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RESUMEN 
 

La anguila europea es una especie de gran importancia comercial en la 

acuicultura europea, pero el dramático descenso de las poblaciones naturales ha 

provocado la inclusión de esta especie en la lista CITES (convención del 

comercio internacional de especies en peligro de la fauna y flora salvaje). 

Considerando esta situación, se hace necesaria más investigación en el control 

reproductivo. 

El presente documento contiene 5 estudios que se pueden dividir en dos 

partes principales: la primera, una descripción del proceso de la maduración 

artificial de la anguila, seguida por una segunda parte centrada en el de 

desarrollo de técnicas para la evaluación de la calidad espermática, y la 

conservación del esperma. 

Una vez fijado el tratamiento hormonal en anteriores estudios, nosotros 

hemos estudiado la evolución de la calidad espermática a lo largo del periodo de 

espermiación, tratando de determinar las semanas con mayor porcentaje de 

muestras con alta calidad espermática. Para la evaluación de la calidad 

espermática los parámetros analizados fueron los siguientes: porcentaje de 

células vivas, motilidad, y morfometría de la cabeza del espermatozoide. El 

porcentaje de células vivas fue medido poniendo a punto técnicas de tinción 

fluorescentes, mientras que la medida del tamaño de la cabeza fue llevado a 

cabo por un programa informático (sistema ASMA), pero este análisis presentó 

problemas debido a la especial forma de la cabeza del espermatozoide de esta 

especie. Para validar esta técnica fue necesario comparar los resultados 

obtenidos por el sistema ASMA con los obtenidos por el microscopio electrónico 

de barrido. 

Distintos machos que recibieron el mismo tratamiento hormonal 

mostraron diferentes respuestas en cuanto al nivel de desarrollo gonadal y 

calidad espermática. Para entender qué factores podían influir en en estos 

factores, se realizó por primera vez la descripción de la maduración de machos 

de anguila europea, analizando la expresión de GnRHs y gonadotropinas, los 

niveles plasmáticos de 11-KT, los parámetros morfométricos y la calidad 

espermática en relación con el estado de desarrollo de la gónada. 



Para completar el trabajo, se desarrollaron nuevas técnicas para el 

almacenamiento a corto y largo plazo de esperma de anguila europea. Hemos 

diseñado un medio que conserva el esperma fresco durante varios días, además 

de un medio para la crioconservación del esperma inmerso en nitrógeno líquido. 

 



ABSTRACT 
 

European eel is an important commercial fish in the European 

aquaculture, but the dramatic decrease in natural populations has caused the 

incorporation of this species in the CITES list (convention on the international 

trade in endangered species of wild fauna and flora). Considering this situation, 

more research on the eel reproductive control is necessary. 

The present document contains 5 studies that can be divided in two 

principal parts: first, a description of the artificial eel maturation process, followed 

by a second part with the development of techniques for the sperm quality 

evaluation and sperm conservation.  

Once the optimal hormonal treatment was fixed in previous studies, we 

studied the evolution of the sperm quality through the spermiation period, trying to 

determine the weeks with higher percentage of samples with high quality sperm. 

To evaluate the sperm quality the following parameters were analyzed: 

percentage of live cells, motility and spermatozoa head morphometry. The 

percentage of live cells was measured by fluorescent staining techniques, while 

the measurement of head size was performed using a computer program (ASMA 

system), but this analysis presented problems due to the special spermatozoa 

head shape. To validate this technique it was necessary to compare the results 

obtained by ASMA system with those obtained by scanning electron microscopy. 

Males receiving the same hormonal treatment show different individual 

responses in terms of gonad development and sperm quality. To understand 

which factors can influence in the gonad maturation and the sperm quality we 

made the first description of European eel male maturation process analyzing 

GnRHs and gonadotropin expression, 11-KT plasma levels, morphometric 

parameters and sperm quality in relation with the testis stage of development.  

To complete this work, new techniques for the short- and long-term 

storage of European eel sperm were developed. We have designed one medium 

that preserves the fresh sperm during several days, as well as a new method to 

cryopreserve the sperm immersed in liquid nitrogen. 



RESUM 
 

L’anguila europea és una espècie de gran importància comercial en la 

acuicultura europea, però el dramàtic descens de les poblacions naturals ha 

provocat la inclusió d’aquesta espècie en la llista CITES (convenció del comerci 

internacional d’especies en perill de la fauna i flora). Considernat aquesta 

situació, es fa necessària més investigació en el control reproductiu. 

El present document contén 5 estudis que es poden dividir en dos parts 

principals: la primera es una descripció del procés de maduració artificial de 

l’anguila, correguda per una segona part centrada en el desenvolupament de les 

técniques per a la evaluación de la calitat espermática, i la conservació de 

l’esperma. 

Una volta fixat el tractament hormonal en anteriors estudis, nosaltres vam 

estudiar l’evolució de la qualitat espermàtica a llarg del periode d’espermiació, 

tractant de determinar les setmanes amb major porcentage de mostres amb alta 

qualitat espermàtica. Per a l’evaluació de la qualitat espermàtica els paràmetres 

analizats foren els següents: percentatge de cèl.lules vives, motilitat i 

morfometria del cap de l’espermatozoide. El percentatge de cèl.lules vives siguí 

mesurat ficant a punt tècniques de tinció fluorescent, mentres que la mesura de 

la grandària del cap va ser feta per un program informàtic (sistema ASMA), però 

aquest anàlisi va presentar problemes a causa de l’especial forma del cap de 

l’espermatozoide d’aquesta espècie. Per a validar aquesta tècnica va ser 

necessari comparar els resultats obtenguts pel sistema ASMA amb els obtenguts 

per mitja del microscopi electrònic d'escombrat. 

Differents mascles que reberen un mateix tractament hormonal mostraren 

diferents respostes en quant al nivell de desenvolupament gonadal i de qualitat 

espermàtica. Per entendre quins factors poden influir en la maduració gondal i la 

qualitat espermática, es va fer la primera descripción de la maduració en mascles 

de anguila euroepa, analizant l’expressió de GnRHs i gonadotropinas, els nivells 

plasmàtics de 11-KT, els paràmetres morfomètrics i la qualitat espermàtica en 

relació amb l’estat de desenvolupament de la gònada. 

Per a completar el treball, foren desenvolupades noves tècniques per al 

emmagatzematge a curt i llarg termini d’esperma d’anguila europea. Nosaltres 

hem disenyat un medi que conserve l’esperma fresc durant diversos dies, al 



mateix temps que un medi per a la conservació de l’esperma inmers en nitrògen 

líquid. 
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1.1 EUROPEAN EEL BIOLOGY 

The European eel (Anguilla anguilla, L. 1758) is classified in the 

subdivision elopomorpha, a group that appeared in early evolution of teleosts. 

The genus Anguilla is composed by 15 species (Watanabe, 2003). The 

geographic ranges of some representative species are as follows: A. marmorata, 

which lives in tropical regions of the Indian and Pacific Oceans; A. mossambica, 

in the eastern coast of Africa; A. japonica, in the eastern coast of the Eurasian 

Continent; A. anguilla, in the western and eastern coasts of the Eurasian 

Continent; A. rostrata, in the eastern coast of North America; A. reinhardti, in the 

eastern coast of Australia; A. australis australis, in the south-eastern Australia; A. 

celebesensis, in the Sulawesi Island region (Fig. 1.1). 

 

 

  

Figure 1.1. Distribution of eel in the world (Aoyama 

and Tsukamoto, 1997). 

 

 

Their catadromous life history strategy is special, spending most of their 

lives in freshwaters, until their long migration to the seawater spawning regions 

(Fig. 1.2). 
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Figure 1.2 Life cycle of Anguilla anguilla. 
 

The mystery has been always linked with the eel biological cycle. In 1856 

a new fish from the Strait of Messina was discovered, and named Leptocephalus 

brevirostris (Kaup). Forty years later the Italians, Grassi and Calandruccio (Grassi 

1986), discovered that this fish was a larvae of the river eel. Taking as basis 

these discoveries, in the 1960’s, Tucker (1959) and d’Ancona (1960) 

hypothesized that eel spawning areas could be located in the Mediterranean, 

close to the Strait of Messina. Schmidt (1912a, 1922, 1925) performed large 

number of explorations from the Mediterranean to south-east of the Bermudas. In 

the spawning area never parental eels or eggs were observed. However larvae 

with 5 millimetres in length around Sargasso Sea were captured. Taking as basis 

these studies the panmixia theory was proposed, in which the eel distributed in 

Europe belongs to a completely homogeneous population, with a single spawning 

location. Recent molecular works studies indicated that this theory can be 

overstatement (Daemen et al., 2001; Wirth and Bernatchez, 2001; Maes and 

Volckaert, 2002), getting strength the theory that the eel population is a genetic 

mosaic consisting of several groups (Van Ginneken and Maes, 2005). 

The eel larvae, named leptocephali (Fig. 1.3) return to European waters 

from Sargasso Sea helped by the Gulf Stream and active swimming. The 

duration of this travel is less than one year (Lecomte-Finiger, 1994). When they 

arrive near to the coast (continental shelf), before to entry in the rivers the 

leptocephali suffer metamorphosis into glass eels (Lecomte-Finiger, 1994; 
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McCleave et al., 1998; Pérez et al., 2004). Once in the feeding habitat, the eels 

can spend long time in, depending of sex: 5-8 years the males and 8-20 years 

the females. The sex determination occurs when the size is around 30 

centimetres, but it can be influenced by density or environmental factors; for 

example high densities provide higher proportion of males (Bark et al., 2005). 

Under unclear environmental conditions, pubertal eels return to the sea to 

perform the reproductive migration. 

 

 

Figure 1.3. Example of leptocephali (Tanaka 

et al., 2001) 
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1.2 PHYSIOLOGYCAL DESCRIPTION OF EEL MATURATION  

1.2.1 Gonadotropin releasing hormone (GnRH) 

In teleosts, the control of reproduction by the brain-pituitary-gonad (BPG) 

axis is well established (Fig. 1.4).  

 

 
Figure 1.4. Brain–pituitary-gonad axis in teleosts 

 

A hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), is 

the physiological stimulator of gonadotropin release, acting on the pituitary gland 

(Amoss et al., 1971; Matsuo et al., 1971). Twelve different GnRH molecular forms 

have been characterized from vertebrates and two from a protochordate, usually 

named as the species in which they have been characterized (Powell et al., 1996; 

Jimenez-Linan et al., 1997). Recently, another clasification was proposed to 

define the different GnRHs. All the forms that are expressed in the hipothalamus 

and preoptic area were named GnRH I, chicken GnRH-II was named GnRH II 

and salmon GnRH changed to GnRH III (Fernald and White, 1999). The structure 

of all prepro-GnRH genes consists in four exons separated by three introns 

(Sherwood et al., 1997; Suetake and Aida, 1997; White and Fermald, 1998; 

White et al., 1998), and the different variants are synthesized by splicing during 

transcription process. The brain of teleosts contains at least two GnRH variants, 
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but in more evolved teleosts usually there are synthesized three GnRH variants: 

sGnRH, sbGnRH and cGnRH-II (Powell et al., 1994; White et al., 1995; 

Senthilkumaran et al., 1999; Lethimonier et al., 2004). The presence of two 

GnRH variants (sGnRH; cGnRH-II) in the brain of a single teleost was first 

demostrated in goldfish (Yu et al., 1988), while gilthead seabream was the first 

species where were described three GnRH variants in teleosts (Powell et al., 

1994). GnRHs distribution is not homogenous in the brain. In Masu salmon (with 

two variants) sGnRH is found in the anterior ventral brain, and cGnRH-II in the 

midbrain (Amano et al., 1991). In Sparus aurata, with three GnRH variants, 

sGnRH is synthesized in the olfatory bulbs, sbGnRH in the preoptic area and 

cGnRH-II in the diencephalon-mesencephalon (Gothilf et al., 1996; White and 

Fernald, 1998). 

