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0.0 Abstract  

 
Software Industry is in constant change. Since the early 1960’s when the software industry 
expanded and computers were mass-produced the cost and availability of computers 
began to increase. Before this period, not everyone had an opportunity to own a personal 
computer due to cost and availability. However, as mass production has seen a revamp of 
the way we manufacture and distribute our computers, a larger proportion of the 
population has access to a computer which has had a knock on effect on the way in which 
software has been produced and developed and has contributed to  continual change in 
the industry. (Kubie, 1994) 
 
As we enter a new era there is a need for new software innovations and as time passes 
the quality of that software should be improved as our understanding expands. Customers 
are continually creating demand for improved and more sophisticated software to be 
developed which is functional and practical to professional and personal lifestyles. 
 
To cater to the requirements of the customer, software developers are becoming 
sophisticated in their approach in developing more improved and technical software. New 
techniques are being created to improve the quality of the product and develop advanced 
software which will be applied to new practises and application tools. 
 
In this research the system of Continuous Integration will be studied to investigate how 
the production of software by companies can be improved after following a set of 
practices and tools. However, to meet the requirements of companies which handle 
multiplatform projects the use of updated technologies, such as Cloud computing 
technology is necessary. 
 
In conclusion, this research we will try to compile good practices, tools of continuous 
integration and list the advantages of cloud computing to deal with the very specific 
requirements of companies. A case will be made to prove that Cloud computing combined 
with continuous integrations improves the performance of a system by improving the 
resources management of the system itself. 
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1.0 Introduction  

The technology industry in Ireland has become one of the major international businesses 
around the world over the last 3 years. The growth in the Information, Communication 
and Technology sector (ICT) has led to it becoming a key sector in the economy by 
exporting the third part of the total goods in Ireland, the software industry has helped to 
raise this though. (Brien, 2010) 

Software industry represented the 6% of the total export in the country in 2009. Since 
then Irish businesses are targeting application development as one of the main sources of 
providing finical gain over the next few years. That makes application development one of 
the most important sectors for the development of the economy. 

However, even though application development is gaining popularity at the moment 
strategies need to be developed to ensure that the product is well produced. Project 
management or simply projects are the upper layer on charge of managing the 
development of an application. A project defines the purpose and the risk that 
applications will have and is in this context why reliability and maintainability are hugely 
important.  

It is vital in every software project that the use of common practises to develop good 
quality code is the first thing to take into account when talking about maintainability and 
reliability in a software project. When using good practises in the code the “health” of the 
project increases as it makes it more maintainable as bugs are identified easier and can be 
fixed instantly, ensuring that the project is always in a state of being “healthy”. 
Furthermore, the better the quality of the code will allow the programmer to work more 
confidently on it. This is because the programmer can trust the version of the software 
they are working on and will not need to worry that another programmer will add 
additional feature to the application, they can just keep on developing new features on 
the top of a working version of the application. 

Good software practises come from experienced programmers. When developing in a 
team environment many members of the same team may have access to the same 
features and by necessity may need to modify the same files. In this situation, when 
advice is sought team members can look upon good software practises from experienced 
experts in the field. In our case the expert from whom we will take advice from will be 
Martin Fowler. 

Martin Fowler is a well-known designer of enterprise applications and he is an expert in 
object-oriented systems and design patterns. His article about integrate systems and how 
to get benefit of continuous integration for enterprises is the bases of a lot of the content 
that is used in related to continuous integration, as well as other articles and books by the 
same author. 

“Integration is a long and unpredictable process” (Fowler, 2006) 
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In software development the reliability of the source code is top priority for every 
development team in a company. Typically, the larger the project the more people 
employed to work on it, resulting in a more reliable version of the software that 
developers can trust when developing new features. This is when the process of the 
integration becomes necessary. 
 
For the past few years the process of integrating the software was delayed to the last 
stage of the software development process. In long term projects with long stages of 
development the process of integrating all the code could take several months or even a 
year which can lead to the bigger problem of lack of prediction.  
 
During the integration process all the parts of the application need to come together to 
investigate their compatibility with each other. As the difference in behaviour of the final 
application can change, in many different ways that is not obvious to expect. Furthermore, 
the second thing to do after the problem is identified is to find the cause in the code that 
provoked the problem and fix it. This could take a long time since there may not be any 
feedback from that part of the code that caused the issue in the first place, or if it’s an 
error in the code or even an error in the design.  
 
In order to make the integration stage of the software project reliable and predictable the 
use of continuous integration practises is becoming necessary. With the use of continuous 
integration practises one more guarantee is added to the project to make sure that the 
deadlines will be accomplish because you have a "continual" feedback of the status of the 
project.  
 
Feedback of the status of the project is valuable for the management of the project 
because from feedback managers we can identify how far or how close the project is to 
completion of the objectives that were set out at the beginning of the project while also 
providing predicted timelines for the customer to ensure that product will be produced on 
time.  
 
By applying continuous integration practises a reliable version of the software is available 
when required by the customer. The customer can literally “see” how the project is going 
and if any requirements or changes are needed they can be made. In this way, there is no 
need to wait until the end of the long project, for example one year, to check if the 
software that has been developed to meet the requirements of the customer. During the 
development process the requirements of the customers may change due to different 
reasons, this can be an issue if not dealt with as changes occur. 
 
In-short to improve the management of the project and the quality of the application as 
well as increasing the confidence of the members of the project, the use of continuous 
integration practises and tools is the best solution. However, the task of carrying out the 
process of continuous integration might be done fast and easy for small projects where 
there is no need to use a lot of “resources” because the number of branches or the 
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number of tests to perform is not high. This means that it can be done in a single machine 
without the need of using several machines, but this is not always the case. 
 
In some scenarios a company can hold many projects at any one given time and for each 
project there might be a number of products to work on at the same time. Since the 
number of projects and products may be large, the number of people working on them 
needs to match the number of features and patches that are being developed and added 
daily could potential be huge. Furthermore, because of the number of different 
combinations that need to be performed, the different types of integration depending on 
what features are desired to add to the product or what releases is wanted to test with 
what features. In fact, when working with products and features there may be a need to 
test the same feature in two different products and for that different integration is 
needed. 
 
Having a single machine which carries out every single integration for every different 
product combination is not enough because there might be many of them running at the 
same time and there is a possibility that this would slow down the process. Another issue 
with having a single server carrying out this task is disaster recovery. As stated earlier, the 
reliability of the code is an invaluable characteristic but when speaking about hardware 
there needs to be a characteristic as well in our hardware system. Even if there is an 
integration process done and ready to work, if a sudden disaster were to happen it would 
stop all the process of integration and the consequences of that might set back the whole 
project. 
 
The ideal situation would include having a code that is reliable and that the resources or 
“hardware” where you are deploying your process are reliable as well. Furthermore, the 
hardware that is going to be used needs to be flexible at the beginning of deployment 
process as the needs of the process may be small but as soon as the use of continuous 
integration becomes widely used and the frequency for each new integration there will be 
a need to configure the hardware resources to carry out it. This will result in a scenario 
where the resources or “hardware” that will be needed to use need to be flexible and 
scalable so there can is opportunities for the use of more or less resources depending on 
the numbers integrations that have to be done at a time. 
 
The best technology that currently provides us the appropriate amount of resources that 
we need at a time is “Cloud Computing”. Cloud computing is a new approach to how to 
configure resources to be able to share in a way that it can be provided on demand 
through a network and with a minimal effort management. (Techonology, 2011)  
 
With this new approach of shared resources what we want to get is the ability for a given 
integration configuration, from now this will be referred to as “build”, to get enough 
resources from the cloud to run that build to check that the final application is still 
working and to get the feedback for the status of the application. 
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As the number of builds grows we will need to run them simultaneously and 
independently. As each build will be different from each other, there is a need to have a 
certain amount of resources associated with that build depending on the needs of each 
one and those resources may be different from the ones that will be assigned to another 
builds.  
 
At the end there will be approximately 40 to 50 different builds running, in different 
environments totally independent from each other. This is when one of the main features 
of cloud computing plays a key role, “virtualisation” 
 
By using virtualisation in cloud computing we can set up many different environments that 
meet the requirements of each different build and associate them with the required 
resources to those environments to run the configurations. There are some drawbacks 
that may be found when using cloud computing but probably the most obvious and 
important one is “Security and Privacy”. Since cloud computing is a public service that is 
hosted somewhere it is possible to find many issues when dealing with customer data 
protection and privacy of information, such as; personal information of the company, of 
the products, personal information about clients. However, many of these issues can be 
fixed by creating a private cloud.  
 
In conclusion, this research will be focused on two main branches, the first one will be on 
continuous integration about how it is possible to follow good practises to deploy good 
quality software by automatizing the process itself and the second branch will be about 
cloud computing and what benefits can be taken from cloud computing to get the 
integration done and what drawbacks will have to be addressed when working with cloud 
computing. 
 
The main purpose of this research is to shed light on how cloud computing can be used to 
improve the quality of the final product in a company trying to automatize some of the 
steps that are critical for the final release of an application which in this case is the 
integration step. 
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2.0 Literature Review 

2.1 Fundamental practises on continuous integration.  

The founder of www.javaranch.com, Kathy Sierra, said in her blog, “There’s a big 
difference between saying, ‘Eat an apple a day’ and actually eating the apple. The same 
thing applies when talking about continuous integration practises and almost all the 
fundamental practises that are used in projects that have to be used as much as possible 
to guarantee reliability and stability. To get all the benefits of continuous integration there 
are a number of fundamental practises that have to be followed to get all the common 
features available in continuous integration systems. 
 

2.1.1 Introduction 

To explain all the benefits that are possible to get from continuous integration we will 
start with the definition of what it’s a build and provide an example to describe a 
continuous integration scenario based on a typical implementation. 
 

What is a build? 
“A build is much more than a compile (or its dynamic language variations). A build may 
consist of the compilation, testing, inspection, and deployment—among other things. A 
build acts as the process for putting source code together and verifying that the software 
works as a cohesive unit” (Duvall, 2007) 
 
For example, a scenario of continuous integration will describe the process by which a 
developer commits code to the repository. In a project many people can commit changes 
to a repository; these changes will start then start the integration process. 
 
The steps in a continuous integration scenario would appear as follows: 

1. A developer commits code to the version control repository. Meanwhile, the 
continuous integration server is looking for changes in the repository. 

2. Soon after the commits occurs the server detects those changes and retrieves 
the latest copy from the repository and executes a build script over them, this 
script integrates the software. 

3. The server generates feedback by emailing build results to specified project 
members. 

4. The server continues looking for new changes in the version control. 
5. (Duvall, 2007) 

 
2.1.1.1 Developer Practises 
Once the developer has finished adding features or add modification before committing 
the changes to the version control repository first the developer has to run a private build 
(with the changes from the rest of the team) to make sure everything is alright and then 
commit the code to the version control repository. 

http://www.javaranch.com/
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This step does not affect the continuous integration process because the build doesn’t 
occur until the changes are committed. After the private build is successfully completed 
you can check your changes to the repository. (Duvall, 2007) 
 
2.1.1.2 Version control Repository 
One of the requirements of the continuous integration process is the use of a version 
control repository. In fact, a version control repository is highly recommended as it does 
not matter if every project uses continuous integration or not. The purpose of the version 
control repository is to manage all the changes to the source code using a control access 
repository. This provides a single source point from where the code is available. This 
repository allows the user to go back in time and get a different version of the source 
control. (Duvall, 2007) 
 
The continuous integration process will be executed against the mainline of the repository 
that is the Head/Trunk. The continuous integration server will look for changes here and if 
they are founded it will get the latest version. 
 
2.1.1.3 Continuous Integration Server 
The continuous integration server is in charge of “firing” the integration builds whenever a 
change is committed to the version control repository. In this case the integration builds 
will be fired periodically by time instead of the changes.  
 
The continuous integration server is in charge of getting the source files and run the build 
script over them. With the use of the server this will be provided with a convenient 
dashboard where all the results from the build will be displayed allowing continual checks 
on the status of the entire project. (Duvall, 2007) 
 
2.1.1.4 Build Script 
The build script is a single script, or set of scripts, used to compile, test, inspect and deploy 
software. This can use a build script without implementing a continuous integration 
system, which is a common practice nowadays but to make the process of continuous 
integration fully automatic there needs to be a build tool that can automate the software 
build cycle. (Duvall, 2007) 
 
2.1.1.5 Feedback Mechanism 

One of the main purposes of continuous integration is to produce feedback on every 
integration build to establish if there is a problem with the latest build as soon as possible. 
By integrating continually you get feedback continually and you can fix the problem 
quickly, there are many different feedback-mechanisms that can be utilised but one of the 
simplest is by the email system as a feedback report. (Duvall, 2007) 
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2.1.1.6 Integration Build Machine 
The integration build machine is a separate machine whose sole responsibility is to 
integrate the software. The integration build machine hosts the continuous integration 
server and the continuous integration server checks the version control repository. 
This part will be different because our “build machine” will be mounted on the cloud so 
there is a probability the continuous integration server will check for changes and will fire 
the builds machine on demand. (Duvall, 2007) 
 

2.1.2 Features of continuous integration 

Now that we have defined all the practises that there are available we will quote the ones 
that are required to implement continuous integration: 
 

1. A connection to a version control repository 
2. A build script 
3. Feedback mechanism such an email 
4. A process for integrating the source code changes. (Continuous Integration 

Server) 
 
Once the builds are automated and are triggered by the changes detected in the 
repository we can start adding new features to our continuous integration system. 
Once an automated build is run with every change to the version control system, it is 
possible to add other features to the continuous integration system. By performing 
automated and continuous database integration, testing, inspection, deployment, and 
feedback, the continuous integration system can reduce common risks on the project, 
thus leading to better confidence and improved communication.  
 
2.1.2.1 Source Code Compilation 
One of the most basic and common features of continuous integration is continuous 
source code compilation.  Compilation involves creating executable code from the 
“human-readable” code. 
 
One point to take into account here is when compiling dynamic programming languages 
such as Python, PHP or Ruby the compilation environment that needs to be set up might 
be different, so in this case there will have to be different environments for different 
programming languages. 
 
2.1.2.2 Database Integration 
Some people consider the source code integration and integration of the database as 
complete separate processes—always performed by different groups. This is unfortunate 
as the database (if there call to use one on the project) is an integral part of the software 
application. By using a continuous integrating system, this can ensure the integration of a 
database through a single source: version control repository. 
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For instance, when a project member modifies a database script and commits it to the 
version control system, the same build script that integrates source code will rebuild the 
database and data as part of the integration build process. 
 
2.1.2.3 Testing 
Without automated tests, it is difficult for developers or other project stakeholders to 
have confidence in software changes. Furthermore, when running different categories of 
tests from a continuous integration system it will speed up the builds. These categories 
may include; unit, component, system, load/performance, security, and others. 
 
2.1.2.4 Inspection 
Automated code inspections (e.g. static and dynamic analysis) can be used to enhance the 
quality of the software by enforcing rules. For instance, a project might have a rule that no 
class may be longer than 300 lines of non-commented code. You can use the continuous 
integration system to run these rules automatically against a code base. 
 
2.1.2.5 Deployment 
With continuous deployment that can deliver working and deployable software at any 
point in time. This means that we can generate all the software artefacts of the project 
will have the latest code changes and make it available to a testing environment. 
 
Among other things, the source files from the version control repository must be checked 
out, a build must be performed, all tests and inspections must successfully executed, the 
release must be labelled, and the deployment files must be staged.  
 
2.1.2.5 Documentation and Feedback 
Another one of the benefits of continuous integration is that it provides all the benefits of 
documentation without some of the difficulties associated. There are tools that can 
generate class diagrams based on the committed source code in the version control 
repository. We will get real-time documentation of source code and project status using 
continuous integration. 
 

2.2 Introducing continuous integration 

 
“Assumption is the mother of all screw-ups” (Wethern’s Law of Suspended Judgment) 
 
The practise of developing good software is all about following fundamental practises 
rather than using a particular technology. Experienced programmers highlight that the 
most important problems to be aware of when developing software is making 
assumptions. There should be no assumptions that a method will receive the right 
parameter cannot be made because the method could and most likely will fail. The 
assumption that developers are following coding and design standards should also be 
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avoided as the code will become difficult to maintain. There is always a need to test the 
code and make a review of the code. 
When assumptions are made in software development there are added risks. Developing 
software requires planning for change, continuously observing the results and 
incrementally course-correcting based on the results. Continuous integration gives the 
developer the ability of making changes in the code knowing that if the code breaks down 
there is a possibility to receive immediate feedback. With this feedback developers can 
course-correct and adjust to change more rapidly. 
 
Continuous integration is a vital task even it is done behind the scenes where the 
customer cannot see it because it saves time for the developers. The less time developers 
spend looking for bugs the more time they spend in challenging the task that makes their 
job interesting. The discipline of keeping the build “in the green” gives developers 
confidence that the state of the project is positive. Continuous integration is a practise 
that affects every person on the software development team not only the “build master”. 
(Duvall, 2007) 
 

2.2.1 Benefits of applying principles 

From following the principles and practises that have been pointed out before are the 
benefits that can be extracted: 
 

2.2.1.1 Reduce Risks 

By carrying out continuous integration many times a day can reduce the risk of putting the 

project in the red by detecting defects while also measuring health of software and 

reduces the assumptions. 

 

 Defects are detected and fixed sooner because the continuous integration 
integrates and runs tests that inspections several times a day so there is a greater 
chance that defects are discovered when they are introduced instead of during the 
late-cycle testing. 

 The health of the software is measurable. With continuous integration testing and 
inspection the software product’s health attribute such as complexity can be 
tracked over time. 

 The reduction of assumption. By rebuilding and testing software in a clean 
environment using the same process and scripts on a continual basis to reduce 
assumptions. 

 
Continuous integration reduces the risk of introducing defects into the code base. Some 
defects that it helps to mitigate: 
 

 Lack of cohesive, deployable software 

 Late defect discovery 
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 Low-quality software 

 Lack of project visibility 
(Duvall, 2007) 

2.2.1.2 Reduce repetitive processes 
The benefit of reducing processes saves time, costs and effort. These processes are all 
those activities that occur across all projects like code compilation, database integration, 
testing, inspection, deployment or feedback. With continuous integration ensures that: 
 

 The process runs the same way every time 

 The order is followed, i.e. first inspections and then tests. 

