in which analytical solutions for a general
viscoelastic system were given as a function of the set of eigenvalues and eigenvec-
tors of the system.

Due to the mathematical simplicity of viscously damped systems, it is a common
practice to search equivalent dynamic models that are able to replicate the re-
sponse of the original with enough accuracy. Bandstra [95] obtained for single
dof systems the equivalent viscous damping for different nonlinear systems using a
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method based on the equivalence of energy dissipation. Related to linear problems
applied to one–dimensional structures, Banks [96] used the modal analysis for the
extraction of the set of modal damping ratios. These ratios were deduced for the
special case of viscous–air damping combined with a Kelvin–Voigt constitutive
relationship. In the particular case of complex structures with added viscoelastic
dampers, different methods have been proposed for their modeling through equiv-
alent viscous systems. Lima [97] suggested an efficient methodology for assembling
structural systems with viscoelastic dampers based on a frequency response func-
tion coupling technique. Ungar & Kerwin [98] proposed in 1962 the Modal Strain
Energy method for obtaining the modal damping ratio in a general viscoelastic
system. This method was implemented in a Finite Element Program by Johnson
& Kienholz [99]. Bilbao et al. [100] proposed a proportional damping matrix, using
optimization based methods. Genta & Amati [101] studied hysteretic models in
rotordynamics and their equivalent damping ratios, analyzing the advantages and
disadvantages of the ratios to obtain the time–domain response. For the specific
case of a viscoelastic system based on fractional calculus, Makris [102] proposed
an equivalent viscous model giving an equivalent damping ratio and a new natural
frequency for viscoelastic dampers in single dof systems. The theoretical prob-
lem of finding a second order model equivalent to a general viscoelastic system
has been studied by Segalman [103], assuming low viscoelasticity; an equivalent
second–order model is deduced, defining a damping matrix and a new stiffness ma-
trix. However, the resulting model is not viscous, due to the fact that the involved
matrices are in general defined in the complex domain. Recently, Adhikari [104]
has also proposed a second–order system in which the key idea is the evaluation of
the viscoelastic function in each complex frequency, also assuming low viscoelas-
ticity.

The published research about the construction of equivalent models for viscoelastic
systems is, in general, oriented only to find an equivalent damping matrix. Mod-
ifications of the other dynamic matrices, say mass and stiffness, are usually not
introduced. In addition, light viscoelasticity is an hypothesis commonly assumed
in the majority of the cases.

In his landmark article, Adhikari [28] extended the classical modal analysis to treat
the general VEM. In spite of the clarity of the analysis, the implementation of the
fully fledged procedure in a numerical context remains a challenge in most practi-
cal applications, in which the number of degrees of freedom is very large. Building
upon Adhikari’s work [28], this paper proposes an approximate technique which,
in some sense, is the ’best’ approximation to a VEM by means of a VM, which we
call an Equivalent Viscous Model (EVM). Some of the indications of how to build
this model are provided by Adhikari himself. Indeed, he observes that “it appears
that the number of nonviscous modes is not very high and also their contribution
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to the global dynamic response is not very significant.” On the basis of this obser-
vation and of Adhikari’s detailed calculations, we propose to construct the EVM
by retaining precisely the complex eigenvalues of the dynamic problem (6.2) in the
Laplace transform domain and discarding the non-viscous modes altogether. The
mass, damping and stiffness matrices of the EVM are constructed on the basis of
the normal modes of the undamped system and the complex eigenvalues of the
full VEM. To assess the quality of the proposed technique, rigorous bounds are
provided for the error of the approximation.

6.2 Fundamentals of the Proposed Method

6.2.1 Eigenproblem in Viscoelastic Structures

The eigenvalues and eigenvectors of a viscoelastic system have a special relevance
in the construction of the proposed method. Their computation can be performed
transforming the dynamical problem into a free motion one with F(t) = 0 in
Eq. (6.2). Taking now the Laplace transform, the following nonlinear eigenvalue
problem is obtained

[

s2M+ sG(s) +K
]

û(s) = 0 (6.3)

where G(s), û(s) are, respectively, the Laplace transforms of G(t), u(t). The
eigenvalues are the roots the characteristic equation given by

det
[

s2M+ sG(s) +K
]

= 0 (6.4)

Assuming that the damping matrix G(s) verifies the necessary conditions to define
a dissipative motion [14], the number of eigenvalues will be m ≥ 2N [28, 64, 73],
and the complete set of roots can be represented as

{s1, · · · , sN , s∗1, · · · , s∗N , s2N+1, · · · , sm} (6.5)

where the first 2N eigenvalues are N pairs of complex–conjugate eigenvalues with
oscillatory nature and the lastm−2N are named nonviscous roots, a set of real neg-
ative eigenvalues corresponding to non–oscillatory or overcritically damped modes.
In general, the number of nonviscous roots will depend on the functional form of
matrix G(s).

A priori, there is no reason to restrict the current method to symmetric systems.
However, for the purposes of this paper it will be assumed that the matrices in-
volved in the model are symmetric, that is, M = MT , K = KT , G(s) = GT (s),
leaving for further works the asymmetric case. Hence, under the assumption of

162



6.2 Fundamentals of the Proposed Method

symmetry, it is not necessary to differentiate between left and right eigenvectors.
Therefore, introducing the notation uj for the jth eigenvector, the following rela-
tionship can be written

D(sj) uj = 0 , 1 ≤ j ≤ m (6.6)

D(s) being the dynamic stiffness matrix defined by

D(s) ≡ s2M+ sG(s) +K (6.7)

In the set of eigenvalues of the VEM, those with oscillatory nature, corresponding
with the N pairs of complex conjugate numbers, play an important role in the
construction of the proposed EVM. Furthermore, the latter has as a main feature
to share its complex eigenvalues with the VEM.

6.2.2 The Equivalent Viscous Model

The free motion of the undamped system associated with the VEM (6.2) is governed
by

Mü+Ku = 0 (6.8)

Let ωj and φj ∈ R
N be the jth natural frequency and its eigenvector, respectively.

The classical orthogonal eigenrelations may be written as

φT
j Mφk = δjk , φT

j Kφk = ω2
j δjk (6.9)

where δjk is the Kronecker delta. The system {φj}Nj=1 forms a base of the space

R
N . Let us consider now any 2N positive real numbers {ζej , ωej}Nj=1, with 0 <

ζej < 1 and ωej > 0. These numbers together with the vectors {φj}Nj=1, always
allow to construct a symmetric viscous model with proportional damping. For
that, let us define the diagonal matrices

C′
e = diag [2ζejωej ] (6.10)

Λe = diag
[

ω2
ej

]

(6.11)

and the matrix Φ = [φ1, . . . ,φN ]. Then, under these conditions, the following
matrices

Me = M

Ce = Φ−TC′
eΦ

−1 (6.12)

Ke = Φ−TΛeΦ
−1

are real, symmetric and become diagonal in the eigenbasis Φ. Furthermore, it can
be directly verified that the second–order linear system of differential equations

Meü+Ceu̇+Keu = F(t) (6.13)
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has as eigenvalues the N complex conjugate pairs

{

−ωejζej ± i ωej

√

1− ζ2ej

}N

j=1
(6.14)

where i =
√
−1 is the imaginary unity.

Let us assume that the set of complex eigenvalues of the VEM defined in Eq. (6.3),
namely {sj , s∗j}Nj=1, is known. In addition, let {φj}Nj=1 be the system of undamped
eigenvectors. We are interested to obtain the unknown 2N numbers ζej and ωej ,
1 ≤ j ≤ N such that the eigenvalues of the VEM be the same as those of the
EVM. Therefore, the following 2N equalities arise

sj = −ωejζej + i ωej

√

1− ζ2ej , 1 ≤ j ≤ N

s∗j = −ωejζej − i ωej

√

1− ζ2ej , 1 ≤ j ≤ N (6.15)

The values of ζej and ωej may be solved as

ζej = −
sj + s∗j

2
√

sj s∗j

, ωej =
√

sj s∗j (6.16)

These parameters will be named respectively equivalent damping ratio and equiva-
lent natural frequency of the jth mode. Note that ζej is well defined since the real
part of any eigenvalue, say ℜ{sj} = (sj + s∗j )/2, is negative, in order to charac-
terize a dissipative motion. The dynamic matrices Me, Ce and Ke deduced from
the values given in Eq. (6.16) constitute the proposed EVM.

Methods based on state–space approach are commonly used to solve linear vis-
coelastic systems. However, these methods require new additional internal vari-
ables [14, 40, 54, 56], which involves a high computational cost for systems with
relatively large number of dof. Therefore, we propose the EVM as an efficient
substitute of the original VEM because, as shown above, the former has the same
complex eigenvalues as the latter, but the same eigenvectors as the undamped sys-
tem. In consequence, it is expected that the response obtained with EVM can be
considered as a good approximation, specially when the VEM is also proportional.
This fact allows the use of standard tools focused on solving structural dynamics
problems with viscous damping, implemented in the majority of finite element
computational packages.

In order to provide the EVM with robust theoretical foundations, the norm of the
difference between the Transfer Functions (TF) will be bounded in the following
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subsection. In addition, it will also be shown that the EVM previously defined
may be deduced from an expansion of the exact TF.

6.3 Decomposition of the Transfer Function

6.3.1 The Transfer Function

Considering the steady–state motion equation in the Laplace domain, the rela-
tionship between the response, û(s), and the external forces, F̂(s), is given by

D(s) û(s) = F̂(s) (6.17)

From the previous equation, the response vector can be obtained by inversion of
the dynamic stiffness matrix as

û(s) = D−1(s) F̂(s) ≡ H(s) F̂(s) (6.18)

where
H(s) =

[

s2M+ sG(s) +K
]−1 ∈ C

N×N (6.19)

is the TF. tHE Computation of one inverse matrix corresponding to each s is
not an efficient procedure to obtain the TF, specially for large systems. Hence,
alternative methods based on the information given by the eigenvalue solution
may be used. Adhikari [28] studied the dynamics of the viscoelastic systems and
obtained closed solutions for the TF taking into account the total set of complex
eigenvalues and eigenvectors. From the residue theorem, the TF of the original
viscoelastic model (VEM) can be expressed as function of its poles and residues.
Thus, using Adhikari’s nomenclature

H(s) =
m
∑

j=1

Rj

s− sj
(6.20)

where
Rj ≡ lim

s→sj
(s− sj)H(s) , 1 ≤ j ≤ m (6.21)

is the residue of the TF at the pole sj , for 1 ≤ j ≤ m. Starting from the definition
and using the linear eigenvalue problem of the dynamic stiffness matrix, Adhikari
calculated the jth residue, obtaining an expression as function exclusively of the
VEM complex eigensolutions

Rj =
uju

T
j

uT
j

∂D(sj)

∂s
uj

, 1 ≤ j ≤ m (6.22)
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Introducing the results of the previous expression in Eq. (6.20) the TF may be
expressed as

H(s) =

m
∑

j=1

Rj

s− sj
=

m
∑

j=1

γjuju
T
j

s− sj
(6.23)

where the coefficient γj is

γj =

[

uT
j

∂D(sj)

∂s
uj

]−1

, 1 ≤ j ≤ m (6.24)

Such as was previously described in Section 6.2.1, among the m eigenvalues, there
exist N pairs of complex conjugate values andm−2N nonviscous roots. In the pre-
vious TF expression, the effect of the different eigenvalues and their corresponding
eigenvectors may be considered in separated form, resulting in

H(s) =
N
∑

j=1

[

γjuju
T
j

s− sj
+
γ∗ju

∗
ju

∗T

j

s− s∗j

]

+
m
∑

j=2N+1

γjuju
T
j

s− sj
(6.25)

Using the previous expression, Adhikari obtained the TF of undamped and vis-
cously damped systems as particular cases. As it will be shown later, under certain
conditions the TF of the VEM, given by Eq. (6.25), may be approximated by the
TF of the EVM. For the purposes of the present work it is necessary to achieve a
close expression of the latter. Again, since the complex eigenvalues of the EVM
are the same as those of the VEM and the eigenvectors are {φ1, . . . ,φN}, the TF
of the EVM has the form

He(s) =

N
∑

j=1

[

γejφjφ
T
j

s− sj
+
γ∗ejφjφ

T
j

s− s∗j

]

(6.26)

where

γej =

[

φT
j

∂De(sj)

∂s
φj

]−1

, 1 ≤ j ≤ N (6.27)

In order to obtain the value of γej , let us introduce the dynamic stiffness matrix
of the EVM

De(s) = s2Me + sCe +Ke (6.28)

From Eq. (6.12), pre– and post–multiplying this equation by the vector φj and its
transpose, the previous expression yields

φT
j De(s)φj = s2 + 2ζejωejs+ ω2

ej (6.29)

In the previous equation the values of ζej and ωej can be substituted by theirs
expressions obtained from Eq. (6.16), resulting in

φT
j De(s)φj = s2 − (sj + s∗j )s+ sjs

∗
j = (s− sj)(s− s∗j ) (6.30)
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From its definition, the coefficient γej is

γej =

[

φT
j

∂De(sj)

∂s
φj

]−1

≡ 1

ρej
, 1 ≤ j ≤ N (6.31)

whence, using Eq. (6.30),

ρej =
∂

∂s
φT

j De(s)φj

∣

∣

∣

∣

s=sj

=
∂

∂s
(s− sj)(s− s∗j )

∣

∣

∣

∣

s=sj

= sj − s∗j (6.32)

and therefore γej = 1/(sj − s∗j ).