The principal function of GnRH is the release of gonadotropic, although 

this effect may partially depend on specific physiological conditions (Marchant et 

al., 1989; Le Gac et al., 1993; Lin et al., 1993; Blaise et al., 1995, 1997; Melamed 

et al., 1995, 1998). For example in immature rainbow trout GnRH can stimulate 

FSHβ but not LHβ expression, while in pituitaries of mature fish the reverse 

occurs (Kawauchi et al., 1989).  

In other hand, different studies have been performed to know the possible 

specific function for each GnRH variant. Usually, the levels of sbGnRH are higher 

in the mature fish, and it is considered that this form can be responsible of the 

gonadotropin release (Powell et al., 1994; Holland et al., 1998, Rodríguez et al., 

2000, 2004; González-Martinez et al., 2002). Both cGnRH and sGnRH seem to 

be responsibles of the behaviour or in several neuronal functions (Zohar et al., 

1995; Fernald and White, 1999). In Masu salmon, it has been reported the 

sGnRH as the responsible of gonadotropin release (Amano et al., 1997). 

In European eel the distribution of GnRHs in the brain has been studied 

(Dufour et al., 1993; Montero et al., 1994), finding higher cGnRH-II concentration 

in di-/mesencephalon and met-/myelencephalon, while higher mGnRH 

concentrations were registered in the pituitary, olfactory bulbs, telencephalon and 

di- /mesencephalon (Fig. 1.5). The mGnRH localization in the eel brain is related 

to the sGnRH sytem of the Masu Salmon (Amano et al., 1991), to the mGnRH 

system of the amphibian brain (Muske, 1993) and to the cGnRH-I system in the 
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avian brain (Millam et al., 1993). cGnRH-II in eel is found principally in the 

midbrain, as in the rest of teleosts. 

 
Figure 1.5. Principal parts of the brain in 

European eel (Weltzien et al., 2005b). 

 

When GnRH expression was analyzed in European eel females, an 

opposite regulation was observed in mGnRH and cGnRH-II expression, 

registering a significant mGnRH increase in matured eels, and the opposite for 

cGnRH-II (Dufour et al., 1993; Montero et al., 1993). mGnRH is considered as 

the responsible of gonadotropin release in European eel (Dufour et al., 1993; 

Montero et al., 1994), although it has been reported that it could stimulate the 

motor activity (previous step to the reproductive migration; Dufour et al., 1991). In 

Japanese eel, mGnRH was localized in a diversity of body tissues, while cGnRH-

II expression was found in olfactory epithelium, brain, pituitary and gonad (Okubo 

et al., 1999a,b, 2002). The widespread expression of mGnRH could be due to a 

physiological function in an autocrine or paracrine manner, besides its paper in 

the synthesis and release of gonadotropins (Okubo et al., 1999a). In contrast, the 

cGnRH-II is limited to a few tissues, being its function unknown. Its presence in 

olfactory epithelium suggests that could be involved in pathways correlated with 

enviromental changes or that it can play a role in the control of sexual behaviour 

(Muske, 1993; King and Millar, 1995). In other hand, the observation of cGnRH-II 

fibers in the neurohypophysis of the European eel, indicates that cGnRH-II 

should have a role in the gonadotropin release. 

cGnRH-II is present in all vertebrates (Dellovade et al., 1993). In primitive 

gnathostomes all the basic functions are ascribed to GnRH, but the evolution 

have reduced its role, losing its hypophysiotropic function in birds and mammals. 

In the eel, cGnRH-II represents an intermediate evolutionary situation: it may still 
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serve for two functions, a neuromodulatory and a hypophysiotropic one (Montero 

et al., 1994). 

It has been studied the influence of GnRH expression on the testicular 

differentiation in the Japanese eel. Although the olfactory, preoptic and midbrain 

GnRH neuronal system contribute to pituitary innervation, an association can be 

assumed between preoptic GnRH expression and testicular differentiation (Chiba 

et al., 1999). 

mGnRH and cGnRH expressions have not been still analyzed during 

gonad development in European eel males, what could be important to confirm 

the posible role of the different GnRHs, as well as their influence in the gonad 

development. 

1.2.2 The role of dopamine 

The release of gonadotropic hormones in European eel and other teleost 

fish is subjected to a double neuroendocrine control: a positive effect of GnRH 

and a negative effect produced by dopamine (DA; Peter and Paulencu, 1980; 

Kah et al., 1987; Dufour et al., 1988, 2005; Linard et al., 1996; Montero et al., 

1996; Vidal et al., 2004). The European eel is considered as a good model to 

study this neuronal control, by its unique life cycle, in which the gonad maturation 

is blocked until the reproductive oceanic migration.  

Dopamine is a catecholamine, like adrenaline and nonadrenaline, and its 

synthesis depends on the tyrosine hidroxylase enzyme. Immunocytochemical 

studies demonstrated the existence of abundant innervations of the pars proximal 

distalis of the eel pituitary by tyrosine hydroxylase-positive neurons (Boularand et 

al., 1998). Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the 

catecholamine biosynthesis (like dopamine). Weltzien et al. (2005a,b) analyzed 

TH expression in the different parts of the European eel brain, finding the highest 

expression in the olfactory bulb, followed by the di-/mesencephalic areas and the 

telencephalon/preoptic area. TH synthesis was affected by some steroids, like 

testosterone, that provided a positive effect, but not by 17β-estradiol (E2, 

Weltzien et al., 2005a, 2006). Considering the high TH expression in the olfactory 

bulb, Weltzien et al. (2006) and Sébert et al. (2008) proposed that the olfactory 

function could have a role in eel navigation during its reproductive migration 

toward the oceanic spawning grounds.  
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The gonadotropin stimulating effect of the GnRH was demonstrated in 

European eel treated females with injections of GnRH-analog, but due to 

dopamine inhibition it was necessary to add a dopamine antagonist (Dufour et al., 

1988, 2005; Montero et al., 1996; Pasqualini et al., 2004; Vidal et al., 2004). The 

dopamine antagonist employed was pimozide, which in mammals is an 

antagonist of DA-D2 receptors. Two different cDNA sequences of DA-D2 

receptors were found in eel brain (pituitary and olfactory bulb), named D2A and 

D2B (Pasqualini et al., unpublished data). In fact, a triple treatment using 

steroids, GnRH analogues and dopamine antagonists was necessary to trigger 

the endogenous production and release of gonadotropins in European eel 

(Dufour et al., 2003; Vidal et al., 2004). However in E2 treated males, GnRH 

injections originated a low effect (Olivereau et al., 1986). This slight effect of 

GnRH, without DA antagonist, suggests a less effective dopaminergic inhibition in 

male than in female eel. Until now, the GnRH expression has been never 

analized during gonad development in male European eel, and its study can help 

to understand the influence of GnRHs in the male maturation process. 

1.2.3 Gonadotropins  

In teleost fish, it is well stablished the occurrency of two gonadotropins, 

FSH and LH, like in the rest of tetrapods. They were first named as GTH I and 

GTH II. Gonadotropins are glycoproteins consisting of two subunits, α and β. 

While α subunit is common in both gonadotropins (FSH and LH), β subunit is 

different in every case. All of them have been sequenced in European eel 

(Querat et al., 1990a,b; Degani et al., 2003; Schmitz et al., 2005). In most 

teleosts, FSH regulates the first steps of the gonad maturation, while LH is 

involved in the final gonad development. In salmonids, vitellogenesis and 

spermatogenesis are likely to be controlled by FSH, while the processes of final 

oocyte maturation/ovulation and spermiation are regulated by LH (Swanson, 

1991). In female eels, FSHβ was found in high levels in immature previtellogenic 

eels, while LH could found at the vitellogenic stage and germinal vesicle 

migration stage (Nagae et al., 1996; Yoshiura et al., 1999; Degani et al., 2003). 

However, some researchers indicated that both gonadotropins are present in 

immature previtellogenic eels (Schmitz et al., 2005; Aroua et al., 2005).  

Gonadotropins does not act directly on germ cells, but rather through the 

biosynthesis of 11-ketotestosterone (11-KT; Miura et al., 1991a,b). In salomonids, 
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FSH and LH are equipotent in stimulating the production of the androgens, 11-KT 

and testosterone in salmon males, but LH is more potent in stimulating 17α,20β-

dihydroxy-4-pregnen-3-one (DHP) at the final maturation and spawning in both 

males and females (Swanson et al., 1989; Planas and Swanson, 1995; Maugars 

and Schmitz; 2008). The steroidogenic induction performed by FSH could be 

through a direct action on the Leydig cells (binding LH receptors, Schulz et al., 

2001) or it may trigger the release of growth factors in Sertoli cells, which in turn 

can stimulate the steroid biosynthesis in Leydig cells (Lejeune et al., 1996). 

The gonadotropin expression has been deeply analyzed in European eel 

females (Huang et al., 1997; Degani et al., 2003; Vidal et al., 2004; Schmitz et al., 

2005; Aroua et al., 2007; Sébert et al., 2007), but in male European eel it has 

never been studied during male gonad development. In any case, most of the 

studies have been performed in female Japanese eel (Nagae et al., 1997; 

Suetake et al., 2002; Jeng et al., 2002, 2007; Kamei et al., 2005, 2006; Han et 

al., 2003; Saito et al., 2003; Ozaki et al., 2007). The repeated injections of 

exogenous sGTH in the Japanese and European eel female gave as results an 

abnormal LHβ and FSHβ expression, with an over-expression of LHβ during 

ovarian maturation and a hard decrease of FSHβ after the first injections (Nagae 

et al., 1997; Suetake et al., 2002; Schmitz et al., 2005).  

In order to know if the GTH profiles observed in artificially matured eels 

are similar to the natural pattern, Saito et al. (2003) compared the gonadotropin 

expression in naturally maturing New Zealand longfinned eel with artificially 

maturing Japanese eel. New Zealand longfinned eel migrates to the spawning 

grounds at the sea later than other eel species, with the ovaries having reached 

the mid-vitellogenic stage. With the firsts injections a quick decrease in the FSHβ 

expression was observed in artificially maturing female eels, whereas in New 

Zealand longfinned eels in mid-vitellogenic stage a FSHβ increase was observed. 

Respect to LHβ profile, a LHβ over-expression was found in artificially maturing 

eels compared to the New Zealand eels. 

Gonadotropins exert their function through the binding with membrane 

receptors located in the gonad. Gonadotropin receptors are membrane-bound 

receptors belonging to the superfamily of G-protein-coupled receptors, which 

contain seven transmembrane domains. In testis coho salmon (Oncorhynchus 

kisutch) FSH receptors (FSHR) were localized in the Sertoli cells, but not in 
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Leydig cells, while LH receptors (LHR) were found in Leydig cells but not in 

Sertoli cells of testis coho salmon (Miwa et al., 1994). In female coho salmon, 

FSHR were observed both on thecal and intensively on granulose cells in 

vitellogenic ovary (but not in preovulatory ovary), whereas LHR were synthesized 

in granulose cells of preovulatory follicles (Miwa et al., 1994). Schulz et al (2001) 

studied the gonadotropin-receptor union. A receptor structurally resembling 

tetrapod FSH-Rs responded specifically to salmon FSH; however the receptor 

similar to the tetrapod LH-Rs responded to salmon LH, but also to salmon FSH.  

The study of eel GTH receptors has been only done in the Japanese eel, 

being sequenced partially (Jeng et al., 2007). In this species, FSH and LH 

receptors increased their expression during gonadal maturation, but no effect 

was observed when treatments with sexual steroids were administrated (Jeng et 

al., 2007). In contrast with the results observed in coho-salmon, Ohta et al. 

(2007) reported that FSH receptor in Japanese eel is expressed mainly by Leydig 

cells, which are the responsible of steroid production, and by Sertoli cells 

surrounding spermatogonia type A and early type B.  