 The processes will be triggered each time a commit occurs. 
 
2.2.1.3 Generate Deployable Software 
With continuous integration to release deployable software at any time is possible. 
Deployable software is the most tangible asset to the clients and users so it is potently the 
most significant benefit that can be obtained from continuous integration. In a project 
that doesn’t follow continuous integration practises, there may be a wait immediately 
prior to the delivery of integration and testing. This can result in delays due to errors 
during integration. 
 
2.2.1.4 Improve project visibility 
Continuous integration provides the ability to notice trends and make effective decisions 
that helps to provide the courage to experiment with innovation of new improvements. 
Projects suffer when there is no real or recent data to support decisions, so at best 
members of the team can only offer their best guesses. Typically, project members collect 
this information manually, but this can be a channelling task to collect all the information 
needed. The result is that not enough sufficient information is gathered. Continuous 
integration has positive effects on: 
 

 Effective decision: A continuous integration system can provide just-in-time 
information on the recent build status and quality metrics even defect rates and 
feature completion statuses. 

 Noticing trends: Since integrations occur frequently the ability to notice trends in 
build success or failure, overall quality and other project information becomes 
possible. 

 
2.2.1.5 Greater Product Confidence 
With every build, the team knows that tests are run against the software to verify 

behaviour, that project coding and design standards are met and that the result is a 

functionally testable product. Continuous integration systems informs when something 

goes wrong so developers can have more confidence in making changes. 
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2.2.2 Concerns about Continuous integration 

There are a number of reasons or concerns why a development teams to stay away from 

using continuous integration: 

 

 Increased overhead in maintaining the continuous integration system. The need 
of integrate, test, inspect and deploy exists regardless of whether the system is 
using continuous integration or not. Managing a robust continuous integration 
system is better than managing manual processes. Manage the continuous 
integration system or be controlled by the manual processes. Complicated 
multiplatform projects are the ones that need continuous integration the most, yet 
these projects often resist the practice as being “too much extra work”. 

 Too much change. It appears to have many processes that need to be changed to 
achieve continuous integration but an incremental approach to continuous 
integration is more effective. First add builds and tests with lower occurrence, and 
then increase the frequency as the team members as they become more 
comfortable with the results. 

 Too many failed builds. Typically, this occurs when developers are not performing 
a private build prior to committing their code to the version control repository. A 
rapid response to failed tests is imperative when using continuous integration 
because of the frequency of changes. 

 Additional hardware/software costs. To create an effective continuous 
integration system separates integration machine when required, which is a 
nominal expense. It is much more expensive to spend time finding problems later 
in the development lifecycle. 

 Developers should be performing these activities. Developers should be 
performing all these activities but these should be performed more effectively and 
reliably in a separate environment. Leveraging automated tools can improve the 
efficiency and frequency of these activities. Additionally, it ensures that these 
activities are performed in a clean environment, which will reduce assumptions 
and lead to better decision making. 

(Duvall, 2007)  
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2.2.3 Dealing with continuous integration 

Most of the time developers are spending time on automating processes for their users 
but they forget to automate their own development processes. Sometimes teams believe 
their automation is enough because they have written some script to automate some 
steps. 
Continuous integration is not just about putting together scripts. To make a process 
continuous there are some steps that must be followed: 
 

 Identify. Identify a process that requires automation. The process may be in the 
areas of compilation, testing, inspection, deployment and database integration. 

 Build. Creating a build script makes the automation repeatable and consistent. 

 Share. By sharing the script through a version control it possible to make it 
available for other developers to use those scripts. Now the value is being spread 
consistently across the project. 

 Continuous. Ensure that the automated process is run with every change applied 
using a continuous integration server. If the team has the discipline, it can also 
choose to manually run the build with every change applied to the version control. 

 

A good way to remember this script is to think of the anagram: “I Build So Consistently”. 
Here there is a clear aim for incremental growth in the continuous integration system. 
With this in mind the team can become more motivated as each new item is added and it 
can better plan what is needed next based on what’s working so far. 
On the other hand, being careful is not a good move to throw every into the continuous 
integration system at once. Get it to work first, get developers using it and then add other 
automated processes as needed based on the project risks. (Duvall, 2007) 
 

2.2.4 When to implement Continuous Integration? 

The sooner continuous integration is implemented the better. It is difficult to implement 
continuous integration late in a project, as people will be under pressure and are usually 
more likely to resist change. 
There are different approaches to set up the continuous integration system. Even if the 
purpose of the continuous integration system is to build on every change it may be better 
to start running the build on a daily basis to get the practice going in the organisation. 
People often resist change, and the best approach for an organisation may be to add 
these automated mechanisms to the process piece by piece. (Duvall, 2007) 
 

2.2.5 Complementing Continuous Integration with other development practices. 

Continuous integration is completely compatible with any other development practices 
such as developer testing, adherence to coding standards, refactoring and small releases. 
Continuous integration can contribute to the improvement of all these practices: 
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 Developer testing. The tests that developers write to test the code can be 
automatically executed from the build script. Since the practice of continuous 
integration is to run all the build every time a change is detected, and the 
automated tests are part of that build, continuous integration enables automated 
regression tests to be run on the entire code based on whenever a change is 
applied to the software. 

 Coding standard adherence. A coding standard is a set of guidelines that 
developers must adhere to on a project. On many projects, ensuring adherence is 
largely a manual process that is performed by a code review. Continuous 
integration can run a build script to report on adherence to the coding standards 
by running a suite of automated static analysis tools that inspect the source code 
against the established standard. 

 Refactoring: As Fowler states, refactoring is “the process of changing the software 
system in such a way that it does not alter the external behaviour of the code yet 
improves its internal structure”. Continuous integration helps with this by running 
inspection tools that identify potential problem areas at every build. 

 Small releases: This practise allows testers and users to get working software to 
use and review as often as required. Continuous integration works very well with 
this practice because software integration is occurring many times a day and a 
release is available at any time of the day. Once a continuous integration system is 
in place a release can be generated with a minimal effort. 

 Collective ownership. Any developer can work on any part of the software system. 
This prevents “knowledge silos”, where there is only one person who has 
knowledge on a particular area of the system. Continuous integration helps by 
ensuring adherence to coding standards and the running of regression tests on a 
continual basis. (Duvall, 2007) 

 

2.2.6 How long it takes to set up a continuous integration system? 

Implementing a basic continuous integration system for new a project with a few build 
scripts may take a few hours to set up and configure. As it expands the knowledge of the 
continuous integration system it will grow with all the tools that are desired to be added. 
These additional features will need to be added bit by bit. 
 
For a project that is already in progress it can take days, weeks or even months to set it 
up. It also depends on how many people that are dedicated to the work on the project. 
Sometimes it is important to move from batch or shell scripts to a build scripting tool such 
as Ant or managing all of the project’s binary dependencies.  
 

2.2.7 Daily habits 

For continuous integration to work effectively on a project, developers must change their 
typical day-to-day software development habits. The practices that are needed to 
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integrate continuous integration might need some discipline but they provide all the 
benefits that have been enumerated at the beginning. 
There are seven practices that work well for individuals and teams running continuous 
integration project: 
 

 Commit code frequently 

 Don’t commit broken code 

 Fix broken builds immediately 

 Write automated developer tests 

 All tests and inspections must pass 

 Run private builds 

 Avoid getting broken code 
 
2.2.7.1 Commit Code Frequently 
One of the central themes of continuous integration is integrating early and often. Waiting 
more than one day to commit code to the version control makes integration time-
consuming and may prevent developers from being able to use the latest changes. There 
are two ways to commit more often. 
 

 Make small changes. Try not to change many components at once. Choose small 
tasks, write tests and source code, run the tests and then commit the code to the 
repository. 

 Commit after each task. Assuming tasks/work items have been broken up so that 
they can be finished a few hours, some development shops require developers to 
commit their code as they complete each task. 

 
It is best to try to avoid everyone on the team committing at the same time every day. 
Many errors will arise due to the collisions between changes. Very frequent at the end of 
the day when everybody is ready to leave. The longer the wait, the more difficult the 
integration will be. 
 
2.2.7.2 Don’t commit broken code. 
A dangerous assumption on a project is when everybody knows not to commit code that 
doesn’t work to the repository. The solution for that is to have a well-factored build script 
that compiles and tests the code in a repeatable manner. It’s important to also bring to 
the attention of the team, private builds (which closely resembles the integration build 
process) before committing code to the version control repository. 
 
2.2.7.3 Fix Broken Build Immediately 
The definition of a broken build could consist of anything that prevents the build from 
reporting success. Anything from; compilation error, failed test, inspection or database. 
On continuous integration these problems must be fixed immediately but because each 
error is discovered incrementally it is likely to be very small. The project culture should 
convey that fixing a broken build is top project priority. 
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2.2.7.4 Write automated developer tests 
A build should be fully automated in order to run the test for the continuous integration 
system, and for this the tests should be automated. If a framework is used like JUnit the 
tests will be able to run automated. (Duvall, 2007) 
 
2.2.7.5 All Tests and Inspections must pass 
In a continuous integration environment, 100% of project’s automated tests must pass for 
the build to pass. There are a few statements that have to be agreed upon by the whole 
team. Automated tests are as important as the compilation. Everyone accepts that code 
does not compile and will not work. Therefore, the code that has test errors will not work 
either. Accepting coded that do not pass the test can lead to lower-quality software. 
A bad practice is to comment out a failing test, this kind of practise defeats the purpose of 
continuous integration. Coverage tools assist in outlining source code that does not have a 
corresponding test and it is possible to run a code coverage tool as part of an integration 
build. (Duvall, 2007) 
 

2.2.7.6 Run private builds 
Before committing the code and possibly broking the build, developers should emulate 
integration build on their local workstation IDE after completing their unit tests. This build 
allows the developer to integrate the new working software with the working software 
from other developers, obtaining the changes from the repository and building locally 
with the recent changes. Thus, the code each developer commits has contributed to the 
greater good, with the code that is less likely to fail on the integration build server. 
(Duvall, 2007) 
 
2.2.7.7. Avoid getting broken code 
When the build is broken, there is no point checking the latest code from the repository. 
Otherwise, there is a need to must spend time developing a workaround to the error 
known to have failed the build, so a test can be compiled to test the code. The developers 
responsible for breaking the code should fix it and commit back again. Sometimes a 
developer may not have seen the e-mail of a broken build when there is a passive 
mechanism as a “red light” is necessary. (Duvall, 2007)  
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2.3 Introduction to Cloud Computing. 

 
“Cloud-computing has revolutionized IT in a way never seen before”.  
(Gregory, 2012) 
 
Cloud computing was forecasted as the biggest trend for 2012. It is becoming one of the 
main attractive of the software industry and is changing the way that software 
development is being done. Nowadays everybody wants to become part of the 
phenomena of ‘cloud-computing’ and get all the advantages that this provides. Let's begin 
by a conversation about what the cloud computing to is and how it is defined. 
 

2.3.1 Cloud computing definition 

Cloud computing has been a difficult term to define when talking about cloud computing; 
 
“…the market  seems to have come to the conclusion that cloud computing has a lot in 
common with obscenity – you may not be able to define it, but you’ll know it when you see 
it” 
      James Urquhart – The wisdom of clouds 
 
Different experts have different ideas about what cloud computing it is, the National 
Institute of Standards and Technology last year gave a definition of cloud computing from 
a technical perspective: 
 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction. This cloud model is composed 

of five essential characteristics, three service models, and four deployment models.” 

(Techonology, 2011) 

 

This definition is too technical and too difficult to understand even for computing people. 
A much easier definition can be found on the website “cloud computing search” written 
by the expert Margaret Rousse and states: 
 

“Cloud computing is a general term for anything that involves delivering hosted services 

over the Internet. These services are broadly divided into three categories: Infrastructure-

as-a-Service (IaaS), Platform-as-a-Service (PaaS)and Software-as-a-Service (SaaS). The 

name cloud computing was inspired by the cloud symbol that's often used to represent the 

Internet in flowcharts and diagrams.” 

(Rouse, 2010) 

 

From this definition we can see that the concept of cloud computing is just a way of 
representing the idea of internet but in a different way. From another sources we can find 
more critical definition about what cloud computing is and what it can be used for. In the 

http://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS
http://searchcloudcomputing.techtarget.com/definition/Platform-as-a-Service-PaaS
http://searchcloudcomputing.techtarget.com/definition/Software-as-a-Service
http://whatis.techtarget.com/definition/flowchart
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website www.everymanit.com we get a different definition from the one of the authors of 
the Website. “Eli the computer guy” comments in one of his many videos that cloud 
computing is just a term used by “marketers” on  his “marketing campaigns” to try to sell 
new products. This may be a way to get the attention of customers that might be 
interested in new products. 
(www.everymanit.com, 2010) 
 
As example the author mentioned above explains the way Microsoft in December 2010 
was selling his new product based on the use of “the cloud” to store everything where you 
could see a fancy cloud flashing on the screen. From the marketing point of view “cloud 
computing” is just another way to “get your money out of your pocket” because you will 
pay for it monthly. 
 
Another approach of cloud computing could come from the need of scalable systems in 
the IT without the need of the new software or new infrastructure. This definition comes 
from the Analysts of infoworld: 
 
“Cloud computing comes into focus only when you think about what IT always needs: a 
way to increase capacity or add capabilities on the fly without investing in new 
infrastructure, training new personnel, or licensing new software. Cloud computing 
encompasses any subscription-based or pay-per-use service that, in real time over the 
Internet, extends IT's existing capabilities.” 
(Knorr, 2008) 
 
From the guys of the Economist who have a satire view about the three big companies in 
the world gave the next definition: 
 
“Much of computing will no longer be done on personal computers in homes and offices, 
but in the “cloud”: huge data centres housing vast storage systems and hundreds of 
thousands of servers, the powerful machines that dish up data over the internet. Web-
based e-mail, social networking and online games are all examples of what are 
increasingly called cloud services, and are accessible through browsers, smart-phones or 
other “client” devices.” 
 
Many definitions can be given to define what is cloud computing, but this is because cloud 
computing can be used for almost everything in computing. However, before anyone can 
use all the services that the cloud can bring, first the benefits need to be understood and 
what can be expected from the cloud. 
 
  

http://www.everymanit.com/
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2.3.2 Cloud structure 

The structure of the cloud is divided in three layers which defines the three different 
services that can be used: Software as a service, Platform as a service and Infrastructure as 
a service. (Dialogic.com, 2010) 
 
2.3.2.1 Software as a Service (SaS) 
This is the top level of the hierarchy and corresponds with the applications that are run 
and interacted via web browser or host desktops that are accessed through remote 
clients. With the use of these kinds of applications the user does not need to purchase 
expensive licenses to run the applications. Instead the cost is charged through a 
subscription fee. A cloud application eliminates the need of installing and running the 
application on the customer’s computer and all the cost associated with is is: software 
maintenance and support. 
 
2.3.2.2 Platform as a Service (PaS) 
This is the middle level of the hierarchy and provides a computing platform from where to 
deploy the customer applications. A computing platform dynamically provides provisions 
and configures to servers as needed to cope with the demand. The operative systems and 
network access are not managed by the consumer, and there might be constraints as to 
which applications can be deployed. 
 
2.3.2.3 Infrastructure as a Service (IaS) 
This is the base of the hierarchy and corresponds to the delivery of IT infrastructure 
through virtualisation. Virtualisation allows the split of a single physical piece of hardware 
into independent, self-governed environments, which can be scaled in terms of CPU, RAM, 
Disk and others elements. The customer control and manage the systems in terms of the 
operating systems, applications, storage and network connectivity, but do not control the 
cloud infrastructure. 
(Dialogic.com, 2010) 
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2.3.3 Deployment Models 

The deployment of the cloud infrastructure can differ depending on the requirements of 
the business.  There are four models of deployment that have been identified. Each one of 
those meets the requirements of the specific services for specific users. 
 
2.3.3.1 Private Cloud 
Also referred as ‘corporate’ or ‘internal’ cloud is when all the computing architecture that 
provides the services is deployed on private networks. Is generally used by large 
companies and allows administrators to become in-house ‘service providers’ catering the 
‘customers’ within the company. However, the maintenance can be done by a third party 
company on the premises of the company. 
 
2.3.3.2 Public Cloud 
Also referred as ‘external’ cloud, this is when the infrastructure of the cloud is available to 
the public by a service provider on a commercial basis. With this approach the customer 
can deploy and develop services in the cloud with very little financial outlay compared 
with the capital that has to be spent to deploy the cloud from scratch. 
 
2.3.3.3 Hybrid Cloud 
This is when the infrastructure is a combination of many clouds of any types. The clouds 
have the ability thought their interfaces to allow data and/or applications to be moved 
from one cloud to another. In this way a company could choose to use a public cloud 
service for any non-critical service but store its business-critical data within its own data 
centre. 
 
2.3.3.4 Community Cloud 
Community cloud is when the infrastructure is shared among different organisations with 
similar interests and requirements. In this case the capital expenditure cost is shared 
among the organisations. The operation of the cloud may be managed by in-house 
administrators or by a third-party on premises. 
 

2.3.2 Benefits of cloud computing 

The number of reason we can find to move to this kind of model of IT are several so 
depending on the needs of the companies, it is possible to exploit more the advantages of 
cloud computing. (Rob Lovell, 2010) 
 
2.3.2.1 Reduction of initial capital expenditure 
As a customer of the cloud there is no need for expending money in IT Infrastructure 
when starting a business. All the machines and applications that a business may need can 
be provided by moving to the cloud model. With the computing model the expense of the 
hardware and the software is converted to an operational cost easier to budget month by 
month. 
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2.3.2.2 Reduced Administration costs 
With the cloud model the IT infrastructure is deployed very quick and managed, 
maintained, patched and upgraded remotely by the service provider. The technical 
support is provided round the clock by the provider, avoiding the fact that having IT staff 
taking care of the IT infrastructure. This means that the business has more time to focus 
on the tasks that are really important and add business value to the final product avoiding 
the cost of training and maintaining staff. 
 