Notice that, due to the proportionality of the system, φjDe(s)φ
T
k = 0 when j 6= k,

for 1 ≤ j, k ≤ N . Therefore, pre– and post–multiplying by Φ, the characteristic
equation leads to

det
[

ΦTDe(s)Φ
]

=

N
∏

j=1

(s− sj)(s− s∗j ) = 0 (6.33)

which shows that effectively {sj , s∗j}Nj=1 are the complex eigenvalues of the EVM.

The key issue of the following subsections is to show that the TF of the VEM,
introduced in Eq. (6.25), can be expressed as the sum of the TF of the EVM, plus
a residual term, say δH(s). Thus, mathematically

H(s) = He(s) + δH(s) (6.34)

Furthermore, the residual term can be bounded in terms of the level of damping
and of the proportionality of the viscoelastic matrix. In order to demonstrate
this affirmation, the complex eigenvectors and the residues of the VEM will be
expanded around their homonymous in the EVM.

6.3.2 Expansion of the complex eigenvectors

Each complex eigenvector, can be expressed as a lineal combination of the the
modal base {φj}Nj=1 formed by the undamped eigenvectors. Thus, naming αjk the
kth coordinate of uj in that base,

uj =

N
∑

k=1

αjkφk , 1 ≤ j ≤ N (6.35)
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Without loss of generality, it can be assumed that αjj = 1 so that

uj = φj +
N
∑

k=1
k 6=j

αjkφk ≡ φj + δuj , 1 ≤ j ≤ N (6.36)

Adhikari [28] proposed an efficient procedure for the calculation of αjk for j 6= k
using the Neumann expansion method. For the present work purposes, αjk is
proportional to the off-diagonal elements of the matrix G′(s) = ΦTG(s)Φ. For
example, the expression of αjk up to the second order is

αjk = −sj
G′

kj(sj)

Dk(sj)
+

N
∑

l=1
l 6=j 6=k

s2j
G′

kl(sj)

Dk(sj)

G′
lj(sj)

Dl(sj)
(6.37)

for 1 ≤ j ≤ N with j 6= k. A higher order approximation requires adding new
terms involving higher order products of the elements G′

kj(sj). In the previous
expression, the function

Dk(s) = s2 + sG′
kk(s) + ω2

k (6.38)

is the kth main diagonal element of the dynamic stiffness matrix. As it is known,
for proportional systems G′

jk(s) = 0 for j 6= k. From Eq. (6.37), it is clear that
proportionality implies αjk = 0, for all 1 ≤ j, k ≤ N . In general, the reciprocal
affirmation is not true, that is, αjk = 0 does not imply proportionality at least from
a theoretical point of view. However, although G′(s) is not diagonal ∀ s, actually
the set of matrices {G′(sj)}Nj=1 are diagonal. For more details, see the algorithm
for the computation of the values αjk in the work of Adhikari [28]. This reasoning
leads in the present paper to the following hypothesis: if αjk = 0, 1 ≤ j, k ≤ N ,
j 6= k, then G′(s) is diagonal ∀ s ∈ C. Based on this affirmation, an index for
measuring the system non–proportionality will later be defined.

6.3.3 Expansion of the Residues

This subsection is focused on obtaining a decomposition for the residue of the TF
associated to the complex eigenvalue sj , 1 ≤ j ≤ N , residue already presented in
Eq. (6.21). The aim is to split Rj into the form

Rj = Rej + δRj , 1 ≤ j ≤ N (6.39)

where Rej = γejφjφ
T
j is the residue in the pole sj of the TF corresponding to the

EVM and δRj is certain residual matrix.

Previously to the calculation of the residue Rj , a more detailed expression for γj
is developed. For that aim, from Eq. (6.24) we redefine γj = 1/ρj , in which

ρj = uT
j

∂D(sj)

∂s
uj =

[

φT
j + δuT

j

] [

2sjM+ Ḡ(sj)
]

[φj + δuj ] (6.40)
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Eq. (6.36) has been used for the complex eigenvectors and the derivative of the
dynamic stiffness matrix D(s) in s = sj has been evaluated, introducing the
nomenclature

Ḡ(s) = G(s) + s
∂G

∂s
(6.41)

Thus, expanding the product of the three terms in Eq. (6.40)

ρj = 2sj + 2sj

N
∑

k=1
k 6=j

α2
jk

(

φT
j + 2δuT

j

)

Ḡ(sj)φj + δuT
j Ḡ(sj)δuj (6.42)

where, for 1 ≤ j ≤ N , the following equalities have been used

φT
j Mφj = 1

φT
j Mδuj =

N
∑

k=1
k 6=j

αjkφ
T
j Mφk = 0

δuT
j Mδuj =

N
∑

k=1
k 6=j

N
∑

l=1
l 6=j

αjkαjlφ
T
kMφl =

N
∑

k=1
k 6=j

α2
jk

(6.43)

Note that 2sj is equivalent to

2sj = sj − s∗j + sj + s∗j = ρej + sj + s∗j (6.44)

where the term ρej has already been defined in Eq. (6.32). From that, Eq. (6.42)
results now in

ρj = ρej + δρj (6.45)

being

δρj = sj + s∗j + 2sj

N
∑

k=1
k 6=j

α2
jk +

(

φT
j + 2δuT

j

)

Ḡ(sj)φj + δuT
j Ḡ(sj)δuj (6.46)

We will turn to this expanded version of δρj in the next section. To calculate the
residue, only Eq. (6.45) is relevant, thus, γj may be expressed as function of the
above results

γj =
1

ρj
=

1

ρej + δρj
= γej

(

1− ǫj
1 + ǫj

)

(6.47)

where γej = 1/ρej and ǫj = δρj/ρej
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The conditions for expanding Rj are set since the expressions for γj and for uj are
available in Eqs. (6.47) and (6.36), respectively. Thus, entering in the definition
of Rj

Rj = γjuju
T
j

= γej

(

1− ǫj
1 + ǫj

)

(φj + δuj)
(

φT
j + δuT

j

)

= γejφjφ
T
j + δRj (6.48)

where the residual matrix defined in Eq. (6.39) adopts the form

δRj =
γej

1 + ǫj

(

δujφ
T
j + φjδu

T
j + δujδu

T
j − ǫjφjφ

T
j

)

(6.49)

Note that the previous expansion has been developed for the complex modes,
i.e. 1 ≤ j ≤ N . As it will be later shown, the residue associated with the non–
viscous modes, 2N + 1 ≤ j ≤ m will not be expanded, since this residue can
be considered itself residual. This is so because, in general, non–viscous modes
in the damped response are not relevant with respect to the exact solution, [28,
30]. In the next subsection, the relationship between the TF of the VEM and the
TF of the EVM will be presented. Also it will be demonstrated that the former
relationship can be expressed as the sum of the latter plus a residual term.

6.3.4 Expansion of the TF

Rewriting the TF of the VEM given in Eq. (6.25) and introducing the Eq. (6.48),
results

H(s) =

N
∑

j=1

[

γejφjφ
T
j + δRj

s− sj
+
γ∗ejφjφ

T
j + δR∗

j

s− s∗j

]

+

m
∑

j=2N+1

Rj

s− sj
≡ He(s)+δH(s)

(6.50)
He(s) being the TF of the EVM, defined in Eq. (6.26), and

δH(s) =

N
∑

j=1

[

δRj

s− sj
+

δR∗
j

s− s∗j

]

+

m
∑

j=2N+1

Rj

s− sj

≡ δHc(s) + δHr(s) (6.51)

a residual matrix which will be named Residual Transfer Function (RTF), whose
expression is separated in two terms. The first, δHc(s), includes the part corre-
sponding to the complex modes. From Eq. (6.49), the matrices δRj are propor-
tional to δuj and δρj . If δuj with respect to φj and δρj with respect to ρej may be
considered negligible, then it will be expected that also δHc(s) will have a small
relevance compared with He(s). The second term, δHr(s), corresponds to the
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nonviscous modes. Note that δHr(s) coincides completely with the non–complex
part in the TF.

As mentioned before, in the majority of the physical systems, the effect of nonvis-
cous modes in the response can be neglected with respect to that of the complex
modes. Therefore, it makes sense to define δHc(s) as a residual term. More de-
tails on the role played by the nonviscous modes can be found in the works of
Woodhouse [30] and Adhikari [28, 32].

Eq. (6.50) shows clearly that the TF of the viscoelastic system can be approximated
by the TF of the EVM provided that the RTF, δH(s), does not become too
important. The next section is focused in giving an upper bound of the RTF
showing that this bound will depend, on one hand, on the proportionality of the
system, and on the other, on its level of damping.

6.4 Bound of the Residual Transfer Function

6.4.1 Indexes of non–proportionality and damping

In this section two indexes to: (i) measure the proportionality of the system and (ii)
the damping induced by the matrixG(s), are defined. In the bibliography, different
non–proportionality indexes can be found, for instance, Adhikari [105] made a
survey of the most important works, proposing in turn a new index based on the
normalized distance between the optimal complex modes and the undamped ones.
Using the same principle, another index is developed in the present paper that will
be used to express the bound of the RTF in terms of the non–proportionality of the
system. As it has been shown in subsection 6.3.2, there exists a direct relationship
between the coefficients αjk and the non–proportionality of the system. This
motivates the introduction of the following non–dimensional index

α = ‖A‖ =
N
∑

j=1

N
∑

k=1

|Ajk| (6.52)

where the elements of the matrix A are

Ajk =

{

αjk j 6= k

0 j = k
(6.53)

According with the definition of α, proportional systems are characterized by hav-
ing α = 0.
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For the purposes of this research, it is important to evaluate whether the viscoelas-
tic matrix G(s) induces a strongly or a lightly damped response. For that purpose,
a new damping index is introduced by

β =
1

Ω ‖M‖

N
∑

j=1

(

‖G(sj)‖+ |sj |
∥

∥

∥

∥

∂G(sj)

∂s

∥

∥

∥

∥

)

(6.54)

that is non–dimensional and in which Ω =
∑N

j=1 |sj |.

It is important to remark two aspects with respect to this new index β. First,
although in an undamped system obviously β = 0, damping functions G(s) that
are not identically null and vanish in the set {sj}Nj=1 may exist. It is clear that
such functions are not of interest for real physical systems since they would present
strong discontinuities close to the eigenvalues. Therefore, the following hypothesis
will be assumed: if β = 0, then G(s) ≡ 0. Second, undamped systems are
proportional, i.e., β = 0 implies α = 0. But the opposite is in general not true,
fact that constitutes the main reason to use the two different indexes. This duality
allows to express the RTF as a function of each index separately.

6.4.2 Upper Bound Computation

In the previous section, it has been demonstrated that the TF of the viscoelastic
system can be expressed as

H(s) = He(s) + δH(s) = He(s) + δHc(s) + δHr(s) (6.55)

Reordering the TF’s in the left part of the equation and taking norms

‖H(s)−He(s)‖ = ‖δH(s)‖ ≤ ‖δHc(s)‖+ ‖δHr(s)‖ (6.56)

The objective of this subsection is to find an upper bound of the RTF ‖δH(s)‖,
as a function of the indexes defined in the previous subsection. Previously, it is
necessary to prove the following four lemmas.

Lemma 1. Let δuj with 1 ≤ j ≤ N be, the residual eigenvector defined in the
expression (6.36). Then,

N
∑

j=1

‖δuj‖ ≤ α ‖Φ‖ (6.57)

where Φ is the matrix that contains the undamped eigenvectors in columns and α
the non–proportionality index.

Lemma 2. Let {sj , s∗j}Nj=1 be the set of complex eigenvalues, then

N
∑

j=1

∣

∣sj + s∗j
∣

∣ ≤ 2γΩ2 ‖Φ‖2 ‖M‖ (1 + α)β (6.58)

172



6.4 Bound of the Residual Transfer Function

where Ω was defined before and

γ =

N
∑

j=1

|γej | =
N
∑

j=1

1
∣

∣sj − s∗j
∣

∣

(6.59)

Lemma 3. Let δρj and ǫj be the magnitudes defined in Eq. (6.46) and (6.47) and
ρej = 1/γej = sj − s∗j . Then

N
∑

j=1

|ǫj | ≤ ‖Φ‖2 ‖M‖ γΩ
[

2α2

N
+ β(1 + α)(1 + α+ 2γΩ)

]

(6.60)

Lemma 4. Let sj(β) ∈ R be the jth nonviscous root, with 2N + 1 ≤ j ≤ m for a
fixed value of the damping index β. Let P = {p1, · · · , ph} the set of real poles of
the function G(s),i.e., pl ∈ R for 1 ≤ l ≤ h. Then

lim
β→0

sj ∈ P (6.61)

The proofs of these Lemmas can be found in the Appendices 6.A to 6.D. Now, the
following Theorem concerning the bounding of the distance between the Transfer
Functions of VEM and EVM can be enunciated.

