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Resum de la tesi doctoral

Cap al control total del so amb cristals sònics
i metamaterials acústics

de

D. Daniel Torrent Mart́ı
Doctor en Ciències pel Departament d’Enginyeria Electrònica

Universitat Politècnica de València, Juny 2008

L’objectiu d’aquest treball ha sigut obtenir expressions matemàtiques per

als paràmetres acústics efectius de sistemes heterogenis al ĺımit dhomogenet-

zació, la qual cosa ha permès el disseny de nous dispositius refractius fun-

cionals en un ampli rang de longituds d’ona.

Matemàticament aquest problema ha sigut tractat mitjanant la teoria de

la dispersió múltiple, ja que les geometries del problema són principalment

circulars i lesmentada teoria ha demostrat ser la més adequada en aquest

cas. Per a obtenir els paràmetres efectius s’han desenvolupat dos mètodes

d’homogenëıtzació que han demostrat ser complementaris. El primer es basa

en la propagació d’ones elàstiques a través de mitjans periòdics, mentre que

el segon es basa en les propietats de dispersió acústica de sistemes finits de

cilindres.

Com a principals aplicacions de la teoria desenvolupada cal destacar, per

l’interès i la novetat en el camp de l’acústica, les lents de gradient d́ındex i els

dispositius d’invisibilitat acústica. Aquestes lents consisteixen en materials

on la velocitat de propagació del so varia segons les coordenades, i permet

aix́ı un control de la trajectòria del so. En aquest treball es proposa una

d’aquestes lents, que té la peculiaritat de ser totalment transparent i, per

tant, tota l’energia sonora incident és recollida pel focus.

Els dispositius d’invisibilitat permeten ocultar al seu interior un objecte

de manera que siga indetectable per al so. La complexitat d’aquests resideix

que han d’estar fets de materials amb una densitat de massa anisòtropa.

Aquest treball ha demostrat com cal dissenyar aquests dispositius mitjanant

estructures de cilindres fets amb dos tipus de materials isòtrops.



Resumen de la tesis doctoral

Hacia el Control Total del Sonido con
Cristales Sónicos y Metamateriales Acústicos

de

D. Daniel Torrent Mart́ı
Doctor en Ciencias por el Departamento de Ingenieŕıa Electrónica

Universidad Politécnica de Valencia, Junio 2008

El objetivo de este trabajo ha sido obtener expresiones matemáticas para

los parámetros acústicos efectivos de sistemas heterogéneos en el ĺımite de

homogeneización, lo que ha permitido el diseño de nuevos dispositivos refrac-

tivos funcionales en un amplio rango de longitudes de onda.

Matemáticamente este problema ha sido tratado mediante la teoŕıa de

dispersión múltiple, ya que las geometŕıas del problema son principalmente

circulares y dicha teoŕıa ha demostrado ser la más adecuada en ese caso.

Para obtener los parámetros efectivos se han desarrollado dos métodos

de homogeneización que han demostrado ser complementarios. El primero

se basa en la propagación de ondas elásticas a través de medios periódicos

mientras que el segundo se basa en las propiedades de dispersión acústica de

sistemas finitos de cilindros.

Como principales aplicaciones de la teoŕıa desarrollada cabe destacar, por

su interés y novedad en el campo de la acústica, las lentes de gradiente de

ı́ndice y los dispositivos de invisibilidad acústica. Estas lentes consisten en

materiales donde la velocidad de propagación del sonido vaŕıa en función

de las coordenadas, permitiendo aśı un control de la trayectoria del sonido.

En este trabajo se propone una de estas lentes con la peculiaridad de ser

totalmente transparente, y por tanto, toda la enerǵıa sonora incidente es

recogida por el foco.

Los dispositivos de invisibilidad permiten ocultar en su interior un ob-

jeto de modo que sea indetectable para el sonido. La complejidad de estos

reside en que deben estar hechos de materiales con una densidad de masa

anisótropa. Este trabajo ha demostrado como diseñar estos dispositivos me-

diante estructuras de cilindros hechos con dos tipos de materiales isótropos.
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Towards the Full Control of Sound with Sonic
Crystals and Acoustic Metamaterials

by

D. Daniel Torrent Mart́ı
Doctor of Philosophy in the Ingenieŕıa Electrónicadepartment

Politecnic University of Valencia, Valencia, June 2008

The aim of this work has been to obtain mathematical expressions for the

effective acoustic parameters of heterogeneous systems in the homogenization

limit, what has allowed the design of new refractive devices working in a wide

wavelength range.

Mathematically this problem has been treated by means of the multiple

scattering theory, because the geometries of the problem are mainly circular

and such theory is the best one in this case.

To obtain the effective parameters two homogenization methods have

been developed, which has been shown to be complementary. The first is

based in elastic wave propagation through periodic media while the second

is based in the acoustic scattering properties of finite clusters of cylinders.

The main applications of the developed theory are, due to its interest

and novelty in the field of acoustics, the gradient index lens and the acoustic

cloaking devices. These lenses are materials where the propagation speed

of sound change as a function of the spacial coordinates, allowing then the

control of the sound trajectory. In this work has been proposed one of these

lenses with the peculiarity of being fully transparent, and then, all the inci-

dent energy is located at the focus of the lens.

Acoustic cloaking devices can hide inside them an object such that it be

undetectable for sound. The complexity of these consists in that they have

to be made of materials with an anisotropic mass density. This work has

shown how to design these devices by means of cylinder structures made of

two types of isotropic materials.
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Chapter 1

Introduction

In this chapter the basic equations of acoustics and elasticity are derived, but

always focusing on wave propagation. Here, only linear wave phenomena are

considered, so that the non linear elements will be neglected. Finally, a brief

introduction to sonic crystals will be made.

1.1 Acoustics

In the present work a fluid is considered as a continuous medium defined

by certain velocity field V (r, t),r being the position vector of a point in the

fluid and t the time.

This fluid is assumed to be made of point particles of mass dm free to

move around the space. If a particle is at position r at the time t, after a

time ∆t it will be at position r′ given by

r′ = r + V (r, t)∆t (1.1.1)

This change in the position of the particle implies a change in its velocity,

which now will be

V ′(r′, t′) = V ′(r + V ∆t, t+ ∆t) ≈

V (r, t) + [V (r, t) ·∇] V (r, t)∆t+
∂V (r, t)

∂t
∆t (1.1.2)

thus the acceleration of the particle is, by definition

a ≡ lim
∆t→0

[
V ′ − V

∆t

]
=
∂V

∂t
+ (V ·∇)V (1.1.3)
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Figure 1.1: Force diagram acting on a fluid element with mass dm.

This acceleration is the reaction of the fluid to some force field. In the

present work the acoustic pressure acts as the exciting field. Then, the force

due to this field is the responsible of the acceleration of the particles in the

fluid.

In figure 1.1 it is shown a diagram of the forces acting on certain volume

element, where the z component has not been shown for clarity. The forces

along x can be expressed as

Fx(x, y)− Fx(x+ dx, y) =
P (x, y)− P (x+ dx, y)

dx
dxdydz = −∂P (x, y)

∂x
dV

(1.1.4)

and Newton’s second law

ΣFx = dmax (1.1.5)

The above equations leads to

−∂P (x, y)

∂x
= ρax (1.1.6)

The generalization to the three spacial coordinates gives

−∇P = ρa (1.1.7)

Equation (1.1.3) establishes a relation between the acceleration and the

spatial and temporal derivatives of the particle velocity field V , thus with
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the above equation it is possible to obtain the first relation between the basic

variables of a fluid

−∇P = ρ

[
∂V

∂t
+ (V ·∇)V

]
(1.1.8)

The next relation between the basic variables is very simple to obtain: it

is the well known continuity equation. This equation is obtained from the

mass conservation law; that is, the decreasing mass in a given volume equals

the mass flux through the boundary of such volume; i.e.

∂

∂t

∫∫∫

V

ρdV = −
∫∫

S

ρV · dS (1.1.9)

The right hand side of the above equation can be converted into a volume

integral with Gauss’ theorem,
∫∫∫

V

∂ρ

∂t
dV = −

∫∫∫

V

∇ · (ρV )dV (1.1.10)

Therefore, the continuity equation is derived

∇ · (ρV ) +
∂ρ

∂t
= 0 (1.1.11)

To complete the description of a fluid another equation should be needed

relating the basic variables of the fluid: density ρ, particle velocity vectorV

and pressure P . This equation is called the “state equation” and can be

derived with the definition of the compressibility or bulk modulus B

B ≡ ρ
∆P

∆ρ
(1.1.12)

it is assumed that this definition also holds in differential form so that

B = ρ
dP

dρ
→ dP =

B

ρ
dρ (1.1.13)

If the pressure is a function of the spacial and time coordinates and of

the density ρ

P = P (r, t; ρ), (1.1.14)

the state equation is

∂P

∂t
dt+ dr ·∇P =

B

ρ

∂ρ

∂t
dt+

B

ρ
dr ·∇ρ (1.1.15)
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and dividing by dt

∂P

∂t
+ V ·∇P =

B

ρ

∂ρ

∂t
+
B

ρ
V ·∇ρ (1.1.16)

Solving for the derivative of the density in the continuity equation (1.1.11)

and inserting above, the following result is obtained

∂P

∂t
+ V · ∇P = −B∇ ·V (1.1.17)

Equation (1.1.17) and (1.1.8) forms the basic equations to derive the

sound wave equation, as will be shown in the next section. These equations

are non linear, so the next step is to derive the linear approximation for them.

1.2 Acoustic waves

In equation (1.1.8) the non linear term V ·∇V can be suppressed, and the

density ρ will be assumed to be a function of space coordinates. This last

approximation can be understood considering that the time variations of

the density are second orders terms, which multiplied by the time derivative

of the particle velocity V will be a negligible quantity. Then the linear

approximation to equation (1.1.8) will be

∇P + ρ
∂V

∂t
= 0 (1.2.1)

In equation (1.1.17) the non linear term is V ·∇P , neglecting this term

the linear version of this equation is

∂P

∂t
+B∇ · V = 0 (1.2.2)

It is worth to express these two equations with the variables being explic-

itly indicated, that is

∇P (r, t) + ρ(r)
∂V (r, t)

∂t
= 0 (1.2.3a)

∂P (r, t)

∂t
+B(r)∇ · V (r, t) = 0 (1.2.3b)
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These equations are the basic equations for the acoustic field. If equation

(1.2.3b) is derivated respect to the time, with the help of equation (1.2.3a)

∂2P (r, t)

∂t2
−B(r)∇ · [ρ−1(r)∇P (r, t)

]
= 0 (1.2.4)

For the case of an harmonic pressure field of angular frequency ω

P (r, t) = P (r)eiωt (1.2.5)

by expanding the second term of equation (1.2.4), the following inhomoge-

neous Helmholtz equation is obtained

[∇2 + k2(r)
]
P (r) = −ρ(r)∇ρ−1(r) ·∇P (r) (1.2.6)

with

k2(r) =
ρ(r)

B(r)
ω2 (1.2.7)

1.2.1 Isotropic medium

When both the bulk modulus B and the density ρ are constant, equation

(1.2.6) reduces to the well known homogeneous Helmholtz equation

∇2P + k2P = 0 (1.2.8)

The solution of this equation are plane waves of the form

P (r,k) = eik·r (1.2.9)

with k = k(cos θ0, sin θ0) defining the direction of propagation of the plane

wave with wave number k = ωρ/B. This expression for the wave number

shows that the speed of sound for these waves is

c =
ω

k
=

√
B

ρ
(1.2.10)

1.2.2 Anisotropic medium

The wave equation for an anisotropic acoustic medium can be obtained by

using a phenomenological argument. Such anisotropic medium will be made
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by placing sound scatters in a periodic lattice and letting the wavelength be

larger than the lattice parameter.

In this approach, both the bulk modulus B and the density ρ will be

periodic functions of the spacial coordinates. The starting point will be the

basic linear acoustic equations (1.2.3a) and (1.2.3b)(omitting the explicit

dependence space and time)

∇P (r, t) + ρ(r)
∂V (r, t)

∂t
= 0 (1.2.11a)

∂P (r, t)

∂t
+B(r)∇ · V (r, t) = 0 (1.2.11b)

Now, it is assumed that both the bulk modulus B(r) and the density

ρ(r) are periodic functions of the position vector r. The goal is to find the

form of the above equations in the low frequency limit, that is, for the case

in which the spacial periodicity defined by the wavelength is larger than the

periodicity of the acoustic parameters B and ρ.

Plane wave-like solution can be proposed for both the pressure field and

the particle velocity, being these functions of the form

Ψ(r, t) = Ψ(ω,k)eik·re−iωt (1.2.12)

where the wave number k = k(r) is a function of the spacial coordinates. It

is obvious that in the low frequency limit this dependence will disappear and

the wave number will be constant along the crystal, and then the solutions

are plane waves.

The spacial derivatives of functions given above are

∂Ψ(r, t)

∂xi

= iΨ(r, t)
∑

j

χij(r)kj(r) (1.2.13)

where the tensorial quantity χij is defined by

χij(r) = δij +
xj

kj(r)

∂kj(r)

∂xi

(1.2.14)

Note that this quantity is a function of the spacial coordinates and the

wave number. The only assumption that is needed to do now is that in the

low frequency limit this quantity becomes finite and different than zero. This

quantity will be the responsible of the anisotropy, as will be shown later.
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With this definition the equations of motion (1.2.11a) and (1.2.11b) are:

iP (r, t)
∑

l

χkl(r)kl(r) + ρ(r)
∂Vk(r, t)

∂t
= 0 (1.2.15a)

∂P (r, t)

∂t
+ iB(r)

∑

k

∑
j

χkj(r)kj(r)Vk(r, t) = 0 (1.2.15b)

The second equation can be simplified by defining some kind of “effective

particle velocity”

V ∗
j (r, t) =

∑

k

χkj(r)Vk(r, t) (1.2.16)

yielding
∂P (r, t)

∂t
+ iB(r)

∑
j

kj(r)V ∗
j (r, t) = 0 (1.2.17)

The above equation is suitable for being averaged in the unit cell of the

lattice defined by the periodic system, but not in its present form. When the

average is taken over a unit cell, it is expected that, in the long wavelength

limit, the pressure field be constant in this unit cell, as well as the wave

number. But the “effective particle velocity” has an unknown behavior due to

the quantities χij, whose dependence in the spacial coordinates is unknown.

In order to average it is necessary to divide the equation by the bulk modulus

B, and then average,

〈
1

B(r)

〉
∂P (r, t)

∂t
+ i

∑
j

kj

〈
V ∗

j (r, t)
〉

= 0, (1.2.18)

where it has been assumed that we work in the low frequency limit and the

wave number does not depend on the spacial coordinates. Since the bulk

modulus does not interact with the periodicity of the lattice, the average can

be taken easily. For the case of one scatterer per unit cell

〈
1

B(r)

〉
=

1

Vd

∫

cell

1

B(r)
dV =

f

Ba

+
1− f

Bb

(1.2.19)

where Ba and Bb are the bulk modulus of the scatter and of the background,

respectively. The quantity f is the filling fraction of the scatter, that is, the

area of the scatter divided by the area of the unit cell. Note that this result
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is independent of the number of dimensions of the problem; that is, it is also

for three dimensions (3D) and it is independent of the shape of the scatterer.

Defining the effective bulk modulus as

1

B∗ ≡
〈

1

B(r)

〉
=

f

Ba

+
1− f

Bb

(1.2.20)

and the unit cell-averaged particle velocity as

vj(r, t) ≡
〈
V ∗

j (r, t)
〉

(1.2.21)

the final form of the equation is

1

B∗
∂P (r, t)

∂t
+ i

∑
j

kjvj(r, t) = 0 (1.2.22)

or
1

B∗
∂P (r, t)

∂t
+ ∇ · v(r, t) = 0 (1.2.23)

which has the same form of equation (1.2.11b) but with a constant bulk

modulus; now it is the equation of a homogeneous medium.

The same procedure can be done for equation (1.2.15a), but it has to be

expressed as a function of the effective particle velocity vector V ∗
j , to do that

this equation has to be multiplied by χkj and summed for all k, yielding

iP (r, t)
∑

l

∑

k

χkj(r)χkl(r)kl(r) + ρ(r)
∂V ∗

j (r, t)

∂t
= 0 (1.2.24)

Again this equation cannot be averaged because the product of ρ(r) and

V ∗
j (r, t). Let us divide by the density first and after averaging, we arrive to

iP (r, t)
∑

l

ρ−1
jl kl +

∂vj(r, t)

∂t
= 0 (1.2.25)

where the reciprocal density tensor has been defined as

ρ−1
jl =

〈
ρ−1(r)

∑

k

χkj(r)χkl(r)

〉
(1.2.26)

Equation (1.2.25) can also be expressed as a function of the mass density

tensor as

iklP (r, t) +
∑

j

ρlj
∂vj(r, t)

∂t
= 0 (1.2.27)
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or, in vectorial differential form

∇P (r, t) + ρ :
∂v(r, t)

∂t
= 0 (1.2.28)

solving for the pressure field we arrive to the following wave equation

∑

i,k

ρ−1
ik

∂2P

∂xk∂xi

− 1

B∗
∂2P

∂t2
= 0 (1.2.29)

The wave equation is obviously anisotropic, due to the presence of the

cross terms in the partial derivatives. When assuming plane wave solutions

of the form

P (r, t) = P (ω)eik·re−iωt (1.2.30)

Since the wave vector components are ki = k cos θi, the following rela-

tionship between the frequency and the wave number is found

ω2 = k2B∗ ∑

i,k

ρ−1
ki cos θi cos θk (1.2.31)

Therefore the relation between the effective speed of sound tensor cki and

the reciprocal density tensor ρ−1
ki is similar to that of the isotropic case

c2ki = B∗ρ−1
ki (1.2.32)

1.3 Elastic waves

A solid medium under deformation is better defined in terms of a displace-

ment vector field u = u(r, t). A displacement vector relates the initial po-

sition of a point in the medium before the deformation, r, with its position

after the deformation r′ = r′(r, t)

u = r′ − r (1.3.1)

The line element |dr| before the deformation and after it |dr′| can be

related with the displacement vector through the quantity

|dr′|2 = |dr + du|2 =
∑

k

dxkdxk +
∑

k

dukduk + 2
∑

k

dukdxk (1.3.2)
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r

dr'

x

y

dr'

r'

u

du

Figure 1.2: Coordinates definition in a solid medium under deformation.

Since

duk =
∑
m

∂uk

∂xm

dxm (1.3.3)

the line element will be

|dr′|2 = |dr|2 +
∑

k,l,m

∂uk

∂xm

∂uk

∂xl

dxldxm + 2
∑

k,m

∂uk

∂xm

dxmdxk (1.3.4)

where the term containing the partial derivatives ∂luk∂muk can be neglected

(in the linear approximation). The final form for the line element is

|dr′|2 = |dr|2 + 2
∑

m,k

Emkdxmdxk (1.3.5)

where the tensor Emk is defined in a clearly symmetrical form as

Emk =
1

2

(
∂uk

∂xm

+
∂um

∂xk

)
(1.3.6)

The tensor Emk is called the strain tensor, and it relates the deformation

of line element of some elastic medium with the displacement vector u.

This strain or deformation appears in a solid as the consequence of some

external (or internal) force field F defined through a stress tensorial field σik

by means of

Fi =

∫

S

∑

k

σikdSk =

∫

V

∑

k

∂σik

∂xk

dV (1.3.7)
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when this force is due to a hydrostatic pressure, the stress tensor is related

with it by

σik = −Pδik (1.3.8)

This stress tensor can be related with the movement of the solid through

Newton’s second law

ρai =
∑

k

∂σik

∂xk

, (1.3.9)

where ai is the i component of the acceleration vector a,

ai =
dvi

dt
=
∂vi

∂t
+

∑

k

∂vi

∂xk

vk (1.3.10)

The convective term vk∂kvi is a non linear term and is neglected here,

while the time derivative can be related with the displacement vector

∂vi

∂t
=

∂

∂t

∂xi

∂t
=
∂2ui

∂t2
(1.3.11)

Finally Newton second law is obtained

ρ
∂2ui

∂t2
=

∑

k

∂σik

∂xk

(1.3.12)

The stress tensor will be assumed to be some function of the strain. This

function should be expressed in a Taylor series, being the zero order term

null (there is no stress if there is no strain) and neglecting the orders higher

than one because of the linear assumption, then the more general form for

this function is

σik =
∑

lm

CiklmElm (1.3.13)

It can be shown [LL] that for an isotropic medium this relation can be

expressed as

σik =
∑

l

λδikEll + 2µEik (1.3.14)

and as a function of the displacement vector u

σik =
∑

l

λδik
∂ul

∂xl

+ µ

(
∂uk

∂xi

+
∂ui

∂xk

)
(1.3.15)
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By inserting the above expression into Newton’s second law and reorder-

ing indexes this equation is

ρ
∂2ui

∂t2
= (λ+ µ)

∂

∂xi

∑

l

∂ul

∂xl

+ µ
∑

k

∂2uk

∂x2
k

(1.3.16)

where it has been assumed that the Lamé constants λ and µ are not func-

tions of the spacial coordinates. In the present work the elastic field will be

considered only inside cylinders, where the elastic parameters are constant

and there is no need to derive the inhomogeneous wave equation.

Finally, the wave equation in vectorial form is

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u (1.3.17)

The displacement vector u can be expressed, by using Helmholtz decom-

position, as a function of a scalar potential φ and a vectorial potential A

u = −∇φ+ ∇×A (1.3.18)

and the wave equation is satisfied if the potentials function satisfy the equa-

tions

∂2φ

∂t2
=
λ+ 2µ

ρ
∇2φ (1.3.19)

∂2A

∂t2
=
µ

ρ
∇2A (1.3.20)

In the present work elasticity is only considered when working with two

dimensional systems(2D), then the displacement vector u will lay always in

the xy plane. With this limitation to the displacement vector the only non

zero component of the potential vector A will be the z component, so that

A = Azẑ (1.3.21)

and the displacement vector in Cartesian coordinates

ux = −∂φ
∂x

+
∂Az

∂y
(1.3.22a)

uy = −∂φ
∂y

− ∂Az

∂x
(1.3.22b)
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although it is more useful to express this vector in polar coordinates

ur = −∂φ
∂r

+
1

r

∂Az

∂θ
(1.3.23a)

uθ = −1

r

∂φ

∂θ
− ∂Az

∂r
(1.3.23b)

In this coordinate system it is obvious that both the scalar and vectorial

potential functions can be expanded in series of Bessel functions

φ =
∑

q

Al
qJq(klr)e

iqθ (1.3.24a)

Az =
∑

q

At
qJq(ktr)e

iqθ (1.3.24b)

The displacement vector components are

ur =
∑

q

[
−klA

l
qJ

′
q(klr) +

iq

r
At

qJq(ktr)

]
eiqθ (1.3.25a)

uθ =
∑

q

[
−iq
r
Al

qJq(klr)− ktA
t
qJ

′
q(ktr)

]
eiqθ (1.3.25b)

For applying the boundary conditions it is necessary to express as well the

stress tensor in polar coordinates. In [LL] the strain tensor in such system is

given

Err =
∂ur

∂r
(1.3.26a)

Eθθ =
1

r

∂uθ

∂θ
+
ur

r
(1.3.26b)

2Erθ =
1

r

∂ur

∂θ
+
∂uθ

∂r
− uθ

r
(1.3.26c)

By writing equation (1.3.14) in polar coordinates

σrr = (λ+ 2µ)Err + λEθθ (1.3.27a)

σθθ = (λ+ 2µ)Eθθ + λErr (1.3.27b)

σrθ = 2µErθ (1.3.27c)
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we arrive to the final form of the stress tensor

σrr = (λ+ 2µ)
∂ur

∂r
+
λ

r

∂uθ

∂θ
+
λ

r
ur (1.3.28a)

σθθ =
λ+ 2µ

r

∂uθ

∂θ
+
λ+ 2µ

r
ur + λ

∂ur

∂r
(1.3.28b)

σrθ =
µ

r

∂ur

∂θ
+ µ

∂uθ

∂r
− µ

r
uθ (1.3.28c)

1.4 Boundary conditions

Boundary conditions at an interface between two media are different de-

pending on the media involved. For instance, the conditions at a fluid-fluid

interface are not the same than that at a fluid-elastic interface. However

they can be generalized for an elastic-elastic interface and then particularize

for the fluid by considering this medium as an elastic medium with no shear

waves.

The general boundary conditions for an elastic-elastic interface are conti-

nuity of the displacement vector and the continuity of the normal component

of the stress tensor, respectively

u− = u+ (1.4.1)
∑

i

σ−nini =
∑

i

σ+
nini, (1.4.2)

where the signs ± indicates that the quantities have to be evaluated at both

media. If one or both of the media is a fluid, the first condition is replaced

by the continuity of the normal component of the particle velocity.

In the present work, where boundaries are mainly defined by cylinders,

the possible situations are listed below

• Fluid Cylinder in a Fluid Background

1

ρb

∂P−(r)

∂r

∣∣∣∣
r=Ra

=
1

ρa

∂P+(r)

∂r

∣∣∣∣
r=Ra

(1.4.3a)

P−(Ra) = P+(Ra) (1.4.3b)
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• Solid Cylinder in a Fluid Background

0 = σ+
rθ(Ra) (1.4.4a)

1

k2c2bρb

∂P−(r)

∂r

∣∣∣∣
r=Ra

= u+
r (Ra) (1.4.4b)

−P−(Ra) = σ+
rr(Ra) (1.4.4c)

• Fluid Cylinder in a Solid Background

σ−rθ(Ra) = 0 (1.4.5a)

u−r (Ra) =
1

k2c2bρb

∂P+(r)

∂r

∣∣∣∣
r=Ra

(1.4.5b)

σ−rr(Ra) = −P+(Ra) (1.4.5c)

• Solid Cylinder in a Solid Background

u−θ (Ra) = u+
θ (Ra) (1.4.6a)

u−r (Ra) = u+
r (Ra) (1.4.6b)

σ−rr(Ra) = σ+
rr(Ra) (1.4.6c)

σ−rθ(Ra) = σ+
rθ(Ra) (1.4.6d)

For the special case of an anisotropic fluid cylinder the normal component

of the particle velocity is

vr =
i

ω

[
ρ−1

rr

∂P

∂r
+
ρ−1

rθ

r

∂P

∂θ

]
, (1.4.7)

where the reciprocal density tensor is expressed in polar coordinates.

When the boundary is a plane with normal vector n = x̂ it is obvious

that the above expressions are valid replacing r → x and θ → y.

1.5 Two Dimensional Phononic Crystals and

Metamaterials

Phononic crystal is a name that, in general, refers to periodic arrangements

of solid scatterers embedded in a solid matrix. This periodicity makes that
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Figure 1.3: Two dimensional sonic crystal. The cylindrical symmetry of the

problem makes possible the reduction to the 2D plane.

elastic wave propagation through the crystal presents a behavior analogous

to that well known in solid state physics and in photonic crystals physics(for

electromagnetic wave propagation ).

When the background is not a solid matrix but a fluid medium it is

common to refer to this crystal as “sonic crystal”, because the only waves

that propagates through the medium are acoustic waves, although, of course,

elastic modes are excited inside the scatterer.

In the present work the wave propagation is reduced basically to a two

dimensional(2D) problem; it is assumed that all the fields have no z depen-

dence of interest. All the scatterers considered here, otherwise indicated, are

cylinders and, therefore, the 2D geometry reduces to the circle.

The problem mainly solved here is sound propagation in periodic arrange-

ments of both fluid and elastic cylinders in a (non viscous) fluid background,

although effects of disorder will also be analyzed. The case of a solid back-

ground will be considered at the end of this manuscript as “future work”.

Moreover, the propagation of sound is studied in the long wavelength

limit, where the periodic arrangement of scatterers leads to an effective

medium and the dispersion relation for waves becomes linear. This limit

is called the “homogenization limit” and within this limit, the phononic or
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sonic crystals define a new class of acoustic metamaterials with acoustic

properties unknown in nature.



20 Introduction



Chapter 2

Scattering of waves by a single

cylinder: The T Matrix

In this chapter the basic equations of wave scattering are reported. First, two

types of incidents fields are introduced. Later, the relation of the scattered

field with these incidents fields, called the T matrix, is derived for the main

types of cylinders. Finally, some properties of the scattered field are discussed

and some comments on convergence for numerical simulations are done.

2.1 Scattering of waves

When an external field reaches a close region defined by some boundary ∂σ

and having acoustic parameters different to that of the surrounding medium,

a phenomenon called “scattering” occurs. The phenomenon consists on the

excitation of a certain scattered field as a result of this variation of medium

parameters. The close region is called the scatterer and, in the present work,

unless otherwise specified, the boundary ∂σ will be a line in polar coordinates.

In other words, the scattering problem will be solved mainly in 2D.

The external field can be always expressed in terms of regular Bessel

functions Jq(·) of the two dimensional spacial coordinates r = (r, θ) and the

field wave number k,

P 0(r) =
∞∑

q=−∞
A0

qJq(kr)e
iqθ (2.1.1)
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The excited field cannot be constructed only with regular Bessel functions,

but a irregular part must be added. This irregular part is formed with the

Bessel functions of the second kind Yq(·), and the resulting functions are

called Hankel functions Hq(·) = Jq(·) + iYq(·). In terms of Hankel functions

the scattered field is expressed as

P sc(r) =
∞∑

q=−∞
AqHq(kr)e

iqθ (2.1.2)

In a general problem, coefficients A0
q of the incident field are the inputs

and the scattered field coefficients Aq are the output. The coefficients Aq

depend on both the physical nature of the scatterer and the external field.