2.3.2.3 Improved resource utilization 
The fact of combining large amounts of resources into the cloud reduces costs and 
maximizes the utilisation of the resources by delivering them only when they are needed. 
With this model a business doesn't have to “over-provision” a service that might not meet 
their predictions or “under-provision” those which suddenly become popular. Moving all 
the infrastructure to the cloud can free up time, effort and budget just keeping the 
business focused on their mission and exploiting the technology for that. 
 
2.3.2.4 Economies of scale 
Providers who typically use very large-scale data centres can get much higher efficiency 
levels and implement multi-tenant architecture that allows them to share resources 
between many different customers. This model of IT provision allows them to pass on 
savings to the customers. 
 
2.3.2.5 Scalability on demand. 
Scalability allow customers to react quickly to changing IT needs, adding or subtracting 
capacity and users when required and responding to real requirements rather than 
projected requirements. Cloud computing follows the utility model, which states that the 
customer pays for what it consumes so it provides elasticity to the business. 
 
2.3.2.6 Quick and easy implementation 
There is no need to purchase hardware, software licenses are the implementation 
services. The only requirement for the customer is to make an arrangement with the 
provider, this can be done instantly online. 
2.3.2.7 Help Small Businesses to compete 
Cloud computing makes it possible for smaller companies to compete with larger ones by 
'renting' IT Services. Renting IT services instead of investing in hardware and software 
makes them much affordable and allows them to invest that money in critical-projects 
instead. 
 
2.3.2.8 Anywhere access 
Cloud based systems allows data an application to be accessed from any place by using 
internet connection. 
 
2.3.2.9 Disaster Recovery 
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With virtualisation, the entire server, including the operating system, applications, patches 
and data is encapsulated into a single software bundle or virtual server. This entire virtual 
server can be copied or backed up to an offsite data centre and spun up on a virtual host 
in a matter of minutes. In this way all the infrastructure can be backed up in the cloud 
with no risk of losing data. 
(onlinetech, 2012) 
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2.3.3 Security in cloud computing 

 
"At the heart of cloud infrastructure is this idea of multi-tenancy and decoupling between 
specific hardware resources and applications. In the jungle of multi-tenant data, you need 
to trust the cloud provider that your information will not be exposed."  
Datamonitor senior analyst Vuk Trifković. 
 
Good cloud-providers follow strict privacy policies and sophisticated security measures 
like data encryption. However, not all vendors will offer the same level of security. It is 
highly recommended for those customers that are concerns with security to research 
vendor policies before using their services. 
Here are some of the main risks identified by the Technology analyst and consulting firm 
Gartner that the customer should have in mind when hiring services: 
 
2.3.3.1 Privileged user access and Regulatory compliance 
Customers of cloud services providers have to be advised that their data can be accessed 
by third parties working for the provider. That could be an issue when the provider works 
with many of those third parties because it means that the data of the customers could 
potentially be accessed by them. 
A consideration to take for the customers that are responsible of very high sensitive data 
is to find out what company is used by the provider and if it is possible to seek an 
independent audit of their security status. (Binning, 2009) 
 
2.3.3.2 Lack of Standards 
Cloud computing is still in its infancy and there are available standards to follow in themes 
of security. However; IBM, Cisco, SAP, EMC and several other leading technology 
companies had created an 'Open Cloud Manifesto' calling for more consistent security and 
monitoring of cloud services. (Software, 2009) 
However, these standards can often be restrictive. For this reason many people are still 
wondering what benefits could be taken from cloud standardisation at this early stage. 
There are only a few cloud providers who promote the creation of standards before the 
market is formed. (Trifkovic) 
 
2.3.3.3 Data Location 
Possibly the most important issue when talking about security in cloud computing is 
jurisdiction. Data that might be secure in one country may not be secure in another. One 
problem that customers might come across is that they don’t know where the data is 
being stored. However, there is a clear intent of harmonise data laws across states but the 
differences between them are high. For example, in EU the data laws are very strict with 
privacy but in EU US Patriot Act invest government and other agencies with virtually 
limitless powers to access information including that belonging to companies. 
In fact, European concerns about US privacy laws led to creation of the US Safe Harbor 
Privacy Principles, which are intended to provide European companies with a degree of 
insulation from US laws. 
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2.4 Cloud Architecture 

The structure of the cloud is always hiden from ‘normal users’, as everyday users are not 
concerned about the process of how the programme is really implemented. However, for 
this research a close approach to the architecture of the cloud is required to know the 
capabilities of the capacity and power that can be used.  
In this chapter we will talk about the specifications of the cloud as: how many computers 
are made of, what operative systems is install and which platform it will be used to 
manage the cloud. 
 

2.4.1 Cloud Characterisitics 

The first thing to talk about is, which cloud will be used for the research. Due to the fact 
that this research is fully entrepraise oriented which means that the target is focused on a 
concrete company in this case Altobridge Ltd. The cloud that will be used will be the one 
which altobridge will provide for the experiment and it will be where later on the system 
will be deployed. 
Once this is said, let’s get started talking about the capabilities of the cloud designed for 
this research. Currently in Altobridge Ltd. there are 3 physical servers, a cloud controller, 
which also has 'compute' resources and two compute nodes. 
 

 The cloud controller has two quad core CPN (Xeon E5506) for a total of 8 cores and 
18G of RAM. The cloud controller also has a 1.2 TB RAID 6. 

 The compute nodes both have two quad core CPN (Xeon E5506) for a total of 8 
cores and 24G of RAM, these are also equipped with a 300G RAID 1. 

 Total power is 24 cores and 66G RAM. 
 

The number of machines that can be spined up is dependant on the resources allocated to 
each machine and how much "contention" we are willing to live with. i.e. we could exceed 
the number of physical cores, in allocation but the machines would be services much 
slower. (Hart, 2012) 

This is the physical hardware that the cloud is made of. Now an explaination on how all 
this software can be glued together and be virtualised to use on demand.  
 

2.4.2 Cloud operative system (KVM) 

To cope with all the hardaware resources and operative systems is need to virtualise all 
the resources. The operative system that will be used is KVM. 
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2.4.2.1 KVM  
KVM means Kernel-Based Virtual and is becoming one of the most popular open source 
solution for virtualisation in Linux. The compatible hardware for this is x86 and it contains 
extensions for Intel (Intel VT) and AMD(AMD-V) processors. 
KVM consists of loadable kernel module that provides core virtualization infrastructure 
and a processor specific module. With this many virtual machines can be fired from 
unmodified Linux or Windows images. Each virtual machine has private virtualised 
hardware: network card, disk, graphics adapter, etc. 
How KVM takes the Linux kernel and transform it into an hypervisor is simple, it simply 
loads an additional kernel module for each instance. 
The kernel module exports a device called 
/dev/kvm which enables a guest mode of the 
kernel (in addition to the traditional kernel and 
user modes). With /dev/kvm, a VM has its own 
address space separate  from that of the kernel 
or any other VM that is running. To summarise, 
Devices in the device tree (/dev) are common to 
all user-space processes but /dev/kvm is different 
in that each process that opens it sees a different 
map to support isolation of the VMs. 
One benefit of turning the Linux kernel itself into 
a hypervisor is that all the optimisations to the Linux kernel benefit from both sides the 
hypervisor which is the host opertative system and the the guests operative systems. 
(vservercenter, 2012)  
 
In sum the virtual machine is implemented as a regular Linux process, scheduled by the 
standard Linux scheduler. In fact, each virtual CPU appears as a regular Linux process so 
the KVM takes all the advantatges of the Linux kernel. The device emulation is handled by 
a modified version of QEMU which provides an emulated BIOS, PCI Bus, USB Bus and a 
standard set of devices such as IDE and SCSI disk controllers, network cards, etc.. (Tholeti, 
2011)  
 
2.4.2.2 Features of KVM 
The next set of features are the most common advantatges that makes KVM one of the 
best options.The most important of the features are inhereted from the Linux kernel. 
 
Security 
KVM comes with the standard Linux security model which provides isolation and 
resources control. The Linux Kernel uses SELinux (Security-Enhanced Linux) to add 
mandatory access controls, multi-level and multi-category security and to handle policy 
enforcement. SELinux provides strict resource isolation and confinement for processes 
running in the Linux kernel. (Tholeti, 2011) 
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Memory management 
The memory of a virtual machine is stored in the same way that the memory is stored for 
any other Linux process and can be swapped, backed by large pages for better 
performance, shared or backed up by a disk file. NUMA (Non-Uniform Memory Access) 
that is memory design for multiprocessors allows virtual machines to efficiently access 
larges amounts of data. (Tholeti, 2011) 
 
Storage 
KVM is able to use any storage supported by Linux to store virtual machines images, that 
includes: local disks with IDE, SCSI and SATA, Network Attached Storage(NAS) including 
NFS and SAMBA/CIFS or SAN with support fro iCSI and Fibre Channel. As KVM is based on 
the Linux Kernel it has been proven to be reliable in the infrastructure with support to all 
leading storage vendors. (Tholeti, 2011) 
 
Live Migration 
Provides the ability to move a running virtual machine between physical hosts with no 
interruption to the service. Live migration is transparent to the user, the virtual machine 
remains powered on, network connections remain active and user applications continues 
to run while the virtual machine is relocated to a new physical host. (Tholeti, 2011) 
 
Device Drivers 
To deliver high performance I/O for network and block devices KVM supports hybrid 
virtualization where paravirtualised drivers are intalled in the guest operating system to 
allow virtual machines to use optimized I/O interfaces instead of emulated devices. 
 
The KVM hypervisor uses the VirtIO standard developed by IBM and Red Hat in 
conjunction with the Linux community for paravirtualized drivers; it is a hypervisor-
independent interface for building device drivers allowing the same set of device drivers 
to be used for multiple hypervisors, allowing for better guest interoperability. (Tholeti, 
2011) 
 
Performance and Scalability 
KVM supports virtual machines with up to 16 virtual CPU’s and 256 GB RAM and host 
systems with 256 cores and over 1 TB of RAM. It can deliver: 

 Up to 95 to 135 percent performance relative to bare metal for real-world 
enterprise workloads like SAP, Oracle, LAMP, and Microsoft Exchange. 

 More than 1 million messages per second and sub-200-microsecond latency in 
virtual machines running on a standard server. 

 The highest consolidation ratios with more than 600 virtual machines running 
enterprise workloads on a single server. 

 That means KVM allows even the most demanding application workloads to be 
virtualized.  

(Tholeti, 2011)   
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2.4.3 Infrastructure as a service 

Once the hardware and the operative system is set up on the cloud the next step is set the 
bases for the development. Within Altobridge all the infrastructured of the cloud is set up 
by using OpenStack. 
 
2.4.3.1 Introduction to OpenStack 
OpenStack is an Infrastructure as a Service (IaaS) cloud computing project started 
by Rackspace Cloud and NASA in 2010.  
 
“OpenStack is on a mission: to provide scalable, elastic cloud computing for both public 
and private clouds, large and small. At the heart of our mission is a pair of basic 
requirements: clouds must be simple to implement and massively scalable” 
(openstack, 2010) 
 
OpenStack defines the layer where all the research will be done and where all our 
software will be deployed. OpenStack allows the user to manage the cloud by using 
OpenStack Compute. 
 
“OpenStack Compute gives you a tool to orchestrate a cloud, including running instances, 
managing networks, and controlling access to the cloud through users and projects. The 
underlying open source project's name is Nova, and it provides the software that can 
control an Infrastructure as a Service (IaaS) cloud computing platform. It is similar in scope 
to Amazon EC2 and Rackspace Cloud Servers. OpenStack Compute does not include any 
virtualization software; rather it defines drivers that interact with underlying virtualization 
mechanisms that run on your host operating system, and exposes functionality over a web-
based AP” 
(openstack, 2010) 
 
To better understand the structure of open stack an explanation of the cloud components 
has to be explained. 
  

http://en.wikipedia.org/wiki/IaaS
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Rackspace_Cloud
http://en.wikipedia.org/wiki/NASA
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2.4.3.2 OpenStack Components 
OpenStack divides the cloud in seven core sectors to manage each of the different 
features: 
 

 Object Store (codenamed "Swift") provides object storage. It allows the user to 
store or retrieve files (but not mount directories like a fileserver).  

 Image (codenamed "Glance") provides a catalog and repository for virtual disk 
images. These disk images are mostly commonly used in OpenStack Compute. 
While this service is technically optional, any cloud of size will require it. 

 Compute (codenamed "Nova") provides virtual servers upon demand 

 Dashboard (codenamed "Horizon") provides a modular web-based user interface 
for all the OpenStack services. With this web GUI, you the user perform most 
operations on the cloud like launching an instance, assigning IP addresses and 
setting access controls. 

 Identity (codenamed "Keystone") provides authentication and authorization for all 
the OpenStack services. It also provides a service catalog of services within a 
particular OpenStack cloud. 

 Network (codenamed "Quantum") provides "network connectivity as a service" 
between interface devices managed by other OpenStack services (most likely 
Nova). The service works by allowing users to create their own networks and then 
attach interfaces to them.  

 Block Storage (codenamed "Cinder") provides persistent block storage to guest 
VMs. In the Folsom release, both the nova-volume service and the separate 
volume service are available. 

(openstack, 2010) 
 
These are the main controllers that we will fine in our design to manage the cloud. We will 
have to deal with them along the integration. 
 

2.4.3.3 Architecture 
The OpenStack project as a whole is designed to "deliver(ing) a massively scalable cloud 
operating system." To achieve this, each of the constituent services are designed to work 
together to provide a complete Infrastructure as a Service (IaaS). This integration is 
facilitated through public application programming interfaces (APIs) that each service 
offers (and in turn can consume). While these APIs allow each of the services to use 
another service, it also allows an implementer to switch out any service as long as they 
maintain the API. These are (mostly) the same APIs that are available to end users of the 
cloud. 
  

http://swift.openstack.org/
http://glance.openstack.org/
http://nova.openstack.org/
http://horizon.openstack.org/
http://keystone.openstack.org/
http://quantum.openstack.org/


 
 

 

(openstack, 2010) 
   



 
 

3.0 Methodology 

3.1 Introduction 

For the past few years the number of projects that are being undertaken by the Altobridge 
has increased by a larger proportion. The number of different branches for each project 
and all the different features are being developed continually. This makes the process of 
deploying the final application difficult and unpredictable. 
 
The question that was brought to the table: what would be necessary to create a “system” 
that automatically “builds” (compile, test, reviews and deploys) our software and give us a 
short-term “feedback” about the state of the project?  
With feedback the process of gathering information about the status of the final 
application to know if the quality of the application is enough, if it satisfies the customer 
needs and at the same time the tester can start the process of “finding bugs” and 
behavioural tests to make sure that the application is doing what it was created to 
achieve. 
 
The initial response was optimistic “yes, that would be possible” but to support this 
process there may be a need for extra resources as there are so many elements to work 
on. The first thing that came up was to hire the services of a third party cloud provider 
which would provide all resources that were needed. Although this idea was good and 
would allow Altobridge to focus on daily tasks and not have to deal with all the drawbacks 
under the implementation, one of the policies of the company is ensure that there was 
risk of personal information of the costumer being exploited. A solution needs to be found 
while also ensuing that personal information is kept internally protected. 
 
Another policy that it has to be adhered to is the use of “Free Software” based solutions. 
As Altobridge support small communities and avail of free software to reduce costs and 
bring the value back to the custom, this research needed to follow this trend. The main 
goal for the research was to find a way to automatize the section of the software 
development that integrates all the application together. While ensuring to utilise “free 
software” solutions that benefit “cloud computing resources” and carry this out by 
keeping all sensitive information under private security policies and exploring all the 
benefits of cloud computing. 
 
 

3.2 Can the cloud improve the continuous integration system? 

The cloud as a trend is something designed to improve how resources are used in systems 
in the modern world and by improving the resources of a system we can improve the 
performance of the whole system. 
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The aim of this research was to demonstrate how powerful resource management of the 
cloud can be and to demonstrate the advantages of utilising cloud technology. 
The research will investigate a build with a continuous integration system and it will be 
literally “plugged” to the cloud. The cloud will manage all the resources needed to do the 
work and it will come back with the results. The data that will be used to measure the 
effectiveness in terms of the amount time that the cloud takes to accomplish the task and 
the resources involved in the cloud to accomplish. 
 

3.3 Approach 

The approach will question whether the cloud solution for the integration system is better 
than the current solution that is currently being run by measuring the times that it takes 
to run the builds and comparing the times when using the cloud-based model. Once the 
cloud model is finished it will be able to take more measurements such as; resources used 
or time consumed.  
 
By comparing the time consumed between the builds done with the old system and the 
builds done with the new system which will be measured by using log files. In Altobridge 
there are log files of all the builds that have been done in the past. It is possible to extract 
from this data the times of the builds and compare them with the logs that are used. The 
tools used for this project will be all open source tools. 
 
The tools planned to use for this project are: 

1. Jenkins – The main one 
2. JClouds – A Java library to interact with the cloud 
3. Groovy – Scripting language used to interact with the server 
4. Maven – To build plugins in case they are need 
5. Ant – To build the projects itself 
6. Shell Scripting – For possible instances. 

 
The main tool for the configuration of the server will be Jenkins as is open-source and very 
reliable. The original idea was to work with TeamCity as there is a free-version that can be 
used but the problem with that it was that is not supported by a number of agents and is 
narrowed to three. So TeamCity was delimited as it didn’t meet the demands of this 
project. 
 

3.4 Design 

The following includes some design documents for the upcoming implementation section 
of the project.  
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3.4.1 Risk Analysis 

The practice chosen to evaluate the possible risks in this research has been Qualitative risk 
analysis. With this technology the risks are being prioritised based on their probability and 
impact of occurrence.  
By following the next table we can identify quickly the risks that have the highest 
probability of impact to the project so alternative solutions can be found and estimated 
dates for delivering of the project. 



