

Test cases generation for functional tests of user
interfaces

Master Thesis in Software Engineering,
Formal Methods and Information Systems.

(SEFMIS)

Università degli studi di Udine.
Universidad Politécnica de Valencia (UPV).

September 2012

Francisco Gramuntell Desco

Directors:

Dr. Giorgio Brajnik
Dr. Emilio Insfran

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

2

 Test cases generation for functional tests of user interfaces.

3

Test cases generation for
 functional tests of user interfaces.

© Francisco Gramuntell Desco.

Developed in Universitá degli Studi di Udine (Italia, Udine) and Universidad Politécnica de Valencia (UPV).

Printed in Valencia, Spain.

September 2012.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

4

 Test cases generation for functional tests of user interfaces.

5

Grateful
to the directors and co-directors of this thesis

of the departments of computer science at the Universities of Udine (ITA) and Valencia (SPA),
as well as to the creator of W and Wp method,

who has kindly lent his help since the University of Sheffield (UK) to solve my doubts.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

6

 Test cases generation for functional tests of user interfaces.

7

Abstract

Applications software and Web applications are getting bigger and need more
resources, thus the creation of these requires a long time for its development. Apart from the
Engineering Requirements, different testing tools can help us to streamline and to guide the
development of an application to a good end, so as to check it again seems to be complete
through test sequences to ensure that a protocol implementation conforms to its specification.
Automatic test data generation helps testers to validate software against user requirements
more easily and verify whether the software is working properly following software
requirements. It accounts more or less the 50% of software life cycle. The most thorough
approach is to test all possible combinations with the objective of discover some error, but this
is quite often impossible due to the large number of tests which far exceeds the time and
resources available to execute them, therefore, the crucial part of software testing is to select
the test data for testing software. Testers have to decide which data test they should use, and
a heuristic technique is needed to solve this problem automatically to reduce the number of
combinatorial tests while maintaining the fault-detection capability of combinatorial testing.
Research in Software testing in recent years has focused on modifying existing methods,
including the most important and where more work is based on, the W method, from which
other approaches have been developed as HIS, Wp, Mp and UIOv.

This thesis has analyzed the behavior of existing techniques such as W and Wp method
in our own statechart looking for limitations and improvements. As an alternative to existing
methods, we have proposed an algorithm based on W and Wp method, own ideas, and
collected ideas on different ways of working with statechart transitions. We apply the
techniques of grey-box testing which combines black-box and white-box testing. Black-box
testing is a software testing techniques in which functionality of the software under test (SUT)
is tested without looking at the internal code structure (testers prepare test input and
expected output) while white-box testing is a verification technique software that engineers
can use to examine if their code works as expected (tests internal structures). The concept of
grey-box testing is simple, is based in performing black box testing based on test cases
performed by people who know the program inside.

Some of the improvement is that the method works incrementally to reduce the
length of generated test sequence so our new method always starts from the same starting
state of the given FSM. This overcomes the problem that an extra leading sequenced may have
to be added in the case that the test sequence generated started from a state different from
the starting state of the given FSM. One of the biggest problems that we found was falling into
infinite loops when we apply our formula by the appearance of them in our statechart, which
we have solved by adding a finite number of iterations to the algorithm so that it does not end
in an infinite loop. Another improvement is that we have modified the initial statechart to
identify each state separately, assuming that test cases can be identified and do not need to
apply discrimination set for this. Our goal is to develop an algorithm that reduces significantly
the length of the test sequences required for conformance testing while maintaining the same
fault detection capability. To prove it, we will work on the same example, with various
modifications, where we will apply different testing methods apart from that one we have
developed.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

8

Keywords: Software testing, test data generation, statecharts, specification-based testing, formal methods, finite-
state machines (FSM), grey-black-white box testing, discrimitation set.

 Test cases generation for functional tests of user interfaces.

9

Resumen

Tanto las aplicaciones software como las web se están haciendo cada vez más y más
grandes necesitando así una mayor cantidad de recursos, por lo tanto la creación de estos
requiere mucho tiempo para su desarrollo. Además de los requisitos de ingeniería, las
diferentes herramientas de pruebas nos pueden ayudar a racionalizar y orientar el desarrollo
de una aplicación a un buen final, con el objetivo de comprobar de nuevo si parece estar
completa a través de secuencias de prueba para asegurarse de que la implementación del
protocolo se ajusta a su especificación. La generación de datos a partir de tests automáticos
ayuda a los testers a validar el software contra los requerimientos del usuario con mayor
facilidad y verificar si el software está funcionando adecuadamente siguiendo los requisitos
software. Este proceso representa más o menos el 50% del ciclo de vida del software. El
enfoque más exhaustivo es poner a prueba todas las combinaciones posibles con el objetivo
de descubrir algún error, pero esto con frecuencia es imposible debido a la gran cantidad de
pruebas que supera con creces el tiempo y los recursos disponibles para ejecutarlos, por lo
tanto, la parte crucial de las pruebas software consiste en seleccionar los datos que serán
posteriormente analizados en dichas pruebas software. Los testers tienen que decidir qué
datos de prueba deben utilizar, y que técnica heurística se necesita para resolver un problema
dado automáticamente para reducir el número de pruebas combinatorias mientras se
mantiene la capacidad de detección de fallos. La investigación en el campo de pruebas
software en los últimos años se ha centrado en la modificación de métodos existentes,
incluyendo entre ellos el más importante y en el que se ha basado más trabajo, el método W, a
partir del cual se han desarrollado otros métodos como HIS, Wp, Mp y UIOv.

En esta tesis se ha analizado el comportamiento de las técnicas existentes, tanto del
método W como del Wp en nuestro propio statechart en busca de las limitaciones y mejoras.
Como una alternativa a los métodos existentes, hemos propuesto un algoritmo basado en los
métodos W y Wp, ideas propias e ideas recogidas de las distintas formas de trabajar con
transiciones de un statechart dado. Aplicamos las técnicas de pruebas de caja gris (grey-box
testing) que combina las pruebas de caja negra y blanca (black-box and white-box testing). Las
pruebas de caja negra son una técnica software de testing en las que la funcionalidad del
software se pone a prueba sin tener en cuenta la estructura del código interno (los testers
prepararan los datos de entrada y los resultados esperados), mientras que las pruebas de caja
blanca son una técnica de verificación de software que los ingenieros pueden utilizar para
examinar si su código funciona como se esperaba (pruebas de estructura internas). El concepto
de las pruebas de caja gris es simple, se basa en la realización de pruebas de caja negra
basadas en casos de prueba realizados por personas que conocen el código del programa.

Una de las mejoras que aporta nuestro método es que funciona de forma incremental
reduciendo así la longitud de la secuencia de prueba generada por lo que este siempre
empieza desde el mismo estado inicial de un FSM dado. Uno de los mayores problemas que
encontramos es la aparición de bucles infinitos cuando aplicamos nuestra fórmula, que hemos
resuelto mediante la adición de un número finito de iteraciones para el algoritmo de manera
que no entre en un bucle infinito. Otra mejora es que se ha modificado el statechart inicial
para identificar cada estado por separado, suponiendo que los casos de prueba pueden ser
identificados y no es necesario aplicar la discriminación por conjuntos para ello. Nuestro
objetivo es desarrollar un algoritmo que reduzca significativamente la duración de las
secuencias de prueba necesarias para las pruebas de conformidad, manteniendo la misma
capacidad de detección de fallos. Para demostrarlo, vamos a trabajar en el mismo ejemplo,
con diversas modificaciones, donde se aplican diferentes métodos de prueba, aparte del que
hemos desarrollado.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

10

Palabras clave: Pruebas software, generación de casos de prueba, statecharts, pruebas basadas en la
especificación, métodos formales, máquinas de estados finitos (FSM), pruebas de caja gris-negra-blanca,
discriminación por conjuntos.

 Test cases generation for functional tests of user interfaces.

11

Resum

Tant les aplicacions software com les web s'estan fent cada vegada més i més grans
necessitant així una major quantitat de recursos, per tant la creació d'aquests requereix molt
de temps per al seu desenvolupament. A més dels requisits d'enginyeria, les diferents eines de
proves ens poden ajudar a racionalitzar i orientar el desenvolupament d'una aplicació a un
bona fi, amb l'objectiu de comprovar de nou si sembla estar completa a través de seqüències
de prova per assegurar-se que la implementació del protocol s'ajusta a la seva especificació. La
generació de dades a partir de tests automàtics ajuda als testers a validar el software contra
els requeriments de l’usuari amb més facilitat i verificar si el software està funcionant
adequadament seguint els requisits. Aquest procés representa més o menys el 50% del cicle de
vida del software. L'enfocament més exhaustiu és posar a prova totes les combinacions
possibles amb l'objectiu de descobrir algun error, però això a sovint és impossible a causa de la
gran quantitat de proves que supera amb creixes el temps i els recursos disponibles per
executar-los, per tant, la part crucial de les proves software consisteix a seleccionar les dades
que seran posteriorment analitzades en aquestes proves. Els testers han de decidir quines
dades de prova han d'utilitzar, i que tècnica heurística es necessita per resoldre un problema
donat automàticament per reduir el nombre de proves combinatòries mentre es manté la
capacitat de detecció d'errors. La investigació en el camp de proves software en els últims anys
s'ha centrat en la modificació de mètodes existents, incloent-hi el més important i en el qual
s'ha basat més treball, el mètode W, a partir del qual s'han desenvolupat altres mètodes com
HIS, Wp, Mp i UIOv.

En aquesta tesi s'ha analitzat el comportament de les tècniques existents, tant del
mètode W com del Wp en el nostre propi statechart a la recerca de les limitacions i millores.
Com una alternativa als mètodes existents, hem proposat un algoritme basat en els mètodes
W i Wp, idees pròpies i idees recollides de les diferents formes de treballar amb transicions
d'un statechart donat. Apliquem les tècniques de proves de caixa gris (grey-box testing) que
combina les proves de caixa negra i blanca (black-box and white-box testing). Les proves de
caixa negra són una tècnica software de testing on la funcionalitat del software es posa a
prova sense tenir en compte l'estructura del codi intern (els testers prepararan les dades
d'entrada i els resultats esperats), mentre que les proves de caixa blanca són una tècnica de
verificació de software que els enginyers poden utilitzar per examinar si el seu codi funciona
com s'esperava (proves d'estructura internes). El concepte de les proves de caixa gris és
simple, es basa en la realització de proves de caixa negra basades en casos de prova realitzats
per persones que coneixen el codi del programa.

Una de les millores que aporta el nostre mètode és que funciona de manera
incremental reduint així la longitud de la seqüència de prova generada de manera que aquest
sempre comença des del mateix estat inicial d'un FSM donat. Un dels majors problemes que
trobem és l'aparició de bucles infinits quan apliquem la nostra fórmula, que hem resolt
mitjançant l'addició d'un nombre finit d'iteracions per l'algoritme de manera que no entri en
un bucle infinit. Una altra millora és que s'ha modificat el statechart inicial per identificar cada
estat per separat, suposant que els casos de prova poden ser identificats i no cal aplicar la
discriminació per conjunts per a això. El nostre objectiu és desenvolupar un algoritme que
redueixi significativament la durada de les seqüències de prova necessàries per a les proves de
conformitat, mantenint la mateixa capacitat de detecció d'errors. Per demostrar-ho,
treballarem amb el mateix exemple, amb diverses modificacions, on s'apliquen diferents
mètodes de testing, a part del que hem desenvolupat.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

12

Paraules clau: Proves software, generació de casos de prova, statecharts, proves basades en la especificació,
mètodes formals, màquines de estats finits (FSM), proves de caixa gris-negra-blanca, discriminació per conjunts.

 Test cases generation for functional tests of user interfaces.

13

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

14

Content

Index of Figures 18

Index of Tables 21

Index of Equations 23

Acronyms 25

Chapter 1.
1. Introduction. 27
 1.1 Motivation of the work 29
 1.2 Goals 29
 1.3 Research method 30
 1.4 Document organization 31
 1.5 Structure of the thesis 34

Chapter 2.
2. Basic concepts. 38
 2.1 Concept of testing 40
 2.1.1 Test planning 41
 2.2 Different ways to create test cases 42
 2.2.1 Randomly 42
 2.2.2 Generating usual paths 43
 2.2.3 Generating all possible paths 43

 2.3 Automated test concepts 44
 2.3.1 Implantation of automated tests 44
 2.4 Finite state machines (FSM) 45
 2.5 Statechart diagram 46
 2.6 Differences between FSM and statechart 46

Chapter 3.
3. State of the Art. 50
 3.1 Evolution of methodologies 52
 3.1.1 First stage. Since the industrial revolution to 1930 53
 3.1.2 Second stage. 1930-1949 54
 3.1.3 Third stage. 1950-1979 54
 3.1.4 Quarter stage. Decade of 80 54
 3.1.5 Fifth stage. From 1990 to date 54
 3.2 Basic concepts and tools to run performance tests 54
 3.2.1 Performance test 54
 3.2.2 Performance testing types 54
 3.2.3 Performance testing by Ian Molyneaux 55
 3.2.4 Object-Oriented Methodology for Life Cycle Completed 56

 3.2.6 Types of performance tests 59
3.3 Tools to conduct performance tests 60
 3.3.1 JMeter 60
 3.3.2 JCrawler 61
 3.3.3 WAPT 61
 3.3.4 Netsparker 61

 Test cases generation for functional tests of user interfaces.

15

 3.3.5 OpenSTA 62
 3.3.6 TestMaker 62
3.4 Comparative analysis 63

Chapter 4.
4. Literature Review. 66
 4.1 Analysis of W and Wp methods. 68
 4.1.1 Describing the statechart 68
 4.1.2 Flattened statechart of the MAIN without hierarchy 69
 4.1.3 State hierarchy 69
 4.1.4 Configurations 70
 4.1.5 Test generation for statecharts with W method 70
 4.1.6 Applying the formulas for all the statechart 73
 4.1.7 Final results for W-Method 74
 4.1.8 Test case generation for statecharts with Wp method 74
 4.1.9 Conclusions of W & Wp Methods 77
 4.2 Satisfy All-Configurations-Transitions on Statecharts 77
 4.3 A Bipartite Graph Approach 77

Chapter 5.
5. Adapt Bogdanov's theory (W) to state machines used to model UIs. 80
 5.1 Describing our TV1 statechart 82
 5.2 Solving the problem of loops 82
 5.2.1 Create the first version of the flattened statechart of TV1 84
 5.2.2 Positive, negative and redundant test cases 85
 5.3 Apply W method to TV1 without state hierarchy and without
 concurrent region 87
 5.3.1 Simplest model change transitions "+" and "-" for numbers
 with a broken forward and a backward loop around
 ch1, ch2, ch3 and ch4. 88
 5.3.2 Simplest model change transitions "+" and "-" for numbers
 only up direction between channels. 93
 5.3.3 Simplest model with transitions "+" and "-" with a
 broken transition “-” between ch1 and ch4. 98
 5.3.4 Simplest model with transitions "+" and "-". 103
 5.3.5 Simplest model change transitions "+" and "-" for
 numbers (direction up and down between channels). 104
 5.3.6 Simplest model with transitions "+" and "-" with a
 broken forward and a backward loop around
 ch1, ch2, ch3, ch4.
 5.4 Obtained results and conclusions of W Method. 107
 5.5 Applying Wp-method to TV1 without concurrent region and
 without state hierarchy 109
 5.5.1 Simplest model with a broken forward and a backward
 loop around ch1 , ch2, ch3 and ch4. 109
 5.5.2 Simplest model change transitions "+" and "-" for numbers
 only up direction between channels. 157
 5.5.3 Simplest model change transitions "+" and "-" for numbers
 only up direction between channels. 113
 5.5.4 Simplest model with transitions "+" and "-". 123
 5.6 Obtained results and conclusions of Wp Method. 124
 5.7 Comparison of the results obtained with W and Wp methods 125

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

16

Chapter 6.
6. Definition and analysis of the new algorithm U-Method. 129
 6.1 Creation of the new testing algorithm U-method 131
 6.2 Adapt U-method to state machines used to model UIs 133

 6.2.1 Apply U-method to TV1 original flattened model
 without customization. 134
 6.2.2 Apply U-method to TV1 to model 3 of chapter 5 137
 6.3 Obtained results and conclusions for the U-Method. 140
 6.4 Comparison of the results obtained with W, Wp and U methods 141

Chapter 7.
7. Applying the methods to the statechart with Bugs. 145
 7.1 Errors on Model 1 obtained with W Method. 147
 7.1.1 Damage state Ch1. 147
 7.1.2 Create new state Ch5. 149
 7.1.3 Create a new transition “on”. 150
 7.1.4 Create a new transition “x”. 151
 7.1.5 Create a new transition “on[ch1]”. 152
 7.1.6 Damage transition between states Ch2 and Ch1. 153
 7.1.7 Change transition “off” by “standby”. 155

Chapter 8.
8. Conclusions. 158
 8.1 Contributions 160
 8.2 Alternatives to testing 161
 8.3 Conclusions and future work 161

Bibliography 165

Annexes 168

 Test cases generation for functional tests of user interfaces.

17

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

18

Index of figures

Figure 1.3.1 Research method. 30
Figure 1.4.1 Summary Schedule of tasks. 31
Figure 1.4.2 Calendar of open tasks. 34
Figure 2.1.1 Synonims of test. 40

 Figure 2.1.1.1 Software Testing Life Cycle (STLC). 41
 Figure 2.2.1.1 Randomly test cases generation 42
 Figure 2.2.2.1 Generating test cases by usual paths. 43
 Figure 2.2.3.1. Generating all possible paths by algorithms. 43

Figure 2.2.3.2. Represent the User Interface and their equivalent
statechart to apply the algorithms. 44

 Figure 2.4.1 Representation of a simple finite state machine. 45
 Figure 2.5.1 Example of simple statechart. 46
 Figure 2.6.1 Finite state machine. 46
 Figure 2.6.2 Statechart diagram. 47
 Figure 3.1.1 Methodologies for software development. 52
 Figure 3.1.2 Basic ideas of quality. 53
 Figure 3.1.1.1 Example of automation in the vehicle industry 53
 Figure 3.2.4.1 Quality Assurance. 57
 Figure 3.2.4.2 Test Techniques. 58
 Figure 3.2.5.1 Types of tests. 59
 Figure 3.2.1 JMeter graph result. 60
 Figure 3.3.1 WAPT Report graph. 61
 Figure 3.3.4.1 Graphical interface of Netsparker. 62
 Figure 3.3.6.1 Interface of the tool TestMaker. 62
 Figure 4.1.1.1 The taperecorder statechart. 68
 Figure 4.1.2.1 The flattened statechart of the MAIN state 69
 Figure 4.1.3.1 The state tree of the tape recorder. 70
 Figure 4.1.4.1 Types of configurations (compound transitions). 70
 Figure 4.1.5.1 MAIN without state hierarchy 71

Figure 4.1.5.2 Calculating state hierarchy. 72
Figure 4.1.5.3 Concurrent part omitted. 72
Figure 4.1.5.4 State hierarchy part. 72
Figure 4.1.5.5 Calculating for concurrency 73
Figure 4.1.8.1 Calculating small w sets 75
Figure 4.1.8.2 Erroneous transition 75
Figure 5.1.1 TV1 Statechart. 82
Figure 5.2.1 Example of statement coverage. 84
Figure 5.2.1.1. Original statechart. 84
Figure 5.2.1.2. First version of Flattened statechart. 84
Figure 5.2.2.1 Example of a positive path test case. 85
Figure 5.2.2.2. Example of a negative path test case. 86
Figure 5.2.3. Example of a redundant path test case. 85
Figure 5.3.1 Original Statechart of TV1. 87
Figure 5.3.2 Flattened statechart. 87
Figure 5.3.1.1. Changed model 1. 88
Figure 5.3.1.2. Covered transitions. 91
Figure 5.3.1.3 Types of test cases model 1. 93
Figure 5.3.2.1 Changed model 2. 93
Figure 5.3.2.2. Types of test cases on model 2. 98

 Test cases generation for functional tests of user interfaces.

19

Figure 5.3.3.1. Changed model 3. 99
Figure 5.4.2.2. Types of test cases on model 3. 103
Figure 5.3.4.1 Changed model 4. 103
Figure 5.3.5.1. Changed Model 5. 104
Figure 5.3.6.1. Changed Model 6. 106
Figure 5.4.1 Test cases for the different models of TV1 statechart. 107
Figure 5.5.1 Original Statechart of TV1. 108
Figure 5.5.2 Flattened statechart. 109
Figure 5.5.1.1 Model 1. 110
Figure 5.5.1.2. Types of test cases on model 1. 113
Figure 5.5.2.1 Customized model 2. 113
Figure 5.5.2.2. Types of test cases on model 2. 117
Figure 5.5.3.1 Customized model 3. 117
Figure 5.5.3.2. Types of test cases on model 3. 122
Figure 5.5.4.1 Customized model 4. 123
Figure 5.5.4.2 Not supported models 5 and 6. 124
Figure 5.6.1 Test cases for the different models of TV1 statechart with
 Wp method. 124
Figure 5.7.1 Simplest model with a broken forward and a backward loop
 around ch1,ch2,ch3,ch4 125
Figure 5.7.2 Simplest model with transitions ‘+’ and ‘-‘ with a broken
 transition ‘-‘ between ch1 and ch4 126
Figure 5.7.3 Simplest model with transitions ‘+’ and ‘-‘ with a broken
 transition ‘-‘ between ch1 and ch4 127
Figure 5.7.4 Statechart and Diagram of the best model after testing with
 W & Wp methods. 127
Figure 6.1.1. Content of the mail to create the algorithm. 131
Figure 6.1.1. TV1 statechart to extract new variables. 132
Figure 6.2.1 Original Statechart of TV1. 133
Figure 6.2.2 Flattened statechart. 133
Figure 6.2.1.1 Original flattened statechart. 134
Figure 6.2.1.2. Obtained test cases for the original flattened statechart of TV1. 137
Figure 6.2.2.1 Simplest model with transitions "+" and "-" with a broken
 transition “-” between ch1 and ch4. 137
Figure 6.2.2.2 Obtained test cases for the simplest model with transitions "+"
 and "-" with a broken transition “-” between ch1 and ch4. 140
Figure 6.3.1 Test cases for the different models of TV1 statechart with
 Wp method. 141
Figure 6.4.1. Obtained results for the original flattened statechart. 142
Figure 6.4.2. Obtained results for the simplest model with transitions ‘+’ and ‘-‘
 with a broken transition ‘-‘ between ch1 and ch4.
 (Model 3 in chapter 5) 143
Figure 6.4.3 Statechart and Diagram of the best model after testing with
 W & Wp methods. 143
Figure 7.1.1. Model 1 of chapter 5 to apply bugs. 147
Figure 7.1.1.1 Bug 1. 147
Figure 7.1.1.2 Detection of the error. 148
Figure 7.1.1.3 Part of code with Dreamweaver. 148
Figure 7.1.2.1 Bug 2. 149
Figure 7.1.2.2 Validation with Selenium. 150
Figure 7.1.3.1 Bug 3. 150
Figure 7.1.3.2 Detection of the error. 151

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

20

Figure 7.1.3.3 Part of code with Dreamweaver. 151
Figure 7.1.4.1 Bug 4. 151
Figure 7.1.5.1 Bug 5. 152
Figure 7.1.5.2 Detection of the error with Selenium. 152
Figure 7.1.5.3 Part of code with Dreamweaver. 153
Figure 7.1.6.1 Bug 6. 153
Figure 7.1.6.2 Detection of the error with Selenium. 154
Figure 7.1.6.3 Part of code in Dreamweaver. 154
Figure 7.1.7.1 Bug 7. 155
Figure 7.1.7.2 Detection of the error with Selenium. 155
Figure 7.1.7.3 Part of code with Dreamweaver. 156
Figure 8.3.1. Divide the statechart in two parts. 162

 Test cases generation for functional tests of user interfaces.

21

Index of tables

Table 1.2.1 Typical Software Quality Factors. 30
Table 2.1.1 Verification and Validation: Definition, Differences, Details. 41
Table 2.1.2.1 Activities, deliverables and Necessities of each phase of STLC. 42

 Table 3.4.1 Comparative Analysis of Commercial Applications. 64
 Table 5.3.1.1. Transition matrix A. 87
 Table 5.3.1.2. Adjacency matrix B. 88
 Table 5.3.1.3. Adjacency matrix B*B. 89
 Table 5.3.2.1 Transition matrix A. 94
 Table 5.3.2.2. Adjacency matrix B. 94
 Table 5.3.2.3. Adjacency matrix B*B. 94
 Table 5.3.3.1 Transition matrix A. 99
 Table 5.3.3.2. Adjacency matrix B. 99
 Table 5.3.3.3. Adjacency matrix B*B. 100
 Table 5.3.4.1 Transition matrix A. 104
 Table 5.3.5.1. Transition matrix A. 105
 Table 5.3.6.1. Transition matrix A. 106
 Table 5.5.1.1 Test cases of phase 2. 111
 Table 5.5.2.1 Test cases of phase 2. 116
 Table 5.5.3.1 Test cases of phase 2. 121
 Table 6.1.1 Definition of new variables for U-Method. 132

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

22

 Test cases generation for functional tests of user interfaces.

23

Index of equations

Equation 4.1.5.1 Non hierarchical. 72
Equation 4.1.7.1. Results for the W-Method 74
Equation 4.1.8.1 Wp method. 74
Equation 4.1.8.1 Phase 2 of Wp-Method. 75
Equation 5.3.1.1 W Method. 89
Equation 5.3.2.1 W method. 95
Equation 5.3.3.1 W method. 100
Equation 5.3.4.1. W Method. 104
Equation 5.3.5.1. W Method. 105
Equation 5.3.6.1. W Method. 106
Equation 5.5.1.1 Set of test cases for the first phase of Wp method. 110
Equation 5.5.1.2 Transitions that will be explored in phase 2. 110
Equation 5.5.1.3 Developed Transitions that will be explored in phase 2. 110
Equation 5.5.1.4 Test cases of phase 2. 110
Equation 5.5.1.5 Test cases of phase 2. 110
Equation 5.5.1.6 Expected output of every test case. 111
Equation 5.5.2.1 Set of test cases for the first phase of Wp method. 114
Equation 5.5.2.2 Transitions that will be explored in phase 2. 115
Equation 5.5.2.3 Developed Transitions that will be explored in phase 2. 115
Equation 5.5.2.4 Test cases of phase 2. 115
Equation 5.5.2.5 Test cases of phase 2. 115
Equation 5.5.2.6 Expected output of every test case. 116
Equation 5.5.3.1 Set of test cases for the first phase of Wp method. 119
Equation 5.5.3.2 Transitions that will be explored in phase 2. 119
Equation 5.5.3.3 Developed Transitions that will be explored in phase 2. 119
Equation 5.5.3.4 Test cases of phase 2. 120
Equation 5.5.3.5 Test cases of phase 2. 120
Equation 5.5.2.6 Expected output of every test case. 120
Equation 6.1.1. U-Method 131
Equation 6.1.2. Simplified equation of U-Method. 131

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

24

 Test cases generation for functional tests of user interfaces.

25

Acronyms

QA Quality assurance.

RE Requirements engineering.

SRS Software requirements specification.

FSM Finite state machines.

SUT System under test.

MDE Model Driven Engineering.

SQC Statistical Quality Control

CQC Total Quality Control.

FLOOT Full Life-Cycle Object-Oriented Testing.

SLA Service Level Agreement.

CAST Computer Aided Software Testing.

QoS Optimal levels of Service Quality.

CVU Concurrent Virtual Users.

MRT Maximum Response Time.

STLC Software Testing Life Cycle.

XM X-machine.

DNF Disjunctive Normal Form.

ATSP Asymmetric Travelling Salesman Problem.

IOTS Input/Output Transition System.

ATSP Asymmetric Travelling Salesman Problem.

IUT Implementation Under Test.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

26

 Test cases generation for functional tests of user interfaces.

27

Chapter 1

Introduction

This chapter focuses on introducing the
main motivations that have carried to the
completion of this Master's thesis and its
objectives. The chapter is structured in four
points.

First point concerns the motivation that
has led us to choose this work. Secondly speaks of
work goals. Thirdly mentioned the different
algorithms which work on the thesis and the final
point talks about the organization and dates of the
distribution of the thesis.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

28

 Test cases generation for functional tests of user interfaces.

29

1.1 Motivation of the work

One of the biggest reasons that led us to investigate about generating test cases from user
interfaces was that it is an area in currently booming and is increasingly demanded by different
companies since these are beginning to integrate testing into their production lines. Therefore
is interesting to research in this area since it is increasingly demanded by companies and this
knowledge is interesting for get more possibilities to find a job the day of tomorrow.

Another reason that made us to choose this line of research is that we found several
weaknesses in generating test cases with existing methods, so that we have proposed solve
them and even improve the number of test cases that these methods get developing a new
testing method about which we will discuss in Chapter 6 of this work.

We need to differentiate the terms of test cases and testing. Test cases are every one of
the possible actions that one user can execute on a user interface and there are several ways
to calculate of which we'll talk in chapter two of this thesis. On the other hand the process of
software testing is the activity that verify or not if an application runs as his specification
indicates, in other words, software testing is a process in the life-cycle of a software project
that verifies that the product or service meets quality expectations and validates that software
meets the requirements specification (SRS) identifying these as the test cases. In the process of
software testing are involved “test cases” as inputs for the testing tool, “generated outputs” by
the test cases and “expected outputs” determined by the analyst. If the “generated outputs”
coincide with the “expected outputs” we can confirm that don´t exist errors in the
implementation. We can do this kind of work by Testing tools as Selenim. The purpose of
testing can be quality assurance, verification and validation, or reliability estimation.

Today there are several testing algorithms (HIS, W, Wp, Mp, UIOv ...), we analyze the most
important looking for strengths and weaknesses of each in the case study of chapter 5 with the
existing methods W & Wp developed in [7] looking for limitations and then in chapter 6 apply
the method that we have developed showing that eliminates the limitations of previous
methods and improves the results obtained.

With this process of testing what is being sought is to create an algorithm capable of
analyzing any type of application before being exposed to the end user, ensuring that complies
with all software requirements that can be sell a safe and quality software.

1.2 Goals

This work aims to analyze different methods of testing on the same statechart, so as to
obtain conclusions about the quality attributes. Based on these conclusions obtained about
the existing methods discussed we have decided to develop a new method by solving these
deficiencies and improving the obtained results. We can say that we are in the final stage of
the life cycle of a software product line, since only take out the activities of testing once the
software is ready, or seems to be, for commercialization or market exhibition. The principal
objectives of our research are to “improve quality” and “for Verification & Validation (V&V)”.

Testing can serve as metrics. It is heavily used as a tool in the V&V process. Testers can
make claims based on interpretations of the testing results, which either the product works

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

30

under certain situations, or it does not work. We can also compare the quality among different
products under the same specification, based on results from the same test. We cannot test
quality directly, but we can test related factors to make quality visible. Quality has three sets of
factors functionality, engineering, and adaptability. These three sets of factors can be thought
of as dimensions in the software quality space. Each dimension may be broken down into its
component factors and considerations at successively lower levels of detail. Table 1.2.1
illustrates some of the most frequently cited quality considerations.

Functionality(exterior quality)

Engineering (interior quality)

Adaptability (future quality)

Correctness Efficiency Flexibility

Reliability Testability Reusability

Usability Documentation Maintainability

Integrity Structure
Table 1.2.1 Typical Software Quality Factors

Thus it is clear the purpose of testing of applications as the process of execution of a
program with the intention of verifying the correctness of the requirements, identify
differences between actual and expected behavior, measure quality, provide confidence and
errors.

1.3 Research method

The first thing that has been done before starting to write this thesis is to clarify the points
that were analyzed. From the information that has been discussed previously to the
conclusions that were obtained after analyzing the different testing methods shown in the
case study outlined in section 7. The research method is shown in Figure 1.3.1.

Figure 1.3.1 Research method.

Conclusions

Develop a new testing algorithm

Compare the different existing testing methods studied

Study the obtained results Looking for improvements

Read the papers

"Statechart testing method for aircraft control systems" K. Bogdanov, M.
Holcombe. 2000.

 "Testing from statecharts using the Wp method" K.Bogdanov,
M.Holcombe. 2002.

Use bogdanov's, chow's, ipate's methods to generate by hand the test cases.

Write them in Selenium and do the testing of the HTML prototype Perturb the prototype to make sure that the test cases work

Read about Using UML State Machines for Interaction Design and Usability Evaluation.

Study the state of the art and read different papers about testing methods.

 Test cases generation for functional tests of user interfaces.

31

For the realization of this thesis we have read several documents about using UML state
machines for interaction design and usability evaluation before focusing this thesis on the
comparison and analysis of different methods of testing and creating a new one. After that, we
have drawn conclusions from them working on a statechart created by us previously and
drawing conclusions on how to act so each of the different methods on our case study.

1.4 Document organization

Below shows the planning of the tasks that make this work. Additionally show the duration
in weeks of each task and the start and end dates.

Figure 1.4.1 Summary Schedule of tasks.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

32

 Test cases generation for functional tests of user interfaces.

33

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

34

Figure 1.4.2. Calendar of open tasks.

1.5 Structure of the thesis

The memory of the thesis is organized as follows:

Chapter 2. Previous concepts.

 This chapter will introduce the concepts necessary to understand the context in which
this proposal is developed. It will be necessary to define general concepts of testing
and other concepts as “Software Testing Life Cycle (STLC)” developed in [39]. After we
will discuss about the three ways that there are to generate test cases. Randomly,
generating usual paths and generating all possible paths, introducing the concept of
automated testing. And finally we will talk about the differences between “Finite State
Machines” comprehensively explained in [45] and Statecharts also comprenhensively
explained in [2] by “D. Harel and A. Naamad”, which are important because in the case
of study of the chapters 5 and 6 we work with Statecharts.

Chapter 3. State of the Art.

 In the first part of this chapter we will talk about the evolution of methodologies for
software development and the historical stages of quality developed in [46] by “Juan
Oliver”. In the second part describes basic concepts of testing, more explicit
methodologies, and positions with respect to performance testing proposed by “Ian
Molyneaux” in [27]. and mentioned various tools to run performance tests. Finally,
there is a comparative table of the most used free tools in the market. With all this
demonstrates the importance of software testing in the development of such projects

 Test cases generation for functional tests of user interfaces.

35

and how they affect the achievement of software with features more in line with new
working methods applied to the development of software products.

Chapter 4. Literature Review.

 In the first part of this chapter, at section 4.1 we will analyze the paper “Testing from
statecharts using the Wp method” [7] (which includes the W method (section 4.1.8)
created by Kirill Bogdanov with whom we maintained contact through several emails
to clarify some of the more complicated points of his method in their articles published
and after in section 4.1.11 we will analyze the Wp method, which is an improvement
of the said W created by the same author. At the end of the chapter we will discuss
other methods which do not have relationship with W and Wp finding alternative ways
for creating testing algorithms. In the following sections of this chapter are discussed
the papers of whom principal authors are “Siamak Haschemi” [32] (section 4.2) and
“Jun Wang” [33] (section 4.3).

Chapter 5. Adapt Bogdanov's theory (W) to state machines used to model UIs.

 In this chapter we have adapted “Bogdanov's theory (W and Wp)” developeds in [4]
and [7] respectively to state machines used to model UIs, without having to care about
regions and loops. In section 5.1 shows the statechart that we work from now (TV1
Statechart). Below in 5.2 discusses the problems associated with loops and how to
avoid them support us by articles published by “Beizer” in [21] and [22] explaining how
we have created the flattened statechart to implement W and Wp methods with
which we will work. Working with the algorithms in section 5.3 we focus on applying W
method in the different versions of our statechart while in section 5.4 we show a a
graphic whit the obtained results for everyone of the variations of the statechart. The
same we will do in section 5.5 and 5.6 respectively with Wp method. Finally at section
5.7 of this chapter we will check the results obtained between W and Wp methods
comparing the number of test cases in each of the tested models of our TV1
statechart.

Chapter 6. Definition and Analysis of the new algorithm U-Method.

 In this chapter we will explain the steps that we followed for the creation of a new
testing algorithm, which we have called U-Method. The following sections of this
chapter (6.2.1 and 6.2.2) shall apply this new method on TV1 statechart as was done in
Chapter 5 with “W and Wp methods” from [4] and [7]. Next in section 6.3 we will make
a comparison between the number of test cases and the relevance of them between
the different versions of the statechart for the U-method and finally in 6.4 we will do
the same but for the different methods with which we have tested our case of study in
the thesis to check wich is the best of all for this statechart.

Chapter 7. Bugs.

 In this chapter we will modify the customization 1 of the statechart used in chapter 5
to comprove that the positive test cases obtained with W-method developed in [4] are
useful and can be detect the different bugs. There are seven types of bugs, since
eliminate the transition 1 since channel 2 to channel 1 to create a new channel 5 or
create a new transition "x" to see the behavior of the algorithm amongst others. Every

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

36

one of them are checked and has sough in each case the test case that identifies the
created bug.

Chapter 8. Conclusions.

 The conclusions of the study are shown in this chapter. Are remembered proposed at
the beginning objectives of the work and checks whether there is compliance for the
different algorithms studied. We discuss possible alternatives to the testing of
applications for those who are not yet convinced the idea of issue this type of
techniques. Finally, current research and future work are exposed.

 Test cases generation for functional tests of user interfaces.

37

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

38

Chapter 2

Basic concepts

This chapter will introduce the concepts necessary to
understand the context in which this proposal is developed. It
will be necessary to define general concepts of testing and
other concepts as “Software Testing Life Cycle (STLC)”
developed in [39].

After we will discuss about the three ways that there are to

generate test cases. Randomly, generating usual paths and
generating all possible paths, introducing the concept of
automated testing.

And finally we will talk about the differences between
“Finite State Machines” comprehensively explained in [45] and
Statecharts also comprenhensively explained in [2] by “D. Harel
and A. Naamad”, which are important because in the case of
study of the chapters 5 and 6 we work with Statecharts.

 Test cases generation for functional tests of user interfaces.

39

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

40

2.1 Concept of testing

Testing is the process to show that an application has no errors and does what it should
do. It provides quality throughout the process, decreased costs and risk reduction. About 85%
of the defects occur when an application start of the stage of development. It can also be used
to generate communication designed to alter consumer attitudes toward existing products.
First to start to analyze the different types of testing, we need to clarify some basic concepts
about testing.

Figure 2.1.1 Synonims of test.

Software testing is one of the “verification and validation,” or V&V, software practices.
Some other V&V practices, such as inspections and pair programming, will be discussed in [14]
edited by “J.D. Meier and Scott Barber”. Verification activities include testing and reviews.
Validation is the process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements. At the end of
development validation activities are used to evaluate whether the features that have been
built into the software satisfy the customer requirements and are traceable to customer
requirements. “Boehm” in [15] has informally defined verification and validation in the table
below:

 Test cases generation for functional tests of user interfaces.

41

Criteria Verification Validation

Definition The process of evaluating
work-products (not the
actual final product) of a
development phase to
determine whether they
meet the specified
requirements for that phase.

The process of evaluating
software during or at the end
of the development process
to determine whether it
satisfies specified business
requirements.

Objective To ensure that the product is
being built according to the
requirements and design
specifications. In other
words, to ensure that work
products meet their specified
requirements.

To ensure that the product
actually meets the user’s
needs, and that the
specifications were correct in
the first place. In other
words, to demonstrate that
the product fulfills its
intended use when placed in
its intended environment.

Question Are we building the product
right?

Are we building the right
product?

Evaluation Items Plans, Requirement Specs,
Design Specs, Code, Test
Cases

The actual product/software.

Activities  Reviews

 Walkthroughs

 Inspections

 Testing

Table 2.1.1 Verification and Validation: Definition, Differences, Details.