The dependence of the physical nature of the scatterer is obtained mathe-

matically by means of the boundary conditions, which are different for each

type of cylinder, as will be shown later. However, for the case of the external

field, P 0, a general expression can be obtained by physical arguments.

All the scattering processes analyzed in this work are linear in frequency.

This means that if the external field is the field associated to some wavenum-

ber k, the scattered field will be associated to the same wavenumber k, where

k is related with the frequency as usually ω = cbk, being cb the speed of sound

in the medium. Then, to obtain the scattered field, a function of the type

Aq = f(A0
0, A

0
±1, A

0
±2, · · · , A0

±s) (2.1.3)

must be found for each Aq.

If the linear behavior is imposed to the response of the external field, it

is obvious that the function f must be a matrix, that is, the general form of

the above relation will be

Aq =
∑

s

Tqs(k;x)A
0
s, (2.1.4)

where the argument x indicates that the matrix elements Tqs are dependent

of some set of physical constants x. Nevertheless, in the present work this

notation is simplified and only the wavenumber dependence will be explicitly

indicated in some special cases. The matrix elements Tqs form what is called

as the “transition matrix” or simply the “T matrix”. The expression of this

T matrix depends not only on the physical nature of the cylinder but also

on the external shape of the cylinder.
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In this chapter, after showing the expressions for the most commonly used

incident fields, will be computed the T matrix of a fluid cylinder (circular

and with arbitrary cross section) and of an elastic cylinder (only circular). In

chapter 4 another types of scatterers will be considered and their T matrix

computed.

2.2 Incident fields

Here, only two types of 2D incident fields are used: the plane wave and the

punctual source. Both are basic fields and can be used to understand the

response of a given system to more complicated sources. Independently of

the functional form of the incident fields, when working in multiple scatter-

ing these fields have to be expanded in regular Bessel functions in different

reference frames. The goal of this section is not only introduce the fields, but

also show how they can be expanded in Bessel functions.

2.2.1 The plane wave

The plane wave is a field distribution defined by some wavenumber k0 =

k0xx̂ + k0yŷ = k(cos θ0, sin θ0) and some complex amplitude C0, and has a

functional form

P 0(r) = C0e
ik0·r (2.2.1)

the integral definition of the Bessel functions shown in Appendix A allow us

to express this field as

P 0(r) = C0e
ik0·r = C0

∑
q

iqe−iqθ0Jq(kr)e
iqθ (2.2.2)

The coefficients A0
q in (2.1.1) are quickly obtained,

A0
q = C0i

qe−iqθ0 (2.2.3)

Now let us assume that the same field has to be given in another reference

frame r′ such that, as shown in figure 2.2.2

r′ = r −R′ (2.2.4)
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where R′ is a vector which goes from the origin in the frame r to that of the

frame r′. The expression needed could be obtained by Graf’s addition theo-

rem (see Appendix A). For the case of plane waves a more simple approach

can be used,

P 0(r) = C0e
ik0·r = C0e

ik0·R′
eik0·r′

= C0e
ik0·R′ ∑

q

iqe−iqθ0Jq(kr
′)eiqθ′

(2.2.5)

Therefore

A
′0
q = C0e

ik0·R′
iqe−iqθ0 = C0e

ik0·R′
A0

q (2.2.6)

When working in multiple scattering theory this operationmoves the ori-

gin of coordinates to the center of some cylinder. In this situation the vector

R′ is the position vector of the cylinder.

Any incident field can be expanded in a sum (discrete or continuous) of

plane waves, the resulting field being the sum of the response to all these

plane waves. In general, the incident field will be

P 0(r) =
∑

θ0

Cθ0e
ik0·r (2.2.7)

2.2.2 The punctual source

The punctual source of order s is defined by a Hankel function of the same

order. For a source located in Rs

P 0(r) = CsHs(krs)e
isθs (2.2.8)

where rs = r − Rs and Cs is a complex constant (see figure 2.1).

This field can be expressed in the frame r′ of the previous section by

means of the Graf’s addition theorem (see Appendix A),

P 0(r) = Cs

∑
q

Hs−q(kR
′
s)e

i(s−q)Φ′sJq(kr
′)eiqθ′ (2.2.9)

where the vector R′
s = (R′s,Φ

′
s) is the position vector of the source in the ′

frame, and is given by

R′
s = Rs −R′ (2.2.10)

When working with multiple scattering the ′ is some cylinder, so that R′

is the position vector of this cylinder.
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Figure 2.1: Coordinate definitions for the incident fields.

If a more general source is needed, it can be modeled with a linear com-

bination of all the s-sources

P 0(r) =
∑

s

CsHs(krs)e
isθs , (2.2.11)

and the response of the system will be the addition of the responses to all

the individual sources.

2.3 T Matrix of a fluid cylinder

The concept of fluid-like cylinder seems of non physical sense, due to the fact

that is difficult to believe that a fluid could be confined in a circular shaped

region and surrounded by another fluid. But it will be shown later that this

fluid-like cylinder can be made possible in several ways.So it is important to

begin by analyzing this type of cylinders. The T matrix of this system is

very easy to obtain, and two important cases are derived from it: the rigid

cylinder and the void.

Let us consider a fluid cylinder of radius Ra and acoustic parameters va

and ρa. Let us also assume that some external field, defined by the coefficients

A0
q, impinges the cylinder. In the region outside the cylinder, as shown
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previously, the total acoustic field is

P+(r) =
∑

q

A0
qJq(kr)e

iqθ +
∑

q

AqHq(kr)e
iqθ (2.3.1)

Inside the cylinder there are no sources, and the total field can be ex-

pressed in terms of regular Bessel functions with associated wavenumber ka

P−(r) =
∑

q

Bin
q Jq(kar)e

iqθ (2.3.2)

Now the boundary conditions should be applied at the circular surface.

These boundary conditions are (see section 1.4):

P+(Ra) = P+(Rb) (2.3.3)

1

ρb

∂P+(r)

∂r

∣∣∣∣
r=Ra

=
1

ρa

∂P+(r)

∂r

∣∣∣∣
r=Ra

(2.3.4)

These equations are equivalent to

∑
q

A0
qJq(kRa)e

iqθ +
∑

q

AqHq(kRa)e
iqθ =

∑
q

Bin
q Jq(kaRa)e

iqθ, (2.3.5)

k

ρb

∑
q

A0
qJ

′
q(kRa)e

iqθ +
k

ρb

∑
q

AqH
′
q(kRa)e

iqθ =
ka

ρa

∑
q

Bin
q J

′
q(kaRa)e

iqθ,

(2.3.6)

where the ’ implies derivatives respect to the argument.

The sums in q can be eliminated multiplying the equations by eisθ and

integrating from 0 to 2π.In this case only those terms such that s = q are

different than zero and the final form of the equations are

A0
qJq(kRa)e

iqθ + AqHq(kRa)e
iqθ = Bin

q Jq(kaRa)e
iqθ (2.3.7a)

k

ρb

A0
qJ

′
q(kRa)e

iqθ +
k

ρb

AqH
′
q(kRa)e

iqθ =
ka

ρa

Bin
q J

′
q(kaRa)e

iqθ (2.3.7b)

Now it is easy to obtain the relation between the coefficients Aq and A0
q,

which defines the T matrix. Note that in the obtained relation the coefficient
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Figure 2.2: Comparison between the scattered field of a rigid cylinder (left

panel) and of a void (right panel), for kRa = π(λ = 2Ra). Both the x axis

and the y axis extends from −10Ra to 10Ra.

Aq only depends on the coefficient A0
q; i.e., the T matrix is diagonal, Tsq =

Tqδsq, with Tq given by

Tq = − ρqJ
′
q(kRa)− Jq(kRa)

ρqH ′
q(kRa)−Hq(kRa)

, (2.3.8)

where

ρq =
ρava

ρbvb

Jq(kaRa)

J ′q(kaRa)
(2.3.9)

The T matrix of two special cases can now be derived. The first one is

the rigid cylinder, where the density of the cylinder ρa, in relation to the

background ρb, approaches to infinity. In this situation also the quantity ρq

approaches to infinity, so that the T matrix for the rigid cylinder is

Tq = − J ′q(kRa)

H ′
q(kRa)

(2.3.10)

The second case is the void cylinder, which corresponds to the opposite

situation: now the density of the cylinder, in relation to the background,
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approaches to zero, then the T matrix for the void is

Tq = − Jq(kRa)

Hq(kRa)
(2.3.11)

Mathematically these two special cases seems very similar, but it can be

seen in figure 2.2 how the scattering by a void is stronger than that of the

rigid cylinder.

The T matrix allows to obtain the field outside the cylinder. When the

field inside the cylinder is needed, it can be computed with the help of equa-

tion (2.3.7a), which solving for Bin
q gives

Bin
q =

Jq(kRa) + TqHq(kRa)

Jq(kaRa)
A0

q (2.3.12)

for both the rigid and the void cylinders there is no field inside them.

2.4 T Matrix of an elastic cylinder

This section deals with a more realistic approach to the scattering by a solid

cylinder. Now the solid cylinder is made of some elastic material, character-

ized by a given density ρa and lamé constans λa and µa, all of them defining

the longitudinal and transversal speeds of sound

c` =

√
λa + 2µa

ρa

(2.4.1)

ct =

√
µa

ρa

(2.4.2)

In section 1.3 was shown that in a 2D elastic medium the displacement

vector u can be expressed in polar coordinates as

ur = −∂ψ
∂r

+
1

r

∂Az

∂θ
(2.4.3)

uθ = −1

r

∂ψ

∂θ
− ∂Az

∂r
(2.4.4)

Inside the elastic cylinder, with no sources, the potentials ψ and Az are

expressed as linear combinations of Bessel functions,

ψ =
∑

q

B(`)
q Jq(k`r)e

iqθ (2.4.5)

Az =
∑

q

B(t)
q Jq(ktr)e

iqθ, (2.4.6)
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with k` = k/c` and kt = k/ct.

The field outside the cylinder will be the same that in the previous section,

that is

P (r) =
∑

q

A0
qJq(kr)e

iqθ +
∑

q

AqHq(kr)e
iqθ (2.4.7)

As explained in section 1.4 the coupling between the elastic field and the

acoustic field occurs through the boundary conditions at the surface of the

cylinder, which are

σrθ = 0 (2.4.8)

σrr = −P (2.4.9)

u−r = u+
r (2.4.10)

the first of the equations is

1

r

∂ur

∂θ
+
∂uθ

∂r
− 1

r
uθ = 0 (2.4.11)

inserting in the above equation the expression for the vector displacement

and the expansion of the potentials ψ and Az the following relation between

the coefficients B
(`,t)
q is obtained

B(t)
q = FqB

(`)
q (2.4.12)

with

Fq =
2iq

k2
tR

2
a

[
Jq(k`Ra)− k`RaJ

′
q(k`Ra)

Jq(ktRa) + 2J ′′q (ktRa)

]
(2.4.13)

The second of the equations is

λa

r
ur + (λa + 2µa)

∂ur

∂r

+
λa

r

∂uθ

∂θ
= −P (2.4.14)

again, substituting the potentials and their expansions the following is ob-

tained

− 2iqµa

R2
a

[
Jq(ktRa)− ktRaJ

′
q(ktRa)

]
B(t)

q +

k2
`

[
λaJq(k`Ra)− 2µaJ

′′
q (k`Ra)

]
B(`)

q =

− A0
qJq(kRa)− AqHq(kRa) (2.4.15)
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Figure 2.3: Comparison between the scattered fields for the case of a fluid

cylinder (left panel) and an elastic cylinder (right panel). For kRa = π

(λ = 2Ra). The density of the cylinders is ρa = 2ρb and the longitudinal

speed of sound is c` = 0.8cb. For the elastic cylinder the transversal speed of

sound is ct = 0.5c`. The field inside the cylinders is not plotted for clarity.

which can be expressed as

GqB
(`)
q = A0

qJq(kRa) + AqHq(kRa) (2.4.16)

where

Gq =
2iqµaFq

R2
a

[
Jq(ktRa)− ktRaJ

′
q(ktRa)

]− k2
`

[
λaJq(k`Ra)− 2µaJ

′′
q (k`Ra)

]

(2.4.17)

Finally, the last boundary condition is

−∂ψ
∂r

+
1

r

∂Az

∂θ
=

1

ρbω2

∂P

∂r
(2.4.18)

then

−k`B
(`)
q J ′q(k`Ra) +

iq

Ra

B(t)
q Jq(ktRa) =

1

ρbkc2b

[
A0

qJ
′
q(kRa) + AqH

′
q(kRa)

]

(2.4.19)

This expression can be cast in

IqB
(`)
q = A0

qJ
′
q(kRa) + AqH

′
q(kRa) (2.4.20)
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with

Iq = ρbkc
2
b

[
−k`J

′
q(k`Ra) +

iq

Ra

FqJq(ktRa)

]
(2.4.21)

Then, equations (2.4.16) and (2.4.20) can be solved to obtain the relation

between the coefficients A0
q and Aq, relation which defines the T matrix,

arriving to an expression identical to that of the fluid-like cylinder

Tq = − ρqJ
′
q(kRa)− Jq(kRa)

ρqH ′
q(kRa)−Hq(kRa)

(2.4.22)

but now the factor ρq has a more complex form

ρq =
Gq

Iq
(2.4.23)

If the field inside the cylinder is needed, from equation 2.4.16 the coeffi-

cient B
(l)
q is

B(`)
q =

Jq(kRa) + TqHq(kRa)

Gq

A0
q (2.4.24)

The procedure to obtain the T matrix is so lug that it is worth to explain

a brief recipe to obtain it. The following steps have to be followed

• Compute the quantity Fq with (2.4.13)

• Compute the quantity Gq with (2.4.17)

• Compute the quantity Iq with (2.4.21)

• Compute the quantity ρq with (2.4.23)

• Compute the quantity Tq with (2.4.22)

• The coefficients Aq are just Aq = TqA
0
q

If the field inside the cylinder is needed

• The coefficients B
(`)
q can be computed with (2.4.24)

• The coefficients B
(`)
q are B

(t)
q = FqB

(`)
q

In figure 2.3 it is shown the acoustic field scattered by a fluid cylinder

and by an elastic cylinder of similar physical properties.
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2.5 T Matrix of a fluid scatter with arbitrary

cross section

When the cylinder has a geometry other than the circular cylinder a more

complex approach must be used. In this work only circular cylinders has been

considered, but the result for a fluid cylinder with arbitrary cross section will

be showed for possible reference.

Defining the matrix elements Hsq and Jsq

Υsq =
1

4

∮
dσn ·

[
ρa

ρb

Js(karσ)eisθσ∇Υq(karσ)e−iqθσ−

Υq(krσ)eiqθσ∇Js(karσ)eisθσ
]

(2.5.1)

where Υ = H(J). The T matrix is defined by the equation
∑

r

HrqTrs = −Jqs (2.5.2)

and therefore

T = −H ′−1J (2.5.3)

2.6 Far field and form factor

Two dimensional pressure maps are very visual and allows to understand

some aspects of the sound scattering by obstacles. How ever, it is difficult

to compare two different pressure maps. One dimensional plots are more

suitable to make comparisons.

A very useful quantity to understand the scattering properties of obstacles

is the form factor, derived from the far field distribution. This far field is an

asymptotic expression of the scattered field when r → ∞. Employing the

asymptotic form of Hankel functions for large arguments (equation A.1.14)

P sc(r, θ) =
∑

q

AqHq(kr)e
iqθ ≈

√
2

πkr
e−iπ/4eikr

∑
q

(−i)qAqe
iqθ (2.6.1)

the scattered far field is defined as

σsc(k, θ) ≡ lim
r→∞

∣∣√rP sc(r, θ)
∣∣ =

∣∣∣∣∣

√
2

πk

∑
q

(−i)qAqe
iqθ

∣∣∣∣∣ (2.6.2)
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Figure 2.4: Scattered far field for a rigid and a fluid cylinder. The wavelength

is equal to the radius of both cylinders, λ = Ra. For the fluid cylinder, the

density is ρa = 2ρb and the speed of sound is ca = 0.8cb.

if the quantity is computed for θ = 0 is called the “forward scattered field”

and is denoted by σfwd, and if the quantity is computed for θ = π is called

the “back scattered field”, denoted by σback.

In figure 2.4 the far field has been plotted for the case of the rigid and

the fluid cylinder. Obviously the scattered fields are higher in the forward

direction, which is the direction of the incident field.

In figure 2.5 the back scattered field has been plotted as a function of

the frequency for the different cylinders explained in the last section. It

is clear that the elastic one has the more complex spectrum. It happens

due to the fact that the elastic cylinder has a more complex structure, with

both longitudinal and transversal waves propagating, thus there are more

resonances and more complex effects.

The angular integral of the scattered far field is called the form factor
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Figure 2.5: Back Scattering field for the case of the rigid, void, fluid and

elastic cylinder. The fluid and elastic cylinder’s properties are the same as

in figure 2.3.

F (k)

F (k) ≡
∫ 2π

0

σ2
sc(k, θ)dθ =

∫ 2π

0

∣∣∣∣∣

√
2

πk

∑
q

(−i)qAqe
iqθ

∣∣∣∣∣

2

dθ =
4

k

∑
q

|Aq|2

(2.6.3)

2.7 Comments on convergence

The scattered pressure is obtained as an infinite sum of Hankel functions:

P sc(r, θ) =
∞∑

q=−∞
AqHq(kr)e

iqθ (2.7.1)

Obviously this sum has to be computed to a maximum value q = Qmax,

large enough to ensure that the value computed has some desired error.

However, convergence in these series is so good that the desired error can be

the double precision of a desktop computer. It means that the procedure is
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Figure 2.6: Convergence analysis. The improvement of the result is evident

when increasing the number of Bessel functionsQmax. In the present work the

wavelength is normally larger than the cylinder radius, Rcyl/λ < 1, therefore

Qmax = 4 is a good choice.

to increase the number of Hankel functions till the computer cannot compute

different values.

A good procedure should be to choose some Qmax and then check the

result. Following this value has to be increased by one Qmax = Qmax +1 and

compare the result with the previous one. This procedure has to be done till

there is no difference between the previous one (or the difference be equal to

some defined errror).

In figure 2.6 has been plot the forward scattered field by one rigid cylinder

as a function of the normalized frequency. The plot has been computed for

several Qmax. It is evident that the number of Hankel functions depends on

the frequency at which the field is computed, being larger as the frequency

is increased.

In this work cylinders are placed in regular lattice of lattice constant

a. It means that the maximum value of the radius of the cylinders will be

Ra ≈ a/2, which is the limit for the close packing condition. The maximum
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frequency employed here use to be under the diffraction limit, that is, when

the wavelength is similar to the lattice constant λ ≈ a, though sometimes this

limit has been exceeded. But it can be say that, in general, the maximum

ratio Ra/λ is about 1/2.

In figure 2.6 it is shown that, for this limiting case, only 4 Hankel functions

should be needed. But it is not necessary to use so much functions for low

frequency calculations, as shown as well in the same figure. To choose the

correct number of functions, in this work the following rule has been used

Qmax = Q0 + kRa (2.7.2)

where Q0 is equal to 1, 2 or 3.

As will be seen later, when more than one cylinder is implied in the prob-

lem there appear some multiple scattering terms. These terms makes that

the number of functions needed be increased. So that, if for a single cylinder

the problem converges for say Qmax = 2, if two or even more cylinders are

implied it has not to be necessary true, it depends on how close each other

are the cylinders. This is the reason why the value Q0 has to be analyzed for

different situations. Also, if more than one cylinder is implied, the rule used

can be

Qmax = Q0 +
k

N

N∑
i=1

Ri (2.7.3)

being N the number of cylinders. For the frequencies employed in this work

it has been found that Q0 = 3 ensures convergence in almost all the ranges.

A convergence analysis is always recommendable. This analysis is easy

to do in these problems, due to the fact that the convergence is managed by

only one parameter. For few cylinders few Hankel functions does not affect

the time of CPU to compute the field, but when there are many cylinders

the size of the matrices involved is highly increased by only few functions, so

it is important to ensure that only the necessary functions are used.



Chapter 3

Multiple Scattering of waves

The multiple scattering of waves is here fully analyzed. Firstly, scatterers

arbitrarily located are considered. Afterwords, scatterers will be ordered in

infinite rows and, finally, the case of scatterers ordered in a periodic infinite

system is studied. These three forms of ordering sets of scatters allows to

understand different aspects of wave propagation in heterogeneous media. It

is shown that the three methods are complementary each other.

3.1 Arbitrarily located scatterers

Consider a cluster of N parallel cylinders with arbitrary transversely section

located at Rα, with α = 1, 2, ..., N . If an external field P 0(r, θ) impinges the

cluster, the total scattered field will be given by the sum of the scattered

field by each individual cylinder, that is

P SC(r, θ) =
∑

α

∞∑
q=−∞

(Aα)qHq(krα)eiqθα (3.1.1)

whereHq(·) is the q-Th order Hanker function of first kind and (rα, θα) are the

polar coordinates with the origin translated to the center of the α-cylinder,

i.e, rα = r −Rα, as shown in figure 3.1. Here, k = ω/cb and (Aα)q are the

coefficients to be determined.

The total field incident on the α-cylinder can be expressed as a linear

combination of Bessel functions

P 0
α(rα, θα) =

∑
s

(Bα)sJs(krα)eisθα (3.1.2)
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Figure 3.1: Definition of variables employed in the multiple scattering theory

these coefficients are related with the (Aα)q by means of the T matrix

(Aα)q =
∑

s

(Tα)qs(Bα)s (3.1.3)

being (Tα) the T matrix of the α-cylinder.

The total field (3.1.2) incident the α-cylinder is the sum of the external

field P 0(r, θ) and the field scattered by all the cylinders except α. The

external field can be expressed in the α frame by using the method explained

in the previous chapter. The scattered field can also be expressed in the

α reference frame by means of the Graft’s addition theorem explained in

Appendix A. It is obtained that

P 0
α(rα, θα) =

∑
q

(A0
α)qJq(krα)eiqθα+

∑

β 6=α

(Aβ)sHq−s(krαβ)ei(s−q)θαβJq(krα)eiqθα , (3.1.4)

where the coefficients (A0
α)q are those of the external field in the α frame of

reference. Details of the variables employed are given in figure 3.1. From the
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equation above and (3.1.2), the relation between (Bα)q and (Aβ)s coefficients

is

(Bα)q = (A0
α)q +

∑

β 6=α

(Aβ)sHq−s(krαβ)ei(s−q)θαβ (3.1.5)

finally, multiplying this equation by (Tα)qr and summing for all q we get

(Aα)r −
∑

s

∑

β

(Gαβ)rs(Aβ)s =
∑

q

(Tα)qr(A
0
α)q (3.1.6)

where

(Gαβ)rs =
∑

q

(1− δαβ)(Tα)qrHq−s(krαβ)ei(s−q)θαβ (3.1.7)

The equation above has been derived for a cylinder of arbitrary section

with some non-diagonal T matrix. However, in the present work, the multiple

scattering theory has been mainly applied to circular cylinders, where the T

matrix is diagonal, (Tα)qr = (Tα)qδqr. In this situation the above equations

are

(Aα)q −
∑

s

∑

β

(Gαβ)qs(Aβ)s = (Tα)q(A
0
α)q (3.1.8)

(Gαβ)qs = (1− δαβ)(Tα)qHq−s(krαβ)ei(s−q)θαβ (3.1.9)

Returning to the general expression 3.1.6, in principle the multi-polar

expansions are infinite, but the angular momentum index is truncated to

some maximum value smax such that |s| <= smax. In this case, the set of

equations (3.1.6) defines a system of N(2smax + 1) linear equations. The

inversion of the M matrix defined by

(Mαβ)rs = δrsδαβ − (Gαβ)rs (3.1.10)

gives the solution of the problem

(Aα)q =
∑

β

∑
r

∑
s

(M−1
αβ )qr(Tα)rs(A

0
α)s (3.1.11)

The solution is obtained in terms of the position and properties of each

cylinder and of the external field.

Also note that, for the case of a plane wave of amplitude C0 and propa-

gation angle θ0, the coefficients (A0
α)q are

(A0
α)q = C0e

ik0·Rαiqe−iqθ0 (3.1.12)
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Figure 3.2: Scattering of an hexagonal cluster of rigid cylinders embedded

in an hexagonal lattice of constant a. Two wavelengths are used in this

simulation: λ = 4a in the left panel and λ = a in the right one. It is clear

how the behavior is different in both situations. When λ = 4a the cluster of

cylinders behaves like a fluid cylinder, as can be seen by the focusing effect.

For the case λ = a some diffracted waves are excited, as will be explained in

the next section.
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and for the punctual source of order s and amplitude Cs

(A0
α)q = CsHs−q(kr

′
s)e

i(s−q)Φ′s (3.1.13)

Finally, the total pressure at any point of the plane is the addition of the

incident field and the total scattered field, that is

P (r, θ) = P 0(r, θ) +
∑

α

∞∑
q=−∞

(Aα)qHq(krα)eiqθα (3.1.14)

In figure 3.2 the pressure field is plotted for the case of a plane wave

incident in an hexagonal cluster of cylinders, arranged also in an hexagonal

lattice of constant a. For the plot of the left panel the wavelength is four

times the lattice constant(λ = 4a). In this case the cluster behaves like a

single homogeneous medium. Is in this range of wavelengths where this work

focus.

In the right panel of figure 3.2 the wavelength equals the lattice constant

(λ = a) and Bragg diffraction occurs. This phenomenon will be discussed in

the next section.

Like for the simple cylinder, the scattered far field is a very useful quantity

to characterize a cluster of cylinders. This scattered far field is computed for

long r, then

P sc(r, θ) =
∑

α

∞∑
q=−∞

(Aα)qHq(krα)eiqθα ≈
√

2

πkr
e−iπ/4eikr

∑
α

∞∑
q=−∞

(−i)q(Aα)qe
−ikrαeiqθα (3.1.15)

therefore the scattered far field is

σsc(k, θ) =

∣∣∣∣∣

√
2

πk

∑
α

∞∑
q=−∞

(−i)q(Aα)qe
−ikrαeiqθα

∣∣∣∣∣ (3.1.16)

and the scattering form factor

F (k) ≡
∫ 2π

0

σ2
sc(k, θ)dθ =

4

k

∑
α

∞∑
q=−∞

|(Aα)q|2 (3.1.17)
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3.2 Periodic arrays of scatterers: Reflectance

and Transmittance

In some special situations it is interesting to analyze the reflectance and

transmittance through slabs of cylinders infinite in one of the spacial dimen-

sions. An infinite slab has the geometry shown in figure 3.3. Each row of

cylinders extends from −∞ to ∞, and all the cylinders in the row are identi-

cal. The distance between cylinders in a row is equal to a, and this distance

is the same for all the rows. As shown in figure 3.3 the position vector of a

cylinder α will be

Rα = R` + R`
α = x`x̂ + (y` + αa)ŷ (3.2.1)

where α runs from −∞ to ∞. The vector R` = (x`, y`) defines the position

of the central cylinder in a line. This central cylinder defines the x position

of the line and the y relative displacement of lines. The vector R`
α defines the

position of the α cylinder relative to the central one. This vector is obviously

equal to αaŷ

The incident field is a plane wave

P 0(r) = eik0·r (3.2.2)

with wavevector k0 = k(cos θ0, sin θ0). This field makes the problem highly

symmetrical, due to the fact that now the scattering coefficients of the α

cylinder in the ` line differs from the scattering coefficients of the central

cylinder only by a phase factor. It can be seen clearly writting the equation

for the scattering coefficients when the incident field is a plane wave

(A`
α)r −

∑
s

∑
m

∑

β

(G`m
αβ)rs(A

m
β )s =

∑
s

(T`)rse
ik0·R`eik0·R`

αA0
s (3.2.3)

note that the super index ` has been added in order to indicate that cylinders

are located along lines.

The subindex α only appears in the right hand side of the above equation

through the phase factor

eik0·R`
α = eiαka sin θ0 (3.2.4)
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Figure 3.3: Geometry and coordinate definitions for the infinite line of cylin-

ders. The distance between two successive cylinders is always a. Only one

line is drawn for simplicity.
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multiplying the equation 3.2.3 by the phase factor e−iαka sin θ0 and expressing

the multiple scattering terms as

e−iαka sin θ0(G`m
αβ)rs(A

m
β )s = (G`m

αβ)rse
i(β−α)ka sin θ0e−iβka sin θ0(Am

β )s (3.2.5)

It is convenient define the quantities (A`)r ≡ e−iαka sin θ0(A`
α)r, which are

independent of α, because only terms involving relative coordinates of the

cylinders appear in the equations, and the symmetry of the problem makes

that this relative coordinates are the same for all the cylinders in one row.

The final form for the equation (3.2.3) is

(A`)r −
∑

s

∑
m

(G`m)rs(Am)s =
∑

s

(T`)rse
ik0·R`ise−isθ0 (3.2.6)

where the identity A0
s = ise−isθ0 has been used.