 
 

 

Risk Source Probability Impact Result Impact areas Risk Response 

  Low Med High Low Med High Prob x 
Impact 

Cost Schedule Perform   

Lack of previous 
experience 

  4     6   24   X X Increase 
research and 
formation 

Server 
incompatibilities 

1         8 8 X X X Change any of 
the application 

Breadown in 
Communication 
between 
designer and 
developer 

  6     6   36 X X X Communication 
Plan 

Lack of Cloud 
Resources 

3       7   21 X X X Optimize cloud 
management 

Language 
platform 
incompatibilities 

2       5   10 X X X Change 
platform 
language 



 
 

3.4.2 UML Diagrams 

This is a rough diagram about what entities will be running and how they will interact with 
each other. The continuous integration server will do the work of running the builds that 
will gather information but is not able to manage the cloud. The problem is the start, 
instances in the cloud and most like to start the right instance for the right job. The most 
challenging part of the implementation is matching the jobs and build machines by using 
the cloud because the server has no logic so the need is for a third application involved to 
connect the gap between them. 
 
From the web-browser it is possible to communication with the continuous integration 
server. The continuous integration server will communicate with the ICloud which 
machines to spin up. The ICloud will start the machines required for the job that has to be 
done and will return the control to the continuous integration Server.  

 
 

3.4.3 Requirements 

These are some of the requirements for the final system: 
1. To improve the quality of the final product 
2. To provide a central system to manage all the different build 
3. To use the resources of a company in an efficient way by cloud management 
4. To make the detection of errors faster 
5. To set a number of practises that helps when developing in software 
6. To reduce the risk of the overall project  
7. To provide frequent feedbacks with the state of the product 
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3.4.4 Project Management Plans 

The tool chosen to schedule the project has been the Gant Chart. Gantt charts provide a 
standard format for displaying project schedule information by listing project activities 
and their corresponding start and finish dates in a calendar format. Use a Gantt chart for 
planning and tracking schedule information. 



“Moving to continuous integration on the cloud” 
 
 
 

40 
 

 



 
 

 

  



 
 

3.5.1 Work Break Down 

Here we have the list of tasks that we’ve plan for the project: 
1. Gather Software Information: 

a. Research market options for a continuous integration server 
i. Jenkins, Hudson, TeamCity, Cruise Constrol 

b. Research platform to develop de ICloud. 
i. Language, Plugin, Libraries, 

c. Research resources needed from the cloud. 
i. Number of instances, access, processors, memory available.  

d. Calculate the budget for the technologies needed.  
i. Putting everything together and see how much it costs. 

2. Plan design: 
a. Design of the implementation of the server 

i. Define functions of the server 
b. Design of the ICloud 

i. Classes, interfaces, communication with the server. 
c. Design of the organization in the cloud 

i. How will instances be managed, how much will be needed and how 
many can be run at a time. 

3. Plan Implementation: 
a. Server Configuration 

i. Server Configuration, build configuration, mail configuration 
b. Implementation of the ICloud. 

i. Hard-code the classes require for the manger 
ii. Unit Tests 

c. Create test-cases 
i. Functional tests 

ii. Integration Test 
4. Integration and Deployment 

a. Run the unit-test and behavioural test to make sure everything is working. 
b. Create the executable. 
c. Support with any issue that can come up. 

 

3.5.2 Prototype 

The prototype is based on Jenkins Server so for the first approach a build has been done in 
a local machine to get in contact with the server. Here is how it works: 
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In the middle of the screen the state of the build can be seen. 

 

The build is just a build done in the experimental local machine. 

 
 
This screen reflect the status of the last build if it was successful or not and the duration of 
the build.  The duration of the build is the simplest data that is going to probe the system 
implemented in this project which is better than the old system. 
 
With the measurements of the new system and the logs from the old system can make 
comparisons that can be made of times to see which is faster and at the same time take 
advantage of having all the builds centralised on a single server. 
The local machine exists already and is a physical one. The next step is to create virtual 
machines and deploy a slave. A slave is an application of Jenkins that runs in the build 
machine and it has no logic it just follows the instruction of the master. 
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In this first example both of the local machines are represented but the next step is to 
upload them to the cloud. 
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Altobridge Ltd has its own cloud and is managed by OpenStack. It looks like this: 
 

 

This tab contains all the possible images to load into the instances. 

  



“Moving to continuous integration on the cloud” 
 
 
 

46 
 

The following image below demonstrates the two instances that have been utilised since 
the start by using the prototype and testing. 
One is the master and the other is the slave, it doesn’t matter which is which as both can 
play either role. 
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The initial idea was to have a number of instances, roughly 40 or 50, in the cloud for the 
builds. The reason why there was a need for so many instances is because Altobridge has 
a number of products and the all have different requirements depending on the customer 
that they are targeting. Due to the nature of the product of the software that is developed 
it was done in C and a very low level.  
 
The use of common flags in GCC is for improving the performance of the compilation and 
avoiding errors with make file. In general each operative system has its own set of tags or 
speaking properly for each compiler in each operating system the flags are different. To 
build a number of project in a number of operative systems is necessary a number of NxN 
different combinations to build. This makes the process of building very specific for each 
build and this is the reason for having so many different instances in the cloud. 
(Staplin, 2005) & (Fundation, 2004) 
 

3.6 Conclusion 

To summarise, the number of specific “build machines” that are needed grows 
exponentially, this is where the cloud plays a role. It was discovered that the cloud is not 
un-limited and has its own limits so the implementation of the server in the cloud and 
should be even more specific.  
The way the instances will be used is as follows: 

1. An instance will be created.  
2. The instance will be configured. 
3. A “SNAPSHOT” will be taken. 

a. Snapshot means that we will store all the info of the instance that was going 
one in that moment in a database as a file. 

4. The snapshot will be stored for future builds. 
5. Once a job comes along, an instance is generated from the Snapshot. 
6. The instance does the job. 
7. Once the instance is finished another Snapshot is taken. 
8. Then the instance is terminated. 

a. Terminated means that all the resources are free to be used by another instance 
or process and disappears. 

9. The snapshot remains stored for next uses. 
 
All the logic of the creation of an instance has to be created somewhere.  
There are two possibilities: 

1. To create a plugin for Jenkins that does all that process each time. 
2. To create an external application that will listen for Jenkins requests. 

 
The research of both approaches should be done to see how complicate and which 
advantages can we get.  
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4.0 Implementation  

The main goal of the research is to compare how much profit can be made for using a 
Continuous Integration System in combination with a Private Cloud to build the software 
that is going to be released to the customers. To show the implementation approach 
taken in the research an explanation of the background needs to be done. 
 

4.1 Background 

The target of the research is to deliver to Altobridge a system that allows the company to 
release more efficient software continuously. The foundation of the company has been 
focused on the development of hardware packages to deploy mobile network 
architectures. The projects on Altobridge were mostly based on C programming language.  
The reason of using C is the software that runs on top of that hardware needs to be as 
efficient as possible, since that software is not going to be running in any other hardware 
a language that allows exposure to most of the hardware is required. Some aspects of the 
C programming language allow more control over Memory Usage or Input/OutPut in the 
device than other language so when dealing with very specific hardware those 
characteristics become extremely necessary. 
 
Recently, Altobridge is trying to move away from the hardware development and getting 
deep into software development. In fact, what Altobridge is trying to do is to focus the 
income of the company in Software Licensing instead of Hardware Selling. To accomplish 
the new objectives of moving to software licensing a system that allows to build all the 
projects of the company in a single product is required. The business model in Altobridge 
is about splitting different parts of the product in isolated projects. When a new version of 
the product has to be released to the customer many projects have to be combined (built) 
into a single product. When combining these projects a set of integration tests to make 
sure everything works fine are necessary. 
 
The objective of the continuous integration system is to make all the process of releasing 
the software to the costumer independent from a single type of machine, so the software 
can run in every machine of the same type, and make it more continuous so there is no 
need to wait until the last stage of the release to come back and fix possible errors that 
might arise. In order to keep a track of the steps of building a continuous integration 
system the process of setting up the continuous integration system will be divided in 
stages. 
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4.2 The Build Server 

The first thing we required is a Server or a machine from where to deploy the tools 
needed to set up the system. This server will be the central point of all the builds and the 
whole configuration. Anything that has to be changed or improved will be done from this 
server. 
Since Altobridge has recently installed a private cloud it is possible to create a virtual 
server1 in the cloud and manage it via ssh. The main reason of the virtual server to be in 
the Cloud is due to the entire network configuration it is associated with hosts a new 
server. By creating a virtual server in the cloud we save a lot work dealing with network 
configuration and it is easier to communicate with the rest of the instances that will make 
the work easier. Another advantage is that the instances are all behind the firewall of the 
company so all the information is secured under the security policies of the company. In 
other words no connection can pass through the firewall without the knowledge of the 
network administrator. 
 
The private cloud in Altobridge is configured by using OpenStack. OpenStack is an open 
software tool that allows the company to manage the cloud. There are two approaches to 
cloud management; either from the command line by using a client application called 
nova or by using the dashboard. The management that is necessary to use the instances 
from the scripts will be the nova client. The control from the dashboard is very useful 
when testing because the connections to the instances can be checked on real time but to 
manage the connections from Jenkins we need to use the nova client. 
 
Jenkins is the application that will be used to manage all the builds. Jenkins contains a GUI 
made in Java from where the builds management is done. From Jenkin’s GUI is possible 
for the builders to order builds and stack them in queue.  
 
The first step will then be created to instance by putting it running. To do this we will do 
the following step: 
 
  

                                                      
1 The word ‘virtual’ means that the server is not physically in a box. The server is a virtual machine hosted in 
the cloud as any other virtual machine. 
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1. A log is required to use the cloud so the administrator of the cloud has to provide an 

account to be able of creating instances. For the purpose of this research the user 

‘Builder’ has been created and it will be used for that purpose. 
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2. Access to the tab called ‘Instances’ to get an overview of all the instances that are 
running. Click on launch instance in the top right corner of the dashboard. 
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3. Specify the characteristics of the instance to start. For this research, the following 
steps where followed; 
3.1. Name: Jenkins (name of the application server) 
3.2. OS: Ubuntu 12.04 clouding (The OS that contains all the network information to 

run within the intranet of the company) 
3.3. Flavour: The amount of RAM, processor and hard disk that will contain. 
3.4. Security: Builder Keypair 

 

 
 

4. Wait until the instance gets ready for the job. 
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The next step is to install Jenkins on the instance we have already created. 
1. To manage the instance it’s necessary to use ssh to log and manage it from the 

command line. A keypair called ‘Builder’ has been created for this purpose to be 
able to ssh the instance as ‘Builder’ 

2. With the keypair we will log in the install by using ssh. 
ssh –i builder_rsa Ubuntu@172.16.5.21 

3. Then it is necessary to install Jenkins as an ubuntu package 
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu 
It is pretty straight forward. 

4. Note: For this experiment Jenkins will be installed in a different instance from 
where the code is so it won’t be downloaded anywhere else here. This is the 
instance that will hold Jenkins and will have the ip = 172.16.5.18 

 
From there we will ssh another instances to run the builds. 
1. The second step is to create a second instance which will hold the controller of the 

cloud and the builds. Since the build system is place is quite unique (because it has 
been made specially for this company) we will have to put all the classes and packages 
that we will need 

2. Then the new instance was created on Ubuntu with Keypairs and everything (see the 
step before)  

3. Once this is done it will set the controller to be able to build one product: An  
Altopod 
4.1. In the home folder /home/ubuntu we check out the trackers code 

 svn co https://repository.altobridge.com/svn/amg/trunk/trackers 

4.1.1. OS: Ubuntu 12.04 clouding (The OS that contains all the network 

information to run within the intranet of the company) 

4.1.2. Flavour: The amount of RAM, processor and hard disk that will contain. 

4.1.3. Security: Builder Keypair 

4.3 Pre-required cloud instances 

The Altobridge build system is an unique build system and in the sense that there has 

been created by the company. The system has been created, set up and developed over 

the past two years. It is not possible to try to change it because it would take too much 

time. Instead of changing the system the procedure will be to run the system in every 

instance so when the controller jumps to one of the instances to run a job it will think that 

is still the same machine and not in any other one. The only difference will be to execute 

the commands with an ssh in front. 

Then to make sure that the build controller thinks that is all the time in the same machine 

it is necessary to create one instance per project and set it up in the way that the build 

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu
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controller is expecting to find it. The way that the instance is set depends on the project 

that is going to be built, some project might require Java but some other might not. 

Steps that have been followed to put all the instances on place: 

1. Install svn 

 sudo apt-get install subversion 

2. checkout the folder with the code 

 svn co https://repository.altobridge.com/svn/amg/trunk/trackers 

3. Agree to accept permanently you credentials 

 p 

4. Give manually the builder credentials 

 --username=builder –password=bP1R4FaP 

5. Aceept store unencrypted 

6. Accept store unencrypted. 

7. Then Jump into the builder folder 

cd trackers/ie-build-1/guest/builder/ 

8. The we make the current folder the home folder 

 export HOME=$PWD 

9. Then we set up the environment to make sure everything is in place and svn 

doesn't ask for credentials 

source bashrc 

10. If it still ask for permission then we have to move the folder '.subversion' to the 

current home 

cp -R /home/ubuntu/.subversion/ . 

11. Then It will say that the packages are not installed, so first we go to 

cd trackers/ie-build-3/root 

12. Then modify the script adding this two lines at the beginning of the main method 

apt-get update 

apt-get upgrade 

And then comment out the line of mount_disks 

# mount_disks 

13. Change permissions to make it executable 

chmod +x install.sh 

14. then Execute the script with sudo 

sudo ./install.sh 

https://repository.altobridge.com/svn/amg/trunk/trackers
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15. Wait until everything is fetched and downloaded (Around 20 min or 60 min) 

A weekend after... 

16. Autoconf package is missing so install it 

sudo apt-get install autoconf 

17. altoPod 2.0/RC 18 doesnt exis yet so the one to build will be RC 17. 

cd /home/ubuntu/trackers/ie-build-1/guest/builder/;export 

HOME=$PWD;bin/release altoPod 2.0/RC17 ; 

18. Solve all the issue that will arise 

19. Install this 

20. wget http://get.qt.nokia.com/qt/source/qt-everywhere-opensource-src-

4.7.3.tar.gz 

21. tar zxf qt-everywhere-opensource-src-4.7.3.tar.gz 

22. cd qt-everywhere-opensource-src-4.7.3 

23. sed -i -e 73s/6/30/ src/network/access/qhttpnetworkconnection.cpp 

24. apt-get install libxfixes-dev 

25. apt-get install xvfb 

26. apt-get install xfonts-100dpi xfonts-75dpi xfonts-scalable xfonts-cyrillic libgl1-

mesa-dri x11-xkb-utils 

27. apt-get install uuid-dev 

28. apt-get install curl libcurl3 libcurl3-dev 

29. apt-get build-dep qt4-qmake 

30. ./configure -fast -opensource -no-sql-mysql -no-sql-sqlite -no-qt3support -no-

xmlpatterns -no-multimedia -no-audio-backend -n 

31. # 

32. # Warning - make took over 3 hours last time I tried it 

33. # 

34. make 

35. make install 

36. cd .. 

37. rm -rf qt-everywhere-opensource-src-4.7.3 

38. Remember to Export java_home 

39. vim /home/ubuntu/.profile 

export JAVA_HOME=/usr/lib/jvm/java-7-oracle 

40. check typing the comman env 

env 

41. Extra Steps 
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42. install manually qmake 

sudo apt-get install qt4-qmake 

43. allo people to copy into usr folder 

sudo chmod ugo+w -R /usr/share/snmp/mibs/ 

44. install snmp  

sudo apt-get isntall snmp 

45. install dev libs 

sudo apt-get install libsnmp-dev 

46. sudo apt-get install libace-5.6.3 

47. sudo apt-get install libace-dev 

48. sudo chmod ugo+w /usr/share/snmp 

49. sudo apt-get install libsctp-dev 

50. sudo apt-get install libpopt-dev 

51. Installing Replify package 

52. cd /mnt/source/svn/ 

53. svn co https://repository.altobridge.com/svn/platforms 

54. cd /mnt/source/svn/platforms/3G-platform/src/repo/lucid/pool/alto/replify 

55. dpkg -i *.deb 

56. # apt-get -f install gave erroro at this point, complaining about 

57. # E: The package erlang-base-hipe needs to be reinstalled, but I can't find an 

archive for it. 