2.1.1 Test planning

Test planning as mentioned in [38] involves scheduling and estimating the system testing
process, establishing process standards and describing the tests that should be carried out. A
test plan is a document describing the scope, approach, resources, and schedule of intended
test activities. It identifies test items, the features to be tested, the testing tasks, who will do
each task, and any risks requiring contingency plans as described in [14]. An important
component of the test plan is the individual test cases. A test case is a set of test inputs,
execution conditions, and expected results developed for a particular objective, such as to
exercise a particular program path or to verify compliance with a specific requirement. So the
idea is to propose a test plan as soon as possible in the development cycle as we can se in fig.
2.1.1.1 from when things are generally still going pretty and not when things start to go wrong
as we can see in table 2.1.1.1 which comes from “Software Testing Life Cycle (STLC)”
commented in [39], thus preventing alarm states in the development process.

Figure 2.1.1.1 Software Testing Life Cycle (STLC).

Requeriments/Design Review

Test Planing

Test Designing

Test Environment Setup

Test Execution and Reporting

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

42

Phase Activity Deliverables Necessity

Requirements/Design
Review

You review the software
requirements/design

 Review

 Defect

 Reports

Curiosity

Test Planning Once you have gathered a
general idea of what needs
to be tested, you ‘plan’ for
the tests.

 Test Plan

 Test Estimation

 Test Schedule

Farsightedness

Test Designing You design/detail your tests
on the basis of detailed
requirements/design of the
software

 Test Cases / Test
Scripts /Test Data

 Requirements
Traceability Matrix

Creativity

Test Environment
Setup

You setup the test
environment with the goal
of replicating the end-
users’ environment.

 Test Environment Rich company

Test Execution You execute your Test
Cases/Scripts in the Test
Environment to see
whether they pass.

 Test Results
(Incremental)

 Defect Reports

Patience

Test Reporting You prepare various reports
for various stakeholders.

 Test Results (Final)

 Test Metrics

 Test Closure
Report

Diplomacy

Table 2.1.2.1 Activities, deliverables and Necessities of each phase of STLC.

2.2 Different ways to generate test cases

We are going to talk about the three ways that there are to generate test cases.
Randomly, generating usual paths and generating all possible paths.

2.2.1 Randomly

This type of generation of test cases is generated daily on the web that is, it would be a
common user browsing a web user interface and finding an error by chance. We could say that
every web user would be a “randomly generated test case” that can find a bug in the
implementation of some interface that are running.

Figure 2.2.1.1 Randomly test cases generation.

 Test cases generation for functional tests of user interfaces.

43

2.2.2 Generating usual paths

This kind of test cases will be obtained through tools which capture all the actions that the
user executes on a application generating scripts which would be the test cases for a certain
tool. For example if we capture all the possible user actions commented previously in point
2.2.1 by a tool, this tool internally converts each one of the captured user actions in a test
case. With this process we will obtain a set of test cases representing the usual paths in certain
application. We are talking about usual paths because we are working with common user
actions on an application, if we collect the different actions of a thousand users, usually
execute repetitive and basic actions.

Figure 2.2.2.1 Generating test cases by usual paths.

 As well as we have talked about capturing the common user actions, by a tool it could
capture the user actions of a tester, who will be patient, observant, speculative, creative,
innovative, open-minded, resourceful and skillful. This is a laborious activity that requires the
tester to possess this set of qualities.

The generated test cases this time don’t will be only the usual paths, because now is a
tester not a common user who is executing actions over the application, but it is impossible to
confirm that a tester will explore all the possible paths of one application. It is possible if the
application is small and doesn’t have a lot of actions, but if we are talking about a commercial
application with a lot of states and transitions, it is impossible to run all of them by a tester.
Manual testing can be replaced by test automation covering all the possible paths in an
application and we are going to see it in next step 2.2.3.

2.2.3 Generating all possible paths

We generate this type of test cases by algorithms defining abstract user
representations on an interface through statecharts.

Figure 2.2.3.1. Generating all possible paths by algorithms.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

44

To apply the algorithms the first thing that we need to do is to convert the application
that we want test in a model with which we can apply the formula of the commented
algorithm. For example for a user interface, we can generate an statechart that represent the
same functionality in terms of states, transitions and condition transitions. We can see an
example in Figure 2.2.3.2 in which we present an user interface and the equivalent statechart
in terms of functionality.

Figure 2.2.3.2. Represent the User Interface and their equivalent statechart to apply the algorithms.

 Now we can apply several methods of automated generation test cases (as for
example “W & Wp Methods” developed in [7] and commented in chapter 5 or our developed
U-Method commented in chapter 6 of this thesis) on the generated statechart. If a method
accept the statechart, we can assure that the obtained test cases cover all the possible paths in
the User Interface as we will see in chapters 6 and 7 with the case study.

2.3 Automated test concepts

As mentioned in the previous section 2.2.3 as an introduction to the test automation, this
process is the use of software to control;

 The execution of tests,

 The comparison of actual outcomes to predicted outcomes,

 The setting up of test preconditions,

 and other test control and test reporting functions.

2.3.1 Implantation of automated tests

As we have commented in chapter 1, there are some companies that are recognizing the
importance of automating the work of testers and including the auto-test as part of the regular
build process. The results of the automatic test are seen as a measure of the current quality of
the software.

Here are some of the advantages, collected from “Automated Test Concepts” in [40], of
having automated test scripts which can be run after each new build of the application:

 Low Running Cost: running an automated test script before each release of a new
version, patch or bug fix is a lot cheaper than a manual test.

 Test cases generation for functional tests of user interfaces.

45

 Better Quality: especially for individual developers and small companies who would

not employ a tester and will perform all testing themselves.

 Consistency: the test script will perform the same checks every time it is run. A manual
test will be affected by human error and it will tend to skip certain areas believed to be
stable.

 Speed: a script will execute many times faster than a manual test, giving us a full report

on the quality of your product in a few minutes.

 Formal: A code coverage tool can tell us how much code is tested. The test scripts can
then tell us if our test runs fine. The result is the exact percentage of the code which is
guaranteed to work fine.

 Compactness: we can perform a full compatibility check by simply copying the

application together with the test scripts on all the platforms where you believe it
should work. It can give us the confirmation that all functionality works indeed as
expected.

“Automated Test Concepts” in [40] are not meant to completely replace manual testing

becuse they cannot be used on small components during development process. For more
information about automated test concepts we can consult the point “Types of test” inside the
sections of [40] of our bibliography.

2.4 Finite state machines (FSM)

A finite-state machine (FSM) is a mathematical model used to design computer programs
and digital logic circuits. “Finite-state machine” in [44] is conceived as an abstract machine that
can be in one of a finite number of states.

 The machine is in only one state at a time.

 The state it is in at any given time is called the current state.

 It can change from one state to another when initiated by a triggering event or
condition, this is called a transition.

 A particular FSM is defined by a list of the possible transition states from each
current state, and the triggering condition for each transition.

Figure 2.4.1 Representation of a simple finite state machine.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

46

“Finite-state machines” commented in [45] can model a large number of problems, among
which are electronic design automation, communication protocol design, parsing and other
engineering applications. In biology and artificial intelligence research, state machines or
hierarchies of state machines are sometimes used to describe neurological systems, and in
linguistics they can be used to describe the grammars of natural languages.

2.5 Statechart diagram

The “statechart diagram” in [42] were invented by “Dr. Harel” in [1], and are sometimes
called Harel Statecharts. He defined a pretty broad extension to typical state machines, with
the goal of making state machines more useful for actual work with complicated systems. A
variant of Statecharts are build into Matlab now, as “stateflow”, which is an extension of
simulink.

Statechart diagram is one of the five UML diagrams used to model dynamic nature of a

system. The basic elements of an statechart are;

 There are an initial state A.

 The states (represented by boxes).

 Transitions (represented by arrows and go from one state to another in one
direction or another).

 Transition condition (for each one of the transitions we have one condition).

 When a state call a condition transition, the system go since this state to the state
that receive as input the transition called by his condition.

 Statecharts can have composite states.

Figure 2.5.1 Example of simple statechart.

2.6 Differences between finite state machine and statechart

Before to see the differences between FSM and Statecharts we want to remember that
when we apply the methods analyzed in chapter 4 (Literature Review) in our case study in
chapters 5 and 6, we will work with state diagrams (statecharts) for this reason is important to
clarify the differences between them. A state machine (FSM) is an abstract machine for parsing
strings of input in a formal language, while a state diagrams are used to give an abstract
description of the behavior of a system.

So “UML Statechart” in [43] describes a state machine. Now to clarify it, state machine

can be defined as a machine which defines different states of an object and these states are
controlled by external or internal events. To see the differences clearly we are going to show
two examples, the first with FSM and then with an statechart.

http://stackoverflow.com/questions/8190385/difference-between-a-statechart-and-a-finite-statemachine-fsm

 Test cases generation for functional tests of user interfaces.

47

Figure 2.6.1. Finite state machine.

In the above FSM, the state machine would successfully parse the string "ac" but
would not parse the string "befd" (because there is no path from the starting state to a final
state that successively picks off those symbols in that order). They consist of states and arrows
between the states where certain actions can trigger an transition along an arrow. Moore and
Mealy machines are the two main variants, which indicate whether the output is derived from
the transitions or the states themselves.

In the other hand with the below example of the statechart says that some system

may be in one of three main states (TV1, ON or WORKING). We can se that the main state TV1
is a composite state by another composite state ON. At the same time the composite state ON
contain the main state WORKING with four states. The main state WORKING inherits the
transitions of the composite states that belongs (TV1 and ON). At the same time the main state
ON inherits the transitions of TV1.

 It assumes that state Off is the initial state

 State Off can execute the transition on from state Off to state Ch1, because
Ch1 is the initial state in the main state WORKING.

 Since Ch1 we can move up or down between the different states of the
channels (Ch1, Ch2, Ch3, Ch4) by the transitions + and -.

 Since the main state WORKING we can execte the transition standby to go to
main state ON or transition off to go to main state TV1.

 State Standby can back again to main state WORKING by the transition on or
go to main state TV1 with transition off.

Figure 2.6.2 Statechart diagram.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

48

So while they may appear visually similar, they are different tools from different toolboxes
used for different purposes; one's from computational theory, the other is from a design
description formalism.

 Test cases generation for functional tests of user interfaces.

49

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

50

Chapter 3

State of the Art

In the first part of this chapter we talk about the evolution of
methodologies for software development and the historical stages of
quality developed in [46] by “Juan Oliver”.

In the second part describes basic concepts of testing, more
explicit methodologies, and positions with respect to performance
testing proposed by “Ian Molyneaux” in [27] and mentioned various
tools to run performance tests.

Finally, there is a comparative table of the most used tools in
the market. With all this demonstrates the importance of software
testing in the development of such projects and how they affect the
achievement of software with features more in line with new
working methods applied to the development of software products.

 Test cases generation for functional tests of user interfaces.

51

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

52

3.1 Evolution of methodologies

Before looking at the evolution of the methodologies of testing, we will briefly review the
emergence of quality in the integration of software products, as this quality required in each
and every one of the products coming to market is the factor that has originated and
expanded testing, which we could say that they are the last step in the chain when the end
product.

Software development for many people is still something that seems like magic and

believes that developing software is easy and only involves pulling in front of a computer code
and burn a CD. But the reality is different, since the beginning of the programming languages
users have wanted to do more with computer programs, while many of those users have made
the task of creating software that may solve their specific problems but eventually fail to meet
many important factors for the use of software over a long time. We can see the
methodologies for software development in Figure 3.1.1.

Figure 3.1.1 Methodologies for software development.

Years ago the software development tasks were done only by the developer or

programmer, this was responsible for all the tasks necessary to make a program and are often
limited to deliver the application with the features they asked for and did not care much if
what really gave met customer expectations and thereafter be kept worrying about the
software as commented in [46] by “Juan Oliver”. The absence of documentation and a defined
methodology for product development made the common people distrusted software
products and preferred to do their work manually. Seeing that other industries were
implemented new ways to make consumer products the professional information systems
began to improve the way software is developed to provide products that comply with the
features that ensure that their product and their company have a reputation in the market,

Initial
steps

•Determine the need for a software required.

•Training of staff.

Analysis

•Analysis and delimitation of the subject.

•User Definition.

Design

•Structuring the content.

•Choice of type of software to develop.

•Interface Design.

•Election of the development environment.

•Definition of evaluation structures.

Implementatio
n

•Creation of an initial version.

Testing

•Testing.

•Marketing.

•Delivery of the final product.

 Test cases generation for functional tests of user interfaces.

53

thus ensuring that the delivered software product quality characteristics had standards could
ensure improvement. In this chapter we will see how is done to ensure that a software
product meets the necessary features to ensure quality considering the testing.

Many others have emerged with concepts and ideas arising in particular from its
experience, but simultaneously all agree on a set of ideas that are basic to quality has a total
character, they are shown in Figure 3.1.2.

Figure 3.1.2 Basic ideas of quality.

To see how the quality has evolved during this century we can see it through analysis
of its key features including all five major stages of development as we will see the first stage
in point 3.2.1. We only make a brief description of each phase, for more information see [46]
by “Juan Oliver”.

3.1.1 First stage. Since the industrial revolution to 1930

The Industrial Revolution, from the point of view of production, represented the
transformation of manual labor by mechanized work. We can see it in Figure 3.2.1.

Figure 3.1.1.1 Example of automation in the vehicle industry

This is a task that philosophy has to be driven by
the number one of the organization.

It is a process of continuous improvement.

Requires continuing education, both leaders and
workers.

Needs a continuous measurement that identifies
what is the cost of default.

Must be customer oriented.

It is everyone's problem.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

54

3.1.2 Second stage. 1930-1949

The main interest of this period is characterized by the control that ensures not only
understand and choose the product malfunctions or failures, but also taking corrective action
on technological processes. Quality inspectors remained a key factor in the outcome of the
company, but this time not only had the responsibility for final product inspection they were
distributed throughout the production process. One could say that at that time the orientation
and focus on the quality went from being inspected as to quality that is controlled.

3.1.3 Third stage. 1950-1979

Summarizing the information obtained by “Juan Oliver” [46] the above stages were
focused on increasing production in order to sell more, here is passed to produce higher
quality in order to sell the best, considering the needs of consumers and producing according
to the market. Programs begin to appear and develop quality systems for the areas of quality
companies, where in addition to the measurement, incorporates quality planning, considering
its orientation and approach as the quality is built from the inside.

3.1.4 Quarter stage. Decade of 80

Responsibility for quality is the first senior management, which should lead it and should
involve all members of the organization. At this stage, the quality was seen as a competitive
opportunity with what companies were beginning to worry about this.

3.1.5 Fifth stage. From 1990 to date

Completing this review of the last century of the recopilated information of “Juan Oliver”
[46] the main characteristic of this stage is that the old distinction between product and
service loses meaning. What exists is the total value for the customer. This stage is known as
Total Quality Service. The customer of the 90s only willing to pay for what value means to him.
That's why the quality is appreciated by the client from two points of view, perceived quality
and quality factual.

3.2 Basic concepts and tools to run performance tests

According to the IEEE “Std 610.12-1990” in [11] performance testing is the degree a
system or component that performs its designated functions within given limitations, such as
speed, accuracy or the memory use. Performance tests were originally seen as the way to
break or break existing applications for errors. Eventually understood that the idea is not to
destroy an application, but rather, finding defects that make the application does not comply
with all aspects expected of it, and thus promote their improvement. We will see in chapter 7
“Bugs” of this thesis an example of finding errors in an application.

3.2.1 Performance test

“J.D. Meier” and “Scott Barber” in [14] what they are looking to run performance testing is
to discover and address one or more risks, timing, cost and company reputation.

These same authors in [14] suggested, for a successful testing project, which project tasks
should be relevant to the project context. If this does not give, you make mistakes in which the
testers tend to focus and take on aspects of the project that are not really the most important
for testing, all this leads to the generation of conflict, frustration and wasted time.

 Test cases generation for functional tests of user interfaces.

55

The project context can be understood as important aspects of the development project to
be achieved and evaluate the evidence, these aspects may be;

 Project scope.
 The project life cycle.
 Performance criteria for successful implementation.

3.2.2 Performance testing types

In software engineering, “J.D. Meier” and “Scott Barber” talk in [14] about performance
testing indicating that it is in general testing performed to determine how a system performs
in terms of responsiveness and stability under a particular workload. It can also serve to
investigate, measure, validate or verify other quality attributes of the system, such as
scalability, reliability and resource usage. Performance testing is a subset of performance
engineering, an emerging computer science practice which strives to build performance into
the design and architecture of a system, prior to the onset of actual coding effort. We make a
brief description of some of the different types of performance testing by “J.D. Meier” and
“Scott Barber”, for more information see [14].

 Load testing is the simplest form of performance testing. A load test is usually

conducted to understand the behaviour of the system under a specific expected load.

 Stress testing is normally used to understand the upper limits of capacity within the
system.

 Endurance testing: It essentially involves applying a significant load to a system for an
extended, significant period of time. The goal is to discover how the system behaves
under sustained use.

 Spike testing is done by suddenly increasing the number of, or load generated by,
users by a very large amount and observing the behaviour of the system.

 Configuration testing rather than testing for performance from the perspective of

load, tests are created to determine the effects of configuration changes to the
system's components on the system's performance and behavior

 Isolation testing is not unique to performance testing but a term used to describe

repeating a test execution that resulted in a system problem.

3.2.3 Performance testing by Ian Molyneaux

“Ian Molyneaux” propose in [27]contrary to what was proposed by “J.D. Meier” and “Scott
Barber” in [14], look at the performance of software from the point of view and analyze end-
user perception when it performs several tasks simultaneously in the application and verifies
the delays in the execution of simultaneous tasks.

While “J.D. Meier” and “Scott Barber” focus on how to conduct performance tests and

they talk about it in “Performance Testing Guidance for Web Applications” [14], “Molyneaux”
is inclined to how to measure and analyze the results of those tests who talk about it in “The
Art of Application Performance Testing” [27]. For this establishes key performance indicators
that must be taken into account when analyzing the test results. These indicators divides them
into two groups: service-oriented and efficiency oriented.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

56

The indicators are designed to service availability and response time, this measure if an

application provides a service to end users. As we did with the types of performance testing
for “J.D. Meier” and “Scott Barber” [14] in previous section 3.2.2, below we are going to
discuss briefly some of the indicators proposed by “Ian Molyneaux” in [27].

 Availability: The amount of time an application is available for the end user. The lack of

availability is important because many applications will have a major cost of business,
even for a small power outage. As for the performance tests, this would mean the
complete inability of an end user to make effective use of the application.

 Response Time: The amount of time it takes for the application to respond to a user
request. For performance testing, usually measured response time of the system,
which is the time between when the user requests a response and that response time
reaches the workstation user has requested.

The efficiency indicators are performance oriented and use, these indicators measure
whether the application uses the scenario being used.

 Performance: The speed at which the application-oriented events occur. A good
example would be the number of hits on a website within a specified period of time

 Use: The percentage of the theoretical capacity of a resource that is being used.

Examples include the amount of network bandwidth, is being consumed by the
application traffic and the amount of memory used in a server when a thousand
visitors are active.

Taken together, these indicators can give an accurate idea of how the performance of an

application and its impact, in terms of capacity, in the application environment. As “Ian
Molyneaux” says in [27] that these methodologies rely heavily on the application that we are
testing and what we want to test within the application. We can find the object-oriented
methodology for the entire life cycle and performance management methodology, so we are
going to talk about it in next point 3.2.4.

3.2.4 Object-Oriented Methodology for Life Cycle Completed

The methodology of "Full Life-Cycle Testing Object-Oriented" developed in [47] by “Scott
W. Ambler” is a collection of techniques to verify and validate object-oriented software. The
methodology FLOOT indicates a wide variety of techniques (described in Figure 3.2.4) that are
available in all aspects of software development. The list is not exhaustive techniques instead
aims to make explicit the fact that there is a wide range of options available.

 Test cases generation for functional tests of user interfaces.

57

Figure 3.2.4.1 Quality Assurance.

It is important to understand that although the method FLOOT is presented as collection

sequential phases need not be: FLOOT techniques can be applied also to processes
agile/evolutionary. The reason that FLOOT was presented in a traditional way is to return
explicit the fact that we can actually test all aspects of software development not only during
encoding. The figure 3.2.4.2 below show the main techniques FLOOP which are elaborated in
[47].

Requeriments
Testing

•Review of models

•Review of
prototypes

•Prove it with code

•Usage scenario
testing

Test Code

•Black box testing

•Test boundary
values

•Class integration
test

•Review of code

•Test coverage

•Regression testing
of legacy

•Test methods

•Road Test

•White box testing

Test system

•Functional test

•Installation test

•Operations test

•Stress test

•Support test

User test

•Alpha test

•Beta test

•Pilot test

•User acceptance
test

•The test verifies that the item being tested, when given
the appropriate inputs, produces the expected results Black-box testing

•It is proof of extreme or unusual situations that the item
should be able to handle Test-Border Securities

•The act of ensuring that a class and all instances meet the
defined behavior Class Test

•The act of ensuring that the classes and their instances,
comprise a software that meets the defined behavior. Class Integration Test

•A technical review form in which the deliverable is
reviewed in the source code. Revision Code

•The act of validating that a component works as defined. Component Test

 Regression Testing. Quality Assurance

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

58

Figure 3.2.4.2 Test Techniques.

•The act of ensuring that every line of code is exercised at least once. Covering test

•A revision technique in which inspects a design model. Design Review

•It is the act of running test cases of the super classes, both directly and
indirectly, in a specific subclass

Heritage regression
testing

•Is to perform tests to verify that a large set of pieces of software work together. Integration Testing

•Is to perform tests to verify that a method (member function) works as defined. Test Method

•One type of inspection, which can range from a formal technical review to a
casual tour, conducted by persons other than those who were directly involved
in model development.

Review of Models

•The act of ensuring that all logical paths in the code are exercised at least once. Road Test

•It is a process by which users work through a collection of use cases, using a
prototype like the real system. Prototype Review

•The best way to determine if a model reflejalo really needed, or what to build, is
to build software based on the model to show that the model is good.

Demonstrate with
code

•The act of ensuring that previously tested behaviors still work as expected after
changes were made to the application. Regression test

•The act of ensuring that the system works as expected under large transaction
volumes, users, and freight. Stress Test

•A technique for quality assurance in which the design of your application is
reviewed extensively by a group of your peers. Technical Review

•A testing technique in which one or more validated a model following the logic
of usage scenarios. Usage Scenarios Test

•Is to test the user interface to ensure it meets the standards and requirements
defined. User Interface test

•Is to perform tests to verify that specific lines of code work as defined. Also
known as test-transparent box White-box testing

 Test cases generation for functional tests of user interfaces.

59

3.2.5 Types of performance tests

Commonly performance tests are conducted to Web applications, since these are the
ones with more orders for execution by the environment in which they run. The different types
of performance tests that can find and apply to most applications we can see in Figure 3.2.5.1.

Figure 3.2.5.1 Types of tests.

•Is carried out to determine or validate speed, scalability and / or stability.

•Performance testing is a technique of research done to determine or validate response times,
speed, scalability and / or stability characteristics of the application being tested.

Performance test

•Used to verify application behavior under normal and special situations.

•Load tests are performed to verify that the application meets the desired performance
objectives, these objectives are usually specified in a Service Level Agreement (SLA). A load test
to measure response times, output rates and levels of use of resources and identify the point of
rupture of the application, assuming that the breaking point is below the maximum load.

Load test

•Is a subset of load testing.

•In this test application is subjected to load volumes anticipated during production operations in
days long time, in this way determine or validate the performance characteristics of the
application.

Endurance test

•Used to determine or validate the application behavior when pushed beyond normal or peak
load conditions.

•Look to the stress test is revealing errors under high load conditions. These errors may include
synchronization errors and memory leaks. This test can identify weaknesses in the application
and shows how it behaves under extreme load.

Stress Test

•Is a subset of stress testing.

•This test focuses on determining or validating performance characteristics of the product when
subjected to workloads that sometimes increase beyond the planned production operations for
short periods of time.

Spike tests

•This test is used to determine that both users and transactions are able to support the
application and while meeting performance goals.

•This test is conducted in conjunction with capacity planning, which is used to plan the growth of
either the users or the volume of data.

•For example, to accommodate future loads, you need to know how many additional resources
(processors, memory, hard disk, debanda width, etc..) are needed to support future usage levels.
This test can also identify a strategy to see if the system is scalable horizontally or vertically.

Capacity test

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

60

3.3 Tools to conduct performance tests

As we have talked in chapter 2, concretely in section 2.2 and his subpoints, when we try to
generate test cases we can calculate them manually or automated. We can apply the same
theory to software testing existing manually and automated tools.

Manual testing: Manual tests are the oldest type of evidence that exists, these are that a
person (tester) manually run system operations without the aid of automation tools. In these
tests the tester must be patient, observant, creative, among other qualities. Manual tests are
focused on product functionality, usability and graphical user interface.

Automated testing: The test automation is the cycle where a software quality automation
application is used to control the execution of the tests, compare results, create preconditions,
etc... Available on the market there are a lot of automated testing tools and frameworks work.
These tools are known as Computer Aided Software Testing (CAST) explained in [53] and come
in free and commercial.

All the tools that we are going to describe collecting information from their official
websites are free and we have download and tested every one of them to get more knowledge
about the different tools for testing. These and other tools are compared in Section 3.4.

3.3.1 JMeter

It is necessary to highlight that we have downloaded and tested these free applications
and we have interacted with them testing the feature's functionality. The Apache JMeter
desktop application is open source software, a 100% pure Java application designed to load
test functional behavior and measure performance. It was originally designed for testing Web
Applications but has since expanded to other test functions. If we need more information
about this tool we can see [48].

Figure 3.3.1.1 JMeter graph result.

Apache JMeter may be used to test performance both on static and dynamic resources
(files, Servlets, Perl scripts, Java Objects, Data Bases and Queries, FTP Servers and more). It can
be used to simulate a heavy load on a server, network or object to test its strength or to
analyze overall performance under different load types. You can use it to make a graphical
analysis of performance or to test your server/script/object behavior under heavy concurrent
load.

 Test cases generation for functional tests of user interfaces.

61

3.3.2 JCrawler

Note that this tool like the previous (JMeter) we have downloaded and tested looking for
limitations or advantages of it.

JCrawler was created as an open-source (under the CPL) Stress-Testing Tool for web-

applications. It comes with the crawling/exploratory feature. You can give JCrawler a set of
starting URLs and it will begin crawling from that point onwards, going through any URLs it can
find on its way and generating load on the web application. The load parameters (hits/sec) are
configurable. If we need more information about this tool we can see his official website [49].

JCrawler is under redeveloppment to create with even more features.

3.3.3 WAPT

WAPT, which information we have collected from the official WAPT page [41], is a load
and stress testing tool that provides you with an easy-to-use and cost-effective way to test any
web site: from a privately used business application to a distributed web portal consisting of
load balancers, web servers, application servers, database storages, etc. For more information
about the tool we can consult his official page [41] of our bibliography.

Figure 3.3.1 WAPT Report graph.

3.3.4 Netsparker

Among its features is announced that is free to report false positives, or whatever it is,
identify vulnerabilities requests as they really are not. Although this feature is tricky, since it
cannot guarantee the label as vulnerable as "possible", so that later the auditor to make the
necessary verifications. The engines support the detection of the most common risks: SQL
Injection, XSS, including local and remote files, command injection, CRLF, obsolete files, source

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

62

code, hidden resources, directory listing, configuration vulnerabilities of different web servers,
etc.

Figure 3.3.4.1 Graphical interface of Netsparker.

But undoubtedly the most noteworthy and works best is the SQL injection, which also
allows execution of commands and statements once it detects a vulnerable parameter. To get
more information about this tool we can see [50].

3.3.5 OpenSTA

A test software designed around CORBA, originally developed to be marketed by CYRANO.
OpenSTA is a set of tools has the ability to test through scripts and heavy load tests with
performance measurements from Win32 platforms. To get more information about this tool
we can see [51].

3.3.6 TestMaker

This application is capable of performing functional testing, regression, load and
performance. It offers two versions: Community and Enterprise, both free but support is
provided by the Enterprise. To get more information about this tool we can see [52].

Figure 3.3.6.1 Interface of the tool TestMaker.

 Test cases generation for functional tests of user interfaces.

63

3.4 Comparative analysis

In this section we compare 5 software tools of the six previously commented (since the
section 3.3.1 to 3.3.6) for testing applications based on Internet protocols and client-server
software architectures. The comparative study will be aimed at the most representative
characteristics and comparison tools to analyze the trend of their development in terms of
functionality based on the use that we have made of them and the information that we have
collected through the web and other users experiences.

N
am

e OpenSTA Web Load TestMark
er

vPerfor
mer

WAPT Netsparker

i.

U
rl

ad

d
re

ss
 http://ope

nsta.sourc
eforge.net

www.gomez.
com

www.push
totest.co

m

www.ve
risium.c

om

www.loadt
estingtool.c

om/

www.mavitu
nasecurity.co

m

ii.

Li
ce

n
se

 t
yp

e

FREEWARE

OPEN
SOURCE

PAYMENT FREEWAR
E

OPEN
SOURCE

PAYME
NT

PAYMENT FREEWARE
(standard
version)

PAYMENT
(proof.

version)

iii.

P
la

tf
o

rm
 WINDOWS MULTIPLATF

ORM
MULTIPLA

TFORM
WINDO

WS
WINDOWS WINDOWS

iv.

M
an

ag
em

en
t

o
f

vi
rt

u
al

u

se
r

p
ro

fi
le

s Yes Yes Yes Yes Yes Not specified

v.

Su
p

p
o

rt

IP

Sp
o

o
fi

n
g No No No No Yes Yes

vi.

P
ro

xy

h
tt

p

Yes Yes Yes Yes Yes Yes

vii.

P
ro

to
co

ls
 HTTP

1.0/1.1

HTTPS

HTTP

HTTPS

HTTP
1.0/1.1

HTTPS

HTTP HTTP

HTTPS

HTTP

HTTPS

viii

M
o

n
it

o
ri

n
g No No No Yes Yes Yes

http://opensta.sourceforge.net/
http://opensta.sourceforge.net/
http://opensta.sourceforge.net/
http://www.gomez.com/
http://www.gomez.com/
http://www.pushtotest.com/
http://www.pushtotest.com/
http://www.pushtotest.com/
http://www.verisium.com/
http://www.verisium.com/
http://www.verisium.com/
http://www.loadtestingtool.com/
http://www.loadtestingtool.com/
http://www.loadtestingtool.com/
http://www.mavitunasecurity.com/
http://www.mavitunasecurity.com/
http://www.mavitunasecurity.com/

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

64

ix.

M
an

ag
er

C

o
o

ki
es

 Yes Yes Yes Yes Yes Yes

x.

U
se

r
Sc

al
ab

ili
ty

 Yes Not specified Not
specified

Yes Yes Not specified

Table 3.4.1. Comparative Analysis of Commercial Applications.

Predicting the behavior of an application under specified conditions as a large number of

users, resources, restricted or limited bandwidth, among others, becomes a task of utmost
importance to users and the company that owns the application and that is why there are
these tools on the market.

 Test cases generation for functional tests of user interfaces.

65

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

66

Chapter 4

Literature Review

In the first part of this chapter we will analyze the W
method created by “Kirill Bogdanov” in [4] with whom we
maintained contact through several emails to clarify some
of the more complicated points of his method in their
articles published. After that we will analyze the Wp
method also developed by “Kirill Bogdanov” in [7], which
is an improvement of the said W created.

At the end of the chapter will discuss other methods

which do not have relationship with W and Wp finding
alternative ways for creating testing algorithms like the
papers of whom principal authors are “Siamak Haschemi “
[32] (section 4.2) and “Jun Wang” [33] (section 4.3).

.

 Test cases generation for functional tests of user interfaces.

67

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

68

4.1 Analysis of W & Wp methods.

An existing testing method for statecharts with hierarchy and concurrency is based on
what is known as the “Chow’s W method” developed initially in [4] by “Kirill Bogdanov”. In the
review of the document “Testing from statecharts using the Wp method” [7] it´s presented W
method again and an extension of this testing method, the Wp method. Today there are
many methods to calculate the approximate number of test cases of an application, but
this was the first who showed convincingly and more robust method, for this reason we have
decided to work with these methods in the case study of chapter 5 and improving them with
the development of a new algorithm in chapter 6 of this thesis.

Before to see how it works we are going to describe in next section 4.1.1 the statechart

used by “Kirill Bogdanov” in [7]. After that we will see the different variables and formulas
gathering information of [4] and [7] trying to explain briefly how they apply these method and
the meaning of each variable used in both research papers.

4.1.1 Describing the statechart

Statechart extracted from [7] is a specification and design language derived from finite-
state machines described by “T. Chow” in [6] by extending them with arbitrarily complex
functions on transitions, state hierarchy and concurrency. Below, in figure 4.1.3.1 shows the
statechart which has been used in [7], consider a simple tape recorder capable of playback,
rewinding, fast forwarding and recording as well as changing a side of a tape when the button
play is pressed during playback or when a tape ends. The inputs to this controller are events
play, stop, rec, rew, ff and tape-end.

Figure 4.1.1.1 The taperecorder statechart.

 Main States: TAPERECORDER, MAIN, RECORD and SEARCH.

o Concurrent states: the main state TAPERECORDER include concurrent
composite states like MAIN (who contains RECORD) and SEARCH. System can
be simultaneously in the composite states MAIN (who contains RECORD) and
SEARCH.

 States: PLAY, STOP, RECORDING, PAUSE, IDLE and REW_FF.

 Transitions: direction, stoy, play, re, pause, continue, rew_or_ff and stop_rew_ff.

 Test cases generation for functional tests of user interfaces.

69

 Labels: The inability of finite-state machines to represent data without a state
explosion can be solved by using functions on transitions, which can access and modify
global data.

 Action: An operation carried out by a label on a transition when that transition
executes is called an action.

4.1.2 Flattened statechart of the MAIN without hierarchy

As “Kirill Bogdanov” explain in [4] and [7] the most simple approach to testing state
hierarchy is to flatten a statechart, i.e. turn it into a equivalent one without substates (AND /
OR states). To apply the different algorithms (the existing as W & Wp methods and the new U-
Method develop by us) to our case study we will see on next chapter 5 and 6 that it is
necessary to obtain a flattened statechart of our case study.

Figure 4.1.2.1 The flattened statechart of the MAIN state

The idea is to eliminate any hierarchy in the initial statechart. However as discussed in [7]
don´t work with this model, they will work for parts, gradually eliminating the hierarchy of the
initial statechart

 Test case generation for statecharts without state hierarchy.

 Test case generation for state hierarchy.

 Test case generation for concurrency.

4.1.3 State hierarchy

State hierarchy of a statechart can be viewed as a tree. The root state is the implicit top-
level state; it was introduced because TAPERECORDER is an AND-state and statecharts require
the top-level state to be an OR one.

 TAPERECORDER is an AND-state because it has concurrent parts separated by a dashed
line.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

70

Figure 4.1.3.1 The state tree of the tape recorder.

 The p provides the set of only basic substates of a given state.

 The opposite to p is parent.

 The scope of a transition is the lowest-level OR-state above all source and target states
of it.

4.1.4 Configurations

Sets of states which are left and entered by full compound transitions are called
configurations as defined by “K. Bogdanov and M. Holcombe” in [5] and consist of states a
statechart can be in simultaneously. Every substate of an entered AND-state has to be entered,
so that a possible configuration in Figure 4.1.3.1 is: {root, TAPERECORDER, MAIN, SEARCH,
RECORD, PAUSE, REW_FF}.

A configuration is uniquely determined by a set of basic states in it -> {; PAUSE, ; REW_FF }.

Every state in a flattened statechart corresponds to a configuration in the original one.

Figure 4.1.4.1 Types of configurations (compound transitions).

4.1.5 Test generation for statecharts with W method

As we have commented in setion 4.1.2 we can divide the statechart in three parts and
apply test case generation methods for each one of them; test case generation for statecharts
without state hierarchy, test case generation for state hierarchy and test case generation for
concurrency. We are going to see the three phases to generate the test cases.

Static reactions

•Are a special case of
transitions which may
occur within a state,
without leaving it or
entering it again (thus no
states are left and no
default transitions fire
when static reactions are
taken.

Interlevel
transitions

•Are transitions which
cross levels of hierarchy.
For instance, if the
controller had a
transition from PAUSE to
STOP, it would be
interlevel. Interlevel
transitions are not
considered in this paper.

Paths

•Sequences of labels of
transitions (not
necessarily those which
could be taken) are
called paths in this
document.

 Test cases generation for functional tests of user interfaces.

71

 Test case generation for statecharts without state hierarchy

With some restrictions exposed in “Statechart testing method for aircraft control

systems” [4], statecharts which do not contain state hierarchy or concurrency are
behaviourally equivalent and it isn’t necessary to descompund in new states. For a
systematic construction of a set of test cases, auxiliary sets have to be built and we
don´t need the information of the interior of record.

Figure 4.1.5.1 MAIN without state hierarchy

The method is founded on the “Chow’s W method” in [6] and relies on a
separation of function and transition diagram testing. The method concentrates on
testing of the transition diagram, behaviour of the labels of transitions is assumed to
have been tested in advance. The approach to testing of a transition diagram is very
similar to testing of labelled-transition systems. The main difference is the reliance of
this work on an input/output behaviour of transitions rather than on deadlocks to tell
a tester whether a transition with a given label exists from a particular state in an
implementation or not. For a systematic construction of a set of test cases, auxiliary
sets have to be built. We use MAIN without state hierarchy show in fig. 4.1.5.1.

 There are three variables to elaborate the Equation of “W-Method” explained in
[4]. We are going to do a brief description of them, to see more information we can
see the articles “Statechart testing method for aircraft control systems” [4],
“Automated test set generation for statecharts” [5] and “Testing from statecharts
using the Wp method” [7] in which the principal author is “Kirill Bogdanov”. The set of
transition labels (denoted by Φ) is the set of labels of a statechart. If we calculate the
Φ of the above statechart we obtain; Φ ={stop, play, rec, direction}. Any desired state
starting from the initial one (denoted by C) is; C={1, play, rec}. Here 1 denotes an empty
sequence. Finally the most complicated variable to understanding is W also developed
in [5] in which it is explained that W allows a tester to check the state arrived at when
a transition fires. For every pair of states, it is possible to construct a path which exists
from one of them and not from the other. Such paths for every pair of states comprise
a characterisation set. So W= {stop, play}. Each element of this particular W is a
sequence consisting of a single label. In Equation 4.1.5.1 we can se the formula for the
W-Method to the non-hierarchycal part.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

72

Equation 4.1.5.1. Non hierarchical

 Test case generation for state hierarchy

As mentioned in section 4.1.2 and also developed in [4] and [7] by “K.
Bogdanov” the most simple approach to testing state hierarchy is to flatten a
statechart.

Figure 4.1.5.2 Calculating state hierarchy.

Moreover, if certain parts of a statechart are implemented separately and do

not share any labels, it isn’t necessary to test for faults where labels from one part are
used in another one and vice-versa, significantly reducing the size of a test set.

Figure 4.1.5.3 Concurrent part omitted.

Now we need to calculate the test case generation begins with the construction
of a tuple (Φ, C, W) called TCB for every non-basic state considering all its substates as
basic ones. As indicated in [4] by “K. Bogdanov” to calculate the three variables to form
the Equation 4.1.5.1 of hierarchycal part of the statechart are the same that we have
applied in previos step but now we will do it over the statechart of the non hierarchical
part which we can see in the below figure 4.1.5.4.

Figure 4.1.5.4 State hierarchy part

 Test cases generation for functional tests of user interfaces.

73

 Test case generation for concurrency

Finally the concurrent part follows the same approach as testing of state hierarchy,
except that multiple transitions are attempted.