Theorem 1. Let H(s) and He(s) be the TF’s of the VEM and of the EVM,
defined in Eqs. (6.25) and (6.26), respectively. Then, the error between the TF of
the VEM and that of the EVM is bounded by

‖H(s)−He(s)‖ ≤ 1

N
‖Φ‖2 ‖M‖L(α, β)H(s) (6.62)

where

H(s) =
m
∑

j=1

γ ‖Φ‖2
|s− sj |

(6.63)

and L(α, β) is certain function of non–proportionality and damping indexes, with
the following properties for α > 0, β > 0

i) L(α, β) is a positive and increasing function

ii) lim
(α,β)→(0,0)

L(α, β) = 0

iii) L(0, β) < L(α, β) for α > 0, β > 0

Proof. Rewriting the RTF expression

‖H(s)−He(s)‖ ≤ ‖δHc(s)‖+ ‖δHr(s)‖ (6.64)
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the computation of the requested upper bound requires in turn bounding the norm
of the matrices δHc(s) and δHr(s) as defined in Eq. (6.51).

In the first place, the norm of δHc(s) will be evaluated

‖δHc(s)‖ =

∥

∥

∥

∥

∥

∥

N
∑

j=1

(

δRj

s− sj
+

δR∗
j

s− s∗j

)

∥

∥

∥

∥

∥

∥

≤
N
∑

j=1

∥

∥

∥

∥

δRj

s− sj

∥

∥

∥

∥

+

N
∑

j=1

∥

∥

∥

∥

∥

δR∗
j

s− s∗j

∥

∥

∥

∥

∥

≤





N
∑

j=1

1

|s− sj |
+

1
∣

∣s− s∗j
∣

∣





N
∑

j=1

‖δRj‖ (6.65)

Taking norms of δRj from Eq. (6.49), using the results of Lemmas 1 and 3, the
following inequality can be obtained

N
∑

j=1

‖δRj‖ =
N
∑

j=1

∣

∣

∣

∣

γej
1 + ǫj

∣

∣

∣

∣

∥

∥δujφ
T
j + φjδu

T
j + δujδu

T
j − ǫjφjφ

T
j

∥

∥

≤ γµ ‖Φ‖2


α+ α+ α2 +

N
∑

j=1

|ǫj |





≤ γµ ‖Φ‖4 ‖M‖
[

α(2 + α)

N
+ γΩ

2α2

N
+ βγΩ(1 + α)(1 + α+ 2γΩ)

]

(6.66)

where the following coefficient has been introduced

µ =

N
∑

j=1

1

|1 + ǫj |
(6.67)

Finally, entering in the expression (6.65) the RTF bound corresponding to the
complex modes can be written in the form

‖δHc(s)‖ ≤ 1

N
‖Φ‖2 ‖M‖Lc(α, β)Hc(s) (6.68)

where

Lc(α, β) = α(2 + α+ 2αγΩ)µ+ β(1 + α)(1 + α+ 2γΩ)γΩNµ (6.69)

and

Hc(s) = γ ‖Φ‖2
N
∑

j=1

(

1

|s− sj |
+

1
∣

∣s− s∗j
∣

∣

)

(6.70)
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Secondly, to bound the RTF related to the nonviscous modes, ‖δHr(s)‖, it is
necessary to evaluate the jth residue norm, ‖Rj‖, for 2N +1 ≤ j ≤ m. Indirectly,
the jth nonviscous eigenvalue depends on the damping level through the index β.
As a consequence, both the associated eigenvector uj(β) and the variable γj(β)
are functions of β. The latter variable can be expanded by Taylor series around
β = 0

γj(β) = γj(0) +
∂γj(0)

∂β
β +

1

2

∂2γj(0)

∂β2
β2 + · · · , β > 0 (6.71)

where the values γj(0), ∂γj(0)/∂β, . . . must be considered limits when β → 0. In
particular, we are going to prove that γj(0) = 0: from Eq. (6.24) the following
limit can be set

lim
β→0

1

|γj(β)|
= lim

β→0

∣

∣

∣

∣

uj
∂D(sj)

∂s
uT
j

∣

∣

∣

∣

(6.72)

Using Lemma 4, limβ→0 sj = σj is a pole of G(s) and, as a consequence, also of
∂G(s)/∂s. Therefore

lim
β→0

∣

∣

∣

∣

uj
∂D(sj)

∂s
uT
j

∣

∣

∣

∣

=

∣

∣

∣

∣

uj

(

2σj +G(σj) + σj
∂G(σj)

∂s

)

uT
j

∣

∣

∣

∣

= +∞ (6.73)

From here, limβ→0 |γj(β)| = 0, that leads to γj(0) = 0. This conclusion means
that the coefficient |γj | can be simplified to the product of β and another term,
that will be normalized with the variable γ introduced in Eq. (6.59)

|γj | = βψj(β)γ , 2N + 1 ≤ j ≤ m (6.74)

ψj(β) being a certain non–dimensional positive function of β. Under these con-
siderations, the problem of evaluating the sum can be solved with

m
∑

j=2N+1

‖Rj‖ =

m
∑

j=2N+1

|γj |
∥

∥uju
T
j

∥

∥ =

m
∑

j=2N+1

βψj(β)γ
∥

∥uju
T
j

∥

∥

=
1

N
‖Φ‖4 ‖M‖βψ(β)γ (6.75)

where the new function is

ψ(β) =
N

‖Φ‖4 ‖M‖

m
∑

j=2N+1

ψj(β)
∥

∥uju
T
j

∥

∥ (6.76)

that has been introduced with the objective to find an analog expression for
‖δHr(s)‖ to that given in Eq (6.68). The RTF bound corresponding to the non-
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viscous modes can be calculated as

‖δHr(s)‖ =

∥

∥

∥

∥

∥

∥

m
∑

j=2N+1

Rj

s− sj

∥

∥

∥

∥

∥

∥

≤
m
∑

j=2N+1

∥

∥

∥

∥

Rj

s− sj

∥

∥

∥

∥

≤





m
∑

j=2N+1

1

|s− sj |





m
∑

j=2N+1

‖Rj‖

=
1

N
‖Φ‖2 ‖M‖βψ(β)

m
∑

j=2N+1

γ ‖Φ‖2
|s− sj |

≡ 1

N
‖Φ‖2 ‖M‖Lr(β)Hr(s) (6.77)

where
Lr(β) = βψ(β) (6.78)

and

Hr(s) =

m
∑

j=2N+1

γ ‖Φ‖2
|s− sj |

(6.79)

Finally, assembling the results from Eqs. (6.68) and (6.77), the distance between
both TF’s can be bounded by

‖H(s)−He(s)‖ ≤ 1

N
‖Φ‖2 ‖M‖L(α, β)H(s) (6.80)

with

L(α, β) = Lc(α, β) + Lr(β)

= µ
[

α(2 + α+ 2αγΩ) + β(1 + α)(1 + α+ 2γΩ)γΩN
]

+ βψ(β)

(6.81)

and

H(s) = Hc(s) +Hr(s) =

m
∑

j=1

γ ‖Φ‖2
|s− sj |

(6.82)

Observing the function L(α, β), property i) holds immediately, since all its terms
involved are positive. The second item, can also be proved directly, simply evalu-
ating L(0, 0) = 0. To prove the third, L(α, β) can be reordered as

L(α, β) = L(0, β) + αM(α, β) (6.83)

the function being

M(α, β) = µ
[

2 + α+ α(2 +Nβ)γΩ+ 2NβγΩ(1 + γΩ)
]

(6.84)
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strictly positive ∀ α > 0, β > 0. Hence, from Eq. (6.83), it follows directly that
L(α, β) > L(0, β).

We believe that this Theorem is the main contribution of this paper. Not only an
equivalent model of pure viscous nature is proposed to study symmetric viscoelas-
tic models, but also an error bound in the evaluation of the transfer functions is
calculated. This bound gives important qualitative information: first, the study
of systems lightly damped, will produce lower error than that of strongly damped.
Second, the lower the non–proportionality of the system, the better the approx-
imation made by the EVM. In particular, through observation of the bound ex-
pression Eq (6.80), it is expected that the EVM will be a close approximation for
proportional systems, for which α = 0. Numerical examples presented in the next
section will allow us to validate the proposed method, evaluating the influence of
the indexes α, β.

6.5 Numerical Examples

6.5.1 Description

To illustrate the suitability of the proposed EVM, three numerical examples are
analyzed. In them, the non–proportionality of the system as well as the level of
damping vary. The three models consist on a six–dof lumped–mass system with
three different dampers distributions, as shown in Figure 6.1. Masses m are linked
through linear and elastic springs with rigidities k. Thus, the mass matrix is
M = mI6 and the stiffness

K = k

















2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

















(6.85)

The damping is introduced through viscoelastic dampers connecting consecutive
masses. For each damper, the same viscoelastic model based on a double expo-
nential kernel function is used with the form

G(t) = cv
1

2

(

µ1e
−µ1t + µ2e

−µ2t
)

(6.86)

is employed, where the parameters µ1, µ2 are directly related with the non–
viscousness of the system. Small values of these parameters induce highly non–
viscous behavior, whereas large values correspond to a near–viscously damped
system with coefficient cv. For this reason, this coefficient may be written in the
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form cv = 2mω0ζ, with ω0 =
√

k/m a reference frequency and ζ a dimensionless
damping ratio whose magnitude measures the level of damping induced. Taking
the Laplace Transform, the viscoelastic function in the variable s is

G(s) = mω0ζ

(

µ1

s+ µ1
+

µ2

s+ µ2

)

(6.87)

mmmmmm
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GG

G
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u1 u2 u3 u4 u5 u6

Example 1

Example 2

Example 3

Figure 6.1: Structural configuration of 6–dof examples. m = 103 kg, k = 105 N/m

The viscoelastic matrix can be described in the form G(s) = G(s)Q, where the
matrix Q takes the following values for each example

• Example 1

Q =

















2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

















(6.88)

• Example 2

Q =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

















(6.89)
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Case ζ α β
Example 1 a 0.01 0.000 0.102

b 0.20 0.000 0.911
Example 2 a 0.01 0.097 0.005

b 0.20 1.009 0.047
Example 3 a 0.01 0.214 0.037

b 0.20 1.640 0.359

Table 6.1: Non–proportionality and damping indexes for the three examples shown in
the Fig. 6.1

• Example 3

Q =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 1 0
0 0 0 0 0 0

















(6.90)

In addition, each example is divided into two cases to study the level of damping
influence with the ζ–parameter. Thus, two values are considered, ζ = 0.01 to
model light damping, and ζ = 0.2 for strong damping. The rest of parameters
remain invariable taking the values m = 5000 kg, k = 5× 105 N/m, µ1 = 5 rad/s
and µ2 = 15 rad/s. Solving the characteristic equation for each example, the set
of eigenvalues and eigenvectors can be extracted, the complex and the real ones.
Based on the definitions given in Eqs. (6.52) and (6.54), the corresponding α–
and β–indexes can be computed. The results are shown in Table 6.1. Related
to the results obtained for these indexes some remarks must be made. First, it
can be noted that the β–index becomes a measure of the system global damping.
Therefore, smallest values of ζ will correspond to smallest values of β only if
the number of dampers involved is small and vice versa. This explains why, the
Example 1b presents the highest value whereas the Example 2a the lowest one.

Second, the structural configuration of Examples 2 and 3 has been chosen so that
a fixed value of the parameter ζ, forces that the first is always more proportional,
that is, its α–index is smaller than that of the second example. This last example
can be considered the least proportional among the three.

With the objective of comparing the results of the TF calculated from the EVM
and from the VEM, plots of the TF matrix entry (2, 4) in absolute value are
showed in Figs. 6.2,6.3. The curves are dimensionless, representing the matrix
entry h(iω) = m ω2

0 H(iω) vs. the normalized frequency ω/ω0.
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Figure 6.2: Representation of the absolute value of the dimensionless TF’s mω2
0H24(iω)

and mω2
0He,24(iω). (—–) Exact. (- - -) Approximation by EVM
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Figure 6.3: Representation of the absolute value of the dimensionless TF’s mω2
0H24(iω)

and mω2
0He,24(iω). (—–) Exact. (- - -) Approximation by EVM
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As expected, the approximation from EVM is very close to the exact VEM for both
Cases of Example 1. Notice that this example represents a proportional system
with α = 0. The Examples 2 and 3 show that the higher the loss of proportionality,
the greater the error in the evaluation of the TF. However, the EVM still produces
very good approximations provided that the system is lightly damped as in Cases
2a, 3a. The difference between both results becomes important at frequencies
near to the anti–resonances. The reason could be related with the coincidence of
the complex eigenvalues for the EVM and the VEM. At the minimums far from
these frequencies the accuracy will be lowest. In particular, the highest difference
appears at the anti-resonance corresponding to the modes activated by the damper
location, ω/ω0 ≈ 1.4.