58. # So 

59. dpkg -i erlang-base-hipe_15.b.1-dfsg-3ubuntu1_amd64.deb # 

60. # Try again 

61. apt-get -f install 

62. apt-get install gcc libpam-modules libpam0g-dev g++ unzip dpkg-dev 

63. Checking out platforms 

64. #It may take hours so instead of this we will mount platform as external drive 

svn co https://repository.altobridge.com/svn/platforms 

Installing HNBA in instance 172.16.5.34 

65. First Check out the code 

66. Remove the folder on /mnt/source 

67. Installing missing packets 

68. Autoconf 

sudo apt-get install -y autoconf 

https://repository.altobridge.com/svn/platforms
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69. Strange thing 

sudo apt-get -f install 

70. sudo apt-get install libxml2-dev 

71. sudo apt-get install libsqlite3-dev 

72. sudo apt-get install ncurses-dev 

73. mount ie-build-1 into the instance 

74. sudo mkdir -p /mnt/source/svn/platforms 

75. edit  sudo vim /etc/fstab 

76. Add this line at the end 

172.16.1.45:/mnt/source/svn/platforms /mnt/source/svn/platforms nfs 

ro,noatime,rsize=8192,wsize=8192,nosuid,soft 0 0 

77. sudo mount /mnt/source/svn/platforms 

78. Now platforms is mounted 

79. Cheack out Code 

80. sudo mkdir -p /mnt/source/svn/date 

81. sudo chown ubuntu /mnt/source/svn/date -R 

82. cd /mnt/source/svn/date 

83. svn co -N https://repository.altobridge.com/svn/date/releases/ 

84. cd releases/ 

85. svn co -N https://repository.altobridge.com/svn/date/releases/2.0 

86. cd 2.0 

87. svn co https://repository.altobridge.com/svn/date/releases/2.0/RC17 

88. Now we have the code on place 

89. Installing Headers Stuff 

90. sudo rsync -av antonio.puche@ie-build-3:/usr/local/ossasn1.compile_and_build 

/usr/local/ossasn1 

91. sudo mv /usr/local/ossasn1/ossasn1.compile_and_build/* /usr/local/ossasn1/ 

92. Useful commands 

93. apt-file search sqlite3.h 

94. End building at 09:21 on Thursday, 2013-04-11 (build took 5 minutes and 25.61 

seconds) 

Installing RDM in instance 172.16.5.35 

95. cd /home/ubuntu/trackers/ie-build-3/root 

96. vim install.sh (add -y to update and upgrade then  chang -qqy to -y to see the 

trace) 

https://repository.altobridge.com/svn/date/releases/
https://repository.altobridge.com/svn/date/releases/2.0
https://repository.altobridge.com/svn/date/releases/2.0/RC17
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97. mount ie-build-1 into the instance 

98. svn up 

99. chmod +x install.sh 

a. nohup sudo ./install.sh & 

b. Check Out Code 

100. Start Debugging and installing packages as needed 

101. export HOME=$PWD * This one might not be necesary * only with release script 

102. python /home/ubuntu/trackers/python/site-

packages/altobridge/building/build.py altoPod RDM 2.0/RC17 

103. If there is no PYTHONPATH set then  

source bin/which_python 

104. if OSError: [Errno 2] No such file or directory 

105. sudo mkdir -p /mnt/releases/building/building/ubuntu-10.04/2.0/RC17/log/ 

106. sudo chown ubuntu /mnt/releases -R 

107. Install autoconf. 

108. If apt-get is fucked up then 

sudo apt-get -f -y install 

109. If requires java set JAVA_HOME (th e6-jdk is already installed) 

110. vim /mnt/releases/building/building/ubuntu-

10.04/2.0/RC17/log/current/build.sh.log 

to debug errors tagged as 'build errors' 

111. try builds yourself by doing for example  

bash build.sh rdm 

112. Install jdk 1.7 for RDM 

113. Change permission in snmp/mibs 

114. sudo chmod 777 /usr/share/snmp/mibs/ -R 

115. sudo chmod 777 /usr/share/snmp/ 

116. # End building at 09:11 on Thursday, 2013-04-11 (build took 28.16 seconds) 

Installing ABC in instance 172.16.5.36 

117. do the exact first 6 steps in RDM installation 

118. Start Debugging and installing packages as needed 

119. cd /home/ubuntu/trackers/ie-build-1/guest/builder/ 

120. source bashrc 

121. source bin/which_python 
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122. python /home/ubuntu/trackers/python/site-

packages/altobridge/building/build.py altoPod ABC 2.0/RC17 

123. OSError: [Errno 2] No such file or directory 

124. sudo apt-get -f install 

125. Install missing packages 

126. sudo mkdir -p /mnt/releases/building/building/ubuntu-10.04/2.0/RC17/log/ 

127. sudo chown ubuntu /mnt/releases -R 

128. Installing necessary packages 

129. epam.c:2:22: error: pam_appl.h: No such file or directory 

130. apt-file search pam_appl.h 

131. sudo apt-get install libpam0g-dev 

132. mkdir: cannot create directory `ebin': File exists 

133. sudo apt-get install unzip 

134. # End building at 10:24 on Thursday, 2013-04-11 (build took 12 minutes and 11.73 

seconds) 

135. ll /mnt/source/svn/date/releases/2.0/RC17/dataopt/replify/release 

136. rm /mnt/source/svn/date/releases/2.0/RC17/dataopt/replify/release 

137. just in case it says that built_package() is empty 

Installing GAP in instance 172.16.5.32 

138. do the exact 6 steps in RDM installation 

139. install autoconf 

140. Start debugging 

141. same 3 steps as before 

142. sudo mkdir -p /mnt/releases/date 

143. sudo chown ubuntu /mnt/releases -R 

144. python /home/ubuntu/trackers/python/site-

packages/altobridge/building/build.py altoPod GAP 2.0/RC17 

145. OS Error 

146. # End building at 10:59 on Thursday, 2013-04-11 (build took 7.23 seconds) 

Code Changes 

147. Change the release script to comment out the line 

148. @@ -8,7 +8,7 @@ 

149. # For each server we know which packages it needs 

150. -known_altoPod_packages="HNBA RDM ABC 
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151. +known_altoPod_packages="HNBAC" 

152. The code has to be changded in three different parts (date.py, releaseble.py) 

153. Still doesnt work scp does not appear 

154. You have to modify 

155. release_server.sh 

156. date.py in 2 places 

157. Steps to build the projects in instances 

158. find out which project, now ABC 

159. create a new one that inherences from that one but addin cloud, ABCCloud 

160. change the parameters 

161. Follow up with the change in code on Altobridge build system explained down 

there 

 

4.4 Altobridge build system 

The build system that is used in Altobridge has been created in the company for packing 

their own software purposes. With this system Altobridge is able to package the software 

into a Linux package and deploy it to the user as a single packet. The name of the system 

is Trackers. 

One of the advantages of this system is that it allows the user to build different version of 

Linux by mounting disk in different drives which are all located in the same disk. It is a 

feature taken from Linux and this build system exploits it a lot. 

One of the disadvantages is that is very difficult to modify. For each change that has to be 

done when building a project there is a need to test that the project is building. 

This build system has been developed in python by a single engineer so for each different 

error that comes up there is a need to contact that engineer and query him about the 

error. 

Most of the errors have been debugged with the support of the Altobridge engineers who 

support this project and who this project is made for. All the build system is a set of 

python classes where all the required operations are contained to create folders, move 

files, copy files and ssh instances. 

What needs to be done is to modify those classes to be able to build the same projects in 

different instances and then copy the result back to the initial instance. In that way the 
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main python script will run as if it were in a single machine and it won’t know that the 

builds are actually being done in different machines. 

To put into context, the python script fire processes that ssh instances and then it copies 

back the result. To put the python system in place the first thing that needs to be done is 

to check all the code for the python classes, the python project can be found in the 

Altobridge intranet under the name of ‘trackers’. The code needs to be check out in order 

to start the implementation: 

svn co http://trackers.altobridge.com/svn/date/trackers 

In more detail: This command will check out all the code necessary to build projects for 

Altobridge. Is not known how many classes are contained in this package but for this 

experiment only a number of classes will be reviewed. 

To be able to modify the way that projects are being built the first thing to do is to modify 

the class that holds that project. In this python system a hierarchy of classes is contained 

to hold all the different projects and variations. 

In the folder ‘projects’ all the variations of the classes for all the possible projects can be 

found, so the first thing will be to take a look at the class date.py contained in the folder 

projects. That class contains all the different projects for the branch date.  

The class that will be reviewed trackers/python/site-

packages/altobridge/building/projects/date.py where all the projects can be found. 

The product that will be built for this experiment will be an Altopod:  

 

package_name = 'altoPod' 

  

  def __init__(self): 

  DateServer.__init__(self, 'HNBA RDM ABC GAP') 

 

The product Altopod is comprised of four different projects: HNBA, RDM, ABC and GAP. 

These four projects are independent of each other but they might depend in other 

packages. For example, we have RDM that needs to build NEM first and with NEM then 

builds RDM. 

The list of packages that can be built are found in this class as well as under the name 

packages: 

http://trackers.altobridge.com/svn/date/trackers
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def _projects_with_packages(): 

  """A list of project objects which produce packages""" 

+ return [CDM(), RDM(), HNBG(), HNBA(), OMC_3G(), ABC(), GuiAltoPod(), 

NetworkElementManagement(), HNBAC(), RDMC(), ABCC(),  GuiAltoPodCloud()] 

  

Here at the end of the line the projects that are going to be created have to be added, the 

projects that have been created for this experiment are HNBAC, RDMC, ABCC and 

GuiAltoPodCloud. The necessary modification to address is the new projects which extend 

from the previous ones that already exist. 

Note that, the instance where the build will take place has to be the exact same one as the 

build from where this script is being run from. If the controller machine is Ubuntu 10.04 

the other machine where the script will do ssh has to be Ubuntu 10.04 and has to have 

the python system (trackers) installed in order to make the build successful. In this way 

the ‘Trackers’ will not know if the build is taking place on same machine or on a different 

device. 

The next step is to add the new classes to build the new projects. The new projects will be 

built in the same way as previously done but in the cloud the new classes will be inherited 

from the old ones. All the necessary steps and the methods that execute the compile 

command as makefile or mvn compile will be overridden to do the exact same thing on 

the instance instead. 

In the HNBA project the class that represents this project is called HNBA, in order to 

override this class and create the new one a new class will need to be created with the 

name of HNBAC. The ‘C’ stands for cloud. 

The two methods inside the class HNBA that have to be changed in order not to alter the 

behaviour of the build system are build_command_line and move_package. The first one 

needs to do the ssh to the instance and the second needs to do scp to retrieve the 

resulting package from the instance. 

The code looks like this: 

class HNBAC(HNBA): 

 name='Home Node B Access Cloud' 

 instance_ip = '172.16.5.34' 

  

 def build_command_line(self):  

         return '%s "cd %s;%s" ' % ( ssh_to(self.instance_ip), self.source.path , 

HNBA.build_command_line(self))  
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 def move_package(self): 

                self.build_completed = True 

                self.package = linux.package( 

                        self.spec.package_dir(), 

                        self.package_name, 

                        self.source.build, 

                        self.source.release 

                ) 

                #if command_line.options.quick: 

                self.package.path = self.package.path.make_file_exist() 

                #else: 

                        #self.package.path.assert_exists() 

  log_sh.run_command('%s%s %s' % ( scp_here_from(self.instance_ip), 

self.package.path, self.package.path))  

                self.package.moveTo(self.release.project_being_released.path_to_building) 

 

The first command does the ssh to the instance and runs the command to compile the 

project. For HNBA is a make file but for other projects might be Java compile or Maven 

compile.  

The command is embedded in the class so with this implementation there is no need to 

know which command to run on the machine. The only requirement is to guarantee that 

the machine is the same one that the controller uses, otherwise a lot of errors with paths 

will arise. 

The two methods that does the ssh and the scp are: 

def ssh_to(ip): 

 return 'ssh -i /home/ubuntu/builder/builder_rsa -o "StrictHostKeyChecking no" 

ubuntu@%s' % ip 

  

def scp_here_from(ip): 

 return 'scp -i /home/ubuntu/builder/builder_rsa -o "StrictHostKeyChecking no" 

ubuntu@%s:' % ip 

 

In the first command ssh is done to the instance with the option ‘No host key checking’ to 

avoid being asked for host permission. In the second command the result package is 

copied back to the controller instance. 

With this implementation we have just included a new project in the system. Now the 

project has to be executed. To execute this project the project has to be marked as 

‘releasable’.  This step is necessary because a shell script will be used to run the build and 
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it will run all the projects marked as releasable, if the project is not marked then it won’t 

build. That script is called ‘release_server.sh’.  

The way to add the project to a list of release projects is modifying the file called 

releaseable.py. That file can be found in ‘trackers/python/site-

packages/altobridge/releasing/releseable.py. The next line has to be modified like this: 

def _date_all_packages(): 

packages = ['GAP', 'ABC', 'HNBA', 'HNBG', 'RDM', 'CDM', 'OM3', 'NEM', 'HNBAC', 

'RDMC', 'ABCC', 'GAPC'] 

 
The other projects that require modifications are: RDM, ABC and GAP. The procedure to 

modify them will be the same. A new class will be created extending from the old one but 

modifying the build methods to execute them in the cloud. 

Let’s see ABCC: 

class ABCC(ABC): 

 name = 'Accelerating Byte Cacher Cloud' 

 instance_ip = '172.16.5.36' 

  

 def build_command_line(self):  

  return '%s "cd %s;%s" ' % ( ssh_to(self.instance_ip), self.source.path , 

ABC.build_command_line(self))  

 

 def clean_command_line(self):  

             return '%s "cd %s;%s" ' % ( ssh_to(self.instance_ip), self.source.path , 

ABC.clean_command_line(self))  

 

 def post_build(self):  

  self.path_to_built_packages().make_directory_exist() 

             log_sh.run_command('%s%s %s' % ( scp_here_from(self.instance_ip), 

self.path_to_built_packages()/'*.deb', self.path_to_built_packages()))  

                ABC.post_build(self) 

 

The definition of build_command_line is the same as in the last example (HNBA) but in this 

build there is a ‘clean’ command that has to be run. The way to do this is by creating a 

clean_command_line which runs a clean command before the compilation is done, the 

way the methods are modified is by adding to the clean command  a ‘ssh’ string before 

with the ip of the instance so that command will be executed in an instance. 
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The last method post_build creates the folder were the result package is going to be. The 

method is now the same as it was but instead of getting the package from the current 

machine a scp command is done to retrieve from the instance where the package has 

been built. 

As a reminder the build system thinks that everything is being built in one machine so it 

does not know anything about the instances so everything has to be exactly the same on 

all of the machines. 

The next project to review is RDM. 

class RDMC(RDM): 

        name='Remote Data Manager Cloud' 

        instance_ip = '172.16.5.35' 

  

        def build_command_line(self): 

                return '%s "cd %s;%s" ' % ( ssh_to(self.instance_ip), self.source.path , 

RDM.build_command_line(self)) 

 

 def clean_command_line(self):  

                return '%s "cd %s;%s" ' % ( ssh_to(self.instance_ip), self.source.path , 

RDM.clean_command_line(self))  

  

 def move_results(self): 

                path_to_source_build = makepath(self.source.path / 'build') 

                try: 

   path_to_source_build.make_directory_exist() 

   log_sh.run_command('%s%s %s' % ( 

scp_here_from(self.instance_ip), path_to_source_build/'*.deb', path_to_source_build)) 

                        package = path_to_source_build.files(self.package_glob())[0] 

                except IndexError: 

                        raise BuildError(self, 'No results found at %s/*.deb' % 

path_to_source_build) 

                package.mv(self.path_to_package()) 

 

 def set_java_home(self): 

  pass 

 
This project requires Java to be built and checks if Java home is set correctly. The problem 
with this is that the check will need to be done before jumping into the instance, by the 
controller, otherwise the build will gave an error saying that Java was not installed. To get 
over this error the method that sets Java home has to be overwritten to do nothing, that 
is pass. 
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The methods clean_command_line and build_command_line are the same as in past 
implementations. The method move_results is a bit different because the path to the build 
has to be made before the files have to be copied in and the final package can be moved 
to a different location. 
 

Finally the last project GuiAltopod. Is the simplest one of the four and the changes are the 
same as in ABC project. 
 
class GuiAltoPodCloud(GuiAltoPod): 

        name = 'Gui Alto Pod Cloud' 

instance_ip = '172.16.5.22' 

  

 def build_command_line(self): 

                return '%s "cd %s;%s" ' % ( ssh_to(self.instance_ip), self.source.path , 

GuiAltoPod.build_command_line(self)) 

 

        def clean_command_line(self): 

                return '%s "cd %s;%s" ' % ( ssh_to(self.instance_ip), self.source.path , 

GuiAltoPod.clean_command_line(self)) 

 

        def post_build(self): 

                self.path_to_built_packages().make_directory_exist() 

                log_sh.run_command('%s%s %s' % ( scp_here_from(self.instance_ip), 

self.path_to_built_packages()/'*.deb', self.path_to_built_packages())) 

                GuiAltoPod.post_build(self) 

 

Once included, there is another place where the name of the project has to be added to 

be able to execute that file of the release script that will be used to trigger the build. 

That file can be found on 

‘/mnt/source/svn/date/releases/2.0/RC17/release_scripts/release_server.sh’ 

The way to use this script is by using the next command: 

bash release_server.sh altoPod 2.0/RC17 –m 

Bash is the Linux shell, release_server.sh is the script itself and the option are altoPod, 

which is the product that will be built for this experiment, and the version of that product 

2.0/RC17. The last option means ‘muddy’ it is saying that build should not update the files 

on the tracker and that release should not be able to deliver to the customer. Is like a test, 

this mode will be used to ensure that the script is working properly. 



“Moving to continuous integration on the cloud” 
 
 
 

67 
 

By using this command the altopod will be packaged and ready to be deployed on a 

machine. However, this script builds the product package by package, in other words, it 

builds project per project sequentially even if the build jobs are done in the cloud. The 

purpose of this research is to see how fast the builds can be done by using the cloud so 

this script will be modified to run all the jobs in the cloud on parallel. 

For that purpose the next lines will be modified: 

# For each server we know which packages it needs 

  

-known_altoPod_packages="HNBA RDM ABC GAP" 

+known_altoPod_packages="HNBAC RDMC ABCC GAPC" 

 
In this line the products included are the same as the old ones but with a ‘C’ at the end 

specifying that the project will be built in the cloud. 

The next code to modify is the loop that builds the project. In the original version of the 

script the builds were done sequentially but now the script will be modified to do the jobs 

in parallel. 

  build_server () 

 { 

 pid_array=() 

  for release_package in $release_packages 

 method_call &  

            pid_array+=($!) 

  echo "${pid_array[@]}" 

 done 

 for pid in $pid_array 

        do 

                 

                echo "My pid is ($pid)" 

  wait $pid 

  rc=$? 

  if [ $rc -ne 0 ] ; then 

  exit $rc 

   fi 

        done 

 } 

  

The method build_server creates the Altopod. Inside this method we have method_call 

which builds each of the project of the server (altopod). To make it independent and able 
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to run in parallel the part of the program that was building the project was extracted and 

encapsulated in a method called method_call. To run this method in parallel the only thing 

remaining is to add an ‘&’ at the end of the line to run it in the background. In this way all 

four processes will be built as independent processes (background processes). 

After the four jobs have started running another loop has to be included to make sure that 

the build method waits until all four projects are built. PID stands for Process Id and 

basically is a number assigned to a process to check if the process is still running or not 

and identify it. 

Once all four projects are built we need to check if any of them have returned an error 

message and if so then exit scripts with the same error code in the process. 

Due to the parallel nature of the current procedure there might be errors with paths and 

folders. In particular there are some folders that have to be created to perform the build. 