Figure 4.1.5.5 Calculating for concurrency

The results calculated in “Testing from statecharts using the Wp method” [7] for
the concurrent part are:

 _ _ , _ _M

SEARCH rew or ff stop rew ff 

 1, _ _M

SEARCHC rew or ff

 _ _M

SEARCHW rew or ff

At this point we have calculated the hierchycal, non hierarchycal and concurrent

part of the statechart. In next point 4.1.6. we are going to calculate the test cases for
TAPERECORDER and after we apply the equation 1 to all the model in setion 4.1.7.

4.1.6 Applying the formulas for all the statechart

With the formulas of figure 4.1.6.1 calculated in [7] by “K. Bogdanov” we can build the

complete tuple  , ,M M M

TAPERECORDER TAPERECODER TAPERECORDERC W , with which we can calculate the

number of test cases to be implemented on the statechart being analyzed. For more
information we can see the document [7] of our bibliography.

Figure 4.1.6.1 Equations to calculate number of test cases.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

74

4.1.7 Final results for W-Method

For the tape recorder under the assumption of an implementation containing no more
states than the specification, test case generation produces 672 sequences calculated in [7]
and corroborating the results by us, because each one of the methods that we are describing
in this chapter and extracted from [4], [5] and [7] of which “K. Bogdanov” developed the W &
Wp methods we have been calculated on the paper from the beginning, making the whole
process from the beginning and checking that the results obtained after applying the formulas
are the same as reported by “K. Bogdanov” in [7]. It is later contrasted with the size obtained
using the Wp method, which we will do a brief description of how calculate test cases for Wp-
Method.

 * *M M M M M

TAPERECORDER TAPERECORDER TAPERECORDER TAPERECORDER TAPERECORDERT C C W  =672

Equation 4.1.7.1. Results for the W-Method

At the final of this point 4.1. we will analyze the result obtained with W (analyzed in 4.1.5)
and Wp which we are going to analyze below in point 4.1.8.

4.1.8 Test case generation for statecharts with Wp method

The Wp method implemented in [7] by “K. Bogdanov” is an improvement of the W one,
targeted at the reduction of a number of test sequences. We are going to do a brief
description of this method but to get more information about the method we can consult [7]
of our bibliography.

Equation 4.1.8.1 Wp method.

 Two-phase approach

Unfortunately, in a faulty implementation small identification sets may fail to
identify configurations correctly. To cope with this, a two-phase approach is proposed
in [7] by “K. Bogdanov” where the first stage tests a part of a statechart and checks
whether the small sets identify while the second phase check all remaining transitions
of the implementation for correct output and ending state as defined by the
specification.

 First phase of the Wp method

In one of the emails exchanged with “K. Bogdanov”, he says “The
purpose of the first phase is to ensure that small w sets (explained below) are
capable of identifying states in an implementation”. For this purpose, every
state of an implementation is visited and W set is applied in that state. Let´s

see an example of the application of root

confw .

 Test cases generation for functional tests of user interfaces.

75

To clarify this Small sets for these states

could be Aw ={a} and Bw ={b}. To

understand this point we had to exchange
several emails with K. Bogdanov, who
summarized his explanations and include
in the analysis of this document.

If an implementation has an erroneous
transition "b" from A, this state look as both
A and B in this implementation. Hence if
there is an erroneous transition leading to
state A rather than state B somewhere in this
implementation, the defect will not be found
if only small sets are used, because we'll
check the target state with w_B and the
erroneous transition "b" from the A state will
make us think that this is B rather than A.

Summarizing, the results obtained for the first phase obtaineds in [7] by “K.

Bogdanov” for the Wp-Method if 1 *MT C W = 8 * 4 = 32 test cases in phase

1.

 Second phase, apply small w sets

At the second phase calculated in [7] all transitions which were left out

in the first phase are tested, using small sets root

confw to identify configurations

and therefore create less test cases compared to the W method while still
providing the same level of confidence in the result of testing. In the emails
that we exchanged with “K. Bogdanov” (who is the creator of both the W and
the Wp method as we have commented several times in this thesis), he
clarified to us the second phase of the Wp method Because this phase is so
complicated. K. Bogdanov say to us in the email that ”Construction of elements
of w sets is similar to that for the full W method (recursively bottom-up). CE is a
function which computes a configuration entered by a statechart when a
sequence of operations is attempted.” Let the initial configuration of a

statechart be denoted by  ,initconf STOP IDLE (only basic states in these

two configurations are shown because the initial state is PAUSE and IDLE and
all the parents of these two states but we only need to show the basic states
this is the full conf(init);

 , , , , ,initconf STOP IDLE MAIN TAPERECODER ROOT SEARCH).

With the clarifications of K. bogdanov we were able to develop ourselves

formula of Wp-Method from [7] showing the test cases obtained below.

Equation 4.1.8.1 Phase 2 of Wp-Method.

Figure 4.1.8.1 Calculating small
sets

Figure 4.1.8.2 Erroneous
transition

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

76

Developing the formula:

TS= {1,play, rec, rec pause, rew_or_ff, play-rew_or_ff, rec-rew_or_ff, rec-rew_or_ff pause} *
{play, stop, direction, rec, pause, continue, rew_or_ff, stop_rew_ff, play-rew_or_ff; stop-
rew_or_ff, direction-rew_or_ff, rec-rew_or_ff, pause-rew_or_ff, continue-rew_or_ff, play-
stop_rew_ff, stop-stop_rew_ff, direction-stop_rew_ff, rec-stop_rew_ff, pause-stop_rew_ff,
continue-stop_rew_ff }

TS= { play, stop, direction, rec, pause, continue, rew_or_ff, stop_rew_ff, play-rew_or_ff, stop-
rew_or_ff, direction-rew_or_ff, rec-rew_or_ff, pause-rew_or_ff, continue-rew_or_ff, play-
stop_rew_ff, stop-stop_rew_ff, direction-stop_rew_ff, rec-stop_rew_ff, pause-stop_rew_ff,
continue-stop_rew_ff, play play, play stop, play direction, play rec, play pause, play continue, *
play rew_or_ff [=play, rew_or_ff], play stop_rew_ff, play play-rew_or_ff, play stop-rew_or_ff,
play direction-rew_or_ff, play rec-rew_or_ff, play pause-rew_or_ff, play continue-rew_or_ff,
play play-stop_rew_ff, play stop-stop_rew_ff, play direction-stop_rew_ff , play rec-
stop_rew_ff, play pause-stop_rew_ff, play continue-stop_rew_ff, rec play, rec stop, rec
direction, rec rec, rec pause [=rec, pause], rec continue, rec rew_or_ff, rec stop_rew_ff, rec
play-rew_or_ff; rec stop-rew_or_ff, rec direction-rew_or_ff, rec rec-rew_or_ff, rec pause-
rew_or_ff, rec continue-rew_or_ff, rec play-stop_rew_ff, rec stop-stop_rew_ff, rec direction-
stop_rew_ff, rec rec-stop_rew_ff, rec pause-stop_rew_ff, rec continue-stop_rew_ff, (rec
pause) * play [=rec,play,pause,play], (rec pause) * stop, (rec pause) * direction, (rec pause) *
rec, (rec pause) * pause, (rec pause) * continue, (rec pause) * rew_or_ff, (rec pause) *
stop_rew_ff, (rec pause) * play-rew_or_ff, (rec pause) * stop-rew_or_ff, (rec pause) *
direction-rew_or_ff, (rec pause) * rec-rew_or_ff, (rec pause) * pause-rew_or_ff, (rec pause) *
continue-rew_or_ff, (rec pause) * play-stop_rew_ff, (rec pause) * stop-stop_rew_ff, (rec
pause) * direction-stop_rew_ff, (rec pause) * rec-stop_rew_ff, (rec pause) * pause-
stop_rew_ff, (rec pause) * continue-stop_rew_ff, rew_or_ff play, rew_or_ff stop, rew_or_ff
direction, rew_or_ff rec, rew_or_ff pause, rew_or_ff continue, rew_or_ff rew_or_ff, rew_or_ff
stop_rew_ff, rew_or_ff play-rew_or_ff, rew_or_ff stop-rew_or_ff, rew_or_ff direction-
rew_or_ff, rew_or_ff rec-rew_or_ff, rew_or_ff pause-rew_or_ff, rew_or_ff continue-
rew_or_ff, rew_or_ff play-stop_rew_ff, rew_or_ff stop-stop_rew_ff, rew_or_ff direction-
stop_rew_ff, rew_or_ff rec-stop_rew_ff, rew_or_ff pause-stop_rew_ff, rew_or_ff continue-
stop_rew_ff, play-rew_or_ff play, play-rew_or_ff stop, play-rew_or_ff direction, play-
rew_or_ff rec, play-rew_or_ff pause, play-rew_or_ff continue, play-rew_or_ff rew_or_ff, play-
rew_or_ff stop_rew_ff, play-rew_or_ff play-rew_or_ff, play-rew_or_ff stop-rew_or_ff, play-
rew_or_ff direction-rew_or_ff, play-rew_or_ff rec-rew_or_ff, play-rew_or_ff pause-rew_or_ff,
play-rew_or_ff continue-rew_or_ff, play-rew_or_ff play-stop_rew_ff, play-rew_or_ff stop-
stop_rew_ff, play-rew_or_ff direction-stop_rew_ff, play-rew_or_ff rec-stop_rew_ff, play-
rew_or_ff pause-stop_rew_ff, play-rew_or_ff continue-stop_rew_ff, rec-rew_or_ff play, rec-
rew_or_ff stop, rec-rew_or_ff direction, rec-rew_or_ff rec, rec-rew_or_ff pause, rec-rew_or_ff
continue, rec-rew_or_ff rew_or_ff, rec-rew_or_ff stop_rew_ff, rec-rew_or_ff play-rew_or_ff,
rec-rew_or_ff stop-rew_or_ff, rec-rew_or_ff direction-rew_or_ff, rec-rew_or_ff rec-rew_or_ff,
rec-rew_or_ff pause-rew_or_ff, rec-rew_or_ff continue-rew_or_ff, rec-rew_or_ff play-
stop_rew_ff, rec-rew_or_ff stop-stop_rew_ff, rec-rew_or_ff direction-stop_rew_ff, rec-
rew_or_ff rec-stop_rew_ff, rec-rew_or_ff pause-stop_rew_ff, rec-rew_or_ff continue-
stop_rew_ff, (rec-rew_or_ff pause) * play [=rec-rew_or_ff play pause play =rec-
rew_or_ff,play,pause,play], (rec-rew_or_ff pause) * stop, (rec-rew_or_ff pause) * direction,
(rec-rew_or_ff pause) * rec, (rec-rew_or_ff pause) * pause, (rec-rew_or_ff pause) * continue,
(rec-rew_or_ff pause) * rew_or_ff, stop_rew_ff, (rec-rew_or_ff pause) * play-rew_or_ff, (rec-
rew_or_ff pause) * stop-rew_or_ff, (rec-rew_or_ff pause) * direction-rew_or_ff, (rec-
rew_or_ff pause) * rec-rew_or_ff, (rec-rew_or_ff pause) * pause-rew_or_ff, (rec-rew_or_ff

 Test cases generation for functional tests of user interfaces.

77

pause) * continue-rew_or_ff, (rec-rew_or_ff pause) * play-stop_rew_ff, (rec-rew_or_ff pause)
* stop-stop_rew_ff, (rec-rew_or_ff pause) * direction-stop_rew_ff, (rec-rew_or_ff pause) *
rec-stop_rew_ff, (rec-rew_or_ff pause) * pause-stop_rew_ff, (rec-rew_or_ff pause) *
continue-stop_rew_ff} = 8*20+146= 306 test cases in phase 2

Sumarizing, the size of the set of test cases for the first phase of the Wp method is 32 and

the second one 306, resulting in 338 sequences which is a half of the set provided in section
4.1.7 of this chapter with W-Method for the same statechart that Wp-Method. These results
are calculated in [7] by “K.Bogdanov” and corroborated by us in this chapter.

4.1.9 Conclusions

We have analyzed W Method in our case study over different versions of the statechart
and we can ensure that it is a high robust method. The Wp method which also we have
analized in chapter 5, can be applied to statecharts in a similar way to the W one and her
objective is to reduce the number of total test cases and remove all the redundant test cases
generated with W method to be a more efficient method. As “K. Bodganov” explain in [7] one
of the most important advantages is that unlike other methods, the W method and Wp
method can be applied to all protocols, and can guarantee the detection of any output and
transfer faults under certain conditions.

4.2 Satisfy All-Configurations-Transitions on Statecharts

This paper was very important for us, because the existing algorithms are based on “state-
cover”, this menas that for example before to apply the formulas of two existing methods as W
or Wp developed in [7] by “K. Bogdanov” he want to ensure that every one of the states are
identifiable on the basis of the transitions that each state run. With the this paper of “Siamak
Haschemi” based on “Model Transformations to Satisfy All-Configurations-Transitions on
Statecharts” developed in [32] we try to apply with our new test case generation method the
technique of “transition cover”, summarizing it means that we identify each one of the
transition and not each one of the states as the technique “state cover” applied to existing
methods.

We will see in chapter 5 the results with the technique “state cover” in our case study
running W & Wp Methods and after in chapter 6 we will apply “transition cover” with U-
Method (our new created method for test cases generation) to analyze the differences and see
which of the techniques is more efficient.

4.3 A Bipartite Graph Approach

 We are going to do a brief description of “A Bipartite Graph Approach to Generate
Optimal Test Sequences for Protocol Conformance Testing using the Wp-method” developed
in [33]. In it is proposed a bipartite graph approach to generate optimal test sequences for
protocol conformance testing. To get more information about the method we can consult [33]
of the bibliography. Resuming this approach significantly reduces the length of the test
sequences required for conformance testing while maintaining the same fault detection
capability but after analyze this method we have tested that Wp method are more reliable and
get best results.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

78

The “W and Wp Methos” developed in [7] are applicable if the FSM is completely
specified, strongly connected and minimal. Many approaches, such as T, D and UIO
commented in [33], have been proposed to solve the conformance testing problem whithout
actually get. Wp-method developed in [7] considers the W set as a union of all Wi sets. If an
element in P ends at state si, the Wp-method only needs to concatenate the element with
those elements in Wi.

 Test cases generation for functional tests of user interfaces.

79

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

80

Chapter 5

Adapt Bogdanov's theory (W and Wp) to state machines used to
model UIs.

In this chapter 5 we have adapted “Bogdanov's
theory (W and Wp)” developeds in [4] and [7]
respectively to state machines used to model UIs,
without having to care about regions and loops. In
section 5.1 shows the statechart that we work from now
(TV1 Statechart). Below in 5.2 discusses the problems
associated with loops and how to avoid them support us
by articles published by “Beizer” in [21] and [22]
explaining how we have created the flattened statechart
to implement W and Wp methods with which we will
work.

Working with the algorithms in section 5.3 we focus

on applying W method in the different versions of our
statechart while in section 5.4 we show a a graphic whit
the obtained results for everyone of the variations of the
statechart. The same we will do in section 5.5 and 5.6
respectively with Wp method.

Finally at section 5.7 of this chapter we will check the

results obtained between W and Wp methods
comparing the number of test cases in each of the tested
models of our TV1 statechart.

 Test cases generation for functional tests of user interfaces.

81

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

82

5.1 Describing our TV1 statechart

We are going to describe all the features of our statechart, which we can see in Figure
5.1.1 The statechart is composed of a hierarchy of three workspaces, "TV1" which
encompasses everything, "On" which is composed by the functions that the device can run
once it is running as the name suggests and finally the set of states composing "Working",
which are the 4 channels available to the device. The statechart with which we will work in this
chapter 5 has no concurrent states and as discussed in Section 5.2.1. we will remove the
hierarchy to facilitate implementation of the different algorithm methods with which we will
work in this chapter. As we can see we have three initial states represented by a circle, this
means that by default if we have not yet turned on the device for the first time we are in “off”
state. When we fire for the first time it will take us directly to the state "channel 1", it is the
default state inside the workspace "Working" where all the channels are. Once we change the
channel to resume it at any of the 4 at its disposal, since it can remember, so if we are on
channel 3 and turn off the device, when we turn it on again it return to the “channel 3” and
not to “channel 1” as happened the first time that we turned on the device.

Figure 5.1.1 TV1 Statechart

From workspace "Working" channels where we vary, we can access both states "standby"
and "Off" which as shown in the figure are of higher hierarchies but are connected directly to
the workspace "Working". This means that while we are changing the channels we can leave
the device in the states "Standby" or "Off" in both cases directly and saving in memory the
channel where we were. From space "Working" if we select the state "Standby" the device stay
waiting for new instructions. At this point we will be able to select the states "Off" which
would lead us to the top hierarchy or "On" back to the selection of channels. The selection of
channels within the workspace "Working" can be up or down, also from the state of “channel
1” can go to “channel 4” and vice versa.

5.2 Solving the problem of loops

To measure how well the program is exercised by a test suite, one or more coverage
criteria are used. There are a number of coverage criteria, the main ones being:

 State Coverage: Cover every state in every state chart for basic test generation

 Condition Coverage: Cover both “true” and “false” case of if’s and similar conditional
constructs for basic test generation

 Test cases generation for functional tests of user interfaces.

83

 Switch Coverage: Cover every combination of the entry and exit transitions of all states
for extended test generation

 Atomic Condition Coverage: for Boolean connectives, cover all combinations of left
and right truth values for extended test generation

 Boundary Value Analysis: for comparisons of integer values, cover boundary conditions
for extended test generation

 Method Coverage: Cover every method declared for extra structural traceability

 Statement Coverage: Cover every statement for extra structural traceability

 Transition All Paths: Cover all arbitrarily long distinct paths through transitions for
exhaustive test generation

 Control Flow All Paths: Cover all arbitrarily long control flow pathsfor exhaustive test
generation

Some of the coverage criteria above are connected. For instance, path coverage implies

condition, statement and entry/exit coverage. Statement coverage does not imply condition
coverage, as the code (in the C programming language) below shows:

void foo(int bar)

{

printf("This is ");

if (bar <= 0)

{

printf("not ");

}
printf("a positive integer.\n");

return;

}

If the function foo were called with variable bar set to “-1”, statement coverage would be
achieved. Condition coverage, however, would not. Full path coverage, of the type described
above, is usually impractical or impossible. Any module with a succession of n decisions in it
can have up to 2n paths within it; loop constructs can result in an infinite number of paths.
Many paths may also be infeasible, in that there is no input to the program under test that can
cause that particular path to be executed. However, a general-purpose algorithm for
identifying infeasible paths has been proven to be impossible (such an algorithm could be used
to solve the halting problem). Techniques for practical path coverage testing instead attempt
to identify classes of code paths that differ only in the number of loop executions, and to
achieve "basis path" coverage the tester must cover all the path classes.

Loop testing commented in [21], [22] and [23] is a typical spot for a semantic bug in most
programming languages are the loops. They make path testing difficult due to the significantly
increased number of possible paths, and they often contain bugs within the loop condition
which are hard to find. A even bigger danger conceals within nested loops. It might seem likely
that most loops can be tested with two checks, but a lot of bugs are not found this way. The
condition of a loop has to be checked at three different times; when the loop is entered,
during its execution and when the loop is left. The two borders are of special interest.

Statement coverage identifies which statements in a method or class have been executed.

It is a simple metric to calculate, and a number of open source products exist that measure this
level of coverage. Ultimately, the benefit of statement coverage is its ability to identify which
blocks of code have not been executed. The problem with statement coverage, however, is
that it does not identify bugs that arise from the control flow constructs in your source code,
such as compound conditions or consecutive switch labels. This means that you easily can get

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

84

100 percent coverage and still have glaring, uncaught bugs. The following example
demonstrates this. Here, the returnInput() method is made up of seven statements and has a
simple requirement: its output should equal its input.

Figure 5.2.1 Example of statement coverage.

There's an obvious bug in returnInput(). If the first or second decision evaluates true and
the other evaluates false, the return value will not equal the method's input. An astute
software developer will notice this right away, but the statement coverage report shows 100
percent coverage. If a manager sees 100 percent coverage, he or she may get a false sense of
security, decide that testing is complete, and release the buggy code into production.
Recognizing that statement coverage may not fit the bill, the developer decides to move on to
a better testing technique: branch coverage.

5.2.1 Create the first version of the flattened statechart of TV1

With all the details discussed in section 5.2 on the loops we will see how to transform the
original statechart in another statechart without hierarchy, with no more than one initial state
and avoiding some loops with the elimination of some transitions as the highlighted “off”. We
will call it from now flattened statechart as we can see in figure 5.2.1.2. to eliminate any errors
that had existed with loops avoiding the feared infinite loop which could fall to perform the
tasks of testing.

Figure 5.2.1.1. Original statechart.

 Test cases generation for functional tests of user interfaces.

85

Figure 5.2.1.2. First version of Flattened statechart.

5.2.2 Positive, negative and redundant test cases

There are three types of test cases, positive, negative and redundant test cases. We are
going to see an example of every one of them applied to our TV1 statechart to help us to
understand W and Wp methods discussed in the following points 5.3 and 5.5. If the test case
references one possible path, in the statechart which we are working, as for example “on[ch1]
off” we denominated it as a positive test case, we can see it marked in green in the figure
5.2.2.1.

Figure 5.2.2.1 Example of a positive path test case.

When a test case cannot be identified with a path in the statechart, we call it as negative.
We can see it with the negative test case “on[ch1] 1” represented in the below figure. If we try
to follow the commented path “on[ch1] 1” divided in two steps, first we do “on[ch1]” and all is
correct but when we try to do “1” since our new position in state Ch1 we can’t run this action
and we obtain the mentioned negative test case.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

86

Figure 5.2.2.2. Example of a negative path test case.

Finally we obtain a redundant test case when we extend a negative test case. For example
if a path p is negative, and path q is such that q = concat (p, s) and s is not pi then q is also
negative, and we call q redundant. The test case “on[ch1] 1 off” is an example of redundant
test case in the first version of the statechart (Simplest model changing transitions “+” and “-”
for numbers with a broken forward and a backward loop around ch1, ch2, ch3 and ch4) that we
will calculate in section 5.3.1. For example if p = on[ch1] 1 and s = off, the resulting q = on[ch1]
1 off, this gives us a redundant test case.

As we will shown in chapter 7 of bugs, a negative test even as a test case wrong we can
get to be helpful to detect errors and at times. When exist an error on the specification of the
program that we are testing, is possible that a negative test case becomes positive, ie a path
that should not be executed has become possible to its execution. The same applies to the
redundant test cases but something more convoluted simply because it is more difficult to be
in this situation. We can see it in the figure below with the test case “on[ch1] 1 off”.

Figure 5.2.2.3. Example of a redundant path test case.

The only difference between negative and redundant test cases with the above wrong
example of Figure 5.2.2.3 that has the transition “1” labeled in red, is that with the first
(“on[ch1] 1”) we arrive to the state Ch2 and with the second (“on[ch1] 1 off”) to the state Off.
In both cases the only way to detect that the program specification contains the error that

 Test cases generation for functional tests of user interfaces.

87

causes that the state Ch1 arrives to the state Ch2 by the transition "1" is through the detection
that a negative or redundant test case has become positive.

5.3 Apply W method to TV1 without state hierarchy and without
concurrent region

We will apply W method in subpoints of this section (since 5.3.1 to 5.3.5), after we will
apply Wp (5.5) and finally in section 5.7 we will compare the results obtained for both
methods. The first thing that we need to do, it´s to eliminate all the substates of the original
model. After that we can work with the simplest model of the statechart applying different
changes, in section 5.3.1. we are going to work with the simplest model change transitions "+"
and "-" for numbers with a broken forward and a backward loop around ch1, ch2, ch3 and ch4.
After that we will work with other versions in points (since 5.3.2 to 5.3.6) checking the results
obtained in section (5.4).

Step 0: modifications of the initial statechart: create a flattened statechart.

Figure 5.3.1 Original Statechart of TV1.

We will apply modifications on flattened version to calculate the different number of
test cases on them. The important changes suffered by the model are the creation of
every one of the transitions (“off”, “standby”) between the states of the channels
(Ch1, Ch2, Ch3 and Ch4) and the states Off and Standby. With these transitions we
managed to remove every substate of the statechart.

Figure 5.3.2 Flattened statechart.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

88

5.3.1 Simplest model change transitions "+" and "-" for numbers with a broken
forward and a backward loop around ch1, ch2, ch3 and ch4.

Now we are going to calculate the test case basis “TCB” for the flattened model of TV1
with changes between the states of the channels to break the strong loop between them.
Additionally we have changed transitions “+” and “-” by numbers to clarify the action of every
event as we can see on Fig. 5.3.1.1. The set of transition labels (denoted by ɸ) is the set of
labels of a statechart. ɸ = {on[ch1], on[ch2], on[ch3], on[ch4], off, 1, 2, 3, 4, standby}. Any
desired state starting from the initial one (denoted by C). C  { λ, on[ch1] , on[ch2] , on[ch3] ,
on[ch4] , on[ch1] standby}.

Figure 5.3.1.1. Changed model 1.

And finally we need to obtain the characterisation set (W), but this needs to be explained
in several steps. The most important things to calculate W are; such paths for every pair of
states comprise a characterisation set, each element of this particular W is a sequence
consisting of a single label and a set (denoted by W) allows a tester to check the state arrived
at when a transition fires. For every pair of states, it is possible to construct a path which exists
from one of them and not from the other. In the table below (transition matrix A). We only
indentify all the transitions of every state.

 Off Standby Ch1 Ch2 Ch3 Ch4 Set of events

Off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4]

Standby off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4],
off

Ch1 off standby 2 off, standby, 2

Ch2 off standby 1 3 off, standby, 1, 3

Ch3 off standby 2 4 off, standby, 2, 4

Ch4 off standby 3 off, standby, 3
Table 5.3.1.1. Transition matrix A.

The matrix that tells us how many transitions are there between pairs of states. The
marginal sum by row gives the outdegree of a state, while the marginal sum by column gives
its indegree (for example, outdegree(off)=4, indegree(off)=5).

 Test cases generation for functional tests of user interfaces.

89

 Off Standby Ch1 Ch2 Ch3 Ch4

Off 0 0 1 1 1 1

Standby 1 0 1 1 1 1

Ch1 1 1 0 1 0 0

Ch2 1 1 1 0 1 0

Ch3 1 1 0 1 0 1

Ch4 1 1 0 0 1 0
Table 5.3.1.2. Adjacency matrix B.

If there is any diagonal of B (namely 0,0,1,0,0,0) it shows that there is a loop from Ch1 to
itself of length 1. But in this case, we haven´t any loop of length 1. The diagonal of B is (0, 0, 0,
0, 0, 0) so we haven´t loops. To compute the number of paths with length 2 we simply

compute the matrix product 2 *B B B . For example there are 4 paths since Off to itself of

length 2 (i.e., on[ch1] off, on[ch2] off, on[ch3] off, on[ch4] off). Variable 2B also says that with
paths of length 2 we can reach any state from any other state.

 Off Standby Ch1 Ch2 Ch3 Ch4

Off 4 4 1 2 2 1

Standby 4 4 2 3 3 2

Ch1 2 1 3 2 2 2

Ch2 3 2 2 4 3 3

Ch3 3 2 3 2 3 2

Ch4 2 1 2 3 3 3
Table 5.3.1.3. Adjacency matrix B*B.

The diagonal of B is (4, 4, 3, 4, 3, 3), which tell us that there are 21 loops of length 2, 4 of

which start and end at Off, 4 at Standby, 3 at Ch1, etc. In the same way we can compute 3B

and 4B and so forth. The resulting W it´s, W = {off, standby, 1, 2, 4}. Now we can calculate the
test cases associated at this statechart with the original formula (Equ. 1) of the W method. T= {
λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * {on[ch1], on[ch2], on[ch3],
on[ch4], off, 1, 2, 3, 4, standby} * {off, standby, 1, 2, 4} = 6 * 10 * 5 = 300 test cases

Equation 5.3.1.1 W Method.

Now we can get the test cases and identify the redundant and negative test cases. As we
have talked in the point 5.2.2 of this chapter an example of negative test case can be {off} and
an example of redundant test case {off standby}.

T={on[ch1] off, on[ch2] off, on[ch3] off, on[ch4] off, off off, 1 off, 2 off, 3 off, 4 off, standby off,

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

90

on[ch1] standby, on[ch2] standby, on[ch3] standby, on[ch4] standby, off standby, 1 standby, 2
standby, 3 standby, 4 standby, standby standby, on[ch1] 1, on[ch2] 1, on[ch3] 1, on[ch4] 1, off
1, 1 1, 2 1, 3 1, 4 1, standby 1, on[ch1] 2, on[ch2] 2, on[ch3] 2, on[ch4] 2, off 2, 1 2, 2 2, 3 2, 4
2, standby 2, on[ch1] 4, on[ch2] 4, on[ch3] 4, on[ch4] 4, off 4, 1 4, 2 4, 3 4, 4 4, standby 4,
on[ch1] on[ch1] off, on[ch1] on[ch2] off, on[ch1] on[ch3] off, on[ch1] on[ch4] off, on[ch1] off
off, on[ch1] 1 off, on[ch1] 2 off, on[ch1] 3 off, on[ch1] 4 off, on[ch1] standby off, on[ch1]
on[ch1] standby, on[ch1] on[ch2] standby, on[ch1] on[ch3] standby, on[ch1] on[ch4] standby,
on[ch1] off standby, on[ch1] 1 standby, on[ch1] 2 standby, on[ch1] 3 standby, on[ch1] 4
standby, on[ch1] standby standby, on[ch1] on[ch1] 1, on[ch1] on[ch2] 1, on[ch1] on[ch3] 1,
on[ch1] on[ch4] 1, on[ch1] off 1, on[ch1] 1 1, on[ch1] 2 1, on[ch1] 3 1, on[ch1] 4 1, on[ch1]
standby 1, on[ch1] on[ch1] 2, on[ch1] on[ch2] 2, on[ch1] on[ch3] 2, on[ch1] on[ch4] 2, on[ch1]
off 2, on[ch1] 1 2, on[ch1] 2 2, on[ch1] 3 2, on[ch1] 4 2, on[ch1] standby 2, on[ch1] on[ch1] 4,
on[ch1] on[ch2] 4, on[ch1] on[ch3] 4, on[ch1] on[ch4] 4, on[ch1] off 4, on[ch1] 1 4, on[ch1] 2 4,
on[ch1] 3 4, on[ch1] 4 4, on[ch1] standby 4, on[ch2] on[ch1] off, on[ch2] on[ch2] off, on[ch2]
on[ch3] off, on[ch2] on[ch4] off, on[ch2] off off, on[ch2] 1 off, on[ch2] 2 off, on[ch2] 3 off,
on[ch2] 4 off, on[ch2] standby off, on[ch2] on[ch1] standby, on[ch2] on[ch2] standby, on[ch2]
on[ch3] standby, on[ch2] on[ch4] standby, on[ch2] off standby, on[ch2] 1 standby, on[ch2] 2
standby, on[ch2] 3 standby, on[ch2] 4 standby, on[ch2] standby standby, on[ch2] on[ch1] 1,
on[ch2] on[ch2] 1, on[ch2] on[ch3] 1, on[ch2] on[ch4] 1, on[ch2] off 1, on[ch2] 1 1, on[ch2] 2 1,
on[ch2] 3 1, on[ch2] 4 1, on[ch2] standby 1, on[ch2] on[ch1] 2, on[ch2] on[ch2] 2, on[ch2]
on[ch3] 2, on[ch2] on[ch4] 2, on[ch2] off 2, on[ch2] 1 2, on[ch2] 2 2, on[ch2] 3 2, on[ch2] 4 2,
on[ch2] standby 2, on[ch2] on[ch1] 4, on[ch2] on[ch2] 4, on[ch2] on[ch3] 4, on[ch2] on[ch4] 4,
on[ch2] off 4, on[ch2] 1 4, on[ch2] 2 4, on[ch2] 3 4, on[ch2] 4 4, on[ch2] standby 4, on[ch3]
on[ch1] off, on[ch3] on[ch2] off, on[ch3] on[ch3] off, on[ch3] on[ch4] off, on[ch3] off off,
on[ch3] 1 off, on[ch3] 2 off, on[ch3] 3 off, on[ch3] 4 off, on[ch3] standby off, on[ch3] on[ch1]
standby, on[ch3] on[ch2] standby, on[ch3] on[ch3] standby, on[ch3] on[ch4] standby, on[ch3]
off standby, on[ch3] 1 standby, on[ch3] 2 standby, on[ch3] 3 standby, on[ch3] 4 standby,
on[ch3] standby standby, on[ch3] on[ch1] 1, on[ch3] on[ch2] 1, on[ch3] on[ch3] 1, on[ch3]
on[ch4] 1, on[ch3] off 1, on[ch3] 1 1, on[ch3] 2 1, on[ch3] 3 1, on[ch3] 4 1, on[ch3] standby 1,
on[ch3] on[ch1] 2, on[ch3] on[ch2] 2, on[ch3] on[ch3] 2, on[ch3] on[ch4] 2, on[ch3] off 2,
on[ch3] 1 2, on[ch3] 2 2, on[ch3] 3 2, on[ch3] 4 2, on[ch3] standby 2, on[ch3] on[ch1] 4,
on[ch3] on[ch2] 4, on[ch3] on[ch3] 4, on[ch3] on[ch4] 4, on[ch3] off 4, on[ch3] 1 4, on[ch3] 2 4,
on[ch3] 3 4, on[ch3] 4 4, on[ch3] standby 4, on[ch4] on[ch1] off, on[ch4] on[ch2] off, on[ch4]
on[ch3] off, on[ch4] on[ch4] off, on[ch4] off off, on[ch4] 1 off, on[ch4] 2 off, on[ch4] 3 off,
on[ch4] 4 off, on[ch4] standby off, on[ch4] on[ch1] standby, on[ch4] on[ch2] standby, on[ch4]
on[ch3] standby, on[ch4] on[ch4] standby, on[ch4] off standby, on[ch4] 1 standby, on[ch4] 2
standby, on[ch4] 3 standby, on[ch4] 4 standby, on[ch4] standby standby, on[ch4] on[ch1] 1,
on[ch4] on[ch2] 1, on[ch4] on[ch3] 1, on[ch4] on[ch4] 1, on[ch4] off 1, on[ch4] 1 1, on[ch4] 2 1,
on[ch4] 3 1, on[ch4] 4 1, on[ch4] standby 1, on[ch4] on[ch1] 2, on[ch4] on[ch2] 2, on[ch4]
on[ch3] 2, on[ch4] on[ch4] 2, on[ch4] off 2, on[ch4] 1 2, on[ch4] 2 2, on[ch4] 3 2, on[ch4] 4 2,
on[ch4] standby 2, on[ch4] on[ch1] 4, on[ch4] on[ch2] 4, on[ch4] on[ch3] 4, on[ch4] on[ch4] 4,
on[ch4] off 4, on[ch4] 1 4, on[ch4] 2 4, on[ch4] 3 4, on[ch4] 4 4, on[ch4] standby 4, on[ch1]
standby on[ch1] off, on[ch1] standby on[ch2] off, on[ch1] standby on[ch3] off, on[ch1]
standby on[ch4] off, on[ch1] standby off off, on[ch1] standby 1 off, on[ch1] standby 2 off,
on[ch1] standby 3 off, on[ch1] standby 4 off, on[ch1] standby standby off, on[ch1] standby
on[ch1] standby, on[ch1] standby on[ch2] standby, on[ch1] standby on[ch3] standby, on[ch1]
standby on[ch4] standby, on[ch1] standby off standby, on[ch1] standby 1 standby, on[ch1]
standby 2 standby, on[ch1] standby 3 standby, on[ch1] standby 4 standby, on[ch1] standby
standby standby, on[ch1] standby on[ch1] 1, on[ch1] standby on[ch2] 1, on[ch1] standby
on[ch3] 1, on[ch1] standby on[ch4] 1, on[ch1] standby off 1, on[ch1] standby 1 1, on[ch1]
standby 2 1, on[ch1] standby 3 1, on[ch1] standby 4 1, on[ch1] standby standby 1, on[ch1]
standby on[ch1] 2, on[ch1] standby on[ch2] 2, on[ch1] standby on[ch3] 2, on[ch1] standby

 Test cases generation for functional tests of user interfaces.

91

on[ch4] 2, on[ch1] standby off 2, on[ch1] standby 1 2, on[ch1] standby 2 2, on[ch1] standby
3 2, on[ch1] standby 4 2, on[ch1] standby standby 2, on[ch1] standby on[ch1] 4, on[ch1]
standby on[ch2] 4, on[ch1] standby on[ch3] 4, on[ch1] standby on[ch4] 4, on[ch1] standby
off 4, on[ch1] standby 1 4, on[ch1] standby 2 4, on[ch1] standby 3 4, on[ch1] standby 4 4,
on[ch1] standby standby 4}.