The lattice sums

(G`m)rs ≡
∞∑

β=−∞
(G`m

0β )rse
iβka sin θ0 (3.2.7)

are calculated at the central cylinder. These lattice sums converges very

slowly, but faster convergent expressions are given in Appendix A.

Once the coefficients (A`)r are determined, the total field can be easily

computed,

P (r, θ) = eik0·r +
∑

q

∑
α

∑

`

(A`
α)qHq(kr

`
α)eiqθ`

α (3.2.8)

where the vector r`
α is

r`
α = r −Rα = r −R` −R`

α (3.2.9)

using

(A`
α)qHq(kr

`
α)eiqθ`

α = (A`)qHq(kr
`
α)eiαka sin θ0eiqθ`

α (3.2.10)

and the result of Appendix A

∞∑
α=−∞

eiαka sin θ0Hq(kr
`
α)eiqθ`

α =
∞∑

ν=−∞
C±νqe

ik±ν ·(r−R`) (3.2.11)

the total field will be

P (r, θ) = eik0·r +
∑

q

∑

`

∞∑
ν=−∞

(A`)qC
±
νqe

ik±ν ·(r−R`), (3.2.12)
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which can be cast in a more compact form as

P (r, θ) = eik0·r +
∞∑

ν=−∞
C±ν e

ik±ν ·r (3.2.13)

where

C±ν =
∑

q

∑

`

(A`)qC
±
νqe

−ik±ν ·R` (3.2.14)

To better understand the physical meaning of the result above, it is worth

to calculate the energy flux through the vertical segment (y, y + a). This

energy flux is the flux of the intensity vector

~I =
1

2ωρb

<[iP∇P ∗] (3.2.15)

where < denotes the real part.

It is easy to show that

iP∇P ∗ =

k0 +
∑

ν

C∗±ν eik0·re−ik±ν ·rk±ν +
∑

ν

C±ν e
−ik0·reik±ν ·rk0+

(3.2.16)

the energy flux is then

Φ =

∫ y+a

y

Ixdy (3.2.17)

After integration it is easy to show that

Φ =
1

2ωρb

×
[
ka cos θ0 + ka<[C±0 ± C∗±0 ] cos θ0 ± ka| cos θν |

∑

cos θν∈<
|C±ν |2

]
(3.2.18)

Then only modes with cos θν real contributes to the energy flow, so that

evanescent modes does not carries energy. The quantity Φ0 = ka cos θ0/2ωρb

defines the incident flow to the slab. By dividing the total flow by this

quantity, it can be obtained that the flow at the left hand side of the slab is

Φ−

Φ0

= 1− | cos θν |
cos θ0

∑

cos θν∈<
|C−ν |2 (3.2.19)



46 Multiple Scattering of waves

For the flow at the right hand side,

Φ+

Φ0

= 1 + 2<[C+
0 ] +

| cos θν |
cos θ0

∑

cos θν∈<
|C+

ν |2 (3.2.20)

In the expression above is possible to identify

R =
| cos θν |
cos θ0

∑

cos θν∈<
|C−ν |2 (3.2.21a)

T = 1 + 2<[C+
0 ] +

| cos θν |
cos θ0

∑

cos θν∈<
|C+

ν |2 (3.2.21b)

where the quantitiesR and T are defined, respectively, as the reflectance and

transmittance. These quantities indicate how much energy flows through the

slab and how much is reflected by it.

The total field is composed by the sum of the incident plane wave and

a set of both propagating plane waves(cos θν real) and evanescent modes

(cos θν complex). Only the propagating modes transport energy, then the

evanescent ones are relevant only for surface effects, which is not the purpose

of the present work, so that the discussion about them will be omitted.

When there are more than one propagating mode the energy is distributed

between the different diffracted waves. In the last case has no sense to talk

about the reflection and transmission coefficients in the usual way. When

there is only one mode (there is no diffraction) it is possible to talk about

the relation between the incident and the reflected or transmitted plane wave.

When only the mode corresponding to ν = 0 is the only propagating

mode, the reflectance is

R = |C−0 |2 (3.2.22)

and the transmittance

T = 1 + 2<[C+
0 ] + |C+

0 |2 = |1 + C+
0 |2 (3.2.23)

Therefore, for the left hand side of the slab, the reflectance coefficient is

r = C−0 (3.2.24)

and for the right hand side of the slab the transmittance coefficient is

t = 1 + C+
0 (3.2.25)
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Figure 3.4: (Black line) Reflectance of an eight layers slab of rigid cylinders

embedded in a square lattice of constant a. Cylinders have a radius of Ra =

0.3a and the incidence is perpendicular to the ΓX direction.(Red line) The

same structure but without the forth line of cylinders.

3.3 Periodic lattice: Band structure

If the cylinders are ordered in a 2D lattice, their α-positions are defined by

the Bravos lattice R = n1a1 + n2a2, where n1 and n2 are integers and a1

and a2 are the primitive vectors:

a1 = a1x̂ (3.3.1a)

a2 = a2 cosφx̂ + a2 sinφŷ (3.3.1b)

Bloch’s theorem allows to cast the total field as the product of a Bloch

plane wave and a function with the periodicity of the lattice, that is

P (r) = eiK·ru(r) (3.3.2)

This function verifies

P (r + Rα) = eiK·RαP (r), (3.3.3)

where the vector Rα is a vector of the Bravos lattice.
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x

Figure 3.5: Arbitrary 2D lattice with one cylinder per unit cell. The 2D

sonic crystal is built by a translation of the unit vectors a1 and a2.

The solutions of interest are the modes of the system, i.e., the solutions

with no incident field. In this case the total field will be

P (r) =
∑

α

P SC
α (rα) =

∑
α

P SC
α (r −Rα) (3.3.4)

The total field in a point translated r+Rβ can be computed using Bloch’s

theorem

P (r + Rβ) = eiK·RβP (r) (3.3.5)

but it implies

P (r + Rβ) =
∑

α

P SC
α (r −Rα + Rβ) (3.3.6)

then it is obvious that the scattered field by the cylinder located at the origin

and that of the cylinder located at the lattice point Rβ are related by

P SC
β (rβ) = eiK·RβP SC

0 (r) (3.3.7)

and this expression leads to a relation between the scattering coefficients

(Aq)β = eiK·RβAq (3.3.8)
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Figure 3.6: Band structure for a square lattice of rigid cylinders of radius

Ra = 0.3a. There is a band gap in the ΓX direction, but it is not a complete

band gap, therefore sound can propagate through the structure in the direc-

tion, for example, ΓM . The existence of full band gaps is a topic of intense

research in acoustics.

where Aq are the scattering coefficients of the cylinder located at the origin.

With the above relation and reminding that the incident field is null, equation

3.1.6 will be

Ar −
∑

S

As

∑

β

eiK·Rβ(G0β)rs = 0 (3.3.9)

the lattice sums

Srs =
∑

β

eiK·Rβ(G0β)rs (3.3.10)

are given in the appendix. These sums converges very slowly in real space

but very quickly in the reciprocal space. Then the system to solve becomes

M ·A = 0 (3.3.11)

where the matrix M is

Mrs = δrs − Srs (3.3.12)

In order to obtain non trivial solutions of the above equations, the deter-

minant of the matrix M must be equal to zero. It means that for a given
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Bloch wave number K, there will be some ωn values which satisfies the con-

dition det M = 0, that is, this condition defines a set of dispersion relations

of the form ωn = ωn(K). Each n defines a band, and the complete set of

solutions is called the band structure. Note that the dispersion relation is

periodic in the Bloch wavenumber K, where the periodicity defines the first

Brailling zone (BZ).

The first Brailling zone is defined by the reciprocal lattice vectors b1

and b2. These vectors have the property that, when adding some linear

combination h1b1 + h2b2 of them to the wave vector K, the band structure

is the same. It is evident that it will happen provided that

(h1b1 + h2b2) ·Rβ = 2nπ (3.3.13)

The above equation is satisfied defining the vectors bi such that

bi · aj = 2πδij (3.3.14)

or, expressing bi and aj in Cartesian coordinates
∑

l,m

bILx̂l · aJimx̂m =
∑

l

bILaJul = 2πδij (3.3.15)

This last equation can be, in 2D, expressed in matrix form, being
(
b1x b1y

b2x b2y

)
·
(
a1x a2x

a1y a2y

)
= 2π

(
1 0

0 1

)
(3.3.16)

which allows to obtain the vectors bi from matrix inversion
(
b1x b1y

b2x b2y

)
=

2π

a1xa2y − a2xa2y

(
a2y −a2x

−a1y a1x

)
(3.3.17)

If the lattice vectors are defined as in equations (3.3.1) the reciprocal

lattice vectors are

b1 =
2π

a1

x̂− 2π

a1 tanφ
ŷ (3.3.18a)

b2 =
2π

a2 sinφ
ŷ (3.3.18b)

Equations (3.3.18) and (3.3.1) are the conventions used in the present

work. The two isotropic lattices in 2D, the hexagonal and the square lattices,

are defined by a1 = a2 = a and φ = π/2 or φ = π/3, respectively.
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In figure 3.6 a band structure is computed for the case of rigid cylinders

embedded in a square lattice. The frequency range has been choosen to be

the working frequency range in the present work:mainly under the diffraction

limit (λ = a).

The main feature of this band structure is the existence of a band gap

in the ΓX direction. There are no solutions for the dispersion relation ω =

ω(K) in this direction, then sound cannot propagate through it. However it

can through other directions. The existence of gaps in all the directions of

propagation is a topic of intense research in acoustics, but not in the present

work.

In this work, we are interested in the low frequency limit. It is clear from

figure 3.6 that, in this limit, the dispersion relation becomes linear. Here

we say that the medium homogenizes to an effective medium. To obtain the

acoustic parameters of this effective medium and its possible applications is

the objective of the present work.
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Chapter 4

T matrix of special scatterers

It is shown here how to compute the T matrix for non conventional scatter-

ing structures, that is, those that are not just fluid or elastic cylinders. The

first case is a cluster of cylinders. The scattering properties of such system

can be described by some effective T matrix, as if it were a single scatter.

The second example that will be considered is the anisotropic fluid cylinder.

It will be shown that, although it is a circular cylinder, its T matrix will

be non-diagonal. Another interesting type of scatters are those where the

acoustic properties change with the position, that is, non-homogeneous scat-

ters. A special case of this type of cylinders will be shown. Finally, the third

case corresponds to a linear chain of spheres that, under certain conditions,

behaves as a 2D scatterer, whose effective T matrix is computed.

4.1 Effective T Matrix of a cluster of cylin-

drical scatterers

Section 3.1 showed that the total scattered field by a cluster of N scatterers

is

P sc(r, θ) =
N∑

α=1

∞∑
q=−∞

(Aα)qHq(krα)eiqθα (4.1.1)

By using Graf’s addition theorem the Hankel functions of this equation can

be translated to the origin of coordinates, the total scattered field can be
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expressed as

P sc(r, θ) =
∑

p

Asc
p Hp(kr)e

ipθ ; r > R+
α (4.1.2)

where

Asc
p =

N∑
α=1

∑
q

Jp−q(kRα)ei(q−p)Φα(Aα)q (4.1.3)

and R+
α stands for the greater of Rα.

These equations show that the total scattered field can be expressed as

the scattered field by only one cylinder (of some arbitrary shape) located

at the origin. The relation between the coefficients Asc
s and A0

q will define

the effective T matrix of this hypothetical cylinder. To obtain the effective

T matrix, the coefficients (Aα)q given by equation (3.1.11) are inserted in

(4.1.3),

Asc
p =

N∑

α,β=1

∑
q,r,s

Jp−q(kRα)e(q−p)Φα(M−1
αβ )qr(Tβ)rs(A

0
β)s (4.1.4)

This equation establishes a linear relation between the coefficients Asc
p

and (A0
α)s. The relationship between (A0

α)q with that of the generic incident

field A0
q are still needed.

In section 2.2 was derived this expression for a specific type of fields. If

the incident field is a generic field of the form

P 0(r, θ) =
∑

q

A0
qJq(kr)e

iqθ (4.1.5)

when translating the origin to the cylinder α the field is

P 0(rα, θα) =
∑

q

A0
q

∑
s

Jq−s(kRα)ei(q−s)ΦαJs(krα)eisθalpha (4.1.6)

equation that defines the coefficients (A0
α)s as

(A0
α)s =

∑
q

Jq−s(kRα)ei(q−s)ΦαA0
q (4.1.7)

inserting the above expression in (4.1.4), replacing the index q by t

Asc
p =

∑

α,β

∑
q,r,s,t

Jp−q(kRα)e(q−p)Φα(M−1
αβ )qr(Tβ)rsJt−s(kRβ)ei(t−s)ΦβA0

t (4.1.8)
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Now the effective T matrix is finally obtained:

T eff
pt =

∑

α,β

∑
q,r,s

Jp−q(kRα)e(q−p)Φα(M−1
αβ )qr(Tβ)rsJt−s(kRβ)ei(t−s)Φβ (4.1.9)

Note taht this expression does not allow to compute the field inside the

cluster. However this expression is very important since in the low frequency

limit allows to calculate the effective medium properties of the cluster, as it

will be shown later.

4.2 T Matrix of an anisotropic fluid like cylin-

der

Chapter 1 showed that in an anisotropic fluid-like material sound waves travel

with an angle dependent speed of sound given by

c(τ) =
∑
i,j

cij cos τi cos τj (4.2.1)

The tensor cij is related with the reciprocal density tensor by means of the

bulk modulus of the medium as cij = B0ρ
−1
ij .

Now the T matrix of a cylinder of radius R0 made of such anisotropic

medium, embedded in an isotropic fluid with acoustic parameters equal to

one, will be derived. If the absolute values of the variables are needed, the

substitution B0 → B0/Bb, cij → cij/cb and ρij → ρij/ρb has to be done.

For r > R0 the pressure field is given by the addition of incident and

scattered fields, that is

P (r, θ; k) =
∑

s

A0
sJs(kr)e

isθ +
∑

s

AsHs(kr)e
isθ (4.2.2)

For r ≤ R0 the proposed solution for wave propagation inside the cylinder

is a linear combination of plane waves of the form

P (r, θ; k) =
∑

s

BsJ
a
s (kr/c, θ)eisθ (4.2.3)

where

Ja
s (kr/c, θ) =

i−s

2π

∫ 2π

0

ei kr
c(τ)

cos(τ−θ)eis(τ−θ)dτ (4.2.4)
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Applying the boundary conditions defined in (1.4)

∑
s

A0
sJs(kR0)e

isθ +
∑

s

AsHs(kR0)e
isθ =

∑
s

BsJ
a
s (kR0/v, θ)e

isθ

(4.2.5)

∂

∂r

[∑
s

A0
sJs(kr)e

isθ +
∑

s

AsHs(kr)e
isθ

]

r=R0

=
∑

s

Bsv
s
r (4.2.6)

where

vs
r =

[
ρ−1

rr

∂

∂r
+

1

r
ρrθ

∂

∂θ

]

r=R0

Ja
s (kr/c, θ)eisθ (4.2.7)

The radial functions in the right hand side of both equations are coupled with

the angular variable θ, so that now is not possible just cancel the factors eiqθ

but is needed to multiply both equations by 1
2π
e−iqθ and integrate from 0 to

2π, then

A0
qJq(kR0) + AqHq(kR0) =

∑
s

NqsBs (4.2.8)

A0
qJ

′
q(kR0) + AqH

′
q(kR0) =

∑
s

MqsBs (4.2.9)

where the ′ implies derivation respect to the argument and

Nqs =
1

2π

∫ 2π

0

Ja
s (kR0/c, θ)e

i(s−q)θdθ (4.2.10)

Mqs =
1

2kπ

∫ 2π

0

[
ρ−1

rr

∂

∂r
+

1

r
ρrθ

∂

∂θ

]

r=R0

[
Ja

s (kr/c, θ)eisθ
]
e−iqθdθ (4.2.11)

to calculate Mqs elements derivation has to be performed before integration.

Using the relation

Jq(kr)H
′
q(kr)− J ′q(kr)Hq(kr) =

2i

πkr
(4.2.12)

toguether with (4.2.8) and (4.2.9) the following relationships are derived

A0
q = −iπkR0

2

∑
s

[
H ′

q(kR0)Nqs −Hq(kR0)Mqs

]
Bs (4.2.13)

Aq =
iπkR0

2

∑
s

[
J ′q(kR0)Nqs − Jq(kR0)Mqs

]
Bs (4.2.14)
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defining the matrices

Hsq =
iπkR0

2

[
H ′

q(kR0)Nqs −Hq(kR0)Mqs

]
(4.2.15)

Jsq =
iπkR0

2

[
J ′q(kR0)Nqs − Jq(kR0)Mqs

]
(4.2.16)

the above equations are, in matrix form,

A0 = −HB (4.2.17)

A = JB (4.2.18)

A = −JH−1A0 (4.2.19)

so that the T matrix of the cylinder is given by

T = −JH−1 (4.2.20)

4.2.1 Calculus Of Nqs And Mqs

The matrix elements Nqs andMqs have to be computed numerically. However

their form in (4.2.10) and (4.2.11) is not the more suitable for a numerical

computation, because it implies double integration which is not always very

efficient. In this subsection it will be shown that these matrix elements can

be expressed as integrations of the Bessel functions.

Nqs

Matrix elements Nqs can be expressed, using the integral form of Ja
s , as

Nqs =
1

2π

∫ 2π

0

dθ
i−s

2π

∫ 2π

0

ei kr
c

cos(τ−θ)eis(τ−θ)dτei(s−q)θ (4.2.21)

if the integration is made first with respect to θ, reordering terms it is found

Nqs =
iq−s

2π

∫ 2π

0

ei(s−q)τdτ
i−q

2π

∫ 2π

0

ei kr
c

cos(θ−τ)dθe−iq(θ−τ) (4.2.22)

note that, as c is function of τ and not of θ the above equation is equivalent

to

Nqs =
iq−s

2π

∫ 2π

0

Jq(kr/c)e
i(s−q)τdτ (4.2.23)
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Mqs

These elements are more complex to simplify because of the derivatives that

have to be performed. It is convenient to split them into

Mqs = I(r)
qs + I(θ)

qs (4.2.24)

where

I(r)
qs =

1

2π

∫ 2π

0

[
ρ−1

rr

∂

∂r

]

r=R0

[
Ja

s (kr/c, θ)eisθ
]
e−iqθdθ (4.2.25)

I(θ)
qs =

1

2π

∫ 2π

0

[
1

r
ρrθ

∂

∂θ

]

r=R0

[
Ja

s (kr/c, θ)eisθ
]
e−iqθdθ (4.2.26)

Applying the differential operators and using the integral definition of Ja
s (kr/c, θ)eisθ,

it is found that

I(r)
qs =

i−s

(2π)2

∫ 2π

0

∫ 2π

0

ik

c(τ)
ρ−1

rr cos(τ − θ)ei
kR0

c
cos(τ−θ)eisτe−iqθdθdτ (4.2.27)

I(θ)
qs =

i−s

(2π)2

∫ 2π

0

∫ 2π

0

ik

c(τ)
ρ−1

rθ sin(τ − θ)ei
kR0

c
cos(τ−θ)eisτe−iqθdθdτ (4.2.28)

But, it is known that

ρ−1
rr cos(τ − θ) + ρ−1

rθ sin(τ − θ) =

ρ−1
s+ cos(τ − θ) + ρ−1

s− cos(τ + θ) + ρ−1
a− sin(τ − θ) + ρ−1

a+ sin(τ + θ) (4.2.29)

Therefore, the sum of I
(r)
qs and I

(θ)
qs and then Mqs, can be expressed as a

sum the following four integrals

I(1)
qs =

i−s

(2π)2
ρ−1

s+

∫ 2π

0

∫ 2π

0

ik

c
cos(τ − θ)ei

kR0
c

cos(τ−θ)eisτe−iqθdθdτ (4.2.30)

I(2)
qs =

i−s

(2π)2
ρ−1

s−

∫ 2π

0

∫ 2π

0

ik

c
cos(τ + θ)ei

kR0
c

cos(τ−θ)eisτe−iqθdθdτ (4.2.31)

I(3)
qs =

i−s

(2π)2
ρ−1

a−

∫ 2π

0

∫ 2π

0

ik

c
sin(τ − θ)ei

kR0
c

cos(τ−θ)eisτe−iqθdθdτ (4.2.32)

I(4)
qs =

i−s

(2π)2
ρ−1

a+

∫ 2π

0

∫ 2π

0

ik

c
sin(τ + θ)ei

kR0
c

cos(τ−θ)eisτe−iqθdθdτ (4.2.33)
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defining

SCp(x) =
1

2ip
[
eix + (−1)pe−ix

]
; p = 0, 1 (4.2.34)

the integral ∫ 2π

0

SCp(τ ± θ)e
ikR

c
cos(τ−θ)eiq(τ−θ)dθ (4.2.35)

can be expressed as a function of Bessel functions

2πiq±1

2ip
[
ei(α±α)Jq±1(kR/c)− (−1)pe−i(α±α)Jq∓1(kR/c)

]
(4.2.36)

then the four integrals becomes

I(1)
qs =

i−(s−q)

2π
ρ−1

s+

∫ 2π

0

k

c

1

2
[Jq−1(kR0/c)− Jq+1(kR0/c)] e

i(s−q)τdτ (4.2.37a)

I(2)
qs =

i−(s−q)

2π
ρ−1

s−

∫ 2π

0

k

c

1

2

[
e−2iτJq−1(kR/c)− e2iτJq+1(kR/c)

]
ei(s−q)τdτ

(4.2.37b)

I(3)
qs = −i

−(s−q)

2π
ρ−1

a−

∫ 2π

0

k

c

i

2
[Jq−1(kR0/c) + Jq+1(kR0/c)] e

i(s−q)τdτ

(4.2.37c)

I(4)
qs =

i−(s−q)

2π
ρ−1

a+

∫ 2π

0

k

c

i

2

[
e2iτJq+1(kR/c) + e−2iτJq−1(kR/c)

]
ei(s−q)τdτ

(4.2.37d)

By adding the four terms, we arrive to

Mqs =
i−(s−q)

2π
×

∫ 2π

0

1

c

[
ρ−1

rr (τ)
∂Jq(kR0/c)

∂(kR0/c)
+ iρ−1

rτ (τ + π/2)
qc

kR0

Jq(kR0/c)

]
ei(s−q)τdτ

(4.2.38)

which is a expression more suitable for numerical computations.

4.3 T Matrix of an radially stratified fluid

cylinder

It is possible to solve numerically the case of a cylinder whose properties are

a function of the coordinates; that is, the case of an inhomogeneous cylinder.
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This section is devoted to solve the particular case of a cylinder whose density

is equal to that of the background and whose refractive index, n(r), has the

form

n2(r) = n2
0 + (n2

f − n2
0)
r2

Ra

(4.3.1)

where n0 is the value of the refractive index at the center of the cylinder and

nf is the refractive index at the surface of the cylinder.

It will be shown later that fluid cylinders with these properties are possible

to obtain.

The field satisfies the Helmholtz equation

[∇2 + n2(r)ω2
]
ψ(r) = 0 (4.3.2)

Due to the radial dependence of the refractive index the function ψ can be

expanded in a Fourier series, as the usual solution of the wave equation,

ψ(r) =
∑

q

ψq(r)e
iqθ (4.3.3)

where the function ψq satisfies the radial equation

d2ψq

dr2
+

1

r

dψq

dr
+

(
n2(r)ω2 − q2

r2

)
ψq = 0 (4.3.4)

for the form (4.3.1) the final equation to solve is

d2ψq

dr2
+

1

r

dψq

dr
+

(
n2

0ω
2 +

(n2
f − n2

0)ω
2r2

R2
a

− q2

r2

)
ψq = 0 (4.3.5)

it is obvious that when n0 = nf the equation reduces to Bessel equation.

The best way to solve the above equation is to expand the function ψq in

power series of r. Due to the similarity of the equation with Bessel equation,

the series proposed will be similar to that corresponding to Bessel functions

ψq(n0ωr) =
(n0ωr)

q

2q

∞∑
n=0

cn
(−1)n

n!(n+ q)!
(n0ωr/2)2n (4.3.6)

the sum in n starts in n = 0 because the solutions of interest here are only
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regular solutions. Inserting this series in the differential equation leads to

∞∑
n=0

[
n(n+ q)n2

0ω
2cn

(−1)n

n!(n+ q)!
(n0ωr/2)2n−2

+ n2
0ω

2cn
(−1)n

n!(n+ q)!
(n0ωr/2)2n

+
4(n2

f − n2
0)

n2
0R

2
a

(−1)n

n!(n+ q)!
(n0ωr/2)2n+2

]
= 0 (4.3.7)

Note that the term c0 is arbitrary, because the coefficient of r−2 equals

to zero. The constant term shows that c1 = c0, and the other coefficients are

related through

(n+ 2)(n+ 2 + q)n2
0ω

2cn+2
(−1)n+2

(n+ 2)!(n+ 2 + q)!

+ n2
0ω

2cn+1
(−1)n+1

(n+ 1)!(n+ 1 + q)!

+ cn
(−1)n

n!(n+ q)!
= 0 (4.3.8)

This equation can be cast into the following recursive relation

cn = cn−1 −
4(n2

f − n2
0)

n4
0ω

2R2
a

n(n+ q)cn−2 (4.3.9)

Once the field inside the cylinder is solved, the T matrix can be obtained

as for the case of the fluid or elastic cylinder

Tq = − ρqJ
′
q(kRa)− Jq(kRa)

ρqH ′
q(kRa)−Hq(kRa)

(4.3.10)

but now the quantity ρq is

ρq =
k

vb

ψq(n0ωRa)

ψ′q(n0ωRa)
, (4.3.11)

where

ψ′q(n0ωRa) =
∂ψ

∂r
=

(n0ω)qrq−1

2q

∞∑
n=0

cn
(−1)n(2n+ q)

n!(n+ q)!
(n0ωr/2)2n (4.3.12)
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4.4 T Matrix of infinite linear chain of spheres

4.4.1 Three Dimensional Multiple Scattering

Assume that a plane wave with wavenumber k impinges a cluster of spheres

places at positions Rα. The plane wave can be expressed in spherical coor-

dinates as

P0(r) =
∑

l,m

a0
lmjl(kr)Ylm(r̂) (4.4.1)

where

a0
lm = 4πilY ∗

lm(k̂) (4.4.2)

here x̂ stands for the spherical angular variables of a some vector x, that is

x̂ = (θ, φ), and Ylm(x̂) is the spherical harmonics as a function of the angular

variables (θ, φ)

Ylm(x̂) =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimφ (4.4.3)

The total scattered field by the cluster will be the sum of the individual

scattered fields of spheres,

Psc(r) =
∑

α

Pα
sc(rα) (4.4.4)

where

Pα
sc(rα) =

∑

l,m

aα
lmhl(krα)Ylm(r̂α) (4.4.5)

For a single scatterer, the T matrix relates the incident and scattered field;

which relates the coefficients aα
lm of the scattered field expanion with the

coefficients blm of the incident field expansion

aα
lm = tαl blm, (4.4.6)

where

tαl = − ρqj
′
l(kRa)− jl(kRa)

ρqh′l(kRa)− hl(kRa)
(4.4.7)

and

ρq =
kρb

kaρa

jl(kaRa)

j′l(kaRa)
(4.4.8)
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In this work all the spheres will be considered equal(tαl = tl). For a given

sphere α, the incident field is formed by the sum of the external field P 0 plus

the scattered field by all the others spheres, that is

Pα
0 (rα) = P 0(r) +

∑

β 6=α

P β
sc(rβ) (4.4.9)

To relate this expression with the scattering coefficients aα
lm it is necessary

to express the fields on the right hand side of the above equations in the

reference frame of the α scatter.

The incident field is a plane wave, which has a very simple expression for

the change of coordinates

P 0(r) = eik·r = eik·Rαeik·(r−Rα) = eik·Rα
∑

l,m

a0
lmjl(krα)Ylm(r̂α) (4.4.10)

being the coefficients a0
lm defined before.