In any case, for all Examples the TF estimated with the EVM presents good
agreement with the exact TF in a wide range of frequencies, even for Example 3b
whereby high non–proportionality and strong damping are present. Furthermore,
the resonance peaks of Examples 2 and 3 also are in agreement. Therefore, it is
clear that the response evaluated with the proposed EVM gives a good estimation
of the real response.

6.6 Conclusions

Linear viscoelastic systems are featured by having dissipative forces that depend
on the history of the velocity degrees of freedom , via matrix kernel functions. In
this work, an equivalent linear viscously damped system, named Equivalent Vis-
cous Model (EVM), is proposed. The construction of this model requires the set
of complex eigenvalues and the complete solution of the undamped eigenproblem.
It has been demonstrated that the exact Transfer Function (TF) of the original
viscoelastic model (VEM) can be expanded and expressed as the sum of the TF
of the EVM plus a residual term.

The accuracy given by the approximated TF of the EVM respect to the exact VEM
directly depends on the quantification of the system damping and, in addition, on
the proportionality of the viscoelastic matrix. To quantify both properties, two
indexes are defined. The first, named non–proportionality index, is related to the
complex eigenvector components in the modal base. The second, named damping
index, is defined from the viscoelastic matrix function and its derivative, evaluated
in the complex eigenvalues. The theoretical results have shown that the residual
norm is bounded by an expression that depends on both indexes. This bounding
implies that systems lightly damped (with matrix G′(s) diagonally dominant) will
present less error in the estimation of the TF through the EVM.
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6.6 Conclusions

Finally, the theoretical results are validated by numerical examples, consisting on
three discrete systems with six degrees of freedom each. Different configurations of
the viscoelastic constraint allows to analyze the results as function of the defined
non–proportionality and damping indexes. The results present good agreement
between the exact solution VEM and the EVM solution in terms of the frequency
response function, even for non–proportional and relatively high damped systems.
The advantages of the theory of linear viscously damped systems may be used now
to obtain the response of non–viscous structures.

Appendix 6.A Proof of the Lemma 1

The norm of the vector δuj can be bounded in terms of the matrix A. Actually,
from the definition given in Eq. (6.36)

‖δuj‖ =

∥

∥

∥

∥

∥

∥

∥

N
∑

k=1
k 6=j

αjkφk

∥

∥

∥

∥

∥

∥

∥

≤
N
∑

k=1
k 6=j

|αjk| ‖φk‖ ≤
(

N
∑

k=1

|Ajk|
)(

N
∑

k=1

‖φk‖
)

= ‖Aj‖ · ‖Φ‖

(6.91)
where Aj is the jth row of the matrix A. Now, adding in j = 1, . . . , N , it follows

N
∑

j=1

‖δuj‖ ≤





N
∑

j=1

‖Aj‖



 ‖Φ‖ = α ‖Φ‖ (6.92)

Appendix 6.B Proof of the Lemma 2

Let uj and u∗
j be the eigenvectors associated to the pair of complex conjugate

eigenvalues sj and s∗j respectively. Using the expansion introduced in subsec-
tion 6.3.2, the eigenrelations can be expressed as

[

s2jM+ sjG(sj) +K
]

(φj + δuj) = 0 (6.93)
[

s∗
2

j M+ s∗jG(s∗j ) +K
]

(

φj + δu∗
j

)

= 0 (6.94)

Now, pre–multiplying the previous equations by φT
j and using the modal identities

s2j + sjφ
T
j G(sj) (φj + δuj) + ω2

j = 0 (6.95)

s∗
2

j + s∗jφ
T
j G(s∗j )

(

φj + δu∗
j

)

+ ω2
j = 0 (6.96)

Subtracting both equations

(sj − s∗j )(sj + s∗j ) + sjφ
T
j G(sj) (φj + δuj)− s∗jφ

T
j G(s∗j )

(

φj + δu∗
j

)

= 0 (6.97)
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from here, the sum sj + s∗j can already be read off, resulting in

sj + s∗j = γej
[

−sjφT
j G(sj) (φj + δuj) + +s∗jφ

T
j G(s∗j )

(

φj + δu∗
j

)]

(6.98)

Taking the absolute value and adding in 1 ≤ j ≤ N , the bound can be evaluated
as

N
∑

j=1

∣

∣sj + s∗j
∣

∣ ≤ γ
[

Ω ‖Φ‖βΩ ‖M‖ (1 + α) ‖Φ‖++Ω ‖Φ‖βΩ ‖M‖ (1 + α) ‖Φ‖
]

= 2γΩ2 ‖Φ‖2 ‖M‖ (1 + α)β

where it the following inequalities have been taken into account

N
∑

j=1

‖φj + δuj‖ ≤ (1 + α) ‖Φ‖ ,
N
∑

j=1

‖G(sj)‖ ≤ βΩ ‖M‖ (6.99)

Appendix 6.C Proof of the Lemma 3

The complete expression of ǫj can be deduced taking absolute values of Eq. (6.46),
adding in 1 ≤ j ≤ N , resulting in

N
∑

j=1

|ǫj | =

N
∑

j=1

|γej |

∣

∣

∣

∣

∣

∣

∣

sj + s∗j + 2sj

N
∑

k=1
k 6=j

α2
jk ++

(

φT
j + 2δuT

j

)

Ḡ(sj)φj + δuT
j Ḡ(sj)δuj

∣

∣

∣

∣

∣

∣

∣

≤ γ





N
∑

j=1

∣

∣sj + s∗j
∣

∣+ 2Ωα2(1 + 2α)βΩ ‖Φ‖2 ‖M‖+ α2βΩ ‖Φ‖2 ‖M‖



 (6.100)

Using now the Lemma 2 result and the inequality N ≤ ‖Φ‖2 ‖M‖, it follows that
N
∑

j=1

|ǫj | ≤ γ

[

2γΩ2 ‖Φ‖2 ‖M‖ (1 + α)β +
2NΩα2

N
+ (1 + α)2βΩ ‖Φ‖2 ‖M‖

]

≤ ‖Φ‖2 ‖M‖ γΩ
[

2α2

N
+ β(1 + α)(1 + α+ 2γΩ)

]
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Appendix 6.D Proof of the Lemma 4

Since sj is an eigenvalue

det
[

ΦTD(sj)Φ
]

= det
[

s2jIN + sjG
′(sj) +Λ

]

= 0 (6.101)

However, knowing that {p1, · · · , ph} are the poles of the function G(s), this de-
terminant can be writen in the following form

N
∏

k=1

(s2j + ω2
k) +

Γ(sj , β)

(sj − p1)r1 · · · (sj − ph)rh
= 0 (6.102)

where rl, 1 ≤ l ≤ h is the multiplicity of the pole pl, and Γ(sj , β) is a function that,
although not depending directly on β, verifies limβ→0 Γ(sj , β) = 0. The equality
to zero is due to the product of matrix elements G′(sj), that tend to zero when

β → 0. Now, multiplying Eq. (6.102) by
∏h

l=1(sj − pl)

h
∏

l=1

(sj − pl)
rl

N
∏

k=1

(s2j + ω2
k) + Γ(sj , β) = 0 (6.103)

If in the previous equation limits are taken when β → 0, naming σj = limβ→0 sj
the expression becomes

h
∏

l=1

(σj − pl)
rl

N
∏

k=1

(σ2
j + ω2

k) = 0 (6.104)

But, σ2
j +ω

2
k 6= 0, ∀ 1 ≤ k ≤ N , due to σj ∈ R, ∀ β > 0. Therefore, it is immediate

that σj belongs to the pole set, otherwise the equation would not vanish.
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7
Dynamic analysis of frame

structures with free viscoelastic

layers: New closed-form solutions

of eigenvalues and a viscous

approach

7.1 Introduction

The use of viscoelastic materials for civil, mechanical and aeronautical engineer-
ing applications has expanded greatly in the last years. The publishing of bet-
ter models of constitutive behavior, the development of faster computers and the
emergence of new and efficient numerical algorithms has allowed a more accurately
characterization of these materials and the successful implementation of complex
models. Among the numerous applications of such materials we can highlight thin
layers bounded to rigid structures to control and damp vibration. Two variants of
this application exist: Firstly, the constrained viscoelastic layers located between
two layers of elastic material, usually metal; the viscoelastic material dissipates
energy mainly working under shear stress. Second, unconstrained free viscoelas-
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tic layers (FVL), bounded directly onto the elastic material and located in areas
where normal stresses are prevalent. The latter solution is analyzed in this article
and applied to framed structures.

The inclusion of viscoelastic materials in dynamic damping problems requires solv-
ing a system of integral-differential equations in which dissipative forces appear.
These forces depend on the velocity history through certain kernel hereditary func-
tions. Furthermore, in the frequency domain, the free motion equations transform
into a nonlinear eigenvalue problem. The resolution of viscoelastic systems, both
in the time and in the frequency domains, involves the introduction of new internal
variables that increase the computational solution cost and the storage require-
ments. The challenge is to find equivalent numerical models, simpler than the
original one, that attempt to reproduce the viscoelastic models’ response. In this
way, tools of proven efficiency available to solve dynamic problems with viscous
damping can be used to solve other cases of higher computational complexity.

The constitutive models of viscoelastic materials are characterized by the variabil-
ity in the frequency domain of their complex modulus. Among the many models
available in the literature (see for example a review from Vasques [106]), two
major groups can be mentioned. First, those in which hereditary functions are
exponential kernels, derived from Biot’s theory [7] and second, those which con-
stitutive equations are governed by the fractional derivative, from the theory of
Bagley and Torvik [15, 16]. This article will use the latter, in particular the called
four-parameter model studied by Pritz [20]. More advanced ones, such as the
five-parameter model [23], include an additional parameter allowing to extend the
range of simulated materials at the expense of higher computational cost. From a
physical point of view, the general criteria that damping functions must verify in
structural dynamics are defined by Golla and Hughes [14].

The works of Nashif [11], Sun and Lu [13], and Jones [12] are of great impor-
tance in the field of engineering viscoelastic materials’ applications for damping
and vibration control of structures. In them, the most relevant theories of dy-
namic damping applied to structures and machinery are analyzed. Oberst and
Frankenfeld [92] studied the problem of a beam that included FVL’s, using the
Euler-Bernoulli beam hypotheses under the assumption of small thickness. Cortés
and Elejabarrieta [107] developed another method for dynamic analysis in time do-
main of beams with FVL, in which a specific model allowed to solve an auxiliary
viscous response at each instant. The same authors in [107] extended the for-
mulation to thick beams, without neglecting the shear deformation. Torvik [108]
analyzed in a simplified way beams with symmetric and antisymmetric configura-
tions of free viscoelastic coatings. Xu and Nashif [109] compared the experimental
results of different specimens used to find the dynamic properties of viscoelastic
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materials using the standard ASTM-E-756, [110]. Rao [111] reviewed the main
applications of damping techniques in the automotive and aerospace fields. One of
the newest applications in civil engineering is the use of viscoelastic dampers for
the control of seismic forces. See for details references [112–118] and in particular
their application for the rehabilitation of existing railway bridges in [119].

From the development of advanced damping mechanisms, new viscous models able
to predict their response through equivalent parameters have been sought. Band-
stra [95] found equivalent viscosity coefficients for different nonlinear systems with
a single degree-of-freedom (dof). Lee [120] calculated equivalent ratios for struc-
tures with added dampers. The Modal Strain Energy method was proposed by
Ungar and Kerwin [98] to obtain the overall ratio in a viscoelastic system. Segal-
man [103] analyzed the viscoelasticity problem as the perturbation of a viscous
problem, from a theoretical point of view under the assumption of low viscoelastic-
ity and deducing expressions for the resulting second order system. Also under this
hypotheses, although in the frequency domain Adhikari [104] proposed a second
order and equivalent model evaluating the damping function at the complex eigen-
values. Lázaro and Pérez-Aparicio [121] have recently obtained a viscous model
from the expansion of the viscoelastic transfer function, based on the availability
of the undamped modal space and the solution of the nonlinear eigenvalue problem.