As we see when using an automated algorithm there are a lot of negative test cases. We
have differentiated the set T of test cases that are positive from those that are negative. In
next step, we will identify the redundant test cases among which are negative (on the basis of
the length of a path: if path p is negative, and path q is such that q = concat(p,s) and s is not π

then q is also negative, and we call q redundant. positiveT  on[ch1] off, on[ch2] off, on[ch3] off,

on[ch4] off, on[ch1] standby, on[ch2] standby, on[ch3] standby, on[ch4] standby, on[ch2] 1,
on[ch3] 2,on[ch3] 4, on[ch1] 2 off, on[ch1] standby off, on[ch1] 2 standby, on[ch1] 2 1, on[ch2]
1 off, on[ch2] 3 off, on[ch2] standby off, on[ch2] 1 standby, on[ch2] 3 standby, on[ch2] 1 2,
on[ch2] 3 2, on[ch2] 3 4, on[ch3] 2 off, on[ch3] 4 off, on[ch3] standby off, on[ch3] 2 standby,
on[ch3] 4 standby, on[ch3] 2 1, on[ch4] 3 off, on[ch4] 3 standby, on[ch4] 3 2, on[ch4] 3 4,
on[ch1] standby on[ch1] off, on[ch1] standby on[ch2] off, on[ch1] standby on[ch3] off,
on[ch1] standby on[ch4] off, on[ch1] standby on[ch1] standby, on[ch1] standby on[ch2]
standby, on[ch1] standby on[ch3] standby, on[ch1] standby on[ch4] standby, on[ch1] standby
on[ch2] 1, on[ch1] standby on[ch1] 2, on[ch1] standby on[ch3] 2, on[ch1] standby on[ch3] 4
= 45 positive test cases

We can see that all the paths are traversed:

Figure 5.3.1.2. Covered transitions.

negativeT  off off, 1 off, 2 off, 3 off, 4 off, standby off, off standby, 1 standby, 2 standby, 3

standby, 4 standby, standby standby, on[ch1] 1, on[ch3] 1, on[ch4] 1, off 1, 1 1, 2 1, 3 1, 4 1,
standby 1, on[ch2] 2, on[ch4] 2, off 2, 1 2, 2 2, 3 2, 4 2, standby 2, on[ch1] 4, on[ch2] 4,
on[ch4] 4, off 4, 1 4, 2 4, 3 4, 4 4, standby 4, on[ch1] on[ch1] off, on[ch1] on[ch2] off, on[ch1]
on[ch3] off, on[ch1] on[ch4] off, on[ch1] off off, on[ch1] 1 off, on[ch1] 3 off, on[ch1] 4 off,
on[ch1] on[ch1] standby, on[ch1] on[ch2] standby, on[ch1] on[ch3] standby, on[ch1] on[ch4]
standby, on[ch1] off standby, on[ch1] 1 standby, on[ch1] 3 standby, on[ch1] 4 standby, on[ch1]
standby standby, on[ch1] on[ch1] 1, on[ch1] on[ch2] 1, on[ch1] on[ch3] 1, on[ch1] on[ch4] 1,
on[ch1] off 1, on[ch1] 1 1, on[ch1] 3 1, on[ch1] 4 1, on[ch1] standby 1,on[ch1] on[ch1] 2,
on[ch1] on[ch2] 2, on[ch1] on[ch3] 2, on[ch1] on[ch4] 2, on[ch1] off 2, on[ch1] 1 2, on[ch1] 2 2,
on[ch1] 3 2, on[ch1] 4 2, on[ch1] standby 2,on[ch1] on[ch1] 4, on[ch1] on[ch2] 4, on[ch1]
on[ch3] 4, on[ch1] on[ch4] 4, on[ch1] off 4, on[ch1] 1 4, on[ch1] 2 4, on[ch1] 3 4, on[ch1] 4 4,
on[ch1] standby 4, on[ch2] on[ch1] off, on[ch2] on[ch2] off, on[ch2] on[ch3] off, on[ch2]
on[ch4] off, on[ch2] off off, on[ch2] 2 off, on[ch2] 4 off, on[ch2] on[ch1] standby, on[ch2]

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

92

on[ch2] standby, on[ch2] on[ch3] standby, on[ch2] on[ch4] standby, on[ch2] off standby,
on[ch2] 2 standby, on[ch2] 4 standby, on[ch2] standby standby, on[ch2] on[ch1] 1, on[ch2]
on[ch2] 1, on[ch2] on[ch3] 1, on[ch2] on[ch4] 1, on[ch2] off 1, on[ch2] 1 1, on[ch2] 2 1, on[ch2]
3 1, on[ch2] 4 1, on[ch2] standby 1, on[ch2] on[ch1] 2, on[ch2] on[ch2] 2, on[ch2] on[ch3] 2,
on[ch2] on[ch4] 2, on[ch2] off 2, on[ch2] 2 2, on[ch2] 4 2, on[ch2] standby 2, on[ch2] on[ch1]
4, on[ch2] on[ch2] 4, on[ch2] on[ch3] 4, on[ch2] on[ch4] 4, on[ch2] off 4, on[ch2] 1 4, on[ch2]
2 4, on[ch2] 4 4, on[ch2] standby 4, on[ch3] on[ch1] off, on[ch3] on[ch2] off, on[ch3] on[ch3]
off, on[ch3] on[ch4] off, on[ch3] off off, on[ch3] 1 off, on[ch3] 3 off, on[ch3] on[ch1] standby,
on[ch3] on[ch2] standby, on[ch3] on[ch3] standby, on[ch3] on[ch4] standby, on[ch3] off
standby, on[ch3] 1 standby, on[ch3] 3 standby, on[ch3] standby standby, on[ch3] on[ch1] 1,
on[ch3] on[ch2] 1, on[ch3] on[ch3] 1, on[ch3] on[ch4] 1, on[ch3] off 1, on[ch3] 1 1, on[ch3] 3 1,
on[ch3] 4 1, on[ch3] standby 1, on[ch3] on[ch1] 2, on[ch3] on[ch2] 2, on[ch3] on[ch3] 2,
on[ch3] on[ch4] 2, on[ch3] off 2, on[ch3] 1 2, on[ch3] 2 2, on[ch3] 3 2, on[ch3] 4 2, on[ch3]
standby 2, on[ch3] on[ch1] 4, on[ch3] on[ch2] 4, on[ch3] on[ch3] 4, on[ch3] on[ch4] 4, on[ch3]
off 4, on[ch3] 1 4, on[ch3] 2 4, on[ch3] 3 4, on[ch3] 4 4, on[ch3] standby 4, on[ch4] on[ch1] off,
on[ch4] on[ch2] off, on[ch4] on[ch3] off, on[ch4] on[ch4] off, on[ch4] off off, on[ch4] 1 off,
on[ch4] 2 off, on[ch4] 4 off, on[ch4] standby off, on[ch4] on[ch1] standby, on[ch4] on[ch2]
standby, on[ch4] on[ch3] standby, on[ch4] on[ch4] standby, on[ch4] off standby, on[ch4] 1
standby, on[ch4] 2 standby, on[ch4] 4 standby, on[ch4] standby standby, on[ch4] on[ch1] 1,
on[ch4] on[ch2] 1, on[ch4] on[ch3] 1, on[ch4] on[ch4] 1, on[ch4] off 1, on[ch4] 1 1, on[ch4] 2 1,
on[ch4] 3 1, on[ch4] 4 1, on[ch4] standby 1, on[ch4] on[ch1] 2, on[ch4] on[ch2] 2, on[ch4]
on[ch3] 2, on[ch4] on[ch4] 2, on[ch4] off 2, on[ch4] 1 2, on[ch4] 2 2, on[ch4] 4 2, on[ch4]
standby 2, on[ch4] on[ch1] 4, on[ch4] on[ch2] 4, on[ch4] on[ch3] 4, on[ch4] on[ch4] 4, on[ch4]
off 4, on[ch4] 1 4, on[ch4] 2 4, on[ch4] 4 4, on[ch4] standby 4, on[ch1] standby off off, on[ch1]
standby 1 off, on[ch1] standby 2 off, on[ch1] standby 3 off, on[ch1] standby 4 off, on[ch1]
standby standby off, on[ch1] standby off standby, on[ch1] standby 1 standby, on[ch1]
standby 2 standby, on[ch1] standby 3 standby, on[ch1] standby 4 standby, on[ch1] standby
standby standby, on[ch1] standby on[ch1] 1, on[ch1] standby on[ch3] 1, on[ch1] standby
on[ch4] 1, on[ch1] standby off 1, on[ch1] standby 1 1, on[ch1] standby 2 1, on[ch1] standby
3 1, on[ch1] standby 4 1, on[ch1] standby standby 1, on[ch1] standby on[ch2] 2, on[ch1]
standby on[ch4] 2, on[ch1] standby off 2, on[ch1] standby 1 2, on[ch1] standby 2 2, on[ch1]
standby 3 2, on[ch1] standby 4 2, on[ch1] standby standby 2, on[ch1] standby on[ch1] 4,
on[ch1] standby on[ch2] 4, on[ch1] standby on[ch4] 4, on[ch1] standby off 4, on[ch1]
standby 1 4, on[ch1] standby 2 4, on[ch1] standby 3 4, on[ch1] standby 4 4, on[ch1] standby
standby 4 = 300 – 45(positive test cases) – 33(redundant test cases, calculated below) = 222
negative test cases.

And also those that are redundant (on the basis of the length of a path: if path p is
negative, and path q is such that q = concat (p,s) and s is not λ then q is also negative, and we
call q redundant. We can see an example:

Negative test case; p = on[ch1] 4
Redundant test case; q = on[ch1] 4 off

o q = concat (p, s) = “on[ch1] 4” + “off” = results in a redundant test case.

rebundantT  {on[ch1] 1 off, on[ch1] 1 standby, on[ch1] 1 1, on[ch1] 1 2, on[ch1] 1 4, on[ch1] 4

off, on[ch1] 4 standby, on[ch2] 2 off, on[ch2] 4 off, on[ch2] 4 standby, on[ch2] 4 1, on[ch2] 4 2,
on[ch2] 4 4, on[ch3] 1 off, on[ch3] 1 standby, on[ch3] 1 1, on[ch3] 1 2, on[ch3] 1 4, on[ch4] 1
off, on[ch4] 2 off, on[ch4] 4 off, on[ch4] 1 standby, on[ch4] 2 standby, on[ch4] 4 standby,
on[ch4] 1 1, on[ch4] 2 1, on[ch4] 4 1, on[ch4] 1 2, on[ch4] 2 2, on[ch4] 4 2, on[ch4] 1 4, on[ch4]
2 4, on[ch4] 4 4 =33 redundant test cases originating of the negative test cases “on[ch1] 1,
on[ch3] 1, on[ch4] 1, on[ch2] 2, on[ch4] 2, on[ch1] 4, on[ch2] 4, on[ch4] 4} = 33 redundant test
cases.

 Test cases generation for functional tests of user interfaces.

93

Figure 5.3.1.3 Types of test cases model 1.

5.3.2 Simplest model change transitions "+" and "-" for numbers only up direction
between channels.

Again we have changed transitions “+” and “-” by numbers to clarify the action of every
event as we can see on Fig. 5.3.2.1. The set of transition labels (denoted by ɸ) is the set of
labels of a statechart. ɸ = {on[ch1], on[ch2], on[ch3], on[ch4], off, 1, 2, 3, 4, standby}. Any
desired state starting from the initial one (denoted by C). C  {λ, on[ch1], on[ch2], on[ch3],
on[ch4], on[ch1] standby}.

Figure 5.3.2.1 Changed model 2.

And finally we need to obtain the characterisation set (W), but this needs to be explained
in several steps. The most important things to calculate W are; such paths for every pair of
states comprise a characterisation set, each element of this particular W is a sequence
consisting of a single label and a set (denoted by W) allows a tester to check the state arrived

300

45

222

33

Total test cases Positive test cases Negative test cases Redundant test cases

Test cases for model 1

Total test cases Positive test cases Negative test cases Redundant test cases

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

94

at when a transition fires. For every pair of states, it is possible to construct a path which exists
from one of them and not from the other. In the table below (transition matrix A). We only
indentify all the transitions of every state.

 Off Standby Ch1 Ch2 Ch3 Ch4 Set of events

Off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4]

Standby off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4],
off

Ch1 off standby 2 off, standby, 2

Ch2 off standby 3 off, standby, 3

Ch3 off standby 4 off, standby, 4

Ch4 off standby 1 off, standby, 1
Table 5.3.2.1 Transition matrix A.

The matrix that tells us how many transitions are there between pairs of states. The
marginal sum by row gives the outdegree of a state, while the marginal sum by column gives
its indegree.

 Off Standby Ch1 Ch2 Ch3 Ch4

Off 0 0 1 1 1 1

Standby 1 0 1 1 1 1

Ch1 1 1 0 1 0 0

Ch2 1 1 0 0 1 0

Ch3 1 1 0 0 0 1

Ch4 1 1 1 0 0 0
Table 5.3.2.2. Adjacency matrix B.

To compute the number of paths with length 2 we simply compute the matrix product
2 *B B B . 2B also says that with paths of length 2 we can reach any state from any other

state.

 Off Standby Ch1 Ch2 Ch3 Ch4

Off 4 4 1 1 1 1

Standby 4 4 2 2 2 2

Ch1 2 1 2 2 3 2

Ch2 2 1 2 2 2 3

Ch3 2 1 3 2 2 2

Ch4 2 1 2 3 2 2
Table 5.3.2.3. Adjacency matrix B*B.

 Test cases generation for functional tests of user interfaces.

95

The diagonal of B is (4, 4, 2, 2, 2, 2), which tell us that there are 16 loops of length 2, 4 of

which start and end at Off, 4 at Standby, 2 at Ch1, etc. In the same way we can compute 3B

and 4B and so forth. The resulting W it´s, W = {off, standby, 1, 2, 3, 4}. Now we can calculate
the test cases associated at this statechart with the original formula (Equ. 5.3.2.) of the W
method. T= { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * {on[ch1], on[ch2],
on[ch3], on[ch4], off, 1, 2, 3, 4, standby} * {off, standby, 1, 2, 3, 4} = 6 * 10 * 6 = 360 test
cases.

Equation 5.3.2.1 W method.

Now we can get the test cases and identify the redundant and negative test cases. As we
have talked in the point 5.2.2. of this chapter an example of negative test case can be: {off}
and an example of redundant test case; {off standby}.

T= { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * {on[ch1], on[ch2], on[ch3],
on[ch4], off, 1, 2, 3, 4, standby} * {off, standby, 1, 2, 3, 4}

T={ on[ch1] off, on[ch2] off, on[ch3] off, on[ch4] off, off off, 1 off, 2 off, 3 off, 4 off, standby
off, on[ch1] standby, on[ch2] standby, on[ch3] standby, on[ch4] standby, off standby, 1
standby, 2 standby, 3 standby, 4 standby, standby standby, on[ch1] 1, on[ch2] 1, on[ch3] 1,
on[ch4] 1, off 1, 1 1, 2 1, 3 1, 4 1, standby 1, on[ch1] 2, on[ch2] 2, on[ch3] 2, on[ch4] 2, off 2, 1
2, 2 2, 3 2, 4 2, standby 2, on[ch1] 3, on[ch2] 3, on[ch3] 3, on[ch4] 3, off 3, 1 3, 2 3, 3 3, 4 3,
standby 3, on[ch1] 4, on[ch2] 4, on[ch3] 4, on[ch4] 4, off 4, 1 4, 2 4, 3 4, 4 4, standby 4,
on[ch1] on[ch1] off, on[ch1] on[ch2] off, on[ch1] on[ch3] off, on[ch1] on[ch4] off, on[ch1] off
off, on[ch1] 1 off, on[ch1] 2 off, on[ch1] 3 off, on[ch1] 4 off, on[ch1] standby off, on[ch1]
on[ch1] standby, on[ch1] on[ch2] standby, on[ch1] on[ch3] standby, on[ch1] on[ch4] standby,
on[ch1] off standby, on[ch1] 1 standby, on[ch1] 2 standby, on[ch1] 3 standby, on[ch1] 4
standby, on[ch1] standby standby, on[ch1] on[ch1] 1, on[ch1] on[ch2] 1, on[ch1] on[ch3] 1,
on[ch1] on[ch4] 1, on[ch1] off 1, on[ch1] 1 1, on[ch1] 2 1, on[ch1] 3 1, on[ch1] 4 1, on[ch1]
standby 1, on[ch1] on[ch1] 2, on[ch1] on[ch2] 2, on[ch1] on[ch3] 2, on[ch1] on[ch4] 2, on[ch1]
off 2, on[ch1] 1 2, on[ch1] 2 2, on[ch1] 3 2, on[ch1] 4 2, on[ch1] standby 2, on[ch1] on[ch1] 3,
on[ch1] on[ch2] 3, on[ch1] on[ch3] 3, on[ch1] on[ch4] 3, on[ch1] off 3, on[ch1] 1 3, on[ch1] 2 3,
on[ch1] 3 3, on[ch1] 4 3, on[ch1] standby 3, on[ch1] on[ch1] 4, on[ch1] on[ch2] 4, on[ch1]
on[ch3] 4, on[ch1] on[ch4] 4, on[ch1] off 4, on[ch1] 1 4, on[ch1] 2 4, on[ch1] 3 4, on[ch1] 4 4,
on[ch1] standby 4, on[ch2] on[ch1] off, on[ch2] on[ch2] off, on[ch2] on[ch3] off, on[ch2]
on[ch4] off, on[ch2] off off, on[ch2] 1 off, on[ch2] 2 off, on[ch2] 3 off, on[ch2] 4 off, on[ch2]
standby off, on[ch2] on[ch1] standby, on[ch2] on[ch2] standby, on[ch2] on[ch3] standby,
on[ch2] on[ch4] standby, on[ch2] off standby, on[ch2] 1 standby, on[ch2] 2 standby, on[ch2] 3
standby, on[ch2] 4 standby, on[ch2] standby standby, on[ch2] on[ch1] 1, on[ch2] on[ch2] 1,
on[ch2] on[ch3] 1, on[ch2] on[ch4] 1, on[ch2] off 1, on[ch2] 1 1, on[ch2] 2 1, on[ch2] 3 1,
on[ch2] 4 1, on[ch2] standby 1, on[ch2] on[ch1] 2, on[ch2] on[ch2] 2, on[ch2] on[ch3] 2,
on[ch2] on[ch4] 2, on[ch2] off 2, on[ch2] 1 2, on[ch2] 2 2, on[ch2] 3 2, on[ch2] 4 2, on[ch2]
standby 2, on[ch2] on[ch1] 3, on[ch2] on[ch2] 3, on[ch2] on[ch3] 3, on[ch2] on[ch4] 3, on[ch2]
off 3, on[ch2] 1 3, on[ch2] 2 3, on[ch2] 3 3, on[ch2] 4 3, on[ch2] standby 3, on[ch2] on[ch1] 4,
on[ch2] on[ch2] 4, on[ch2] on[ch3] 4, on[ch2] on[ch4] 4, on[ch2] off 4, on[ch2] 1 4, on[ch2] 2 4,
on[ch2] 3 4, on[ch2] 4 4, on[ch2] standby 4, on[ch3] on[ch1] off, on[ch3] on[ch2] off, on[ch3]
on[ch3] off, on[ch3] on[ch4] off, on[ch3] off off, on[ch3] 1 off, on[ch3] 2 off, on[ch3] 3 off,
on[ch3] 4 off, on[ch3] standby off, on[ch3] on[ch1] standby, on[ch3] on[ch2] standby, on[ch3]
on[ch3] standby, on[ch3] on[ch4] standby, on[ch3] off standby, on[ch3] 1 standby, on[ch3] 2
standby, on[ch3] 3 standby, on[ch3] 4 standby, on[ch3] standby standby, on[ch3] on[ch1] 1,
on[ch3] on[ch2] 1, on[ch3] on[ch3] 1, on[ch3] on[ch4] 1, on[ch3] off 1, on[ch3] 1 1, on[ch3] 2 1,

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

96

on[ch3] 3 1, on[ch3] 4 1, on[ch3] standby 1, on[ch3] on[ch1] 2, on[ch3] on[ch2] 2, on[ch3]
on[ch3] 2, on[ch3] on[ch4] 2, on[ch3] off 2, on[ch3] 1 2, on[ch3] 2 2, on[ch3] 3 2, on[ch3] 4 2,
on[ch3] standby 2, on[ch3] on[ch1] 3, on[ch3] on[ch2] 3, on[ch3] on[ch3] 3, on[ch3] on[ch4] 3,
on[ch3] off 3, on[ch3] 1 3, on[ch3] 2 3, on[ch3] 3 3, on[ch3] 4 3, on[ch3] standby 3, on[ch3]
on[ch1] 4, on[ch3] on[ch2] 4, on[ch3] on[ch3] 4, on[ch3] on[ch4] 4, on[ch3] off 4, on[ch3] 1 4,
on[ch3] 2 4, on[ch3] 3 4, on[ch3] 4 4, on[ch3] standby 4, on[ch4] on[ch1] off, on[ch4] on[ch2]
off, on[ch4] on[ch3] off, on[ch4] on[ch4] off, on[ch4] off off, on[ch4] 1 off, on[ch4] 2 off,
on[ch4] 3 off, on[ch4] 4 off, on[ch4] standby off, on[ch4] on[ch1] standby, on[ch4] on[ch2]
standby, on[ch4] on[ch3] standby, on[ch4] on[ch4] standby, on[ch4] off standby, on[ch4] 1
standby, on[ch4] 2 standby, on[ch4] 3 standby, on[ch4] 4 standby, on[ch4] standby standby,
on[ch4] on[ch1] 1, on[ch4] on[ch2] 1, on[ch4] on[ch3] 1, on[ch4] on[ch4] 1, on[ch4] off 1,
on[ch4] 1 1, on[ch4] 2 1, on[ch4] 3 1, on[ch4] 4 1, on[ch4] standby 1, on[ch4] on[ch1] 2,
on[ch4] on[ch2] 2, on[ch4] on[ch3] 2, on[ch4] on[ch4] 2, on[ch4] off 2, on[ch4] 1 2, on[ch4] 2 2,
on[ch4] 3 2, on[ch4] 4 2, on[ch4] standby 2, on[ch4] on[ch1] 3, on[ch4] on[ch2] 3, on[ch4]
on[ch3] 3, on[ch4] on[ch4] 3, on[ch4] off 3, on[ch4] 1 3, on[ch4] 2 3, on[ch4] 3 3, on[ch4] 4 3,
on[ch4] standby 3, on[ch4] on[ch1] 4, on[ch4] on[ch2] 4, on[ch4] on[ch3] 4, on[ch4] on[ch4] 4,
on[ch4] off 4, on[ch4] 1 4, on[ch4] 2 4, on[ch4] 3 4, on[ch4] 4 4, on[ch4] standby 4, on[ch1]
standby on[ch1] off, on[ch1] standby on[ch2] off, on[ch1] standby on[ch3] off, on[ch1]
standby on[ch4] off, on[ch1] standby off off, on[ch1] standby 1 off, on[ch1] standby 2 off,
on[ch1] standby 3 off, on[ch1] standby 4 off, on[ch1] standby standby off, on[ch1] standby
on[ch1] standby, on[ch1] standby on[ch2] standby, on[ch1] standby on[ch3] standby, on[ch1]
standby on[ch4] standby, on[ch1] standby off standby, on[ch1] standby 1 standby, on[ch1]
standby 2 standby, on[ch1] standby 3 standby, on[ch1] standby 4 standby, on[ch1] standby
standby standby, on[ch1] standby on[ch1] 1, on[ch1] standby on[ch2] 1, on[ch1] standby
on[ch3] 1, on[ch1] standby on[ch4] 1, on[ch1] standby off 1, on[ch1] standby 1 1, on[ch1]
standby 2 1, on[ch1] standby 3 1, on[ch1] standby 4 1, on[ch1] standby standby 1, on[ch1]
standby on[ch1] 2, on[ch1] standby on[ch2] 2, on[ch1] standby on[ch3] 2, on[ch1] standby
on[ch4] 2, on[ch1] standby off 2, on[ch1] standby 1 2, on[ch1] standby 2 2, on[ch1] standby 3
2, on[ch1] standby 4 2, on[ch1] standby standby 2, on[ch1] standby on[ch1] 3, on[ch1] standby
on[ch2] 3, on[ch1] standby on[ch3] 3, on[ch1] standby on[ch4] 3, on[ch1] standby off 3,
on[ch1] standby 1 3, on[ch1] standby 2 3, on[ch1] standby 3 3, on[ch1] standby 4 3, on[ch1]
standby standby 3, on[ch1] standby on[ch1] 4, on[ch1] standby on[ch2] 4, on[ch1] standby
on[ch3] 4, on[ch1] standby on[ch4] 4, on[ch1] standby off 4, on[ch1] standby 1 4, on[ch1]
standby 2 4, on[ch1] standby 3 4, on[ch1] standby 4 4, on[ch1] standby standby 4}.

As we see when using an automated algorithm there are a lot of negative test cases. We
have differentiated the set T of test cases that are positive from those that are negative. In
next step, we will identify the redundant test cases among which are negative (on the basis of
the length of a path: if path p is negative, and path q is such that q = concat (p,s) and s is not π

then q is also negative, and we call q redundant. The set of positive test cases are positiveT 

{on[ch1] off, on[ch2] off, on[ch3] off, on[ch4] off, on[ch1] standby, on[ch2] standby, on[ch3]
standby, on[ch4] standby, on[ch4] 1, on[ch1] 2, on[ch2] 3, on[ch3] 4, on[ch1] 2 off, on[ch1]
standby off, on[ch1] 2 standby, on[ch1] 2 3, on[ch2] 3 off, on[ch2] standby off, on[ch2] 3
standby, on[ch2] 3 4, on[ch3] 4 off, on[ch3] standby off, on[ch3] 4 standby, on[ch3] 4 1,
on[ch4] 1 off, on[ch4] standby off, on[ch4] 1 standby, on[ch4] 1 2, on[ch1] standby on[ch1] off,
on[ch1] standby on[ch2] off, on[ch1] standby on[ch3] off, on[ch1] standby on[ch4] off, on[ch1]
standby on[ch1] standby, on[ch1] standby on[ch2] standby, on[ch1] standby on[ch3] standby,
on[ch1] standby on[ch4] standby, on[ch1] standby on[ch4] 1, on[ch1] standby on[ch1] 2,
on[ch1] standby on[ch2] 3, on[ch1] standby on[ch3] 4} = 40 positive test cases.

 Test cases generation for functional tests of user interfaces.

97

negativeT  {on[ch1] 1, on[ch2] 1, on[ch3] 1, on[ch2] 2, on[ch3] 2, on[ch4] 2, on[ch1] 3, on[ch3]

3, on[ch4] 3, on[ch1] 4, on[ch2] 4, on[ch4] 4, on[ch1] off standby, on[ch1] off 1, on[ch1] 2 1,
on[ch1] standby 1, on[ch1] off 2, on[ch1] 2 2, on[ch1] standby 2, on[ch1] off 3, on[ch1] standby
3, on[ch1] off 4, on[ch1] 2 4, on[ch1] standby 4, on[ch2] off standby, on[ch2] off 1, on[ch2] 3 1,
on[ch2] standby 1, on[ch2] off 2, on[ch2] 3 2, on[ch2] standby 2, on[ch2] off 3, on[ch2] 3 3,
on[ch2] standby 3, on[ch2] off 4, on[ch2] standby 4, on[ch3] off standby, on[ch3] off 1, on[ch3]
standby 1, on[ch3] off 2, on[ch3] 4 2, on[ch3] standby 2, on[ch3] off 3, on[ch3] 4 3, on[ch3]
standby 3, on[ch3] off 4, on[ch3] 4 4, on[ch3] standby 4, on[ch4] off standby, on[ch4] off 1,
on[ch4] 1 1, on[ch4] standby 1, on[ch4] off 2, on[ch4] standby 2, on[ch4] off 3, on[ch4] 1 3,
on[ch4] standby 3, on[ch4] off 4, on[ch4] 1 4, on[ch4] standby 4, on[ch1] standby on[ch1] 1,
on[ch1] standby on[ch2] 1, on[ch1] standby on[ch3] 1, on[ch1] standby off 1, on[ch1] standby
on[ch2] 2, on[ch1] standby on[ch3] 2, on[ch1] standby on[ch4] 2, on[ch1] standby off 2,
on[ch1] standby 1 2, on[ch1] standby 2 2, on[ch1] standby on[ch1] 3, on[ch1] standby on[ch3]
3, on[ch1] standby on[ch4] 3, on[ch1] standby off 3, on[ch1] standby on[ch1] 4, on[ch1]
standby on[ch2] 4, on[ch1] standby on[ch4] 4, on[ch1] standby off 4} = 360 calculated test
cases – 40 (positive test cases) – 242 (redundant test cases, calculated below) = 78 negative
test cases.

And also those that are redundant (on the basis of the length of a path: if path p is
negative, and path q is such that q=concat(p,s) and s is not λ then q is also negative, and we
call q redundant. We can see an example:

Negative test case; p = on[ch1] 4
Redundant test case; q = on[ch1] 4 off

o q = concat (p, s) = “on[ch1] 4” + “off” = results in a redundant test case.

rebundantT  {off off, 1 off, 2 off, 3 off, 4 off, standby off, off standby, 1 standby, 2 standby, 3

standby, 4 standby, standby standby, off 1, 1 1, 2 1, 3 1, 4 1, standby 1, off 2, 1 2, 2 2, 3 2, 4 2,
standby 2, off 3, 1 3, 2 3, 3 3, 4 3, standby 3, off 4, 1 4, 2 4, 3 4, 4 4, standby 4, on[ch1] on[ch1]
off, on[ch1] on[ch2] off, on[ch1] on[ch3] off, on[ch1] on[ch4] off, on[ch1] off off, on[ch1] 1 off,
on[ch1] 3 off, on[ch1] 4 off, on[ch1] on[ch1] standby, on[ch1] on[ch2] standby, on[ch1]
on[ch3] standby, on[ch1] on[ch4] standby, on[ch1] 1 standby, on[ch1] 3 standby, on[ch1] 4
standby, on[ch1] standby standby, on[ch1] on[ch1] 1, on[ch1] on[ch2] 1, on[ch1] on[ch3] 1,
on[ch1] on[ch4] 1, on[ch1] 1 1, , on[ch1] 3 1, on[ch1] 4 1, on[ch1] on[ch1] 2, on[ch1] on[ch2]
2, on[ch1] on[ch3] 2, on[ch1] on[ch4] 2, on[ch1] 1 2, on[ch1] 3 2, on[ch1] 4 2, on[ch1] on[ch1]
3, on[ch1] on[ch2] 3, on[ch1] on[ch3] 3, on[ch1] on[ch4] 3, on[ch1] 1 3, on[ch1] 3 3, on[ch1] 4
3, on[ch1] on[ch1] 4, on[ch1] on[ch2] 4, on[ch1] on[ch3] 4, on[ch1] on[ch4] 4, on[ch1] 1 4,
on[ch1] 3 4, on[ch1] 4 4, on[ch2] on[ch1] off, on[ch2] on[ch2] off, on[ch2] on[ch3] off, on[ch2]
on[ch4] off, on[ch2] off off, on[ch2] 1 off, on[ch2] 2 off, on[ch2] 4 off, on[ch2] on[ch1] standby,
on[ch2] on[ch2] standby, on[ch2] on[ch3] standby, on[ch2] on[ch4] standby, on[ch2] 1
standby, on[ch2] 2 standby, on[ch2] 4 standby, on[ch2] standby standby, on[ch2] on[ch1] 1,
on[ch2] on[ch2] 1, on[ch2] on[ch3] 1, on[ch2] on[ch4] 1, on[ch2] 1 1, on[ch2] 2 1, on[ch2] 4 1,
on[ch2] on[ch1] 2, on[ch2] on[ch2] 2, on[ch2] on[ch3] 2, on[ch2] on[ch4] 2, on[ch2] 1 2,
on[ch2] 2 2, on[ch2] 4 2, on[ch2] on[ch1] 3, on[ch2] on[ch2] 3, on[ch2] on[ch3] 3, on[ch2]
on[ch4] 3, on[ch2] 1 3, on[ch2] 2 3, on[ch2] 4 3, on[ch2] on[ch1] 4, on[ch2] on[ch2] 4, on[ch2]
on[ch3] 4, on[ch2] on[ch4] 4, on[ch2] 1 4, on[ch2] 2 4, on[ch2] 4 4, on[ch3] on[ch1] off, on[ch3]
on[ch2] off, on[ch3] on[ch3] off, on[ch3] on[ch4] off, on[ch3] off off, on[ch3] 1 off, on[ch3] 2
off, on[ch3] 3 off, on[ch3] on[ch1] standby, on[ch3] on[ch2] standby, on[ch3] on[ch3] standby,
on[ch3] on[ch4] standby, on[ch3] 1 standby, on[ch3] 2 standby, on[ch3] 3 standby, on[ch3]
standby standby, on[ch3] on[ch1] 1, on[ch3] on[ch2] 1, on[ch3] on[ch3] 1, on[ch3] on[ch4] 1,
on[ch3] 1 1, on[ch3] 2 1, on[ch3] 3 1, on[ch3] on[ch1] 2, on[ch3] on[ch2] 2, on[ch3] on[ch3] 2,
on[ch3] on[ch4] 2, on[ch3] 1 2, on[ch3] 2 2, on[ch3] 3 2, on[ch3] on[ch1] 3, on[ch3] on[ch2] 3,

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

98

on[ch3] on[ch3] 3, on[ch3] on[ch4] 3, on[ch3] 1 3, on[ch3] 2 3, on[ch3] 3 3, on[ch3] on[ch1] 4,
on[ch3] on[ch2] 4, on[ch3] on[ch3] 4, on[ch3] on[ch4] 4, on[ch3] 1 4, on[ch3] 2 4, on[ch3] 3 4,
on[ch4] on[ch1] off, on[ch4] on[ch2] off, on[ch4] on[ch3] off, on[ch4] on[ch4] off, on[ch4] off
off, on[ch4] 2 off, on[ch4] 3 off, on[ch4] 4 off, on[ch4] on[ch1] standby, on[ch4] on[ch2]
standby, on[ch4] on[ch3] standby, on[ch4] on[ch4] standby, on[ch4] 2 standby, on[ch4] 3
standby, on[ch4] 4 standby, on[ch4] standby standby, on[ch4] on[ch1] 1, on[ch4] on[ch2] 1,
on[ch4] on[ch3] 1, on[ch4] on[ch4] 1, on[ch4] 2 1, on[ch4] 3 1, on[ch4] 4 1, on[ch4] on[ch1] 2,
on[ch4] on[ch2] 2, on[ch4] on[ch3] 2, on[ch4] on[ch4] 2, on[ch4] 2 2, on[ch4] 3 2, on[ch4] 4 2, ,
on[ch4] on[ch1] 3, on[ch4] on[ch2] 3, on[ch4] on[ch3] 3, on[ch4] on[ch4] 3, on[ch4] 2 3,
on[ch4] 3 3, on[ch4] 4 3, on[ch4] on[ch1] 4, on[ch4] on[ch2] 4, on[ch4] on[ch3] 4, on[ch4]
on[ch4] 4, on[ch4] 2 4, on[ch4] 3 4, on[ch4] 4 4, on[ch1] standby off off, on[ch1] standby 1 off,
on[ch1] standby 2 off, on[ch1] standby 3 off, on[ch1] standby 4 off, on[ch1] standby standby
off, on[ch1] standby off standby, on[ch1] standby 1 standby, on[ch1] standby 2 standby,
on[ch1] standby 3 standby, on[ch1] standby 4 standby, on[ch1] standby standby standby,
on[ch1] standby 1 1, on[ch1] standby 2 1, on[ch1] standby 3 1, on[ch1] standby 4 1, on[ch1]
standby standby 1, on[ch1] standby 3 2, on[ch1] standby 4 2, on[ch1] standby standby 2,
on[ch1] standby 1 3, on[ch1] standby 2 3, on[ch1] standby 3 3, on[ch1] standby 4 3, on[ch1]
standby standby 3, on[ch1] standby 1 4, on[ch1] standby 2 4, on[ch1] standby 3 4, on[ch1]
standby 4 4, on[ch1] standby standby 4} = 242 redundant test cases originating of the negative
test cases “on[ch1] 1, on[ch3] 1, on[ch4] 1, on[ch2] 2, on[ch4] 2, on[ch1] 4, on[ch2] 4, on[ch4]
4.”

Figure 5.3.2.2. Types of test cases on model 2.

5.3.3 Simplest model with transitions "+" and "-" with a broken transition “-”
between ch1 and ch4.

With this model we maintain the transitions “+” and “–“ but we have removed the
transition “–“ since channel 1 to channel 4 to break the loop. The set of transition labels
(denoted by ɸ) is the set of labels of a statechart. ɸ = {on[ch1], on[ch2], on[ch3], on[ch4], off,
+, -, standby}. Any desired state starting from the initial one (denoted by C). C  { λ, on[ch1],
on[ch2], on[ch3], on[ch4], on[ch1] standby}.

360

40

78

242

Total test cases Positive test cases Negative test cases Redundant test cases

TV-REMOTE CONTROL model 2

Total test cases Positive test cases Negative test cases Redundant test cases

 Test cases generation for functional tests of user interfaces.

99

Figure 5.3.3.1. Changed model 3.

And finally we need to obtain the characterisation set (W), but this needs to be explained
in several steps. The most important things to calculate W are; such paths for every pair of
states comprise a characterisation set, each element of this particular W is a sequence
consisting of a single label and a set (denoted by W) allows a tester to check the state arrived
at when a transition fires. For every pair of states, it is possible to construct a path which exists
from one of them and not from the other. In the table below (transition matrix A). We only
indentify all the transitions of every state.

 Off Standby Ch1 Ch2 Ch3 Ch4 Set of events

Off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4]

Standby off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4],off

Ch1 off standby + off, standby, +*

Ch2 off standby - + off, standby, +*, -

Ch3 off standby - + off, standby, +*, -, - -

Ch4 off standby + - off, standby, +*, -, - -, - - -
Table 5.3.3.1 Transition matrix A.

The matrix that tells us how many transitions are there between pairs of states. The
marginal sum by row gives the outdegree of a state, while the marginal sum by column gives
its indegree.

 Off Standby Ch1 Ch2 Ch3 Ch4

Off 0 0 1 1 1 1

Standby 1 0 1 1 1 1

Ch1 1 1 0 1 0 0

Ch2 1 1 1 0 1 0

Ch3 1 1 0 1 0 1

Ch4 1 1 1 0 1 0
Table 5.3.3.2. Adjacency matrix B.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

100

To compute the number of paths with length 2 we simply compute the matrix product
2 *B B B . 2B also says that with paths of length 2 we can reach any state from any other

state.

 Off Standby Ch1 Ch2 Ch3 Ch4

Off 4 4 2 2 2 1

Standby 4 4 3 3 3 2

Ch1 2 1 3 2 3 2

Ch2 3 2 2 4 2 3

Ch3 3 2 4 2 4 2

Ch4 3 2 2 4 2 3
Table 5.3.3.3. Adjacency matrix B*B.

The diagonal of B is (4, 4, 3, 4, 4, 3), which tell us that there are 22 loops of length 2, 4 of

which start and end at Off, 4 at Standby, 3 at Ch1, etc. In the same way we can compute 3B

and 4B and so forth. The resulting W it´s, W = {off, standby, -, - - , - - - }. Now we can calculate
the test cases associated at this statechart with the original formula (Equ. 5.3.3.) of the W
method. T= { λ, on[ch1], on[ch2], on[ch3], on[ch4], on[ch1] standby} * { on[ch1], on[ch2],
on[ch3], on[ch4], off, +, -, standby} * {off, standby, -, - - , - - - } = 6 * 8 * 5 = 240 test cases.

Equation 5.3.3.1 W method.

Now we can get the test cases and identify the redundant and negative test cases. As
we have talked in the point 5.2.2. of this chapter an example of negative test case can be: {off}
and an example of redundant test case; {off standby}.

T= { λ, on[ch1], on[ch2], on[ch3], on[ch4], on[ch1] standby} * { on[ch1], on[ch2], on[ch3],
on[ch4], off, +, -, standby } * { off, standby, -, - - , - - - }

T={ on[ch1] off, on[ch2] off, on[ch3] off, on[ch4] off, off off, + off, - off, standby off, on[ch1]
standby, on[ch2] standby, on[ch3] standby, on[ch4] standby, off standby, + standby, - standby,
standby standby, on[ch1] -, on[ch2] -, on[ch3] -, on[ch4] -, off -, + -, - -, standby - , on[ch1] - -,
on[ch2] - -, on[ch3] - -, on[ch4] - -, off - -, + - -, - - -, standby - - , on[ch1] - - -, on[ch2] - - -,
on[ch3] - - -, on[ch4] - - -, off - - -, + - - -, - - - -, standby - - - , on[ch1] on[ch1] off, on[ch1]
on[ch2] off, on[ch1] on[ch3] off, on[ch1] on[ch4] off, on[ch1] off off, on[ch1] + off, on[ch1] -
off, on[ch1] standby off, on[ch1] on[ch1] standby, on[ch1] on[ch2] standby, on[ch1] on[ch3]
standby, on[ch1] on[ch4] standby, on[ch1] off standby, on[ch1] + standby, on[ch1] - standby,
on[ch1] standby standby, on[ch1] on[ch1] -, on[ch1] on[ch2] -, on[ch1] on[ch3] -, on[ch1]
on[ch4] -, on[ch1] off -, on[ch1] + -, on[ch1] - -, on[ch1] standby - , on[ch1] on[ch1] - -, on[ch1]
on[ch2] - -, on[ch1] on[ch3] - -, on[ch1] on[ch4] - -, on[ch1] off - -, on[ch1] + - -, on[ch1] - - -,
on[ch1] standby - - , on[ch1] on[ch1] - - -, on[ch1] on[ch2] - - -, on[ch1] on[ch3] - - -, on[ch1]

 Test cases generation for functional tests of user interfaces.