1.2.4 Gonadal steroids and feedbacks 

The gonadal steroids are essential for the teleost reproduction, and they 

are able to affect practically all tissues. Both in testis and ovary, the synthesis of 

steroids is performed in somatic cells. Thecal and granulose cells are the 

responsible of the steroid production in the ovary (Fostier et al., 1983; Kagawa et 

al., 1984; Nagahama, 1994). Taking as basis the salmonid model, the thecal cells 

produce testosterone during vitellogenic process or 17αHP during the oocyte 

maturation, while the granulose cells use these steroids to produce E2 and DHP. 

Respect to the testis, the steroid production is localized mainly in the Leydig cells. 

Some evidences indicate that Sertoli cells could be implicated in steroid 

synthesis, especially progestins as DHP (Nagahama, 1983). 

In teleosts, the gonad steroids have an important role in the 

spermatogenesis process. The target tissue can be the gonad, or it can perfom 

their function through the liver, pituitary and/or brain, where steroid receptors 

have been found (Pakdel et al., 1989; Salbert et al., 1991; Valotaire et al., 1993; 

Ikeuchi et al., 1999; Todo et al., 1999). As in mammals, the hormonal steroids 

cause a feedback on the brain-pituitary-gonad axis. This feedback can be 
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positive or negative, causing the synthesis or release of gonadotropins and 

GnRH (Kobayashi and Stacey, 1990). 

The influence of the steroid administration on the teleost reproduction has 

been analyzed in some species, like in male tilapia hybrids. In cultured pituitary 

cells from immature male tilapia, FSHβ expression was stimulated by exposure to 

testosterone (Melamed et al., 1997), while in pituitary cells at the end of the 

spermiation a FSHβ decrease was observed after administration of T or E2. In 

regressed fish, neither T nor 11-KT had any effect on the testis cells. Respect to 

the steroid influence in LHβ expression, in immature fish, E2 or testosterone 

increase the LHβ synthesis in teleosts (Trinh et al., 1986; Querat et al., 1991; 

Dickey and Swanson, 1995; Gur et al., 1995; Huggard et al., 1996; Schmitz et al., 

2005). In pituitary cells from sexually maturing rainbow trout, T and E2 stimulated 

the LHβ expression, but no difference was observed in in pituitary cells of 

spawing fish (Xiong et al., 1994).  

The same steroids can have different effects depending on the fish 

physiological stage, and this makes more difficult the study of the role of sex 

steroids on eel maturation, because in this species hormonal injections are 

necessary to obtain the gonadal development. Several studies have been 

performed in this field in European eel. It has been demostrated that injections of 

E2 increase the LHβ synthesis in the eel pituitary, but not their release (Dufour et 

al., 1983). On the other hand, E2 in vitro did not promote the luteinizant hormone-

β (LHβ) expression in pituitary cells, and this difference suggests that the 

stimulatory effect of E2 is exerted by indirect ways in vivo conditions (Huang et 

al., 1997; Aroua et al., 2007). In vitro, testosterone stimulates the LHβ expression 

in pituitary cells, while in vivo the testosterone decrease the FSHβ expression 

(Schmitz et al., 2005). A GnRH control could be involved, since a parallel 

stimulation of LHβ and GnRH levels was observed in female European eel under 

the E2-treatment effect (Montero et al., 1995). However, in Japanese eel the sex 

steroids did not affected brain mGnRH content (Jeng et al., 2002).  

In Japanese eel females, during artificial gonad development induced by 

repeated injection of salmon gonadotropin (sGTH), E2 was maintained low until 

the final of vitellogenesis, while the testosterone level was always higher until the 

E2 increase (Ijiri et al., 1995). This abnormal steroid profile may result in the 

inhibition of spontaneous final oocyte maturation and ovulation.  
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The 11-KT is the androgen responsible of the spermatogonia proliferation 

to spermiogenesis in the eel (Miura et al. 1991a,b, 1996; Miura and Miura, 2001, 

2003), and it is considered the most important androgen in teleosts (Borg, 1994). 

In other hand, 11-KT plays a role in the eel female maturation, promoting the 

oocyte growth (Lokman et al., 2007). In some species, like male catfish, the 11-

KT has a positive effect in the LHβ synthesis (Rebers et al., 1997). Finally, it has 

been demonstrated that this androgen has an influence in the secondary 

morphologic changes observed in all the eel species during the maturation (Rohr 

et al., 2001). 
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1.3 SPERMATOGENESIS 

The spermatogenesis process in eel male is divided into the following 

stages: spermatogonial stem-cell renewal, spermatogonial proliferation, 

spermiogenesis and sperm maturation (Fig. 1.6, Miura et al., 1997, 1998, 2002b, 

2006; Miura and Miura, 2001, 2003; Schulz et al., 2002). 

 

 
Figure 1.6. Spermatogenesis stages (Miura and Miura, 2003). 

 
 
Both in Japanese and European eel males maintained under artificial 

conditions the testis is immature, containing only premitotic spermatogonia, type 

A and early-type B spermatogonia (Yamamoto et al., 1972; Khan et al., 1987; 

Miura et al., 1991a,b, 1995a, 1996a, 1997; Ohta and Tanaka, 1997). The 

development is found inhibited by the expression of different factors, named 

eSRS3, eSRS4, eSRS21 (Miura et al., 1998, 2002a) but the synthesis of these 

factors can be suppressed with only one injection of human chorionic 

gonadotropin (hCG) or 11-KT. In both eel species it has been reported that is 

necessary to administrate a hormonal treatment with human chorionic 

gonadotropin to start the spermatogenesis (Colombo et al., 1987; Khan et al., 

1987; Miura et al., 1991a; Pérez et al., 2000, 2003; Asturiano et al., 2004, 2005, 

2007; Marco-Jiménez et al., 2006; Garzón et al., 2008). As a consequence of this 

hormonal treatment, the expression of E2 receptor is stimulated mainly during the 

first 6 days, but its expression is maintained during the whole spermatogenesis. It 
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genesis 
Sperm 

maturation 
Gonial  

renewal 



 

 24 

was seen that E2 receptor was expressed in the Sertoli and intersticial cells. 

Although E2 is a female hormone, its existence in vertebrate male gonad has 

been previously reported (Schlinger and Arnold, 1992; Fasano and Pieratoni, 

1993; Betka and Callard, 1998), and its positive effect on the spermatogonial 

stem cell division in Japanese eel male was demonstrated by Miura et al. (1999). 

It was reported that E2 stimulated the eSRS34 synthesis, which is considered as 

a spermatogonial stem cell renewal factor (Miura et al., 2003). 

When gonadotropins are secreted from the pituitary, spermatogonial 

mitosis switches from stem cell renewal to proliferation toward meiosis. But they 

have not a direct effect, actually, the 11-KT is the responsible androgen of the 

spermatogonia proliferation to spermiogenesis (Miura et al. 1991a,b, 1996; Miura 

and Miura, 2001, 2003). Gonadotropins activate the 11-KT production in the 

gonad, being synthesized by Leydig cells. This 11-KT production influences in the 

Sertoli cells (Miura et al., 1996), inducing the production of growth factors n, such 

as insulin-like growth factor-I (IGF-I) and activin β. IGFs stimulate DNA synthesis 

in spermatogonia cells (Loir and LeGac, 1994; LeGac et al., 1996), and although 

it is necessary for the spermatogenesis regulation, the principal IGF-I role is to 

promote (together with 11-KT) that the mitotic process started by activin β not 

was interrupted. IGF-I not only is produced by Sertoli cells, its synthesis has been 

registered in liver and germinal cells. Activin β is also a growth factor which 

belongs to the transforming growth factor-βs (TGF-βs) family. It is synthesized 

strictly in the Sertoli cells, and its role is to induce the proliferation of 

spermatogonia, even though does not induce meiosis (Miura et al., 1995b). Both 

hormones, IGF-I and activin β, have an influence in the gonadotropin expression, 

IGFs showing a positive effect on the pituitary LHβ expression, and activin β 

stimulating FSHβ expression (Aroua et al., 2008). 

11-KT is the steroid that occupies a central role in the sexual maturation 

process in male fish (Kime et al., 1991; Miura et al., 1991a,b; Borg, 1994; 

Guiguen et al., 1995). Despite the fact that 11-KT is a male-specific androgen, it 

has been found in elevated levels in some female teleost (Leatherland et al., 

1982; Slater et al., 1994). Studies in Anguilla australis and A. dieffenbachii 

showed that 11-KT levels were higher in pre-migratory “silver” females than in 

non-migratory, “yellow” females (Lokman et al., 1998). Since the 11-KT cannot be 

aromatized, maybe it is directly involved in mediating some of the morphological 
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changes that occur during silvering in eels. To check it, eel females (Anguilla 

australis) were treated with 11-KT, and these animals presented external 

changes in the head shape and pectoral fin color (Rohr et al., 2001). 11-KT not 

only affected the external morphology, also increased the liver and gonad mass 

(Rohr et al., 2001). Asanuma et al. (2003) showed that treatment in eel females 

(Anguilla japonica) with 11-KT enhanced the vitellogenin production caused by 

E2. Some researches suggested that 11-KT can bind to liver estrogen receptors 

(Peyon et al., 1997), but the discovery of an specific androgen receptor in male 

eel liver (Ikeuchi et al., 1999) supports the notion that 11-KT could be acting 

directly in the liver. Moreover, it was observed that the 11-KT increased 

significantly the diameter of previtellogenic oocytes and oocyte nuclei, although 

these changes were not accompanied with obvious ultrastructural changes 

(Lokman et al., 2007). 

It is possible to induce the spermatogenesis and spermiation in eel male 

with only one injection of hCG (Khan et al., 1987; Ohta and Tanaka, 1997; Miura 

et al., 1991a), which causes a significant increase of 11-KT levels. It has been 

demonstrated that the 11-KT can promote all the stages of spermatogenesis in 

vitro (Miura et al., 1991a, 1996). Also, in vitro conditions, a recombinant 

Japanese eel follicle-stimulating hormone (rjeFSH) stimulated the 11-KT 

production, evidencing this gonadotropin as a responsible of the onset of the 

spermatogenesis (Kamei et al., 2003). 11-KT receptors have been identified in 

Japanese eel gonad, being sequenced two different subtypes (Androgen 

receptors, AR1, AR2; Ikeuchi et al., 1999; Todo et al., 1999). 

Recently, the progestin has been identified as an essential factor for the 

initiation of the meiosis in the Japanese eel (Miura et al., 2006). Hormonal 

treatment with hCG induces an increase in 17α,20β-dihydroxy-4-pregnen-3-one 

(DHP) level, and it is the unique progestin that stimulates the DNA replication in 

spermatogonia cells. DHP production is increased in presence of 11-KT, being 

synthesized only in germinal cells. Two different receptors have been sequenced 

for this progestin: PR1 and PR2 (Todo et al., 2000; Ikeuchi et al., 2002), finding 

the progestin receptor 1 (PR1) in Sertoli, germinal and interstitial cells, while PR2 

was only observed in germinal cells.  

The spermiogenesis process is characterized by morphological changes, 

through which the spermatids are transformed into spermatozoa, but at the end 



 

 26 

of the process these gametes are non-functional. During the next 

spermatogenesis step, named sperm maturation process, these gametes will 

acquire the ability of movement. Unlike in spermiogenesis, in this phase there are 

involved physiological but not morphologic changes. An increase in the pH into 

the sperm duct (around 8.0 in Japanese eel, and 8.5 in European eel) was 

observed in this phase, which caused an elevation of intracellular cyclic 

adenosine monophosphate concentration ([cAMP]; Miura et al., 1995a; Ohta et 

al., 1997). DHP has been related with the sperm maturation, because it acts 

directly on spermatozoa, inducing the expression of eel spermatogenesis-related 

substance 22 (eSRS22), which is a homologue of carbonic anhydrase (CA; Miura 

and Miura, 2003). This enzyme catalyzes the reversible carbonate buffer 

reaction, regulating in this way the acid-base balance. This enzymatic activation 

is the responsible of the seminal plasma pH increase observed at the end of the 

sperm maturation (Fig. 1.7, Miura et al., 1995a; Miura and Miura, 2003). 