The numerical calculation of the complex eigenvalues is important for the modal
analysis of viscoelastic structures. In systems in which the damping is governed
by a rational function, the nonlinear eigenvalue problem can be transformed into
a linear one but with a higher number of dof’s. The increase of the matrices’ size
is directly proportional to the number of exponential kernels present in the damp-
ing matrix. This procedure has been developed in the works of Muravyov [54]
and Menon [56]. For cases in which the model includes fractional derivatives, the
transformation to augmented linear systems is also possible, provided that the
fractional exponent is a rational number [16, 18]. These methods have the short-
coming of producing again a larger model size and consequently storage. In this
sense, one can apply the general methods used for nonlinear eigenvalue problems
based on an iterative approach to the solution through the first order expansion
of the transcendent matrix; for more details see the references [46, 93]. From a
computational standpoint, systems in which the damping matrix is proportional
or slightly non-proportional are very advantageous. Adhikari and Pascual [31]
obtained approximated expressions for the calculation of real and complex eigen-
values using the first iteration of Newton’s scheme, and later extended this scheme
with an iterative method [32]. Lázaro and Pérez-Aparicio [33] have recently de-
veloped a highly efficient method based on the construction of two functions that
recursively operate in the complex plane. The same authors in [63], considering
the eigenvalues as functions of a certain parameter, have proposed another method
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for single dof systems. The extension to a multidimensional parameter and to sys-
tems of multiple dof’s can be found in [34].

This paper develops a new method for the analysis of two-dimensional structures
with FVL’s based on fractional derivatives using the equivalent viscous model pro-
posed by the authors in [121]. To this end, it is necessary to calculate the complex
eigenvalues’ set. The main contribution of the current paper is the development of
closed-form expressions for the eigenvalues in terms of damping parameters; the
methodology allow us to directly construct the equivalent viscous model without
adding auxiliary variables or using iterative methods. In this way, we explicitly ob-
tain new expressions of the equivalent stiffness and viscous damping matrices, also
function of the viscoelastic damping parameters. Finally, the proposed method is
validated by two numerical examples; the first for a cantilever beam and the sec-
ond for a frame, both with added viscoelastic layers. The eigenvalue and transfer
function errors are analyzed for a wide range of damping materials and related
parameters.

7.2 Finite element formulation in frequency domain

As mentioned, the structures covered by this article are lattice planes of beams with
FVL bonded to a metallic base material. To obtain the corresponding equations
of motion, the assumptions from articles [11–13, 92] are commonly adopted:

— The viscoelastic layers are fully bonded to the surface of the base material
and arranged in its top and/or bottom

— The thickness of the viscoelastic layer is small compared with the section
depth, considered constant

— Classic flexural behavior of slender beams: Hypotheses of Euler-Bernoulli

— Linear elastic behavior without damping for the base material

— Viscoelastic behavior of the bonded layers based on the fractional derivative

— The stiffness of the base material is much larger than that of the FVL

All structural systems containing viscoelastic materials can be characterized by a
damping matrix, function of frequency. To obtain the equations of motion we will
use the principle of virtual work in the frequency domain, as it is usual in spectral
analysis [122, 123].
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Figure 7.1: Displacement of a beam cross section generic points and of the reference
point. Structural configuration of the viscoelastic layer.

7.2.1 Kinematic and constitutive relationships

In Fig. 7.1, the kinematics of a beam section x are represented; a reference sys-
tem {x, y, z} is centered at a generic point O. Let d(x, y, t) = {U, V }T be the
displacement vector from any point P to other position P ′. This point can belong
to the base or to the viscoelastic materials. Due to the hypothesis of plane sec-
tions remaining plane, the vector does not depend on the coordinate z. Let finally
v(x, t) = {u, v, θ}T be the displacement and rotation vector of O with respect to
the reference axes.

Consider now a Finite Element (FE) of length Le with two nodes which dof’s are
arranged in the column vector ue(t) = {u1, v1, θ1, u2, v2, θ2}T . As a result of the
FE discretization, the displacements and rotations are interpolated so that

v(x, t) ≈ N(x)ue(t) (7.1)

where N(x) is the matrix that contains the shape functions. The vector can be
written as a product of separate functions

d(x, y, t) =

{

U
V

}

=

[

1 0 −y
0 1 0

]







u
v
θ







≡ B1(y)v(x, t) ≈ B1(y) N(x) ue(t)

(7.2)
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and the longitudinal strain ǫx is expressed as

ǫx =
∂U

∂x
=
[

1 0
]∂d

∂x
≡ B2(y)

∂d

∂x
= B2(y)B1(y)

∂N

∂x
ue(t) ≡ B(y)

∂N

∂x
ue(t)

(7.3)

As mentioned, the general form of models based on the fractional derivative was
introduced by Bagley and Torvick [16] and consists on a linear and fractional
differential equation that relates stresses and strains. The same authors suggested
in [19] a simpler relation, with relatively few terms which permit the description of
a wide range of materials. They also demonstrated that the order of the fractional
derivatives of stresses must be the same as that of strains to satisfy thermodynamic
considerations; hence the model is usually named four-parameter model.

σx + τα
dασx
dtα

= E0ǫx + E∞τ
α d

αǫx
dtα

(7.4)

where dα/dtα represents the fractional derivative of order α, often assuming 0 <
α < 1, see [15]. In Eq. (7.4), τ > 0 is the relaxation time and E0 the static
Young modulus, that is, the dynamic modulus at zero frequency ω → 0. E∞

is the high frequency limit value of the dynamic modulus ω → ∞, also named
storage modulus because E∞ > E0. It is common to introduce the non-dimensional
parameter c = E∞/E0 > 1. Pritz [20] studied the four-parameter model in the
frequency domain describing the influence of τ , α and c for a large variety of
practical materials. Eq. (7.4) can be transformed to the frequency domain

σ̂x(iω) =
E0 + E∞(iωτ)α

1 + (iωτ)α
ǫ̂x(iω)

= E0
1 + c(iωτ)α

1 + (iωτ)α
ǫ̂x(iω) ≡ Êv(iω) ǫ̂x(iω) (7.5)

where σ̂x(iω) = F{σx(t)} and ǫ̂x(iω) = F{ǫx(t)} are the Fourier transforms of
stress and strain, i =

√
−1 the imaginary unit and

Êv(iω) = Ed(ω) + iEl(ω) ≡ Ed(ω) [1 + iη(ω)] (7.6)

the complex modulus which real and imaginary parts provide relevant information
about the viscoelasticity induced in the structure; Ed(ω) and El(ω) are the dy-
namic and loss moduli, respectively. The frequency dependence of Êv(iω) is named
dispersion. A large variation is associated with high viscoelasticity, the contrary
is found in low viscoelasticity. The function η(ω) = El/Ed is the loss factor of
the material and may be used to measure the system viscoelasticity level [124].
Pritz [20, 22] studied loss factors for real solids finding two interesting properties:
First, for most materials the curve η(ω) presents a single peak. Second, the loss
factor peak ηm is a good indicator for the quantification of viscoelasticity in the
damping model and its expression is

ηm =
(c− 1) sin(απ/2)

2
√
c+ (c+ 1) cos(απ/2)

(7.7)
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According to Pritz, low values 10−3 ≤ ηm ≤ 10−1 are characteristic of hard plastics
and other structural materials with weak frequency dependence of the dynamic
modulus, such as wood, concrete, metals, etc. On the other hand, large values
10−1 ≤ ηm ≤ 1 are characteristic of rubbers and rubber-like materials used for
vibration isolation and damping. The factor ηm will be used later in the numerical
examples due to its relevance in the results. Other indicators for viscoelasticity
quantification are available in the work of Adhikari & Woodhouse [71].

All viscoelastic materials are characterized by dissipative forces that depend on
the history of the response. Therefore, a kernel hereditary function G(t) is defined
so that the constitutive relationship in the time domain Eq. (7.4) can analitically
be expressed as

σx(t) = E0 ǫx(t) +

∫ t

−∞

G(t− τ) ǫ̇x(τ) dτ (7.8)

Calculating the Fourier transform of the above expression

σ̂x(iω) = [E0 + iωG(iω)] ǫ̂x(iω) (7.9)

where G(iω) = F{G(t)} is the damping function in the frequency domain. For
constitutive models based on the fractional derivative G(t) is not explicitly known.
However, G(iω) can be deduced equating the above expression to the constitutive
Eq. (7.5)

G(iω) = E0
c− 1

iω

(iωτ)α

1 + (iωτ)α
≡ E0 ψ(iω) (7.10)

In the following, the base material (the beam) will be considered metallic and a
linear elastic behavior with elastic modulus Eb assumed for it.

7.2.2 Motion equation in frequency domain

The basic developments of this article are developed in the frequency domain,
therefore it is necessary to derive the motion equations in this domain. To this
end, it is useful to express the principle of virtual work in the frequency domain as
in [122, 123], where spectral element analyses were developed. The virtual work
of inertial and elastic forces must be equal to the virtual work of external forces

−ω2
∑

e

∫

V(e)

δd̂T ρ d̂ dV +
∑

e

∫

V(e)

δǫ̂Tx σ̂x dV =
∑

e

∫ Le

0

δv̂T f̂ dx (7.11)

where ρ is the density of either the base or viscoelastic material, f̂ the Fourier
transform of the vector of distributed forces reduced to the reference axis and
V(e) = Le×A the finite element volume of section A = Ab∪Av, where Ab and Av

are the total areas of the base and viscoelastic materials, respectively, see Fig. 7.1.
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The summation with element number e index refers to assembly in the standard
finite element context.

Using Eq. (7.2) and separating the integrals according to the materials’ area, we
obtain

−ω2

∫

V(e)

δd̂T ρ d̂ dV

= −ω2δûT
e

∫ Le

0

NT (x)

[∫

A

BT
1 (y)ρB1(y) dydz

]

N(x)dx ûe

= −ω2δûT
e

∫ Le

0

NT (x) (mb +mv)N(x) dx ûe

≡ −ω2δûT
e

(

M
(e)
b +M(e)

v

)

ûe

≡ −ω2δûT
e M(e)ûe (7.12)

where

mb =

∫

Ab

BT
1 (y) ρb B1(y) dydz = ρb





Ab 0 −Sb

0 Ab 0
−Sb 0 Ib



 (7.13)

mv =

∫

Av

BT
1 (y) ρv B1(y) dydz = ρv





Av 0 −Sv

0 Av 0
−Sv 0 Iv



 (7.14)

M
(e)
b =

∫ Le

0

NT (x)mb N(x) dx , M(e)
v =

∫ Le

0

NT (x)mv N(x) dx (7.15)

In the previous matrices, Ab, Sb, Ib denote the area, static moment and inertia
moment of the cross section corresponding to the base material and calculated re-
spect to the reference axes {O, x, y, z}, see Fig. 7.1. Analogously, Av, Sv, Iv denote
those of the viscoelastic material.
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7.2 Finite element formulation in frequency domain

From Eqs. (7.3), (7.9), the virtual work of the internal elastic forces takes the
expression

∫

V(e)

δǫ̂Tx σ̂x

= δûT
e

∫ Le

0

∂NT

∂x

[∫

Ab

BT (y)Eb B(y)dydz

]

∂N

∂x
dx ûe

+ δûT
e

∫ Le

0

∂NT

∂x

[∫

Av

BT (y) [E0 + iωG(iω)] B(y) dydz

]

∂N

∂x
dx ûe

= δûT
e

(

∫ Le

0

∂NT

∂x
(Db +Dv)

∂N

∂x
dx + iω

G(iω)

E0

∫ Le

0

∂NT

∂x
Dv

∂N

∂x
dx

)

ûe

≡ δûT
e

(

K(e) + iω
G(iω)

E0
K(e)

v

)

ûe ≡ δûT
e

(

K(e) + iωG(e)(iω)
)

ûe (7.16)

where

Db =

∫

Ab

BT (y)EbB(y) dydz = Eb





Ab 0 −Sb

0 0 0
−Sb 0 Ib



 (7.17)

Dv =

∫

Av

BT (y)E0B(y) dydz = E0





Av 0 −Sv

0 0 0
−Sv 0 Iv



 (7.18)

The element stiffness and damping matrix finally are

K(e) = K
(e)
b +K(e)

v , G(e)(iω) =
G(iω)

E0
K(e)

v (7.19)

Introducing these matrices in Eq. (7.11) results in

δûT
e

(

−ω2
∑

e

M(e) + iω
∑

e

G(e)(iω) +
∑

e

K(e)

)

ûe =
∑

e

δûT
e

∫ Le

0

NT f̂ dx

(7.20)
Naming

M =
∑

e

M(e) , K =
∑

e

K(e) = Kb +Kv , G(iω) =
∑

e

G(e)(iω) =
G(iω)

E0
Kv

(7.21)
to the assembled mass, stiffness and damping matrices,

F̂ =
∑

e

∫ Le

0

NT f̂ dx (7.22)
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Chapter 7. Dynamic analysis of frame structures with free viscoelastic layers

to the nodal force vector and û to the column vector that groups the complete set
of active dof’s, the motion equations in frequency domain can be written as

(

− ω2M+ iωG(iω) +K
)

û = F̂ (7.23)

If the Fourier transform of the force vector is available, the response vector can
be calculated by inversion of the combined stiffness matrix K(iω), leading to the
definition of the receptance matrix

û = K
−1(iω) F̂ ≡ H(iω) F̂ (7.24)

The receptance H(iω) contains all information needed to solve the dynamic prob-
lem in the frequency domain because its elements are the Frequency Response
Functions (FRF) of the dof’s. The dynamic matrices from Eq. (7.23) have been
implemented in a Matlab c© [125] specific code for framed structures, taking into
account the explicit forms of Eqs. (7.17), (7.18) and analytically developing the
complete expressions.