101

on[ch4] - - -, on[ch1] off - - -, on[ch1] + - - -, on[ch1] - - - -, on[ch1] standby - - - , on[ch2]
on[ch1] off, on[ch2] on[ch2] off, on[ch2] on[ch3] off, on[ch2] on[ch4] off, on[ch2] off off,
on[ch2] + off, on[ch2] - off, on[ch2] standby off, on[ch2] on[ch1] standby, on[ch2] on[ch2]
standby, on[ch2] on[ch3] standby, on[ch2] on[ch4] standby, on[ch2] off standby, on[ch2] +
standby, on[ch2] - standby, on[ch2] standby standby, on[ch2] on[ch1] -, on[ch2] on[ch2] -,
on[ch2] on[ch3] -, on[ch2] on[ch4] -, on[ch2] off -, on[ch2] + -, on[ch2] - -, on[ch2] standby - ,
on[ch2] on[ch1] - -, on[ch2] on[ch2] - -, on[ch2] on[ch3] - -, on[ch2] on[ch4] - -, on[ch2] off - -,
on[ch2] + - -, on[ch2] - - -, on[ch2] standby - - , on[ch2] on[ch1] - - -, on[ch2] on[ch2] - - -,
on[ch2] on[ch3] - - -, on[ch2] on[ch4] - - -, on[ch2] off - - -, on[ch2] + - - -, on[ch2] - - - -, on[ch2]
standby - - - , on[ch3] on[ch1] off, on[ch3] on[ch2] off, on[ch3] on[ch3] off, on[ch3] on[ch4] off,
on[ch3] off off, on[ch3] + off, on[ch3] - off, on[ch3] standby off, on[ch3] on[ch1] standby,
on[ch3] on[ch2] standby, on[ch3] on[ch3] standby, on[ch3] on[ch4] standby, on[ch3] off
standby, on[ch3] + standby, on[ch3] - standby, on[ch3] standby standby, on[ch3] on[ch1] -,
on[ch3] on[ch2] -, on[ch3] on[ch3] -, on[ch3] on[ch4] -, on[ch3] off -, on[ch3] + -, on[ch3] - -,
on[ch3] standby - , on[ch3] on[ch1] - -, on[ch3] on[ch2] - -, on[ch3] on[ch3] - -, on[ch3] on[ch4]
- -, on[ch3] off - -, on[ch3] + - -, on[ch3] - - -, on[ch3] standby - - , on[ch3] on[ch1] - - -, on[ch3]
on[ch2] - - -, on[ch3] on[ch3] - - -, on[ch3] on[ch4] - - -, on[ch3] off - - -, on[ch3] + - - -, on[ch3] -
- - -, on[ch3] standby - - - , on[ch4] on[ch1] off, on[ch4] on[ch2] off, on[ch4] on[ch3] off,
on[ch4] on[ch4] off, on[ch4] off off, on[ch4] + off, on[ch4] - off, on[ch4] standby off, on[ch4]
on[ch1] standby, on[ch4] on[ch2] standby, on[ch4] on[ch3] standby, on[ch4] on[ch4] standby,
on[ch4] off standby, on[ch4] + standby, on[ch4] - standby, on[ch4] standby standby, on[ch4]
on[ch1] -, on[ch4] on[ch2] -, on[ch4] on[ch3] -, on[ch4] on[ch4] -, on[ch4] off -, on[ch4] + -,
on[ch4] - -, on[ch4] standby - , on[ch4] on[ch1] - -, on[ch4] on[ch2] - -, on[ch4] on[ch3] - -,
on[ch4] on[ch4] - -, on[ch4] off - -, on[ch4] + - -, on[ch4] - - -, on[ch4] standby - - , on[ch4]
on[ch1] - - -, on[ch4] on[ch2] - - -, on[ch4] on[ch3] - - -, on[ch4] on[ch4] - - -, on[ch4] off - - -,
on[ch4] + - - -, on[ch4] - - - -, on[ch4] standby - - - , on[ch1] standby on[ch1] standby off,
on[ch1] standby on[ch2] off, on[ch1] standby on[ch3] off, on[ch1] standby on[ch4] off, on[ch1]
standby off off, on[ch1] standby + off, on[ch1] standby - off, on[ch1] standby standby off,
on[ch1] standby on[ch1] standby, on[ch1] standby on[ch2] standby, on[ch1] standby on[ch3]
standby, on[ch1] standby on[ch4] standby, on[ch1] standby off standby, on[ch1] standby +
standby, on[ch1] standby - standby, on[ch1] standby standby standby, on[ch1] standby
on[ch1] -, on[ch1] standby on[ch2] -, on[ch1] standby on[ch3] -, on[ch1] standby on[ch4] -,
on[ch1] standby off -, on[ch1] standby + -, on[ch1] standby - -, on[ch1] standby standby - ,
on[ch1] standby on[ch1] - -, on[ch1] standby on[ch2] - -, on[ch1] standby on[ch3] - -, on[ch1]
standby on[ch4] - -, on[ch1] standby off - -, on[ch1] standby + - -, on[ch1] standby - - -, on[ch1]
standby standby - - , on[ch1] standby on[ch1] - - -, on[ch1] standby on[ch2] - - -, on[ch1]
standby on[ch3] - - -, on[ch1] standby on[ch4] - - -, on[ch1] standby off - - -, on[ch1] standby + -
- -, on[ch1] standby - - - -, on[ch1] standby standby - - - }.

As we see when using an automated algorithm there are a lot of negative test cases. We
have differentiated the set T of test cases that are positive from those that are negative. In
next step, we will identify the redundant test cases among which are negative (on the basis of
the length of a path: if path p is negative, and path q is such that q = concat (p,s) and s is not π

then q is also negative, and we call q redundant. The set of positive test cases are positiveT  {

on[ch1] off, on[ch2] off, on[ch3] off, on[ch4] off, on[ch1] standby, on[ch2] standby, on[ch3]
standby, on[ch4] standby, on[ch2] -, on[ch3] -, on[ch4] -, on[ch3] - -, on[ch4] - -, on[ch4] - - -,
on[ch1] + off, on[ch1] standby off, on[ch1] + standby, on[ch1] + -, on[ch2] + off, on[ch2] - off,
on[ch2] standby off, on[ch2] + standby, on[ch2] - standby, on[ch2] + -, on[ch2] + - -, on[ch3] +
off, on[ch3] - off, on[ch3] standby off, on[ch3] + standby, on[ch3] - standby, on[ch3] + -,
on[ch3] - -, on[ch3] + - -, on[ch3] + - - -, on[ch4] + off, on[ch4] - off, on[ch4] standby off,
on[ch4] + standby, on[ch4] - standby, on[ch4] - -, on[ch4] - - -, on[ch4] - - - -, on[ch1] standby
on[ch1] standby off, on[ch1] standby on[ch2] off, on[ch1] standby on[ch3] off, on[ch1] standby

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

102

on[ch4] off, on[ch1] standby on[ch1] standby, on[ch1] standby on[ch2] standby, on[ch1]
standby on[ch3] standby, on[ch1] standby on[ch4] standby, on[ch1] standby on[ch2] -, on[ch1]
standby on[ch3] -, on[ch1] standby on[ch4] -, on[ch1] standby on[ch3] - -, on[ch1] standby
on[ch4] - -, on[ch1] standby on[ch4] - - - } = 56 positive test cases.

negativeT  { on[ch1] -, on[ch2] - -, on[ch3] - - -, on[ch1] off off, on[ch1] off standby, on[ch1]

standby standby, on[ch1] off -, on[ch1] standby - , on[ch1] + - -, on[ch2] off standby, on[ch2]
off -, on[ch2] - -, on[ch2] standby - , on[ch2] + - - -, on[ch3] off off, on[ch3] off standby,
on[ch3] standby standby, on[ch3] off -, on[ch3] standby - , on[ch3] - - -, on[ch4] off off,
on[ch4] off standby, on[ch4] standby standby, on[ch4] off -, on[ch4] + -, on[ch4] standby - ,
on[ch1] standby off standby, on[ch1] standby on[ch1] -, on[ch1] standby off -, on[ch1] standby
on[ch2] - -, on[ch1] standby on[ch3] - - - } = 240 calculated test cases – 56 (positive test cases)
– 153 (redundant test cases, calculated below) = 31 negative test cases.

And also those that are redundant (on the basis of the length of a path: if path p is
negative, and path q is such that q=concat(p,s) and s is not λ then q is also negative, and we
call q redundant. We can see an example:

Negative test case; p = on[ch1] 4
Redundant test case; q = on[ch1] 4 off

o q = concat (p, s) = “on[ch1] 4” + “off” = results in a redundant test case.

rebundantT  { off off, + off, - off, standby off, off standby, + standby, - standby, standby standby,

off -, + -, - -, standby - , on[ch1] - -, off - -, + - -, - - -, standby - - , on[ch1] - - -, on[ch2] - - -, off -
- -, + - - -, - - - -, standby - - - , on[ch1] on[ch1] off, on[ch1] on[ch2] off, on[ch1] on[ch3] off,
on[ch1] on[ch4] off, on[ch1] - off, on[ch1] on[ch1] standby, on[ch1] on[ch2] standby, on[ch1]
on[ch3] standby, on[ch1] on[ch4] standby, on[ch1] - standby, on[ch1] on[ch1] -, on[ch1]
on[ch2] -, on[ch1] on[ch3] -, on[ch1] on[ch4] -, on[ch1] - -, on[ch1] on[ch1] - -, on[ch1] on[ch2]
- -, on[ch1] on[ch3] - -, on[ch1] on[ch4] - -, on[ch1] off - -, on[ch1] - - -, on[ch1] standby - - ,
on[ch1] on[ch1] - - -, on[ch1] on[ch2] - - -, on[ch1] on[ch3] - - -, on[ch1] on[ch4] - - -, on[ch1]
off - - -, on[ch1] + - - -, on[ch1] - - - -, on[ch1] standby - - - , on[ch2] on[ch1] off, on[ch2] on[ch2]
off, on[ch2] on[ch3] off, on[ch2] on[ch4] off, on[ch2] off off, on[ch2] on[ch1] standby, on[ch2]
on[ch2] standby, on[ch2] on[ch3] standby, on[ch2] on[ch4] standby, on[ch2] standby standby,
on[ch2] on[ch1] -, on[ch2] on[ch2] -, on[ch2] on[ch3] -, on[ch2] on[ch4] -, on[ch2] on[ch1] - -,
on[ch2] on[ch2] - -, on[ch2] on[ch3] - -, on[ch2] on[ch4] - -, on[ch2] off - -, on[ch2] - - -, on[ch2]
standby - - , on[ch2] on[ch1] - - -, on[ch2] on[ch2] - - -, on[ch2] on[ch3] - - -, on[ch2] on[ch4] - -
-, on[ch2] off - - -, on[ch2] - - - -, on[ch2] standby - - - , on[ch3] on[ch1] off, on[ch3] on[ch2] off,
on[ch3] on[ch3] off, on[ch3] on[ch4] off, on[ch3] on[ch1] standby, on[ch3] on[ch2] standby,
on[ch3] on[ch3] standby, on[ch3] on[ch4] standby, on[ch3] on[ch1] -, on[ch3] on[ch2] -,
on[ch3] on[ch3] -, on[ch3] on[ch4] -, on[ch3] on[ch1] - -, on[ch3] on[ch2] - -, on[ch3] on[ch3] -
-, on[ch3] on[ch4] - -, on[ch3] off - -, on[ch3] standby - - , on[ch3] on[ch1] - - -, on[ch3] on[ch2]
- - -, on[ch3] on[ch3] - - -, on[ch3] on[ch4] - - -, on[ch3] off - - -, on[ch3] - - - -, on[ch3] standby -
- - , on[ch4] on[ch1] off, on[ch4] on[ch2] off, on[ch4] on[ch3] off, on[ch4] on[ch4] off, on[ch4]
on[ch1] standby, on[ch4] on[ch2] standby, on[ch4] on[ch3] standby, on[ch4] on[ch4] standby,
on[ch4] on[ch1] -, on[ch4] on[ch2] -, on[ch4] on[ch3] -, on[ch4] on[ch4] - , on[ch4] on[ch1] - -,
on[ch4] on[ch2] - -, on[ch4] on[ch3] - -, on[ch4] on[ch4] - -, on[ch4] off - -, on[ch4] + - -, on[ch4]
standby - - , on[ch4] on[ch1] - - -, on[ch4] on[ch2] - - -, on[ch4] on[ch3] - - -, on[ch4] on[ch4] - -
-, on[ch4] off - - -, on[ch4] + - - -, on[ch4] standby - - - , on[ch1] standby off off, on[ch1] standby
+ off, on[ch1] standby - off, on[ch1] standby standby off, on[ch1] standby + standby, on[ch1]
standby - standby, on[ch1] standby standby standby, on[ch1] standby + -, on[ch1] standby - -,
on[ch1] standby standby - , on[ch1] standby on[ch1] - -, on[ch1] standby off - -, on[ch1]

 Test cases generation for functional tests of user interfaces.

103

standby + - -, on[ch1] standby - - -, on[ch1] standby standby - - , on[ch1] standby on[ch1] - - -,
on[ch1] standby on[ch2] - - -, on[ch1] standby off - - -, on[ch1] standby + - - -, on[ch1] standby -
- - -, on[ch1] standby standby - - - } = 153 redundant test cases.

Figure 5.4.2.2. Types of test cases on model 3.

5.3.4 Simplest model with transitions "+" and "-".

The set of transition labels (denoted by ɸ) is the set of labels of a statechart. ɸ = {on[ch1],
on[ch2], on[ch3], on[ch4], off, +, -, standby}. Any desired state starting from the initial one

(denoted by C). C  { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby}. Below we will
see that it´s impossible to calculate characterization set W.

Figure 5.3.4.1 Changed model 4.

And finally we need to obtain the characterisation set (W), but this needs to be explained
in several steps and we are going to see that for this model it is imposible to calculate. The
most important things to calculate W are; such paths for every pair of states comprise a
characterisation set, each element of this particular W is a sequence consisting of a single label

240

56

31

153

Total test cases Positive test cases Negative test cases Redundant test cases

TV-REMOTE CONTROL model 3

Total test cases Positive test cases Negative test cases Redundant test cases

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

104

and a set (denoted by W) allows a tester to check the state arrived at when a transition fires.
For every pair of states, it is possible to construct a path which exists from one of them and not
from the other. In the table below (transition matrix A). We only indentify all the transitions of
every state.

 Off Standby Ch1 Ch2 Ch3 Ch4 Set of events

Off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4]

Standby off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4], off

Ch1 off standby + - off, standby, +*, -*

Ch2 off standby - + off, standby, +*, -*

Ch3 off standby - + off, standby, +*, -*

Ch4 off standby + - off, standby, +*, -*
Table 5.3.4.1 Transition matrix A.

As K. Bogdanov say in one of the emails we have exchanged the W set for the Working
state cannot be generated, because different channels are not distinguishable. Each of the
states can do both '+' and '-'. They said that we could make one channel, the initial one, such
that there is no 'previous' channel. This will make them distinguishable.
The W set for that state has to be built using '+' and '-'. So with this model it´s impossible to
calculate the characterisation set.

Equation 5.3.4.1. W Method.

T= { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * {on[ch1], on[ch2], on[ch3],
on[ch4], off, +, -, standby} * (?), T = 6 * 8 * ? = Not supported

5.3.5 Simplest model change transitions "+" and "-" for numbers (direction up and
down between channels).

Again we have changed transitions “+” and “-” by numbers to clarify the action of every
event as we can see on Fig. 5.3.5.1.

Figure 5.3.5.1. Changed Model 5.

 Test cases generation for functional tests of user interfaces.

105

The set of transition labels (denoted by ɸ) is the set of labels of a statechart. ɸ = {on[ch1],
on[ch2], on[ch3], on[ch4], off, 1, 2, 3, 4, standby}. Any desired state starting from the initial

one (denoted by C). C  { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby}. Below we
will see that it´s impossible to calculate characterization set W.

And finally we need to obtain the characterisation set (W), but this needs to be explained

in several steps and we are going to see as in section 5.3.4. that it is imposible to calculate. The
most important things to calculate W are; such paths for every pair of states comprise a
characterisation set, each element of this particular W is a sequence consisting of a single label
and a set (denoted by W) allows a tester to check the state arrived at when a transition fires.
For every pair of states, it is possible to construct a path which exists from one of them and not
from the other. In the table below (transition matrix A). We only indentify all the transitions of
every state.

 Off Standby Ch1 Ch2 Ch3 Ch4 Set of events

Off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4]

Standby off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4], off

Ch1 off standby 2 4 off, standby, 2, 4

Ch2 off standby 1 3 off, standby, 1, 3

Ch3 off standby 2 4 off, standby, 2, 4

Ch4 off standby 1 3 off, standby, 1, 3
Table 5.3.5.1. Transition matrix A.

W = {off, standby, 1, 2, 3, 4}. We can´t differentiate the states Ch1 of Ch3 and states Ch2 of
Ch4.

Equation 5.3.5.1. W Method.

T= { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * {on[ch1], on[ch2], on[ch3],
on[ch4], off, 1, 2, 3, 4, standby} * (?). T = 6 * 10 * ? = Not supported

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

106

5.3.6 Simplest model with transitions "+" and "-" with a broken forward and a
backward loop around ch1, ch2, ch3, ch4.

The set of transition labels (denoted by ɸ) is the set of labels of a statechart. ɸ = {on[ch1],
on[ch2], on[ch3], on[ch4], off, +, -, standby}. Any desired state starting from the initial one

(denoted by C). C  { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby}. Below as in
the sections 5.3.4 and 5.3.5 we will see that it´s impossible to calculate characterization set W.

Figure 5.3.6.1. Changed Model 6.

And finally we need to obtain the characterisation set (W), but with this model it is
imposible to calculate. The most important things to calculate W are; such paths for every pair
of states comprise a characterisation set, each element of this particular W is a sequence
consisting of a single label and a set (denoted by W) allows a tester to check the state arrived
at when a transition fires. For every pair of states, it is possible to construct a path which exists
from one of them and not from the other. In the table below (transition matrix A). We only
indentify all the transitions of every state.

 Off Standby Ch1 Ch2 Ch3 Ch4 Set of events

Off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4]

Standby off on[ch1] on[ch2] on[ch3] on[ch4] on[ch1],on[ch2],
on[ch3],on[ch4], off

Ch1 off standby + off, standby, +, ++, +++

Ch2 off standby - + off, standby, +, -, ++

Ch3 off standby - + off, standby, +, -, --

Ch4 off standby - off, standby, -, --, ---
Table 5.3.6.1. Transition matrix A.

We may calculate the resulting W set because as we shown in figure 5.3.6.1 we can
distinguish different states based on the sets of transitions which each one run but we
consider that model 3 of this chapter is more efficient and it isn´t necessary to calculate the
test cases for this model, we only want to show that it would be possible to calculate them.

 Test cases generation for functional tests of user interfaces.

107

5.4 Obtained results and conclusions of W Method.

As shown in figure 5.4.1, the number of test cases obtained for different customizations of
the flattened statechart (Figure 5.3.2) are 300 for “simplest model with a broken forward and a
backward loop around ch1,ch2,ch3,ch4”, 360 for “simplest model change transitions ‘+’ and ‘-‘
for numbers only up direction between channels” and 240 for “simplest model with transitions
‘+’ and ‘-‘ with a broken transition ‘-‘ between ch1 and ch4” while for the customizations of
“simplest model change transitions ‘+’ and ‘-‘ for numbers” and “simplest model transitions ‘+’
and ‘-‘ without loops” cannot be supported by the W method because it is impossible to
calculate the variable W as we have explained in section 5.3.5 and 5.3.6 for each of the two
variations of the flattened unsupported statechart respectively. For the first model we have
obtained 15% of positive test cases, 74% of negative test cases and 11% of redundant test
cases. On the other hand in the second valid model we have obtained 11.1% of positive test
cases, 21.6% and 67.3% of negative and redundant test cases and finally in the third model we
have obtained 23.3% positive test cases, 12.9% negative test cases and 63.8% redundant test
cases.

Figure 5.4.1 Test cases for the different models of TV1 statechart.

So in the third model (Figure 5.3.3.1) we obtain a larger number of positive test cases than

models 1 (Figure 5.3.1.1) and 2 (Figure 5.3.2.1) which can help us most to confirm that a given
statechart works properly or not, the basic rule would that it is not the same confirm that a
statechart is properly functional with a single test case rather than check it whit several,
dozens or even hundreds of test cases and the best percentage of positive test cases is for the
third customization of the statechart, “simplest model with transitions ‘+’ and ‘-‘ with a broken
transition ‘-‘ between ch1 and ch4” model 3. The other aspect is rating which of the different
customizations of the statechart (model 1, 2 or 3) seems more efficient in regard to design as
in model 1 “simplest model with a broken forward and a backward loop around
ch1,ch2,ch3,ch4” there is no possibility of changing since channel 4 to 1 while in model 3 we
can do it, so we could assume that this action increases the number of negative or redundant
test cases, but on the contrary, we get a better percentage of positive test cases with model 3,
so with the W method this is the most efficient of all customizations of the flattened statechart
with we have worked.

300

360

240

Not supported Not supported

Simplest model
with a broken
forward and a
backward loop

around
ch1,ch2,ch3,ch4.

Simplest model
change transitions

"+" and "-" for
numbers only up

direction between
channels

Simplest model
with transitions

"+" and "-" with a
broken transition
“-” between ch1

and ch4

Simplest model
change transitions

"+" and "-" for
numbers

Simplest model
transitions "+" and
"-" without loops

Test cases for TV-REMOTE CONTROL

W Method

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

108

5.5 Applying Wp-method to TV1 without concurrent region and
without state hierarchy

We have applied W method in section 5.3 and now we will apply Wp method in subpoints

of this section (since point 5.5.1 to 5.5.4), after in (5.5) we will discuss the results obtained for
this method and we will talk about the conclusions obtained. Finally in section 5.7 we will
compare the results obtained for W and Wp method in our case of study. The first thing that
we need to do just like we did with W method, it´s to eliminate all the substates of the original
model. After that we can work with the simplest model of the statechart applying different
changes, in section 5.5.1. We are going to work with the simplest model change transitions "+"
and "-" for numbers with a broken forward and a backward loop around ch1, ch2, ch3 and ch4.
After that we will work with other versions in points (since 5.5.2 to 5.5.4) checking the results
obtained in section (5.6).

Step 0: modifications of the initial statechart: create a flattened statechart.

Figure 5.5.1 Original Statechart of TV1.

We will apply modifications on flattened version to calculate the different number of test cases
on them. The important changes suffered by the model are the creation of every one of the
transitions (“off”, “standby”) between the states of the channels (Ch1, Ch2, Ch3 and Ch4) and
the states Off and Standby. With these transitions we managed to remove every substate of
the statechart.

Figure 5.5.2 Flattened statechart.

 Test cases generation for functional tests of user interfaces.

109

5.7.2 Simplest model with a broken forward and a backward loop around ch1 ,
ch2, ch3 and ch4.

Now we are going to calculate the test case basis “TCB” for the flattened model of TV1
with changes between the states of the channels to break the strong loop between them.
Additionally we have changed transitions “+” and “-” by numbers to clarify the action of every
event as we can see in Fig. 5.5.1.1. The set of transition labels (denoted by ɸ) is the set of
labels of a statechart. ɸ {on[ch1], on[ch2], on[ch3], on[ch4], off, 1, 2, 3, 4, standby}. Any
desired state starting from the initial one (denoted by C). C  { λ, on[ch1] , on[ch2] , on[ch3] ,
on[ch4] , on[ch1] standby}. The set denoted by W it’s the same that we have calculated in
section 5.3.1 of this chapter for the W method; W = {off, standby, 1, 2, 4}.

Figure 5.5.1.1 Model 1.

Note that in this statechart ɸ, C and W are equals at M , MC and MW because we have

not any composite-state. We have explained the meaning and how to calculate them (M ,
MC and MW) in section 4.1.11 literature review of this thesis “Testing from statecharts using

the Wp method”. From here varies how to calculate the number of test cases for this method.
It consists of two phases and for the first one we need to clarify the Concept of “Conf”; for a

configuration conf, an identification set root

confw is a set allowing one to distinguish between conf

and all other configurations in a statechart. The Concept of Configuration comprises sets of
states which are left and entered by full compound transitions are called configurations and
consist of states a statechart can be in simultaneously. A configuration is uniquely determined
by a set of basic states in it. Every state in a flattened statechart corresponds to a configuration
in the original one. A configuration is uniquely determined by a set of basic states in it. Every
state in a flattened statechart corresponds to a configuration in the original one. The most
important part of this firs phase it is to calculate the small w sets. These are a set allowing one
to distinguish between conf and all other configurations in a statechart and we use small w
sets to identify states in an implementation applying the same formula W as we use in W
method in each state. Unfortunately, in a faulty implementation small identification sets may
fail to identify configurations correctly.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

110

The w sets obtained for this first model are  root

OFFW off
,

 ,root

STANDBYW off standby
,

1

root

CHW  { 2, off, standby },
2

root

CHW  { 1, 3, off, standby },
3

root

CHW  { 2, 4, off, standby },
4

root

CHW  {

3, off, standby }. Combining all small w sets to obtain full W, usually it´s the same that W

method before to apply the formula of phase 1. The full root

conf confW w

and we can develop

the formula with the w sets in
1 2 3 4

rootroot root root root root

OFF CH CH CH CHSTANDBY
W w w w w w w 

{off,

standby, 2, 3}. The advantage of working with Wp method is that we can reduce the W chain
because with the W method the W set was { off, standby, 1, 2, 4} and with Wp method we
have reduced it to { off, standby, 2, 3}. Now we can apply the formula of phase 1, but first we
are going to calculate the transitions that we will check with this formula; Texplored_in_phase1 =
C*(λ U \Phi U ... U \Phi^{m-n}). Therefore if we apply this first phase of the formula to our case
study we get the number of transitions that are covering when doing testing with this method
on our statechart; Texplored_in_phase1 = C = { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1]
standby} = 6 transitions explored in phase 1, the rest of transition will be explored in phase 2.
After comprove the number of covered transitions we will go to apply the formula to calculate
the set of test cases used in the first phase.

Equation 5.5.1.1 Set of test cases for the first phase of Wp method.

We have calculated the set
MC C  { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1]

standby} and W =

{ off, standby, 2, 3 }. Now we can calculate the set of test cases for the first

phase of Wp method with 1 *MT C W = { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1]

standby } * { off, standby, 2, 3 } = { off, standby, 2, 3, on[ch1] off , on[ch1] standby, on[ch1] 2,
on[ch1] 3, on[ch2] off , on[ch2] standby, on[ch2] 2, on[ch2] 3, on[ch3] off , on[ch3] standby,
on[ch3] 2, on[ch3] 3, on[ch4] off , on[ch4] standby, on[ch4] 2, on[ch4] 3, on[ch1] standby off ,
on[ch1] standby standby, on[ch1] standby 2, on[ch1] standby 3} = 6 * 4 = 24 test cases in
phase 1. Additionally we can compute the transitions that are out of the phase 1 and we will
check in the phase 2 as we have commented previously.

    1

exp _ _ 2 exp _ _ 1*
m n

M M M

lored in phase lored in phaseT C T
 

   

Equation 5.5.1.2 Transitions that will be explored in phase 2.

         1

exp _ _ 2 * *
m n m n

M M M M M M

lored in phaseT C C 
  

     

Equation 5.5.1.3 Developed Transitions that will be explored in phase 2.

The set of transitions that will be explored in phase 2 are; Texplored_in_phase2={ λ, on[ch1] ,

on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * ({λ} U {on[ch1], on[ch2], on[ch3], on[ch4], off,
1, 2, 3, 4 , standby}) – { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} = 6 * 10 – 6 =
54

transitions out off the phase 1 and will be explored in phase 2. To calcule the set of test

cases for the second phase of the Wp method we need to calculate the variable

 initconf Off which is the initial state of the statechart before to do any action. In Equation

5.5.1.4 is showed the formula to compute the number of test cases in phase 2.

Equation 5.5.1.4 Test cases of phase 2.

 Test cases generation for functional tests of user interfaces.

111

The equation 5.5.1.4 can be expressed in two parts as defined by “K. Bogdanov” in [7];
First we can calculate TS with the equation 5.5.1.5. Once calculated TS we can calculate CE
(Equation 5.5.1.6) and give as input parameter each of the paths we have obtained in TS to
obtain the expected output of every test case shown in table 5.5.1.

*M MC 
Equation 5.5.1.5 Test cases of phase 2.

TS = { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * {on[ch1], on[ch2], on[ch3],
on[ch4], off, 1, 2, 3, 4, standby} = {on[ch1], on[ch2], on[ch3], on[ch4], off, 1, 2, 3, 4, standby ,
on[ch1] on[ch1], on[ch1] on[ch2], on[ch1] on[ch3], on[ch1] on[ch4], on[ch1] off, on[ch1] 1,
on[ch1] 2, on[ch1] 3, on[ch1] 4, on[ch1] standby, on[ch2] on[ch1], on[ch2] on[ch2], on[ch2]
on[ch3], on[ch2] on[ch4], on[ch2] off, on[ch2] 1, on[ch2] 2, on[ch1] 3, on[ch2] 4, on[ch2]
standby, on[ch3] on[ch1], on[ch3] on[ch2], on[ch3] on[ch3], on[ch3] on[ch4], on[ch3] off,
on[ch3] 1, on[ch3] 2, on[ch3] 3, on[ch3] 4, on[ch3] standby, on[ch4] on[ch1], on[ch4] on[ch2],
on[ch4] on[ch3], on[ch4] on[ch4], on[ch4] off, on[ch4] 1, on[ch4] 2, on[ch4] 3, on[ch4] 4,
on[ch4] standby, on[ch1] standby on[ch1], on[ch1] standby on[ch2], on[ch1] standby on[ch3],
on[ch1] standby on[ch4], on[ch1] standby off, on[ch1] standby 1, on[ch1] standby 2, on[ch1]
standby 3, on[ch1] standby 4, on[ch1] standby standby} = 6 * 10 = 60 test cases in phase 2.

Equation 5.5.1.6 Expected output of every test case.

  
    1(1),(1),

1
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
    2(2),(2),

2
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
    3(3),(3),

3
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
    4(4),(4),

4
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
   ,, init

OFF

root root

OFFCE OFF confOFF conf
CE OFF w w  

  
   ,, init

OFF

root root

OFFCE STANDBY confSTANDBY conf
CE OFF w w  

  
    1(1),(1)_ (1),

(1)
init

OFF

root root

CHCE ON CH confON CH ON CH conf
CE ON CH w w  

  
   ,(1)_ , init

OFF

root root

STANDBYCE STANDBY confON CH STANDBY conf
CE STANDBY w w  

…
Table 5.5.1.1 Test cases of phase 2.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

112

Applying this to the TV1, the size of the set of test cases for the first phase of the Wp
method is 24 and the second one 60, resulting in 84 sequences which is less than that obtained
with the W method (300 test cases) for the same customization of the original statechart
(section 5.3.1 of this chapter “model 1”). Finally we are going to calculate the positive,
negative and redundant test cases for this model as we did with the W method to see which
one is more effective in section 5.7 of this chapter.

Combining the set of test cases obtained in the two phases of the Wp method we obtain
the set { off, standby, 2, 3, on[ch1] off , on[ch1] standby, on[ch1] 2, on[ch1] 3, on[ch2] off ,
on[ch2] standby, on[ch2] 2, on[ch2] 3, on[ch3] off , on[ch3] standby, on[ch3] 2, on[ch3] 3,
on[ch4] off , on[ch4] standby, on[ch4] 2, on[ch4] 3, on[ch1] standby off , on[ch1] standby
standby, on[ch1] standby 2, on[ch1] standby 3, on[ch1], on[ch2], on[ch3], on[ch4], off, 1, 2, 3,
4, standby , on[ch1] on[ch1], on[ch1] on[ch2], on[ch1] on[ch3], on[ch1] on[ch4], on[ch1] off,
on[ch1] 1, on[ch1] 2, on[ch1] 3, on[ch1] 4, on[ch1] standby, on[ch2] on[ch1], on[ch2] on[ch2],
on[ch2] on[ch3], on[ch2] on[ch4], on[ch2] off, on[ch2] 1, on[ch2] 2, on[ch1] 3, on[ch2] 4,
on[ch2] standby, on[ch3] on[ch1], on[ch3] on[ch2], on[ch3] on[ch3], on[ch3] on[ch4], on[ch3]
off, on[ch3] 1, on[ch3] 2, on[ch3] 3, on[ch3] 4, on[ch3] standby, on[ch4] on[ch1], on[ch4]
on[ch2], on[ch4] on[ch3], on[ch4] on[ch4], on[ch4] off, on[ch4] 1, on[ch4] 2, on[ch4] 3, on[ch4]
4, on[ch4] standby, on[ch1] standby on[ch1], on[ch1] standby on[ch2], on[ch1] standby
on[ch3], on[ch1] standby on[ch4], on[ch1] standby off, on[ch1] standby 1, on[ch1] standby 2,
on[ch1] standby 3, on[ch1] standby 4, on[ch1] standby standby} = 84 test cases for the Wp
method.

As we see when using an automated algorithm there are a lot of negative test cases. We

have differentiated the set T of test cases that are positive from those that are negative. In
next step, we will identify the redundant test cases among which are negative (on the basis of
the length of a path: if path p is negative, and path q is such that q = concat (p,s) and s is not π

then q is also negative, and we call q redundant. The set of positive test cases are positiveT  {

on[ch1] off , on[ch1] standby, on[ch1] 2, on[ch2] off , on[ch2] standby, on[ch2] 3, on[ch3] off,
on[ch3] standby, on[ch3] 2, on[ch4] off , on[ch4] standby, on[ch4] 3, on[ch1] standby off,
on[ch1], on[ch2], on[ch3], on[ch4], on[ch1] off, on[ch1] 2, on[ch1] standby, on[ch2] off,
on[ch2] 1, on[ch2] 3, on[ch2] standby, on[ch3] off, on[ch3] 2, on[ch3] 4, on[ch3] standby,
on[ch4] off, on[ch4] 3, on[ch4] standby, on[ch1] standby on[ch1], on[ch1] standby on[ch2],
on[ch1] standby on[ch3], on[ch1] standby on[ch4], on[ch1] standby off} = 36 positive test
cases.

negativeT  { off, standby, 2, 3, on[ch1] 3, on[ch2] 2, on[ch3] 3, on[ch4] 2, on[ch1] standby

standby, on[ch1] standby 2, on[ch1] standby 3, off, 1, 2, 3, 4, standby , on[ch1] on[ch1],
on[ch1] on[ch2], on[ch1] on[ch3], on[ch1] on[ch4], on[ch1] 1, on[ch1] 3, on[ch1] 4, on[ch2]
on[ch1], on[ch2] on[ch2], on[ch2] on[ch3], on[ch2] on[ch4], on[ch2] 2, on[ch2] 4, on[ch3]
on[ch1], on[ch3] on[ch2], on[ch3] on[ch3], on[ch3] on[ch4], on[ch3] 1, on[ch3] 3, on[ch4]
on[ch1], on[ch4] on[ch2], on[ch4] on[ch3], on[ch4] on[ch4], on[ch4] 1, on[ch4] 2, on[ch4] 4,
on[ch1] standby 1, on[ch1] standby 2, on[ch1] standby 3, on[ch1] standby 4, on[ch1] standby
standby} = 84 calculated test cases – 44 (positive test cases) – 0 (redundant test cases) = 48
negative test cases.

And also those that are redundant (on the basis of the length of a path: if path p is
negative, and path q is such that q=concat(p,s) and s is not λ then q is also negative, and we
call q redundant. We can see an example: Negative test case; p = on[ch1] 4 and redundant test
case; q = on[ch1] 4 off because “q = concat (p, s)” = “on[ch1] 4” + “off” = results in a redundant

 Test cases generation for functional tests of user interfaces.

113

test case. As we can see there aren’t any redundant test case from the negative test cases
calculated above.

Figure 5.5.1.2. Types of test cases on model 1.

5.7.3 Simplest model change transitions "+" and "-" for numbers only up direction
between channels.

Now we are going to calculate the test case basis “TCB” for the flattened model of TV1
with changes between the states of the channels to break the strong loop between them.
Again we have changed transitions “+” and “-” by numbers to clarify the action of every event
as we can see on Fig. 5.5.2.1. The set of transition labels (denoted by ɸ) is the set of labels of a
statechart. ɸ = {on[ch1], on[ch2], on[ch3], on[ch4], off, 1, 2, 3, 4, standby}. Any desired state
starting from the initial one (denoted by C). C  {λ, on[ch1], on[ch2], on[ch3], on[ch4], on[ch1]
standby}.

Figure 5.5.2.1 Customized model 2.

84

36

44

0

Total test cases Positive test cases Negative test cases Redundant test cases

TV-REMOTE CONTROL model 1

Total test cases Positive test cases Negative test cases Redundant test cases

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

114

Note that in this statechart ɸ, C and W are equals at M , MC and MW because we have

not any composite-state. We have explained the meaning and how to calculate them (M ,
MC and MW) in section 4.1.11 literature review of this thesis “Testing from statecharts using

the Wp method”. From here varies how to calculate the number of test cases for this method.
It consists of two phases and for the first one we need to clarify the Concept of “Conf”; for a

configuration conf, an identification set root

confw is a set allowing one to distinguish between conf

and all other configurations in a statechart. The concept of configuration comprises sets of
states which are left and entered by full compound transitions are called configurations and
consist of states a statechart can be in simultaneously. A configuration is uniquely determined
by a set of basic states in it. Every state in a flattened statechart corresponds to a configuration
in the original one. A configuration is uniquely determined by a set of basic states in it. Every
state in a flattened statechart corresponds to a configuration in the original one. The most
important part of this firs phase it is to calculate the small w sets. These are a set allowing one
to distinguish between conf and all other configurations in a statechart and we use small w
sets to identify states in an implementation applying the same W formula as we use in W
method in each state. Unfortunately, in a faulty implementation small identification sets may
fail to identify configurations correctly.

The w sets obtained for this first model are  root

OFFW off
,

 ,root

STANDBYW off standby
,

1

root

CHW  { 2, off, standby }, 2

root

CHW  { 3, off, standby }, 3

root

CHW  { 4, off, standby }, 4

root

CHW  { 1, off,

standby }. Combining all small w sets to obtain full W, usually it´s the same that W method

before to apply the formula of phase 1. The full root

conf confW w

and we can develop the

formula with the w sets in
1 2 3 4

rootroot root root root root

OFF CH CH CH CHSTANDBY
W w w w w w w 

{off,

standby, 1, 2, 3, 4}. In this case it is impossible to reduce the size of the working string W that
obtained with the same method with the W method. Now we can apply the formula of phase
1, but first we are going to calculate the transitions that we will check with this formula;
Texplored_in_phase1 = C*(λ U \Phi U ... U \Phi^{m-n}). Therefore if we apply this first phase of the
formula to our case study we get the number of transitions that are covering when doing
testing with this method on our statechart; Texplored_in_phase1 = C = { λ, on[ch1] , on[ch2] ,
on[ch3] , on[ch4] , on[ch1] standby} = 6 transitions explored in phase 1, the rest of transition
will be explored in phase 2. After comprove the number of covered transitions we will go to
apply the formula to calculate the set of test cases used in the first phase.

Equation 5.5.2.1 Set of test cases for the first phase of Wp method.

We have calculated the set
MC C  { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1]

standby} and W =

{ off, standby, 1, 2, 3, 4 }. Now we can calculate the set of test cases for the

first phase of Wp method with 1 *MT C W = { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1]

standby } * { off, standby, 1, 2, 3, 4 } = { off, standby, 1, 2, 3, 4, on[ch1] off , on[ch1] standby,
on[ch1] 2, on[ch1] 1, on[ch1] 2, on[ch1] 3, on[ch1] 4, on[ch2] off , on[ch2] standby, on[ch2] 1,
on[ch2] 2, on[ch2] 3, on[ch2] 4, on[ch3] off , on[ch3] standby, on[ch3] 1, on[ch3] 2, on[ch3] 3,
on[ch3] 4, on[ch4] off, on[ch4] standby, on[ch4] 1, on[ch4] 2, on[ch4] 3, on[ch4] 4, on[ch1]
standby off , on[ch1] standby standby, on[ch1] standby 1, on[ch1] standby 2, on[ch1] standby
3, on[ch1] standby 4} = 6 * 6 = 36 test cases in phase 1.

 Test cases generation for functional tests of user interfaces.

115

Additionally we can compute the transitions that are out of the phase 1 and we will check
in the phase 2 as we have commented previously.

    1

exp _ _ 2 exp _ _ 1*
m n

M M M

lored in phase lored in phaseT C T
 

   

Equation 5.5.2.2 Transitions that will be explored in phase 2.