 

 

Figure 1.7. DHP effect in the 

spermatozoa (Miura and Miura, 2003). 
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1.4 METHODS TO INDUCE THE ARTIFICIAL MATURATION 

Previous studies in Japanese eel (Anguilla japonica) showed that 

repeated injections of hCG allow the artificial maturation of immature male eels 

and induce milt production (Ohta et al., 1996; Ohta and Tanaka, 1997). One 

injection is enough to promote the spermatogenesis (Miura et al., 1991a), but the 

number of animals with complete gonad development was higher with repeated 

injections (Ohta et al., 1996). Also, hCG injections have been used in European 

eel (Boëtius and Boëtius, 1967; Billard and Ginsburg, 1973, Meske 1973; 

Bieniarz and Epler, 1977; Dollerup and Graver, 1985; Leloup-Hâtey et al., 1985; 

Colombo et al., 1987; Khan et al., 1987; Amin 1997; Pérez et al., 2000, 2003; 

Müller et al., 2004, 2005; Szabó et al., 2005), but only Asturiano et al. (2005) 

tested five different treatments with hCG looking for the optimization of the 

hormonal induction. Fish treated with only three weekly injections, or weekly 

injected only until the onset of spermiation did not show good results in terms of 

sperm production, but the treatment that provided best results was weekly 

injections of 1.5 IU hCG/g fish, that caused the highest percentage of spermiating 

males and the highest number of sperm samples with high quality. 
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1.5 EVALUATION OF SPERM QUALITY 

As a consequence of the hormonal treatment the spermatogenesis takes 

place and the spermiation begins. The European eel sperm shows a high density 

(3-6x109 spermatozoa/ml; Pérez et al., 2000) and the time of spermatozoa 

motility is very short after activation, from a few seconds to a few minutes 

(Gibbons et al., 1983, 1985; Woolley, 1998; Asturiano et al., 2004). Fish sperm 

quality has traditionally been estimated by a subjective evaluation of sperm 

motility and concentration, but during recent years an intense advance has 

occurred in the techniques for the objective evaluation of sperm quality. This 

evaluation has been achieved by the study of motility parameters by CASA 

(computer assisted sperm analysis) systems (Kime et al., 2001; Asturiano et al., 

2004; Rurangwa et al., 2004), spermatozoa morphometry analysis using ASMA 

(automated sperm morphometry analysis; Van Look et al., 2003; Marco-Jiménez 

et al., 2006) or by using fluorescent staining methods to evaluate membrane 

functionality, determining on this way the percentage of viable spermatozoa 

(Marco-Jiménez et al., 2006; Asturiano et al., 2007; Garzón et al., 2008). 

1.5.1 Evaluation of parameters of sperm motility by computer assisted 
sperm analysis (CASA) 

Woolley (1997, 1998) described different aspects of the kinematics of 

movement, the flagellum structure and its vibratile and rotatory bending 

movement. However, the first application of CASA systems (Fig. 1.8) on 

European eel sperm was reported by Asturiano et al. (2005) in an attempt of 

improving hormonal induction treatments.  

This analysis consists in the determination of the exact percentage of 

motile spermatozoa as well as some motility parameters: curvilinear velocity 

(VCL, in μm/s), straight line velocity (VSL, in μm/s), angular path velocity (VAP, in 

μm/s), and beating cross frequency (BCF, in Hz). Rurangwa et al. (2004) 

reviewed different studies carried out using sperm-tracking systems in African 

catfish, carp, goldfish, roach, Eurasian perch, trout and lake sturgeon, and 

concluded that the most useful parameters of velocity are the VCL (the actual 

velocity along the trajectory) and the VSL (the straight line distance between the 

start and end points of the track divided by the time of the track). In the case of 

European eel, data from fast and medium-velocity spermatozoa (VCL >40 μm/s) 
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have been used to compare motility parameters. The next results were found in 

samples showing 49.5 ± 2.5% motile spermatozoa: VSL: 26.1 ± 3.3 μm/s, VCL: 

125.5 ± 15.6 μm/s, VAP: 44.6 ± 3.7 μm/s, BCF: 17.0 ± 1.2 Hz (Asturiano et al., 

2005). 
 

 

Figure 1.8. CASA system software. 
 

1.5.2 Morphometry characterisation of spermatozoa with assisted sperm 
morphology analysis (ASMA) and scanning electron microscopy 

Previous studies reported that when spermatozoa morphology is analysed 

by visual methods, the intra- and inter-observer laboratory variations are usually 

very large (Soler et al., 2003). Spermatozoa ultrastructure and morphology of 

European and Japanese eels has been studied by transmission electron 

microscopy (TEM; Ginsburg and Billard, 1972; Çolak and Yamamoto, 1974; 

Gibbons et al., 1983; Gwo et al., 1992) or scanning electron microscopy (SEM; 

Gibbons et al., 1983; Okamura et al., 2000). In 2004, an automated system for 

spermatozoa head morphometry analysis (ASMA) was developed and validated 

for mammals (Rijsselaere et al., 2004). The ASMA systems require 

standardisation of methods and variables, but under these conditions their 

repeatability and validity are much higher than any subjective morphological 

evaluation (Wang et al., 1991; Coetzee et al., 1998).  

Abnormal spermatozoa head morphometry has been associated with 

reduced fertility in the bull, boar and stallion (Claassens et al., 1996; Van Look 
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and Kime, 2003). ASMA measurements have shown toxic effects on human 

spermatozoa head (Davis et al. 1995) and goldfish sperm (Van Look and Kime 

2003). This technique has also been used in the field of cryopreservation, in 

which cryoprotectants or frozen-thawed protocols are known to cause 

morphological damage to the spermatozoa (Billard 1983; Billard et al. 2000). 

Kruger et al. (1995) found that spermatozoa head morphometry, determined by 

ASMA, was predictive of in vitro fertilisation rates and its utility has also been 

reported in detection of fertile and subfertile stallions (Gravance et al., 1997) and 

rabbits (Marco-Jiménez et al., 2005). Until very recently, ASMA systems had 

never been used on eel species (Fig. 1.9). 

 

 

Figure 1.9. Parameter measured by 

ASMA system (Marco et al., 2005). 
 

The ASMA technique has been used to evaluate the osmotic effects 

suffered by cells and cryoprotectant effects during the application of 

cryopreservation protocols (Marco-Jiménez et al., 2006; Asturiano et al., 2007; 

Garzón et al., 2008). These are some of the first applications of ASMA 

methodology in fish and the first one in eel species. They confirm this system as 

a useful tool, mainly in terms of time-saving and the reduced equipment required 

in comparison with electron microscopy techniques, with wide applications in 

Widht: 1.1 mm 

Length: 4.3 mm 

Perimeter: 17.4 mm 

Area: 6.3 mm2 
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future studies of fish spermatozoa membrane response under the effects of 

extenders, cryoprotectants, additives, etc. 

1.5.3 Fluorescent staining 

This technique is based in the use of dyelight fluorophores, which with 

specific amplitude of the oscillation (λ) emit a light. Depending of its 

characteristics the fluorophore can inform about cells viability, enzymatic activity, 

etc. The main benefits of these techniques are the simplicity and the high velocity 

of evaluation. These methods has been successfully used for assessing 

spermatozoa in men (Garner and Johnson, 1995), bulls (Garner et al., 1994; 

Thomas et al.,1998), boars (Garner and Johnson, 1995; Garner et al.,1996), 

rams (Garner and Johnson, 1995), rabbits (Garner and Johnson, 1995), mice 

(Garner and Johnson, 1995; Songsasen et al., 1997), poultry and wildfowl 

(Donoghue et al., 1995; Blanco et al., 2000) and honey bees (Collins and 

Donoghue, 1999; Collins,2000). Cell viability and mitochondrial function, have 

also been chosen to evaluate fish sperm quality (Ogier De Baulny et al., 1997, 

1999; Segovia et al., 2000; Riley 2002; Flajshans et al., 2004; He and Woods, 

2004; Rurangwa et al., 2004). JC-1 or rhodamine 123 are some mitochondrial 

stains, which are transported into the interior of functioning mitochondria. For 

example, when the concentration of JC-1 inside the mitochondria increases, the 

aggregation presents an orange fluorescence (Thomas et al., 1998; Garner and 

Thomas, 1999). Spermatozoa stained with JC-1 display either green 

fluorescence for mitochondria with low to medium membrane potential, or yellow-

orange for mitochondria with high membrane potential. Previous studies have 

demonstrated a positive correlation between functional mitochondria and sperm 

motility (Evenson et al., 1982; Auger et al., 1989).  

SYBR 14 and propidium iodide are DNA staining, where spermatozoa are 

classified as dead when nuclei showed red fluorescence over sperm head and 

live when they show green fluorescence (Fig. 1.10).  
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Figure 1.10. Example of SYBR and IP staining in eel 

sperm. 

 
Another vital staining is the bisbenzimidazole Hoechst 33258, which stains only 

the dead cells. Spermatozoa are classified as dead when nuclei showed bright 

blue fluorescence over sperm head, and live when sperm head was not strongly 

fluorescent (Fig. 1.11, De Leeuw et al., 1991; Marco-Jiménez et al., 2006; 

Asturiano et al., 2007; Garzón et al., 2008). 

 

 

Figure 1.11. Example of Hoechst 

stanining in eel sperm. 
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1.6 METHODS FOR EEL SPERM CONSERVATION 

The methods of hormonal induction carried out in European eel, both 

males and females, take several weeks (Pérez et al., 2000; Asturiano et al., 

2002, 2005) and unsynchronized maturations can happen, making difficult the 

egg fertilization. Trying to improve the unresolved control on the reproduction of 

this species, different methods to preserve the sperm were developed depending 

on the time of conservation required. For short- time storage the sperm can be 

diluted in a medium that conserves unchanged the sperm characteristics (Ohta 

and Izawa 1995, 1996; Aurich et al., 1997; Sansone et al., 2001; Rodina et al., 

2004; Peñaranda et al., in press), while for long-time conservation it is necessary 

to use cryopreservation techniques (Tanaka et al., 2002a; Müller et al., 2004, 

Szabó et al., 2005; Marco-Jiménez et al., 2006; Asturiano et al., 2007; Garzón et 

al., 2008). In European eel, any diluent has been developed to preserve the fresh 

sperm during several days with high motility, and when the sperm was frozen by 

cryopreservation techniques the best post-thawing motility achieved by our group 

was 22.2 ± 1.5%. Further studies are necessaries in this field to improve the 

European eel sperm conservation. 

1.6.1 Diluent media 

The use of diluting media or extenders can extend the sperm viability and 

even increase the spermatozoa motility after an incubation period (Ohta and 

Izawa, 1996, Ohta et al., 2001; Peñaranda et al., in press). Usually, the diluents 

have been used to maintain a high motility during short-term storage, by 

stabilising the physio-chemical conditions (Tan-Fermin et al., 1999), and to 

improve fertilization rates in some species (Tambasen-Cheong et al., 1995; Ohta 

and Izawa, 1996). Fish spermatozoa are immotile in seminal plasma, and for this 

reason several authors have developed diluents with the same ionic composition 

and osmolality as the seminal plasma (Villani and Catena, 1991; Tan-Fermin et 

al., 1999; Asturiano et al., 2004). On the other hand, some authors have also 

tried to prepare inactivation media for fish spermatozoa, with different 

composition respect to the seminal plasma (Sansone et al. 2001; Tanaka et al. 