The translation of the scattered field by the β sphere to the α frame is

obtained by using the addition theorem,

P β
sc(rβ) =

∑

l,m

aβ
lmhl(krβ)Ylm(r̂β) (4.4.11)

but

hl(krβ)Ylm(r̂β) =
∑

l′m′
jl′(krα)Yl′m′(r̂α)g

(h)
l′m′lm(Rβ −Rα) (4.4.12)

then

P β
sc(rβ) =

∑

l,m

aβ
lm

∑

l′m′
jl′(krα)Yl′m′(r̂α)g

(h)
l′m′lm(Rβ −Rα) (4.4.13)

Finally, the total field incident on the α cylinder is

Pα
0 (rα) =

∑

l′m′
bl′m′jl′(krα)Yl′m′(r̂α) (4.4.14)

and the relation betwen coefficients is

aα
lm = tle

ik·Rαa0
lm + tl

∑

β 6=α

∑

l′,m′
aβ

l′m′g
(h)
lml′m′(Rβ −Rα) (4.4.15)
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The external incident field is assumed to be perpendicular to the linear

chain axis (the ẑ), then eik·Rα = 1 for all α, moreover, all the coefficients aα
lm

will be equal to that of the sphere located at the origin a0
lm ≡ alm,then

alm = tla
0
lm + tl

∑

l′,m′
al′m′

∑

β 6=0

g
(h)
lml′m′(Rβ) (4.4.16)

in the appendix is shown that for the linear chain g
(h)
lml′m′ = δmm′g

(h)
lml′m, then

alm = tla
0
lm + tl

∑

l′
al′m

∑

β 6=0

g
(h)
lml′m(Rβ) (4.4.17)

Then, given the matrix m defined by

(Mm)ll′ = δll′ − tl
∑

β 6=0

g
(h)
lml′m(Rβ) = δll′ − tlg̃

(h)
lml′m(ka) (4.4.18)

where the coefficients g̃
(h)
lml′m(ka) are given in appendix A, the coefficients alm

can be computed by direct inversion of the matrix M, and then

alm =
∑

l′
(M−1

m )ll′tl′a
0
l′m (4.4.19)

4.4.2 Infinite Linear Chain

The addition ∑
α

hl(krα)Ylm(r̂α) (4.4.20)

can be made analytically for the case of an infinite linear chain of spheres. If

all the spheres are located along the z-axis, the set of vectors rα are

rα = r− αaẑ (4.4.21)

and we know that
∞∑

α=−∞
hl(krα)P

|m|
l (cos θα) =

im−lπ

ka

∑
ν

eikz sin θνHm(kρ cos θν)P
|m|
l (cos θν)

(4.4.22)

but considering only a propagating mode and in the x− y plane

∞∑
α=−∞

hl(krα)Ylm(r̂α) =
im−lπ

ka

√
2l + 1

4π

(l − |m|)!
(l + |m|)!P

|m|
l (0)Hm(kρ)eimφ

(4.4.23)
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Finally the total scattered field will be

Psc(r, φ) =
∑

l,m

∑

l′
(M−1

m )ll′tl′a
0
l′m
im−lπ

ka

√
2l + 1

4π

(l − |m|)!
(l + |m|)!P

|m|
l (0)Hm(kρ)eimφ

(4.4.24)

4.4.3 T Matrix

The coefficients a0
l′m of the expansion of a plane wave in spherical coordinates

can be related with that of the plane wave but in polar coordinates easily,

a0
l′m = 4πil

′
Y ∗

l′m(k̂) = 4πil
′

√
2l′ + 1

4π

(l′ − |m|)!
(l′ + |m|)!P

|m|
l′ (0)e−imφ0 (4.4.25)

then, as A0
m = ime−imφ0 the following relation is obtained

a0
l′m = 4πil

′−m

√
2l′ + 1

4π

(l′ − |m|)!
(l′ + |m|)!P

|m|
l′ (0)A0

m (4.4.26)

Inserting this expression in the corresponding to the total scattered field

Psc(r, φ) =
π

ka

∑

l,l′,m

il
′−l(M−1

m )ll′tl′×

√
2l′ + 1

√
2l + 1

√
(l′ − |m|)!
(l′ + |m|)!

√
(l − |m|)!
(l + |m|)!P

|m|
l′ (0)P

|m|
l (0)A0

mHm(kρ)eimφ

(4.4.27)

the sums for the angular variables
∑

l,m can be reordered, that is

∑

l,m

=
∞∑

l=0

l∑

m=−l

=
∞∑

m=−∞

∞∑

l=|m|
(4.4.28)

Then the total scattered field will be

Psc(r, φ) =
∞∑

m=−∞
TmA

0
mHm(kρ)eimφ (4.4.29)
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with

Tm =
π

ka

∞∑

l=|m|

∞∑

l′=0

il
′−l(M−1

m )ll′tl′×

√
2l′ + 1

√
2l + 1

√
(l′ − |m|)!
(l′ + |m|)!

√
(l − |m|)!
(l + |m|)!P

|m|
l′ (0)P

|m|
l (0) (4.4.30)

where

P
|m|
l (0) =

2m
√
π

Γ(1−l−m
2

)Γ(1 + l−m
2

)
(4.4.31)

Therefore the periodic array of spheres can be, provided that a > λ,

considered a two dimensional scatterer. Another condition for it is that the

field be computed at a distance such that the evanescent waves be negligible.



Chapter 5

Homogenization

5.1 Homogenization of an infinite medium

It has been shown in section 3.3 that when cylinders are extended in the

plane laying in a regular lattice, the modes of the system satisfy a secular

equation

detM = 0, (5.1.1)

where M is the multiple scattering matrix defined in (3.3.12). The solution

of this equation is a function of the form

ω = ω(K) (5.1.2)

which is called the band structure or the dispersion relation.

Appendix B shows that, in the low frequency limit, the ratio between ω

and K appearing in the matrix M is a new variable called the effective speed

of sound ceff , given by

ceff ≡ lim
|k|→0

ω(K)

|K| (5.1.3)

The interpretation of this fusion is that in this limit the dispersion relation

becomes linear, and the slope of this line is the effective speed of sound of the

homogeneous effective medium. This is the so called homogenization limit.

The objective now is to determine the effective parameters of this new

homogeneous medium.
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5.1.1 Effective speed of sound

In appendix B it is found that the asymptotic form of the secular equation

detM = 0 becomes

det M̂ = 0, (5.1.4)

where the matrix M̂ is the low frequency form of the M matrix and is given

obtained in subsection B.2.4

M̂ =

(
A3×3 B3×Q

CQ×3 DQ×Q

)
(5.1.5)

In principle the method to find the effective speed of sound could be

the same than that used to obtain the band structure. In this case, some

propagation direction θ should be chosen and the effective speed of sound in

this direction would be obtained. However, the above matrix has a form that

invites to solve analytically for the effective speed of sound as a function of

the propagation angle θ.

The reason why the form of the M̂ matrix is special is that only the

matrix A contains information about the two more relevant variables, which

are the effective speed of sound ceff and the propagation angle θ. Then it

suggest that a factorization of the determinant could be possible.

This factorization can be done defining the matrix X as

X ≡
(

I3×3 O3×Q

−D−1C|Q×3 D−1
Q×Q

)
(5.1.6)

where I and O are the identity matrix and a null matrix of the sizes indicated.

The product MX is the key for the factorization, this product is

MX =

(
A−BD−1C|3×3 BD−1|3×Q

OQ×3 IQ×Q

)
(5.1.7)

the following relations are now evident

det(MX) = detM detX = detM detD−1 (5.1.8)

det(MX) = = det(A−BD−1C) (5.1.9)

Then, if detD 6= 0 is assumed, the condition detM = 0 is equivalent to

det(A−BD−1C) = 0, but now the matrix A−BD−1C is a 3× 3 so that the

determinant can be manipulated easily.
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Appendix B found that the matrix BD−1C has the form

BD−1C =




∆′ 0 Γ′

0 0 0

Γ′∗ 0 ∆′∗


 (5.1.10)

and then

A−BD−1C =


1−∆′ − fη c2

1−c2
ifη c

1−c2
e−iθ fη e2iθ

1−c2
+ Γ(0) − Γ′

−ifζ c
1−c2

eiθ 1− fζ c2

1−c2
ifζ c

1−c2
e−iθ

fη e−2iθ

1−c2
+ Γ(0)∗ − Γ′∗ −ifη c

1−c2
eiθ 1−∆′∗ − fη c2

1−c2


 (5.1.11)

Defining the new variables

1−∆′ ≡ ∆ (5.1.12)

Γ(0) − Γ′ ≡ Γ (5.1.13)

and, after straightforward manipulations,

det(A−BD−1C) =

det




(1− c2)∆− fηc2 ifηc fη + (1− c2)Γe2iθ

−ifεc 1− c2 − fεc2 ifεc

fη + (1− c2)Γ∗e−2iθ −ifηc (1− c2)∆∗ − fηc2


 (5.1.14)

equating the above determinant to zero and solving for the effective speed of

sound, the following relation is obtained (now c = ceff )

c2eff =
|∆|2 − |Γ|2 − f 2η2 − 2fη|Γ| cos ΦΓ cos 2θ + 2fη|Γ| sin ΦΓ sin 2θ

(1 + fζ) [(∆ + fη)(∆∗ + fη)− |Γ|2]
(5.1.15)

Note that the expression for c2eff takes the form of an angle-dependent

speed of sound in an anisotropic medium,

c2eff (θ) = c2s+ + c2s− cos 2θ + c2a+ sin 2θ (5.1.16)



70 Homogenization

where the components of the velocity tensor are

c2s+ =
|∆|2 − |Γ|2 − f 2η2

(1 + fζ) [(∆ + fη)(∆∗ + fη)− |Γ|2] (5.1.17a)

c2s− = − 2fη|Γ| cos ΦΓ

(1 + fζ) [(∆ + fη)(∆∗ + fη)− |Γ|2] (5.1.17b)

c2a+ =
2fη|Γ| sin ΦΓ

(1 + fζ) [(∆ + fη)(∆∗ + fη)− |Γ|2] (5.1.17c)

these quantities are always given relative to the background. In order to

know their absolute value, they might be multiplied by the speed of sound

in the background cb.

An alternate expression for the effective speed of sound in an anisotropic

medium is

c2eff (θ) = c2xx cos2 θ + c2yy sin2 θ + (c2xy + c2yx) sin θ cos θ (5.1.18)

being

c2xx = c2s+ + c2s− (5.1.19a)

c2yy = c2s+ − c2s− (5.1.19b)

c2yx = c2xy = c2a+ (5.1.19c)

5.1.2 Effective bulk modulus

I has been shown in the introduction that the bulk modulus is a quantity that

does not interact with the lattice structure. This explains why the effective

homogeneous medium has a scalar bulk modulus and an anisotropic density.

For an infinite periodic system the effective bulk modulus was given by

the lattice average
1

Beff

=

∫

cell

1

B(r)
dV (5.1.20)

so that, independently of the dimensions of the periodicity, the effective bulk

modulus of a mixture can be find to be

1

Beff

=
∑

i

fi

Bi

(5.1.21)

where fi is the area of the material type i divided by the area of the unit

cell, that is, it is the filling fraction of the material i.
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It is common to do not consider the background as one of the materials,

then when the subindex i stands for the background, the filling fraction is

set to 1− f , where f is the total filling fraction of the inclusions. Then, the

common expression is

1

Beff

=
1− f

Bb

+
∑

i

fi

Bi

, (5.1.22)

where the addition is performed over all the inclusions.

5.1.3 Effective density

Once the effective tensor cij and the effective bulk modulus Beffhave been

obtained, the reciprocal density tensor is determined with the help of (1.2.32)

ρ−1
ij = c2ijB

−1
eff (5.1.23)

where c2ij and ρ−1
ij are the components of the speed of sound and the reciprocal

density tensors. With the reciprocal density tensor the effective medium is

fully characterized.

5.2 Homogenization of a cluster of cylinders

In the previous section only perfectly infinite ordered systems of scatters were

considered. However, in actual finite structures some disordering effects can

appear. Here, it will be shown how to analyze these effects.

The homogenization method is based in the assumption that, given a fi-

nite cluster of cylinders, the scattered field by this cluster in the low frequency

limit will be equal to that of a homogeneous cylinder (not necessarily a cir-

cular cylinder). Mathematically this homogenization condition is expressed

as

lim
λ→∞

P sc
cluster(r)− P sc

cyl(r)

P sc
cyl(r)

= 0 (5.2.1)

as explained in Chapter 4, the scattered pressure by a cluster of cylinders

can be expressed in terms of the effective T matrix of the cluster, then

P sc
cluster(r) =

∑
q

∑
s

T eff
qs A0

sHq(kr)e
iqθ (5.2.2)
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and for the cylinder

P sc
cyl(r) =

∑
q

∑
s

T cyl
qs A

0
sHq(kr)e

iqθ (5.2.3)

With these definitions it is easy to show that the homogenization condi-

tion in the scattered field becomes

lim
λ→∞

T eff
qs

T cyl
qs

= 1 (5.2.4)

If the cluster is given a circular shape, it is expected that the homogeneous

scatter be a circular cylinder. Only isotropic lattices will be considered here,

because the anisotropic case is more complex to analyze with this approach,

it means that the T matrices implied in the theory will be always diagonal

matrices.

Finally, the homogenization conditions will be

T̂ eff
q = T̂ cyl

q , q = 0,±1,±2, · · · (5.2.5)

where X̂ means that the lower order term in the Taylor expansion of X has

to be taken.

The effective T matrix for the cluster of cylinders is the input of the

problem. It is the known function of the knwown variables, while the effective

T matrix of the cylinder is a function of the parameters to determine.

With this approach, it is possible to determine not only the acoustic

parameters but, as will be shown, the shape of the effective scatter (the

radius of the effective cylinder). Then, the parameters to determine are

the effective bulk modulus, the effective density (then the effective speed of

sound is trivially determined) and the effective radius of the cluster. Three

unknowns and infinite equations (q runs from 0 to ±∞), so that with only

three equations could be enough to fully solve the problem. But in practice,

the following procedure is employed:

• Define the effective radius

• Use the q = 0 equation to determine the effective bulk modulus

• Use the q = 1 equation to determine the effective density

• Use veff =
√
Beff/ρeff to determine the effective speed of sound

• Use the q > 1 equations to check the result
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5.2.1 Effective shape

The effective shape of the cluster can be defined from a filling fraction con-

sideration. Consider a cluster of scatters occupying some region of the plane.

If this cluster of cylinder is going to be considered a homogeneous scatter, it

is expected that the filling fraction of the system be independent of the size

of the effective scatter. This filling fraction is defined as the ration between

the total area occupied by the scatters in the cluster and the area of the

effective scatter

f =

∑
iAi

Aeff

(5.2.6)

The most common situation is that these cylinders be circular and equal

each other and, as was explained before, be in an isotropic lattice. If the

filling fraction is expected to be independent of the size of the scatter, it can

be assumed to be equal to that of the infinite system. Then for a cluster of

N cylinders of radius Ra in a lattice whose unit cell has an area Ad the above

equation becomes
πR2

a

Ad

=
NπR2

a

Aeff

(5.2.7)

if the cluster is a circular cluster, the effective area will that of a cylinder of

radius Reff , then solving from the above equation

Reff =

√
NAd

π
(5.2.8)

for the square lattice of lattice constant a the area of the unit cell is Ad = a2

and for the hexagonal one Ad =
√

3a2/2.

5.2.2 Effective bulk modulus

The previous result for the effective bulk modulus is valid for both the

isotropic or the anisotropic lattice, but only when the different materials

are fluid materials and when the system is a periodic infinite system, so that

the expression needs to be extended for some special situations of practical

interest.

Firstly, the effective bulk modulus will be computed for a finite cluster of

scatters embedded in regular lattices, following these lattice will be allowed

to be disordered and finally the scatters will be considered to have elastic
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properties. The background will be always considered a fluid background,

leaving the elastic background for the last chapter.

The homogenization condition for q = 0 is

T̂ eff
0 = T̂ cyl

0 (5.2.9)

it is assumed that the effective cylinder be a fluid cylinder, so that, using

equation B.1.6

T̂ cyl
0 =

iπR2
eff

4

[
Bb

Beff

− 1

]
(5.2.10)

while for the cluster of cylinders the 0 element is

T̂ eff
0 =

∑
α

(Tα)0 =
∑

α

iπR2
α

4

[
Bb

Bα

− 1

]
(5.2.11)

where Bα is the bulk modulus if the cylinder is a fluid cylinder and the fluid-

like bulk modulus defined in (B.1.20) if the cylinder is an elastic cylinder

Bα = λα + µα (5.2.12)

then the homogenization equation is

R2
eff

[
Bb

Beff

− 1

]
=

∑
α

R2
α

[
Bb

Bα

− 1

]
(5.2.13)

the absence of the lattice structure in the above equation allows to write it

as
1

Beff

=
1− f

Bb

+
∑

i

fi

Bi

(5.2.14)

which is the same result of the previous section.

This result shows that, effectively, the bulk modulus does not interacts

with the lattice and with the order or disorder of the cluster. Provided

that the system could be considered homogeneous, the effective bulk will be

computed with the above equation.

5.2.3 Effective density

The effective density can be computed in a similar way from the equation

for q = 1. As shown in equations (B.1.10) and (B.1.27) for both the elastic



5.2 Homogenization of a cluster of cylinders 75

cylinder the fluid cylinder the q = 1 element is

T̂ cyl
1 =

iπR2
eff

4

ρeff − ρb

ρeff + ρb

(5.2.15)

while for the cluster of cylinders it is shown that

T̂ eff
1 =

∑

α,β

(M̂−1
αβ )11(Tβ)1 =

iπR2
a

4

ρa − ρb

ρa + ρb

∑

α,β

(M̂−1
αβ )11 (5.2.16)

it has been assumed here that all the cylinders in the cluster are equal each

other, leaving the discussion of mixture for later sections.

Defining the ∆ factor as

1

∆
=

1

N

∑

α,β

(M̂−1
αβ )11 (5.2.17)

the homogenization equation is

ρeff − ρb

ρeff + ρb

=
ρa − ρb

ρa + ρb

f

∆
(5.2.18)

and solving for the effective density

ρeff =
ρa(∆ + f) + ρb(∆− f)

ρa(∆− f) + ρb(∆ + f)
(5.2.19)

which is the previous result for the isotropic case, but with different expres-

sions for the ∆ factor.

Now the ∆ factor is a real space convergent factor, while in the previous

section was a reciprocal space convergent. This new expression allows to

analyze finite size effects in the effective parameters, like disorder or small

number of cylinders, as will be shown later.

5.2.4 Effective speed of sound

Once the effective bulk modulus and the effective density have been deter-

mined, the effective speed of sound is simply

ceff =

√
Beff

ρeff

(5.2.20)

and then the problem is solved.
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5.2.5 Testing Condition

Once the effective parameters have been obtained it is worth to check how

consistent is the method. So far, it has been imposed that the q = 0 and the

q = 1 elements of both the effective T matrix and the cylinder T matrix be

equal. Now the others elements will be used to check if they are equal.

As shown in section B, for q > 1 the T matrix elements of a fluid cylinder

of density ρeff and radius Reff are

T cyl
q =

iπR2q
eff

4q

1

q!(q − 1)!

ρeff − ρb

ρeff + ρb

(5.2.21)

the ratio of the elements q+ 1 and q is a function only of the effective radius

of the cylinder, then

T̂ cyl
q+1

T̂ cyl
q

=
1

4q(q + 1)
R2

eff =
T̂ eff

q+1

T̂ eff
q

(5.2.22)

the right hand side of the above equation is a function of the cluster param-

eters and the integer q, while the effective radius is a constant for a given

cluster. Defining the q-dependent radius as

R2
eff (q) = 4q(q + 1)

T̂ eff
q+1

T̂ eff
q

(5.2.23)

it is expected that Reff (q) = Reff for all q, but as will be shown later this is

not always the case, being this analysis one way to check if the homogeniza-

tion theory has been applied correctly.



Part II

Applications





Chapter 6

Clusters of rigid cylinders

The homogenization method is applied here to finite clusters of rigid cylin-

ders. First, a large number of cylinders (151) are placed in a circular region,

and the homogenization method is applied to study the effective acoustic

parameters of this configuration. Later, the homogenization parameters are

studied as a function of the number of cylinders in the cluster, showing that

with only 7 scatterers a fluid-like cylinder can be built. In both cases exper-

iments are performed to support the predictions simulated.

6.1 Characterization of a cluster of cylinders

The case of solid cylinders in air can be studied under the rigid cylinder

approximation. For almost all solid materials their density is very high in

comparison with that of air, therefore no sound waves will propagate through

the cylinder. The rigid cylinder is also a good starting point to understand

acoustic wave phenomena, because it is a basic scattering problem with no

other parameters than the radius. Therefore all the phenomena involved here

can be understood by means of the ratio between the wavelength and the

cylinder radius ratio (filling fraction).

6.1.1 Theoretical analysis

The geometry considered here is a circular-shaped cluster of 151 cylinders,

shown in figure 6.1. Cylinders are distributed in an hexagonal lattice, which
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Figure 6.1: Cluster of 151 rigid cylinders to be characterized. The underlay-

ing lattice is hexagonal with lattice constant a.

is an isotropic structure and it is better for making a circular region than the

square lattice.

The first parameter to determine is the effective radius of the cluster.

This parameter is computed with the help of (5.2.8) applied to the hexagonal

lattice,

Reff =

√
N
√

3

2π
a ≈ 6.451a (6.1.1)

being a the lattice constant.

The circle associated to this value is drawn in figure 6.1 together with the

cluster. It can be seen that the physical dimension of the cluster is consistent

with the circle determined by Reff .

The accuracy of Reff can be studied with the properties of the effective

T matrix. As shown in chapter 5, for a given q (5.2.23) is

R2
eff (q) = 4q(q + 1)

T̂ eff
q+1

T̂ eff
q

(6.1.2)

Since it is impossible to get an exact circular cluster, different values for the

effective radius will be obtained for different values of q. Then, the variations

observed in Reff will provide an account of how the cluster is different from
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Figure 6.2: (a) Effective radius plotted as a function of the filling fraction

calculated from equation (6.1.2) for four different q values. The horizontal

line defines the value given by equation (6.1.1).(b) Relative error of the theo-

retically assumed filling fraction, compared with the ones obtained from the

T matrix (see equation (6.1.2)) for four different q values.

a circular shape. Figure 6.2 (a) plots the values of Reff obtained for four

different values of q. It is shown that deviations from approximated in (6.1.1)

(horizontal line) occur, but figure 6.2 shows that these variations are not

very important. The relevance of these variations can be better understood

if we represent a comparison of the associated filling fractions. On the one

hand, for a given q, the value Reff given by equation (B.3.16) is employed in

calculating the filling fraction fq of the lattice, then

fq = N

(
Ra

Reff (q)

)2

(6.1.3)

On the other hand, the theoretical assumed filling fraction is defined as usual,

ftheo = fhex. The relative error err(%) = 100× |ftheo − fq|/ftheo, is shown in

figure 6.2 (lower panel). Notice that the error is always smaller than 2.5%,

which supports the validity of (6.1.1) to determine the effective radius of a

homogenized cluster with external circular shape.

The other acoustic parameters for this cluster can be obtained with

(5.2.14), (5.2.19) and (5.2.20) under the simplified assumption of ρa ≈ ∞
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(rigid cylinders)

1

Beff

=
Bb

1− f
, (6.1.4)

ρeff =
∆ + f

∆− f
ρb, (6.1.5)

ceff =

√
∆− f

∆ + f

cb√
1− f

. (6.1.6)

For low f , the contribution to M̂ of matrix Ĝ can be neglected. Then,

matrix M̂ is simply the identity, so that (M̂−1
αβ )11 ≈ δαβ, and, moreover,

∆ = 1. Finally, Beff remains the same but not ρeff and ceff that now are

ρeff =
1 + f

1− f
ρb, (6.1.7)

ceff =
cb√

1 + f
. (6.1.8)

At this point it is interesting to stress that equation (6.1.7) recovers the

Berryman’ s effective density [Ber80, Ber92] and equation (6.1.8) recovers

the heuristic model reported in reference [CSSP+01] for ceff . Moreover,

these expressions have also been found in studying the refraction of water

waves by the CPA method [HC05].

Continuous lines in both panels of figure 6.3 represent the effective pa-

rameters calculated by using equations (6.1.5) and (6.1.6). The result for

ceff fairly agrees with that calculated in reference [KAG03] for an infinite

medium by a plane wave expansion method. The red dotted lines define the

approximated values for ρeff and ceff given by (6.1.7) and (6.1.8), respec-

tively. As it is shown, the approximated model is valid over a wide range

of filling fractions. The symbols wiht errors bars represent the parameters

experimentally determined by using the method be explained in the next

subsection.

To summarize, in a cluster of infinite-density cylinders in a fluid, ρeff

increases and ceff decreases for increasing filling fraction. The speed of sound

goes to zero because the sound cannot propagate inside the cylinder (they

have infinite density and, then, infinite acoustic impedance). Later will be

shown the analysis of cylinders with more realistic acoustic parameters, but
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Figure 6.3: Effective acoustic parameters relative to the embedded medium

calculated (blue continuous lines) for a homogenized cluster of 151 rigid cylin-

ders. The red-dotted lines represent the values obtained by using the ap-

proach in (6.1.7) and (6.1.8). The black dots with error bars define the data

obtained in the experimental characterization of 151 wooden cylinders.
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now some other phenomena related with this particular case will be studied.

When disorder is introduced in a lattice of sonic or elastic scatterers

many interesting phenomena might appear. Perhaps the more fundamen-

tal is related with the problem of localization. Acoustic localization has

been predicted in sound propagation through liquid media containing air-

filled bubbles [YA98]. More recently, widening of phononic band gaps has

been found in certain disordered phononic systems due to strong Anderson

localization [SSM05].

The homogenization method developed can be also employed to study

how ceff and ρeff change when the condition of ideal cluster is released

(disordering effects). Two types of disordering effects are studied here. First,

the possibility of having cylinders put at positions different to that of the

hexagonal lattice (positional disorder) is analyzed. Second, cylinders with

different radii are considered (structural disorder) in order to show their

implications over the effective parameters.

Equations (6.1.5)and (6.1.6) give ρeff and ceff as a function of f and ∆.

The last parameter can be calculated for any arbitrary structure, ordered or

not. Then, it is possible to study, for example, the homogenization of clusters

of cylinders with positional disorder inside a certain region and to determine

their effective parameters by calculating the corresponding value ∆.

In figure 6.4 the effective parameters for the homogenization of 151 cylin-

ders with equal radii put inside an imaginary circle have been calculated for

two cases of positional disorder. We first studied the “weakly disordered”

case, which corresponds to assume the cylinders at random inside each one

of the 151 hexagonal unit cells defined in the circle. In other words, every

cylinder in the ordered lattice is randomly moved inside the unit cell. The re-

sulting effective parameters are represented by blue continuous lines in figure

and compared with the perfectly ordered case (black dotted lines). Notice

that no appreciable difference appears between them because, in fact, both

distributions of cylinders are equivalent in the long wavelength limit.

The second case corresponds to the “fully disordered” case; that is, inside

the imaginary circle (the one defined by the ideal cluster) all the cylinders

have been put at random. The red dashed lines in figure 6.4 define the results

obtained after averaging over ten different configurations. The amount of
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Figure 6.4: Effective acoustic parameters (relative to the embedded medium)

defining a homogenized cluster of 151 rigid cylinders with positional disor-

der. The blue continuous lines define results corresponding to the “weakly

disordered” case. The red dashed lines corresspond to the case randomly

disordered. The parameters of the perfectly ordered case (black dotted lines)

also appear for comparison purposes.

configurations employed is enough to guarantee that the standard deviation

is lower than 10% even in the case of large filling fractions. Now, it is shown

that deviations from the ideal case appear even at small filling fractions.

The simulations predict effective parameters such that ceff (ρeff ) is always

smaller (greater) than that of the corresponding ideal cluster. Note that for

large filling fraction, the parameters of the disordered case do not converge

to those of the ideal one though the touching of cylinders is achieved. The

explanation for that disagreement is simple: the structure of voids between

touching cylinders is different in the two configurations.

The case of a cluster made of cylinders that are different can be easily

treated by taking into account that the diagonal terms are now

T̂ eff
00 =

∑
α

(T̂α)00, (6.1.9)

T̂ eff
00 =

∑

α,β

(M̂−1
αβ )11(T̂α)11 (6.1.10)
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When the cluster is made of several i-types of cylinders equally dis-

tributed, the partial filling fraction fi can be defined as

fi ≡ Ni

(
Ri

Reff

)2

(6.1.11)

where Ni is the total number of cylinders of material i and radius Ri. The

following expressions are easily obtained for the effective parameters

1

Beff

=
1− f

Bb

+
∑

i

fi

Bi

, (6.1.12)

ρeff =
1 +

∑
i fi

ρi−ρb

ρi+ρb

1−∑
i fi

ρi−ρb

ρi+ρb

(6.1.13)

where Bi and ρi are, respectively, the bulk modulus and density of cylinders

made of material i. The effective speed of sound could be obtained from the

previous expressions as usual. The results above for Beff were also obtained

in reference [Ber80, Ber92] for a 3D case, where cylinders are replaced by

spheres.

In the most general case, when all the cylinders are different, if the ho-

mogenized cluster is still considered as homogeneous and isotropic, its corre-

sponding effective parameters are given by

1

Beff

=
1 + ζ

Bb

, (6.1.14)

ρeff =
1 + η

1− η
ρb, (6.1.15)

where

η = − i4

πR2
eff

T̂ eff
11 , (6.1.16)

ζ = − i4

πR2
eff

T̂ eff
00 . (6.1.17)

These expressions have been used to study the case of a cluster made of 151

rigid cylinders having different radii. The radii of the cylinders are considered

to follow a normal distribution centered in a certain radius R0, which defines

the filling fraction in the x-axis. The function that defines the distribution

of cylinders’ radii for a given R0 is

P (R) =
1

σ
√

2π
e−(R−R0)2/2σ2

(6.1.18)
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Figure 6.5: Effective parameters of a homogenized cluster of 151 rigid cylin-

ders enclosed in a circle of radius Reff = 6.452a. The values are calculated

under the assumption that the lattice of cylinders has structural disorder.

Three different degrees of disorder have been considered. The ideal case is

represented by the lines δ = 0.

Results have been obtained for three different values of the variance σ. This

value has been defined assuming that there is a relative error δ in the radius

of the cylinder and that R0δ ≈ 3σ2.

Results for δ = 0.1, 0.2, and 0.4 are shown in figure 6.5 and compared

with the case of an ideal cluster of identical cylinders(δ = 0). All the curves

are obtained after averaging parameters of ten different configurations of

cylinders. It can be concluded that structural disorder produces effective

parameters that deviate from those obtained in clusters of identical cylinders

only for large filling fractions.