         1

exp _ _ 2 * *
m n m n

M M M M M M

lored in phaseT C C 
  

     

Equation 5.5.2.3 Developed Transitions that will be explored in phase 2.

The set of transitions that will be explored in phase 2 are; Texplored_in_phase2={ λ, on[ch1] ,

on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * ({λ} U {on[ch1], on[ch2], on[ch3], on[ch4], off,
1, 2, 3, 4 , standby}) – { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} = 6 * 10 – 6 =
54

transitions out off the phase 1 and will be explored in phase 2. To calcule the set of test

cases for the second phase of the Wp method we need to calculate the variable

 initconf Off which is the initial state of the statechart before to do any action. In Equation

5.5.1.4 is showed the formula to compute the number of test cases in phase 2.

Equation 5.5.2.4 Test cases of phase 2.

The equation 5.5.1.4 can be expressed in two parts; First we can calculate TS with the
equation 5.5.1.5. Once calculated TS we can calculate CE (Equation 5.5.1.6) and give as input
parameter each of the paths we have obtained in TS to obtain the expected output of every
test case shown in table 5.5.2 (CE stands for Configuration Entered by TS).

*M MC 
Equation 5.5.2.5 Test cases of phase 2.

TS = { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * {on[ch1], on[ch2], on[ch3],
on[ch4], off, 1, 2, 3, 4, standby} = {on[ch1], on[ch2], on[ch3], on[ch4], off, 1, 2, 3, 4, standby ,
on[ch1] on[ch1], on[ch1] on[ch2], on[ch1] on[ch3], on[ch1] on[ch4], on[ch1] off, on[ch1] 1,
on[ch1] 2, on[ch1] 3, on[ch1] 4, on[ch1] standby, on[ch2] on[ch1], on[ch2] on[ch2], on[ch2]
on[ch3], on[ch2] on[ch4], on[ch2] off, on[ch2] 1, on[ch2] 2, on[ch1] 3, on[ch2] 4, on[ch2]
standby, on[ch3] on[ch1], on[ch3] on[ch2], on[ch3] on[ch3], on[ch3] on[ch4], on[ch3] off,
on[ch3] 1, on[ch3] 2, on[ch3] 3, on[ch3] 4, on[ch3] standby, on[ch4] on[ch1], on[ch4] on[ch2],
on[ch4] on[ch3], on[ch4] on[ch4], on[ch4] off, on[ch4] 1, on[ch4] 2, on[ch4] 3, on[ch4] 4,
on[ch4] standby, on[ch1] standby on[ch1], on[ch1] standby on[ch2], on[ch1] standby on[ch3],
on[ch1] standby on[ch4], on[ch1] standby off, on[ch1] standby 1, on[ch1] standby 2, on[ch1]
standby 3, on[ch1] standby 4, on[ch1] standby standby} = 6 * 10 = 60 test cases in phase 2.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

116

Equation 5.5.2.6 Expected output of every test case.

  
    1(1),(1),

1
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
    2(2),(2),

2
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
    3(3),(3),

3
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
    4(4),(4),

4
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
   ,, init

OFF

root root

OFFCE OFF confOFF conf
CE OFF w w  

  
   ,, init

OFF

root root

OFFCE STANDBY confSTANDBY conf
CE OFF w w  

  
    1(1),(1)_ (1),

(1)
init

OFF

root root

CHCE ON CH confON CH ON CH conf
CE ON CH w w  

  
   ,(1)_ , init

OFF

root root

STANDBYCE STANDBY confON CH STANDBY conf
CE STANDBY w w  

…
Table 5.5.2.1 Test cases of phase 2.

Applying this to the TV1, the size of the set of test cases for the first phase of the Wp
method is 36 and the second one 60, resulting in 96 sequences which is less than that obtained
with the W method (360 test cases) for the same customization of the original statechart
(section 5.3.2 of this chapter “model 2”). Finally we are going to calculate the positive,
negative and redundant test cases for this model as we did with the W method to see which
one is more effective in section 5.7 of this chapter.

Combining the set of test cases obtained in the two phases of the Wp method we obtain

the set { off, standby, 1, 2, 3, 4, on[ch1] off , on[ch1] standby, on[ch1] 1, on[ch1] 2, on[ch1] 3,
on[ch1] 4, on[ch2] off , on[ch2] standby, on[ch2] 1, on[ch2] 2, on[ch2] 3, on[ch2] 4, on[ch3]
off, on[ch3] standby, on[ch3] 1, on[ch3] 2, on[ch3] 3, on[ch3] 4, on[ch4] off, on[ch4] standby,
on[ch4] 1, on[ch4] 2, on[ch4] 3, on[ch4] 4, on[ch1] standby off , on[ch1] standby standby,
on[ch1] standby 1, on[ch1] standby 2, on[ch1] standby 3, on[ch1] standby 4, on[ch1], on[ch2],
on[ch3], on[ch4], off, 1, 2, 3, 4, standby , on[ch1] on[ch1], on[ch1] on[ch2], on[ch1] on[ch3],
on[ch1] on[ch4], on[ch1] off, on[ch1] 1, on[ch1] 2, on[ch1] 3, on[ch1] 4, on[ch1] standby,
on[ch2] on[ch1], on[ch2] on[ch2], on[ch2] on[ch3], on[ch2] on[ch4], on[ch2] off, on[ch2] 1,
on[ch2] 2, on[ch1] 3, on[ch2] 4, on[ch2] standby, on[ch3] on[ch1], on[ch3] on[ch2], on[ch3]
on[ch3], on[ch3] on[ch4], on[ch3] off, on[ch3] 1, on[ch3] 2, on[ch3] 3, on[ch3] 4, on[ch3]
standby, on[ch4] on[ch1], on[ch4] on[ch2], on[ch4] on[ch3], on[ch4] on[ch4], on[ch4] off,
on[ch4] 1, on[ch4] 2, on[ch4] 3, on[ch4] 4, on[ch4] standby, on[ch1] standby on[ch1], on[ch1]
standby on[ch2], on[ch1] standby on[ch3], on[ch1] standby on[ch4], on[ch1] standby off,
on[ch1] standby 1, on[ch1] standby 2, on[ch1] standby 3, on[ch1] standby 4, on[ch1] standby
standby} = 96 test cases for the Wp method.

As we see when using an automated algorithm there are a lot of negative test cases. We have
differentiated the set T of test cases that are positive from those that are negative. In next

 Test cases generation for functional tests of user interfaces.

117

step, we will identify the redundant test cases among which are negative (on the basis of the
length of a path: if path p is negative, and path q is such that q = concat (p,s) and s is not π

then q is also negative, and we call q redundant. The set of positive test cases are positiveT  {

off, standby, on[ch1] off , on[ch1] standby, on[ch1] 2, on[ch2] off , on[ch2] standby, on[ch2]
3, on[ch3] off , on[ch3] standby, on[ch3] 4, on[ch4] off , on[ch4] standby, on[ch4] 1, on[ch1]
standby off, on[ch1], on[ch2], on[ch3], on[ch4], on[ch1] off, on[ch1] 2, on[ch1] standby,
on[ch2] off, on[ch2] 1, on[ch2] 3, on[ch2] standby, on[ch3] off, on[ch3] 2, on[ch3] 4, on[ch3]
standby, on[ch4] off, on[ch4] 3, on[ch4] standby, on[ch1] standby on[ch1], on[ch1] standby
on[ch2], on[ch1] standby on[ch3], on[ch1] standby on[ch4], on[ch1] standby off} = 38 positive
test cases.

negativeT  { 1, 2, 3, 4, on[ch1] 1, on[ch1] 3, on[ch1] 4, on[ch2] 1, on[ch2] 2, on[ch2] 4, on[ch3] 1,

on[ch3] 2, on[ch3] 3, on[ch4] 2, on[ch4] 3, on[ch4] 4, on[ch1] standby standby, on[ch1]
standby 1, on[ch1] standby 2, on[ch1] standby 3, on[ch1] standby 4, off, 1, 2, 3, 4, standby ,
on[ch1] on[ch1], on[ch1] on[ch2], on[ch1] on[ch3], on[ch1] on[ch4], on[ch1] 1, on[ch1] 3,
on[ch1] 4, on[ch2] on[ch1], on[ch2] on[ch2], on[ch2] on[ch3], on[ch2] on[ch4], on[ch2] 2,
on[ch2] 4, on[ch3] on[ch1], on[ch3] on[ch2], on[ch3] on[ch3], on[ch3] on[ch4], on[ch3] 1,
on[ch3] 3, on[ch4] on[ch1], on[ch4] on[ch2], on[ch4] on[ch3], on[ch4] on[ch4], on[ch4] 1,
on[ch4] 2, on[ch4] 4, on[ch1] standby 1, on[ch1] standby 2, on[ch1] standby 3, on[ch1] standby
4, on[ch1] standby standby} = 96 calculated test cases – 38 (positive test cases) – 0 (redundant
test cases) = 58 negative test cases.

And also those that are redundant (on the basis of the length of a path: if path p is

negative, and path q is such that q=concat(p,s) and s is not λ then q is also negative, and we
call q redundant. We can see an example: Negative test case; p = on[ch1] 4 and redundant test
case; q = on[ch1] 4 off because “q = concat (p, s)” = “on[ch1] 4” + “off” = results in a redundant
test case. As we can see there aren’t any redundant test case from the negative test cases
calculated above.

Figure 5.5.2.2. Types of test cases on model 2.

96

38

58

0

Total test cases Positive test cases Negative test cases Redundant test cases

TV-REMOTE CONTROL model 2

Total test cases Positive test cases Negative test cases Redundant test cases

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

118

5.5.3 Simplest model change transitions "+" and "-" for numbers only up direction
between channels.

Now we are going to calculate the test case basis “TCB” for the flattened model of TV1
with changes between the states of the channels to break the strong loop between them. With
this model we maintain the transitions “+” and “–“ but we have removed the transition “–“
since channel 1 to channel 4 to break the loop. as we can see on Fig. 5.5.3.1. The set of
transition labels (denoted by ɸ) is the set of labels of a statechart. ɸ = {on[ch1], on[ch2],
on[ch3], on[ch4], off, +, -, standby}. Any desired state starting from the initial one (denoted by
C). C  { λ, on[ch1], on[ch2], on[ch3], on[ch4], on[ch1] standby}.

Figure 5.5.3.1 Customized model 3.

Note that in this statechart ɸ, C and W are equals at M , MC and MW because we have

not any composite-state. We have explained the meaning and how to calculate them (M ,
MC and MW) in section 4.1.11 literature review of this thesis “Testing from statecharts using

the Wp method”. From here varies how to calculate the number of test cases for this method.
It consists of two phases and for the first one we need to clarify the Concept of “Conf”; for a

configuration conf, an identification set root

confw is a set allowing one to distinguish between conf

and all other configurations in a statechart. The concept of configuration comprises sets of
states which are left and entered by full compound transitions are called configurations and
consist of states a statechart can be in simultaneously. A configuration is uniquely determined
by a set of basic states in it. Every state in a flattened statechart corresponds to a configuration
in the original one. A configuration is uniquely determined by a set of basic states in it. Every
state in a flattened statechart corresponds to a configuration in the original one. The most
important part of this firs phase it is to calculate the small w sets. These are a set allowing one
to distinguish between conf and all other configurations in a statechart and we use small w
sets to identify states in an implementation applying the same W formula as we use in W
method in each state. Unfortunately, in a faulty implementation small identification sets may
fail to identify configurations correctly.

 Test cases generation for functional tests of user interfaces.

119

The w sets obtained for this first model are  root

OFFW off
,

 ,root

STANDBYW off standby
,

1

root

CHW  { +, off, standby },
2

root

CHW  { -, off, standby },
3

root

CHW  { - -, off, standby },
4

root

CHW  { - - -,

off, standby }. Combining all small w sets to obtain full W, usually it´s the same that W method

before to apply the formula of phase 1. The full root

conf confW w

and we can develop the

formula with the w sets in
1 2 3 4

rootroot root root root root

OFF CH CH CH CHSTANDBY
W w w w w w w 

{off,

standby, +, -, - - , - - -}. In this case it is impossible to reduce the size of the working string W
that obtained with the same method with the W method. Now we can apply the formula of
phase 1, but first we are going to calculate the transitions that we will check with this formula;
Texplored_in_phase1 = C*(λ U \Phi U ... U \Phi^{m-n}). Therefore if we apply this first phase of the
formula to our case study we get the number of transitions that are covering when doing
testing with this method on our statechart; Texplored_in_phase1 = C = { λ, on[ch1] , on[ch2] ,
on[ch3] , on[ch4] , on[ch1] standby} = 6 transitions explored in phase 1, the rest of transition
will be explored in phase 2. After comprove the number of covered transitions we will go to
apply the formula to calculate the set of test cases used in the first phase.

Equation 5.5.3.1 Set of test cases for the first phase of Wp method.

We have calculated the set
MC C  { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1]

standby} and W =

{off, standby, +, -, - - , - - -}. Now we can calculate the set of test cases for

the first phase of Wp method with 1 *MT C W = { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] ,

on[ch1] standby } * {off, standby, +, -, - - , - - -} = { off, standby, +, -, - -, - - -, on[ch1] off ,
on[ch1] standby, on[ch1] +, on[ch1] -, on[ch1] - -, on[ch1] - - -, on[ch2] off , on[ch2] standby,
on[ch2] +, on[ch2] -, on[ch2] - -, on[ch2] - - -, on[ch3] off , on[ch3] standby, on[ch3] +, on[ch3]
-, on[ch3] - -, on[ch3] - - -, on[ch4] off, on[ch4] standby, on[ch4] +, on[ch4] -, on[ch4] - -,
on[ch4] - - -, on[ch1] standby off , on[ch1] standby standby, on[ch1] standby +, on[ch1]
standby -, on[ch1] standby - -, on[ch1] standby - - -} = 6 * 6 = 36 test cases in phase 1.

Additionally we can compute the transitions that are out of the phase 1 and we will check

in the phase 2 as we have commented previously.

    1

exp _ _ 2 exp _ _ 1*
m n

M M M

lored in phase lored in phaseT C T
 

   

Equation 5.5.3.2 Transitions that will be explored in phase 2.

         1

exp _ _ 2 * *
m n m n

M M M M M M

lored in phaseT C C 
  

     

Equation 5.5.3.3 Developed Transitions that will be explored in phase 2.

The set of transitions that will be explored in phase 2 are; Texplored_in_phase2={ λ, on[ch1] ,
on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * ({λ} U {on[ch1], on[ch2], on[ch3], on[ch4], off,
+, -, standby}) – { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} = 6 * 8 – 6 = 42
transitions out off the phase 1 and will be explored in phase 2. To calcule the set of test cases

for the second phase of the Wp method we need to calculate the variable  initconf Off

which is the initial state of the statechart before to do any action. In Equation 5.5.3.4 is
showed the formula to compute the number of test cases in phase 2.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

120

Equation 5.5.3.4 Test cases of phase 2.

The equation 5.5.3.4 can be expressed in two parts; First we can calculate TS with the
equation 5.5.3.5. Once calculated TS we can calculate CE (Equation 5.5.3.6) and give as input
parameter each of the paths we have obtained in TS to obtain the expected output of every
test case shown in table 5.5.3 (CE stands for Configuration Entered by TS).

*M MC 
Equation 5.5.3.5 Test cases of phase 2.

TS = { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] , on[ch1] standby} * {on[ch1], on[ch2], on[ch3],
on[ch4], off, +, -, standby} = {on[ch1], on[ch2], on[ch3], on[ch4], off, +, -, standby, on[ch1]
on[ch1], on[ch1] on[ch2], on[ch1] on[ch3], on[ch1] on[ch4], on[ch1] off, on[ch1] +, on[ch1] -,
on[ch1] standby, on[ch2] on[ch1], on[ch2] on[ch2], on[ch2] on[ch3], on[ch2] on[ch4], on[ch2]
off, on[ch2] +, on[ch2] -, on[ch2] standby, on[ch3] on[ch1], on[ch3] on[ch2], on[ch3] on[ch3],
on[ch3] on[ch4], on[ch3] off, on[ch3] +, on[ch3] -, on[ch3] standby, on[ch4] on[ch1], on[ch4]
on[ch2], on[ch4] on[ch3], on[ch4] on[ch4], on[ch4] off, on[ch4] +, on[ch4] -, on[ch4] standby,
on[ch1] standby on[ch1], on[ch1] standby on[ch2], on[ch1] standby on[ch3], on[ch1] standby
on[ch4], on[ch1] standby off, on[ch1] standby +, on[ch1] standby -, on[ch1] standby standby }
= 6 * 8 = 48 test cases in phase 2.

Equation 5.5.2.6 Expected output of every test case.

  
    1(1),(1),

1
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
    2(2),(2),

2
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
    3(3),(3),

3
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
    4(4),(4),

4
init

OFF

root root

CHCE ON CH confON CH conf
CE CH w w  

  
   ,, init

OFF

root root

OFFCE OFF confOFF conf
CE OFF w w  

 Test cases generation for functional tests of user interfaces.

121

  
   ,, init

OFF

root root

OFFCE confconf
CE OFF w w


  

  
   ,, init

OFF

root root

OFFCE confconf
CE OFF w w


  

  
   ,, init

OFF

root root

OFFCE STANDBY confSTANDBY conf
CE OFF w w  

  
    1(1),(1)_ (1),

(1)
init

OFF

root root

CHCE ON CH confON CH ON CH conf
CE ON CH w w  

  
   ,(1)_ , init

OFF

root root

STANDBYCE STANDBY confON CH STANDBY conf
CE STANDBY w w  

…

Table 5.5.3.1 Test cases of phase 2.

Applying this to the TV1, the size of the set of test cases for the first phase of the Wp
method is 36 and the second one 48, resulting in 84 sequences which is less than that obtained
with the W method (240 test cases) for the same customization of the original statechart
(section 5.3.3 of this chapter “model 3”). Finally we are going to calculate the positive,
negative and redundant test cases for this model as we did with the W method to see which
one is more effective in section 5.7 of this chapter.

Combining the set of test cases obtained in the two phases of the Wp method we obtain

the set { off, standby, +, -, - -, - - -, on[ch1] off , on[ch1] standby, on[ch1] +, on[ch1] -, on[ch1] -
-, on[ch1] - - -, on[ch2] off , on[ch2] standby, on[ch2] +, on[ch2] -, on[ch2] - -, on[ch2] - - -,
on[ch3] off , on[ch3] standby, on[ch3] +, on[ch3] -, on[ch3] - -, on[ch3] - - -, on[ch4] off,
on[ch4] standby, on[ch4] +, on[ch4] -, on[ch4] - -, on[ch4] - - -, on[ch1] standby off , on[ch1]
standby standby, on[ch1] standby +, on[ch1] standby -, on[ch1] standby - -, on[ch1] standby - -
-, on[ch1], on[ch2], on[ch3], on[ch4], off, +, -, standby, on[ch1] on[ch1], on[ch1] on[ch2],
on[ch1] on[ch3], on[ch1] on[ch4], on[ch1] off, on[ch1] +, on[ch1] -, on[ch1] standby, on[ch2]
on[ch1], on[ch2] on[ch2], on[ch2] on[ch3], on[ch2] on[ch4], on[ch2] off, on[ch2] +, on[ch2] -,
on[ch2] standby, on[ch3] on[ch1], on[ch3] on[ch2], on[ch3] on[ch3], on[ch3] on[ch4], on[ch3]
off, on[ch3] +, on[ch3] -, on[ch3] standby, on[ch4] on[ch1], on[ch4] on[ch2], on[ch4] on[ch3],
on[ch4] on[ch4], on[ch4] off, on[ch4] +, on[ch4] -, on[ch4] standby, on[ch1] standby on[ch1],
on[ch1] standby on[ch2], on[ch1] standby on[ch3], on[ch1] standby on[ch4], on[ch1] standby
off, on[ch1] standby +, on[ch1] standby -, on[ch1] standby standby } = 84 test cases for the Wp
method.

As we see when using an automated algorithm there are a lot of negative test cases. We

have differentiated the set T of test cases that are positive from those that are negative. In
next step, we will identify the redundant test cases among which are negative (on the basis of
the length of a path: if path p is negative, and path q is such that q = concat (p,s) and s is not π

then q is also negative, and we call q redundant. The set of positive test cases are positiveT  {

on[ch1] off , on[ch1] standby, on[ch1] +, on[ch2] off , on[ch2] standby, on[ch2] +, on[ch2] -,
on[ch3] off , on[ch3] standby, on[ch3] +, on[ch3] -, on[ch3] - -, on[ch4] off, on[ch4] standby,
on[ch4] +, on[ch4] -, on[ch4] - -, on[ch4] - - -, on[ch1] standby off, on[ch1], on[ch2], on[ch3],
on[ch4], on[ch1] off, on[ch1] +, on[ch1] standby, on[ch2] off, on[ch2] +, on[ch2] -, on[ch2]
standby, on[ch3] off, on[ch3] +, on[ch3] -, on[ch3] standby, on[ch4] off, on[ch4] +, on[ch4] -,
on[ch4] standby, on[ch1] standby on[ch1], on[ch1] standby on[ch2], on[ch1] standby on[ch3],
on[ch1] standby on[ch4], on[ch1] standby off } = 43 positive test cases.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

122

negativeT  { off, standby, +, -, - -, - - -, on[ch1] -, on[ch1] - -, on[ch1] - - -, on[ch2] - -, on[ch2] - - -,

on[ch3] - - -, on[ch1] standby standby, on[ch1] standby +, on[ch1] standby -, on[ch1] standby -
-, on[ch1] standby - - -, off, +, -, standby, on[ch1] on[ch1], on[ch1] on[ch2], on[ch1] on[ch3],
on[ch1] on[ch4], on[ch1] -, on[ch2] on[ch1], on[ch2] on[ch2], on[ch2] on[ch3], on[ch2] on[ch4],
on[ch3] on[ch1], on[ch3] on[ch2], on[ch3] on[ch3], on[ch3] on[ch4], on[ch4] on[ch1], on[ch4]
on[ch2], on[ch4] on[ch3], on[ch4] on[ch4], on[ch1] standby +, on[ch1] standby -, on[ch1]
standby standby } = 84 calculated test cases – 43 (positive test cases) – 0 (redundant test
cases) = 41 negative test cases.

And also those that are redundant (on the basis of the length of a path: if path p is
negative, and path q is such that q=concat(p,s) and s is not λ then q is also negative, and we
call q redundant. We can see an example: Negative test case; p = on[ch1] 4 and redundant test
case; q = on[ch1] 4 off because “q = concat (p, s)” = “on[ch1] 4” + “off” = results in a redundant
test case. As we can see there aren’t any redundant test case from the negative test cases
calculated above.

Figure 5.5.3.2. Types of test cases on model 3.

84

43 41

0

Total test cases Positive test cases Negative test cases Redundant test cases

TV-REMOTE CONTROL model 3

Total test cases Positive test cases Negative test cases Redundant test cases

 Test cases generation for functional tests of user interfaces.

123

5.5.4 Simplest model with transitions "+" and "-".

Now we are going to calculate the test case basis “TCB” for the flattened model of TV1
without changes between the states of the channels to see what happens with the loop as we
can see on Fig. 5.5.3.1. The set of transition labels (denoted by ɸ) is the set of labels of a
statechart. ɸ = {on[ch1], on[ch2], on[ch3], on[ch4], off, +, -, standby}. Any desired state

starting from the initial one (denoted by C). C  { λ, on[ch1] , on[ch2] , on[ch3] , on[ch4] ,
on[ch1] standby}. Below we will see that it´s impossible to calculate characterization set W.

Figure 5.5.4.1 Customized model 4.

Note that in this statechart ɸ, C and W are equals at M , MC and MW because we have

not any composite-state. We have explained the meaning and how to calculate them (M ,
MC and MW) in section 4.1.11 literature review of this thesis “Testing from statecharts using

the Wp method” and in [7]. From here varies how to calculate the number of test cases for
this method. It consists of two phases and for the first one we need to clarify the Concept of

“Conf”; for a configuration conf, an identification set root

confw is a set allowing one to distinguish

between conf and all other configurations in a statechart. The concept of configuration
comprises sets of states which are left and entered by full compound transitions are called
configurations and consist of states a statechart can be in simultaneously. A configuration is
uniquely determined by a set of basic states in it. Every state in a flattened statechart
corresponds to a configuration in the original one. A configuration is uniquely determined by a
set of basic states in it. Every state in a flattened statechart corresponds to a configuration in
the original one. The most important part of this firs phase it is to calculate the small w sets.
These are a set allowing one to distinguish between conf and all other configurations in a
statechart and we use small w sets to identify states in an implementation applying the same
W formula as we use in W method in each state. Unfortunately, in a faulty implementation
small identification sets may fail to identify configurations correctly. The w sets obtained for

this first model are  [1]root

OFFW on ch
,

 ,root

STANDBYW off standby
, 1

root

CHW  { +, off, standby },

2

root

CHW  { +, off, standby }, 3

root

CHW  { +, off, standby }, 4

root

CHW  { +, off, standby }. As we see we

can not differentiate small w sets between different channels so we can not compute the
identification set W as occurred when applying the W method with this model in section 3.5.4.
The same applies to models discussed in points 5.3.5 and 5.3.6 and shown below in figure

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

124

5.5.4.2 in this chapter when applying Wp method. It is impossible to calculate the
identification set so we will say that they are not supported by this method.

Figure 5.5.4.2 Not supported models 5 and 6.

5.6 Obtained results and conclusions of Wp Method.

As shown in figure 5.6.1, the number of test cases obtained for different customizations of
the flattened statechart (Figure 5.5.2) with the Wp method are 84 for “simplest model with a
broken forward and a backward loop around ch1,ch2,ch3,ch4”, 96 for “simplest model change
transitions ‘+’ and ‘-‘ for numbers only up direction between channels” and 84 for “simplest
model with transitions ‘+’ and ‘-‘ with a broken transition ‘-‘ between ch1 and ch4” while for
the customizations of “simplest model change transitions ‘+’ and ‘-‘ for numbers” and
“simplest model transitions ‘+’ and ‘-‘ without loops” cannot be supported by the Wp method
as occurred with W method because it is impossible to calculate the small W sets as we have
explained in section 5.5.4 for each of the customizations of the flattened statechart. For the
first model we have obtained 42.8% of positive test cases, 57.2% of negative test cases and 0%
of redundant test cases. On the other hand in the second valid model we have obtained 39.6%
of positive test cases, 60.4% and 0% of negative and redundant test cases and finally in the
third model we have obtained 51.2% positive test cases, 48.8% negative test cases and 0%
redundant test cases.

Figure 5.6.1 Test cases for the different models of TV1 statechart with Wp method.

84
96

84

Not supported Not supported

Simplest model
with a broken
forward and a
backward loop

around
ch1,ch2,ch3,ch4.

Simplest model
change transitions

"+" and "-" for
numbers only up

direction between
channels

Simplest model
with transitions

"+" and "-" with a
broken transition
“-” between ch1

and ch4

Simplest model
change transitions

"+" and "-" for
numbers

Simplest model
transitions "+" and
"-" without loops

Test cases for TV-REMOTE CONTROL

Wp Method

 Test cases generation for functional tests of user interfaces.

125

So in the third model (Figure 5.5.3.1) we obtain a larger number of positive test cases than
models 1 (Figure 5.5.1.1) and 2 (Figure 5.5.2.1) which can help us most to confirm that a given
statechart works properly or not, the basic rule would that it is not the same confirm that a
statechart is properly functional with a single test case rather than check it whit several,
dozens or even hundreds of test cases and the best percentage of positive test cases is for the
third customization of the statechart, “simplest model with transitions ‘+’ and ‘-‘ with a broken
transition ‘-‘ between ch1 and ch4” model 3. The other aspect is rating which of the different
customizations of the statechart (model 1, 2 or 3) seems more efficient in regard to design as
in model 1 “simplest model with a broken forward and a backward loop around
ch1,ch2,ch3,ch4” there is no possibility of changing since channel 4 to 1 while in model 3 we
can do it, so we could assume that this action increases the number of negative or redundant
test cases, but on the contrary, we get a better percentage of positive test cases with model 3,
so with the W method this is the most efficient of all customizations of the flattened statechart
with we have worked.

5.7 Comparison of the results obtained with W and Wp methods

The following figures (since 5.7.1 to 5.7.3) show the different types of test cases (positive,
negative and redundant) obtained for each of the models that we have worked in this chapter
of the thesis. First in figure 5.7.1 shows the results obtained for the model 1 “Simplest model
with a broken forward and a backward loop around ch1,ch2,ch3,ch4”. As we can see with this
first model is obtained a similar number of positive test cases with both W and Wp methods.
Wp method still much better due to the large amount of negative test cases (222) which
appear when we have applied W method to the first model compared to the 48 of the other
method. So applying W method we get a greater number of total test cases but most of them
become negative, plus get redundant test cases. This does not happen with Wp method with
which we get less total number of test cases but almost half of them are positive specifically
the 42.8% versus to the 15% of the W method and do not get any redundant.

Figure 5.7.1 Simplest model with a broken forward and a backward loop around ch1,ch2,ch3,ch4

0

50

100

150

200

250

300

350

W method Wp method

Model 1 of TV1

Total test cases

Negative

Positive

Redundant

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

126

Below (fig. 5.7.2) we shows the results obtained for the model 2 “Simplest model with
transitions ‘+’ and ‘-‘ with a broken transition ‘-‘ between ch1 and ch4”. As we can see with this
second model is obtained a similar number of positive and negative test cases with both W
and Wp methods. As happened with model 1 (Figure 5.7.1) Wp method seems to perform
better because we get a similar number of positive test cases as we have said above, based on
a much smaller total number of test cases (360 of the W method versus the 96 test cases of
the Wp).

This means that we get only 5% less of positive test cases from a 73.3% less of total test
cases, which in terms of statistics and computation time is much more productive. Finally note
that as was the case with model 1, neither redundant test cases are obtained when we apply
the Wp method in this variation of our case of study.

Figure 5.7.2 Simplest model with transitions ‘+’ and ‘-‘ with a broken transition ‘-‘ between ch1 and ch4

The following research shows the results obtained for the model 3 “Simplest model with
transitions ‘+’ and ‘-‘ with a broken transition ‘-‘ between ch1 and ch4” in figure 5.7.3. This is
the model in which the two methods (W & Wp) seem to be more balanced because in both we
get a good number of positive test cases from the total number of tests. With W method we
have obtained 56 of 240 (23.3%) of positive tests cases which remains low, but is the highest
score achieved throughout the case study. The weak point of the W method is again the high
number of redundant test cases as was the case with model 2 "Simplest model with transitions
‘+’ and ‘-‘ with a broken transition ‘-‘ between ch1 and ch4" because this method (W method)
produces a much larger number of total test cases.

With the Wp method are obtained 43 of 84 positive test cases which indicates a
percentage higher than 50% of the tests, namely a 51.2%. The rest of test cases for the Wp
method are negative and again without redundant test cases as occurred with models 1 and 2
(Fig. 5.7.1 and 5.7.2).

0

50

100

150

200

250

300

350

400

W method Wp method

Model 2 of TV1

Total test cases

Negative

Positive

Redundant

 Test cases generation for functional tests of user interfaces.

127

Figure 5.7.3 Simplest model with transitions ‘+’ and ‘-‘ with a broken transition ‘-‘ between ch1 and ch4

Finally as a conclusion of which is the best method and the most appropriate statechart
we have shown that in the third model of the Wp method (Figure 5.5.3.1) we obtain a larger
number of positive test cases than models 1 (Figure 5.5.1.1) and 2 (Figure 5.5.2.1) which can
help us most to confirm that a given statechart works properly or not, the basic rule would
that it is not the same confirm that a statechart is properly functional with a single test case
rather than check it whit several, dozens or even hundreds of test cases and the best
percentage of positive test cases is for the third customization of the statechart, “simplest
model with transitions ‘+’ and ‘-‘ with a broken transition ‘-‘ between ch1 and ch4” model 3.
Compared with the W method we have shown that this third model analyzed by the Wp
method is better than all cases tested with the W method as explained before in this same
point.

Figure 5.7.4 Statechart and Diagram of the best model after testing with W & Wp methods.

In chapter 6 we will study the statechart with the transition “-” since channel 1 to channel
4 with the dreaded loop with a new algorithm that we have developed and we will analyze the
obtained results.

0

50

100

150

200

250

300

W method Wp method

Model 3 of TV1

Total test cases

Negative

Positive

Redundant

84

43 41

Test cases for model
3 (Wp method)

Total test
cases

Positive test
cases

Negative test
cases

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

128

 Test cases generation for functional tests of user interfaces.

129

Chapter 6

Definition and analysis of the new algorithm U-method

In this chapter we will explain the steps that we
followed for the creation of a new testing algorithm,
which we have called U-Method. The following
sections of this chapter (6.2.1 and 6.2.2) shall apply
this new method on TV1 statechart as was done in
Chapter 5 with “W and Wp methods” from [4] and [7]
respectively.

Next in section 6.3 we will make a comparison

between the number of test cases and the relevance
of them between the different versions of the
statechart for the U-method and finally in 6.4 we will
do the same but for the different methods with
which we have tested our case of study in the thesis
to check wich is the best of all for this statechart.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

130

 Test cases generation for functional tests of user interfaces.

131

6.1 Creation of the new testing algorithm U-method

For creating the variables of the new algorithm we have chosen to reuse the variable phi
that was used in “W and Wp methods” developed in [7] denominating it as “new phi”, which is
all possible states that may occur in the given statechart, as in the previous methods discussed.
So we decided to change the name to new phi but still has the same function. Unlike W and
Wp algorithms we rely on a single more variable called Tau. This covers all possible transitions
that exist in the analyzed statechart since the initial state using the technique transition cover.
We decided to work with this technique because there isn´t any functional testing algorithm
based on it. We can see the equation of the U-method below. Note that the subscript “n”
indicates the number of repetitions that we want to do when we apply the formula, thereby
controlling the number of times that we check or not a transition avoiding the dreaded loops.

  2*(...)n

nS T    

Equation 6.1.1. U-Method

 *()n

nS T  

Equation 6.1.2. Simplified equation of U-Method.

Here we make a brief description of the emails exchanged between us for the creation of

the new algorithm; “I have two little doubts before to start to apply the formulas of new phi
and tau. Which of the two phi think it would be better to use? ‘New Phi = { on[ch1], on[ch2],
on[ch3], on[ch4], off, +, -, standby}’ or ‘New Phi = { on[ch1], on[ch2], on[ch3], on[ch4], off, +, -
, standby, on}’ //I have not clear if adding the transition "on" or not. Which of the two tau
think it would be better to use? ‘Tau = { 1, on[ch1], on[ch1] +, on[ch1] + +, on[ch1] + + +,
on[ch1] + + + +, ... }’ //I add "on[ch1] + + + +" to prove the transition (+) since Ch4 to Ch1 or
‘Tau = { 1, on, on +, on + +, on + + +, on + + + +, ... }’ //Other doubt it´s if I use only transition
"on" or "on[chx]" to create Tau.

Figure 6.1.1. Content of the mail to create the algorithm.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

132

Reply; ”your diagram contains a small error: the transitions leaving a choice pseudostate
should not have a trigger, the event, because that whole "compound transition" (for example
from state "Off" to "Ch1") is triggered by event "on", which is correctly attached to the
transition from "Off" to choice pseudostate. The transitions leaving the choice pseudostate
should be labeled with the guards only, hence "[Ch1]", [Ch2], The reason is that when an
event fires, a stae machinecan only move from one state to another, not from a state to a
pseudostate. Therefore there should be no "on" element in your phi, only the combinations of
the event and the subsequent guard, that is on[ch1], ..., on[ch4]. Same thing for tau. NB you
should also remove the initial pseudostate that leads to Ch1: there can be only one such
pseudostat.”

Figure 6.1.1. TV1 statechart to extract new variables.

Calculating the variables for our case of study of figure 6.1.1. we obtain, New Phi =
{on[ch1], on[ch2], on[ch3], on[ch4], off, +, -, standby} and Tau={1, on[ch1], on[ch1] + off
on[ch2], on[ch1] + + off on[ch3], on[ch1] - off on[ch4], on[ch1] + , on[ch1] + + , on[ch1] + + +,
on[ch1] + + + +, on[ch1] - , on[ch1] - - , on[ch1] - - - , on[ch1] - - - - , on[ch1] standby, on[ch1] -
standby, on[ch1] + standby, on[ch1] + + standby, on[ch1] off, on[ch1] + off, on[ch1] + + off,
on[ch1] - off, on[ch1] standby off, on[ch1] standby on[ch1]}

Table 6.1.1 Definition of new variables for U-Method.

 Test cases generation for functional tests of user interfaces.

133

6.2 Adapt U-method to state machines used to model UIs

We have applied “W and Wp methods” developed in [7] in chapter 5 and now we will

apply U-method in subpoints of this section (points 6.2.1 and 6.2.2), after in (6.3) we will
discuss the results obtained for this method and we will talk about the conclusions obtained.
Finally in section 6.4 we will compare the results obtained for Wp and U method in our case of
study. The first thing that we need to do just like we did with W and Wp methods, it´s to
eliminate all the substates of the original model. After that, we can work with the simplest
model of the statechart applying different changes in it, in section 6.2.1. We are going to work
with the original flattened model so U-method can support this model that was imposible to
test with W and Wp methods. After that we will work with the version which best results we
have obtained with W and Wp methods in section 6.2.2 checking the results obtained in
section 6.3.

Step 0: modifications of the initial statechart: create a flattened statechart.

Figure 6.2.1 Original Statechart of TV1.

We will apply modifications on flattened version to calculate the different number of test
cases on them. The important changes suffered by the model are the creation of every one of
the transitions (“off”, “standby”) between the states of the channels (Ch1, Ch2, Ch3 and Ch4)
and the states Off and Standby. With these transitions we managed to remove every substate
of the statechart.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

134

Figure 6.2.2 Flattened statechart.

As discussed in Section 6.2.1 and 6.2.2 we will apply this new method to the original
statechart without any type of variation (Figure 6.2.1) because the new method that we have
developed supports this original model because it doesn´t use the W variable which prevented
us to use this model with W and Wp methods. In figure 6.2.2 we will apply U-method to the
customization of the statechart with which we have obtained the best results in section 5.5.3
of the previous chapter to check which method is more efficient if the Wp or U, so between W
and Wp method we saw that the latter was more efficient. We will do a final check to see if it
is also more efficient than the New U-method in section 6.4 of this chapter.

6.2.1 Apply U-method to TV1 original flattened model without customization.

We are going to work with the original flattened model as we can see on Fig. 6.2.1.1
because with our U-method we can work with the model with the feared loop that prevented

to apply the W and Wp methods. The set of transition labels (denoted by ) is the set of

labels of a statechart.  = {on[ch1], on[ch2], on[ch3], on[ch4], off, +, -, standby}. The other

variable that we use in our algorithm is TAW and it is represented by T , it runs all the possible

paths in our statechart since the initial state. T ={ λ, on[ch1], on[ch1] + off on[ch2], on[ch1] + +
off on[ch3] , on[ch1] - off on[ch4] , on[ch1] + , on[ch1] + + , on[ch1] + + + , on[ch1] + + + + ,
on[ch1] - , on[ch1] - - , on[ch1] - - - , on[ch1] - - - - , on[ch1] standby , on[ch1] - standby ,
on[ch1] + standby , on[ch1] + + standby , on[ch1] off , on[ch1] + off , on[ch1] + + off , on[ch1] -
off , on[ch1] standby off , on[ch1] standby on[ch1] }

Figure 6.2.1.1 Original flattened statechart.