2002b; Rodina et al. 2004). In the European eel, first studies in this regard were 

focused on the analysis of the seminal plasma ionic composition and physio-

chemical characteristics (Pérez et al. 2003; Asturiano et al. 2004). Changes in 
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the ionic composition of seminal plasma were correlated with changes in the 

sperm quality, in terms of spermatozoa motility (Pérez et al. 2003; Asturiano et al. 

2004). Asturiano et al. (2004) described that the seminal plasma pH did not vary 

during the 14 weeks of assay, being constant between 8.4 and 8.6. The seminal 

plasma osmolality showed a significant decrease during the first spermiation 

weeks and was maintained around 325-330 mOsm/kg during the rest of the 

experiment. All these results were used to design a diluting medium isoionic with 

the seminal plasma, called P1 medium, in mM: NaCl 125, NaHCO3 20, KCl 30, 

MgCl2 2.5, CaCl2 1, pH 8.5 (Asturiano et al., 2004). In the case of Japanese eel, 

similar studies on seminal plasma and diluting media production have been 

carried out. Ohta and Izawa (1996) managed times of conservation of diluted 

sperm under refrigeration longer than 3 weeks. Two diluting media (K15 and K30; 

Ohta and Izawa, 1996; Ohta et al., 2001) previously used in Japanese eel sperm 

were tested in the European eel, with a significant decrease in the motility 24 

hours later (Asturiano et al., 2004). 

The development of diluent media for European eel sperm is necessary 

not only to preserve it, but also to solve the problems in sperm handling and 

quality evaluation, due to its high density and its short motility time. These 

problems have been settled in other fish species, like Japanese eel, by diluting 

the sperm before using it during the fertilization process (Ohta and Izawa, 1996). 

1.6.2 Cryopreservation media 

Different media and methods have been recently developed for European 

eel sperm (Müller et al., 2004, Szabó et al., 2005; Marco-Jiménez et al., 2006; 

Asturiano et al., 2007; Garzón et al., 2008), which are based in previous studies 

in the Japanese eel species (Tanaka et al., 2002a). To design the freezing 

medium, it is necessary to consider the effect of cryoprotectants on the sperm. 

These must be added to the medium, because the cryopreservation causes lethal 

damage in spermatozoa and also produces an important loss of membrane 

function by increasing membrane fragility in live cells (Cabrita et al., 1999). Müller 

et al. (2004) worked with methanol (MeOH) as cryoprotectant for European eel, 

obtaining 36 ± 11% of spermatic motility post-freezing, using as extender the 

modified Kurokura medium (Rodina et al., 2004). Szabó et al. (2005) studied the 

cryoprotectant role of dimethil sulfoxide (DMSO) and MeOH in different extender 

media: as TNK (137 mM NaCl, 76.2mM Na HCO3; Tanaka et al., 2002a), 
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Kurokura´s modified (350 mg NaCl, 1000 mg KCl, 22 mg CaCl2, 8 mg MgCl2 and 

20 mg NaHCO3, for 100 ml; Magyary et al., 1996) and glucose extender (350 mM 

glucose, 30 mM Tris, pH 8.0; Szabó et al., 2005). The highest post-thawing 

motility (47 ± 15%) was registered with DMSO and TNK medium. Garzon et al. 

(2008) tested several cryoprotectants: DMSO, acetamide, ethylene-glycol, 

propanol, glycerol and MeOH. Their effect was evaluated in terms of percentage 

of motile cells (activation caused by the cryoprotectants), percentage of live cells 

(by Hoechst staining), and spermatozoa morphometry pre and post-

cryopreservation (by ASMA). The set of results of this experiment showed 

DMSO, MeOH and glycerol as the best cryoprotectants. These three 

cryoprotectants were chosen to make a new experiment, using P1 (in mM: NaCl 

125, NaHCO3 20, KCl 30, MgCl2 2.5, CaCl2 1, pH 8.5; Asturiano et al., 2004) and 

P1 modified (125 NaCl, 75 NaHCO3, 2.5 MgCl26H2O, 1 CaCl22H2O, 30 KCl, pH 

8.5, in mM) as freezing media, and testing the influence of foetal bovine serum 

(FBS) addition (Garzón et al., 2008). Post-thawing samples in P1 modified 

medium with DMSO and FBS (25%) showed a significantly higher percentage of 

motile spermatozoa (22.2±1.5%) that in the rest of conditions. These results 

coincide with the reported by Tanaka et al. (2002a) and Szabó et al. (2005), who 

suggested the DMSO as effective cryoprotectant for the eel sperm. P1 modified 

and TNK medium have been the freezing extenders that have provided the best 

post-thawing motility, and both contain the same NaHCO3 concentration, 

suggesting that this component of the medium has an important role in the sperm 

movement. Studies in this field were carried out by Tanaka et al. (2002b, 2004), 

observing a NaHCO3 inhibition role on the sperm motility. This inhibition could be 

important to arrest the sperm activation caused by cryoprotectants in pre-freezing 

conditions, and in this way to decrease the energy spent by spermatozoa. Foetal 

bovine serum (FBS) or bovine serum albumin (BSA) have been used in the 

sperm cryopreservation media due to their effect as buffer of the osmotic shock, 

because proteins can provide a protection of mechanical type to the cells 

membrane, diminishing the risks of crystallization, recrystallization or ice melting 

during the different phases of the process of freezing and thawing (Cabrita et al., 

2005; Marco-Jiménez et al., 2006; Garzón et al., 2008). 
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2.1.1 Justifications 

The male European eel can not achieve the gonad development in 

artificial conditions, being necessary to inject hormones to obtain the maturation. 

Once fixed the optimal hormonal treatment (1.5 IU. hCG/g fish; Asturiano et al., 

2005), we consider important to study the evolution of sperm quality (motility, 

percentage of live cells, head spermatozoa morphometry, sperm volume, sperm 

cocentration) during the spermiation period using the techniques described in 

previous works (Asturiano et al., 2004; Marco-Jiménez et al., 2006). Thanks to 

these studies the weeks with the highest sperm quality can be established. The 

analysis of spermatozoa head morphometry presents problems due to the curved 

and elongated spermatozoa head. To validate this technique in sperm eel, it will 

be compared the obtained results by ASMA system with scanning electron 

microscopy (SEM).  

To understand the reproductive physiological mechanisms, and their 

influence on the sperm quality, every week several males will be sacrificed to 

study the GnRHs and gonadotropins expression, 11-KT level in plasma and 

morphometric parameters, being the first time that GnRHs and gonadotropins 

expression will be described in male European eel. The different studied 

parameters will be compared with the stage of gonad development and sperm 

quality, obtaining a complete description of artificial maturation in European eel. 

Once described the maturation in European eel and the evolution of 

sperm quality during its gonad development, the next purpose will be to preserve 

the eel spermatozoa with high motility for a long time. There are two methods to 

preserve the sperm, during short-term or long-term storage.  

It is considered short-time storage when the fresh sperm can be 

maintained with high motilities during several days. Different media have been 

tested in previous works, but they did not provide good results (Asturiano et al., 

2004). In order to improve these results, two different methods to preserve the 

sperm will be tested: one medium that inactivates the sperm motility and another 

non-activating medium. 

The best motility post-thawing achieved by our group was 22.2 ± 1.5%, 

which we consider too low to obtain a fertilization succes. Taking as basis the 

sperm physiology, media with different NaHCO3 concentration and pH will be 
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used to inhibit the sperm activation produced by the cryoprotectants in pre-

freezing conditions. This inhibition will permit that the spermatozoa do not spend 

its energy reserves before the cryopreservation process. 
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2.1.2 Objectives 

1- To assess the applicability of different techniques (ASMA system and 

vital staining), to evaluate the sperm quality in European eel. 

2- To determine the evolution of sperm quality during the whole 

spermiation period induced by hCG administration. 

3- To study the endocrine mechanisms controlling the spermatogenesis 

and spermiation processes in artificially matured European eel males, 

and their relationship with the sperm quality. 

4- To develop one extender and one appropriate protocol for the short-

term storage of European eel sperm under refrigeration. 

5- To develop a freezing medium and to improve the cryopreservation 

techniques for the long-term storage of the European eel sperm. 
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3.1 FISH AND SAMPLING 

The fish were obtained from the fish farm Valenciana de Acuicultura, S.A 

(Puzol, Valencia; East coast of Spain), and they were moved into our facilities, in 

the Aquaculture Laboratory in the Universidad Politécnica de Valencia. Fishes 

were gradually acclimatized to sea water (salinity 37 ± 0.3 g/l; 20ºC) for one week 

and distributed in the corresponding tanks or aquaria (Fig. 3.1).  

 

Figure 3.1. Aquaria and tanks where the eels were distributed. 
 

The male eels were hormonally treated for the induction of maturation and 

spermation with weekly intraperitoneal injections of hCG (1.5 IU g/fish, Fig. 3.2A), 

as previously described by Pérez et al. (2000). 

         

Figure 3.2. (A) Intraperitoneal injection of hCG. (B) Extraction of the different 
parts of the eel brain. 

 

When it was necessary to sacrifice animals to obtain samples, once a 

week 10 fish were over-anesthetized, and morphometric parameters as 

gonadosomatic index (GSI) and eye index (IE; Leloup-Hatey et al., 1985) were 

recorded, as well as samples of blood, liver, the brain, pituitary were collected, 

and also sperm samples during the spermiation weeks. The brain was divided in 

A B 
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different parts for its study: olfactory bulb, telencephalon, mesencephalon and 

diencephalon, cerebellum and medulla oblongata and pituitary (Fig. 3.2B). 

Each part of the brain was quickly removed and stored in 0.5 ml RNA later 

(Ambion Inc, Huntingdon, UK) at -20ºC until its RNA extraction. The blood was 

centrifuged at 3000 r.p.m during 5 minutes, and the blood plasma was stored at -

80ºC until its analysis. The sperm was obtained by applying gentle abdominal 

pressure to anesthetised males (benzocaine; 60 mg/L), after cleaning the genital 

area with freshwater and thoroughly drying to avoid contamination of samples 

with faeces, urine and sea water (Fig. 3.3). During spermiation weeks the motility 

and percentage of live cells were evaluated every week. 

 

Figure 3.3. Process of sperm extraction: it began with the fish 

catch, followed by anaesthesic bath, the abdominal cleaning 

and drying, and finish with the sperm extraction. 
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3.2 RNA EXTRACTION AND cDNA SYNTHESIS 

Total RNA was extracted from the different parts of the brain (olfactory 

bulb, telencephalon, mesencephalon-diencephalon) and the pituitary, using 

traditional phenol/chloroform extraction by the Trizol reagent (Invitrogen, 

Belgium), followed by a bath water during 20 minutes at 37ºC. Later, one step of 

deoxyribonuclease treatment (gDNA Wipeout Buffer, Qiagen) was performed, 

using a total volume of 14 μl for 2 μg of total RNA. First-strand cDNA was 

synthesized in 20 μl reactions with 14 μl used as template, which were obtained 

in the previous step. The protocol was carried out according to the 

manufacturer’s instructions. 

3.3 QUANTITATIVE REAL TIME RT-PCR 

3.3.1 Primers and references genes 

Acidic ribosomal phosphoprotein P0 (ARP): ARPfw: GTG CCA GCT CAG 

AAC ACG; ARPrv: ACA TCG CTC AAG ACT TCA ATG G (Aroua et al., 2007; 

Weltzien et al., 2006) was used as reference gene in the qrtRT-PCR. It was used 

as house kepping because its mRNA expression does not vary with experimental 

treatment. The gene specific primers assigned to evaluate the pituitary 

gonadotropin expression were: FSHfw: TCT CGC CAA CAT CTC CAT C; FSHrv: 

TAG CTT GGG TCC TTG GTG ATG and LHfw: TCA CCT CCT TGT TTC TGC 

TG; LHrv: TAG CTT GGG TCC TTG GTG ATG (Aroua et al., 2007) 

The study of the GnRHs expression were localized in olfactory bulbs, 

telencephalon, diencephalon-mesencephalon for mGnRH, using the next specific 

primers: mGnRHfw, ACT GGT GTG TCA GGG ATG CT; mGnRHrv, TGC AGC 

TCC TCT ATA ATA TCT TGC (Sébert et al., submitted), while the cGnRH-II 

expression was analyzed in diencephalon-mesencephalon (cGnRH-IIfr, CTG 

ACA TCC ACA CAG CGA CT; cGnRH-IIrv, GGT GTT CAC CAT CAC AGC TAA 

A ; Sébert et al., submitted).  