If those folders are already created the build will raise an error and it will not continue. To 

avoid this error, which is not really an error because the folder already dose exist, a try 

catch statement has to be made to catch the situation and to say that everything is fine 

and the program should continue working. The file to modify is the next one: 

/home/ubuntu/trackers/python/site-packages/altobridge/shell/script_logger.py 

The modification to do will be the next one: 

  path_to_old_linkee = path_to_old_linker.realpath() 

  path_to_new_linkee = path_to_new_logs / processes.identification_directory() 

  move_aside(path_to_new_linker) 

 try: 

  path_to_new_linkee.make_directory_exist() 

  path_to_new_linkee.symlink(path_to_new_linker) 

 except OSError: 

            pass 

for path_to_old_item in path_to_old_linkee.walkfiles(): 

 relative_path = path_to_old_linkee.relpathto(path_to_old_item) 

 path_to_new_item = path_to_new_linkee / relative_path 

 path_to_new_item.write_text(path_to_old_item.text(), append=True) 

 path_to_old_item.try_remove() 

 path_to_old_linkee.try_remove() 

  try:  

   path_to_old_linker.remove() 

  except OSError: 

  pass 
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    self._set_current_directory(path_to_new_linker) 

4.5 Putting all the parts together 

Once the Controller Build Instance (the instance from where the build is triggered) is ready 

and does the job, now the build has to be triggered from jenkins. 

To do that we must first change the user Jenkins because it is already installed and we 

need the permission from the admins owns so the easiest way is to run the builds as 

ubuntu user instead of jenkins user. 

To do that the next steps have to be followed: 

On the instance where jenkins is installed go to the file /etc/default/jenkins and change 

the next line: 

# user id to be invoked as (otherwise will run as root; not wise!)  

-JENKINS_USER=jenkins  

+JENKINS_USER=ubuntu 

 

Then change the permission of the following folders: 

chown -R ubuntu /var/log/jenkins 

chown -R ubuntu /var/lib/jenkins 

chown -R ubuntu /var/run/jenkins 

chown -R ubuntu /var/cache/jenkins 

Then restart the Jenkins server 

sudo service jenkins restart 

Once Jenkins is restarted there it is possible to start configuring jobs from the GUI on the 

webserver.  

A user has been created with admin permissions to perform jobs in Jenkins and that user 

is called Antonio. 

The first thing to do is to access the login page of Jenkins and type the credentials, the 

instances are set up in the private network of Altobridge so we will just type the private id 

and it will work for this experiment. Just typing in the browser the url: 

http://172.16.5.18:8080  

It should work: 

http://172.16.5.18:8080/
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The creation of the user is not relevant for this experiment the only requirement is to get 

a user with administrator rights and everything will work fine. 
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In the next step will be to access to the dashboard to star configuring a job: 

 

The dashboard shows up all the information about the builds. 
For this experiment only the job on charge of building an Altopod is prepared, up and 
running. The other jobs are mostly tests. 
 
From the dashboard the icon with weather images shows the status of the build. 
The status of the build is calculated by Jenkins taking into account the number of times 
that the build has broken down in the last 5 or 10 builds. Depending of the number of 
failures the icon will be more rainy and cloudy or it will be very sunny if all the builds are 
fine. 
 
For Jenkins a successful build is a process or command that returns 0. If at the end of the 
script the last command returns 0 then the build will be successful for Jenkins. Otherwise 
the command could return as being failed. 
 
The build that works is ubuntu10.04-date2.0-altoPod-release to see the implementation of 
that build the only requirement is to click on the name and see all the data for that job.  
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Here are all the times that the build has been triggered which are shown on the left. All 

the times of these builds are measured by Jenkins. First of all it is necessary to see the 

commands that make the job. Just by clicking on configure on the top left and scrolling 

down its visible the shell script that is run by this job. 
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Under the header Build in bold letters it says Execute shell, that part executes the shell 

script that will run the job. It is basically an ssh command that runs the build in a different 

machine. Here it can be seen: 

ssh -i /home/ubuntu/builder/builder_rsa -o 'StrictHostKeyChecking no' 

ubuntu@172.16.5.31 "cd /home/ubuntu/trackers/ie-build-1/guest/builder/;source 

bashrc;source bin/which_python;export HOME=/home/ubuntu/trackers/ie-build-

1/guest/builder;cd  /mnt/source/svn/date/releases/2.0/RC17/release_scripts;bash 

release_server.sh altoPod 2.0/RC17 -m" 

This is an ssh command that runs all the necessary shell commands to trigger the build in 

the build Controller. 

To see if the build is complete successfully Jenkins holds an option called Console Output 

which shows up all the outputs from the commands that have been run in the cloud. To 

see them it is only necessary to click on one of the builds on the left and click on Console 

Output. Here there is an example of the last build that was run: 
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From here all the results of the build can be seen as if it were on the console itself. 
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Another feature of Jenkins is a graph that shows up the times of the last builds. This graph 

makes it easier to see which are taking longer and which builds might be stuck due to a 

very long build procedure. 

 

This feature is useful to manage the time that the builds take. 

The initial idea was to run a build every hour or every time a developer commits a code 

but putting this into practise became very difficult to implement on the build system and 

to ensure it worked for the experiment. After some revaluation the builds were then set 

to trigger when clicking on the button (which is an improvement from the old system 

where it has to be triggered by shell commands). 

To run a build for an Altopod the only thing remaining is to click on the button on the right 

side of the name of the build name and the build will be done. It is part of the 

requirements which were to run builds just with a button and would be improved the 

times which is a necessary step for continuous integration.  
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From here the system is ready to build an Altopod. If it is successful it will be ready to 

package it and send it to test or if the tests are included in the build will be just a matter of 

releasing it to the user. 

4.6 Failed implementations and errors 

4.6.1 Logs corrupted due to multithreading 

There might be some errors due to the parallel way of doing the builds. The main problem 

is found when writing logs because all the instances are writing logs in the same file so the 

files might become corrupted. The logs are still readable but not trustworthy because the 

order in which the commands are executed may change every time with every build so it 

is not possible to trust them. 

4.6.2 Script to start and stop instances from the cloud 

This implementation could be considered as a second approach. With this approach 

instead of having instances running all the time, an improvement was made to the 

resources of the cloud by using snapshots. This approach is better because it uses the 

resources of the cloud wisely but the performance is impacted. The main problem with 
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this instance is if they are finally started they may be slow. During implementation it 

usually took 15 minutes to start and another 15 minutes to stop the instance plus the time 

to delete the instance that was around a minute. So in total there was a +31 min to add to 

the build time. That approach, even if it worked, was not feasible because it was making 

the process very slow. 

At the very beginning of the experiment during the research of the capabilities of the 

cloud and because of the high requirements of the build system it was obvious that the 

cloud won't handle the number of instances that were needed to be run at the time so the 

solution was to create a manager script on shell script that performs instance 

management. The instance management to perform was the next one: 

1. The script will find a particular snapshot in the database. 

2. Then Jenkins will ssh the instance in particular and will the run the build as is doing 

now. 

3. After that another script will take a snapshot of that instance and it will store with 

the same name as the old one. 

4. Then the old one will be deleted. 

5. The new snapshot is ready to use. 

The instances are stored in the database by using unique id made of a mix between letters 

are numbers but when starting and stopping the names of the instances have to have a 

relation with the job they are doing so the programmers we can identify which one is 

running and see if it's correct. the naming convention we use was to put the first 2 letters 

of the job we want to run, example: 

The job ubuntu10.04-date2.0-altoPod-release will be named as ub10da20PodBuild since 

alto is not relevant because all the products of Altobridge are named as alto something 

only the second word of the name of the product will be used. 

Basically the procedure to follow was to run one script to start the right instance then let 

Jenkins work and then run another script to stop and store the instance. 

Here is the script to start instances: 

#!/bin/bash 

keypair_user=builder 

openrc_conf=/home/ubuntu/builder/openrc.sh 

echo "Configuring Nova Client $openrc_conf" 

sudo route add -host 172.16.4.11 gw 172.16.5.17 

http://172.16.5.18:8080/job/ubuntu10.04-date2.0-altoPod-release/
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source $openrc_conf 

echo 'Checking that nova commands can be executed' 

nova list 

 

instance_name=$1 

build_steps=$2 

if [ -z $instance_name ]; then 

 echo 'The name of the instance can not be empty' 

 exit 1 

elif [ -z $build_steps ]; then 

 echo 'The build steps can not be empty' 

 exit 1 

else 

 echo "The instance name is $instance_name" 

 instance_id=$(nova image-list | awk -F'|' "/$instance_name/ { print \$2 }")  

if [ -z $instance_id ]; then 

 echo 'The Instance Id has not been found by the name given' 

 nova image-list 

 exit 2 

else 

 echo "The Instance Id has been found! Id:$instance_id" 

 nova boot $instance_name --image $instance_id --flavor 1 --key_name 

 $keypair_user 

 booting=true 

 while [ "$booting" = "true" ]; do 

  state=$(nova list | awk -F'|' "/$instance_name/ { print \$4 }" | tr -d ' ')  

  if [ "$state" = "ACTIVE" ]; then 

   booting=false 

  elif [ "$state" = "BUILD" ]; then 

   echo "The state of the instance is $state and $booting. Going to Sleep 

   for a minute." 

   sleep 60 

  else 

   echo "More than one instance found for that name $instance_name 

   $state" 

   nova list 

   exit 3 

  fi 

 done 

 instance_ip=$(nova list | awk -F'|' "/$instance_name/ { print \$5 }" | cut -d'=' -f2 ) 

 echo "Getting instance ip $instance_ip" 

 ssh-keygen -f "/home/ubuntu/.ssh/known_hosts" -R $instance_ip 

 ssh -i /home/ubuntu/builder/builder_rsa -o 'StrictHostKeyChecking no' 

 ubuntu@$instance_ip "$build_steps" 

 exit 0 
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 fi 

fi 

 

Here is the script to stop the instances: 

#!/bin/bash 

 

keypair_user=builder 

openrc_conf=/home/ubuntu/builder/openrc.sh 

echo "Configuring Nova Client $openrc_conf" 

source $openrc_conf 

echo 'Checking that nova commands can be executed' 

nova list 

 

instance_name=$1 

if [ -z $instance_name ]; then 

        echo 'The name of the instance can not be empty' 

        exit 1 

else 

        echo "The instance name is $instance_name" 

instance_id=$(nova list | awk -F'|' "/$instance_name/ { print \$2 }") 

if [ -z $instance_id ]; then 

                echo "The Instance Id has not been found by the name given $instance_name" 

                nova image-list 

                exit 2 

        else 

image_id=$(nova image-list | awk -F'|' "/$instance_name/ { print \$2 }") 

echo "Deleting old image $image_id" 

nova image-delete $image_id 

nova image-create $instance_id $instance_name 

saving=true 

                while [ "$saving" = "true" ]; do 

                        state=$(nova image-list | awk -F'|' "/$instance_name/ { print \$4 }" | tr -d ' ') 

                        if [ "$state" = "ACTIVE" ]; then 

                                saving=false 

                        else 

                                echo "The state of the instance is $state and $saving" 

                                sleep 60 

                        fi 

                done 

fi 

fi  

 

An issue problem with the implementation was the snapshots took too long to start and 

stop. 



“Moving to continuous integration on the cloud” 
 
 
 

80 
 

At the beginning of the instance management implementation the times that the 

instances took was around a minute, but as the experiment started and the number of 

instances started to grow the time the snapshot took increased. The highest increase was 

when Trackers was installed to allow the building, the amount of hard drive needed to 

slow the time it took the instances to start. 

 

It was not sure if it was for a lack of resources on the cloud or if the network was is not 

prepared to handle the network traffic but the result was the it took on average fifteen 

minutes for the snapshot to start. 

At the same time it was measuring when there were stops in the instances. To snapshot 

an instance and store it on the database usually took around 15 minutes. After all the 

instance management, the time that the builds took was 30 minutes longer in each 

instance. This was clearly not an improvement. After that it was not possible anymore to 

start and stop instances. It took 2 weeks "to resolve" the problem and the solution was to 

reset the controller of the cloud so it had to delete from the instances and start from 

scratch again. After that the error came back so it was obvious that the cloud was not 

stable enough to manage snapshots. 

Each time the controller is reset the snapshots also have to be reset. Once there is an 

error with the snapshot, the solution is to delete snapshot and start again. It is not 

possible to repeat all the work each time as something goes wrong with this approach. 

Now it is possible to start instances, to take a snapshot and stop the instance but it is not 

possible to start that snapshot anymore. That issue was open for longer time and the 

manager of the cloud could not find a solution so the implementation through snapshot 

management was not possible maybe in the future when the cloud comes more stable 

this will be a possible option. 

Making the assumption that the cloud with snapshot management worked smoothly with 

the implementation, but the results were not hopeful. The builds were taking longer due 

to the time of start and stopping instances. The whole point of the build system was to 

improve the speed of the build so it can be done more often. If a snapshot takes 15 

minutes to start and another 15 minutes to be stored the extra time added to the build of 

each individual project would be +30 minutes for each build. Those results were not 

favourable at all. So depending on the duration of the build it may or may not be worth it. 

If it is the case where the builds takes more than an hour it would be worthwhile to use 
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snapshot management but for the rest of the builds where the build time is not over 20 

minutes or so then is not worth it because it will take twice the normal time to build. 

4.6.3 Plugin to start and stop instances form the cloud  

Another approach taken was to manage the instances from a Jenkins plugin which was 

written in Java to manage the creating and initialisation of instances in the cloud. The 

problem with this approach was that the client used to send commands to the cloud 

didn’t seem to be compatible with the plugin. The error was the credentials of the cloud 

were lost when connection to the cloud through the nova client. 

Some attempts to get support were made by writing questions in blogs of developers who 

encountered the same issues but the plugin has been created by a company so the 

support was not available on free basis. This basically means that the plugin can be used 

but there is no support. So the guy in the forum couldn’t really help the research. 

This approach was dropped due to the lack of support. Here is the link of the blog. 

http://www.tikalk.com/alm/managing-private-dev-cloud-using-openstack-chef-jenkins 

http://www.tikalk.com/alm/managing-private-dev-cloud-using-openstack-chef-jenkins
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4.6.4 Issues with the cloud 

The main issue with the cloud in Altobridge is that is a private cloud. Most of the issues 

with this are the traffic congestion and cloud management. 

Another problem with the cloud is that it needs maintenance and it needs people assigned 

to working on the cloud as if a database. 

But the main issue was with the management script to start and stop instances. Some of 

the snapshots were not possible to be started and the only error message that could be 

seen was ‘Error’. It didn’t give any further information on the message it would just not 

start the instance. Sometimes the solution of the manager was to manipulate the table 

with the instances in the database of the cloud and delete them by using SQL statements. 
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Another problem found was not being able to log into the cloud due to an error in the 

login page. There was no feedback from the instance just an error message with python 

trace back that was sent to the cloud administrator to fix it.  

4.6.5 Issues with the python system  

The python system is a build system that has been made by Altobridge. The main purpose 

of this system is to create Debian packages which will be sold as products on top of the 

hardware that Altobridge sells as well. 

The python system compiles all the projects that are part of a product and package them 

into an Ubuntu version so that when you install it on the box all the projects are there 

installed and ready to use. 

The system is very good in the way that it allows the package projects automatically so by 

running the command from the command lines allow the user to release a new version of 

the software. However, is not as simple as it seemed at the beginning, actually it can be 

very complicated. It is made of hundreds of classes which interact which each other, 

creates the files directories and structure needed to create the Debian package. 

This system was the real challenge as there were a number of issues with the errors that 

need to be debugged with the help of J Alan Brogan (The designer of the system) and 

Martin Grealish (Developer in the system). A large number of changes there were in the 

code would make the system work. The main problem was that the system was not 

created with parallel building on mind. It was completely set out to work in the opposite 

way, the purpose was to do things one by one and make sure only one process is running 

at a time so when the development started a number of issue arose and they were 

difficult to deal with. 

There is not enough time to change a huge build system as Trackers so the approach taken 

was to fix only the main errors that block the builds happening, one by one until the build 

is successful. 
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5.0 Data Collection 

To analyse the time of the builds I got access to the logs folder where all the logs of the 
last builds are stored. To obtain the times from there I ran the next command: 

ssh user@ie-build-3 'grep "build took" /mnt/releases/building/logs/*.log' > times.txt 

This command filters the lines that says ‘build took’ that where the time that the build 

took can be found and put them in a file called times.txt. 

The result was a file filled with hundreds of lines with the final time of the build. The next 
step is to pass them to a spreadsheet where they can be analysed. 