Finally in figure 6.6 it is possible to see the comparison of the acoustic

field generated when a plane wave with λ = 4a reaches a circular cluster

and a circular cylinder with the effective parameters of the cluster. The

agreement between the pressure patterns is fairly good not only in the far

field but also inside the cylinder and cluster, which is afurther support of the

homogenization theory.
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Figure 6.6: Comparison of the field scattered by a fluid cylinder and by a

cluster of cylinders. The cluster is made of 151 rigid cylinders of radius Ra =

0.3a. The fluid cylinder has the acoustic parameters defined by the cluster in

the low frequency limit, that is, the radius is Rcyl = 6.451a and the effective

speed of sound and density are, respectively, vcyl = 0.87vb and ρcyl = 1.9ρb.

The wavelength of the incident field is λ = 4a, which corresponds to the

homogenization limit. It is clear that the acoustic field is very similar in

both situations even inside the cylinder.
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6.1.2 Experimental Characterization

Experimentally, the model of homogenization has been verified by analyzing

a circular-shaped cluster made of 151 wooden cylinders 1 m long and radius

1 cm arranged in an hexagonal distribution with a = 3 cm (f = 0.40).

Measurements have been performed in an echo-free chamber as follows. A

white sound generated by an acoustic column speaker within a wide range of

frequencies was employed as incident sound. Pressure maps were obtained

by a set of two microphones. The first microphone was located at a distance

r0 = 170 cm from the center of the cluster, hanging from a robotic arm

that allows its movement on the polar angle θ, and it is computer controlled

using a stepper motor within a maximum resolution of 1◦ per step. The

second microphone was fixed at approximately 220 cm from the loudspeaker,

and it was used as a reference to get the phase of the pressure. Pressure

measurements are automatically taken by means of a two channel fast-Fourier

transform dynamic signal analyzer board, type NI-4551B. Both the cross

spectrum and the auto spectra were simultaneously obtained at each θi.

A total of 256 spectra have been taken to generate the averaged spectrum

finally assigned to θi. Thus, for a given frequency, the root-mean-square

(rms) pressure Prms(r0, θi) is obtained. Pressure maps are obtained with a

resolution of 10 Hz in ν and 2◦ in θ. The total time elapsed to get a pres-

sure map is about 3 h. Two separated measurements were performed. The

one without sample allows one to obtain the sound pressure of the exter-

nal beam, P 0
rms(r0, θ, ν). Here, the sound amplification (SA) along the circle

surrounding the sample will be presented:

SA(r0, θ, ν)(dB) = 20 log10

( |Prms(r0, θ, ν)|
|P 0

rms(r0, θ, ν)|
)

(6.1.19)

Figure 6.7 plot the SA maps corresponding to the two high symmetry

directions of the hexagonal lattice ΓX and ΓJ , respectively, with respect to

the impinging wave, for θ = θ◦. Three main phenomena are noticeable in

these maps. First, both maps show a wavy background that is produced

by the interference between incident and scattered waves. Second, at large

enough frequencies, SAs are shown along certain directions that are related

to diffraction effects produced by lattice planes. For example, sound am-

plification at backscattering (θ = 180◦) is observed in Figure 6.7(a) in the
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region enclosed by the horizontal lines. This feature defines the pseudo gap

produced at these frequencies by the planes (10) of the crystal lattice. Third,

for large enough wavelengths the sound cannot distinguish the inner structure

of the cluster, and consequently, the map obtained for the cluster oriented

along the ΓX direction is the same as that obtained along the ΓJ orientation,

that is, the cluster is homogeneous below these frequencies. To determine

the cutoff frequency (νc) under the one where this phenomenon appears, we

have analyzed the difference between those maps. Particularly, figure 6.7(c)

shows that below νc ≈ 3 kHz both maps are practically equal.

The data provided by the experimental set up can also be analyzed to

obtain the effective parameters of the cluster, once the effective radius has

been defined. The data obtained is the pressure field as a function of the

frequency ν and the polar angle θ. The pressure field is composed of some

incident field, provided by the loudspeaker, and the scattered field by the

cluster of cylinders, which is assumed to be a homogeneous cylinder whose

acoustic parameters have to be determined. Then, writting k = 2πν/cair and

as explained in chapter 2, the measured field at a radius r0 is

P (k, θ) =
∑

q

[
A0

q(k)Jq(kr0) + Aq(k)Hq(kr0)
]
eiqθ (6.1.20)

where the k-dependence of the A coefficients has been explicitly indicated.

The objective here is to obtain the quotient between the coefficients Aq

and A0
q, that is, the elements of the T matrix. The low frequency limit

of these matrix elements are used to obtain the effective parameters of the

cluster with the help of equations B.1.6 and B.1.10.

The first operation to be made with this field is the angular FFT , which

will isolate the different q-contributions

Pq(k) = A0
q(k)Jq(kr0) + Aq(k)Hq(kr0) (6.1.21)

The meassurement radius r0 is assumed to be large, so that in the above

expression the assymptotic form of the Bessel and Hankel functions can be

used, then

Pq(k) = C(k)
[
A0

q(k) cos(kr0 + Φq) + Aq(k)e
ikr0+Φq

]
(6.1.22)

the quantity C(k) can be introduced in the coefficients A, because the only
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relevant quantity is the quotient betwen them. If the cos function is expanded

Pq(k) =

[
1

2
A0

q(k) + Aq(k)

]
ei(kr0+Φq) +

1

2
A0

q(k)e
−i(kr0+Φq) (6.1.23)

By following the same procedure without sample, the coefficients A0
q could

be obtained, and then use the last equation to obtain the Aq coefficients.

However this is not the right way to proceed as explained below.

Let us assume that we measure the field without sample, but some exper-

imental error might appear and the distance at which the field is meassured

is not exactly r0 but r0 + εr, then the vacuum field is

P 0
q (k) =

1

2
A0

q(k)e
ikεrei(kr0+Φq) +

1

2
A0

q(k)e
−ikεre−i(kr0+Φq) (6.1.24)

With this procedure, the obtained value will not be A0
q but A0

qe
ikε0 , and

the difference between the total field and the vacuum field, supposedly being

the scattered field, is

Pq(k)− P 0
q (k) =[

1

2
(1− eikεr)A0

q(k) + Aq(k)

]
ei(kr0+Φq) +

1

2
(1− e−ikεr)A0

q(k)e
−i(kr0+Φq)

(1− eikεr)A0
q(k) cos(kr0 + Φq) + Aq(k)e

i(kr0+Φq) (6.1.25)

Note that, effectively, if εr where equal to zero, this procedure is very

good. However, in our case εr 6= 0 always since we cannot controll accuratelly

the position of the receiver microphone, which is hanging from the ceiling

and its position change when the sample is removed. Therefore, another

data analysis needs to be made.

The Fourier transform of Pq(k), defined as

P̃q(τ) ≡
∫ ∞

0

Pq(k)e
ikτdk

is equal to

P̃q(τ) =

[
1

2
Ã0

q(τ + r0) + Ãq(τ + r0)

]
eiΦq +

1

2
Ã0

q(τ − r0)e
−iΦq

Therefore it is expected that this function presents, for a given q, two

peaks separated a distance 2r0 in τ -space, as shown in figure 6.8. From this
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Figure 6.7: (a) Sound amplification map SA(ν, θi) measured at 170 cm

around the center of the cluster for the case in which the external sound

wave impinging the hexagonal lattice is oriented along the ΓX direction.

The horizontal lines define the bottom (4.6 kHz) and top (7.1 kHz) edges of

the pseudogap associated with the acoustic crystal embedded in the cluster.

(b) The corresponding map taken when the cluster is oriented along the ΓJ

direction. (c) Difference (in dB) of sound pressures measured along the two

high symmetry directions at forward scattering, θ = 0◦. The SAs along ΓX

and ΓJ are represented by the red and blue lines, respectively.
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Figure 6.8: Experimental data τ -transformed corresponding to q = 1 (see

text). Both peaks are separated a distance 2r0 = 340cm, which is the distance

from the center of the cluster at which meassurements are made. From the

figure it is obvious that the functions can be isolated and analyzed indepen-

dently, obtaining in this way the coefficients Ã0
q(τ) and Ãq(τ). If the inverse

transform is computed, these coefficients allows to obtain the T matrix ele-

ments. The result is shown in figure 6.9. From the low frequency limit the

effective parameters are obtained.

The parameters of the homogenized cluster experimentally determined

from equations (B.1.6) and (B.1.10) are represented in figure 6.1.8. They have

been obtained by considering D = 39cm, which has been established from

the condition of f conservation. In absolute units, ρeff = 1.92± 0.40kg/m3

and ceff = 316 ± 17m/s, which roughly corresponds to those of argon gas

(ρAr = 1.6kg/m3, cAr = 319m/s at 25◦C). The measured parameters are

slightly different to those predicted by simulations because (i) the cylinders

are not long enough for the large wavelengths in which we are dealing with,

and (ii) the experimental setup contains some unavoidable scattering centers

that are sources of error in the data analysis.
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Figure 6.9: Elements corresponding to q = 0,±1 of the T matrix obtained

from the experimental data.

6.2 Small clusters and Magic Numbers

In the previous section the effective parameters were computed for a cluster

having a fixed number of scatterers. However, the ∆ factor computed in real

space can also be used to determine the effective parameters of a cluster but

now as a function of the number of cylinders in it. This is another finite-size

effect that can be studied with this theory.

6.2.1 Theoretical analysis

The effective parameters have been computed for clusters consisting of N =

2, 3, 4, · · · cylinders put at the positions of a hexagonal lattice, the filling

fraction of the infinite lattice being fhex = (2π/
√

3)R2
0/d

2. Each successive

cluster is formed from the previous one (starting from the single cylinder)

by adding a cylinder, which is placed at the nearest lattice site from the

cluster’s center. Each cluster is compared with an effective fluid-like cylinder

with radius Reff =
√
N
√

3/2d, given by equation (6.1.1). The construction

procedure is shown in figure 6.10.
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Figure 6.10: Construction of clusters by adding cylinders to the lattice site

nearest to the cluster’s center

Figure 6.11 plots the effective speed of sound, relative to those of the

background, for two different R0. The effective parameters oscillate in both

cases as a function of the cluster size and converge to values of the corre-

sponding infinite periodic systems. Both results show that certain magic

sizes (N = 7, 19, 37, 61, 85, 121 and 163) have effective parameters (see fig-

ure 6.11) that are equal to those of the corresponding infinite medium. The

magic clusters are schematically drawn at the top in figure 6.11.

The circular shape obtained for N = 85, 121, and 163 is understandable

since the homogenization method is based on a comparison between T ma-

trices of clusters and their corresponding homogenized circular cylinders, as

explained in section 5.2. However, the magic sizes N = 7, 19, 37, and 61

indicate that the hexagonal shape gives a good representation of the sound

scattering by fluid-like circular cylinders when the number of scatterers is

low enough.

In order to understand the physical origin of this extraordinary phe-

nomenon, we have analyzed the behavior of the ∆ factor as a function of

cluster size. Since M̂ in equation (B.3.12) is equal to I − Ĝ , where Ĝ repre-

sents the multiple-scattering contribution to the scattered sound, its inverse

can be approximated by:

M̂−1 = (I − Ĝ)−1 ≈ I + Ĝ+ ĜĜ+ · · · (6.2.1)

being Ĝ an upper triangular matrix and therefore its contribution to (M̂−1
αβ )11
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Figure 6.11: Effective speed of sound as a function of the number of

cylinders.Results are shown for two different values of the cylinder’s radii:

R0=0.48d (upper panel) and 0.30d (lower panels), where d is the separa-

tion between cylinders. Red dots define the values that are equal to those

obtained by homogenization of the infinite system. The magic clusters are

schematically drawn on top.
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is equal to zero. Then,

(M̂−1
αβ )11 ≈ δαβ +

∑
γ

∑
q

(Ĝαγ)1q(Ĝγβ)q1 (6.2.2)

where

(Ĝαγ)1q(Ĝγβ)q1 =
R4

0

R2
αγR

2
γβ

e−2i(θαγ−θβγ)(1− δαγ)(1− δβγ) (6.2.3)

Now ∆ can be easily cast as a summation of two terms, one (A2b) con-

taining the contribution of double-scattering events (α = β) and the other

(A3b) containing triple-scattering events (α 6= β)

1

∆
≈ 1 +R4

0(A2b + A3b) (6.2.4)

where

A2b ≡ 1

N

∑

α 6=γ

1

R4
αγ

(6.2.5)

A3b ≡ 1

N

∑

α 6=β 6=γ

e−2i(θαγ−θβγ)

R2
αγR

2
γβ

(6.2.6)

The upper panel in figure 6.12 plots A2b and A3b, which are both real and

represent an average of the double-scattering and triple-scattering events,

respectively, over the cluster size. Note that A3b has minim (maxim in −A3b)

at cluster sizes corresponding to magic numbers. Moreover, these minims

are enhanced when the addition of both terms is performed (lower panel).

The only exception is N = 61 (red dashed arrow), which has a difference of

less than 10% from its neighbor minimum (N = 55) in A2b + A3b and none

regarding their effective parameters (see figure 6.11). According to equation

(6.2.6), the existence of magic numbers does not depend on the cylinder

radius R0. However, large R0 will produce a better observability in ∆ [see

(6.2.4)] and thus in determining the effective parameters. It is concluded

that triplescattering events are the main effect responsible for the existence

of magic clusters in the homogenization of clusters to fluidlike cylinders.

An interesting application of these results is in designing metamaterials

that dynamically behave as true 2D fluid-fluid composite systems. Fluid-

fluid systems has been studied from the 1990s, when the existence of sonic
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Figure 6.12: Upper panel: Behavior of the averaged double-(A2b) and triple-

(A3b) scattering events as a function of the cluster size (see equations 6.2.5

and 6.2.6). Note that −A3b [red (gray) dots] has been represented for a better

comparison with A2b. Lower panel: The summation of both terms (A2b+A3b)

shows minima at the magic sizes. The case N=61 (dashed red arrow) is the

only exception.
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Figure 6.13: (upper panel) Effective radius for several q-values for a 7-

cylinders cluster. The horizontal dotted line corresponds to the theoreti-

cal value given by (5.2.8).(lower panel) Effective speed of sound for the 7-

cylinders cluster (black line) compared with that of the infinite lattice (red

line). The agreement is evident in almost all the filling fractions, though

there is a small deviation for high filling fractions.

bands and band gaps was derived for the simple one-dimensional fluid model

[Dow92]. More recently, a 2D fluid-fluid structure consisting of a square lat-

tice of water cylinders in a mercury background was suggested to observed

negative refraction [ZL04]. Obviously, the practical realization of these struc-

tures has not been reported yet. However, below we use the smaller magic

cluster as building unit to demonstrate that composite systems dynamically

behaving as true 2D fluid-fluid systems are now possible.

First, let us assume that the N = 7 magic cluster (figure 6.10) are made

of rigid cylinders such that R0/d = 1/3,(f = 0.403). The homogenization

theory predicts that this cluster dynamically responds like a circular fluid-

like cylinder of radius Reff = 1.39d, and parameters ρeff = 2.34ρb, ceff =

0.843cb. Also, let us consider that both the magic clusters and the fluid-like
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cylinders are placed at the positions of a hexagonal lattice with parameter

a = 5d. In terms of a, Reff = 0.278a. Figure ?? presents a comparison

between the reflectance calculated for a five-layer-thick slab made of N = 7

magic cluster as building blocks and that obtained for a similar slab made

of fluid-like cylinders with acoustical parameters equal to those obtained

by homogenization of the magic cluster. The simulation shows that both

reflectances are identical in a wide range of frequencies. For frequencies

above a/λ = 1, the graphs start to differ slightly, and above a/λ = 1.6 the

graphs are completely different.

Then, for frequencies a/λ = 1.5 and above the impinging sound distin-

guishes the inner structure of the cluster. This cutoff frequency represents

a wavelength λ ≈ 3.1d, which is consistent with the value obtained in the

previous section.

6.2.2 Experimental verification

To verify the theoretical predictions previously reported, we built a sample

by using 40-cm-long ceramic cylinders of 2 mm radius (R0). The separation

between cylinders in the magic clusters is 6 mm (d), and the clusters are

arranged on a hexagonal lattice with lattice constant 30 mm (a). The sam-

ple defines an acoustic slab five rows thick that contains ten clusters in each

row. The size of this sample is large enough to expect a fair comparison be-

tween measurements and multiple-scattering simulations [SHCSD03]. Also,

since the cylinders are made of alumina material (ρcyl = 3860kg/m3), their

huge acoustic impedance relative to air makes them practically impenetrable

to sound, and the rigid approach (ρcyl = ∞) employed in the simulations

is justified. Phase-delay and reflectance measurements on the sample were

performed in an anechoic chamber.

To measure the phase delay ∆Φ, we used a setup consisting of a loud-

speaker and two microphones [RCSP+99]. The microphones are located at

each side of the sample, each one put at an equal distance d1 = d2 = 10cm

from its corresponding surface. The wave number inside the crystal k(ν) can

be determined from ∆Φ through the equation [RCSP+99,RI98]

∆Φ = k0(d1 + d2) + k(ν)L, (6.2.7)

where L(= 13cm) is the thickness of the crystal, and k0 is the wave number
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of the impinging wave traveling in air; i.e., k0 = 2πν/cair, and the measured

cair = 344 ± 9m/s. The left panel in figure 6.14 shows the measured k(ν)

folded into the first Brillouin zone and the band structure calculated along the

direction ΓX of a hexagonal lattice of fluid cylinders with acoustic parameters

obtained from the homogenization of that infinite lattice.

The reflectance R of the slab is measured by using two microphones put

in front of the slab (at a distance of 7 cm from its surface) separated from

each other by ` = d2 − d1 = 1.1cm. The reflection coefficient is [CB80]

r = e−2ikd1
S11 − S12e

ik`

S11 − S12e−ik`
(6.2.8)

where d1 (d2) is the distance from microphone 1 (2) to the crystal, surface and

the quantities S11 and S12 are the autospectrum in microphone 1 and the cross

spectrum between the microphones, respectively. The measured R = |r|2 is

plotted as a function of frequency and compared with that calculated by

multiple-scattering theory in the right panel of figure 6.14. For frequencies

lying in the band gap, the experimental reflectance obtained is larger than 1,

due to multiple reflections between the loudspeaker and the crystal, and it

disappears when the crystal is slightly rotated. The bandgap center, which

is at ν ≈ 6kHz, fairly corresponds to the reduced frequency a/λ ≈ 0.55

determined by multiplescattering simulations. Let us point out that this

value corresponds to a wavelength that in terms of d(the separation between

cylinders in the magic cluster) is five times lower than that expected for a

uniform lattice with lattice period d.

6.3 Summary

In this chapter the formulas derived in chapter 5 have been applied to ob-

tain the effective parameters for several circular clusters of rigid cylinders.

The method has also been applied to study disordering effects in the lat-

tice, showing that the effective parameters deviated from that of the ordered

lattice only for large lling fractions. It can be concluded that the method

here reported is a useful tool to design acoustic metamaterials with prexed

acoustic parameters, which can be used to fabricate refractive devices or new

structures able to demonstrate fundamental properties of composite uids.
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Figure 6.14: Left: Sonic band structure of the acoustic slab schematically

drawn in the inset. The structure calculated by multiple, scattering theory

(red solid line) is compared with the one obtained by phase-delay measure-

ment (black dots). Right: Reflectance calculated (red solid line) and mea-

sured (black dots). The calculations assume that the slab is made of fluid-

like cylinders with parameters determined by homogenization of the smallest

magic cluster (N=7).
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Also, experimental evidence of the existence of 2D magic clusters has

been reported, showing that they dene a kind of acoustic metamaterial with

fluidlike properties. Moreover, from the analysis of the sound scattering by

magic clusters it has been concluded that its existence is a pure geometrical

phenomenon and thus of a general nature. Therefore a similar phenomenon is

expected to occur for any wave process, such as scattering of electromagnetic

waves by clusters of dielectric rods.
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Chapter 7

Designing Acoustic

Metamaterials

It has been shown that two-dimensional arrays of rigid or fluidlike cylinders

in a fluid or a gas define, in the limit of large wavelengths, new class of

acoustic materials non existing in nature that can be called like “acoustic

metamaterials”. The effective parameters (sound velocity and density) of

these metamaterials can be tailored up to a certain limit. This section goes

a step further by considering arrays of solid cylinders in which the elastic

properties of cylinders are taken into account. It is shown that both effects

broaden the range of acoustic parameters available for designing metamateri-

als. As a potential application of the proposed metamaterials, gradient index

lens are presented and optimized for airborne sound (i.e. a sonic Wood lens)

whose functionality are demonstrated by multiple scattering simulations.

7.1 Phase diagrams and acoustic metamate-

rials

The homogenization method can be also applied to clusters made of solid

cylinders and, therefore, the full elastic properties of cylinders are taken into

account. It is shown here that these clusters lead to effective isotropic media

in which sound travels with a speed that can be larger or smaller than that

of the surrounding medium depending on the elastic parameters and the

filling fraction of the cylinders in the lattice. Moreover, phase diagrams are
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introduced to establish (in the ρc-plane) the metamaterial properties as a

function of the elastic parameters of cylinders and its filling fraction in the

corresponding sonic crystal.

In chapter 5 was shown that the elements T̂00 and T̂11 are enough to

characterize the homogenization of sonic crystals based on fluid or elastic

cylinders. It has been also shown that T̂00 and T̂11 elements of a solid cylinder

are equal to those of a fluid-like cylinder with sound speed given by

ca ≡
√
c2` − c2t (7.1.1)

where c` and ct are, respectively the longitudinal and transversal velocities

of the actual elastic cylinder. Therefore, the effective parameters of sonic

crystals made of 2D binary solid(cylinders)fluid(background) composites can

be obtained from the general expressions already reported for 2D fluidfluid

composites in chapter 5.

In what follows, it will be discussed the behavior (in the homogenization

limit) of ceff , the effective velocity of sound propagating in a sonic crystal

consisting of a square distribution of solid cylinders in water as a function

of the filling fraction f . In regards to the effective mass density, ρeff , its

behavior is monotonic between that of the background ρb at f = 0 and a final

ρCP (that approaches that of the solid, ρa) at the condition of close-packing,

f = fCP . This behavior is of little interest and will not be discussed here.

Hereafter, an over-lined variable denotes the corresponding quantity nor-

malized to that of the background; for example, ρ̄ ≡ ρ/ρb and c̄ ≡ c/cb.

In brief, at long wavelengths, a 2D array of elastic cylinders embedded in

a fluid or a gas defines an acoustic metamaterial in which sound travels with

a speed ceff determined by ((5.2.20)):

1

c2eff

=

[
f

ρac
2
a

+ (1− f)

]
· ρa(∆ + f) + (∆− f)

ρa(∆− f) + (∆ + f)
, (7.1.2)

where ca is the fluid-like speed of sound of the solid cylinder defined in (7.1.1)

and the ∆ factor, as explained before, contains information about the mate-

rial parameters of cylinders, their positions in the 2D space and their mutual

interaction. As in the case of 2D fluidfluid composites, the value of ∆ is

different from 1 only for large f .

Figure 7.1 plots the three possible behaviors expected for ceff as a func-

tion of f . When the cylinders are made of lead (Pb), ceff is always lower
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Figure 7.1: Speed of sound in a 2D acoustic metamaterial consisting on a

square configuration of solid cylinders in water. The calculated effective

sound speed, ceff , relative to that of water, cb is plotted as a function of the

filling fraction, f . Three different behaviors are possible when f increases:

(1) a continuous decreasing of velocity as in the case of Pb, (2) a continu-

ous increasing of velocity as in the case of aluminum (Al), and (3) an initial

decreasing that with increasing f becomes in a velocity larger than the back-

ground as for iron (Fe) cylinders. The horizontal dashed line is a guide for

the eye that defines the condition ceff = cb.
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Figure 7.2: cρ phase diagram of acoustic metamaterials based on sonic crys-

tals made of a square configuration of one single component full elastic cylin-

ders. For the given fraction of volume occupied by the cylinders in the lattice

(f), the corresponding color line separates the region where the metamaterial

has a speed of sound relative to that of the background (ceff ) lower than one

(upper-left region) or higher than one (bottom-right region). The symbols

plot the parameters of several solid materials. It can be concluded that, for

example, the propagation of sound in metamaterials based on lead (Pb) or

aerogel (Gel) cylinders will always take place at a speed lower than that of

the background, while those using Aluminum (Al) or polyethylene (Pol) will

be larger than in the background. However, for the case of iron (Fe) both

behaviors could be possible, being the behavior depending of the filling frac-

tion of the corresponding lattice. The horizontal (vertical) dashed line is a

guide for the eye and defines the condition ca=1 (ρa = 3)
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than one; a behavior similar to that found for rigid cylinders, and it is due

to the huge acoustic impedance of Pb relative to that of water. However, for

the Al case, ceff is always higher than one due to the low ratio of acoustic

impedances Za/Zb. Finally, the case of iron (Fe) cylinders is an intermediate

case; ceff is lower than one for low f and higher than 1 for f large enough.

The parameters of the elastic materials employed in the calculations are listed

in table 7.1.

As explained above, a variety of behaviors is expected for ceff depending

on the material composition of cylinders and their filling fraction in the SC.

This phenomenon motivates the introduction of some kind of phase diagrams

for 2D elastic-fluid composites. It turns out that the condition ceff > 1 leads

to the following relation (assuming ∆ = 1) between the cylinder’s fluidlike

speed of sound, ca, its density ρa and f

c2a >
1

ρa

· (1− f) + (1 + f)ρa

(3− f)− (1− f)ρa

(7.1.3)

The color lines in figure 7.2 represent the separation between the two

possible ’phases’ of the metamaterial according to the value of ceff (higher

or lower than 1). They are plotted for four different f in the ρaca-plane. It

is shown that these lines are always above the region ca = 1, which means

that ceff cannot obtain a value higher than one if ca is lower than that of

the surrounding medium.

Note that all the lines become vertical in the limit

ρa →
3− f

1− f
(7.1.4)

Thus, ceff < 1 when ca ≥ 3 and ρa ≥ (3 − f)/(1 − f) . In more general

terms, it can be said that lines associated to a given f separate the region in

which the metamaterial behaves with ceff > 1 (upper-left region) from the

one in which ceff < 1 (lower-right region).

The black dots in figure 7.2, represent the elastic properties of several ma-

terials commonly used in building sonic crystals. According to their positions

in the ρaca-plane, it is concluded that:

1. sonic crystals made of Pb or Gel will always result in metamaterials

with ceff < 1,



110 Designing Acoustic Metamaterials

0.0 0.4 0.8 3 6 9 12
0
1
2

4

6

8
 

 

c a / 
c b

a b

Pb

FeAl

Poly

Gel

f = 0.2

f = 0.4f = 0.6

f = 0.8

Figure 7.3: cρ phase diagram of acoustic metamaterials based on sonic crys-

tals made of a square configuration of one single component elastic cylinders.

For the given filling fraction, f , the corresponding color line separates the

region where the metamaterial has an acoustic impedance relative to that of

the background (Zeff ) larger than one (upper-right region) or smaller than

one (bottom-left region).
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Table 7.1: Parameters of the elastic materials studied in this work. The

density, ρa, and the fluidlike velocity, ca =
√
c2` − c2t , are normalized to those

of water. However, the parameters for the silica aerogel (last column) are

normalize to air.
Poly Al Fe Pb Gel

ρa 0.95 2.70 7.86 11.40 3.00

ca 1.74 3.69 3.31 1.28 0.30

2. if the cylinders in the SC are made of Al or polyethylene (Poly), their

associated metamaterials will always have ceff > 1 and

3. for cylinders made of Fe, the behavior of ceff depends on f , as was

already shown in figure 7.1.

The possibility of having metamaterials with matching of impedance with

the embedded background is being looking at in many fields because of its

potential application in novel devices. For example, in the field of optics

a thin-film metamaterial with such a property has been recently discovered

[XSK+07]. Also, it is known that anti-reflective nanostructures have been

naturally developed to enhance the photon collection efficiency of the visual

system in animals [FN01]. If such an anti-reflective effect occurs in acoustics,

the transmittance at the interface between the metamaterial and background

will be equal to one, although sound propagates with different speed in each

medium. This property is of paramount importance in order to make useful

acoustic devices like, for example, high-efficient ultrasonics transducers or

powerful sonic lenses that collect all the impinging sound.

Figure 7.4 plots the corresponding phase diagram for Zeff . The color

lines represent the condition of matching of impedances, Zeff = 1, for several

values of f . The condition Zeff is very restrictive and is very difficult to

achieve for common elastic materials in bulk, only the silica Gel (a material

difficult to handle) almost satisfies this condition. The acoustic are plotted

as black dots in figure 7.3 and are obtained from the acoustic values given

in table 7.1. Note that figure 7.3 shows that the condition Zeff could be

achieved by 2D sonic crystal only if the solid cylinders are made of materials

having the same property (i.e. Za ≈ 1). However, now will be demonstrated

that this drawback can be overcome by using metamaterials based on a two
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Figure 7.4: Zc phase diagram of acoustic metamaterials based on sonic crys-

tals made of square arrangements of two types of solid cylinder in a back-

ground. A square lattice configuration like that displayed in the inset gen-

erates an isotropic metamaterial. The range of available relative acoustic

impedances, Zeff , and sound speed, ceff in the given background are defined

by the area enclosed by lines with equal colors. The calculations correspond-

ing to combinations of two metals have employed water as the background.

instead, the mixture of aerogel and rigid cylinders are embedded in air. Note

that the mixtures of aerogel and rigid cylinders lead to metamaterials that

perfectly match the air impedance. The horizontal (vertical) thin line is a

guide for the eye and defines the condition Zeff =1 (ceff = n−1
eff =1).
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component sonic crystal.