*()n

nS T  = { λ, on[ch1], on[ch1] + off on[ch2], on[ch1] + + off on[ch3] , on[ch1] - off

on[ch4] , on[ch1] + , on[ch1] + + , on[ch1] + + + , on[ch1] + + + + , on[ch1] - , on[ch1] - - ,
on[ch1] - - - , on[ch1] - - - - , on[ch1] standby , on[ch1] - standby , on[ch1] + standby , on[ch1] +
+ standby , on[ch1] off , on[ch1] + off , on[ch1] + + off , on[ch1] - off , on[ch1] standby off ,

on[ch1] standby on[ch1] } * {on[ch1], on[ch2], on[ch3], on[ch4], off, +, -, standby} = 123*8 =
184 test cases.

Now we can get the test cases and identify the redundant and negative test cases. As we

have talked in the point 5.2.2 of the chapter 5 an example of negative test case can be {off}
and an example of redundant test case {off standby}.

 Test cases generation for functional tests of user interfaces.

135

*()n

nS T  = { on[ch1], on[ch2], on[ch3], on[ch4], off, +, -, standby, on[ch1] on[ch1],

on[ch1] on[ch2], on[ch1] on[ch3], on[ch1] on[ch4], on[ch1] off, on[ch1] +, on[ch1] -, on[ch1]
standby, on[ch1] + off on[ch2] on[ch1], on[ch1] + off on[ch2] on[ch2], on[ch1] + off on[ch2]
on[ch3], on[ch1] + off on[ch2] on[ch4], on[ch1] + off on[ch2] off, on[ch1] + off on[ch2] +,
on[ch1] + off on[ch2] -, on[ch1] + off on[ch2] standby, on[ch1] + + off on[ch3] on[ch1], on[ch1]
+ + off on[ch3] on[ch2], on[ch1] + + off on[ch3] on[ch3], on[ch1] + + off on[ch3] on[ch4],
on[ch1] + + off on[ch3] off, on[ch1] + + off on[ch3] +, on[ch1] + + off on[ch3] -, on[ch1] + + off
on[ch3] standby, on[ch1] - off on[ch4] on[ch1], on[ch1] - off on[ch4] on[ch2], on[ch1] - off
on[ch4] on[ch3], on[ch1] - off on[ch4] on[ch4], on[ch1] - off on[ch4] off, on[ch1] - off on[ch4]
+, on[ch1] - off on[ch4] -, on[ch1] - off on[ch4] standby, on[ch1] + on[ch1], on[ch1] + on[ch2],
on[ch1] + on[ch3], on[ch1] + on[ch4], on[ch1] + off, on[ch1] + +, on[ch1] + -, on[ch1] + standby,
on[ch1] + + on[ch1], on[ch1] + + on[ch2], on[ch1] + + on[ch3], on[ch1] + + on[ch4], on[ch1] + +
off, on[ch1] + + +, on[ch1] + + -, on[ch1] + + standby, on[ch1] + + + on[ch1], on[ch1] + + +
on[ch2], on[ch1] + + + on[ch3], on[ch1] + + + on[ch4], on[ch1] + + + off, on[ch1] + + + +, on[ch1]
+ + + -, on[ch1] + + + standby, on[ch1] + + + + on[ch1], on[ch1] + + + + on[ch2], on[ch1] + + + +
on[ch3], on[ch1] + + + + on[ch4], on[ch1] + + + + off, on[ch1] + + + + +, on[ch1] + + + + -,
on[ch1] + + + + standby, on[ch1] - on[ch1], on[ch1] - on[ch2], on[ch1] - on[ch3], on[ch1] -
on[ch4], on[ch1] - off, on[ch1] - +, on[ch1] - -, on[ch1] - standby, on[ch1] - - on[ch1], on[ch1] - -
on[ch2], on[ch1] - - on[ch3], on[ch1] - - on[ch4], on[ch1] - - off, on[ch1] - - +, on[ch1] - - -,
on[ch1] - - standby, on[ch1] - - - on[ch1], on[ch1] - - - on[ch2], on[ch1] - - - on[ch3], on[ch1] - -
- on[ch4], on[ch1] - - - off, on[ch1] - - - +, on[ch1] - - - -, on[ch1] - - - standby, on[ch1] - - - -
on[ch1], on[ch1] - - - - on[ch2], on[ch1] - - - - on[ch3], on[ch1] - - - - on[ch4], on[ch1] - - - - off,
on[ch1] - - - - +, on[ch1] - - - - -, on[ch1] - - - - standby, on[ch1] standby on[ch1], on[ch1]
standby on[ch2], on[ch1] standby on[ch3], on[ch1] standby on[ch4], on[ch1] standby off,
on[ch1] standby +, on[ch1] standby -, on[ch1] standby standby, on[ch1] - standby on[ch1],
on[ch1] - standby on[ch2], on[ch1] - standby on[ch3], on[ch1] - standby on[ch4], on[ch1] -
standby off, on[ch1] - standby +, on[ch1] - standby -, on[ch1] - standby standby, on[ch1] +
standby on[ch1], on[ch1] + standby on[ch2], on[ch1] + standby on[ch3], on[ch1] + standby
on[ch4], on[ch1] + standby off, on[ch1] + standby +, on[ch1] + standby -, on[ch1] + standby
standby, on[ch1] + + standby on[ch1], on[ch1] + + standby on[ch2], on[ch1] + + standby
on[ch3], on[ch1] + + standby on[ch4], on[ch1] + + standby off, on[ch1] + + standby +, on[ch1] +
+ standby -, on[ch1] + + standby standby, on[ch1] off on[ch1], on[ch1] off on[ch2], on[ch1] off
on[ch3], on[ch1] off on[ch4], on[ch1] off off, on[ch1] off +, on[ch1] off -, on[ch1] off standby,
on[ch1] + off on[ch1], on[ch1] + off on[ch2], on[ch1] + off on[ch3], on[ch1] + off on[ch4],
on[ch1] + off off, on[ch1] + off +, on[ch1] + off -, on[ch1] + off standby, on[ch1] + + off on[ch1],
on[ch1] + + off on[ch2], on[ch1] + + off on[ch3], on[ch1] + + off on[ch4], on[ch1] + + off off,
on[ch1] + + off +, on[ch1] + + off -, on[ch1] + + off standby, on[ch1] - off on[ch1], on[ch1] - off
on[ch2], on[ch1] - off on[ch3], on[ch1] - off on[ch4], on[ch1] - off off, on[ch1] - off +, on[ch1] -
off -, on[ch1] - off standby, on[ch1] standby off on[ch1], on[ch1] standby off on[ch2], on[ch1]
standby off on[ch3], on[ch1] standby off on[ch4], on[ch1] standby off off, on[ch1] standby off
+, on[ch1] standby off -, on[ch1] standby off standby, on[ch1] standby on[ch1] on[ch1],
on[ch1] standby on[ch1] on[ch2], on[ch1] standby on[ch1] on[ch3], on[ch1] standby on[ch1]
on[ch4], on[ch1] standby on[ch1] off, on[ch1] standby on[ch1] +, on[ch1] standby on[ch1] -,

on[ch1] standby on[ch1] standby } = 1S  123*8 = 184 test cases.

As we see when using an automated algorithm there are a lot of negative test cases. We

have differentiated the set T of test cases that are positive from those that are negative. In
next step, we will identify the redundant test cases among which are negative (on the basis of
the length of a path: if path p is negative, and path q is such that q = concat(p,s) and s is not π

then q is also negative, and we call q redundant. positiveT  {on[ch1], on[ch2], on[ch3], on[ch4],

on[ch1] off, on[ch1] +, on[ch1] -, on[ch1] standby, on[ch1] + off on[ch2] off, on[ch1] + off

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

136

on[ch2] +, on[ch1] + off on[ch2] -, on[ch1] + off on[ch2] standby, on[ch1] + + off on[ch3] off,
on[ch1] + + off on[ch3] +, on[ch1] + + off on[ch3] -, on[ch1] + + off on[ch3] standby, on[ch1] -
off on[ch4] off, on[ch1] - off on[ch4] +, on[ch1] - off on[ch4] -, on[ch1] - off on[ch4] standby,
on[ch1] + off, on[ch1] + +, on[ch1] + -, on[ch1] + standby, on[ch1] + + off, on[ch1] + + +,
on[ch1] + + -, on[ch1] + + standby, on[ch1] + + + off, on[ch1] + + + +, on[ch1] + + + -, on[ch1] + +
+ standby, on[ch1] + + + + off, on[ch1] + + + + +, on[ch1] + + + + -, on[ch1] + + + + standby,
on[ch1] - off, on[ch1] - +, on[ch1] - -, on[ch1] - standby, on[ch1] - - off, on[ch1] - - +, on[ch1] - -
-, on[ch1] - - standby, on[ch1] - - - off, on[ch1] - - - +, on[ch1] - - - -, on[ch1] - - - standby,
on[ch1] - - - - off, on[ch1] - - - - +, on[ch1] - - - - -, on[ch1] - - - - standby, on[ch1] standby
on[ch1], on[ch1] standby on[ch2], on[ch1] standby on[ch3], on[ch1] standby on[ch4], on[ch1]
standby off, on[ch1] - standby on[ch1], on[ch1] - standby on[ch2], on[ch1] - standby on[ch3],
on[ch1] - standby on[ch4], on[ch1] - standby off, on[ch1] + standby on[ch1], on[ch1] + standby
on[ch2], on[ch1] + standby on[ch3], on[ch1] + standby on[ch4], on[ch1] + standby off, on[ch1]
+ + standby on[ch1], on[ch1] + + standby on[ch2], on[ch1] + + standby on[ch3], on[ch1] + +
standby on[ch4], on[ch1] + + standby off, on[ch1] off on[ch1], on[ch1] off on[ch2], on[ch1] off
on[ch3], on[ch1] off on[ch4], on[ch1] + off on[ch1], on[ch1] + off on[ch2], on[ch1] + off
on[ch3], on[ch1] + off on[ch4], on[ch1] + + off on[ch1], on[ch1] + + off on[ch2], on[ch1] + + off
on[ch3], on[ch1] + + off on[ch4], on[ch1] - off on[ch1], on[ch1] - off on[ch2], on[ch1] - off
on[ch3], on[ch1] - off on[ch4], on[ch1] standby off on[ch1], on[ch1] standby off on[ch2],
on[ch1] standby off on[ch3], on[ch1] standby off on[ch4], on[ch1] standby on[ch1] off, on[ch1]
standby on[ch1] +, on[ch1] standby on[ch1] -, on[ch1] standby on[ch1] standby } = 106 positive
test cases.

negativeT  { off, +, -, standby, on[ch1] on[ch1], on[ch1] on[ch2], on[ch1] on[ch3], on[ch1]

on[ch4], on[ch1] + off on[ch2] on[ch1], on[ch1] + off on[ch2] on[ch2], on[ch1] + off on[ch2]
on[ch3], on[ch1] + off on[ch2] on[ch4], on[ch1] + + off on[ch3] on[ch1], on[ch1] + + off on[ch3]
on[ch2], on[ch1] + + off on[ch3] on[ch3], on[ch1] + + off on[ch3] on[ch4], on[ch1] - off on[ch4]
on[ch1], on[ch1] - off on[ch4] on[ch2], on[ch1] - off on[ch4] on[ch3], on[ch1] - off on[ch4]
on[ch4], on[ch1] + on[ch1], on[ch1] + on[ch2], on[ch1] + on[ch3], on[ch1] + on[ch4], on[ch1] +
+ on[ch1], on[ch1] + + on[ch2], on[ch1] + + on[ch3], on[ch1] + + on[ch4], on[ch1] + + + on[ch1],
on[ch1] + + + on[ch2], on[ch1] + + + on[ch3], on[ch1] + + + on[ch4], on[ch1] + + + + on[ch1],
on[ch1] + + + + on[ch2], on[ch1] + + + + on[ch3], on[ch1] + + + + on[ch4], on[ch1] - on[ch1],
on[ch1] - on[ch2], on[ch1] - on[ch3], on[ch1] - on[ch4], on[ch1] - - on[ch1], on[ch1] - - on[ch2],
on[ch1] - - on[ch3], on[ch1] - - on[ch4], on[ch1] - - - on[ch1], on[ch1] - - - on[ch2], on[ch1] - - -
on[ch3], on[ch1] - - - on[ch4], on[ch1] - - - - on[ch1], on[ch1] - - - - on[ch2], on[ch1] - - - -
on[ch3], on[ch1] - - - - on[ch4], on[ch1] standby +, on[ch1] standby -, on[ch1] standby standby,
on[ch1] - standby +, on[ch1] - standby -, on[ch1] - standby standby, on[ch1] + standby +,
on[ch1] + standby -, on[ch1] + standby standby, on[ch1] + + standby +, on[ch1] + + standby -,
on[ch1] + + standby standby, on[ch1] off off, on[ch1] off +, on[ch1] off -, on[ch1] off standby,
on[ch1] + off off, on[ch1] + off +, on[ch1] + off -, on[ch1] + off standby, on[ch1] + + off off,
on[ch1] + + off +, on[ch1] + + off -, on[ch1] + + off standby, on[ch1] - off off, on[ch1] - off +,
on[ch1] - off -, on[ch1] - off standby, on[ch1] standby off off, on[ch1] standby off +, on[ch1]
standby off -, on[ch1] standby off standby, on[ch1] standby on[ch1] on[ch1], on[ch1] standby
on[ch1] on[ch2], on[ch1] standby on[ch1] on[ch3], on[ch1] standby on[ch1] on[ch4]} = 184 –
106 (positive test cases) – 0(redundant test cases) = 78 negative test cases.

And also those that are redundant (on the basis of the length of a path: if path p is
negative, and path q is such that q=concat(p,s) and s is not λ then q is also negative, and we
call q redundant. We can see an example: Negative test case; p = on[ch1] 4 and redundant test
case; q = on[ch1] 4 off because “q = concat (p, s)” = “on[ch1] 4” + “off” = results in a redundant
test case. As we can see there aren’t any redundant test case from the negative test cases
calculated above.

 Test cases generation for functional tests of user interfaces.

137

Figure 6.2.1.2. Obtained test cases for the original flattened statechart of TV1.

6.2.2 Apply U-method to TV1 to model 3 of chapter 5

In this point we are going to work with the third model of the original statechart as we
can see on Fig. 6.2.2.1 to see the differences between U and Wp methods with the model
which we have obtained the best results for the methods W and Wp. As these methods the set

of transition labels (denoted by ) is the set of labels of a statechart.  = {on[ch1], on[ch2],
on[ch3], on[ch4], off, +, -, standby}. The other variable that we use in our algorithm is TAW and

it is represented by T , it runs all the possible paths in our statechart since the initial state. T

={ λ, on[ch1], on[ch1] + off on[ch2], on[ch1] + + off on[ch3] , on[ch1] + + + off on[ch4] , on[ch1]
+ , on[ch1] + + , on[ch1] + + + , on[ch1] + + + + , on[ch1] off on[ch4] - , on[ch1] off on[ch4] - - ,
on[ch1] off on[ch4] - - - , on[ch1] standby , on[ch1] + standby , on[ch1] + + standby , on[ch1] +
+ + standby, on[ch1] off , on[ch1] + off , on[ch1] + + off , on[ch1] + + + off , on[ch1] standby off
, on[ch1] standby on[ch1] }

Figure 6.2.2.1 Simplest model with transitions "+" and "-" with a broken transition “-” between ch1 and ch4.

184

106

78

0

Total test cases Positive test cases Negative test cases Redundant test cases

TV-REMOTE CONTROL original model

Total test cases Positive test cases Negative test cases Redundant test cases

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

138

*()n

nS T  = { λ, on[ch1], on[ch1] + off on[ch2], on[ch1] + + off on[ch3] , on[ch1] + + + off

on[ch4] , on[ch1] + , on[ch1] + + , on[ch1] + + + , on[ch1] + + + + , on[ch1] off on[ch4] - , on[ch1]
off on[ch4] - - , on[ch1] off on[ch4] - - - , on[ch1] standby , on[ch1] + standby , on[ch1] + +
standby , on[ch1] + + + standby, on[ch1] off , on[ch1] + off , on[ch1] + + off , on[ch1] + + + off ,
on[ch1] standby off , on[ch1] standby on[ch1] } * {on[ch1], on[ch2], on[ch3], on[ch4], off, +, -,

standby} = 122*8 = 176 test cases.

Now we can get the test cases and identify the redundant and negative test cases. As we

have talked in the point 5.2.2 of the chapter 5 an example of negative test case can be {off}
and an example of redundant test case {off standby}.

*()n

nS T  = { on[ch1], on[ch2], on[ch3], on[ch4], off, +, -, standby, on[ch1] on[ch1],

on[ch1] on[ch2], on[ch1] on[ch3], on[ch1] on[ch4], on[ch1] off, on[ch1] +, on[ch1] -, on[ch1]
standby, on[ch1] + off on[ch2] on[ch1], on[ch1] + off on[ch2] on[ch2], on[ch1] + off on[ch2]
on[ch3], on[ch1] + off on[ch2] on[ch4], on[ch1] + off on[ch2] off, on[ch1] + off on[ch2] +,
on[ch1] + off on[ch2] -, on[ch1] + off on[ch2] standby, on[ch1] + + off on[ch3] on[ch1], on[ch1]
+ + off on[ch3] on[ch2], on[ch1] + + off on[ch3] on[ch3], on[ch1] + + off on[ch3] on[ch4],
on[ch1] + + off on[ch3] off, on[ch1] + + off on[ch3] +, on[ch1] + + off on[ch3] -, on[ch1] + + off
on[ch3] standby, on[ch1] + + + off on[ch4] on[ch1], on[ch1] + + + off on[ch4] on[ch2], on[ch1]
+ + + off on[ch4] on[ch3], on[ch1] + + + off on[ch4] on[ch4], on[ch1] + + + off on[ch4] off,
on[ch1] + + + off on[ch4] +, on[ch1] + + + off on[ch4] -, on[ch1] + + + off on[ch4] standby,
on[ch1] + on[ch1], on[ch1] + on[ch2], on[ch1] + on[ch3], on[ch1] + on[ch4], on[ch1] + off,
on[ch1] + +, on[ch1] + -, on[ch1] + standby, on[ch1] + + on[ch1], on[ch1] + + on[ch2], on[ch1] +
+ on[ch3], on[ch1] + + on[ch4], on[ch1] + + off, on[ch1] + + +, on[ch1] + + -, on[ch1] + +
standby, on[ch1] + + + on[ch1], on[ch1] + + + on[ch2], on[ch1] + + + on[ch3], on[ch1] + + +
on[ch4], on[ch1] + + + off, on[ch1] + + + +, on[ch1] + + + -, on[ch1] + + + standby, on[ch1] + + +
+ on[ch1], on[ch1] + + + + on[ch2], on[ch1] + + + + on[ch3], on[ch1] + + + + on[ch4], on[ch1] + +
+ + off, on[ch1] + + + + +, on[ch1] + + + + -, on[ch1] + + + + standby, on[ch1] off on[ch4] -
on[ch1], on[ch1] off on[ch4] - on[ch2], on[ch1] off on[ch4] - on[ch3], on[ch1] off on[ch4] -
on[ch4], on[ch1] off on[ch4] - off, on[ch1] off on[ch4] - +, on[ch1] off on[ch4] - -, on[ch1] off
on[ch4] - standby, on[ch1] off on[ch4] - - on[ch1], on[ch1] off on[ch4] - - on[ch2], on[ch1] off
on[ch4] - - on[ch3], on[ch1] off on[ch4] - - on[ch4], on[ch1] off on[ch4] - - off, on[ch1] off
on[ch4] - - +, on[ch1] off on[ch4] - - -, on[ch1] off on[ch4] - - standby, on[ch1] off on[ch4] - - -
on[ch1], on[ch1] off on[ch4] - - - on[ch2], on[ch1] off on[ch4] - - - on[ch3], on[ch1] off on[ch4]
- - - on[ch4], on[ch1] off on[ch4] - - - off, on[ch1] off on[ch4] - - - +, on[ch1] off on[ch4] - - - -,
on[ch1] off on[ch4] - - - standby, on[ch1] standby on[ch1], on[ch1] standby on[ch2], on[ch1]
standby on[ch3], on[ch1] standby on[ch4], on[ch1] standby off, on[ch1] standby +, on[ch1]
standby -, on[ch1] standby standby, on[ch1] + standby on[ch1], on[ch1] + standby on[ch2],
on[ch1] + standby on[ch3], on[ch1] + standby on[ch4], on[ch1] + standby off, on[ch1] +
standby +, on[ch1] + standby -, on[ch1] + standby standby, on[ch1] + + standby on[ch1],
on[ch1] + + standby on[ch2], on[ch1] + + standby on[ch3], on[ch1] + + standby on[ch4],
on[ch1] + + standby off, on[ch1] + + standby +, on[ch1] + + standby -, on[ch1] + + standby
standby, on[ch1] + + + standby on[ch1], on[ch1] + + + standby on[ch2], on[ch1] + + + standby
on[ch3], on[ch1] + + + standby on[ch4], on[ch1] + + + standby off, on[ch1] + + + standby +,
on[ch1] + + + standby -, on[ch1] + + + standby standby, on[ch1] off on[ch1], on[ch1] off
on[ch2], on[ch1] off on[ch3], on[ch1] off on[ch4], on[ch1] off off, on[ch1] off +, on[ch1] off -,
on[ch1] off standby, on[ch1] + off on[ch1], on[ch1] + off on[ch2], on[ch1] + off on[ch3],
on[ch1] + off on[ch4], on[ch1] + off off, on[ch1] + off +, on[ch1] + off -, on[ch1] + off standby,
on[ch1] + + off on[ch1], on[ch1] + + off on[ch2], on[ch1] + + off on[ch3], on[ch1] + + off
on[ch4], on[ch1] + + off off, on[ch1] + + off +, on[ch1] + + off -, on[ch1] + + off standby, on[ch1]

 Test cases generation for functional tests of user interfaces.

139

+ + + off on[ch1], on[ch1] + + + off on[ch2], on[ch1] + + + off on[ch3], on[ch1] + + + off on[ch4],
on[ch1] + + + off off, on[ch1] + + + off +, on[ch1] + + + off -, on[ch1] + + + off standby, on[ch1]
standby off on[ch1], on[ch1] standby off on[ch2], on[ch1] standby off on[ch3], on[ch1]
standby off on[ch4], on[ch1] standby off off, on[ch1] standby off +, on[ch1] standby off -,
on[ch1] standby off standby, on[ch1] standby on[ch1] on[ch1], on[ch1] standby on[ch1]
on[ch2], on[ch1] standby on[ch1] on[ch3], on[ch1] standby on[ch1] on[ch4], on[ch1] standby
on[ch1] off, on[ch1] standby on[ch1] +, on[ch1] standby on[ch1] -, on[ch1] standby on[ch1]

standby } = 1S  122*8 = 176 test cases

As we see when using an automated algorithm there are a lot of negative test cases.
We have differentiated the set T of test cases that are positive from those that are negative. In
next step, we will identify the redundant test cases among which are negative (on the basis of
the length of a path: if path p is negative, and path q is such that q = concat(p,s) and s is not π

then q is also negative, and we call q redundant. positiveT  { on[ch1], on[ch2], on[ch3],

on[ch4],on[ch1] off, on[ch1] +, on[ch1] standby, on[ch1] + off on[ch2] off, on[ch1] + off
on[ch2] +, on[ch1] + off on[ch2] -, on[ch1] + off on[ch2] standby, on[ch1] + + off on[ch3] off,
on[ch1] + + off on[ch3] +, on[ch1] + + off on[ch3] -, on[ch1] + + off on[ch3] standby, on[ch1] + +
+ off on[ch4] off, on[ch1] + + + off on[ch4] standby, on[ch1] + off, on[ch1] + +, on[ch1] + -,
on[ch1] + standby, on[ch1] + + off, on[ch1] + + +, on[ch1] + + -, on[ch1] + + standby, on[ch1] + +
+ off, on[ch1] + + + +, on[ch1] + + + -, on[ch1] + + + standby, on[ch1] + + + + off, on[ch1] + + + +
+, on[ch1] + + + + standby, on[ch1] off on[ch4] - off, on[ch1] off on[ch4] - +, on[ch1] off on[ch4]
- -, on[ch1] off on[ch4] - standby, on[ch1] off on[ch4] - - off, on[ch1] off on[ch4] - - +, on[ch1]
off on[ch4] - - -, on[ch1] off on[ch4] - - standby, on[ch1] off on[ch4] - - - off, on[ch1] off on[ch4]
- - - +, on[ch1] off on[ch4] - - - standby, on[ch1] standby on[ch1], on[ch1] standby on[ch2],
on[ch1] standby on[ch3], on[ch1] standby on[ch4], on[ch1] standby off, on[ch1] + standby
on[ch1], on[ch1] + standby on[ch2], on[ch1] + standby on[ch3], on[ch1] + standby on[ch4],
on[ch1] + standby off, on[ch1] + + standby on[ch1], on[ch1] + + standby on[ch2], on[ch1] + +
standby on[ch3], on[ch1] + + standby on[ch4], on[ch1] + + standby off, on[ch1] + + + standby
on[ch1], on[ch1] + + + standby on[ch2], on[ch1] + + + standby on[ch3], on[ch1] + + + standby
on[ch4], on[ch1] + + + standby off, on[ch1] off on[ch1], on[ch1] off on[ch2], on[ch1] off
on[ch3], on[ch1] off on[ch4], on[ch1] + off on[ch1], on[ch1] + off on[ch2], on[ch1] + off
on[ch3], on[ch1] + off on[ch4], on[ch1] + + off on[ch1], on[ch1] + + off on[ch2], on[ch1] + + off
on[ch3], on[ch1] + + off on[ch4], on[ch1] + + + off on[ch1], on[ch1] + + + off on[ch2], on[ch1] +
+ + off on[ch3], on[ch1] + + + off on[ch4], on[ch1] standby off on[ch1], on[ch1] standby off
on[ch2], on[ch1] standby off on[ch3], on[ch1] standby off on[ch4], on[ch1] standby on[ch1]
off, on[ch1] standby on[ch1] +, on[ch1] standby on[ch1] standby } = 82 positive test cases

negativeT  { off, +, -, standby, on[ch1] on[ch1], on[ch1] on[ch2], on[ch1] on[ch3], on[ch1]

on[ch4], on[ch1] -, on[ch1] + off on[ch2] on[ch1], on[ch1] + off on[ch2] on[ch2], on[ch1] + off
on[ch2] on[ch3], on[ch1] + off on[ch2] on[ch4], on[ch1] + + off on[ch3] on[ch1], on[ch1] + + off
on[ch3] on[ch2], on[ch1] + + off on[ch3] on[ch3], on[ch1] + + off on[ch3] on[ch4], on[ch1] + + +
off on[ch4] on[ch1], on[ch1] + + + off on[ch4] on[ch2], on[ch1] + + + off on[ch4] on[ch3],
on[ch1] + + + off on[ch4] on[ch4], on[ch1] + + + off on[ch4] +, on[ch1] + + + off on[ch4] -,
on[ch1] + on[ch1], on[ch1] + on[ch2], on[ch1] + on[ch3], on[ch1] + on[ch4], on[ch1] + +
on[ch1], on[ch1] + + on[ch2], on[ch1] + + on[ch3], on[ch1] + + on[ch4], on[ch1] + + + on[ch1],
on[ch1] + + + on[ch2], on[ch1] + + + on[ch3], on[ch1] + + + on[ch4], on[ch1] + + + + on[ch1],
on[ch1] + + + + on[ch2], on[ch1] + + + + on[ch3], on[ch1] + + + + on[ch4], on[ch1] + + + + -,
on[ch1] off on[ch4] - on[ch1], on[ch1] off on[ch4] - on[ch2], on[ch1] off on[ch4] - on[ch3],
on[ch1] off on[ch4] - on[ch4], on[ch1] off on[ch4] - - on[ch1], on[ch1] off on[ch4] - - on[ch2],
on[ch1] off on[ch4] - - on[ch3], on[ch1] off on[ch4] - - on[ch4], on[ch1] off on[ch4] - - -
on[ch1], on[ch1] off on[ch4] - - - on[ch2], on[ch1] off on[ch4] - - - on[ch3], on[ch1] off on[ch4]
- - - on[ch4], on[ch1] off on[ch4] - - - -, on[ch1] standby +, on[ch1] standby -, on[ch1] standby

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

140

standby, on[ch1] + standby +, on[ch1] + standby -, on[ch1] + standby standby, on[ch1] + +
standby +, on[ch1] + + standby -, on[ch1] + + standby standby, on[ch1] + + + standby +, on[ch1]
+ + + standby -, on[ch1] + + + standby standby, on[ch1] off off, on[ch1] off +, on[ch1] off -,
on[ch1] off standby, on[ch1] + off off, on[ch1] + off +, on[ch1] + off -, on[ch1] + off standby,
on[ch1] + + off off, on[ch1] + + off +, on[ch1] + + off -, on[ch1] + + off standby, on[ch1] + + + off
off, on[ch1] + + + off +, on[ch1] + + + off -, on[ch1] + + + off standby, on[ch1] standby off off,
on[ch1] standby off +, on[ch1] standby off -, on[ch1] standby off standby, on[ch1] standby
on[ch1] on[ch1], on[ch1] standby on[ch1] on[ch2], on[ch1] standby on[ch1] on[ch3], on[ch1]
standby on[ch1] on[ch4], on[ch1] standby on[ch1] - } = 176 – 82 (positive test cases) –
0(redundant test cases) = 94 negative test cases.

And also those that are redundant (on the basis of the length of a path: if path p is
negative, and path q is such that q=concat(p,s) and s is not λ then q is also negative, and we
call q redundant. We can see an example: Negative test case; p = on[ch1] 4 and redundant test
case; q = on[ch1] 4 off because “q = concat (p, s)” = “on[ch1] 4” + “off” = results in a redundant
test case. As we can see there aren’t any redundant test case from the negative test cases
calculated above.

Figure 6.2.2.2 Obtained test cases for the simplest model with transitions "+" and "-" with a broken transition “-”
between ch1 and ch4.

6.3 Obtained results and conclusions for the U-Method.

As shown in figure 6.3.1, the number of test cases obtained for the two versions of the
case of study analyzed in this chapter for the U-method are 184 for “original flattened
statechart” and 176 for “simplest model with transitions ‘+’ and ‘-‘ with a broken transition ‘-‘
between ch1 and ch4” while for the customizations of “simplest model change transitions ‘+’
and ‘-‘ for numbers” and “simplest model transitions ‘+’ and ‘-‘ without loops” (figures 5.2.4
and 5.2.5) can be supported by the U-method unlike with W and Wp algorithms because with
our equation it is possible to calculate the number of test cases for them but we have omitted
these studies to be less functional models that analyzed customizations in section 6.2. As with
model one (fig. 5.2.1) “simplest model with a broken forward and a backward loop around
ch1,ch2,ch3,ch4.” and model two (fig 5.2.2) “simplest model change transitions "+" and "-" for
numbers only up direction between channels” there was possible to calculate them with W, Wp
and U methods but we have omitted them for the same reason and because we want to

176

82
94

0

Total test cases Positive test cases Negative test cases Redundant test cases

TV-REMOTE CONTROL model 2

Total test cases Positive test cases

Negative test cases Redundant test cases

 Test cases generation for functional tests of user interfaces.

141

compare in the next section (6.4) the statechart with which we have obtained the best results
with the method Wp to see the differences between this and the U method. For the first
model we have obtained 57.6% of positive test cases, 42.4% of negative test cases and 0% of
redundant test cases. With the second model we have obtained 46.6% of positive test cases,
53.4% and 0% of negative and redundant test cases.

Figure 6.3.1 Test cases for the different models of TV1 statechart with Wp method.

So in the first model (Figure 6.2.1.1) we obtain a larger number of positive test cases than
model 2 (Figure 6.2.2.1) which can help us most to confirm that a given statechart works
properly or not, the basic rule would that it is not the same confirm that a statechart is
properly functional with a single test case rather than check it whit several, dozens or even
hundreds of test cases and the best percentage of positive test cases is for the first model of
the statechart, “original flattened statechart”. The other aspect is rating which of the different
customizations of the statechart (model 1, or 2) seems more efficient in regard to design as in
model 2 “simplest model with transitions ‘+’ and ‘-‘ with a broken transition ‘-‘ between ch1
and ch4” there is no possibility of changing since channel 1 to 4 while in model 1 we can do it.
So we can say that model 1 is the best model in all aspects as we have a greater number of
positive test cases, that is what we seek when we testing an application, and also it work with
all existing transitions in the statechart.

184

176

Original flattened statechart Simplest model with transitions "+" and "-"
with a broken transition “-” between ch1 and

ch4

U-Method

U-Method

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

142

6.4 Comparison of the results obtained with W, Wp and U methods

The following figures (6.4.1 and 6.4.2) show the different types of test cases (positive,
negative and redundant) obtained for each of the models that we have worked in this chapter
of the thesis. First in figure 6.4.1 we show the results obtained for the model 1 “original
flattened statechart”. As we can see with this first model we only obtain results for U-method
because W and Wp methods cannot support this model for the problems with the loop
created between the states of the different channel. Logically can not make any comparison
between the different methods studied in this work, but we will analyze the obtained results.
So applying U-method we 57.6% of positive, 42.4% of negative and any redundant test case.
Compared to the other models studied in Chapters 5 and 6 of our case study this is the best of
all the percentages obtained in positive test cases which indicates that this method is
efficiently applied to model 1 "original flattened statechart".

Figure 6.4.1. Obtained results for the original flattened statechart.

In the following figure (6.4.2) we show the different types of test cases (positive, negative
and redundant) obtained for the model that we have worked in chapters 5 (section 5.2.3) and
6 (section 6.2.2) of the thesis (simplest model with transitions ‘+’ and ‘-‘ with a broken
transition ‘-‘ between ch1 and ch4) and with which we have obtained the best results for the W
and Wp methods to see the differences between them and the results obtained with U
method. This is the model in which W & Wp methods seem to be more balanced because in
both we get a good number of positive test cases from the total number of tests.

As we saw in chapter 5 with W method we have obtained 56 of 240 (23.3%) of positive
tests cases which remains low, but is the highest score achieved throughout the case study.
The weak point of the W method is again the high number of redundant test cases as was the
case with model 2 "Simplest model with transitions ‘+’ and ‘-‘ with a broken transition ‘-‘
between ch1 and ch4" because this method (W method) produces a much larger number of
total test cases. With the Wp method we have obtained 43 of 84 positive test cases which
indicates a percentage higher than 50% of the tests, namely a 51.2%. The rest of test cases for
the Wp method are negative and there aren’t any redundant test case. Finally with U method
we get a good percentage of positive test cases, namely 46.6%, but remember that we start
from a greater number of test cases making it difficult to obtain a good percentage of positive
test cases but our method produces good results.

0

20

40

60

80

100

120

140

160

180

200

W-method Wp-method U-method

Model 1 of TV1

Total test cases

Negative

Positive

Redundant

Not supported Not supported

 Test cases generation for functional tests of user interfaces.

143

Figure 6.4.2. Obtained results for the simplest model with transitions ‘+’ and ‘-‘ with a broken transition ‘-‘

between ch1 and ch4. (Model 3 in chapter 5)

As we saw in Chapter 5, for this model of our case of study, between W and Wp methods
[7] the latter is the more efficient. Now we are going to discuss if it is more appropriate than
U-method. Initially seems that W its more efficient than U method because it has more
positivie from less test cases, and this is the objective of the program testing, but U-method is
able to get a high number of positives, namely 46.6%, from a much larger number of total test
cases (176) and this is a good characteristic so we can see that with W-method we have also
obtained a high number of total test cases but the percentage of positives is only 23.3%, it is a
very poor result.

Therefore between Wp and U methods we could opt for either but the fact that U-

method get more positive test cases makes us choose it as the most appropriate method
because this method can help us most to confirm that a given statechart works properly or
not, the basic rule would that it is not the same confirm that a statechart is properly functional
with a single test case rather than check it whit several, dozens or even hundreds of test cases.
In this case we do not get the best percentage of positive test cases as occurred in the
comparisons performed in Chapter 5 but we obtain a greater number of positive with a good
percentage of them.

Figure 6.4.3 Statechart and Diagram of the best model after testing with W & Wp methods.

0

50

100

150

200

250

300

W method Wp method U method

Model 2 of TV1

Total test cases

Negative

Positive

Redundant

176

82
94

Test cases model 2
(U-Method)

Total test
cases

Positive test
cases

Negative test
cases

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

144

 Test cases generation for functional tests of user interfaces.

145

CHAPTER 7

Applying the methods to the statechart with Bugs.

In this chapter we will modify the customization 1 of the
statechart used in chapter 5 to comprove that the positive
test cases obtained with W-method developed in [4] are
useful and can be detect the different bugs.

There are seven types of bugs, since eliminate the
transition 1 since channel 2 to channel 1 to check that exist
one or more positive test case that try to do the action of
execute the eliminated transition. Another bug is to create a
new channel 5 or create a new transition "x" to see the
behavior of the algorithm amongst others. Every one of them
are checked and has sough in each case the test case that
identifies the created bug.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

146

 Test cases generation for functional tests of user interfaces.

147

7. Changes in our case of study.

In this section we are going to modify one of the statecharts with which we have worked in
the previous chapters to assess the value of the different test cases that we have obtained. We
will apply changes to the model 1 for will apply different types of bugs to the statechart and
show that the obtained test cases detect this bug.

7.1 Errors on Model 1 obtained with W Method.

First we are going to apply different changes on the customization 1 of the statechart
analyzed in chapter 5, we can see it without bugs below in figure 7.1.1.

Figure 7.1.1. Model 1 of chapter 5 to apply bugs.

7.1.1 Damage state Ch1.

The first error that we apply to the model 1 shown in Sect. 7.1.1 “Simplest model change
transitions "+" and "-" for numbers with a broken forward and a backward loop around ch1,
ch2, ch3 and ch4.” is to damage the state Ch1 and remove their transition “2” to go to the
state Ch2. We maintain the transitions “off” and “standby” since Ch1 to states Off and Standby
respectively. Also we have eliminated the transition “1” between states Ch2 and Ch1. We can
see it in the figure below.

Figure 7.1.1.1 Bug 1.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

148

To detect the error we only need to work with the 45 positive test cases obtained in
section 7.1.1. We detect it concretely with the positive test case “on[ch2] 1”. Here we can see

the set of positive test cases previously obtained. positiveT  {on[ch1] off, on[ch2] off, on[ch3]

off, on[ch4] off, on[ch1] standby, on[ch2] standby, on[ch3] standby, on[ch4] standby, on[ch2] 1,
on[ch3] 2,on[ch3] 4, … , on[ch1] standby on[ch3] 4}. To detect it, we load on selenium the file
html with the test cases and after we will check them in the statechart that we are interested
with the browser Mozilla Firefox which we have integrated the extension selenium to run the
test cases on every version of the statechart. The appearance of running selenium test cases is
so:

Figure 7.1.1.2 Detection of the error.

We can see the detection of the error in fig. 7.1.1.2, the moment in which selenium try to
execute the transition “1” since the states Ch2 to Ch1. The code for this test case that has
helped us to identify the error is as follows:

Figure 7.1.1.3 Part of code with Dreamweaver.

 Test cases generation for functional tests of user interfaces.

149

7.1.2 Create new state Ch5.

The second error or modification that we apply to prove the usefulness of the obtained
test cases is to create a new state Ch5 with their transition “4” to the state Ch4 and transition
“5” since state Ch4 to the new state Ch5. We add to state Ch5 transitions “off” and “standby”
to states Off and Standby respectively. The resulting statechart is shown in Fig. 7.1.2.1.

Figure 7.1.2.1 Bug 2.

In this case we can’t detect it and analyze these new transitions with the generated test
cases in section 7.1.1, we will need to add new test cases. The generation of these new test
cases does not require a recalculation of the test cases generated as we have the advantage of
working with a model where there is only one initial state Off and is not necessary to calculate
all of them from the beginning, just add those that correspond to the state Ch5. after
calculating the new test cases we can execute the following formula

mod _ mod _ modified el initial elT T , to reduce the test cases that we need to check, and do the

subtraction with which we have obtained from the initial model. After that we only need to
check the new test cases pertaining only to the state Ch5. The anterior test cases of the initial
model still valid. As seen in Fig. 7.1.2.2 the execution of the test cases in Selenium obtained in
Section 7.1.1 do not find any anomaly in this modified statechart.