3.3.2 SYBR Green assay  

In order to monitor gene expression of gonadotropins (FSHβ, LHβ) and 

GnRHs (mGnRH, cGnRH-II), real-time quantitative polymerase chain reaction 

(PCR) analyses were performed using a Light Cycler system with SYBR Green I 

sequence-unspecific detection (Fig. 3.4; Roche, Meylan, France).  
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Figure 3.4. Light Cycler system with 

SYBR Green I sequence-unspecific 

detection (Roche). 

After an initial Taq activation of polymerase at 95ºC for 10 minutes, 41 

cycles of PCR were performed using the LightCycler with the following cycling 

conditions: 95ºC for 15 s, 60ºC for 5 s and 72ºC for 10 s in the study of 

gonadotropins. In the case of GnRHs, 41 cycles of PCR were made with this 

cycle: 95ºC for 10 s, 60ºC for 10 s and 72ºC for 13 s. After the PCR, the machine 

performed a melting curve analysis by slowly (0.1 ºC/s) increasing the 

temperature from 68 to 95ºC, with a continuous registration of changes in 

fluorescent emission intensity. 

 The total volume for every PCR was 10 μl, performed from diluted cDNA 

template (4 μl), forward and reverse primers (0.5 pm each) and SYBR Green 

Master Mix (2 μl).  

 

3.4 IMMUNOENZYMATIC ASSAY (ELISA) FOR SEXUAL STEROID 
(11KT) 

The teleost-specific androgen 11-ketotestosterone (11-KT) was measured 

in blood plasma using the 11-KT EIA kit from Cayman Chemicals (distributed by 

Scharlab S.L., Barcelona, Spain) according to the instructions of the 

manufacturer (Fig. 3.5). 
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Figure 3.5. Example of ELISA plate. 
 

3.5 GONAD HISTOLOGY 

After fixation in 10% buffered formalin (pH 7.4), the gonad samples were 

dehydrated in ethanol and embedded in paraffin. Sections of 5-10 μm thickness 

were made with a manual microtome Shandom Hypercut, and stained with 

haematoxylin and eosin. Slides were observed with a Nikon Eclipse E400 

microscope, and pictures were taken with a Nikon DS-5M camera attached to the 

microscope. 

Stages of spermatogenesis were determinated according to the most advanced 

germ cell types and their relative abundance (Utoh et al., 2004; Huertas et al., 

2006): stage I was determined by the presence of spermatogonia type A and/or 

B; stage II, by the presence of spermatogonia and spermatocytes; stage III, by 

the appearance of spermatids; stage IV, appearance of spermatozoa in small 

lumen; stage V (maturation stage) increase in the number of spermatozoa, as 

well as in lumen size; and stage VI, characterized by dominance of spermatozoa, 

with a low proportion of the other germ cells, as well as luminal fusion. 

 

3.6 EVALUATION OF THE MOTILITY 

Immediately after collection, the motility of sperm samples was assessed 

by mixing one drop of sperm with 3 μl of artificial sea water [in Mm: NaCl 354.7, 

MgCl2 52.4, CaCl2 9.9, Na2SO4 28.2, KCl 9.4; 2% BSA (w/v), pH 8; Fig. 3.7] 

adjusted to 1000 mOsm/kg as activation media. All the sample analyses were 
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performed by the same trained observer to avoid subjective differences in the 

motility evaluation. 

 

Figure 3.6. Evaluation of the 

sperm motility. 

 

3.7 FLUORESCENCE STAIN ANALYSIS 

Different fluorescence staining methods can be used to evaluate the cell 

viability. One of them is Live/Dead Sperm Viability Kit based in SYBR green and 

Propidium Iodide (PI) dyes (Invitrogen, Barcelona, Spain), that was used in 

Experiment X to evaluate the viability of spermatozoa pre- and post-freezing.  

Sperm diluted in P1 medium (Asturiano et al., 2004; 1:350) was mixed 

with SYBR Green and PI, and maintained during 20 minutes of incubation at 

room temperature in the dark. The final SYBR Green concentration was 104 

times diluted from the original stock (2 μM) and PI 103 times from original stock 

(24 μM). Spermatozoa were classified as dead when nuclei showed red 

fluorescence over sperm head and live when they showed green fluorescence.  

Another fluorescence stain useful to evaluate the viability is Hoechst 

33258, that was used in experiment 1. 

Briefly, 4 μL Hoechst 33258 (Sigma, 1 mg/mL in PBS) was mixed with 2 

μL eel semen and 998 μL PBS. After 5 min incubation at room temperature in the 

dark, at least 100 spermatozoa per slide were assessed. Spermatozoa were 

classified as dead when nuclei showed bright blue fluorescence over sperm 

head, and live when they did not showed this strong fluorescence. 
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The mitochondrial function, studied in Experiment 1, was determinated by 

JC-1 staining. The stock solution was first prepared as 5 mg/ml of JC-1 

(Molecular Probes Inc.) in dimethyl sulphoxide, as staining solution contained 10 

μg of JC-1 in 998 ml of PBS solution. Two μl of sperm eel was incubated with 

staining solution at room temperature in the dark for 15 min. Spermatozoa 

stained with JC-1 displayed either green fluorescence on mitochondria with low to 

medium membrane potential, or yellow-orange fluorescence on mitochondria with 

high membrane potential. 

For each fluorescence analysis at least 100 spermatozoa per sample 

were assessed in a Nikon Eclipse (E-400) epifluorescence microscope, using 

UV-2A (EX: 330-380 nm, DM: 400, BA: 420) filter. 

 

3.8 SPERMATOZOA MORPHOLOGY ANALYSIS 

In all experiments a fraction of sperm samples was diluted 1:50 (v/v) with 

2.5% glutaraldehyde in phosphate buffered saline fixative solution (Pursel and 

Johnson, 1974). Slides were viewed using a 1000X negative phase contrast 

objective (Nikon Plan Fluor) on an Eclipse E400 Nikon microscope. A Sony CCD-

IRIS video camera transferred the image. Sperm morphology was analysed using 

ASMA software (Sperm Class Analyzer®, Morfo Version 1.1, Imagesp, Barcelona, 

Spain). Approximately 100 spermatozoa were analysed in each sample. The 

morphological parameters determined were: head perimeter (μm) and head area 

(μm2). 

 

3.9 SCANNING ELECTRON MICROSCOPY 

In experiment 2, sperm samples were separated from seminal plasma by 

centrifugation at 1800 g for 10 min at room temperature, pre-washed twice with 

0.1 M phosphate buffer pH 7.2 for 1 h. The cells were washed twice with 

phosphate buffer and post-fixed in 1% osmium tetraoxide for 1 h. After fixation, 

the samples were washed twice with phosphate buffer, dehydrated through a 

graded series of ethanol and amylacetate, and finally critical point-dried in liquid 

CO2. The dried samples were mounted on aluminium studs by means of 

conductive silver paint and then coated with gold-palladium. All specimens were 

examined and photographed in a JEOL JSM 5 410 microscopy operated at 15 
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kV. Spermatozoa head length, width, perimeter and area were determinated 

using a public domain ImageJ program (Fig. 3.8; develop at U.S. National 

Institutes of Health and available at www.rsb.info.nih.gov/ij/). 

 

 

Figure 3.7. Eel spermatozoa observed by scanning 

electron microscopy.  
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Abstract 

Fish sperm quality has traditionally been estimated by subjective 

evaluation of motility and sperm concentration. Alternative methods for evaluation 

of sperm quality have been developed in the last decade and enable estimation 

of spermatozoa head morphometry, membrane integrity and mitochondrial 

function.  

Weekly injections of human chorionic gonadotropin (hCG) induced 

spermiation in farmed male European eels. The milt volume increased from the 

5th to 12th weeks. Sperm concentration significantly increased from the 5th 

week, reaching the highest values at the 8th week, while best motility results 

were registered at the 9th week of treatment. Coinciding with these intervals, the 

percentage of dead spermatozoa determined with Hoechst staining showed a 

reduction in the 8th to 11th weeks of treatment, while the percentage of 

mitochondrial functionality determined by JC-1 staining did not show a similar 

pattern.  
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The automatic sperm morphology analysis (ASMA) of the spermatozoa 

head length, width, area and perimeter showed a significant growth from the 5th 

to 8th weeks. However, the analysis of isolated descriptive parameters may be 

difficult to understand because there is variability in these parameters for each 

week, making knowledge of the growth kinetic complex. The global size of the 

spermatozoa head was calculated by applying principal component analysis 

(PCA), because this method establishes new components that make the 

interpretation of results easier, allowing a whole interpretation of the changes in 

the cell morphology. PC1 defines the global head size and shows a significant 

increase between the 5th and 8th weeks of treatment, showing shorter changes 

until 12th week. PC2 shows a significant increase in the spermatozoa width from 

the 5th to 7th weeks. Considering the results of the variations in the principal 

components defining European eel spermatozoa morphometry, it may be 

concluded that hCG maturative treatment produced thick cells during the first 

weeks of spermiation, and subsequent samplings showed an increase in cell 

width and length.  

These changes in sperm morphometry coincide with the highest sperm 

quality assessed as sperm motility and concentration, as well as with the best 

results obtained in previous studies reporting the best sperm quality between 

weeks 8 and 10 of hCG treatment. These results support the use of ASMA and 

Hoechst staining techniques as alternative methods for the evaluation of fish 

sperm quality.  

 

Introduction 

In recent decades, the capture and over-exploitation of eels and elvers 

have diminished populations, becoming an ecological and economical problem, 

making the development of techniques for the control of reproduction in captivity 

necessary. Methods for the hormonal induction of gonad maturation in this 

species have been developed in previous studies, obtaining significant sperm 

volumes with a good quality [1-3] as well as ovarian maturation, spawns, egg 

fertilisation and even hatching [4-5]. Moreover, hybrids between European eel 

and Japanese eel (Anguilla japonica) have been obtained, using the sperm of the 

European species and Japanese eel oocytes [6]. However, methods for the 

hormonal induction of gonad maturation in this species usually take several 
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weeks, and unsynchronised maturations can occur, preventing egg fertilisation. 

With the aim of resolving the issue of lack of control in the reproduction of this 

species, the first sperm cryopreservation media and methods have recently been 

developed [7-10], and different techniques have recently been used to 

characterise European eel spermatozoa morphometrically [11-12], in an attempt 

to define a way to evaluate sperm quality.  

Human chorionic gonadotropin (hCG) treatment has been used 

successfully to induce spermiation in both European and Japanese (A. japonica) 

farmed eels [1-3,7,9,13,14]. The hormonal treatment causes morphological 

changes in males (eye diameter increase, dark dorsolateral and silver ventral 

colouration, black pectoral fins and well developed cephalic lateral line). The hCG 

treatment results in the spermiation of most of the males over several weeks 

[1,3,7,9].  