Let us consider mixtures of two different elastic cylinders of radii R1 and

R2, respectively, that are arranged in a square configuration of side a (see

inset in figure 7.4). The respective filling fractions are f1 = πR2
1/(2a2) and

f2 = πR2
2/(2a2). If their fluidlike parameters (see section 2) are ρ1, Ba1 and

ρ2, Ba2, the resulting metamaterial has parameters determined from:

ζeff = ζ1f1 + ζ2f2, (7.1.5)

ηeff = η1f1 + η2f2, (7.1.6)

where ζi ≡ (1 − Bb/Bai) and ηi ≡ (ρi − ρb)/(ρi + ρb), for i = 1, 2. More-

over, ζeff ≡ (1 − Bb/Beff ) and ηeff ≡ (ρeff − ρb)/(ρeff + ρb). From these

expressions:

1

Beff

=
1− f

Bb

+
f1

Ba1

+
f2

Ba2

, (7.1.7)

ρeff =
1 + f1η1 + f2η2

1− f1η1 − f2η2

ρb, (7.1.8)

ceff =

√
Beff

ρeff

, (7.1.9)

f being the total volume fraction occupied by both cylinders, f = f1 + f2.

The question now is, could these metamaterials accomplish the criterion

of impedance matching with the surrounding background? To answer this

question, let us look at figure 7.4 where the effective impedance Zeff is plotted

against ceff for several sonic crystals made of pairs of selected materials.

The calculations involving two types of metal cylinders (PbFe, PbAl and

FeAl) are embedded in water while the sonic crystals made of Gel and rigid

cylinders are in air. Results have been obtained under the approach ∆ = 1.

On such a Zc diagram, each point on a curve obtained for a certain value

f , which has associated a corresponding f1 and f2, represents a possible

metamaterial. The various curves obtained by changing f1 and f2 define

an area enclosed by the parametric lines Zeff (f1, f2) and ceff (f1, f2). Since

the larger cylinders considered have radii Ri = a/2, the four corners of a

selected area correspond to values (f1 = 0, f2 = π/8), (f1 = π/8, f2 = π/8),

(f1 = π/8, f2 = 0) and (f1 = 0, f2 = 0). The last one is always centered at

the point (1, 1) in the phase diagram. Note that only the combination of Gel
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and rigid cylinders in air leads to a metamaterial that passes through the

line Zeff = 1. In other words, only this composite system is able to create

a metamaterial with perfect matching of impedance with the background,

which is air. Moreover, note that this remarkable property is accomplished in

a broad range of filling fractions (f1, f2), which opens the possibility of having

metamaterials transparent to airborne sound but with different refractive

index.

The reflectance of a ten-layer slab made of a mixture of Gel cylinders

(f1 = 0.015) and rigid cylinders (f2 = 0.141) put in a square lattice is shown

in the lower panel of figure 7.5 as an example. The slab is oriented along

the diagonal direction of the square lattice (i.e. along the ΓM direction);

layer planes with the same type of cylinders alternate with a separation of

a/
√

2. Note how the reflectance is almost zero or negligible in a broad range

of frequencies below the first bandgap. This structure is one of many possible

ones that accomplish the condition Zeff = 1 in figure 7.4. As a comparison,

the cases of slabs with the same number of layers but with one single type

of cylinders, rigid or aerogel, have also been plotted. Note that for the

mixture, the zero-reflectance condition is accomplished for a broad range of

wavelengths; i.e., for λ ≥ 4a[ωa/(2πcb) ≤ 0.25], which is the cutoff for the

validity of the homogenization.

The phenomenon described above is of paramount importance because it

can be used, for example, to design anti-reflective acoustic coatings, which

would be similar to those recently developed for optics [XSK+07] and to

build highly effective sonic lenses. Particularly, the next section shows that

gradient-index sonic lenses are possible thanks to the predicted acoustic

transparency (zero-reflectance) of some compound metamaterials.

7.2 Gradient index lens

Acoustical refractive devices for airborne sound similar to those existing for

optical lightwaves are not possible because solid materials are not transpar-

ent to sound waves. Also, since the sound speed of solids is larger than in air,

a converging lens would have a concave rather than a lenticular shape. How-

ever, when dealing with arrays of hard scatterers embedded in air (which

act as a low reflective medium at large enough wavelengths) the incident
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Figure 7.5: Reflectance of three different ten-layer slab of cylinders dis-

tributed in a square lattice of lattice period a embedded in air and oriented

along the ΓM direction. The slabs are made of rigid cylinders (top panel),

aerogel cylinders (middle panel) and a mixture of both (lower panel). Note

how the mixture has a negligible reflectance for low frequencies.
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Figure 7.6: Comparison between the acoustic field scattered by a finite rect-

angular slab (upper panel) and a circular lens (lower panel). The focusing

effect is evident in the second case, but strong diffracting effects are present

in both situations.
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sound wave and the scattered waves are superimposed in such a way that

the sound propagates at a reduced speed. Thus, Meyer and Neumann [EG72]

were aware of these two effects and constructed a converging lens by using

disks as scatterers. More recently, Cervera and coworkers [CSSP+01] re-

ported a full demonstration of the focusing effect by using circular-shaped

cylinders as scatterers.

In figure 7.6 can be shown the difference between the field scattered by a

simple rectangular slab and a curved slab. The focusing effect is evident for

the case of the curved lens, though there are some diffracting effects in both

situations.

The zero-reflectance property of aerogel-rigid mixed lattices described be-

fore can be used, for example, in the construction of high effective lenticular-

shaped sonic lenses by employing the procedure in [CSSP+01].

However, thanks to the fact that the acoustic refractive index of the SC

can be tailored without loosing the zero-reflectance property, here we present

the design of a gradient-index sonic lens whose functionality is based on the

same effect already applied in optics [W78].

This novel acoustic device fully exploits the powerful properties of meta-

materials based on arrays of aerogel and rigid cylinders analyzed in the pre-

vious section.

Probably the most interesting type of gradient index lens is one for which

the variation in refractive index exhibits cylindrical symmetry about the lens

axis, i.e. n varies only as a function of the perpendicular distance to the

lens axis. For the simplest case, where the ends of the cylinder are planes

perpendicular to the axis, the lens is referred to as a Wood lens, after the

original inventor. As in the more general case of optics, we proposed here a

sonic Wood lens with a parabolic variation of the acoustic refractive index

(see left panel in figure 7.8), thus

neff (y`) = n0
eff − (n0

eff − 1)y2
`/(h/2)2, (7.2.1)

where n0
eff is the refractive index on the lens axis, h is the total length on

the perpendicular direction to the lens axis (i.e. y−axis), and y` defines the

positions along the y−axis of the cylinders.

In figure 7.7 the comparison between the focusing effect of a curved lens

and a gradient index lens is plotted. The gradient index lens has the ad-
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vantage of geometry simplification, because it is not always possible to cut a

square slab with circular shape due to the discrete nature of the lattice.

The designed lens is nine layers thick and consists of twenty rows of cylin-

ders (h/2 =10a) in the vertical direction with decreasing values of their radii,

Ri. Maximum values correspond to the axial row (y` =0), where R1 =0.2a

(rigid), R2 =0.3a (aerogel) and neff =1.31. Minimum values are achieved in

the upper and lower rows (y` = ±10a), where Ri =0 and n
(
eff0) =1. The ra-

dius of a given type of cylinders at any given row y` is determined by solving

(7.1.5) and (7.1.6) under the condition Zeff = 1, which gives the following

set of coupled linear equations:

ζ1f1 + ζ2f2 = 1− neff (y`) (7.2.2)

η1f1 + η2f2 = −1−neff (y`)

1+neff (y`)
, (7.2.3)

from which R1 and R2 are obtained.

The focusing effect of the proposed lens is shown in the right panel of

figure 7.8 for the case of a wavelength λ =4a. The simulation has been

performed by the multiple scattering method developed in [SHCSD03,GY03],

where no viscosity effects are taken into account. This lens outperforms

that of broadband lenticular-shaped lens based on rigid cylinders [CSSP+01,

GY03]. Thus, the ten layer proposed lens obtains a maximum intensity of

8.8 dB at the focal point while the lenticular-shaped lens get only 6.6 dB by

using nineteen layer thick lens.

7.3 Summary

This chapter has shown that a great variety of acoustic metamaterials can

be designed by using SC consisting of 2D arrangements of solid cylinders

in a uid or gas. Also, for the case of two component cylinders, it has been

introduced Zc phase diagrams that have allowed to nd metamaterials with

perfect matching of impedance with air.

As an application, it has been reported a sonic Wood lens in which a

parabolic variation of the refractive index is achieved by changing the cylin-

ders radii in the direction perpendicular to the lens axis. Its focusing property
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Figure 7.8: Sound focusing by a transparent acoustic gradient index lens.

The condifion Zeff = 1 has been imposed through all the surface and all the

acoustic energy is located around the focus of the lens.

has been demonstrated by multiple scattering simulations and it outperforms

the functionality of other lenses previously reported.

In summary, this chapter shows that isotropic acoustic metamaterials

with a broad range of possible parameters are now possible by simple means.

This chapter is based on:

1. Daniel Torrent and José Sánchez-Dehesa. Acoustic metamaterials for

new two-dimensional sonic devices. New Journal of Physics, 9(9):323,

2007.



Chapter 8

Anisotropic fluids and acoustic

cloaking

Here the anisotropic properties of periodic media already reported in Chapter

5 are analyzed. First, basic 2D lattices are studied and wave propagation

through this media is analyzed. Finally, the problem of acoustic cloaking of

objects is analyzed and solved with 1D periodic acoustic media.

8.1 Anisotropic fluids

We see that anisotropy in (5.1.15) comes from factor Γ, which is given in

(5.1.13). The main contribution to the anisotropy Γ comes from Γ(0) [see

(B.2.30)]. The value of Γ(0) given in (B.2.30) allows to introduce the so

called parameter of anisotropic strength AΓ, which is defined as:

AΓ ≡
∣∣∣∣∣
∑

h6=0

J3(QhRmin)

Q3
h

e−2iθh

∣∣∣∣∣ , (8.1.1)

AΓ is here analyzed as a function of the ratio a2/a1 and the angle φ (see

section 3.3).

Figure 8.1 plot AΓ for several values of the ratio a2/a1 as a function of the

angle between lattice vectors. The calculation predict that large anisotropy

in sound speed and mass density should be expected for the lattices where

this Aγ takes large values. The predictions are corroborated by the results

obtained for ceff and ρeff as it is shown below.
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Figure 8.1: Anisotropy factor, AΓ, which is defined in 8.1.1, for several values

of the ratio, a2/a1, as a function of the angle, φ, between lattice vectors.

Anisotropy disappears for the 2D isotropic lattices (square and hexagonal)

corresponding to parameters described in Table 1.

8.1.1 Effective speed of sound

The strength of anisotropic effects predicted by AΓ is analyzed in figure 8.2,

where the diagonal elements of the sound speed tensor,
√
c2xx and

√
c2yy, are

plotted for the case of rigid cylinders in three different anisotropic lattices and

compared with the corresponding results for the hexagonal lattice, which is

isotropic. Note that the maximum possible value for Ra, which is determined

by the touching condition between neighboring cylinders, depends of the

lattice geometry. It is seen in figure 8.2 that the more anisotropic behavior

corresponds to the case a2 = 2a1 and φ = 75o, which has the larger value of

AΓ (see figure 8.1).

Isotropic lattices

The case of isotropic lattices deserves special attention because results has

been published by two different research teams [KAG03, MLWS06]. The

solution for this case is easily obtained from matrix (5.1.14) by introducing

the isotropy condition, that is Γ =0. After straightforward manipulations,
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Figure 8.2: Diagonal components of the speed of sound tensor,
√

(cii/cb)2 as

a function of the cylinder radius, Ra for the three anisotropic lattices: (a)

a2 = a1, φ = 45o; (b) a2 = a1, φ = 75o; (c)a2 = 2a1, φ = 75o. Results

for the isotropic lattices (hexagonal and square) are also depicted in (a) for

comparison. The filling fraction f for the square (sq) and hexagonal (hex)

lattices are also shown to emphasize that f is determined by Ra and the

symmetry of the lattice.
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the secular equation can be cast in:

det

∣∣∣∣∣∣∣∣∣

∆− η
c2eff

1−c2eff
f iη

ceff

1−c2eff
f η 1

1−c2eff
f

−iζ ceff

1−c2eff
f 1− ζ

c2eff

1−c2eff
f iζ

ceff

1−c2eff
f

η 1
1−c2eff

f −iη ceff

1−c2eff
f ∆− η

c2eff

1−c2eff
f

∣∣∣∣∣∣∣∣∣
= 0. (8.1.2)

The analytical solution of this equation is:

c2eff =
∆− fη

∆ + fη
· 1

1 + fζ
, (8.1.3)

This solution contains relevant terms of multiple scattering interaction that

has been forgotten in the solution given by Mei and coworkers [MLWS06],

who were also working in the framework of multiple scattering theory. Par-

ticularly, ours results reduced to those in [MLWS06] when we impose in

(8.1.3) the condition ∆ = 1. In other words, when its is assumed that mul-

tiple scattering interactions are neglected. However, it has been shown by

us [THCSD06,TSD06] that this condition is only valid at low filling fractions.

The parameter ∆ is the responsible of the abrupt decreasing of speed of sound

when the filling fraction approaches the condition of close-packing as shown

in figure 8.2. This behavior that is not shown in figure 1 of [MLWS06]. Our

results fully agree with those found in Krokhin et al., which used a plane

wave expansion (see figure 1 in [KAG03]).

Wave propagation

Wave propagation in this type of materials is complex and it should be stud-

ied in a separated work, however it can be introduced here looking at the so

called refractive index ellipsoid, which here we introduced in acoustics in a

manner similar to that in optics:

neff (θ) =
1√

c2eff (θ)
(8.1.4)

Two index ellipsoids have been plotted in polar coordinates in Figs. 8.3 and

8.4 for two different anisotropic lattices and for several values of cylinder’s

radius Ra. In Fig.8.3 must be note that the principal axis are rotated 22.5◦

with respect to the x−axis of the lattice. However, it is remarkable how
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Figure 8.4: Index ellipsoid neff (θ) for the anisotropic lattice defined by a2 =

2a1 and φ =30◦ and for several cylinder radius Ra. Note how the rotation

of the principal axis depends of Ra (i.e., it is a function of the lattice filling

fraction).

for the lattice studied in Fig.8.3 the principal axis are slightly rotated with

respect to the xy−axis, and more important the tilted angle depends on the

filling fraction of the lattice. The wave propagation will respond to the index

ellipsoid, in such a way that slow propagation is expected along the direction

defined by the longer side of the ellipsoid and faster propagation will take

place along the direction defined by the smaller side of ellipsoid.
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Figure 8.5: Reciprocal of the effective density tensor as a function of the

radius of cylinders in reduced units (Ra/a) for three different anisotropic

lattices: (a) a2 = a1, φ = 45o; (b) a2 = a1, φ = 75o; (c)a2 = 2a1, φ = 75o.

Results for the 2D isotropic lattices (hexagonal and square) are also shown

in (a) comparison.
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8.1.2 Effective Mass Density

With the expressions derived above, the reciprocal density tensor are derived

from ρ−1
eff (θ) = c2eff (θ)/Beff , see equation (1.2.32):

ρ−1
s+ =

|∆|2 − |Γ|2 − f 2η2

(∆ + fη)(∆∗ + fη)− |Γ|2 (8.1.5)

ρ−1
s− = − 2fη|Γ| cos ΦΓ

(∆ + fη)(∆∗ + fη)− |Γ|2 (8.1.6)

ρ−1
a+ =

2fη|Γ| sin ΦΓ

(∆ + fη)(∆∗ + fη)− |Γ|2 (8.1.7)

It is important to note that the reciprocal density tensor (and the effective

density) does not depend on the bulk modulus of background and cylinder.

In other words, the effective density only depends on the lattice structure, its

filling fraction and the density of cylinders relative to the background. The

elastic nature of cylinders will be only present in the effective density for high

filling fractions, where the higher orders of the T matrix will be present in

both the ∆ and Γ factors.

Isotropic lattices

For the case of isotropic lattices the effective density already given in (8.1.3)

can be also cast in:

c2eff =
1

ρeff

· Ba

fBb + (1− f)Ba

, (8.1.8)

in which:

ρeff =
ρa(∆ + f) + ρb(∆− f)

ρa(∆− f) + ρb(∆ + f)
ρb, (8.1.9)

and the second factor is the effective bulk modulus Beff given in (5.1.22).

It can be demonstrated that for low enough f (i.e., ∆ =1) the expression

8.1.9 reduces to that obtained by Berryman [Ber92] for the dimensionality

parameter d = 2 [see also equation (2) in [MLWS06]].
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Figure 8.6: Effective parameters for 2D arrays of lead (Pb) cylinders embed-

ded in water for the two isotropic lattices (hexagonal and square) and two

different anisotropic lattices.
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8.1.3 Effective Parameters for lattices of elastic cylin-

ders

When the ratio between acoustic impedances of cylinders and background

Za/Zb is not large enough the condition of rigid cylinders (i.e. ρ = ∞) is not

valid and the sound propagation inside the cylinders has to be taken into

account. This is the usual case when working with solid cylinders embedded

in water. Therefore, the full elastic properties of cylinders must be considered

in the corresponding T matrix. As a consequence, the effective parameters

of metamaterials based on solid cylinders embedded in a fluid, like water,

present a rich variety of behavior depending of the ratio Za/Zb, the lattice

topology and the fraction of volume (f) occupied by the cylinders in the

corresponding lattice. As example of typical behaviors encountered, figures

8.6, 8.7, 8.8 represent the cases of cylinders made of lead (Pb), iron (Fe)

and aluminum (Al), respectively, embedded in water. Results are shown for

the two 2D isotropic lattices (square and hexagonal) and two anisotropic

lattices. As anisotropic lattice we have studied one (a1 = a2 and φ =75o)

characterized by a very small anisotropic strength parameter (AΓ =0.001)

and another (a1 = 3a2 and φ =75o) in which this parameter is more than

one order of magnitude larger (AΓ =0.042).

Results for the slightly anisotropic lattice (AΓ =0.001) in left panels of fig-

ures 8.6, 8.7, and 8.8 show that the values of their effective parameters are in

between of those calculated for the hexagonal (φ =60o) and square (φ =90o)

lattices and the difference between diagonal elements is very small. Results

for the strong anisotropic lattice are depicted in the right panels of the same

figures. They show that diagonal elements show appreciable differences that

increase with cylinder’s radius and should be observable in acoustic exper-

iments. Also note that the difference between diagonal elements decreases

with decreasing density. Therefore, we can concluded that in order to observe

strong anisotropic effects in lattices of solid cylinders embedded in a fluid,

we have to select a lattice with a large value of AΓ made of cylinders with a

density as large as possible in comparison with that of the fluid background.
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Figure 8.7: Effective parameters for 2D arrays of iron (Fe) cylinders embed-

ded in water for the two isotropic lattices (hexagonal and square) and two

different anisotropic lattices.
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Figure 8.8: Effective parameters for 2D arrays of aluminum (Al) cylinders

embedded in water for the two isotropic lattices (hexagonal and square) and

two different anisotropic lattices.
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8.2 Acoustic cloaking

In a recent work by Cummer and Schurig [Cum07] was predicted that acoustic

cloaking is possible in a two-dimensional (2D) geometry by means of a cloak

made of an acoustic material having a strong mass anisotropy not existing in

nature. This result in acoustics follows a previous analogous result discovered

by Pendry et al. [Pen06] in electromagnetism by using a material with equiv-

alent requirements for the permitivity and permeability tensor components.

However, while the electromagnetic (EM) cloaking has been experimentally

demonstrated by using a metamaterial specially designed [Sch06], its acoustic

counterpart has not been demonstrated yet. Moreover, the demonstration

for the acoustic cloaking is still waiting for some proposal of engineered ma-

terial (metamaterial) that accomplishes the requirements on mass anisotropy

predicted in [Cum07].

In this regards, the work by Milton et al. [Mil06] describes conceptually

how the mass anisotropy could be possible by spring loaded masses. Besides,

a recent advance in the physical realization of metamaterial with mass density

anisotropy has been performed by these authors by demonstrating that such

uncommon property can be made possible by using non-symmetric lattices

of solid cylinders [TSD08].

In this section an acoustic cloak that could be physically realizable is

presented. In brief, the proposed cloak is based on a multilayered structure

consisting of two layers with the same thickness and made of two different

acoustic isotropic metamaterials. These metamaterials are built with sonic

crystals (i.e., periodic arrays of sonic scatterers) based on two types of elastic

cylinders that have to accomplish certain requirements on their mass density

and effective sound speed. Numerical experiments based on multiple scat-

tering method are present to support the exact performance of the proposed

cloak.

8.2.1 The acoustic cloak: a proposal

The solution reported by Cummer and Schurig for the acoustic cloaking

in [Cum07] requires a fluid material with an anisotropic density and a scalar

bulk modulus. Moreover, these parameters must be dependent on the radial
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distance to the hidden object. The predicted functional form is

ρr

ρb

=
r

r −R1

, (8.2.1a)

ρθ

ρb

=
r −R1

r
, (8.2.1b)

B

Bb

=

(
R2 −R1

R2

)2
r

r −R1

, (8.2.1c)

where R1 and R2 are the inner and outer radii of the cloaking shell, B is

the bulk modulus of the shell, ρr and ρθ are the components of the diagonal

mass density tensor, and the quantities with subscript b are those of the sur-

rounding background that is a fluid or a gas. Materials with such uncommon

properties does not exist in nature and, therefore, some engineered material

should be introduced to accomplish them.

In the previous section it has been shown that, in the low frequency

limit, arrangements of cylinders in non-symmetric lattices leads to acoustic

metamaterials with anisotropic mass density and scalar bulk modulus, as

required by equations (8.2.1).

The lattices considered in that section are single-cylinder lattices and,

as a consequence, when the mass density of the cylinder is larger (smaller)

than that of the background, the effective mass density tensor is always

larger (smaller) than that of the background. This is an important drawback

because in conditions (8.2.1) one component of the mass density tensor is

the reciprocal of the other and consequently the radial (angular) component

of the mass tensor is always larger (smaller) than that of the background.

Therefore, a material having certain mass density in the radial direction

and its reciprocal along the tangential direction cannot be engineered by

using the theory developed so far. However, we suggest below a path to get

the actual realization of such property by using periodic structures.

We arrive to the solution here proposed by exploring the possibility of

building anisotropic materials based on sonic crystals with two types of ma-

terials cylinders, following a combination of two approaches previously in-

troduced. Unfortunately, the practical realization of conditions (8.2.1) was

impossible to achieve because of the limitation imposed by the close packing

condition of the lattice. Therefore, in a natural way, we conclude that a mul-

tilayered structure made of two materials overcome such problem and give a
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solution to accomplish the required conditions. It is interesting to note that

an approach similar to this was also proposed to get EM cloaking [Hua07].

However, while the EM cloak only verifies a reduced set of the conditions im-

posed for EM cloaking, the one reported here exactly matches the conditions

for acoustic cloaking.

Let us consider a cloaking shell consisting of a multilayered structure that

is made of alternating layers of materials of type 1 and 2. For any periodic

system the bulk modulus (in the homogenization limit) does not depend of

the type (isotropic or anisotropic) of lattice; in fact, it has been shown in

chapter 5 that the effective bulk modulus at large wavelength, Beff , can be

determined by simply doing a volume average of its reciprocal. This volume

average, for a one-dimensional multilayered system of materials 1 and 2,

becomes in
1

Beff

=
1

d1 + d2

[
d1

B1

+
d2

B2

]
(8.2.2)

where B1 (B2) is the bulk modulus of material 1 (2) and d1 (d2) is the length

of layer 1 (2).

To obtain the tensor associated to the effective speed of sound we need to

calculate first the dispersion relation K(ω) of the system; i.e., the wavenum-

ber as a function of the frequency. This calculation is very simple by following

a procedure explained in textbooks like [Tre],

cosKxd = cos k1xd1 cos k2xd2− 1

2

[
ρ1k2x

ρ2k1x

+
ρ2k1x

ρ1k2x

]
sin k1xd1 cos k2xd2 (8.2.3)

where

K2
ix =

ω2

c2i
−K2

y , (8.2.4)

for i = 1, 2

The effective speed of sound is defined (in the low frequency limit) as the

ratio between the angular frequency ω and the wave number K. This ratio

can be obtained by making a power expansion of the trigonometric functions

up to second power of their arguments. It is easy to show that the effective

speed of sound tensor that follows is

c2⊥ = Beff
d1 + d2

d1ρ1 + d2ρ2

(8.2.5a)

c2‖ = Beff
d2

1 + d2
2 + d1d2(ρ1/ρ2 + ρ2/ρ1)

(d1 + d2)(d1ρ1 + d2ρ2)
(8.2.5b)
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Figure 8.9: Schematic view of the cloaking shell. It consists of a circular-

shaped multilayered structure made of two different materials of the same

thicknesses.

where c⊥ and c‖ define the diagonal components of the speed tensor for the

propagation along the perpendicular and parallel directions, respectively, to

the layered system.

From the equations above the reciprocal density tensor can be identified

as the ration between the speed tensor and the effective bulk modulus. If

d1 = d2 = d/2 and ρ2/ρb = ρb/ρ1 the reciprocal mass density tensor becomes

ρ−1
⊥
ρ−1

b

=
2

ρ1/ρb + ρb/ρ1

(8.2.6a)

ρ−1
‖
ρ−1

b

=
ρ1/ρb + ρb/ρ1

2
(8.2.6b)

This structure satisfies the conditions (8.2.1); i.e., ρ⊥/ρb = ρb/ρ‖. More-

over, the component of the mass density tensor along the perpendicular di-

rection is always larger than one, as also required by the first of equations

(8.2.1).

Now, we have to determine the materials properties of media 1 and 2. If

material 1 is selected as the high density material, from (8.2.6b) the depen-

dence of ρ1 as a function of r is

ρ1(r) = ρr(r) +
√
ρ2

r(r)− ρ2
b =

r +R1

√
2r/R1 − 1

r −R1

ρb (8.2.7)

The bulk modulus of both materials must also depend on the radial dis-

tance. To accomplish this condition, one possibility is assuming that both

materials have the same speed of sound c1. Therefore, the dependence of
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Figure 8.10: Pressure map for a planar wave incident on a rigid cylindrical

scatterer surrounded by a multilayered acoustic shell made of 50 layers (left

panel) and 200 layers (right panel. The radius of the shell is two times

the radius of the core (R2 = 2R1). The wavelength of the incident field is

λ = R1/2.

this quantity as a function of r can be obtained by inserting B1 = ρ1c
2
1 and

B2 = ρ2c
2
1 into equations (8.2.1) and (8.2.2)

c1(r) =

√
B∗ρr

ρ2
b

=
R2 −R1

R2

r

r −R1

cb (8.2.8)

Equations (8.2.7) and (8.2.8) define the properties of medium 1 while

those for medium 2 are derived from them as explained above:

ρ2(r) = ρ2
b/ρ1 =

r −R1

r +R1

√
2r/R1 − 1

ρb (8.2.9a)

c2(r) = c1(r) =
R2 −R1

R2

r

r −R1

cb (8.2.9b)

The proposed cloak is schematically shown in figure 1, where the 1D

structure is transformed into a circular-shaped shell that it is expected to

cloak a rigid core placed in its interior.
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Figure 8.11: Left panel:Pressure map for a planar wave incident on a rigid

cylindrical scatterer of radius R1. Right panel: Map corresponding to the

same scatterer surrounded by a extremely thin cloak shell (R2−R1 =0.01R1)

made of 200 layers. The wavelength of the incident field is λ = R1/2.
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To check the functionality of the multilayered cloak we have performed

multiple scattering simulations by using the method developed in [Cai04,

CSD08].

Maps of the acoustic pressure at a time instant are represented by the real

part of the complex amplitude p and are shown in figure 8.2.1 for the case of a

rigid core of radius R1 that is placed inside a multilayered shell of radius R2 =

2R1. The full structure is submitted to an acoustic field of wavelength λ =

R1/2. The performance of two different shells are depicted in figure 2 where

the left panel corresponds to a shell made of 50 layers and the right panel

to one composed of 200 layers, where each layer of thickness d is composed

o two alternative layers of thickness of material 1 and 2, respectively; i.e.,

d = d1+d2 = d/2+d/2. The cloaking effect is evident in both representations,

but that corresponding to 200 layers is can be considered like perfect. These

results can be compared with the case of the rigid cylinder with no cloak that

is represented in the left panel of figure 3, where the incident wave is strongly

scattered by the cylinder. On the other hand, in the right panel of figure

3 is depicted the acoustic cloaking by a extremely thin cloak, its thickness

being two order of magnitude smaller than the hidden cylinder, but it is also

made of 200 layers. This result is very promising because it indicates the

possibility of building cloaks as thiner as the available technology allows.