Figure 7.1.2.2 Validation with Selenium.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

150

7.1.3 Create a new transition “on”.

The third modification that we apply to prove the usefulness of the obtained test cases is
to create a new transition “on” since the state Ch3 to the state Off, maintaining the oldest
transitions of the state Ch3. The resulting statechart is shown in Figure 7.1.3.1.

Figure 7.1.3.1 Bug 3.

To detect the error we only need to work with the negative test cases obtained in Sect.
7.1.1, there are 222. We detect it concretely with the negative test case “on[ch3] on[ch1] off”.

Here we can see part of the negative test cases previously obtained. negativeT  off off, 1 off, 2

off, 3 off, 4 off, standby off, off standby, 1 standby, 2 standby, 3 standby, 4 standby, standby
standby, on[ch1] 1, on[ch3] 1, on[ch4] 1, off 1, 1 1, 2 1, 3 1, 4 1, standby 1, on[ch2] 2, on[ch4] 2,
off 2, 1 2, 2 2, 3 2, 4 2, standby 2, on[ch1] 4, on[ch2] 4, on[ch4] 4, … , on[ch3] on[ch1] off, …}.
To detect it, we load on selenium the file html with the test cases and after we will check them
in the statechart that we are interested with the browser Mozilla Firefox which we have
integrated the extension selenium to run the test cases on every version of the statechart. The
appearance of running selenium test cases is so:

Figure 7.1.3.2 Detection of the error.

 Test cases generation for functional tests of user interfaces.

151

We can see the detection of the error in fig. 7.1.3.2 in the moment in which selenium try
to execute the transition “1” since the states Ch2 to Ch1. The code for this test case that has
helped us to identify the error is as follows:

Figure 7.1.3.3 Part of code with Dreamweaver.

7.1.4 Create a new transition “x”.

This modification consist on add a new transition “x” that does not exist in our model to
see what happens. We add to state Ch3 the transition “x” to state Off. Re-maintain old
transitions that had the state Ch3. The resulting statechart is shown in figure 7.1.4.1.

Figure 7.1.4.1 Bug 4.

If there is a new transition “x” which did not exist yet in the original statechart in which we
had calculated the test cases, we need to recalculate the entire model applying again the
formula of T. We have checked the positive, negative and redundant test cases in Selenium on
this modification of the original statechart with the new transition “x” but it is impossible to
find the bug of the discussed erroneous transition “x” that does not exist in the original model.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

152

7.1.5 Create a new transition “on[ch1]”.

The fifth error that we apply to the model 1 shown in Sect. 7.1.1 “Simplest model change
transitions "+" and "-" for numbers with a broken forward and a backward loop around ch1,
ch2, ch3 and ch4.” is to add a new transition “on[ch1]” from the states Ch1 to Standby. We
maintain the transitions “off” and “standby” since Ch1 to states Off and Standby respectively.
We can see it in the figure below.

Figure 7.1.5.11 Bug 5.

To detect the error in this case any of the positive test cases obtained for the initial model is
able to detect it because it is a negative test case. We need to work with the negative test
cases obtained in Sect. 7.1.1, there are 222 test cases. We detect it concretely with the
negative test case “on[ch1] on[ch1] off ”.

Figure 7.1.5.2 Detection of the error with Selenium.

 Test cases generation for functional tests of user interfaces.

153

To detect it, we load on selenium the file html with the test cases and after we will check
them in the statechart that we are interested with the browser Mozilla Firefox which we have
integrated the extension selenium to run the test cases on every version of the statechart. We
can see the appearance of running selenium test cases in figure 7.1.5.2. and the detection of
the error in the moment in which selenium try to execute the transition “on” since the states
Ch1. The code for this test case that has helped us to identify the error is as follows:

Figure 7.1.5.32 Part of code with Dreamweaver.

7.1.6 Damage transition between states Ch2 and Ch1.

In this modification of the original statechart obtained in section 7.1.1. “Simplest model
change transitions "+" and "-" for numbers with a broken forward and a backward loop around
ch1, ch2, ch3 and ch4.” we change the transition “1” from the states Ch2 to Ch1 by the
transition “1”. We maintain the transitions “off” and “standby” since states Ch1 and Ch2 to
states Off and Standby respectively. The old transition “2” between states Ch1 and Ch2
remains. We can see it in the figure below.

Figure 7.1.6.1 Bug 6.

To detect the error we only need to work with the 45 positive test cases obtained in Sect.
7.1.1. We detect it concretely with the positive test case “on[ch1] 2 1”. Here we can see the

entire set of positive test cases previously obtained. positiveT  on[ch1] off, on[ch2] off, on[ch3]

off, on[ch4] off, on[ch1] standby, on[ch2] standby, on[ch3] standby, on[ch4] standby, on[ch2] 1,
on[ch3] 2,on[ch3] 4, on[ch1] 2 off, on[ch1] standby off, on[ch1] 2 standby, on[ch1] 2 1, on[ch2]
1 off, on[ch2] 3 off, on[ch2] standby off, on[ch2] 1 standby, on[ch2] 3 standby, on[ch2] 1 2,
on[ch2] 3 2, on[ch2] 3 2, on[ch2] 3 4, on[ch3] 2 off, on[ch3] 4 off, on[ch3] standby off, on[ch3]

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

154

2 standby, on[ch3] 4 standby, on[ch3] 2 1, on[ch4] 3 off, on[ch4] 3 standby, on[ch4] 3 2,
on[ch4] 3 4, on[ch1] standby on[ch1] off, on[ch1] standby on[ch2] off, on[ch1] standby on[ch3]
off, on[ch1] standby on[ch4] off, on[ch1] standby on[ch1] standby, on[ch1] standby on[ch2]
standby, on[ch1] standby on[ch3] standby, on[ch1] standby on[ch4] standby, on[ch1] standby
on[ch2] 1, on[ch1] standby on[ch1] 2, on[ch1] standby on[ch3] 2, on[ch1] standby on[ch3] 4.
To detect it, we load on selenium the file html with the test cases and after we will check them
in the statechart that we are interested with the browser Mozilla Firefox which we have
integrated the extension selenium to run the test cases on every version of the statechart. The
appearance of running selenium test cases is so:

Figure 7.1.6.2 Detection of the error with Selenium.

We can see the detection of the error in fig. 7.1.6.2 in the moment in which selenium try

to execute the transition “1” since the states Ch2 to Ch1. The code for this test case that has
helped us to identify the error is as follows:

Figure 7.1.6.3 Part of code in Dreamweaver.

 Test cases generation for functional tests of user interfaces.

155

7.1.7 Change transition “off” by “standby”.

In the seventh modification of the original statechart obtained in section 7.1.1 “Simplest
model change transitions "+" and "-" for numbers with a broken forward and a backward loop
around ch1, ch2, ch3 and ch4.” we change the transition “off” from the states Ch1 to Off by the
transition “standby”. We maintain all old transitions of the state Off, but we remove the
transition “standby” since states Ch1 to Standby, the rest of old transitions of the state Ch1
remain. We can see it in the figure below.

Figure 7.1.7.1 Bug 7.

To detect the error we only need to work with the negative test cases obtained in Sect.
7.1.1, there are 222. We detect it concretely with the negative test case “on[ch1] off off”. Here

we can see part of the negative test cases previously obtained. negativeT  off off, 1 off, 2 off, 3

off, 4 off, standby off, off standby, 1 standby, 2 standby, 3 standby, 4 standby, standby
standby, on[ch1] 1, on[ch3] 1, on[ch4] 1, off 1, 1 1, 2 1, 3 1, 4 1, standby 1, on[ch2] 2, on[ch4] 2,
off 2, 1 2, 2 2, 3 2, 4 2, standby 2, on[ch1] 4, on[ch2] 4, on[ch4] 4, … , on[ch1] off off, …} To
detect it, we load on selenium the file html with the test cases and after we will check them in
the statechart that we are interested with the browser Mozilla Firefox which we have
integrated the extension selenium to run the test cases on every version of the statechart. The
appearance of running selenium test cases is so:

Figure 7.1.7.23 Detection of the error with Selenium.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

156

We can see the detection of the error in fig. 42 in the moment in which selenium try to
execute the transition “1” since the states Ch2 to Ch1. The code for this test case that has
helped us to identify the error is as follows:

Figure 7.1.7.3 Part of code with Dreamweaver.

 Test cases generation for functional tests of user interfaces.

157

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

158

Chapter 8

Conclusions

The conclusions of the study are shown in this
chapter. Are remembered proposed at the beginning
objectives of the work and checks whether there is
compliance for the different algorithms studied. We
discuss possible alternatives to the testing of
applications for those who are not yet convinced the
idea of issue this type of techniques. Finally, current
research and future work are exposed.

 Test cases generation for functional tests of user interfaces.

159

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

160

8.1 Contributions

The objectives that have been raised in this study are:

i. To perform a literature review with which to investigate current techniques, methods,
and methodologies for software testing.

ii. To analyze the behavior of existing techniques such as “W and Wp methods” [7] in our
own case study looking for limitations and improvements showing which algorithm is
more efficient.

iii. To propose and develop an algorithm based on W and Wp method developed in [7],
own ideas, and collected ideas on different ways of working with statechart transitions
covering the deficiencies in the methods discussed, and follow the latest quality
standards.

iv. To propose a solution when the analyzed statechart contains the feared loops that
make impossible the application of some testing algorithms.

v. To show real examples where a bug is identified through the test cases obtained in our
case study.

Regarding the first objective, with the starting experience, we perform a literature review
on current techniques, methods, and methodologies for software testing. We have analyzed in
chapter 4 the articles published by “Kirill Bogdanov” [4], [5] and [7] based on W & Wp
methods and other papers about other methods which do not have relationship with these
finding alternative ways for our proposed algorithm while we analyzed different testing
techniques.

With the second objective we have shown in our case study that the Wp method is more
efficient than the W and both are applicable to our statechart but not for all versions because
one of the biggest problems that we found was falling into infinite loops when we try to apply
these algorithms in our statechart (remember that in Chapter 5 were created different versions
of the original statechart because every time that the methods W & Wp discussed in this
chapter came into an infinite loop was impossible to calculate the number of test cases
categorizing them as unsupported methods). With this we have shown some of the
deficiencies of these methods. So this second point has been necessary to identify the
advantages and disadvantages of each method according to the user needs and to discover
existing gaps to address research efforts when developing a new algorithm, which was our
next target. Simultaneously this analysis of existing methods was crucial to verify if the
proposed algorithm is efficient and overcomes existing methods as discussed in the following
paragraph.

About the third and fourth objectives our goal was to develop an algorithm that reduces
significantly the length of the test sequences required for conformance testing while
maintaining the same fault detection capability. We has shown that the algorithm we have
created U-Mehtod supports the original statechart avoiding problems with loops, so this is the
only algorithm that can analyze our case study without modification. But when compared with
the customization of statechart with which we have obtained the best results for Wp method
this latter is somewhat more efficient as we saw in Chapter 6. So finally we have chosen U-
Method as the most efficient algorithm as it works for all versions of statechart and obtain
good results in the models created specifically for other algorithms. Some of the improvement
is that the method works incrementally to reduce the length of generated test sequence so our
new method (U-Method) always starts from the same starting state of the given FSM. This
overcomes the problem that an extra leading sequenced may have to be added in the case
that the test sequence generated started from a state different from the starting state of the
given FSM. As we have commented in the previous paragraph one of the biggest problems that

 Test cases generation for functional tests of user interfaces.

161

we found was falling into infinite loops when we apply our formula by the appearance of them
in our statechart, which we have solved by adding a finite number of iterations to the
algorithm so that it does not end in an infinite loop.

As additional input about problems with infinite loops in section 8.3 of this final chapter
we propose a new solution to the problem posing it as future work opening up the possibility
of applying the “W and Wp Methods” developed in [7] when appear this type of problems that
becomes unsupported methods considering the idea of divide the original statechart in two
parts.

Finally with the final objective about bugs, we have altered the original statechart creating
7 different types of errors. With the test cases of chapter 5 obtained for the W Method we
identified which one found the error verifying their usefulness.

8.2 Alternatives to testing

Software testing is an art. Most of the testing methods and practices are not very
different from 20 years ago. It is nowhere near maturity, although there are many tools and
techniques available to use. Good testing also requires a tester's creativity, experience and
intuition, together with proper techniques. Testing is more than just debugging. Testing is not
only used to locate defects and correct them. It is also used in validation, verification process,
and reliability measurement.

In recent years enterprises worldwide have focused their efforts on providing software
products with high quality according to standards and thus satisfy the end user, which
ultimately is the most wins, of course, aside the money factor and the location of the
developer in the competitive market. Testing is expensive. Automation is a good way to cut
down cost and time. Complete testing is infeasible. Complexity is the root of the problem. At
some point, software testing has to be stopped and product has to be shipped. The stopping
time can be decided by the trade-off of time and budget. Or if the reliability estimate of the
software product meets requirement.

Testing may not be the most effective method to improve software quality. Alternative
methods, such as inspection, and clean-room engineering, may be even better.

Software testing is more and more considered a problematic method toward better
quality. Using testing to locate and correct software defects can be an endless process. Bugs
cannot be completely ruled out. Just as the complexity barrier indicates: chances are testing
and fixing problems may not necessarily improve the quality and reliability of the software. In
a narrower view, many testing techniques may have flaws. As early as in the publication [8] of
“Myers and Glenford J.”, the so-called "human testing" including inspections, walkthroughs,
reviews are suggested as possible alternatives to traditional testing methods. “Dick Hamlet” in
[9] advocates inspection as a cost-effect alternative to unit testing. The experimental results in
[10] “Victor R. Basili” suggests that code reading by stepwise abstraction is at least as effective
as on-line functional and structural testing in terms of number and cost of faults observed.

8.3 Conclusions and future work

Software testing is an integrated part in software development. It is directly related to
software quality. It has many subtle relations to the topics that software, software quality,
software reliability and system reliability are involved. Software testing as part of plans for
quality assurance, development companies offers the ability to detect and remove defects that
arise during product development. Standards bodies offer different ways to implement testing
processes, all based on maturity cycles that allow the measurement and optimization of them.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

162

One of the biggest problems that we found with some statecharts is that we have
problems to apply a testing technique to assure coverage when a loop appear in their
specification. When we do testing in an application, we should put a probe on each link of the
same specification. At a simplest, a probe consists of a counter which is incremented every
time it is passed. With the part of the statechart without loops we haven´t any problem to
apply the probes, but if we apply it to the loops, we obtain an infinite number of probes and
the testing algorithm would never end. There are some rules that can be applied to the loops;
put a counter just after the loop-determining decision and put a counter just before the loop-
back point.

At this point we have considered the idea of divide the statechart in two parts, on the one
hand the part of the specification in which we can apply some of the automated existing
testing technique witch which we have worked in this thesis that would result in the statechart
we can see in the left part of fig. 8.3.1 and in the other hand we can consider the part that
contain some loops and find a different technique to calculate the number of test cases that
can contain the loops, resulting in a statechart as we see in the right part of fig. 8.3.1.

For example in the TV1 statechart of the fig. 5.3.1 we can divide it in these two parts as
we defined in the previous paragraph. For the below figure we can compute x iterations to
calculate the number of test cases, but for the other figure that corresponds to the part of the
loop, the idea is that we can only execute a finite number of iterations to prevent the loop.

Figure 8.3.1. Divide the statechart in two parts to solve the problems with loops

After calculating the number of test cases for both models, we just have to make the
union of both and get the number of final tests cases. This is just one possible way we could
follow when analyzing loops.

 Test cases generation for functional tests of user interfaces.

163

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

164

 Test cases generation for functional tests of user interfaces.

165

Bibliography

[1] D. Harel, H. Lachover, A. Nammad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring,
andM. Trakhtenbrot. STATEMATE: A working environment for the development of
complex reactive systems. IEEE Transactions on Software Engineering, 16(4):403–414,
April 1990.

[2] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM Transactions
on Software Engineering and Methodology, 5(4):293–333, 1996.

[3] K. Bogdanov. Automated testing of Harel’s statecharts. PhD thesis, The University of
Sheffield, January 2000.

[4] K. Bogdanov and M. Holcombe. Statechart testing method for aircraft control systems.
Software testing, verification and reliability, 11:39–54, 2001.

[5] K. Bogdanov, M. Holcombe, and H. Singh. Automated test set generation for
statecharts. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Applied
Formal Methods - FM-Trends 98, volume 1641 of Lecture Notes in Computer Science,
pages 107–121. Springer Verlag, 1999.

[6] T. Chow. Testing software design modeled by finite-state machines. IEEE Transactions
on Software Engineering, SE-4(3):178–187, 1978.

[7] K.Bogdanov and M.Holcombe. Testing from statecharts using the Wp method,
Department of Computer Science, The University of Sheffield Regent Court, 211
Portobello St., Sheffield S1 4DP, UK, 2002.

[8] Myers, Glenford J., The art of software testing, Publication info: New York : Wiley,
c1979. ISBN: 0471043281 Physical description: xi, 177 p. : ill. ; 24 cm.

[9] Dick Hamlet; Foundations of software testing: dependability theory; Proceedings of
the second ACM SIGSOFT symposium on Foundations of software engineering , 1994.

[10] Victor R. Basili, Richard W. Selby, Jr. "Comparing the Effectiveness of Software Testing
Strategies".

[11] IEEE Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-1990),
IEEE Computer Soc., Dec. 10, 1990.

[12] Clever Algorithms: Nature-Inspired Programming Recipes By Jason Brownlee PhD. First
Edition, Lulu Enterprises, January 2011. ISBN: 978-1-4467-8506-5.

[13] OMG, “Mda guide version 1.0.1,” Object Management Group, Tech. Rep.,2003.
[14] Performance Testing Guidance for Web Applications Microsoft patterns &

practices -- by: J.D. Meier, Scott Barber, Carlos Farre, Prashant Bansode, and
Dennis Rea

[15] B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: PrenticeHall,
Inc., 1981.

[16] J. Xiao, C. P. Lam, H. Li, and J. Wang, “Reformulation of the Generation of
Conformance Testing Sequences to the Asymmetric Travelling Salesman Problem”,
Proceedings of International Genetic and Evolutionary Computation Conference 2006,
Seattle, Washington, USA, July 8-12, 2006, ACM Press, pp.1933-1940.

[17] W. H. Chen, “An Optimization Technique for Protocol Conformance Testing Based on
the Wp Method”, International Journal of Applied Science and Engineering, 1(1): 2003,
pp. 45-54.

[18] B. Korel, "Automated software test data generation" Software Engineering, IEEE
Transactions on, vol. 16, pp. 870-879, 1990.

[19] C. Michael, G. McGraw, and M. A. Schatz, "Generating software test data by
evolution" Software Engineering, IEEE Transactions on, vol. 27, pp. 1085-1110, 2001.

[20] R. S. Pressman, Software Engineering : a practitioner's approach: McGraw-Hill, Inc.,
2000.

[21] Boris Beizer: Software Testing Techniques, Van Nostrand Reinhold, 1990.
[22] Boris Beizer: Black Box Testing, Wiley, 1995.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

166

[23] Andreas F. Borchert: A Perl Crash Course, Script at the University of Ulm, 1996.
[24] Marcel Alper: Professionelle Softwaretests (Professional Softwaretests), Vieweg, 1994.
[25] Borland: dBASE 5.0 für DOS Handbuch (dBASE 5.0 for DOS Manual), Borland

International, 1994.
[26] Columbia University: The Concise Columbia Encyclopedia, Columbia University Press,

1995.
[27] Ian Molyneaux. The Art of Application Performance Testing: Help for Programmers

and Quality Assurance, 2009.
[28] M. Grabert: DPV -- Ein Informationssystem zur Unterstützung von

Qualitätsmonitoring, prospektiver Dokumentation und Routinearbeit bei der
Behandlung von Typ 1 Diabetikern (A Diabetes Information System to support Quality
Monitoring, Prospective Documentation, and Routine Work during the Medication of
Type 1 Diabetics), University of Ulm, 1995.

[29] Klaus Grimm: Systematisches Testen von Software -- Eine neue Methode und eine
effektive Teststrategie (Systematic Testing of Software -- A new Method and an
Effective Testing Strategy), Oldenbourg Verlag, 1995.

[30] R. W. Holl: Benutzeranleitung Diabetessoftware zur Prospektiven
Verlaufsdokumentation -- Version 3.0 DOS (Manual -- Diabetes Information System for
a Prospective Documentation -- Version 3.0 DOS), University of Ulm, 1996.

[31] Peter Hürter: Diabetes bei Kindern und Jugendlichen (Children and Juveniles having
Diabetes), Springer Verlag, 1985.

[32] Siamak Haschemi, Humboldt Universität zu Berlin, Berlin, Germany. “Model
transformations to satisfy all-configurations-transitions on statecharts”. MoDeVVa '09
Proceedings of the 6th International Workshop on Model-Driven Engineering,
Verification and Validation.

[33] Jun Wang, Edith Cowan University. Jitian Xiao, Edith Cowan University. Chiou Peng
Lam, Edith Cowan University. Huaizhong Li, Edith Cowan University. “A Bipartite Graph
Approach to Generate Optimal Test Sequences for Protocol Conformance Testing using
the Wp-method”. Cowan University, 2005.

[34] “A Match-based Approach to Optimize Conformance Test Sequence Generation using
Mp-method”, 2009.

[35] “Covering Transitions of Concurrent Systems through Queues”, 2005.
[36] “Test Data Generation from UML State Machine Diagrams using Gas”, 2007.
[37] BCS Oxfordshire. Workshop of State transition testing presented by: Peter Quentin.
[38] Test planning “http://www.cs.st-andrews.ac.uk/~ifs/Books/SE9/Web/Testing/

Planning.html”.
[39] Software Testing Life Cycle (STLC) “http://www.guru99.com/software-testing-life-

cycle.html”
[40] Automated Test Concepts “http://www.lw-tech.com/q1/ug_concepts.htm”
[41] Official page of WAPT “http://www.loadtestingtool.com/”
[42] Statechart diagram “http://en.wikipedia.org/wiki/State_diagram”
[43] UML Statechart “http://www.tutorialspoint.com/uml/uml_statechart_diagram.htm”
[44] Finite-state machine “http://www.objectmentor.com/resources/articles/umlfsm.pdf”
[45] “UML Tutorial: Finite State Machines.” Robert C. Martin. Engineering Notebook

Column. June 98.
[46] “ESTADO DEL ARTE DE MÉTODOS, TIPOS DE TESTING Y HERRAMIENTAS PARA APLICAR

PRUEBAS DERENDIMIENTO.” Juan Oliver Navarro. FUNDACIÓN UNIVERSITARIA
TECNOLÓGICO. 2010

[47] Scott W. Ambler. The Full Life Cycle Object-Oriented Testing (FLOOT) Method. 2004-
2010.

[48] Free Tool JMeter “http://jmeter.apache.org/”.
[49] Free Tool JCrawler “http://jcrawler.sourceforge.net/”.

 Test cases generation for functional tests of user interfaces.

167

[50] Free Tool Netsparker “http://www.mavitunasecurity.com/netsparker/”
[51] Free Tool OpenSTA “http://opensta.org/”.
[52] Free Tool TestMaker “http://www.easytestmaker.com/default.aspx”.
[53] CAST “http://www.elen.ktu.lt/~rsei/PT/Computer-Aided%20Software%20Test%

20Tools%20for%20Unit%20Level%20Test%20-%20December%201994.htm”

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

168

Annex

 Test cases generation for functional tests of user interfaces.

169

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

170

A. Emails with Kirill Bogdanov

i. Day 22-11-2011

“Hello K.Bogdanov,

I´m a Spanish student in Italy, and I'm doing a master of computer science in software
engineering. I´m reiding your paper "Testing from statecharts using the Wp method" and
would greatly appreciate you give me more information about the two formulas of the Wp
method (the phase one and phase two). I have particular problems to solve the equation of
the second phase.

Thank you very much.
Francisco Gramuntell Desco. Technical Engineer in Computer Science.”

ii. Day 23-11-2011

“Francisco,

Are you familiar with Wp method for FSM?

The paper you refer to describes how to incrementally build components from which Wp test
set is subsequently constructed. Section 3 shows how to test statecharts using the full W
method. Section 4 says that it is possible to adapt Wp method for testing statecharts in a
similar way.

The elements that are different between the two methods are (1) merging rules for w sets and
(2) the use of CE notation. Construction of elements of w sets is similar to that for the full W
method (recursively bottom-up). CE is a function which computes a configuration entered by a
statechart when a sequence of operations is attempted. Can you tell me please which of these
is unclear? Do you understand what is happening in section 3? (you need to understand how
the W method is adapted for statecharts before understanding how it works for the Wp one).

Dr. Kirill Bogdanov : K.Bogdanov@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/~kirill”

iii. Day 25-11-2011

“Thanks for answering Mr.Bogdanov

Yes, I´m very interested in W method for FSM. I understand very well the W method and all
the section 3. I have problems in section 4, I understand the formula of the first phase of Wp
but I but I don’t know what are the transitions that remain out in the first phase and after are
tested in the second phase using small sets.

The other problem is with the use of CE notation because in the second phase of Wp in the
formula T (sub two) I understand how to calculate TS but I don’t understand CE; you say that
”CE is the configuration entered after taking a path path from a configuration conf” and you
give an example with “conf (sub init)={STOP, IDLE}” but I don’t understand it.

Thank you very much.
Francisco Gramuntell Desco. Technical Engineer in Computer Science.”

https://wm.upv.es/dimp/
http://www.dcs.shef.ac.uk/~kirill

 Test cases generation for functional tests of user interfaces.

171

iv. Day 26-11-11

“I understand the formula of the first phase of Wp but I but I don?t know what are the
transitions that remain out in the first phase and after are tested in the second phase using
small sets.

I describe this below, as a part of my explanation of the Wp method. For FSM: The purpose of
the first phase is to ensure that small w sets are capable of identifying states in an
implementation. For this purpose, every state of an implementation is visited and W set is
applied in that state. Here is why this phase is needed: Imagine two states in a specification, A
with only the transition "a" and B with only "b". Small sets for these states could be w_A={a}
and w_B={b}. If an implementation has an erroneous transition "b" from A, this state look as
both A and B in this implementation. Hence if there is an erroneous transition leading to state
A rather than state B somewhere in this implementation, the defect will not be found if only
small sets are used, because we'll check the target state with w_B and the erroneous transition
"b" from the A state will make us think that this is B rather than A.

This example shows two things,

1. If I attempt all small sets from every state in an implementation (the first phase of the
Wp method), this will verify if any pair of states may be confused. It will also test all transitions
used to traverse an automaton when doing this "check for confusion", Texplored = C*(1 U \Phi
U ... U \Phi^{m-n}). Transitions from the rest of the full W set, namely anything in
C*(1 U \Phi U ... U \Phi^{m-n+1}) – Texplored will not be tested by the first phase (note that +1
in the above set). These transitions are tested using the small sets in the second phase. For
statecharts, \Phi is a set of possible steps of a statechart. This includes all possible concurrent
transitions and is the same one as described in section 3 of the paper.

2. The problem can be avoided if small sets are selected such that where I use path "b" to
distinguish B from A, I should use the same path to distinguish A from B. In the above example,
"b" is used to distinguish B from all other states, including A and thus should be used in a small
set w for state A, making w_A={a,b}. Such an arrangement makes it impossible to confuse
states and thus it is not necessary to use the first phase of the Wp set. The testing method
using this idea is called HSI or HIS and I think it can be adapted for statecharts in a similar way
to the way the Wp method was adapted.
The other problem is with the use of CE notation because in the second phase of Wp in the
formula T (sub two) I understand how to calculate TS but I don?t understand CE; you say that
?CE is the configuration entered after taking a path path from a configuration conf .? And you
give an example with ?conf (sub init)={STOP, IDLE}? but I don?t understand it. For FSM, one
can talk of a transition function which given a state and an input returns a target state. In a
similar way for a statechart, there is a configuration and a set of transitions (step), leading to a
target configuration. Given a series of inputs for FSM, one may determine a target state by
applying the transition function a few times. For a statechart, the same applies where one
chooses a series of steps and a starting configuration, the outcome is a final configuration. CE
is a function computing this.
conf (sub init) is the initial configuration, that is {STOP, IDLE} (and in reality all parent states of
these two for a full configuration, but a set of basic states can be used to uniquely identify a
configuration).

Where I choose a step containing a single "play" transition, the next configuration is {PLAY,
IDLE}, hence this will be the outcome returned by CE(play,{STOP, IDLE})={PLAY, IDLE}. If I take
another valid step, rew_or_ff, then CE(rew_or_ff,{PLAY, IDLE})={PLAY,REW_FF}. It is also true

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

172

that CE(play rew_or_ff,{STOP, IDLE})={PLAY,REW_FF} (the two steps taken consecutively from
the initial configuration) and CE({play,rew_or_ff},{STOP, IDLE})={PLAY,REW_FF} (here the two
transitions are taken concurrently in the same step).

Let me know if this clarifies it.

Dr. Kirill Bogdanov : K.Bogdanov@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/~kirill”

v. Day 29-11-2011

“Francisco,

Only one final doubt, this formula that you have written in your response it´s good? C*(1 U \Phi
U ... U \Phi^{m-n+1}) – Texplored or you need to add (* W) in the first part ? C*(1 U \Phi U ... U
\Phi^{m-n+1}) * W – Texplored

No, because I'm talking of transitions which are tested in the second part. W is a part of a test
set, see below. Texplored is the set of _transitions_ which happen to be visited and tested in
the first phase of the Wp method. The test set for the first phase will certainly include W at the
end to verify target states of those transitions. In a similar way, C*(1 U \Phi U ... U \Phi^{m-
n+1}) – Texplored refers to _transitions_ which are considered in the second part of the W
method. Target states entered by these transitions are verified using small w sets rather than
the full W set.

I have been a great help. If you are interested I could send the summary I'm doing about your
article.
Yes, I'm interested.

Dr. Kirill Bogdanov : K.Bogdanov@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/~kirill”

vi. Day 28-01-12

“Hello K. Bogdanov,

I'm still working on my thesis about research on testing methods. Your articles on W and Wp
method are very important to my research, in addition to integrate transition coverage and
other features in them trying to find new solutions. As I said a few months ago, I attach in this
mail a small part of my work. I applied on the statechart that we are working the W method to
calculate the test cases. I´m currently working to implement the Wp method to it. I would like
to ask you about the testing tools that you used to apply the W method and / or Wp method.
If you can give me their names or some information about the tools that would help me.

Thank you very much. Regards.
Francisco Gramuntell Desco. Technical Engineer in Computer Science.”

https://wm.upv.es/dimp/
http://www.dcs.shef.ac.uk/~kirill
https://wm.upv.es/dimp/
http://www.dcs.shef.ac.uk/~kirill

 Test cases generation for functional tests of user interfaces.

173

 Email content, without applying the changes comented by Bogdanov

Apply W-method to TV without concurrent region (without volume)

Figure Annexe.1. Original statechart without concurrency

TV1 (test case generation for states without hierarchy)

Op. A

Op. B (WRONG)

Op. C (WRONG)

TCB for TV1

Phi = {on, off }

C  {1, on}
W = {on, off}

 Phi = {off }
C  {1}
W = {off}

Phi = {on, off }
C  {1, on}
W = {on, off}

T = {1, on} * {on, off } * {on, off} = 8 test cases

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

174

11!
TV

M

TVC C

On (test case generation for states without hierarchy)

TCB for On

Phi = {standby, on }

C  {1, standby}
W = {on}

T = {1, standby} * {standby, on } * {on} = 4

! M

On OnC C

Working (test case generation for state hierarchy)

TCB for Working

Phi = {+, -}

C  {1, standby}
W = {on}

T = {1, standby} * {+, -} * {on} = 4

M

Working WorkingC C

Step 1

With the value of
M

WorkingC we can start to develop the formulas for all the statechart.

First we are going to obtain (, ,)M

OnC W

 _ _ _ _ _ *M M

On On On WorkingC C path in C to enter Working C

M M

On On WorkingW W W

M M

On On Working  

M

OnC  {1, standby} U {1}*{1, standby} = {1, standby, standby, standby standby}
M

OnW  {on} U {on} = {on}
M

On  {standby, on } U {+, -} = {standby, on, +, -}

 Test cases generation for functional tests of user interfaces.

175

Step 2

Now we can calculate
1(, ,)M

TVC W

Opc. A

 1 1 1_ _ _ _ _ *M M

TV TV TV OnC C path in C to enter On C

1 1

M M

TV TV OnW W W

1 1

M M

TV TV On  

1

M

TVC  {1, on} U {on} * {1, standby, standby, standby standby} = {1, standby, standby, standby

standby, on, on standby, on standby, on standby standby}

1

M

TVW  {on, off} U {on} = {on, off}

1

M

TV  {on, off } U {standby, on, +, -} = {standby, on, off, +, -}

Opc.B (WRONG)

   1 1 1 1_ _ _ _ _ * _ _ _ _ _ *M M M

TV TV TV On TV WorkingC C path in C to enter On C path in C to enter Working C

1 1

M M M

TV TV On WorkingW W W W

1 1

M M M

TV TV On Working   

Step 3
And finally we can apply the formula to calculate the test cases of ALL the statechart

1 1 1* *M M M

TV TV TVT C W 

T = {1, standby, standby, standby standby, on, on standby, on standby, on standby standby} *
{standby, on, off, +, -} * {on, off}

T = 8 * 5 * 2 = 80 test cases.

vii. Day 2-02-2012

“Francisco,

Apologies for the delay, I start teaching next week and there is a lot of preparation what had to
be done during January.

You used W={on,off} in the TCB for the TV1 part, you only need one of those, because absence
of a transition is enough to distinguish On from Off. There is also a problem with the history
connector, because you do not know in advance which state will be entered. If you can assume
that (1) you will always enter Ch1 during testing of the TV, and (2) you follow this by a separate
testing of the history connector, this will work. Without this assumption, you need to
somehow ensure predictable behaviour of the history connector during testing. This will be the
assumption which will influence test generation. I'm not sure I understand why you define W
for an erroneous operation Op C, W is defined based on a correct model and is used to
generate tests to identify all faulty implementations among a given class of faults.

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

176

Computation of a set of test cases is T=C*W U C*Phi*W, you may be missing the first part. In
order to obtain a set set, you need to follow all sequences you obtained in T, in your model up
to and including the first element which is supposed to be missing in a correct implementation.
In the process of following those sequences, you need to identify test input and corresponding
test outputs.

For Working, standby should not be a part of the state cover, but sequences of '+' and '-' to
enter all states should be. This is assuming that history connector is switched off.
Hence you could use C={1,+,+ +,+ + +}. The way you combine sets seems wrong,
In order to obtain a combined state cover for On, C={1, standby} U {1}*{1,+,+ +,+ + +} = {1, +,+
+,+ + +,standby} Step 2 uses C={1, on} U {on} * {1, +,+ +,+ + +,standby} = {1, on, on +,on + +,on +
+ +,on standby}.

About Tools: The implementation of the test method for statecharts that I developed many
years ago was proprietary and I was told by DaimlerChrysler not to distribute it. I might be able
to negotiate with them, but I think merging rules are sufficiently simple that you'll find it easy
to implement. The current tool (Statechum) has implementation of TCB generation for FSM as
well as test set generation, but there is no provision for hierarchy or concurrency in it. I think
you will be able to use it for W set generation, but it is not clear how to integrate your work
into it.

 Content of the mail with the modifications proposed by Bogdanov

Apply W-method to TV without concurrent region (without volume) original statechart

Figure Annexe.2. TV1 (test case generation for states without hierarchy)

I have worked with the option A but it may not be adequate and may be the B or C.

Op. A

TCB for TV1

Phi = {on, off }
C  {1, on}
W = {on}

 Test cases generation for functional tests of user interfaces.

177

Op. B ????

Op. C ????

 Phi = {off}
C  {1}
W = {off}

Phi = {on, off }

C  {1, on}
W = {on, off}

11!
TV

M

TVC C
 therefore we continue decomposing the statechart

On (test case generation for states without hierarchy)

TCB for On

Phi = {standby, on }

C  {1, standby}
W = {on}

! M

On OnC C
 therefore we continue decomposing the statechart

Working (test case generation for state hierarchy)

TCB for Working

Phi = {+, -}
C={1,+,+ +,+ + +}
W = {on}

T = {1,+,+ +,+ + +} * {+, -} * {on} = 8 test cases

Tesina de Máster en Ingeniería del Software, Métodos Formales y Sistemas de Información (ISMFSI)

178

M

Working WorkingC C
 so we can start calculating the number of test cases

Step 1

With the value of
M

WorkingC we can start to develop the formulas for all the statechart.

First we are going to obtain (, ,)M

OnC W

 _ _ _ _ _ *M M

On On On WorkingC C path in C to enter Working C

M M

On On WorkingW W W

M M

On On Working  

M

OnC  {1, standby} U {1}*{1,+,+ +,+ + +} = {1, +,+ +,+ + +,standby}
M

OnW  {on} U {on} = {on}
M

On  {standby, on } U {+, -} = {standby, on, +, -}

Step 2

Now we can calculate 1(, ,)M

TVC W

 1 1 1_ _ _ _ _ *M M

TV TV TV OnC C path in C to enter On C

1 1

M M

TV TV OnW W W

1 1

M M

TV TV On  

1

M

TVC  {1, on} U {on} * {1, +,+ +,+ + +,standby} = {1, on, on +,on + +,on + + +,on standby}

1

M

TVW 
{on} U {on} = {on}

1

M

TV  {on, off } U {standby, on, +, -} = {standby, on, off, +, -}

Step 3
A)
And finally we can apply the formula to calculate the test cases of ALL the statechart

1 1 1* *M M M

TV TV TVT C W 

T = {1, on, on +,on + +,on + + +,on standby} * {standby, on, off, +, -} * {on}

T = 6 * 5 * 1 = 30 test cases.

B) Now we are going to calculate it, doing the computation, but the result it’s the same.
Computation of a set of test cases is T=C*W U C*Phi*W

T = {1, on, on +,on + +,on + + +,on standby} * {on} U {1, on, on +,on + +,on + + +,on standby} *
{standby, on, off, +, -} * {on}=

{on, on on, on + on,on + + on,on + + + on,on standby on } U

 Test cases generation for functional tests of user interfaces.

179

{1, on, on +,on + +,on + + +,on standby} * {standby, on, off, +, -} * {on}=

{on, on on, on + on,on + + on,on + + + on,on standby on } U
{on, on on, on + on,on + + on,on + + + on,on standby on} * {standby, on, off, +, -}

T = 6 * 5 * 1 = 30 test cases.

viii. Day 4-02-2012

“Hi K. Bogdanov,

I wish you luck in the preparation and teaching in your classes :). Don't worry about answering
our emails,there is no need to hurry up. I added in the first step of TV1, the op.B and op.C as
erroneous because I don´t know how to do the hierarchical decomposition. I believe that the
op.A is good but it seems appropriate op.C. By the moment I have worked with the opc.A but it
may not be adequate and may be the B or C.

On the other hand I again calculated the number of test cases by solving the mistakes that you
told me. I have obtained a total of 30 test cases for this statechart using both the formula: T =
(C * W) U (C * Phi * W) as well as: T = C * Phi * W, since the result is the same.

Although I don´t understand very well the difference between T = (C * W) U (C * Phi * W) and T
= C * Phi * W , because I thought that we only applied the second part of this (T = C * Phi * W)
once decomposed hierarchical states of the initial statechart. Enclosed in this mailing formulas
applied to see what you think.

Thanks
Francisco Gramuntell Desco. Technical Engineer in Computer Science.”