Sperm quality is a measure of the ability of sperm to fertilise an egg 

successfully, but this capacity may not be reliable, as egg quality may be variable 

and affect fertilisation success [15]. Currently, any quantifiable physical 

parameter that directly correlates with the fertilisation capacity of sperm could be 

used to evaluate sperm quality [15]. The percentage of motile spermatozoa is the 

most common test used to evaluate fish sperm quality [15-17]. Sperm motility 

depends on the ATP content and the ability of mitochondria to sustain the high 

energy demand during motility [18]. Protocols have been developed using 

fluorescent staining to provide rapid assessment of the mitochondrial functionality 

and plasma membrane integrity of fish sperm [15,17,19-21]. To assess the non-

viable cells, membrane-impermeable nucleic acid stains can be used which 

positively identify dead spermatozoa by penetrating cells with damaged 

membranes. An intact plasma membrane will prevent these products from 

entering the spermatozoa and staining the nucleus. Phenanthridines, such as 

propidium iodide (PI) [22,23], SYBR14 [21,23] and bisbenzimidazole Hoechst 

33258 [24] have commonly been used. Mitochondrial function can be assessed 

using rhodamine 123 (Rh123) [21] or 5,5′,6,6′-tetrachloro-1,1′,3,3′-

tetraethylbenzimidazolyl-carbocyanine iodide (JC-1), allowing a distinction to be 

made between spermatozoa with poorly and highly functional mitochondria [25]. 

Until recently, the morphology of fish and mammalian sperm was examined using 

manual techniques, but these are subjective, time-consuming and the results 
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highly variable [26,27] and difficult to apply uniformly [28]. Several reports have 

described the spermatozoan ultrastructure of European and Japanese eels and 

examined its morphology based on transmission electron microscopy (TEM) [29-

32] or scanning electron microscopy (SEM) [31,33]. New image analysis systems 

which are easier to use and enable evaluation of a great number of spermatozoa 

have been developed to measure several morphology parameters. Automatic 

sperm morphology analysis (ASMA) was previously used in European eel to 

examine the head spermatozoa morphometry [11,12], showing that it is possible 

to use this methodology to obtain similar results as from TEM and SEM. This 

technique has also been used in the field of cryopreservation, in which 

cryoprotectants or freeze-thawed regimes are known to cause morphological 

damage to the spermatozoa [34,35], and to study the effect of mercuric chloride 

on goldfish sperm [27].  

The aim of the present study was to examine the effect of weekly hCG 

treatment on European eel spermatozoa quality, using fluorescent staining 

techniques and analysing spermatozoa morphometry with the ASMA system. 

 

Material and Methods 

Fish and sampling 

Thirty-six farmed eel males (137.6 ± 21.43 g of body weight) from the fish 

farm Valenciana de Acuicultura, S.A. (Puzol, Valencia; East coast of Spain) were 

moved into our facilities at the Universidad Politécnica de Valencia. Fish were 

gradually acclimatised to seawater (salinity 37.0 ± 0.3 g l−1; 20–22 °C) for 10 

days. Fish were distributed in four 96 l aquaria and tagged with passive 

integrated transponders (P.I.T. tags) injected into the epaxial muscle for 

individual identification. Fish were fasted during the experiment.  

Males were hormonally induced to maturation and spermiation with 

weekly intraperitoneal injections of hCG (1.5 IU g BW−1), as described previously 

by Pérez et al. [2]. Once a week during the spermiation period, from week 5–12 

of hCG treatment, fish were sampled 24 h after the hormone administration. After 

cleaning the genital area with fresh water and thoroughly drying to avoid 

contamination of samples with faeces, urine and seawater, total expressible milt 

was collected in a graduate tube after applying gentle abdominal pressure to 
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anaesthetised males (benzocaine; 60 mg l−1). Total expressible milt was 

expressed as ml 100 g fish−1 and samples were maintained at 4 °C.  

Determination of spermatozoa concentration was performed immediately 

after collection from all males and by the same technician to avoid bias in 

assessment. To avoid sperm aggregation and achieve an appropriate 

concentration for counting, milt was diluted 1:500–1:1000 with P1 medium 

containing: 125 mM NaCl, 20 mM NaHCO3, 2.5 mM MgCl2, 1 mM CaCl2, 30 mM 

KCl; pH 8.5 [7]. Sperm concentration was estimated after direct counting on a 

Thoma haemocytometer and expressed as spermatozoa × 109 ml−1.  

Sperm quality evaluation 

Immediately after collection, the sperm motility was estimated after a final 

dilution of 1:1000 using artificial seawater (354.7 mM NaCl, 52.4 mM MgCl2, 9.9 

mM CaCl2, 28.2 mM Na2SO4, 9.4 mM KCl; pH 8) with osmolality adjusted to 1000 

mOsm kg−1 as an activation media [3]. Immediately after dilution, 2 μl of activated 

sperm were transferred into one well of a 12-well multi-test slide and covered with 

a coverslip coated with 1% bovine serum albumin (BSA) in distilled water. All the 

sample analyses were performed by the same technician to avoid subjective 

differences in the motility evaluation. The activation process was carried out very 

quickly, in less than 10 s, as the motility usually drops in a few seconds. Motility 

was characterised using an arbitrary scale in which 0 represented no motile 

sperm, I <25%, II = 25–50%, III = 50–75%, IV = 75–90%, and V = 90–100% of 

the population were vigorously motile.  

Sperm viability assessed by Hoechst 33258 staining 

Hoechst 33258 was used to evaluate the viability of eel spermatozoa 

throughout the weeks of spermiation. Briefly, 1 μl of Hoechst 33258 (Sigma–

Aldrich, Madrid, Spain; stock solution 1 mg ml−1) was added to 2 μl of eel semen 

and 997 μl of phosphate buffer solution (PBS). After 5 min incubation at room 

temperature in the dark, at least 100 spermatozoa per slide were assessed in a 

Nikon Eclipse (E-400) epifluorescence microscope, using a UV-2A (EX: 330–

380 nm, DM: 400, BA: 420) filter and a 1000× lens (Nikon Plan Fluor). 

Spermatozoa were classified as dead when nuclei showed bright blue 

fluorescence over sperm head, and live when sperm head was not strongly 

fluorescent.  
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Mitochondrial function determined by JC-1 staining 

The JC-1 was obtained from Molecular Probes Inc. (T-3168). The stock 

solutions were first prepared as 5 mg ml−1 of JC-1 in dimethyl sulphoxide 

(DMSO). The staining solution contained 10 μg of JC-1 in 998 ml of PBS solution. 

A 2 μl of eel semen was incubated with the staining solution at room temperature 

in the dark for 15 min. The stained spermatozoa were then examined with B-2A 

(EX: 450–490 nm, DM: 505, BA: 520) filter and a 1000× lens (Nikon Plan Fluor). 

At least 100 spermatozoa per sample were assessed in a Nikon Eclipse (E-400) 

epifluorescence microscope. Spermatozoa stained with JC-1 displayed either 

green fluorescence for mitochondria with low to medium membrane potential, or 

yellow–orange fluorescence for mitochondria with high membrane potential.  

Spermatozoa morphology analysis 

A fraction of collected sperm samples was diluted 1:50 in 2.5% 

glutaraldehyde in PBS fixative solution [36]. Slides were observed using a 1000× 

negative phase contrast lens (Nikon Plan Fluor) on Eclipse E400 Nikon 

microscope. A Sony CCD-IRIS video camera transferred the image to one 

computer. Sperm morphology was analysed using ASMA software (Sperm Class 

Analyzer®, Morfo Version 1.1, Imagesp, Barcelona, Spain). Approximately 100 

spermatozoa were analysed in each sample. The morphological parameters 

determined were: head length (μm), head width (μm), head perimeter (μm) and 

head area (μm2). A total of 194 semen samples were analysed during 8 weeks.  

The reference values of morphological characteristics of spermatozoa in the 

present study were obtained with scanning electron microscopy, according to 

Marco-Jiménez et al. [11,12].  

Statistical analysis 

The General Linear Model (GLM, Statgraphics®Plus 5.1; Statistical 

Graphics Corp., Rockville, MO, USA) was used to analyse the volume, 

concentration, percentage of dead spermatozoa and mitochondrial function data. 

The week was included as a fixed effect in the model. Male was a blocking factor 

which, although having no interest in itself, was included in order to achieve a 

more accurate comparison between different weeks [37].  

The week effect of hCG treatment on morphometry parameters was 

analysed by a one way analysis of variance (ANOVA) with fixed effects, including 
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male as a blocking factor. Considering the multidimensional character of 

morphometry, as well as the evident correlation between the four parameters 

(length, width, area and perimeter), the previously described ANOVA was applied 

to the scores obtained after one Principal Component Analysis (PCA, 

Statgraphics®Plus 5.1; Statistical Graphics Corp., Rockville, MO, USA) developed 

over the four morphometry parameters. The purpose of PCA is to derive a small 

number of linear combinations (principal components) from a set of variables that 

retain as much of the information in the original variables as possible. This allows 

the summarisation of many variables in a few, jointly uncorrelated, principal 

components. A good result is obtained when a few principal components account 

for a high proportion of the total variance. This analysis establishes new concepts 

(or components) not directly measurable and independent of each other [38] that 

make the interpretation of results easier. In order to select the number of principal 

components that should be used in the next step of our analysis, we followed the 

criterion of selecting only those with an eigenvalue (variance extracted for that 

particular principal component) higher than 1 (Kaiser criterion). 

Results 

The means ± standard error of the means (S.E.M.) of milt volume and 

concentration between weeks 5 and 12 of hCG treatment are shown in Table 1. 

Milt volume displayed a significant increase from the 5th (0.23 ± 0.08 ml 100 g 

fish−1) to the 11th weeks (4.18 ± 0.75 ml 100 g fish−1). Sperm concentration (spz 

× 109 ml−1) significantly increased from week 5th (0.73 ± 0.25) until 8th (2.46 ± 

0.23), and then progressively decreased from week 8th to 12th (1.38 ± 0.21), 

when the values were significantly lower.  

Sperm motility increased gradually from the onset of spermiation (week 5) 

until showing motility categories >III from weeks 8 to 11 of hCG treatment. Best 

motility results were registered at the 9th week, when 24.24% samples showed 

motility class II and 24.24% more showed motility classes of ≥III (Table 4.1). 

Subsequently, sperm motility was reduced until the end of treatment.  

4.1A shows the sperm viability results obtained by Hoechst 33258 

staining. The percentage of dead spermatozoa showed a significant reduction at 

the 8th week of treatment (reaching 37.0 ± 4.6%) and maintained similar results 

until the 11th week of treatment, showing a significant increase (showing 55.8 ± 

4.9%) coinciding with the end of the spermiation at the 12th week. 
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Fig. 4.1B shows the mitochondrial function determined by JC-1 staining. A 

reduction of cells showing low mitochondrial functionality was observed from the 

5th to 8th week of treatment, when the lowest percentage of spermatozoa 

showed low mitochondrial functionality (78.4 ± 3.3%). From then on, a significant 

increase occurred and the percentage of cells showing low mitochondrial 

functionality was maintained until the last sampling. 
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Table 4.1. Sperm volume, concentration and frequency of motility 

categories produced by eel males between 5th and 12th  weeks of hCG treatment.  
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Figure 4.1 (A) Sperm viability obtained by Hoechst 33258 

staining, expressed as percentage of dead spermatozoa. (B) 

Mitochondrial function determined by JC-1 staining, shown as 

percentage of cells showing low mitochondrial functionality. 

Different letters indicate significant differences. 

 

 

Table 4.2 shows the least square means ± S.E.M. for each of the 

measured parameters (head length, width, perimeter and area) from weeks 5 to 

12 of hCG treatment. A higher number of spermatozoa were analysed during the 

weeks when the highest number of sperm samples were obtained. Generally, the 

results show a significant growth from weeks 5 to 8, being maintained until the 

week 11, and decreasing thereafter. However, there is considerable variability 

within each of the parameters that complicates the determination of the growth 

kinetic.  
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Table 4.2. Least square means ± standard error of the means for each of the 

measured parameters (head length, width, perimeter and area) from 5th to 12th 

weeks of hCG treatment. 