7.3 The viscous approach

The viscous damping has traditionally been one of the most widely used tools
to model energy dissipation in structural dynamics. When a structure contains
viscoelastic materials viscous damping can not be used, it is necessary to apply
advanced constitutive models as those from Eq. (7.4). The main disadvantage of
these models is their complexity due to the introduction of new internal variables,
and the mentioned increase in computer storage. The objective of the current
work is to develop a computationally simple equivalent viscous model that can
predict the structure response with sufficient approximation, with form

Mü+Ceq(α, c, τ) u̇+Keq(α, c, τ)u = F(t) (7.25)

In the previous equation, Keq, Ceq are the stiffness and damping matrices that
depend on the original dynamic arrays K,M and on parameters α, c, τ from a
damping model based on fractional derivatives. In addition, Ceq is proportional,
i.e., is diagonalizable in the same modal basis as M, Keq. To obtain Keq and Ceq,
information from the associated nonlinear eigenvalue problem will be developed in
the following sections.
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7.3 The viscous approach

7.3.1 Closed–form expressions for eigenvalues

The nonlinear eigenvalue expression is obtained introducing F̂ ≡ 0 in Eq. (7.23).
For convenience, the Laplace variable is used to represent frequency, s = iω

(

s2M+ sG(s) +K
)

û ≡ K(s) û = 0 (7.26)

The solution of the previous problem is given by N pairs of conjugated complex
eigenvalues. In general, these eigenvalues may be obtained by any of the iterative
numerical procedures available in the literature and described in the introduction.
However, the challenge here is to find explicit analytic expressions for the eigen-
value calculation with a single evaluation and including all parameters. To this
end, the parametric damping matrix method successfully applied by the authors
in [34, 63], is used. In these references, the damping of the structure is based on the
exponential model of Biot, assuming that the damping function is a multivariable
function of s and of the damping parameters

G(s, α, c, τ) =
c− 1

s

(sτ)α

1 + (sτ)α
Kv ≡ ψ(s, α, c, τ)Kv (7.27)

Then, Eq. (7.26) implicitly defines the 2N eigenvalues and 2N eigenvectors as
functions λj = λj(α, c, τ), uj = uj(α, c, τ). Obviously, one can not find an ex-
act analytical expression for λj(α, c, τ), however, under certain assumptions good
approximations can be developed. To do this, assume that each eigenvalue is a
function only of the storage parameter c, so that the remaining τ, α are held fixed.
Thus, the jth eigenvalue can be represented simply by λj = λj(c), a function that
can be approximated by the first order Taylor expansion in a neighborhood of an
certain value c0

λj(c) ≈ λj(c0) +
∂λj(c0)

∂c
(c− c0) ≡ λj,lin(c) (7.28)

The initial c0 is not arbitrary, it is chosen to simultaneously verify that λj(c0)
and ∂λj(c0)/∂c are defined values that can explicitly be found as function of α, τ .
Observing Eq. (7.27), it is clear that by choosing c0 = 1 automatically λj(1) = iωj

is verified. The frequency ωj is the jth natural frequency of the undamped linear
problem

(

s2M+K
)

û = 0 (7.29)

For the computation of ∂λj(c0)/∂c, some additional steps are necessary. Under
the previous considerations, the damping function can simply be expressed as a
matrix function of two variables, G(s, c). Evaluating Eq. (7.26) with s = λj(c),
the associated eigenvalue û = uj(c) is defined, so that

[

λ2j (c)M+ λj(c)G
(

λj(c), c
)

+K
]

uj(c) = 0 (7.30)
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Chapter 7. Dynamic analysis of frame structures with free viscoelastic layers

The equation above can be written in the modal basis of the undamped problem;
calling Φ to the modal matrix which columns are the mass-normalized eigenvec-
tors, the following well-known orthogonal relations are verified

ΦTMΦ = IN , ΦTKΦ = Λ (7.31)

where IN is the unit matrix of order N and Λ = diag
[

ω2
j

]

. Performing the base

change of the eigenvector uj(c) = Φqj(c) and premultipling by ΦT

[

λ2j (c) IN + λj(c)Γ
(

λj(c), c
)

+Λ
]

qj(c) = 0 (7.32)

In Eq. (7.32), Γ(s, p) = ΦTG(s, p)Φ is the damping matrix in the modal base.
We assume that the structure composed of base and viscoelastic materials ful-
fills proportionality, that is, the damping matrix is diagonally dominant in the
modal base. Thus, the determinant of the stiffness matrix from Eq. (7.32) can be
decomposed into the product of its main diagonal entries

det
[

λ2j (c) IN + λj(c)Γ
(

λj(c), c
)

+Λ
]

≈
N
∏

j=1

[

λ2j (c) + λj(c) Γjj

(

λj(c), c
)

+ ω2
j

]

≡
N
∏

j=1

Dj(c) = 0 (7.33)

The jth diagonal entry of the damping matrix can be written in terms of the
function ψ(s, c) defined in Eq. (7.27). It is considered again that this function
depends on the frequency s and on the selected parameter c, leaving the rest
fixed. Thus, substituting the expression of the damping matrix given by Eq. (7.27),
Γjj(s, c) = ψ(s, c)κj , where by definition κj = φ

T
j Kvφj . The equation that defines

the jth eigenvalue can now be written as

Dj(c) = λ2j (c) + λj(c)ψ
(

λj(c), c
)

κj + ω2
j = 0 (7.34)

equality valid for any c, and hence its derivative is also zero

∂Dj

∂c
= 2λj

∂λj
∂c

+

[

λj

(

∂sψ
∂λj
∂c

+ ∂cψ

)

+
∂λj
∂c

ψ(λj , c)

]

κj = 0 (7.35)

where

∂sψ ≡ ∂ψ

∂s

∣

∣

∣

∣

s=λj

, ∂cψ ≡ ∂ψ

∂c

∣

∣

∣

∣

s=λj

(7.36)

Solving for the eigenvalue derivative, we have

∂λj
∂c

= −λj
∂cψ

λj (2 + κj ∂sψ) + κj ψ(λj , c)
≡ −λj Rj(λj , c) (7.37)
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7.3 The viscous approach

From the analytical expression of ψ(s, c) given by Eq. (7.27), the derivatives ∂sψ
and ∂cψ can be obtained and substituted in Eq. (7.37) to obtain Rj(s, c) as

Rj(s, c) =
(sτ)α [1 + (sτ)α]

(c− 1)ακj(sτ)α + 2s2 [1 + (sτ)α]
2 (7.38)

Since λj(1) = iωj ≡ λ0j is available from the solution of Eq. (7.29), we can evaluate
Eq. (7.38) at c = 1 to obtain ∂λj(1)/∂c. Hence, the linear approximation λj,lin(c)
can be finally obtained from Eq. (7.37) as

λj,lin(c) = iωj −
c− 1

2iωj

(iωjτ)
α

1 + (iωjτ)α
(7.39)

Eq. (7.28) along with the initial value λ0j = λj(1) defines an ordinary differential
equation that can be solved with any of the available numerical methods (Euler,
Runge-Kutta, ...). From the solution, λj(c) can be numerically obtained. However,
the physical characteristics of the problem allow us to assume certain hypothesis
that result in an analytical and estimated solution of this differential equation,
greatly reducing the computational cost of calculating the jth eigenvalue. Indeed,
it may be noted that Rj(s, c) depends both on ψ(s, c) and on its derivatives. The
variation of ψ(s, c) in the frequency domain defines the viscoelasticity induced by
the damping of the viscoelastic material. Mathematically, materials with high
viscoelasticity present strong variations of ψ(s, c); by contrast, a function with
smooth and regular variations represents low viscoelasticity. More details on as-
sessment and measurement of viscoelasticity can be found in references [28, 71].
For materials with small viscoelasticity, it is expected that when the following
approximation is used

Rj(λj , c) ≈ Rj

(

λj,lin(c), c
)

= Rj

(

iωj −
c− 1

2iωj

(iωjτ)
α

1 + (iωjτ)α
, c

)

≡ Rj(c)

(7.40)
the error is not very high. Thus, the problem of obtaining λj(c) is reduced to solve
the ordinary differential equation with separated variables

∂λj
∂c

= −λj Rj(c) (7.41)

In order to obtain a closed analytical integral expression, we expand Rj(c) in
Taylor series around point c = 1 to directly calculate

Rj(c) =

∞
∑

n=0

R
(n)
j (1)

n!
(c− 1)n (7.42)

By successive derivation with respect to c in Eq. (7.40), we find (see Appendix 7.A)
that the nth coefficient is

R
(n)
j (1)

n!
=

1

n!

∂nRj

∂cn

∣

∣

∣

∣

c=1

= (−1)n+1

(

µj − 1

µj

)n+1
(

κj
ω2
j

)n+1
Pn(µj)

µn
j 2

n+1 n!
(7.43)
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Chapter 7. Dynamic analysis of frame structures with free viscoelastic layers

where Pn(µj) = a0+a1µj + · · ·+an µn
j is an n-order polynomial in the parameter

µj = 1+(iωjτ)
α which coefficients ak, 0 ≤ k ≤ n are polynomials in the parameter

α. Expressions of these coefficients up to order n = 4 are listed in Appendix 1.
Assuming that the approximation given by Eq. (7.40) is valid, the quality of the
solution estimation depends on the number of terms chosen in the series Eq. (7.42).
It is sufficient to include a few terms, for instance up to the quadratic order, to

achieve a good approximation since the sequence R
(n)
j (1)/n! rapidly tends to zero.

This statement can intuitively be verified proving κj/ω
2
j ≪ 1, which in turn can be

explained using the physical characteristics of the problem that permit to predict
the behavior of the mathematical expressions. Calculating the quotient from the
previous inequality

κj
ω2
j

=
φT

j Kvφj

φT
j Kφj

=
φT

j Kvφj

φT
j Kbφj + φT

j Kvφj

=
φT

j Kvφj

φT
j Kbφj

−
[

φT
j Kvφj

φT
j Kbφj

]2

+

[

φT
j Kvφj

φT
j Kbφj

]3

− · · · (7.44)

The product κj = φT
j Kvφj is directly proportional to the viscoelastic material

(usually rubber or rubber-like compounds) rigidity E0 and to the section prop-
erties Iv, Sv and Av. On the other hand, φT

j Kbφj is proportional to the much
higher base material (metallic) Eb, Ib, Sb, Ab. In general E0/Eb ≪ 1, from which
φT

j Kvφj/φ
T
j Kbφj ≪ 1 and from Eq. (7.44) it is clear that in fact κj/ω

2
j ≪ 1.

Finally, to ensure that the series from Eq. (7.43) is at least O
[

(κj/ω
2
j )

n+1
]

, the

series {Pn(µj)/µ
n
j 2

n+1n!}∞n=0 must tend to zero or at least be bounded, something
that we assume to be true and that will be validated through numerical examples.
Substituting the values from Eq. (7.43) into Eq. (7.42) up the quadratic order.

Rj(c) ≈ −rj
P0(µj)

2
+ r2j

P1(µj)

4µj
(c− 1)− r3j

P2(µj)

8µ2
j

(c− 1)2

2
(7.45)

where rj =
κj
ω2
j

µj − 1

µj
and

P0(µj) = 1 , P1(µj) = 2(µj −α) , P2(µj) = 10α2−α(13+3α)µj +6µ2
j (7.46)

With Eq. (7.45), the differential Eq. (7.41) can be integrated obtaining the sought
analytical expression for eigenvalues

λj(α, c, τ) ≈ iωj exp

{

rj(c− 1)

2

[

1− rjP1(µj)

4µj
(c− 1) +

r2jP2(µj)

12µ2
j

(c− 1)2

]}

(7.47)
where the exponential term will be noted as ∆j(α, c, τ), a dimensionless complex
number that depends on the damping parameters through Eqs. (7.46), (7.47). The
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7.3 The viscous approach

numerical examples will show that the proposed estimate of the eigenvalues given
by Eq. (7.47) is very accurate even for parameter values that induce a high damp-
ing in the structure. Obviously, to calculate λj it is only necessary to evaluate a
function for the particular value of the parameters. From the numerical point of
view, the largest computational cost is related to the solution of the undamped
eigenvalue problem from Eq. (7.29), necessary to obtain ωj and κj .