DATE-altoPod-1.0.RC37-Ubuntu10.04.build.log: at 11:12 took 11 minutes 21.17 seconds) 

DATE-altoPod-1.0.RC37-Ubuntu10.04.build.log: at 11:16 took 3 minutes 0.68 seconds) 

DATE-altoPod-1.0.RC37-Ubuntu10.04.build.log: at 11:35 took 18 minutes 56.13 seconds) 

DATE-altoPod-1.0.RC38-Ubuntu10.04.build.log: at 15:14 took 11 minutes 5.55 seconds) 

DATE-altoPod-1.0.RC38-Ubuntu10.04.build.log: at 15:17 took 2 minutes 51.3 seconds) 

DATE-altoPod-1.0.RC38-Ubuntu10.04.build.log: at 15:36 took 19 minutes 1.35 seconds) 

DATE-altoPod-2.0.RC13-Ubuntu10.04.build.log:  at 10:26 took     39.91 seconds) 

DATE-altoPod-2.0.RC13-Ubuntu10.04.build.log:  at 10:29 took 2 minutes 20.93 seconds) 

DATE-altoPod-2.0.RC13-Ubuntu10.04.build.log:  at 10:46 took 16 minutes 24.08 seconds) 

DATE-altoPod-2.0.RC13-Ubuntu10.04.build.log:  at 11:06 took 18 minutes 27.26 seconds) 

DatE-altoPod-2.0.RC14-Ubuntu10.04.build.log: at 16:04 took 40 minutes 31.23 seconds) 

DATE-altoPod-2.0.RC34-Ubuntu10.04.build.log: at 17:32 took 19 minutes 6.16 seconds) 

DATE-altoPod-2.0.RC34-Ubuntu10.04.build.log: at 17:35 took 2 minutes 57.52 seconds) 

DATE-altoPod-2.0.RC34-Ubuntu10.04.build.log: at 17:55 took 19 minutes 36.83 seconds) 

DATE-altoPod-2.0.RC5-Ubuntu10.04.build.log: at 16:11 took 16 minutes 12.72 seconds) 

DATE-altoPod-2.0.RC5-Ubuntu10.04.build.log: at 16:15 took 2 minutes 48.61 seconds) 

DATE-altoPod-2.0.RC5-Ubuntu10.04.build.log: at 16:34 took 18 minutes 50.76 seconds) 

DATE-altoPod-2.0.RC6-Ubuntu10.04.build.log: at 18:36 took 16 minutes 29.99 seconds) 

DATE-altoPod-2.0.RC6-Ubuntu10.04.build.log: at 18:38 took     59.48 seconds) 

DATE-altoPod-2.0.RC7-Ubuntu10.04.build.log: at 14:46 took 19 minutes 24.99 seconds) 

DATE-altoPod-2.0.RC7-Ubuntu10.04.build.log: at 14:49 took 3 minutes 0.13 seconds) 

DATE-altoPod-2.0.RC7-Ubuntu10.04.build.log: at 15:09 took 19 minutes 46.12 seconds) 

DATE-altoPod-2.0.RC7-Ubuntu10.04.build.log: at 15:10 took     32.14 seconds) 

DATE-altoPod-2.0.RC8-Ubuntu10.04.build.log: at 03:43 took 16 minutes 15.07 seconds) 

DATE-altoPod-2.0.RC8-Ubuntu10.04.build.log: at 03:46 took 2 minutes 57.3 seconds) 

DATE-altoPod-2.0.RC8-Ubuntu10.04.build.log: at 04:06 took 19 minutes 54.81 seconds) 
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 Once all the data is formatted in an excel file the information that is relevant for this 
research will be selected. The product that has been built for this experiment is called 
Altopod so the times to look at are the times of the last builds of the Altopod product:

DATE-altoPod-2.0.RC8-Ubuntu10.04.build.log: at 04:07 took     34.91 seconds) 



 
 

Next step is to generate a graph based on those times: 

 

 

The next data will be the times of the build done on Jenkins. These times we fetched from 

the Jenkins GUI straight away and put them in excel in appropriate format. 
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Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2013   11 minutes 50 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2014   12 minutes 10 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2015   11 minutes 40 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2016   12 minutes 15 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2017   11 minutes 55 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2018   12 minutes 3 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2019   11 minutes 35 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2020   12 minutes 15 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2021   11 minutes 34 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2022       56 seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2023   2 minutes   seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2024   3 minutes   seconds 
Jenkins/DATE-altoPod-2.0.RC17-
Ubuntu10.04.build.log: at 24/24/2025   1 minutes   seconds 
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A graph generated from these times: 

:  

 

Another relevant times for this experiment are: 

To build the product AltoGateway.  
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DATE-altoGateway-1.0.RC37-

Ubuntu10.04.build.log:# at 11:52 took 11 minutes 44,89 seconds) 

DATE-altoGateway-1.0.RC37-

Ubuntu10.04.build.log:# at 11:57 took 4 minutes 41,21 seconds) 

DATE-altoGateway-1.0.RC37-

Ubuntu10.04.build.log:# at 12:17 took 19 minutes 53,11 seconds) 

DATE-altoGateway-1.0.RC38-

Ubuntu10.04.build.log:# at 15:56 took 12 minutes 3,15 seconds) 

DATE-altoGateway-1.0.RC38-

Ubuntu10.04.build.log:# at 16:00 took 4 minutes 24,92 seconds) 

DATE-altoGateway-1.0.RC38-

Ubuntu10.04.build.log:# at 16:20 took 19 minutes 51,25 seconds) 

DatE-altoGateway-2.0.RC13-Ubuntu10.04.build.log: 

# at 11:49 took 18 minutes 47,26 seconds) 

DatE-altoGateway-2.0.RC13-Ubuntu10.04.build.log: 

# at 12:18 took 20 minutes 39,24 seconds) 

DatE-altoGateway-2.0.RC13-Ubuntu10.04.build.log: 

# at 12:25 took 3 minutes 51,19 seconds) 

DATE-altoGateway-2.0.RC14-

Ubuntu10.04.build.log:# at 17:40 took 46 minutes 10,8 seconds) 

DATE-altoGateway-2.0.RC34-

Ubuntu10.04.build.log:# at 16:43 took 16 minutes 54,42 seconds) 

DATE-altoGateway-2.0.RC34-

Ubuntu10.04.build.log:# at 16:48 took 4 minutes 17,68 seconds) 

DATE-altoGateway-2.0.RC34-

Ubuntu10.04.build.log:# at 17:07 took 18 minutes 45,84 seconds) 

DATE-altoGateway-2.0.RC5-

Ubuntu10.04.build.log:# at 17:00 took 19 minutes 47,1 seconds) 

DATE-altoGateway-2.0.RC5-

Ubuntu10.04.build.log:# at 17:05 took 4 minutes 25,83 seconds) 

DATE-altoGateway-2.0.RC5-

Ubuntu10.04.build.log:# at 17:25 took 19 minutes 34,4 seconds) 

DATE-altoGateway-2.0.RC6-

Ubuntu10.04.build.log:# at 22:27 took 19 minutes 38,08 seconds) 

DATE-altoGateway-2.0.RC6-

Ubuntu10.04.build.log:# at 22:29 took 1 minutes 57,83 seconds) 

DATE-altoGateway-2.0.RC7-

Ubuntu10.04.build.log:# at 13:59 took 17 minutes 4,46 seconds) 

DATE-altoGateway-2.0.RC7-

Ubuntu10.04.build.log:# at 14:03 took 4 minutes 22,44 seconds) 

DATE-altoGateway-2.0.RC7-

Ubuntu10.04.build.log:# at 14:22 took 18 minutes 27,71 seconds) 

DATE-altoGateway-2.0.RC8-

Ubuntu10.04.build.log:# at 04:36 took 19 minutes 48,47 seconds) 
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DATE-altoGateway-2.0.RC8-

Ubuntu10.04.build.log:# at 04:41 took 4 minutes 35,55 seconds) 

DATE-altoGateway-2.0.RC8-

Ubuntu10.04.build.log:# at 05:01 took 19 minutes 47,49 seconds) 

 

The project CDM 

CDM-1.0.RC13-Ubuntu10.04.build.log:# at 17:47 took     9 
seconds) 

CDM-1.0.RC14-Ubuntu10.04.build.log:# at 15:14 took 3 minutes   
  

CDM-1.0.RC15-Ubuntu10.04.build.log:# at 23:32 took 3 minutes   
  

CDM-1.0.RC16-

Ubuntu10.04.build.log:# at 11:36 took 4 minutes     

CDM-1.0.RC17-

Ubuntu10.04.build.log:# at 17:39 took 3 minutes     

CDM-1.0.RC18-

Ubuntu10.04.build.log:# at 02:00 took 1 minutes     

CDM-1.0.RC19-

Ubuntu10.04.build.log:# at 14:51 took 4 minutes     

CDM-1.0.RC20-

Ubuntu10.04.build.log:# at 17:53 took 4 minutes     

CDM-1.0.RC21-

Ubuntu10.04.build.log:# at 10:56 took 4 minutes     

CDM-1.0.RC22-

Ubuntu10.04.build.log:# at 18:54 took 3 minutes     

CDM-1.0.RC23-

Ubuntu10.04.build.log:# at 17:27 took 5 minutes 21,23 seconds) 

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

Series1



“Moving to continuous integration on the cloud” 
 
 
 

91 
 

CDM-1.0.RC24-

Ubuntu10.04.build.log:# at 13:55 took 4 minutes 12,02 seconds) 

CDM-1.0.RC25-

Ubuntu10.04.build.log:# at 21:26 took 4 minutes 8,37 seconds) 

CDM-1.0.RC26-

Ubuntu10.04.build.log:# at 23:36 took 4 minutes 11,29 seconds) 

CDM-1.0.RC27-

Ubuntu10.04.build.log:# at 11:29 took 4 minutes 14,6 seconds) 

CDM-1.0.RC28-

Ubuntu10.04.build.log:# at 16:36 took 4 minutes 10,34 seconds) 

CDM-1.0.RC29-

Ubuntu10.04.build.log:# at 13:34 took 4 minutes 12,09 seconds) 

CDM-1.0.RC30-

Ubuntu10.04.build.log:# at 14:40 took     8,75 seconds) 

CDM-1.0.RC31-

Ubuntu10.04.build.log:# at 18:52 took 3 minutes 37,96 seconds) 

CDM-1.0.RC32-

Ubuntu10.04.build.log:# at 16:20 took 3 minutes 36,03 seconds) 

CDM-1.0.RC33-

Ubuntu10.04.build.log:# at 06:52 took 4 minutes 20,92 seconds) 

CDM-1.0.RC34-

Ubuntu10.04.build.log:# at 16:55 took 4 minutes 12,89 seconds) 

CDM-1.0.RC34-

Ubuntu12.04.build.log:# at 15:43 took     34,22 seconds) 

CDM-1.0.RC37-

Ubuntu10.04.build.log:# at 11:57 took 4 minutes 41,21 seconds) 

CDM-1.0.RC38-

Ubuntu10.04.build.log:# at 16:00 took 4 minutes 24,92 seconds) 

CDM-2.0.RC17-

Ubuntu10.04.build.log:# at 21:17 took 3 minutes 58,23 seconds) 

CDM-2.0.RC17-

Ubuntu12.04.build.log:# at 10:42 took 4 minutes 27,67 seconds) 

CDM-2.0.RC1-Ubuntu10.04.build.log:# at 17:31 took 4 minutes 9,93 seconds) 

CDM-2.0.RC3-Ubuntu10.04.build.log:# at 15:39 took 4 minutes 21,38 seconds) 

CDM-2.0.RC4-Ubuntu10.04.build.log:# at 16:48 took 4 minutes 17,68 seconds) 

CDM-2.0.RC4-Ubuntu12.04.build.log:# at 16:24 took 1 minutes 23,3 seconds) 

CDM-2.0.RC5-Ubuntu10.04.build.log:# at 17:05 took 4 minutes 25,83 seconds) 

CDM-2.0.RC5-Ubuntu12.04.build.log:# at 12:21 took 1 minutes 40,56 seconds) 

CDM-2.0.RC6-Ubuntu10.04.build.log:# at 22:29 took 1 minutes 57,83 seconds) 

CDM-2.0.RC7-Ubuntu10.04.build.log:# at 14:03 took 4 minutes 22,44 seconds) 

CDM-2.0.RC8-Ubuntu10.04.build.log:# at 04:41 took 4 minutes 35,55 seconds) 

CDM-2.0.RC8-Ubuntu12.04.build.log:# at 13:28 took 2 minutes 0,99 seconds) 
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HNBG 

HNBG-1.0.RC10-

Debian10.04.build.log:# at 08:54 took 7 minutes     

HNBG-1.0.RC11-

Debian10.04.build.log:# at 13:13 took 4 minutes     

HNBG-1.0.RC12-

Debian10.04.build.log:# at 10:05 took 8 minutes     

HNBG-1.0.RC12-

Debian10.04.quick.dirty.log:# at 10:36 took     29 seconds) 

HNBG-1.0.RC12-

Ubuntu10.04.build.log:# at 10:47 took 8 minutes     

HNBG-1.0.RC15-

Ubuntu10.04.build.log:# at 00:02 took 9 minutes     

HNBG-1.0.RC16-

Ubuntu10.04.build.log:# at 10:21 took 10 minutes     

HNBG-1.0.RC17-

Ubuntu10.04.build.log:# at 16:45 took 10 minutes     

HNBG-1.0.RC18-

Ubuntu10.04.build.log:# at 02:42 took 10 minutes     

HNBG-1.0.RC21-

Ubuntu10.04.build.log:# at 13:10 took 10 minutes     

HNBG-1.0.RC22-

Ubuntu10.04.build.log:# at 14:44 took 11 minutes     

HNBG-1.0.RC23-

Ubuntu10.04.build.log:# at 16:49 took 10 minutes 31,82 seconds) 

HNBG-1.0.RC24-

Ubuntu10.04.build.log:# at 14:29 took 10 minutes 33,59 seconds) 
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HNBG-1.0.RC25-

Ubuntu10.04.build.log:# at 22:50 took 10 minutes 48,37 seconds) 

HNBG-1.0.RC26-

Ubuntu10.04.build.log:# at 00:02 took 10 minutes 35,69 seconds) 

HNBG-1.0.RC27-

Ubuntu10.04.build.log:# at 17:27 took 10 minutes 30,84 seconds) 

HNBG-1.0.RC28-

Ubuntu10.04.build.log:# at 17:08 took 11 minutes 22,85 seconds) 

HNBG-1.0.RC29-

Ubuntu10.04.build.log:# at 13:44 took     21,13 seconds) 

HNBG-1.0.RC30-

Ubuntu10.04.build.log:# at 14:45 took 10 minutes 55,33 seconds) 

HNBG-1.0.RC31-

Ubuntu10.04.build.log:# at 18:48 took 10 minutes 54,01 seconds) 

HNBG-1.0.RC32-

Ubuntu10.04.build.log:# at 16:16 took 11 minutes 45,51 seconds) 

HNBG-1.0.RC33-

Ubuntu10.04.build.log:# at 06:47 took 11 minutes 47,7 seconds) 

HNBG-1.0.RC34-

Ubuntu10.04.build.log:# at 16:51 took 11 minutes 37,19 seconds) 

HNBG-1.0.RC37-

Ubuntu10.04.build.log:# at 11:52 took 11 minutes 44,89 seconds) 

HNBG-1.0.RC38-

Ubuntu10.04.build.log:# at 15:56 took 12 minutes 3,15 seconds) 

HNBG-1.0.RC9-Debian10.04.build.log:# at 12:04 took 7 minutes     

HNBG-2.0.RC14-

Ubuntu10.04.build.log:# at 16:49 took 20 minutes 13,8 seconds) 

HNBG-2.0.RC14-

Ubuntu12.04.build.log:# at 16:47 took 21 minutes 39,15 seconds) 

HNBG-2.0.RC17-

Ubuntu10.04.build.log:# at 21:13 took 20 minutes 4,06 seconds) 

HNBG-2.0.RC17-

Ubuntu12.04.build.log:# at 10:37 took 22 minutes 2,79 seconds) 

HNBG-2.0.RC1-

Ubuntu10.04.build.log:# at 17:26 took 19 minutes 4,61 seconds) 

HNBG-2.0.RC2-

Ubuntu10.04.build.log:# at 14:44 took     42,27 seconds) 

HNBG-2.0.RC3-

Ubuntu10.04.build.log:# at 15:35 took 16 minutes 54,19 seconds) 

HNBG-2.0.RC4-

Ubuntu10.04.build.log:# at 16:43 took 16 minutes 54,42 seconds) 

HNBG-2.0.RC4-

Ubuntu12.04.build.log:# at 12:12 took     0,2 seconds) 

HNBG-2.0.RC5- at 17:00 took 19 minutes 47,1 seconds) 
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Ubuntu10.04.build.log:# 

HNBG-2.0.RC5-

Ubuntu12.04.build.log:# at 12:20 took 18 minutes 51,47 seconds) 

HNBG-2.0.RC6-

Ubuntu10.04.build.log:# at 22:27 took 19 minutes 38,08 seconds) 

HNBG-2.0.RC7-

Ubuntu10.04.build.log:# at 13:59 took 17 minutes 4,46 seconds) 

HNBG-2.0.RC8-

Ubuntu10.04.build.log:# at 04:36 took 19 minutes 48,47 seconds) 

HNBG-2.0.RC8-

Ubuntu12.04.build.log:# at 13:26 took 21 minutes 45,31 seconds) 

 

 

There is a third project called ABC that is used for Altopod and Altogateway. ABC with the 

cloud implementation takes between 11 and 12 minutes to finish the build. Those times 

were taken manually while testing the system. 