Now, it is also interesting to analyze the cloaking effect as a function of

the number of layers employed in the fabrication of the cloak. The resulting

behavior is important in order to simplify as much as possible the fabrication

of the cloaking shell. We have studied the backscattered field as a typical

parameter characterizing the cloak’s performance and it is represented (in

a logarithmic scale) in figure 4 as a function of the frequency for different

number of layers. It is remarkable in figure 4 that only 50 layers are able to

reduce in more than one order of magnitude (for a wide range of frequencies)

the back scattered field in comparison with that for the corresponding naked

rigid cylinder. Other interesting cases like a penetrable and a void regions are

not reported here but we expect results analogous to those already published

[Cai07].
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Figure 8.12: Frequency response of the back scattered pressure for a rigid

cylinder surrounded by a cloaking shell consisting of a multilayered structure

as described in figure 1. N is the number of layers in the structure. The case

of the bare rigid cylinder without the shell is also represented (black line).

8.2.2 Building the layers of the cloak: a feasible ap-

proach

It has been shown above that the acoustic cloak can be exactly realized

by using a set of N layers, each one made of one isotropic metamaterial of

type 1 and another of type 2, their acoustic parameters being described by

conditions (8.2.7), (8.2.8), and (8.2.9).

This section is devoted to show that the requested metamaterials 1 and

2 can be actually realized by those introduced by these authors in previous

works. Particularly, we have shown that sonic crystals are a class of meta-

materials that dynamically behaves (in the homogenization limit) as true

fluidlike materials whose properties can be tailored with practically no limi-

tation. For example, for sonic crystal made of only one type of component the

acoustic parameters of the homogenized acoustic metamaterial basically de-

pend on the filling fraction of the lattice [THCSD06,TSD06]. More recently,

we have shown [TSD07] that sonic crystals made of two material cylinders

increase the possibilities of metamaterial design. Here, we have used the
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Figure 8.13: Phase diagram showing that the acoustic properties for materials

1 and 2 can be satisfied with only two different materials. The continuous

line represents the range of values for materials 1 and 2. The dotted lines

enclosed the area representing the range of values that is possible to obtain

with the corresponding two-component sonic crystal.

last approach to design the acoustic properties needed in the layers of the

cloaking shell.

For instance, let us assume that metamaterials 1 and 2 are going to

be made of two types of cylinders with acoustic parameters: (ρ1α, c1α) and

(ρ1β, c1β) for metamaterial 1, and (ρ2α, c2α), and (ρ2β, c2β) for metamaterial

2. The parameters of metamaterials 1 and 2 can be tailored with the filling

fractions f1α, f1β, f2α and f2β of the components involved in their fabrication.

Thus,

1

B1

=
1− f1α − f1β

Bb

+
f1α

B1α

+
f1β

B1β

(8.2.10)

η1 = η1αf1α + η1βf1β (8.2.11)

1

B2

=
1− f2α − f2β

Bb

+
f2α

B2α

+
f2β

B2β

(8.2.12)

η2 = η2αf2α + η2βf2β (8.2.13)

where ηi = (ρi − ρb)/(ρi + ρb)

In figure 5 we have represented the so called phase diagram [TSD07] of the
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Table 8.1: Acoustic parameters of the materials forming the composites.

The third column reports the effective velocity of the elastic cylinder c =√
c2` − c2t , where c` and ct are the longitudinal and transversal velocities,

respectively

Material ρ/ρb c/cb

1α 400 100

1β 2 50

2α 0.1 0.5

2β 0.001 200

metamaterial that can be obtained by using composites made of two compo-

nent sonic crystals. This diagram has be obtained by considering cylinders

made of materials whose parameters are reported in Table 8.1. Lines of

the same color enclose the area in which a metamaterial with parameters

(ρeff , ceff ) are available by just changing the filling fraction of the materials

employed in the composite. For instance, the area enclosed by the blue lines

define the range of parameter that can be tailored using materials 1α and

1β in the composition of metamaterial 1. Within this area, the blue straight

line represents the variation in (ρeff , ceff ) needed by material 1 in order to

accomplish the cloaking by the multilayered structure. In other words, the

conditions for material 1 given by (8.2.7) and (8.2.8) can be fully accom-

plished by using materials 1α and 1β in Table 8.1. For the case of material

2, the red straight line in figure 5 represent the range of variation requested

for cloaking. The set of materials in Table 8.1 selected to get the acoustic

metamaterials needed is the construction of the cloaking shell are just one

possibility. In order to make the cloak real a more appropriate set should be

chosen to match the availability of materials in nature.

We should point out that the present proposal can be extended to the

case of acoustic cloaking in three dimensions, where the parameter conditions

of the cloaking shell have been recently reported [Che07,Cum08]. By using

an analogous development, we can foresee that the corresponding shell could

be made of multilayers of two different isotropic metamaterials, which might

consist of spheres of different solid materials.
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8.3 Summary

In this chapter numerical calculations of anisotropic acoustic parameters have

been presented for relevant examples like the case of rigid cylinders in air and

some elastic cylinders embedded in water. Wave propagation through these

systems has also been analyzed.

Also,it has been shown that acoustic cloaking shells are possible by means

of multilayered structures made with two types of acoustic isotropic metama-

terials whose acoustic parameters should change as a function of the distance

from the layer to the center of the shell. The practical realization of the re-

quired radial dependence can be achieved by using homogenized 2D sonic

crystals having two full elastic cylinders per unit cell.

The parameters of the sonic crystal needed to get the cloaking eect can

be obtained thought a phase diagram analysis of the selected materials used

in the cylinders.

This chapter is based on:

1. Daniel Torrent and José Sánchez-Dehesa. Anisotropic mass density by

two-dimensional acoustic metamaterials. New Journal of Physics, 10,

2008.

2. Daniel Torrent and José Sánchez-Dehesa. Acoustic Cloaking in two

dimensions: a feasible approach. New Journal of Physics, (to be pub-

lished).
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Chapter 9

Concluding remarks

In this chapter the main results are summarized and the work that has to

be done is explained. It is shown that although this work has solved several

interesting problems many others are derived.

9.1 Conclusions

It is evident that the long wavelength behaviour of sonic crystals is a open

field with many applications. Both ordered and disordered systems can now

be studied, showing that the disordering effects does not alter the parame-

ters of the effective medium, which means that practical realization of the

purposed devices is not very sensitive to small fabrication defects.

Althoug acoustic waves was the main application of sonic crystals in the

low frequency limit, it has been shown how these type of devices can be

improved, and how many others, like gradient index devices, can also be

built.

It has been also shown that fully transparent acoustic devices are possible,

hardly improving the efficacy of these devices.

Probably the most impressive device described in this work is the acoustic

cloaking shell. It is clear that the invisibility in acoustic can be achieved

with sonic crystals. Although the solution reported here is still too much

theoretical, it is evident that multilayered systems are in the correct way to

finally build the shell.
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9.2 Future Work

The results of the present work suggest that refractive devices should be

possible with a wide range of design possibilities. However, experimental

work has been secundary in this work, and one step further should be done

in order to really know how far refractive devices can arrive. Then, the next

point in this field should be done in the experimental part.

But in the theoretical part there are some fields open. First, the homoge-

nization theory has been developed for two situations: fluid background-fluid

cylinder and fluid background-elastic cylinder. It is evident that the same

situations but with elastic background has to be done. And the results needs

to be extrapolated to both one and threedimensional systems.

Finally, the acoustic cloaking is also a very interesting starting point

for future work. Here it has been shown that it is possible to build the

acoustic cloak with a multilayer of fluid-like materials. It should be seriously

studied the possibility of build it with a multilayered elastic medium. That

is probably the best way to physically realize this interesting phenomenon,

which is very representative of what could be understood by “the full control

of sound”.



Appendix A

Bessel Functions

A.1 Basic relations

A.1.1 Bessel Differential Equation and Solutions

Helmholtz equation in polar coordinates is
(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+ k2

)
Ψ = 0 (A.1.1)

this equation has a solution of the form

Ψ =
∞∑

q=−∞
Υq(kr)e

iqθ

where q must be integer in order to satisfy periodicity in θ. The functions

Υq(x) satisfies Bessel differential equation

d2Υq

dx2
+

1

x

dΥq

dx
+ (1− q2

x2
)Υq = 0 (A.1.2)

regular solutions, which will be called Bessel functions are

Jq(x) =
∞∑

n=0

(−1)n

n!(n+ q)!

(x
2

)q+2n

(A.1.3a)

J−q(x) = (−1)qJq(x) (A.1.3b)

while non regular solutions, which will be called Neumann functions, are

Yq(x) = lim
p→q

Jp(x) cos pπ − J−p(x)

sin px
(A.1.4a)

Y−q(x) = (−1)qYq(x) (A.1.4b)
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In the present work, the so called Hankel functions are more used for the non

regular solutions, and they are defined by

Hq(x) = Jq(x) + iYq(x) (A.1.5)

A.1.2 Recurrence relations

The following relations are satisfied for both the regular and non regular

Bessel functions (the symbol ′ implies derivative respect to the argument)

Υq+1(x) =
2q

x
Υq(x)−Υq−1(x) (A.1.6a)

Υ′
q(x) =

1

2
[Υq−1(x)−Υq+1(x)] (A.1.6b)

Υ′′
q(x) =

1

4
[Υq−2(x)− 2Υq(x) + Υq+2(x)] (A.1.6c)

A.1.3 Asymptotic forms for small arguments

For x→ 0 Bessel functions are simply

Jq(x) ≈ 1

q!

xq

2q

[
1− x2

4(q + 1)

]
(A.1.7)

while Hankel functions are

Hq(x) ≈





− i(q−1)!
π

2q

xq q > 0

2i
π

ln x q = 0

(A.1.8)

With the above expressions it is easy to show that the asymptotic forms for

the first derivatives of the Bessel functions are

J ′q(x) ≈





1
(q−1)!

xq−1

2q q > 0

−x
2

q = 0

(A.1.9)

and of the Hankel functions are

H ′
q(x) ≈





− iq!
π

2q

xq+1 q > 0

2i
πx

q = 0

(A.1.10)
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another useful expansion is that of the second derivative of the Bessel func-

tion, which is

J ′′q (x) ≈





1
(q−2)!

xq−2

2q q > 1

−3x
8

q = 1

1
2

[
x2

8
− 1

]
q = 0

(A.1.11)

A.1.4 Asymptotic forms for large arguments

When x→∞

Jq(x) ≈
√

2

πx
cos

(
x− qπ

2
− π

4

)
(A.1.12)

Yq(x) ≈
√

2

πx
sin

(
x− qπ

2
− π

4

)
(A.1.13)

Hq(x) ≈
√

2

πx
(−i)qe−iπ/4eix (A.1.14)

A.1.5 Integral Representations

Integral representation of Bessel functions are specially useful when dealing

with scattering problems and lattice sums. In [MA] the following integral

representation of Bessel functions is given

Jq(x) =
1

π

∫ π

0

cos(x sin τ − qτ)dτ =
i−q

π

∫ π

0

eix cos τ cos(qτ)dτ (A.1.15)

expressing cos(qτ) in exponential form the integral is separated in two parts

Jq(x) =
i−q

2π

∫ π

0

eix cos τeiqτdτ +
i−q

2π

∫ π

0

eix cos τe−iqτdτ (A.1.16)

if in the second integrand the variable of integration is replaced by −τ it is

easy to show that

Jq(x) =
i−q

2π

∫ π

−π

eix cos τeiqτdτ (A.1.17)
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The corresponding integral representation for the Neumann function is

Yq(x) =
1

π

∫ π

0

sin(x sin τ − qτ)dτ − 1

π

∫ ∞

0

[
eqt + (−1)qe−qt

]
e−x sinh tdt

(A.1.18)

It can be shown that with the above relation Hankel functions are [MA]

Hq(x) =
1

πi
lim
ε→∞

∫ ε+πi

−ε

ex sinh te−qtdt (A.1.19)

replacing t = i(π/2− τ) the above expression will be

Hq(x) =
i−q

π
lim
ε→∞

∫ −iε+π/2

iε−π/2

eix cos τeiqτdτ (A.1.20)

This expression can be used to obtain an integral representation of a

general Hankel wave

Hq(kr)e
iqθ =

i−q

π
lim
ε→∞

∫ −iε+π/2

iε−π/2

eikr cos τeiq(τ+θ)dτ

=
i−q

π
lim
ε→∞

∫ −iε+π/2+θ

iε−π/2+θ

eikr cos(τ−θ)eiqτdτ (A.1.21)

The presence in the integration limits of the variable θ can be deleted

taken a different path of integration. It can be shown by means of Cauchy’s

that the above integral is equivalent to

Hq(kr)e
iqθ =

i−q

π

∫

C

eikτ ·reiqτdτ (A.1.22)

where kτ = k(cos τ, sin τ) and C is a path from z0 = i∞ − π/2 to zf =

−i∞ + π/2 if cos θ ≥ 0 and from z0 = i∞ + π/2 to zf = −i∞ + 3π/2 if

cos θ ≤ 0.

This last expression will be especially useful when analyzing the response

of the infinite line of cylinders.
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Figure A.1: Angle and distance definitions for Graf’s addition theorem.

A.2 Addition Theorem

A.2.1 Two Dimensional Case

Graf’s addition theorem allows change the reference frame of the Bessel func-

tions. The theorem asserts that

Υs(w)eisθwu =
∑

q

Υs+q(u)Jq(v)e
iqθuv , v < u (A.2.1)

where Υr(·) can be both a Bessel or a Hankel function and the quantities

u, v, w, θwu and θuv are defined in figure A.1

In the multiple scattering derivation of section 3.1 the objective is to

express the quantity

Hs(krβ)eisθβ (A.2.2)

in the reference frame of the cylinder α. From the multiple scattering geom-

etry of figure 3.1 it is clear that the triangle involved in the change is the

triangle defined by the vectors rα, rβ and Rαβ. It is important to relate this

triangle with the triangle ûvw.
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Figure A.2: Figure of section 3.1

It is obvious from figure A.2 that w = rβ, because is the variable of the

function to be expanded. Because this change of reference frame is necessary

to apply boundary conditions, in the new frame rα will be equal to the

cylinder radius, and then it will be always smaller than Rαβ, that is

rα < Rαβ (A.2.3)

so it is possible to identify v = rα and u = Rαβ. The angle θwu is then the

angle between the rβ and Rαβ segments, which is Φβα−θβ. Finally, the angle

θuv is then the angle between the rα and Rαβ segments, that is θuv = θα−Φαβ.

With this assignment Graf’s theorem is

Hs(krβ)eisΦβαe−isθβ =
∑

q

Hs+q(kRαβ)Jq(krα)eiqθαe−iqΦαβ (A.2.4)

or

Hs(krβ)eisθβ = (−1)seisΦβα

∑
q

H−s+q(kRαβ)Jq(krα)eiqθαe−iqΦαβ (A.2.5)

figure 3.1 shows as well that Φβα = π + Φαβ, so that

Hs(krβ)eisθβ =
∑

s

Hq−s(kRαβ)ei(s−q)ΦαβJq(krα)eiqθα (A.2.6)
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A.2.2 Three Dimensional Case

The coefficients for the translation of the spherical wave functions are given

by

g
(h)
lml′m′(R) =

∑
L

(−1)(l−l′−L)/24πClml′m′LMhL(kR)YLM(R) (A.2.7)

with M = m−m′ and

Clml′m′LM =
(−1)m′

√
4π

√
(2l′ + 1)(2l + 1)(2L+ 1)×

(
l l′ L

0 0 0

)(
l l′ L

m −m′ M

)
(A.2.8)

for the linear chain of bubbles Rα = αaẑ, then the spherical harmonic YLM

equals to zero whenever M be diferent fo zero,and is equal to 1 or (−1)L

depending on the sphere being in the positive or negative part of the z

axis.But M = 0 implies m = m′, so that

g
(h)
lml′m(R) =

∑
L

(−1)(l−l′−L)/24πClml′mL0hL(kR)(±)L (A.2.9)

and then we can define

g̃
(h)
lml′m(ka) =

∑

β 6=0

g
(h)
lml′m(Rβ) =

∑
L

(1 + (−1))L(−1)(l−l′−L)/24πClml′mL0SL(ka)

(A.2.10)

it is clear that only the odd values of L contributes to the sum, so that

g̃
(h)
lml′m(ka) = 8π(−1)(l−l′)/2

|l+l′|/2∑

n=|l−l′|/2

(−1)nClml′m(2n)0S2n(ka) (A.2.11)



154 Bessel Functions

A.3 Lattice Sums

A.3.1 Lattice Sums for the Linear Array of Cylinders

Complete Lattice Sums

When studying the transmission and reflection of sound waves by infinite

slabs the following quantity appears in several situations

Sc
q(ka, sin θ0, r,Rl) =

∞∑
α=−∞

eiαka sin θ0Hq(kr
l
α)eiqθl

α (A.3.1)

where from figure A.3 it is clear that

rl
α = r −Rl −Rl

α (A.3.2)

note that the vector Rl
α is simply the position vector of the α-cylinder relative

to the origin in the infinite line, that is

Rl
α = aαŷ (A.3.3)

then

rl
α = r −Rl − aαŷ (A.3.4)

this sums converges very slowly, so that for practical computation another

expression must be found. But the interest of find another expression is not

only for numerical purposes but for understand the physical meaning of the

sum.

The derivation will use the integral representation of Hankel functions

given in (A.1.22)

eiαka sin θ0Hq(kr
l
α)eiqθl

α =
i−q

π

∫

C

eikτ ·rl
αeiαka sin θ0eiqτdτ (A.3.5)

where the integration path C is a line from z0 = −i∞ + π/2 + (π) to zf =

i∞−π/2+ (π) if xl
α = x−xl > 0(< 0). Note that the phase factor eiαka sin θ0

can be introduced in the integrand.

The argument of the exponential function in the integrand can be ex-

pressed as

kτ · rl
α = kτ · (r −Rl)− αka sin τ (A.3.6)
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Figure A.3: Geometry of the infinite line
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so that

eiαka sin θ0Hq(kr
l
α)eiqθl

α =
i−q

π

∫

C

eikτ ·(r−Rl)eiαka(sin θ0−sin τ)eiqτdτ (A.3.7)

When performing the sum in α the integral and the sum operators com-

mutes, then the sum operator will act only in the exponential factor depen-

dent on α,

∞∑
α=−∞

eiαka sin θ0Hq(kr
l
α)eiqθl

α =
i−q

π

∫

C

eikτ ·(r−Rl)

∞∑
α=−∞

eiαka(sin θ0−sin τ)eiqτdτ

(A.3.8)

The infinite series in the integrand can be expressed as a Dirac comb

∞∑
ν=−∞

δ(t− νT ) =
1

T

∞∑
α=−∞

e2παt/T (A.3.9)

then

∞∑
α=−∞

eiαka(sin θ0−sin τ) =
2π

ka

∞∑
ν=−∞

δ(sin θ0 − sin τ − 2πν

ka
) (A.3.10)

in order to use the Dirac delta properties it is necessary to convert the integral

in the complex plane in an integral in the range (−∞,∞). To do that, the

change

sin τ = t dτ = ± dt√
1− t2

(A.3.11)

has to be made. The ± sign comes from the square root in the denominator.

This sign is positive (negative) when x− xl is positive (negative). With this

change of variable, when τ → −i∞+ π/2, which means that x− xl > 0, the

variable t goes to

lim
τ→−i∞+π/2

t = lim
ε→∞

eiπ/2eε − e−iπ/2e−ε

2i
= ∞ (A.3.12)

and for the lower limit

lim
τ→i∞−π/2

t = lim
ε→∞

e−iπ/2e−ε − eiπ/2eε

2i
= −∞ (A.3.13)

When x − xl < 0 the limits of integration in the complex plane have

to be displaced a quantity π in the real axis. In this case the limits of the
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new variable t change to (∞,−∞), but the square root in (A.3.11) takes

a negative sign, then it is possible to exchange the integration limits. The

result is that the in both situations the integral takes the same form.

Once this change has been made, the integral is along the real axis and

in the interval (−∞,∞)

∞∑
α=−∞

eiαka sin θ0Hq(kr
l
α)eiqθl

α =

2i−q

ka

∞∑
ν=−∞

∫ ∞

−∞
eik±t ·(r−Rl)δ(sin θ0 − t− 2πν

ka
)eiqτ(t) dt√

1− t2
(A.3.14)

The vector k±t is a function of the parameter t of the form

k±t = k(cos τ, sin τ) = k(±
√

1− t2, t) (A.3.15)

where the sign ± is, as explained before, the same of x − xl. In the same

way, the quantity eiqτ(t) is

eiqτ(t) = [cos τ + i sin τ ]q =
[
±
√

1− t2 + it
]q

(A.3.16)

The presence of the Dirac delta function in the integrand makes it possible

to integrate the function, yielding

Sc
q(ka, sin θ0, r,Rl) =

∞∑
α=−∞

eiαka sin θ0Hq(kr
l
α)eiqθl

α =
2i−q

ka

∞∑
ν=−∞

eiqτν

| cos τν |e
ik±ν ·(r−Rl) (A.3.17)

where the complex angle τν is defined from

sin τν = sin θ0 +
2πν

ka
, ν = 0,±1,±2, · · · (A.3.18a)

cos τν = ±
√

1− sin2 τν (A.3.18b)

Incomplete Lattice Sums

The incomplete lattice sum is defined as

Si
q(ka, sin θ0) =

∞∑
α=1

eiαka sin θ0Hq(αka) (A.3.19)
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now the integral form of Hankel function given by equation A.1.20 will be

used

Hq(x) =
i−q

π
lim
ε→∞

∫ −iε+π/2

iε−π/2

eix cos τeiqτdτ (A.3.20)

If the following change of variable is performed

sin τ = e−iπ/4t dτ =
e−iπ/4dt√

1 + it2
(A.3.21)

the lattice sum will be

Si
q(ka, sin θ0) =

∞∑
α=1

i−qe−iπ/4

π

∫ ∞

−∞
eiαka

√
1+it2eiαka sin θ0

[√
1 + it2 + ite−iπ/4

]q

√
1 + it2

dt

(A.3.22)

the sum commutes again with the integral operator and will be expressed as

lim
M→∞

M∑
α=1

eiαka
√

1+it2eiαka sin θ0 =

lim
M→∞

eika
√

1+it2eika sin θ0
1− eiMka

√
1+it2eiMka sin θ0

1− eika
√

1+it2eika sin θ0
(A.3.23)

It is easy to show that

lim
M→∞

eiMka
√

1+it2 = 0 (A.3.24)

for that, note that the number z = 1+ it2 has its imaginary part positive, so

that this number can be put in the form z = reiθ, where θ ∈ [0, π]. It means

that the number
√

1 + it2 can be expressed in the form

√
1 + it2 = r1/2(cos(θ/2) + i sin(θ/2)) (A.3.25)

then

lim
M→∞

eiMka
√

1+it2 = lim
M→∞

eiMkar1/2 cos(θ/2)e−Mkar1/2 sin(θ/2) = 0 (A.3.26)

due to the fact that sin(θ/2) is always positive.
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Then the final form for the lattice sum is

Si
q(ka, sin θ0) =

i−qe−iπ/4eika sin θ0

π

∫ ∞

−∞

eika
√

1+it2
[√

1 + it2 + ite−iπ/4
]q

√
1 + it2

[
1− eika

√
1+it2eika sin θ0

]dt (A.3.27)

The above expression can be easily computed numerically and is more

suitable for numerical calculations than the direct sum.

Application to the Infinite Slab

With the above result it is possible to calculate the lattice sums appearing

in section 3.2

(Glm)rs ≡
∞∑

β=−∞
(Glm

0β )rse
iβka sin θ0 (A.3.28a)

with (Glm
0β )rs given by equation 3.1.7

(Glm
0β )rs =

∑
q

(1− δ0β)(Tl)rqHq−s(kR
lm
0β )ei(s−q)θlm

0β (A.3.28b)

here (Tl)rq is the T matrix of the cylinders laying along line l, and the vector

R0β is the vector that has its origin in the central cylinder of the line l and

its end in the β cylinder of line m, that is

R0β = Rm −Rl + βaŷ (A.3.29)

when l 6= m the δ0β function is redundant, because the β cylinder of the line

m will never be equal to the 0 cylinder, which here stands for the central

cylinder of line l, then, commuting the sums in q and β

(Glm)rs =
∑

q

(Tl)rq

∞∑

β=−∞
Hq−s(kR

lm
0β )ei(s−q)θlm

0β eiβka sin θ0 (A.3.30)

taken into account that Hq−s(·) = (−1)q−sHs−q(·) the above expression can

be related with the complete lattice sums as

(Glm)rs =
∑

q

(Tl)rq(−1)q−sSc
s−q(ka, sin θ0,Rm,Rl) (A.3.31)
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For the case l = m the delta function implies that the sum in β has to be

taken excluding the β = 0 term

(Gll)rs =
∑

q

(Tl)rq(−1)q−s

∞∑

β=−∞
β 6=0

Hs−q(kR
ll
0β)ei(s−q)θll

0βeiβka sin θ0 (A.3.32)

Note that Rll
0β = βa and θll

0β = ±π/2, where the sign is positive for β positive

and negative for β negative. Then the Hankel function inside the sum can

be transformed

Hs−q(kR
ll
0β)ei(s−q)θll

0β = Hs−q(βka)i
s−q(−1)β/|β| (A.3.33)

and

∞∑

β=−∞
β 6=0

Hs−q(βka)i
s−q(−1)β/|β|eiβka sin θ0 =

is−q

∞∑

β=1

Hs−q(βka)
[
eiβka sin θ0 + (−1)s−qe−iβka sin θ0

]
=

is−q
[
Ss−q(ka, sin θ0) + (−1)s−qSs−q(ka,− sin θ0)

]
(A.3.34)

then the final result is

(Gll)rs =
∑

q

(Tl)rq(−i)q−s
[
Si

s−q(ka, sin θ0) + (−1)s−qSi
s−q(ka,− sin θ0)

]

(A.3.35)

A.3.2 Lattice Sums for the Band Structure

The lattice sums for the band structure are used in the same form that

appear in [NR94], and no demonstration will be given because in this paper

the notation is very similar to the present one. The only incise will be

done is about a mistake that appears there and must be fixed for a correct

convergence of the sums.

Given a lattice defined by the vectors

Rβ = n1a1 + n2a2 (A.3.36)
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and some Bloch wave vector K, the lattice sum is defined as

SH
q (k,K) ≡

∑

β 6=0

Hq(kR0β)eiqθ0βeiK·Rβ (A.3.37)

the following identity is proved in [NR94]

SH
q (k,K) = SJ

q (k,K) + iSY
q (k,K) (A.3.38)

where

SJ
q (k,K) = −δ0q (A.3.39)

and

SJ
q (k,K)Jq+1(kRmin) =

−
[
Y1(kRmin) +

2

πkRmin

]
δ0q

− 4iq
k

Vd

∑

h

Jq+1(GhRmin)

Gh(G2
h − k2)

eiqθh (A.3.40)

where the vector Gh is composed by the addition of the Block wave vector

K and the reciprocal lattice vectors b1 and b2 defined in equations (3.3.18),

that is

Gh = K + h1b1 + h2b2 (A.3.41)

A.3.3 Lattice Sums for the Linear Chain of Spheres

The lattice sum of the linear chain can be expressed in terms of elementary

functions.These lattice sums are

Sl(ka) =
∞∑

α=1

hl(kaα) =

∞∑
α=1

i−l e
ikaα

ikaα

l∑
ν=0

(l + ν)!

ν!(l − ν)!

(
i

2kaα

)ν

=
l∑

ν=0

iν−l−1

2ν

(l + ν)

ν!(l − ν)!
σν(ka) (A.3.42)

so the sum to calculate is

σν(x) =
∞∑

s=1

eixs

sν+1
(A.3.43)
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for ν = 0 and the Taylor series of ln(1 + z) we have

σ0(x) =
∞∑

s=1

eixs

s
= − ln(1− eix) =

i

2
(π − x)− ln |2 sin

x

2
| (A.3.44)

but

ln sin z = ln z +
∞∑

q=1

(−1)q22q−1B2q

q(2q)!
z2q (A.3.45)

then

σ0(x) =
i

2
(π − x)− lnx−

∞∑
q=1

(−1)qB2q

2q(2q)!
x2q (A.3.46)

and it is possible to show that

σν(x) = i

∫ x

0

σν−1(x
′)dx′ +

∞∑
s=1

1

sν+1
(A.3.47)

Defining the operator

Lf(x) ≡ i

∫ x

0

f(x′)dx′ (A.3.48)

we arrive to

σν(x) = Lνσ0(x) +
ν−1∑
µ=0

Lµζ(ν + 1− µ) (A.3.49)

it can be shown that

Lνxµ =
µ!iν

(ν + µ)!
xν+µ (A.3.50)

and that

Lν lnx =
iν

ν!
xν(ln x−

ν∑
µ=1

1

µ
) (A.3.51)

and then we arrive to

σν(x) =
iν

ν!
xν

[
i

2
(π − x/(ν + 1))− lnx+

ν∑
µ=1

1/µ−

∞∑
µ=1

(−1)µν!B2µ

2µ(2µ+ ν)!
x2µ

]

+
ν−1∑
µ=0

iµζ(ν + 1− µ)

µ!
xµ (A.3.52)
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The infinite sum ∞∑
µ=1

(−1)µν!B2µ

2µ(2µ+ ν)!
x2µ (A.3.53)

converges provided that x < 2π ,that is, for x = ka the sum will converge

always that

a < λ (A.3.54)

which is the diffraction limit. In the present work this limit is not taken into

account, so that the previous expression for the lattice sum will be enough

to describe all the phenomenon described here.
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Appendix B

Long wavelength behavior

The homogenization theory developed in the present work is based in the

long wavelength behavior of the scattering properties of the acoustic sys-

tems. Before present the theory it is necessary some mathematical prelimi-

naries, which are the long wavelength behavior of the functions involved in

the scattering and multiple scattering of sound waves by elastic and fluid

cylinders.