7.3.2 Approximation of the transfer function

In the previous subsection, the question of how to approximately find the N func-
tions λj(α, c, τ) ≈ iωj ∆j(α, c, τ) has been answered. For viscoelastic structures
with damping exponential functions, [121] showed that an equivalent viscous model
can always be found. This model is characterized by its transfer matrix Heq(s)
that approximates the exact H(s), defined by Eq. (7.24) and calculated by direct
inversion. In addition, the error ‖H(s)−Heq(s)‖ depends on the damping level
and on the proportionality of the system, i.e., on the relative value of the main
diagonal entries of Γ(s) with respect to the off-diagonal ones. Calculating Heq(s)
for viscoelastic materials such as those studied in this article, the approximation
will be accurate as long as the assumptions given in [121] are valid. The equivalent
transfer matrix will then be given by

Heq(s) = ΦT(s)ΦT (7.48)

T(s) = diag [Tjj(s)] is a matrix which entries are the modal transfer functions

Tjj(s) =
1

s2 + 2sΩjζj +Ω2
j

=
1

(s− λj)(s− λ∗j )
(7.49)

and each FRF can be calculated as

Hij,eq(iω) =

N
∑

r=1

φirφjr
(iω − λj)(iω − λ∗j )

(7.50)

where φij are the entries of the modal matrix Φ. The new natural frequencies and
modal damping ratios are defined by

Ωj =
√

λjλ∗j = ωj

√

∆j∆∗
j , ζj = − ℜ(λj)

√

λjλ∗j
=

ℑ(∆j)
√

∆j∆∗
j

(7.51)

In general the effect of rigidity increment with frequency (characteristic of vis-
coelastic materials) is reflected by the inequality Ωj > ωj . The matrix Heq(s)
constructed in this way is related with a viscous model characterized by three
dynamic matrices, Meq, Ceq, Keq, so that

Heq(s) =
(

s2Meq + sCeq +Keq

)−1
(7.52)
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Chapter 7. Dynamic analysis of frame structures with free viscoelastic layers

The mass matrix Meq coincides with the original M. The equivalent Keq and
Ceq are constructed so that their transformation into the undamped modal space
will produce the natural frequencies Ωj and modal damping coefficients 2Ωjζj ,
respectively

ΦTKeqΦ = Λeq = diag
[

Ω2
j

]

≡ W
′ Λ

ΦTCeqΦ = C′
eq = 2

√

Λeq Z = 2
√

Λ W
′
Z (7.53)

New matrices W
′(α, c, τ) = diag

[

∆j∆
∗
j

]

, Z(α, c, τ) = diag

[

ℑ(∆j)√
∆j∆∗

j

]

have been

defined. Note that these matrices depend on the damping parameters through ∆j .
Given the modal relations from Eqs. (7.31) and after some matrix operations we
obtain

Keq = MΦW
′ΦT K ≡ W K

Ceq = 2MΦ
√

Λ W
′
ZΦT M (7.54)

The computation of Keq, Ceq is very efficient since, apart from solving the un-
damped problem, only requires to find the N values ∆j defined in Eq. (7.47). This
approximation constitutes the main contribution of this article and is a novel and
efficient way to address problems involving viscoelastic materials. The resulting
model allow us to obtain the response of such problems using the classic tools
of modal analysis for viscous systems, both in frequency and time domains. The
former is solved through transfer function Heq(s) and the latter solving the system
of differential equations defined by Eq. (7.25).

7.4 Numerical examples

7.4.1 Example 1: Cantilever beam

In this example we analyze a cantilever beam made out of steel base material,
with ρb = 7.85 t/m3, Eb = 200 GPa, rectangular cross section 50 × 5 mm and
length L = 500 mm. In the upper surface, a perfectly bonded layer of viscoelastic
material with thickness 2 mm, ρv = 1.25 t/m3 and static E0 = 10 GPa. The beam
is discretized in ten two-node finite elements with three dof’s each, resulting in a
mesh with N = 30 active dof’s. Fig. 7.2 shows a drawing of the beam along with
their characteristic dimensions and a sketch of the finite element model.

The goal is to validate the approach given by Eq. (7.47) for eigenvalues and the
equivalent viscous model constructed from them. A wide range of damping param-
eter values α, c, τ is analyzed, covering the vast majority of viscoelastic material
applications used for damping and vibration control. The range has been ob-
tained from studies of these materials in references [11, 19–22, 24, 25, 126] with
the following considerations:
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7.4 Numerical examples

Figure 7.2: Dimensions in mm of beam with base and viscoleastic materials (top) and
finite element mesh (bottom). Location of dof’s i, j = 11, 29 for FRF

i) The fractional exponent takes values in the range 0 ≤ α ≤ 1, considering that
physically the vast majority of damping materials are within 0.4 ≤ α ≤ 0.7

ii) The range 1 ≤ c ≤ 104 is considered, although generally in practice 10 ≤
c ≤ 103

iii) The relaxation time is a parameter measured in seconds and directly re-
lated with frequency fm (Hz), corresponding to the loss factor peak ηm from
Eq. (7.7), through the equation

τ =
1

2πfm

1
2α
√
c

(7.55)

Looking at the complex modulus graphs from the last references, fm is generally
between 102 and 106 Hz. The results of the current solution are sensitive to the
value of the relaxation time since it is present in Eqs. (7.46) through coefficients
µj , rj ; in fact when τ ≪ 1 then µj ≈ 1 and rj ≪ 1, improving the estimated
approximation. Since τ is inversely proportional to fm, the representative mini-
mum value fm = 100 Hz is chosen and the relaxation time is calculated for each c
and α with Eq. (7.55). In the numerical results, we can appreciate that even this
conservative choice of τ produces very good results, ensuring that more realistic
choices of fm would produce an even more accurate eigenvalue estimate.

In order to verify the efficiency of the eigenvalues’ approximation given by Eq. (7.47),
the relative error er(c, α) is calculated. The exact value is calculated using the iter-
ative method of Ruhe [93] based on the transformation of the nonlinear eigenvalue
problem given by Eq. (7.26) into a linear one. This transformation is performed
through the expansion of the dynamic stiffness matrix K(s). Starting from an
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Figure 7.3: Contours of eigenvalues’ relative error ej in % for the first four modes for
Example 1.

initial s
(0)
j , we assume that s

(0)
j + δ is very close to the jth eigenvalue. Then, it is

verified that K(s
(0)
j + δ)uj ≈ 0. Expanding now this matrix up to the first order

we obtain


K

(

s
(0)
j

)

+ δ
∂K

(

s
(0)
j

)

∂s



 uj ≈ 0 (7.56)

This is a linear eigenvalue problem in δ that does not have to be solved entirely,

since only the minimum (in absolute value) eigenvalue δ
(0)
j needs to be found; the

next iteration can be calculated with s
(1)
j = s

(0)
j + δ

(0)
j . The iterative process con-

sist on constructing the sequence {s(n)j } locally convergent with quadratic speed.

The initial guess is taken as the undamped eigenvalue s
(0)
j = iωj and is terminated

when the relative error from one iteration to the next is less than 10−10; the ob-
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Material Damping c α τ (s) ηm
A Low 102 0.357 2.516×10−6 0.50
B Medium 103 0.529 2.324×10−7 1.00
C High 104 0.636 1.141×10−8 1.50

Table 7.1: Damping parameters for three representative viscoelastic materials.

tained solution is considered exact.

Fig. 7.3 represents the relative error ej(c, α) = 100 |(λj − iωj∆j)/λj | as a func-
tion of the damping parameters c, α. The results can be considered valid for the
majority of the damping viscoelastic materials. It can be appreciated that the
error decreases rapidly as c approaches 1, regardless of the exponent α. This is an
expected result since the approximated solution is based on an expansion around
the starting point c = 1, where approximate and exact solutions coincide and are
equal to the undamped eigenvalues. The error increases as the storage coefficient
grows with a slight dependence on the fractional exponent. In some cases the error
increases with α, such as in the first mode; in other modes the error decreases, as
in the third and fourth and finally there is little dependence in the second. Thus, it
is not possible to predict a priori an error trend for α. In any case the error values
are very small, validating the effectiveness of the proposed closed-form expressions.

Now we consider the trend with the mode number for three damping materials and
for three different levels. In table 7.1 the parameters are listed, chosen to obtain
loss factors to 0.5, 1.0 and 1.5, respectively. As mentioned, the errors are very low
with a maximum of 0.01%, see Fig. 7.4. A general increase and oscillation can be
appreciated, and the differences in the three levels are in general maintained, with
a larger error for higher damping. The exception in the low modes could be due
to the variable effect of α, depicted in Fig. 7.3. An explanation for the lower error
of some modes (for example eighth and tenth) is due to the high proportionality
of them; their related damping matrix is more diagonal than that of the rest.

The other important contribution of this paper is the construction of the viscous
model defined by M, Keq, Ceq from Eq.(7.54), directly dependent on the damp-
ing parameters c, α, τ . As mentioned, with this new approach we can predict the
response of the original viscoelastic model using a much faster algorithm. From
Section 7.3.2, the transfer function in the frequency domain can be directly ob-
tained from the expressions of the N eigenvalues. They are given by Eq. (7.47)
together with the information of the undamped problem, i.e. the natural fre-
quencies ωj and real eigenvectors φj . In Fig. 7.5, the exact (obtained by direct
inversion of the dynamic stiffness matrix) and approximated (by Eq. (7.48)) FRF’s
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Figure 7.4: Evolution of the relative error with the mode number for Example 1.
Parameters in table 7.1

are shown for dof’s i, j = 11, 29; see Fig. 7.2 to visualize their position. With the
aim to compare the effect of damping layers, the FRF is also shown for a beam
without viscoelastic material.

Two effects can be observed in the figure, due to the twofold influence of the
complex modulus Êv(iω) from Eq. (7.6). First, the offset of the resonance peaks
caused by the first component Ed(ω) and second, the increase of damping with
the frequency ω by the loss factor η(ω). The quality of the approximated FRF is
evaluated with the three viscoelastic materials to induce the three damping levels
from table 7.1. It is clear that the proposed approach is very accurate specially
around the natural frequencies, even in the high frequency range. This is because
both models share eigenvalues and, as has been proved, our estimate is of very
good quality. If the damping level would be raised, for example by increasing the
thickness of the damping material, the error in the evaluation of the FRF would
increase as observed in the figures. This effect is expected and was demonstrated
in the reference [121].

The largest differences between and current FRF’s are found in the antiresonances
at ω = {1.9, 3.5, 5.8, 9.1} × 104 rad/s; according to the reference they are due
to the non-proportionality of the viscoelastic model. For proportionality these
differences would significantly be reduced, for instance if the layers are symmetrical
and uniformly distributed along the beam. This is due to the viscoelastic and our
viscous approach sharing their eigenvectors.
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Figure 7.5: Frequency response function at degree-of-fredom numbers (11,29) for Ex-
ample 1. Exact, proposed (with viscoelastic layer) and exact (without layer) responses.
Parameters in table 7.1, top figure for material A, middle for B and bottom for C.
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7.4.2 Example 2: Frame structure

This example studies a two-dimensional, framed structure formed by beam ele-
ments with layers of viscoelastic material bounded on their upper and lower faces,
as shown in Fig. 7.6. The application is limited to the junction areas, forcing the
resulting damping matrix not to be proportional. The objective is to validate both
the method of eigenvalue calculation and the viscous approximation in more com-
plex structures than that of Example 1. As before, the base material is steel; two
section are used: european IPE200 [127] for lintels and HEB200 [128] for columns.
The viscoelastic material spans the entire 12 mm width of the upper and lower
flanges with static Young’s modulus E0 = 50 MPa and density ρv = 1.25 t/m3.
The structure is discretized into 88 finite elements of equal length Le = 0.5 m
forming a mesh of 87 nodes and N = 252 active dof. Fig. 7.6 sketches the dimen-
sions of the structure and the distribution of the viscoelastic layers.

Figure 7.6: Dimensions (m) and distribution of viscoelastic layers. Discretization in
finite elements and sections for Example 2 and location of the dof’s i, j = 112, 152.

Contour plots equivalent to those of Fig. 7.3 (not shown here) allow us to draw the
same conclusions that were given in Example 1. Using the same damping materials
A, B, C as before, in Fig. 7.7 the evolution of the relative error with the structural
mode number is shown. It should first be noted that the trend is upward but
with very low slope so that any mode presents an error above 2%. Furthermore,
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in general the errors obtained using the low damped material A are lower than
those related to the high damping material C. However, in some cases the behavior
reverses, due to the different values of the fractional exponent α and relaxation
time τ . It is also noted that after the 50th mode, some errors increase rapidly
from the average trend, since these modes exhibit a larger lack of proportionality.
Therefore their associated eigenvalues are more affected by the off-diagonal entries
of Γ (λj , c) that consequently propagate errors.
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Figure 7.7: Evolution of relative error with the mode number for three materials (see
table 7.1) and Example 2.