GAP-2.0.RC14-Ubuntu12.04.build.log:# 

a

t 

09:4

9 took     0,52 

seconds

) 

GAP-2.0.RC17-Ubuntu10.04.build.log:# 

a

t 

19:0

8 took     

27,1

6 

seconds

) 

GAP-2.0.RC17-Ubuntu12.04.build.log:# 

a

t 

13:3

2 took     

34,9

7 

seconds

) 

GAP-2.0.RC7-Ubuntu10.04.build.log:# 

a

t 

15:1

0 took     

32,1

4 

seconds

) 

GAP-2.0.RC8-Ubuntu10.04.build.log:# 

a

t 

04:0

7 took     

34,9

1 

seconds

) 
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GAP-2.0.RC8-Ubuntu12.04.build.log:# 

a

t 

15:5

1 took     

36,5

4 

seconds

) 

 

HNBA 

HNBA-2.0.RC11-

Ubuntu10.04.build.log:# at 07:25 took 16 minutes 16,69 seconds) 

HNBA-2.0.RC13-

Ubuntu10.04.build.log:# at 13:23 took     0,15 seconds) 

HNBA-2.0.RC14-

Ubuntu10.04.build.log:# at 15:44 took 18 minutes 25,68 seconds) 

HNBA-2.0.RC14-

Ubuntu12.04.build.log:# at 09:49 took     1,87 seconds) 

HNBA-2.0.RC15-

Ubuntu10.04.build.log:# at 13:15 took     39,17 seconds) 

HNBA-2.0.RC16-

Ubuntu10.04.build.log:# at 16:20 took 18 minutes 45,84 seconds) 

HNBA-2.0.RC17-

Ubuntu10.04.build.log:# at 18:46 took 19 minutes 5,58 seconds) 

HNBA-2.0.RC1-

Ubuntu10.04.build.log:# at 17:53 took 17 minutes 31,18 seconds) 

HNBA-2.0.RC4-

Ubuntu10.04.build.log:# at 17:32 took 19 minutes 6,16 seconds) 

HNBA-2.0.RC4-

Ubuntu12.04.quick.dirty.log:# at 17:32 took     41,48 seconds) 

HNBA-2.0.RC5-

Ubuntu10.04.build.log:# at 16:11 took 16 minutes 12,72 seconds) 

HNBA-2.0.RC5-

Ubuntu12.04.build.log:# at 12:46 took 18 minutes 17,72 seconds) 
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HNBA-2.0.RC6-

Ubuntu10.04.build.log:# at 18:36 took 16 minutes 29,99 seconds) 

HNBA-2.0.RC7-

Ubuntu10.04.build.log:# at 14:46 took 19 minutes 24,99 seconds) 

HNBA-2.0.RC7-

Ubuntu12.04.build.log:# at 18:13 took     0,54 seconds) 

HNBA-2.0.RC8-

Ubuntu10.04.build.log:# at 03:43 took 16 minutes 15,07 seconds) 

HNBA-2.0.RC8-

Ubuntu12.04.build.log:# at 15:28 took 19 minutes 41,08 seconds) 

HNBA-2.0.RC8-

Ubuntu12.04.dirty.log:# at 17:31 took 5 minutes 6,72 seconds) 

HNBA-2.0.RC8-

Ubuntu12.04.quick.dirty.log:# at 17:19 took     40,84 seconds) 

HNBA-2.0.RC8-

Ubuntu12.04.quick.log:# at 17:34 took     49,2 seconds) 

HNBA-2.0.RC9-

Ubuntu10.04.build.log:# at 06:07 took 15 minutes 58,31 seconds) 

 

RDM 

RDM-0.0.RC0-

Ubuntu10.04.quick.dirty.log:# 

a

t 

18:0

2 took     0,08 

seconds

) 

RDM-1.0.RC14-

Ubuntu10.04.build.log:# 

a
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7 took 3 

minute

s     

RDM-1.0.RC15-

Ubuntu10.04.build.log:# 

a
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23:4

0 took 3 

minute

s     

RDM-1.0.RC16-

Ubuntu10.04.build.log:# 

a
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11:4

5 took 3 

minute

s     
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RDM-1.0.RC17-

Ubuntu10.04.build.log:# 

a

t 

17:4

5 took 2 

minute

s     

RDM-1.0.RC18-

Ubuntu10.04.build.log:# 

a

t 

02:2

0 took 2 

minute

s     

RDM-1.0.RC20-

Ubuntu10.04.build.log:# 

a

t 

17:5

5 took 2 

minute

s     

RDM-1.0.RC21-

Ubuntu10.04.build.log:# 

a

t 

11:0

1 took 2 

minute

s     

RDM-1.0.RC22-

Ubuntu10.04.build.log:# 

a

t 

18:5

7 took 2 

minute

s     

RDM-1.0.RC23-

Ubuntu10.04.build.log:# 

a

t 

16:2

8 took 2 

minute

s 2,77 

seconds

) 

RDM-1.0.RC24-

Ubuntu10.04.build.log:# 

a

t 

14:0

3 took 2 

minute

s 

13,6

5 

seconds

) 

RDM-1.0.RC25-

Ubuntu10.04.build.log:# 

a

t 

21:2

9 took 2 

minute

s 4,19 

seconds

) 

RDM-1.0.RC26-

Ubuntu10.04.build.log:# 

a

t 

23:3

9 took 2 

minute

s 2,56 

seconds

) 

RDM-1.0.RC27-

Ubuntu10.04.build.log:# 

a

t 

11:3

4 took 2 

minute

s 0,96 

seconds

) 

RDM-1.0.RC28-

Ubuntu10.04.build.log:# 

a

t 

16:4

1 took 2 

minute

s 0,4 

seconds

) 

RDM-1.0.RC29-

Ubuntu10.04.build.log:# 

a

t 

13:4

2 took 2 

minute

s 2,01 

seconds

) 

RDM-1.0.RC30-

Ubuntu10.04.build.log:# 

a

t 

15:0

1 took 2 

minute

s 

38,0

6 

seconds

) 

RDM-1.0.RC31-

Ubuntu10.04.build.log:# 

a

t 

18:2

8 took 2 

minute

s 

32,5

8 

seconds

) 

RDM-1.0.RC33-

Ubuntu10.04.build.log:# 

a

t 

07:3

7 took 2 

minute

s 

53,4

3 

seconds

) 

RDM-1.0.RC34-

Ubuntu10.04.build.log:# 

a

t 

17:1

7 took 2 

minute

s 

14,7

5 

seconds

) 

RDM-1.0.RC36-

Ubuntu10.04.build.log:# 

a

t 

18:2

5 took 3 

minute

s 4,37 

seconds

) 

RDM-1.0.RC37-

Ubuntu10.04.build.log:# 

a

t 

11:1

6 took 3 

minute

s 0,68 

seconds

) 

RDM-1.0.RC38-

Ubuntu10.04.build.log:# 

a

t 

15:1

7 took 2 

minute

s 51,3 

seconds

) 

RDM-1.0-

Ubuntu10.04.quick.dirty.log:# 

a

t 

13:1

2 took     

14,2

8 

seconds

) 

RDM-2.0.RC14-

Ubuntu12.04.build.log:# 

a

t 

09:4

9 took     0,62 

seconds

) 

RDM-2.0.RC17-

Ubuntu10.04.build.log:# 

a

t 

18:4

8 took 2 

minute

s 

34,8

8 

seconds

) 
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RDM-2.0.RC17-

Ubuntu12.04.build.log:# 

a

t 

13:1

2 took 2 

minute

s 

54,9

5 

seconds

) 

RDM-2.0.RC1-Ubuntu10.04.build.log:# 

a

t 

17:5

6 took 2 

minute

s 

43,7

5 

seconds

) 

RDM-2.0.RC4-Ubuntu10.04.build.log:# 

a

t 

17:3

5 took 2 

minute

s 

57,5

2 

seconds

) 

RDM-2.0.RC5-Ubuntu10.04.build.log:# 

a

t 

16:1

5 took 2 

minute

s 

48,6

1 

seconds

) 

RDM-2.0.RC5-Ubuntu12.04.build.log:# 

a

t 

12:4

6 took     

27,9

6 

seconds

) 

RDM-2.0.RC6-Ubuntu10.04.build.log:# 

a

t 

18:3

8 took     

59,4

8 

seconds

) 

RDM-2.0.RC7-Ubuntu10.04.build.log:# 

a

t 

14:4

9 took 3 

minute

s 0,13 

seconds

) 

RDM-2.0.RC8-Ubuntu10.04.build.log:# 

a

t 

03:4

6 took 2 

minute

s 57,3 

seconds

) 

RDM-2.0.RC8-Ubuntu12.04.build.log:# 

a

t 

15:3

1 took 3 

minute

s 

16,7

8 

seconds

) 

RDM-2.0.RC8-Ubuntu12.04.dirty.log:# 

a

t 

17:3

2 took     

47,0

7 

seconds

) 
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6.0 Analysis 

The data collected from this project was primarily concerned with the Altopod project. 

After implementation on Jenkins, the product can be built on Jenkins is an Altopod. 

The comparison of data was done between the Altopod built, the python system and the 

altopod built with the Jenkins system. A comparison of the two approaches can be done 

as well taking a look with the snapshot implementation and the non-snapshot 

implementation. 

To understand the time data of the builds first it is necessary to know how many projects 

is an altopod made to know how much time it needs to be build. 

First of all, an Altopod is made of four projects which are HNBA, RDM, ABC and GAP. 

Previous, to the implementation of those four builds need to be built independently to 

make sure they work effectively. During that independent build the time for each of the 

projects were: 

For HNBA were around 2 minutes. For RDM, 2 minutes. For GAP around 30 seconds and 

finally for ABC 12 minutes. Once these 4 building were safely being built then it was 

possible to run all four together with the release script. The time with the release script 

was 12 minutes.  

After analysing the results, the first conclusion that can be made is that the builds take the 

time of the longest build to be made. In the case of Atopod the longest jobs was the ABC 

which was 12 minutes.  

When looking at the logs of the last builds on Altopod the time that it takes on average is 

19 minutes.  

The results can be seen in the next graphs: 

In the second graph the values that are boundaries and are being removed due to the lack 

of relevance. The results indicated that a build which takes a lot less time to work 

compared to another means that it failed for some unknown reason. If a build takes 

longer to achieve than the build could get stuck on a script and it needs to stopped or 

killed. 
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Typically after executing a build many times means the more repetitive values that are 

generated so it can be assumed that the values are valid. The boundaries are considered 

wrong values and some strange values in the middle will be considered wrong as well. At 

the end it was decided to keep the two most common values of both graphics, which is 

demonstrated in the second graphic.  

Both Together 

 

Data without boundary values 
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In the graphics it demonstrates how the times in the Jenkins are shorter than the times of 

the python build system in Altobridge. Furthermore, the times in Jenkins are more 

constant and stable. The difference between times is shorter due to the fact that the jobs 

are done in different machines. In the normal build system all the builds are done on one 

machine so the amount of time that the machine takes can change depending on what 

processes are running at that moment or if that machine is being used for another task or 

job. The machine can be more sensitive to other processes because it will need as much 

resources as it can get. 

In the cloud the machines are created to do that specific job so that it can be sure that the 

machines are 100% available to run the builds. There are no third processes involved in 

making the build slower. 

The other results gathered from the logs are the times from other projects that are built in 

other product, for example, the Altogateway.  

The Altogateway product is made of three projects that are similar to the ones that are 

part of the Altopod, those projects are HNBG, CDM and ABC. 

One mention has to be done with HNBG, in the times token from the logs there is a 

difference between HNBG 1.0 and HBNG 2.0. 

 

On the graphic the times that HNBG takes are segregated in two. The first part takes an 

average around every 10 minutes and the second part takes on average around every 20 

minutes. After analysing these results it was clear that there was a difference, but the 
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difference here is on the version. On HNBG 1.0 the time to build was 10 minutes but in 

HNBG 2.0 the time to build was increased to 20 minutes. The times from 1.0 to 2.0 has 

increased on 10 minutes so it has now doubled from what it was. The cause is that they 

included a new feature that required a lot added libraries to include in the project. When 

doing the command ‘makefile’ it takes longer. 
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The times for those projects on average are: 

For HNBG 1.0 10 minutes or HNBG 2.0 20 minutes. For CDM 4 minutes and for ABC 12 

minutes.  

If the same experiment would be done with an Altogateway which build times are higher 

than altopod times the improvement of the time it would be bigger. 

With the Altopod experiment  the final time of the build will be equals to the time of the 

longest project to build. Then on Altogateway with the times extracted from the log the 

next conclusion can be made: 

The necessary projects to build an AltoGateway are: HNBG 1.0 + CDM + ABC.  

The time that will take on trackers will be: 10 Min + 4 Min + 12 Min so 26 Min. 

The time that will take in the cloud will be: 10 Min or 4 Min or 12 Min so 12 Min. 

It is a saving of the 55% of the time when building an Altogateway. 

If the version is HNBG 2.0  the times will be as it follows: 

The necessary projects to build an AltoGateway are = HNBG 2.0 + CDM + ABC  

The time that will take on trackers will be: 20 Min + 4 Min + 12 Min so 36 Min 

The time that will take in the cloud will be: 20 Min or 4 Min or 12 Min so 20 Min 

It is a saving of the 45% of the time when building an Altogateway. 

The implementation of the AltoGateway product was not possible due to the lack of time 

but if the same implementation would be done to the Altogateway we could get a 

substantial increase the time saved while on projects.  
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7.0 Conclusions 

The initial question was to find out how the cloud can improve the continuous integration 

system in the company. The assumption was that the cloud was necessary to speed up the 

builds so that it would be possible to build more often. At the end it was a matter of 

implementing a continuous integration system in a company that needs the cloud. 

The cloud was a requirement and not simply a technology to use. The problem faced at 

the beginning was how to build all the products of a company in a system. This system 

existed already; however, the problem grew until it become more about how to build all 

these projects in different Ubuntu versions and on parallel so the process of building could 

become fast enough to implement the practise of continuous integration. 

Some of the requirements stated at the beginning were: 

1. To provide a central system to manage all the different build 

2. To use the resources of a company in an efficient way by cloud management 

3. To make the detection of errors faster 

4. To set a number of practises that helps when developing in software 

5. To reduce the risk of the overall project  

6. To provide frequent feedbacks about the state of the product 

The first requirement was: To provide a central system to manage all the different build. 

This requirement was accomplish by using the Jenkins interface. Jenkins has been 

integrated with the python system so both work together. Now Jenkins seems more 

intuitive and easy to use because it displays all the build information in the dashboard. It 

offers other metrics as the state of the build, which means if the last code committed 

broke the build or not, it can incorporate code metrics as a number of lines or bugs found 

and fixed. 

In this experiment the central system was a success for managing build, it is more intuitive 

than the python system so this requirement was accomplish. 

The second requirement: To use the resources of a company in an efficient way by cloud 

management: 

This requirement was not accomplished due to external causes. The requirement of 

integrating continuous integration with Trackers was to handle around 50 different 
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instances with 50 different configurations which may involve six different operating 

system versions. Due to limitation in the cloud it was not possible to get 50 instances 

running at the same time. Instead, the implementation of the snapshots was done to deal 

with all those configurations so it was possible to switch off the instances that are not 

necessary and store them in a database. However, that was not possible either. The first 

attempt to start snapshots was not good enough, and then it was not possible to start 

instances after the snapshot was taken. The consequence of such as action was that if an 

instance was stopped it wouldn’t be possible to start that instance again, so all the work 

done up to that point was lost and the controller of the cloud had to be reset. 

The second attempt after the controller was reset was more hopeful. It was possible to 

start and stop instances from snapshots but the times were very slow. It took 15 minutes 

on average to start and instance and another 15 minutes to store it and delete it. With 

these times it was not feasible to go on with continuous integration because the main 

requirement of speed up builds was not accomplished. 

After two weeks the cloud stopped working again, it was not possible to start instances 

from snapshots. For some companies to use the amazon cloud and pay for usage might 

seem expensive but it saves a lot of work on maintenance and network traffic. To take a 

few computers and install the cloud controller on it is easy but to try to implement your 

own cloud and try to get the same performance as in amazon without paying a price is not 

realistic. 

First of all there are many things that affect the cloud and can slow down the times of the 

instances. One of them was the network traffic, some days due to testing operation or 

simply overuse of the network it was very hard to manage the instances. Even using ssh to 

the instances was a lengthy process and was hard to manage them. The cloud also needed 

maintenance as every time the space in the cloud has to be defragmented and 

fragmented again. During those times some running instances might not work and it might 

not be possible to start new ones. 

The research would indicate that it would be more beneficial and more cost efficient to 

buy three physical machines and configure them on the network then set them as build 

machines. This solution would be simpler, faster and cheaper and there is no need for 

cloud maintenance. Cloud technology should be implemented within larger companies 

with very specific requirements, high workloads and very efficient networks. For small 

companies the benefit of using cloud technology does not add up when consideration is 

given to benefit of implementing and maintaining their own private cloud. It would be 
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cheaper to hire instances in amazon then the company would not need to deal with 

maintenance and network traffic issues. 
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The third requirement: To make the detection of errors faster.  

Since the only product that has been build has been the Altopod it is difficult to measure if 

it is efficient or not. The more frequently it is used the easier it would be to spot an error 

or bug. There was not enough time to measure this requirement because the system has 

to be working and monitored over a few months to see if there is really an improvement 

in errors spotted. 

The fourth requirement: To set a number of practises that helps when developing in 

software.  

This requirement was challenging. Good practice would suggest that the builder needs to 

know each project and how the built being developed to have a true understanding of 

what is happening. In practice it was found that a lot of the time developer were 

concentrating on their project and didn’t have any awareness of the status on other 

projects their colleagues were working on.  Once the system is implemented and running 

there should be a meeting with the developers to show them how the new system will 

work and why new practises would apply to everyone, otherwise there is a risk that the 

same problem will arise again and the builder will be the only person who knows the 

status of the system.   

The fifth requirement: To reduce the risk of the overall project.  

This is a consequence of continuous integration but by building faster and continuously 

the project gets stronger, more reliable and stable. The build of the product is configured 

so the product can be built any time and anybody can check the status a see how it looks. 

The consequence of this is that there could be a case where is not sure how to measure 

the stability of a project by the number of builds. Jenkins does this by accounting the 

number of failed builds of the last 20 builds. If the percentage of good builds is high then 

is stable, otherwise is not stable. 

The sixth requirement: To provide frequent feedback.  

The requirement was very difficult to implement, many challenges were faced when trying 

to find a solution. In the end, due to time constraints this requirement was not fulfilled.  

Cloud Management 

The research would indicate that implementing a private cloud within a small company is 

very challenging and time consuming and serious consideration should be given whether it 

is a feasible option. If there were a lot of resources (machines) set in place, along with a 
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decided team of developers assigned to deal with the management and maintenance of 

the cloud as well improvements with the network to address traffic within the system., 

then it could be an option. However, the amount of resources needed to get the cloud 

properly working is not worth all the investment for a small company. It is more cost 

effective and less challenging to avail of an account such as Amazon and pay for it.  

Python Build System 

After experience of working with the python system it would be recommended to use 

open source tolls that achieve the same objective with less effort. The python system is a 

great idea in theory but there are too many challenges and it ends up being too 

complicated to maintain. The problem is not with the build system, the build system is a 

very good system but the idea of having your own system to build your own projects is not 

practical. The problem is that the complexity of the system is such that for any change 

that needs to be done the system needs to know, quite in-depth, all the classes and what 

will be the results. The problem with creating private software for your own purposes is 

that only the people who created know exactly how it works. If that person decides to 

leave the company it is very difficult hard to get someone with the same knowledge and 

familiarity with that system to carry on the work in the same fashion.  

A strong recommendation would be to use open source tools with great support such as 

Maven to build projects. The reason the system was created was to isolate the process of 

developing the product and make it independent from the process of building and 

packaging the product. So it would be easier to deploy to the customer. 

The developers only know about their own projects so the responsibility is placed on the 

builder to make sure they work when the projects are packaged together. One suggestion 

is that it would be easier for everyone involved if the projects were built on a common 

platform such as Maven so the task of the builder would be considerably simpler. 

Furthermore, systems such as Maven can be easily integrated with other tools and 

subversion or Jenkins can be integrated at a later stage when new methodologies on 

continuous integration make it easily adopted. 
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