B.1 Long wavelength behavior of the T Ma-

trices

B.1.1 The fluid cylinder

The T matrix of a fluid cylinder is given in equation 2.3.8

Tq = − ρqJ
′
q(kRa)− Jq(kRa)

ρqH ′
q(kRa)−Hq(kRa)

(B.1.1)

where

ρq =
ρava

ρbvb

Jq(kaRa)

J ′q(kaRa)
(B.1.2)

In the appendix A the asymptotic expression of the Bessel functions for

small arguments are given. These are the expressions which will be used here

to analyze the long wavelength limit of the T matrix, because when λ→∞
the wavenumber k goes to zero.
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For q = 0, as J ′0(·) = −J1(·), the element ρq when ka → 0 will be

ρ0 = −ρava

ρbvb

J0(kaRa)

J1(kaRa)
≈ −ρava

ρbvb

2

kaRa

(B.1.3)

then the numerator of the T matrix will be

ρav
2
a

ρbv2
b

− 1 (B.1.4)

The denominator of the T matrix is formed by two terms with different

k-dependence in the k → 0 limit. The term ρ0H1(kRa) is proportional to

1/k2, while the term H0(kRa) is proportional to ln kRa, so that the dominant

term will be the first one

ρ0H1(kRa) ≈ ρav
2
a

ρbv2
b

4i

πR2
ak

2
(B.1.5)

then the asymptotic form of the T0 element will be

T0 ≈ iπR2
a

4

[
ρbv

2
b

ρav2
a

− 1

]
k2 (B.1.6)

For q > 0 the element ρq will be

ρq ≈ ρava

ρbvb

kaRa

q
(B.1.7)

and it is easy to verify that the numerator of the T matrix is

ρqJ
′
q(kRa)− Jq(kRa) ≈ kqRq

a

q!2q

[
ρa

ρb

− 1

]
(B.1.8)

while the denominator is

ρqH
′
q(kRa)−Hq(kRa) ≈ i(q − 1)!2q

πkqRq
a

[
ρa

ρb

+ 1

]
(B.1.9)

then the asymptotic form of the Tq elements will be

Tq ≈ iπR2q
a

4q

1

q!(q − 1)!

ρa − ρb

ρa + ρb

k2q (B.1.10)

note that from equation 2.3.8 it is easy to show that

T−q = Tq (B.1.11)

then the asymptotic form is also valid for q < 0 but expressing q in absolute

value.
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B.1.2 The elastic cylinder

For the elastic cylinder the expressions are more complex than for the fluid

one, although the final result, as will be shown, is very similar. The differ-

ence between both types of cylinders is the factor ρq. The corresponding

expression for the elastic cylinder is given in equation (2.4.23)

ρq =
Gq

Iq
(B.1.12)

being Gq

Gq =
2iqµaFq

R2
a

[
Jq(ktRa)− ktRaJ

′
q(ktRa)

]

− k2
l

[
λaJq(klRa)− 2µaJ

′′
q (klRa)

]
(B.1.13)

and Iq

Iq = ρbkc
2
b

[
−klJ

′
q(klRa) +

iq

Ra

FqJq(ktRa)

]
(B.1.14)

the factor Fq appearing in the above equations is

Fq =
2iq

k2
tR

2
a

[
Jq(klRa)− klRaJ

′
q(klRa)

Jq(ktRa) + 2J ′′q (ktRa)

]
(B.1.15)

For the case q = 0 the factor Fq equals to zero, then the factors G0 and

I0 are

G0 ≈ −(λa + µa)k
2
l (B.1.16)

I0 ≈ kρbc
2
bR

2
a

2
k2

l (B.1.17)

and the term ρ0 will be

ρ0 ≈ −λa + µa

ρbc2b

2

kRa

(B.1.18)

Proceeding as in the previous section, the final asymptotic form of the T0

element will be

T0 ≈ iπR2
a

4

[
ρbc

2
b

λa + µa

− 1

]
k2 (B.1.19)

This element is equal to that of the fluid cylinder but defining the fluid-

like bulk modulus as

Ba = λa + µa (B.1.20)



168 Long wavelength behavior

which is the area bulk modulus derived from the elasticity equations in two

dimensions [Tho85].

Due to the presence of the second derivative of the Bessel functions, the

q = 1 case has to be studied independently. For this case, the numerator of

the Fq factor will be, in the long wavelength limit

J1(klRa)−KlRaJ
′
1(klRa) ≈ k3

l R
3
a

8
(B.1.21)

the cubic term k3
l appears due to the cancellation of the first terms in the

Taylor series of J1 − xJ ′1. The denominator has a special form for q = 1

J1(ktRa) + 2J ′′1 (ktRa) = −1

2
J1(ktRa) (B.1.22)

then it is easy to show that for k → 0

F1 ≈ −ic
3
t

c3l
(B.1.23)

Similar terms appear in the quantity Gq for q = 1, leading to

G1 ≈ −1

2
(λa + µa)Rak

3
l (B.1.24)

the factor Iq can be expressed as

I1 =
1

2
ρbc

2
b(c

2
t − c2l )

k2

c3l
(B.1.25)

so that ρq will be

ρ1 =
ρa

ρb

Rak (B.1.26)

this factor has the same form for both the fluid and the elastic cylinder, then

the asymptotic form for the T1 element will be the same as in the fluid case

T1 =
iπR2

a

4

ρa − ρb

ρa + ρb

k2 (B.1.27)

For q > 1, the Fq factor is

Fq ≈ −ic
q
t

cql

[
1 +

k2R2
a

4(q − 1)

(
1

c2t
− 1

c2l

)]
(B.1.28)
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The presence of the Bessel function in the factor Gq induces to think that

the lower order of this factor will be q, but the addition of all the factors

proportionals kq equals to zero, because to order kq

2iqµaFq

R2
a

[
Jq(ktRa)− ktRaJ

′
q(ktRa)

] ≈ − 2µa

(q − 2)!R2
a

[
klRa

2

]q

(B.1.29)

and this term cancels with the other one in Gq, corresponding to the second

derivative of the Bessel function

2µak
2
l J

′′
q (klRa) ≈ 2µa

(q − 2)!R2
a

[
klRa

2

]q

(B.1.30)

so that the lower order of the Gq factor is q + 2. This factor will be divided

by the Iq one, whose lower order again seems to be q + 1 but, as before, this

term cancels and the corresponding one is q + 3, it happens because inside

the brackets in

Iq = ρbkc
2
b

[
−klJ

′
q(klRa) +

iq

Ra

FqJq(ktRa)

]
(B.1.31)

the terms corresponding to kq cancels, so the lower order is q + 2 multiplied

by the factor outside the brackets, resulting in a term of the form ≈ kq+3.

These asymptotic forms makes that the quantity ρq be

ρq = ρ̂q
1

k
(B.1.32)

where ρ̂q is some k-independent quantity. When this expression is placed in

the T matrix, the numerator becomes

ρqJ
′
q(kRa)− Jq(kRa) ≈ ρ̂qJ

′
q(kRa)/k (B.1.33)

and the denominator

ρqH
′
q(kRa)−Hq(kRa) ≈ ρ̂qH

′
q(kRa)/k (B.1.34)

when dividing these two expressions the factor ρ̂q disappears, and with it

all the information about the physical properties of the cylinder, being the

resulting asymptotic form equal to that of the rigid cylinder

Tq ≈ iπR2q
a

4q

1

q!(q − 1)!
k2q (B.1.35)

Then it is obvious that in the limit µa → 0 the fluid cylinder is not

recovered for the elements such that q > 1. To recover the fluid cylinder, the

limit µa → 0 has to be made before the limit k → 0, then the expression for

the ρq factor is the same than that of the fluid cylinder.
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B.1.3 The anisotropic fluid cylinder

For an anisotropic fluid cylinder the elements of the T matrix are defined by

the equation ∑

k

HskTkq = −Jsq (B.1.36)

In the present work, as will be shown later, only the asymptotic form of the

element T00 will be required, so that for q = 0

∑

k

HskTk0 = −Js0 (B.1.37)

but

N0s =
i−s

2π

∫ 2π

0

eisτdτ = δs0 (B.1.38)

M0s = −i
−s

2π
k2R0

2

∫ 2π

0

ρ−1
rr

v2
eisτdτ = −k2 R0

2B0

δ0s (B.1.39)

then

H00 = −1 (B.1.40)

J00 =
iπR2

0

4

[
1

B0

− 1

]
k2 (B.1.41)

and the low order term of the T00 element is

T00 =
iπR2

0

4

[
1

B0

− 1

]
k2 (B.1.42)

if the bulk modulus of the background is different than one

T00 =
iπR2

0

4

[
Bb

B0

− 1

]
k2 (B.1.43)

B.2 Long wavelength behavior of the band

structure

The band structure of a periodic medium is linear in the low frequency limit,

i.e. k → 0(ω → 0). The slope of this line determines the effective speed of
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sound of the equivalent homogeneous medium. The effective speed of sound

is defined then as

ceff = lim
ω→0

ω

|K(ω)| = cb lim
k→0

k

|K(k)| (B.2.1)

where cb is the background speed of sound. To simplify the notation, hereafter

the quantity the relative effective speed of sound will be denoted just by c,

then

c ≡ ceff

cb
= lim

k→0

k

|K(k)| (B.2.2)

To study this limit, it is better to define the frequency-normalized coeffi-

cients Âq such that

Âq ≡ Aqk
−|q|−δ0q (B.2.3)

as we are now interested only in lattice of circular cylinders, the T matrix

becomes now diagonal, then the equation for this normalized coefficients

becomes

Âq − Tq

∑
s

SH
s−qk

|s|+δs0−|q|−δq0Âs = 0 (B.2.4)

and then the matrix M is now

Mqs = δqs − TqS
H
s−qk

|s|+δs0−|q|−δq0 (B.2.5)

As shown in the previous sections, the elements of the T matrix has the same

asymptotic dependence for both the elastic and the fluid cylinder, then the

elements of this matrix can be expressed, in the low frequency limit, as

Tq = T̂qk
2|q|+2δq0 (B.2.6)

where the quantity T̂q is independent of k. In this limit

TqS
H
s−qk

|s|+δs0−|q|−δq0 ≈ iT̂qS
Y
l k

|s|+|q|+δs0+δq0 (B.2.7)

and then the equation for the dispersion relation becomes det M̂ = 0, with

M̂qs = δqs − iT̂q lim
k→0

SY
s−qk

|s|+|q|+δs0+δq0 (B.2.8)

Now will be shown that the above limit can be expressed in terms of the

effective speed of sound, therefore the secular equation for the band structure

will become a secular equation to determine this speed of sound.

The limit needs to be computed in three steps:



172 Long wavelength behavior

• The diagonal terms s = q

• The terms such tat s > q

• The terms such tat s < q

B.2.1 Diagonal terms q = s

To determine the asymptotic form for the diagonal terms

M̂qq = 1− iT̂q lim
k→0

SY
0 k

2|q|+2δq0 (B.2.9)

the asymptotic form of the S0 element must be computed, being

SY
0 k

2|q|+2δq0 =

− 4

Vd

[
k

J1(kRmin)

J1(KRmin)

K(K2 − k2)
+

k

J1(kRmin)

∑

h6=0

J1(GhRmin)

G3
h

]
k2|q|+2δq0

(B.2.10)

Then for this element only the first term will contribute to the matrix, so

that

SY
0 k

2|q|+2δq0 = − 4

Vd

k2|q|+2δq0

K2 − k2
(B.2.11)

only those terms with q = 0,±1 will be different than zero, with the previous

definition of the effective speed of sound these terms are

M̂00 = 1− f

[
Bb

Ba

− 1

]
c2

1− c2
(B.2.12)

M̂11 = 1− f

[
ρa − ρb

ρa + ρb

]
c2

1− c2
= M̂−1−1 (B.2.13)

M̂qq = 1 ; ∀|q| ≥ 2 (B.2.14)

These expressions are valid for both the elastic and the fluid array of cylin-

ders.

B.2.2 s > q terms

To calculate these elements the lattice sum will be split into two separate

terms,

SY
s−qk

|q|+|s|+δq0+δs0 = Sc
s−q + SG

s−q (B.2.15)
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where

Sc
s−q =

− 4

Vd

is−q k

Js−q+1(kRmin)

Js−q+1(KRmin)

K(K2 − k2)
ei(s−q)θ0k|q|+|s|+δq0+δs0 (B.2.16)

and

SG
s−q =

− 4

Vd

is−q k

Js−q+1(kRmin)

∑

h6=0

Js−q+1(GhRmin)

G3
h

ei(s−q)θhk|q|+|s|+δq0+δs0 (B.2.17)

for k → 0 and using the asymptotic expression for the Bessel functions

Sc
s−q = − 4

Vd

is−q k
|q|+|s|+δq0+δs0

cs−q

1

K2 − k2
ei(s−q)θ0 (B.2.18)

and

SG
s−q =

− 4

Vd

is−q2s−q+1(s− q + 1)!
k|q|+|s|+δq0+δs0

ks−qRs−q+1
min

∑

h6=0

Js−q+1(GhRmin)

G3
h

ei(s−q)θh

(B.2.19)

Only those terms with no dependence with k will survive to the limit, that

is, for the factor Sc
s−q 6= f(k) will be required that

|q|+ |s|+ δq0 + δs0 = 2 → (q, s) = (0, 1), (−1, 0), (−1, 1) (B.2.20)

and for the factor SG
s−q 6= f(ω) we will have

|q|+ |s|+ δq0 + δs0 − s+ q = 0 → s > 0, q < 0 (B.2.21)

therefore the contributions to the matrix will be

Sc
s−q = − 4

Vd

i|s|+|q|
c2

c|s|+|q|
1

1− c2
ei(|s|+|q|)θ0 , |qs| ≤ 1, s > q (B.2.22)

and

SG
s−q = − 4

VdR
|s|+|q|+1
min

i|s|+|q|2|s|+|q|+1(|s|+ |q|+ 1)!×
∑

h6=0

J|s|+|q|+1(Gh)

G3
h

ei(|s|+|q|)θh , s > 0, q < 0 (B.2.23)
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and the matrix M̂qs is

M̂qs = δqs − iT̂qS
Y
s−q (B.2.24)

B.2.3 q > s terms

In this case, knowing that SY
s−q = SY

−(q−s) = SY ∗
(q−s), and, by remembering

that iT̂q is a real number, it is found that

M̂qs = δqs − iT̂qS
Y
s−q = δqs − iT̂q(S

Y
q−s)

∗ = δqs − (iT̂qS
Y
q−s)

∗ (B.2.25)

B.2.4 Final form of M̂

In theory the matrix M is a infinite size matrix, but in practice the number

of functions to use are limited to Qmax. Defining the quantity Q as

Q = 2(Qmax − 1) (B.2.26)

The M̂ matrix have the block form

M̂ =

(
A3×3 B3×Q

CQ×3 DQ×Q

)
(B.2.27)

where

A =




1− fη c2

1−c2
ifη c

1−c2
e−iθ fη e−2iθ

1−c2
+ Γ(0)

−ifζ c
1−c2

eiθ 1− fζ c2

1−c2
ifζ c

1−c2
e−iθ

fη e2iθ

1−c2
+ Γ(0)∗ −ifη c

1−c2
eiθ 1− fη c2

1−c2


 (B.2.28)

here has been assumed that the filling fraction f is

f =
πR2

a

Vd

(B.2.29)

and the anisotropy factor has bee defined as

Γ(0) = 48ηf
∑

h6=0

J3(Gh)

G3
hR

3
min

e−2iθh (B.2.30)

the quantity η is

η =
ρa − ρb

ρa + ρb

(B.2.31)
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and

ζ =
Bb

Ba

− 1 (B.2.32)

The matrix D is

D =

(
I Dq>s

Dq<s I

)
(B.2.33)

with

Dq<s|qs ≡ D−qs =

− 8is+q2s−q (s+ q + 1)!

q!(q − 1)!

R
2(q−1)
a

Rs+q+1
min

fηe
∑

h6=0

Js+q+1(GhRmin)

G3
h

ei(s+q)θh (B.2.34)

and

Dq>s|qs ≡ Dq−s = (D−qs)
∗ (B.2.35)

here ηe = η for fluid cylinders and ηe = 1 for elastic cylinders.

For the B and C matrices it is found that

B =




O B1−s

O O

B−1s O


 (B.2.36)

B−1s = 4is+12s(s+ 2)!
fη

Rs+2
min

∑

h6=0

Js+2(GhRmin)

G3
h

ei(s+1)θh (B.2.37)

B1−s = (B−1s)
∗ (B.2.38)

C =

(
O O Cq−1

C−q1 O O

)
(B.2.39)

C−q1 =

− 16iq+12−q (q + 2)!

q!(q − 1)!

R
2(q−1)
0

Rq+2
min

fηe
∑

h6=0

Jq+2(GhRmin)

G3
h

ei(1+|q|)θh (B.2.40)

Cq−1 = (C−q1)
∗ (B.2.41)

Some properties of the matrix elements of BD−1C are necesary to express

them in a more symmetric form. These elements are

BD−1C
∣∣
kl

=
∑

s

∑
q

BksD
−1
sq Cql (B.2.42)
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It is easy to verify, with the definitions of the matrices B and C, that

BD−1C
∣∣
0l

= BD−1C
∣∣
k0

= 0,∀k, l (B.2.43)

and that the diagonal terms are, for k = l = 1

BD−1C
∣∣
11

=
∑

s

∑
q

B1sD
−1
sq Cq1 =

∑
s>1

∑
q>1

B1−sD
−1
−s−qC−q1 (B.2.44)

and for k = l = −1

BD−1C
∣∣
−1−1

=
∑

s

∑
q

B−1sD
−1
sq Cq−1 =

∑
s>1

∑
q>1

B−1sD
−1
sq Cq−1 =

∑
s>1

∑
q>1

B∗
1−sD

−1
sq C

∗
−q1

(B.2.45)

while, from the definition of the D−1 matrix, it is shown that
∑

s

DlsD
−1
sq =

∑
s>0

D−lsD
−1
sq = δlq (B.2.46)

and

∑
s

DlsD
−1
−s−q =

∑
s>0

Dl−sD
−1
−s−q = δl−q =

∑
s>0

D∗
−lsD

−1
−s−q = δ−l−q = δlq (B.2.47)

then it is obvious that

D−1
sq = D−1∗

−s−q (B.2.48)

which implies that

BD−1C
∣∣
11

= BD−1C
∣∣∗
−1−1

≡ ∆′ (B.2.49)

Proceeding in the same way

BD−1C
∣∣
1−1

= BD−1C
∣∣∗
−11

≡ Γ′ (B.2.50)

Therefore, the final form of matrix BD−1C is

BD−1C =




∆′ 0 Γ′

0 0 0

Γ′∗ 0 ∆′∗


 (B.2.51)
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B.3 Long wavelength behavior of the Effec-

tive T Matrix

For the effective T matrix defined in equation (4.1.9),

T eff
pt =

∑

α,β

∑
q,r,s

Jp−q(kRα)e(q−p)Φα(M−1
αβ )qr(Tβ)rsJt−s(kRβ)ei(t−s)Φβ (B.3.1)

the lower order terms can be obtained from the dominant terms of each of the

four elements which form it. The asymptotic form of the first term containing

Bessel functions is simply

Jp−q(kRα)ei(q−p)Φα ≈ (Ĵα)pqk
|p−q| (B.3.2)

being

(Ĵα)pq ≡
σp−q

p−q

|p− q|!
[
Rα

2

]|p−q|
ei(q−p)Φα (B.3.3)

the sign function σm
n is defined as follows

σm
n =

{
1 if n ≥ 0

(−1)m if n < 0
(B.3.4)

the above result is valid for the other term appearing in the expression for

T eff, but now note the difference in the phase factor

Jt−s(kRβ)ei(s−t)Φβ ≈ (Ĵβ)∗tsk
|t−s| (B.3.5)

Here all the cylinders of the cluster are circular and identical, only in

chapter 6 will be considered the case of different cylinders, therefore from

now on the matrix (Tβ)rs will be simply Trδrs, being the asymptotic form

Tr ≈ T̂rk
2|r|+2δr0 (B.3.6)

the quantity T̂r depends, as explained in sections B.1.1 and B.1.2 , on the

type of cylinder (elastic or fluid).

The asymptotic form of the matrix (M−1
αβ )qr is more complex, because

there is no an explicit form for this matrix, but can be obtained from its

definition
∑

r

M−1
qr Mrs = δqsI (B.3.7a)

∑
r

MqrM
−1
rs = δqsI (B.3.7b)
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where the greek subindex has been omitted because is not relevant in the

following discussion.

The asymptotic form of the M matrix is

Mrs = δrsI − Ĝrsk
2|r|+2δr0−|r−s| (B.3.8)

where

(Ĝαβ)rs = T̂rσ
r−s
r−s(|r−s|−1)!

1

iπ

[
2

rαβ

]|r−s|
ei(s−r)θαβ(1−δrs)(1−δαβ) (B.3.9)

the term δrs appears because when r = s, the asymptotic form of G matrix

has a factor of the form≈ Ik2 ln k, which is lower than the factor I. With this

definition, multiplying equations B.3.7a and B.3.7b by k|s|−|q| and defining a

new matrix

M̂−1
qr ≡ M−1

qr k
−|q|+|r| (B.3.10)

equations (B.3.7a) and (B.3.7b) take the form

∑
r

M̂−1
qr

[
δrsI − Ĝrsk

|r|+|s|+2δr0−|r−s|
]

= δqsI (B.3.11a)

∑
r

[
δqrI − Ĝqrk

|q|+|r|+2δq0−|q−r|
]
M̂−1

rs = δqsI (B.3.11b)

in these equations k appears rised to a number which is always bigger than

or equal to zero, so when k → 0 all terms will disappear except those which

k be rised to zero, so the inverse of the matrix

M̂qs =

{
δqsI − Ĝqs if qs ≤ 0 ∧ q 6= 0

δqsI if qs > 0 ∨ q = 0
(B.3.12)

is the matrix M̂−1
qr . Note that both the matrix M̂qs and M̂−1

qr are indepen-

dent of k and then

M−1
qr = M̂−1

qr k
|q|−|r| (B.3.13)

is the asymptotic form of the matrix M−1.

Finally, the asymptotic form of the effective T matrix is

T eff
pt =

∑

α,β

∑
r,q

(Ĵα)pq(M̂
−1
αβ )qrT̂r(Ĵβ)∗trk

|p−q|k|q|−|r|k2|r|+2δr0+|t−r| (B.3.14)
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the lower oder terms of this equations will be those which |p−q|+|q| = |p| and

|r|+ |t−r|+2δr0 = |t|+2δt0, these conditions limits the possible values which

can take r and q in the definition of T̃pt. These values defines, respectively,

the sets R and Q, then

T eff
pt = T̂ eff

pt k
|p|+|t|+2δt0 (B.3.15)

where

T̂ eff
pt =

∑
r,q∈R,Q

∑

α,β

(Ĵα)pq(M̂
−1
αβ )qrT̂r(Ĵβ)∗tr (B.3.16)
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Publications

C.1 International Journals

1. Daniel Torrent, Andreas H̊akansson, Francisco Cervera, and José Sánchez-

Dehesa. Homogenization of two-dimensional clusters of rigid rods in

air. Physical Review Letters, 96(20):204302, 2006.

2. Daniel Torrent and José Sánchez-Dehesa. Effective parameters of clus-

ters of cylinders embedded in a nonviscous fluid or gas. Physical Review

B (Condensed Matter and Materials Physics), 74(22):224305, 2006.

3. Daniel Torrent and José Sánchez-Dehesa. Evidence of two-dimensional

magic clusters in the scattering of sound. Physical review. B, Con-

densed matter and materials physics, 75(24):241404–, 2007.

4. Andreas Hk̊ansson, Daniel Torrent, Francisco Cervera, and José Sánchez-

Dehesa. Directional acoustic source by scattering acoustical elements.

Applied physics letters, 90(22):224107–, 2007.

5. Daniel Torrent and José Sánchez-Dehesa. Acoustic metamaterials for

new two-dimensional sonic devices. New Journal of Physics, 9(9):323,

2007.

6. Daniel Torrent and José Sánchez-Dehesa. Anisotropic mass density by

two-dimensional acoustic metamaterials. New Journal of Physics, 10,

2008.
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7. Daniel Torrent and José Sánchez-Dehesa. Acoustic Cloaking in two

dimensions: a feasible approach. New Journal of Physics, (Accepted,

to be published in June 2008).

C.2 International Meetings and Conferences

1. Daniel Torrent, Andreas H̊akakansson and José Sánchez-Dehesa. Sound

attenuation by lattices of rigid elliptic cylinders. 149th Meeting Acous-

tical Society of America, Vancouver (Canada),2005.

2. Daniel Torrent and José Sánchez-Dehesa. Effective parameters of peri-

odic and random distributions of rigid cylinders in air. 152nd Meeting

Acoustical Society of America, Honolulu (Hawaii), 2006.

3. José Sánchez-Dehesa, Helios Sanchis-Alepuz, Yuri A. Kosevich and

Daniel Torrent. Acoustic analogue of electronic Bloch oscillations and

Zener tunneling. 152nd Meeting Acoustical Society of America, Hon-

olulu (Hawaii), 2006.

4. Francisco Cervera, Daniel Torrent, Suitberto Cabrera, José Sánchez-

Dehesa. Acoustical properties of two-dimensional sonic crystals. 152nd

Meeting Acoustical Society of America, Honolulu (Hawaii), 2006.

5. José Sánchez-Dehesa, Yuri A. Kosevich and Daniel Torrent. Theoret-

ical prediction of super-radiant modes in ideal and distorted hexagonal

clusters of twodimensional. 151st Meeting Acoustical Society of Amer-

ica, Rhode Island, 2006.

6. Daniel Torrent, Andreas H̊akansson, Francisco Cervera, and José Sánchez-

Dehesa. Homogenization of two-dimensional clusters of rigid rods in

air. 151st Meeting Acoustical Society of America, Rhode Island, 2006.

7. José Sánchez-Dehesa and Daniel Torrent. Homogenization of Sonic

Crystals: Results and Applications. III International Physics Congress.

30th Anniversary Department for Physics Research, Hermosillo, Mex-

ico,2007. (Invited Talk)
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8. Daniel Torrent, Andreas H̊akakansson, Francisco Cervera and José Sánchez-

Dehesa. Homogenization of two-dimensional fluid-fluid and solid-fluid

composites. International Congress on Ultrasonics 2007, Vienna, 2007.

9. Helios Sanchis-Alepuz, Daniel Torrent, Francisco Cervera and José

Sánchez-Dehesa. Acoustic Bloch oscillations and Zener tunneling in

sonic superlattices. International Congress on Ultrasonics 2007, Vi-

enna, 2007.

10. José Sánchez-Dehesa and Daniel Torrent Homogenization of Two-

Dimensional Clusters of Cylinders Embedded in Fluid and Gases. 9th

US National Congress on Computational Mechanics, San Francisco,

USA, 2007.(Invited Talk)

11. José Sánchez-Dehesa and Daniel Torrent A gradient index sonic lens

based on acoustic metamaterials. 154th Meeting Acoustical Society of

America, New Orleans, Louisiana (USA), 2007.

12. Daniel Torrent and José Sánchez-Dehesa Anisotropic dynamical mass

density by two-dimensional arrays of solid cilinders in air. 154th Meet-

ing Acoustical Society of America, New Orleans, Louisiana (USA),
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[TSD07] Daniel Torrent and José Sánchez-Dehesa. Acoustic metama-

terials for new two-dimensional sonic devices. New journal of

physics, 9(9):323, 2007.

[TSD08] Daniel Torrent and José Sánchez-Dehesa. Anisotropic mass den-

sity by two-dimensional acoustic metamaterials. New journal of

physics, 10, 2008.

[W78] March E W. Gradient Index Optics. New York: Academic,

1978.

[XSK+07] J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen,

S.-Y. Lin, W. Liu, and J. A. Smart. Optical thin-film materials

with low refractive index for broadband elimination of Fresnel

reflection. Nature Photonics, Volume 1, Issue 3, pp. 176-179

(2007)., 1:176–179, March 2007.

[YA98] Zhen Ye and Alberto Alvarez. Acoustic localization in bubbly

liquid media. Phys. Rev. Lett., 80(16):3503–3506, Apr 1998.

[ZL04] X. Zhang and Z. Liu. Negative refraction of acoustic waves

in two-dimensional phononic crystals. Applied Physics Letters,

85:341–+, July 2004.



Printed with LATEX