Finally, in Fig. 7.8 the FRF associated with dof’s i, j = 112, 152 (marked in
Fig. 7.6) are plotted. These FRF’s are accurately calculated by direct inversion
and approximately with the proposed method based on Eq. (7.48). It is clear that
both distributions fit very well. The effect of the damping layers is more important
in high frequencies, for which the complex modulus (loss factor as well as Young’s
modulus) take important values.The approximation given by the FRF is slightly
poorer for high frequencies than for low, see Fig. 7.7. This fact is specially clear for
materials B and C in the range 2.5×104 < ω < 5×104 rad/s, where the structure
response is more damped. But even in these cases, the highly accurate adjustment
between both curves is remarkable. Inspection of entries of the receptance matrix
different from the presented dof’s (that is, other FRF’s) allow us to affirm that
the estimation is also of very good quality. This observation partially validates
the method as an efficient tool for the analysis of this structural type.
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Figure 7.8: Frequency Response Function at dof’s i, j = 112, 152 for Example 2.
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7.5 Conclusions

In this paper we propose a new method for the analysis of beams and framed struc-
tures, damped with free layers of viscoelastic material which constitutive model is
based on the fractional derivative. The equations of motion are obtained using the
finite element method, which is developed from variational principles in the fre-
quency domain. A frequency-dependent damping matrix is formulated, resulting
in free motion equations that represent a nonlinear problem of eigenvalues. The
main contribution of this work is to obtain, assuming the hypothesis of propor-
tional damping, approximated eigenvalue solutions in closed-form. These forms
are developed as function of the damping parameters, for which solutions of the
linear eigenvalue problems are not required except for the undamped counterpart;
in addition iterative procedures are not necessary.

The availability of analytical expressions for complex eigenvalues given by the
current method permits the direct application of an equivalent viscous model pre-
viously developed by the authors. The procedure is, on one side, to obtain the
transfer function of a viscous model, and on the other equivalent stiffness and
damping matrices in closed form. The matrices are function of the damping pa-
rameters and of the original mass and stiffness matrices. Since the current viscous
model accurately duplicates the response of a viscoelastic model, standard tools
developed for general viscous damping can be used with much lower computational
cost.

In order to validate the proposed method, two numerical examples are presented.
The first, simulates a cantilever beam with a viscoelastic layer bonded to the upper
face. The second, analyzes a two-dimensional metallic frame composed of beams
and columns also with bonded layers but located close to the intersections. For
both examples, the relative error between the complex eigenvalues from the pro-
posed explicit expressions and the exact ones, calculated by iteration, is presented.
The results indicate that these errors are very small for a wide range of damping
parameters, within which most damping materials lay. The errors show a slight
upward trend with the mode number but maintain a very small value, with very
good accuracy of the frequency response function even for high frequencies.

Although this work has been developed for beams, the methodology can be ex-
tended to plates with free viscoelastic layers, as long as the adopted assumptions
are valid. At present, the authors are conducting research related to other vis-
coelastic structures such as those with constrained viscoelastic layers or with vis-
coelastic dampers.
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Appendix 7.A Calculation of R
(n)
j (1)

We porpose to obtain an expression of nth derivative of Rj(c) = Rj

(

λj,lin(c), c
)

evalated at c = 1 and for n ≥ 0. The analytical expression of Rj (s, c) is available
form Eq. (7.38). In addition, λj,lin(c) is a linear expression in c by definition.
With these considerations we can take derivatives in Rj(c) by using the chain
rule, resulting

R′
j(c) =

dRj

dc
=

[

∂Rj

∂s

∣

∣

∣

∣

s=λj,lin(c)

]

λ′j,lin(c) +
∂Rj

∂c

∣
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∣

∣
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R′′
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dc2
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]
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+
∂2Rj

∂c2

∣

∣

∣

∣

s=λj,lin(c)

(7.57)

Higher order derivatives can be calculated following the same procedure taking
into account that λ′′j,lin(c) = 0. Thus, after several simplifications the expressions

of R
(n)
j (1) for 0 ≤ n ≤ 4 are

Rj(1) = −
(

µj − 1

µj

)

(

κj
ω2
j

)

P0(µj)

2

R′
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(
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(
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32µ4
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(7.58)
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where µj = 1 + (iωjτ)
α and

P0(µj) = 1

P1(µj) = 2 (µj − α)

P2(µj) = 10α2 − α(13 + 3α)µj + 6µ2
j

P3(µj) = −78α3 + 45α2(3 + α)µj − 2α(43 + 18α+ 2α2)µ2
j + 24µ3

j

P4(µj) = 816α4 − 24α3(74 + 29α)µj + 2α2(767 + 468α+ 73α2)µ2
j

− (634α+ 367α2 + 74α3 + 5α3)µ3
j + 120µ4

j (7.59)

are polynomials in µj which coefficients depend on the fractional exponent α. The

mathematical form of R
(n)
j (1) for the first four derivatives given in Eq. (7.58) allow

us to predict the general form as

R
(n)
j (1) =

1

n!

∂nRj

∂cn

∣

∣

∣

∣

c=1

=
(−1)n+1

µn
j 2

n+1

(

µj − 1

µj

)n+1
(

κj
ω2
j

)n+1

Pn(µj) (7.60)

where the polynomials Pn(µj) must be obtained by recursion from the previous
derivatives.
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8
Conclusions

8.1 Summary

The damping models of viscoelastic nature are characterized by dissipative forces
that depend on the history of the velocity response via convolution integrals
with hereditary kernels. The dynamic equilibrium leads to a system of integro-
diferential equations. In the frequency domain, the free motion equations result
in a nonlinear eigenvalue problem due to the presence of a frequency-dependent
damping matrix.

In this thesis, two objectives have been searched: (i) to advance in the knowledge
of the nonlinear eigenproblem of viscoelastically damped structures and (ii) to pro-
pose new methods for the frequency-domain response by means of the development
of the equivalent viscous model.

The contributions are organized in six chapters; each one corresponds with an
article submitted to indexed journals included in the Journal Citations Reports.
Two papers have already been published and the other four are currently under
review. The original ideas developed in each chapter are now detailed.

In Chapter 2 a new iterative method to compute the eigenvalues for proportional
or lightly non-proportional viscoelastic systems is developed. The key idea is the
construction of two complex functions that converge up to the conjugate complex
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in a fixed-point iterative scheme. In addition, the convergence is rigorously an-
alyzed in three theorems that form the theoretical body of the paper and where
two important results are proved: (1) the method demonstrates to be of great ro-
bustness, i.e. the sequences always converge, independently on the chosen initial
point; and (2) there exists a close relationship between the convergence velocity,
the damping level and the viscoealsticity of the damping model. It is demonstrated
that the lighter the damping the faster the convergence.

In Chapter 3 new contributions on the non-viscous eigenvalues of viscoelastic os-
cillators are presented. The starting point is the proof of a new property that
characterizes to these eigenvalues leading to a new concept: the non-viscous set.
This set, formed by an union of closed intervals, is located within the negative
real numbers and contains all non-viscous eigenvalues. The limits of the intervals
can be analytically calculated for exponentially damped functions up to four ker-
nels, although only the cases of one and two kernels is developed. For the general
case of N kernels approximated closed-forms using an asymptotic representation
of the non-viscous eigenvalues are proposed. Another important contribution is
the use of this property to the development of new analytical approaches of the
non-viscous eigenvalues. The method is successfully validated by comparison with
other methods available in the literature.

In Chapter 4 the so-called parametric method for the numerical computation of
eigenvalues in single dof is proposed. The damping function of a viscoelastic oscil-
lator is the mathematical entity that characterizes the energy dissipation, either
in time-domain or in frequency domain. In general this function in frequency
domain depends on the Laplace eigenparameter and on several damping param-
eters. The key idea of this method is to consider the damping function variable
also in one of this parameters. The eigenvalues are transformed into unknown
functions; the perturbation techniques together with the eigensensitivities lead
to approximate the eigenvalues as solutions of certain ordinary differential equa-
tion in separated variables. Presented the algorithm, the approximation order of
the proposed approaches is derived and validated by several numerical examples
covering the exponentially damped systems.

In Chapter 5 the parametric method is generalized to cover the case of multi-
ple dof systems with a damping matrix assumed variable in several parameters.
The eigensolutions are consequently multivariable functions of certain multipara-
metric array. First order solutions by perturbation asymptotic techniques of the
parameters are developed. Using the expression of the eigenvalue derivative of
non-proportional damping systems, the approximations are constructed as solu-
tions of certain ordinary differential equation. A remarkable difference respect to
the method for single dof is the eigenvectors’ approximation; for it an alternative
method based on the solution of the linear eigenproblem of the dynamic stiffness
matrix is developed. The improvement of the order of approximation respect to
that of the first order perturbation is mathematically demonstrated. Moreover,
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the method is checked by means of several numerical examples, discrete and con-
tinuous, using also different damping materials.

In Chapter 6 the equivalent viscous model is developed. This approach is conceived
as an alternative method to obtain the response of systems with viscoelastic damp-
ing. The starting point is the exact transfer function of a viscoelastic system. As
known, a closed-form expression can be obtained from the pole-residue expansion.
Through several transformations, the transfer function is be decomposed as the
sum of the transfer function of a viscous model plus a residual term. The latter
depends on some features of the damping matrix: (1) on the proportionality, i.e.
the modal decoupling capability, (2) on the level of damping or how high in ab-
solute value the entrees of the damping matrix are and (3) on the viscoelasticity
or how high the entrees of the damping matrix’s derivative respect to the Laplace
eigenparameter are. The developments lead to new damping and stiffness matrices
that configure the new viscous model. The response of this new model is under
certain conditions a good approximation of the exact one.

In Chapter 7 the equivalent viscous model is used for the analysis of frame struc-
tures with unconstrained viscoelastic layers. For the time-domain constitutive re-
lationships of the damping materials, a four-parameter fractional-derivative based
model is considered. With help of the finite element method, the motion equa-
tions in frequency domain are derived. As a result a damping matrix that depends
on the frequency and on the damping parameters is obtained. According to the
proposed parametric method, one of these parameters —the storage coefficient—
is assumed variable. It is demonstrated that the eigenvalues’ sensitivities, consid-
ered as functions of the chosen parameter, result very regular and smooth. Thus,
after some transformations, closed-forms of the eigenvalues are developed. This is
traduced in a very low computational effort for their calculation. In the numer-
ical examples the method accuracy can be visualized and the transfer functions
compared. Very good agreement between proposed and exact solution is observed,
even for higher modes in the high-frequencies range.

8.2 Recommendations for further work

The contributions of this thesis may lead to new research; some new ideas have
already a solid theoretical foundation and they could be expressed in paper format.
Others, however, are under study and should be developed further. A summary
of the proposals for the future work is listed below

— The proposed iterative method can efficiently be used to compute complex
eigenvalues in proportional or lightly non-proportional systems. The ques-
tion arises whether a generalization of this method can be constructed for

227



Chapter 8. Conclusions

strongly non-proportional systems. Intuitively it seems that the complex
eigenvectors would play an important role in this method.

— Some research has already been published in the literature about over-
critically damped systems, specially for exponentially damped oscillators
with one kernel. The so-called overdamped region, that is the set of damp-
ing parameters that leads to real eigenvalues, have not been defined for two
or more exponential kernels. This is an interesting research area and some
advances have been carried out by the author in this direction.

— The proposed multiparameteric method is based on the first order perturba-
tion of the parametric vector. The question is: why not construct a second
order perturbation in terms of the parametric vector? This question was in
fact asked by a reviewer of this paper. Since the eigenvalues are multivari-
able functions of the parameters, the quadratic term of the Taylor expansion
must be well defined and for that the Hessian matrix. which defines the cross
derivatives respect to the parameters, should be symmetric. Thus the ques-
tion could be reformulated as: under what conditions the Hessian matrix is
symmetric?

— The main contributions of this thesis have been developed within the fre-
quency domain. In fact, the numerical methods for the nonlinear eigenprob-
lem covers a large part of it. The main disadvantage arises for systems with
a large number of dof; in them the extraction of all eigenvalues and eigenvec-
tors, included those non-viscous, can result considerably expensive in terms
of computational effort. This is one of the reasons to encourage the time-
domain methods, which directly integrate the system of integro-differential
equations. Several methods have been proposed for different viscoelastic
models but according to the author, new approaches may still be proposed.

— In this thesis two methods to compute non-viscous eigenvalues have been
proposed, both developed under the assumption of proportional or lightly
non-proportional damping. A challenge for further work is the research of
new numerical approaches for the calculation of these eigenvalues but cover-
ing strongly non-proportional damping.

— The equivalent viscous model proposes new stiffens and damping matrices.
However, the mass matrix remains the same as that of the original model.
New research could be oriented in the future to modify the entrees of the
mass matrix in order to improve the approximation.

— Experimentation in real structures is always a field on constant development.
The robustness of a numerical method must be tested in realistic engineering
applications such as for instance damping identification, experimental modal
analysis, new energy dissipation devices and dampers, vibration control or
structural health monitoring. Undoubtedly new research lines should go in
this direction to consolidate the proposed methodologies.
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