 

Weeks 
 

n Head length (μm) Head width (μm) Area (μm2) 
 

Perimeter (μm)

5 471 3.99 ± 0.03
e

 1.07 ± 0.009
g

 4.90 ± 0.03
g

 13.63 ± 0.10
f
 

6 1560 4.11 ± 0.01
d

 1.19 ± 0.004
b

 5.19 ± 0.02
f
 14.13 ± 0.05

d
 

7 3007 4.11 ± 0.01
d

 1.21 ± 0.003
a

 5.14 ± 0.01
e

 13.94 ± 0.05
e

 

8 3147 4.31 ± 0.01
b

 1.13 ± 0.003
e

 5.44 ± 0.01
b

 15.32 ± 0.04
a

 

9 2357 4.28 ± 0.01
b

 1.13 ± 0.003
e

 5.38 ± 0.01
c

 15.06 ± 0.05
b

 

10 3060 4.20 ± 0.01
c

 1.17 ± 0.004
c

 5.46 ± 0.01
b

 15.10 ± 0.05
b

 

11 1375 4.38 ± 0.01
a

 1.10 ± 0.003
f
 5.51 ± 0.01

a
 15.09 ± 0.05

b
 

12 1514 4.09 ± 0.01
d

 1.15 ± 0.004
d

 5.27 ± 0.02
d

 14.37 ± 0.06
c

 

Values in the same column with different letters are statistically different (P < 0.05). n: 
numbers of spermatozoa analysed in each week. 

 

 

The global size of head spermatozoa in multivariate analysis was 

calculated considering four parameters (length, width, area and perimeter). On 

the basis of an eigenvalue-one criterion, the two most significant components (1 

and 2, with eigenvalue of 1.98 and 1.14, respectively) were estimated. They 

explain 78% of variance (Table 4.3). The component 1 correlates well with length 

(0.79), area (0.84) and perimeter (0.80) and component 2 with width (0.97) and 

area (0.42).  
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Table 4.3. Principal components existing on the head spermatozoa morphology 

obtained by hCG treatment: influences of the different parameters and its 

correlations (inside parenthesis) on the two components. 

 
 

Components (correlations) 

 

1 2 

Head length 0.56 (0.79) −0.13 (−0.14) 

Head width −0.11 (−0.15) 0.90 (0.97) 

Area 0.60 (0.84) 0.39 (0.42) 

Perimeter 0.57 (0.80) −0.11 (−0.12) 

Percentage of 
variability explained 49.7 28.7 

In addition, the percentage of variability explained by each 

component is shown. 

 

The week effect of hCG treatment on spermatozoa morphometry 

components obtained by the Principal Component Analysis is shown in Fig. 2, 

where the comparison of least square means on the levels of the factor week is 

graphically shown as HSD intervals of Tukey. Fig. 2A shows a significant 

increase in spermatozoa size (component 1) between the weeks 5 and 8 of hCG 

treatment; from then on, size showed minor but significant changes until week 

11, and a significant decrease during week 12. Fig. 4.2B shows a high increase 

in the spermatozoa width (component 2) from the weeks 5 to 7 of hCG treatment. 

From the 8th week, changes in width were lower, but significant and without clear 

tendencies. 
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Figure 4.2. Evolution of the different spermatozoa morphometry components, 

obtained by the Principal Component Analysis, between 5th and 12th weeks of 

hCG treatment. (A) Spermatozoa size or component 1 and (B) spermatozoa 

width or component 2. Results are shown as 95% HSD intervals over the means. 

Different letters indicate significant differences. 

 

Discussion 

It has been reported that repeated hCG (1.5 IU g fish−1) administration 

induced spermiation in farmed European eels [2]. Sperm sample evaluation 

started at the 5th week of treatment, coinciding with the onset of milt production. 

The changes in milt volume, concentration and motility from the 5th week until the 

end of hCG treatment were similar to those observed by other authors [1-3,8,9]. 

Pérez et al. [2] proved that the most suitable time to obtain sperm with the 

highest motility is the 9th week, while Müller et al. [9] reported no differences in 

the motility of sperm samples collected on the 8th, 9th and 10th weeks of 

treatment. Based on the present study, the 9th week seems the most suitable 

week of treatment to obtain sperm.  

Traditionally, methods of estimating fish sperm quality have been sperm 

motility and concentration [21]. Other attributes, such as cell viability and 

mitochondrial function, have also been chosen as indicators to evaluate fish 

sperm quality [17,19-21]. Fluorescent staining has recently been shown to 

provide rapid assessment of the integrity of membranes and mitochondrial 

function in fish sperm [17]. In the present study, the proportion of dead cells 
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(around 37%) observed after staining with Hoechst 33258 was significantly lower 

from the weeks 8 to 11 of hCG treatment. These data correspond with the best 

seminal quality (higher percentage of motile cells and higher concentration), as 

shown in Table 1.  

Previous studies have demonstrated a positive correlation between functional 

mitochondria and sperm motility [39,40]. However, in the present study, the 

percentage of mitochondrial functionality determined by JC-1 staining did not 

show a similar pattern to that obtained with Hoechst 33258. A low variability was 

observed throughout the weeks of treatment, varying between the best week 

(8th) and the worst (5th) by <20%. In the monomeric state, JC-1 stains green, 

and, similarly to rhodamine 123, JC-1 is transported into the interior of functioning 

mitochondria. However, as the concentration of JC-1 inside the mitochondria 

increases, the stain forms aggregates which fluoresce orange [41,42]. It is 

possible that the fluorochrome stained less cells because the conditions were 

sub-optimal, since the conditions used in the present study were validated in 

mammal studies [41,42].  

In the present study, the effect of hCG treatment on spermatozoa 

morphometry was analysed with the use of automated sperm morphology 

analysis (ASMA). This technique has been used previously in eels [11,12]. The 

eel spermatozoa head is gently curved and elongated with a hook-shaped upper 

end in a crescent [33]. The head shape is asymmetric along the longitudinal axis. 

This unusual elongation of the sperm head in eels and other elopomorph fish is a 

problem for the ASMA system, causing a certain error in the length 

measurements but not in the rest of morphometry parameters [12]. In fact, results 

obtained in the present study coincide with the range of measurements of 

European eel spermatozoa head width (1.0 ± 0.2 μm) reported by Okamura et al. 

[33], but are relatively lower than head length (5.4 ± 0.4 μm) described by these 

authors, who measured 20–30 spermatozoa using scanning electron microscopy 

techniques.  

The growth sequence of the spermatozoa head in response to the 

hormonal maturation treatment showed variation for all parameters analysed 

(length, width, area and perimeter). All of them showed lowest values on week 

5th of hCG treatment and these results agree with the first weeks of spermiation 

[2] and therefore with immature sperm. From the 5th week, different changes 
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were observed for each of the parameters. To obtain a better approach to global 

head size of the spermatozoa, a multivariate analysis method was used. The use 

of multivariate analysis methods (discriminant analysis, cluster analysis) to define 

spermatozoa clusters or classes with different morphology has been used in 

humans [43], monkeys [44] and horses [45]. In fact, descriptive parameters 

shown in Table 2 suggest some changes in the spermatozoa morphology through 

the hormonal treatment, but the analysis of isolated parameters is not powerful 

because it does not consider the correlations between them. However, the 

ANOVA on the scores, generated by the Principal Component Analysis (Table 3), 

allows a whole interpretation of the changes in the spermatozoan morphology 

and subsequently a more informative comparison between different weeks of 

treatment. In the present study, the Principal Component Analysis established 

two components (Kaiser criterion) with an accumulated percentage of variability 

explained of 78.4% (49.7% and 28.7%, for each component, respectively). The 

first component can be considered as a general size component and the second 

one distinguishes wide and narrow spermatozoa. Our results showed an 

increased effect on global head size up to 8th week of treatment, maintaining 

approximately these values until the 11th week, decreasing later. On the other 

hand, the head of the spermatozoa from the weeks 5 to 7 is thickened, 

decreasing somewhat from the weeks 7 to 8, the thickness staying more or less 

constant during the following treatment weeks.  

One interesting aspect revealed by the use of Hoechst staining, and 

undetected with previous techniques, is the existence of around 37% dead 

spermatozoa, even in the weeks when best results were registered. This result 

could indicate a sub-optimal effect of the maturation hormonal treatment. 

Similarly, Matsubara et al. [46] studying different steroid levels caused by a 

weekly treatment in artificially matured female Japanese eels, concluded that 

weekly administrations could be inducing a sub-optimal release of steroids. On 

the other hand, this could be explained by a group-synchronous spawner 

character of this species, translated in sperm production in waves as has been 

previously described in other species such as the European sea bass 

(Dicentrarchus labrax) [47,48]. The forced weekly semen collection could be 

extracting spermatozoa from different batches or stages of development, which in 

a natural manner should be released in different waves of sperm production. If 
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this were the case, some of the extracted spermatozoa could be immature, and 

so unviable.  
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Abstract 

The aim of the present study was to characterise European eel 

spermatozoa morphometrically, as a basis for future studies on the morphological 

effects of methods for sperm cryopreservation and sperm quality. This 

characterisation was carried out measuring several spermatozoa morphology 

parameters (head length, width, area and perimeter) by scanning electron 

microscopy (SEM), in comparison with measurements developed in European eel 

spermatozoa with computer-assisted morphology analysis (ASMA).  

Spermatozoa head morphology showed differences in width (1.15 ± 0.01 μm 

versus 1.12 ± 0.01 μm), perimeter (14.68 ± 0.13 μm versus 13.72 ± 0.19 μm) and 

area (5.36 ± 0.06 μm2 versus 1.12 ± 0.01 μm2) for ASMA and SEM, respectively. 

When head length was evaluated, significant differences were found, being 

higher for SEM methodology (5.09 ± 0.04 μm versus 4.29 ± 0.03 μm). The curved 

and elongated spermatozoa head in eels means a problem for the ASMA system 

(Sperm Class Analyser®, Morfo Version 1.1, Imagesp, Barcelona, Spain), causing 

an error in the length measurements. However, similar results were obtained by 

both techniques when spermatozoa head length was considered as the greater 

length between two points within the object (4.29 ± 0.03 μm versus 4.31 ± 0.04 
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μm for ASMA and SEM, respectively). In conclusion, this is one of the first 

applications of ASMA in fish and the first in this species, and confirms this system 

as a useful tool with wide applications in future fish spermatozoa studies. Width, 

perimeter and area could be used as parameters for the spermatozoa 

morphology evaluation, whereas the length requires a new programming of the 

Imagesp software.  

 

Introduction 

Previous reports have described the spermatozoa ultrastructure of 

European and Japanese eels and examined its morphology by transmission 

electron microscopy (TEM) [1-4] or scanning electron microscopy (SEM) [3] and 

[5]. Other techniques to examine and analyse fish spermatozoa head are laser 

light-scattering spectroscopy and stroboscopic illumination [6]. Results obtained 

with these techniques are subjective, time-consuming and highly variable. The 

search for methods of accurate, objective and repeatable assessment of sperm 

fertility still remains the aim of many studies. One of these developed computer-

assisted applications is an automated system for spermatozoa head 

morphometry analysis (ASMA), developed and validated for mammals [7] and 

fish [6].  

Abnormal spermatozoa head morphometry has been associated with reduced 

fertility in the bull, boar and stallion [6,8]. ASMA has increasingly been used with 

mammalian species, such as man [9], rat [10], rabbit [11], bull [12], dog [13], 

monkey [14] and alpaca [15]. ASMA measurements have shown toxic effects on 

human spermatozoa head [16] and the effect of mercuric chloride on goldfish 

sperm [6]. This technique has also been used in the field of cryopreservation, in 

which cryoprotectants or frozen-thawed protocols are known to cause 

morphological damage to the spermatozoa [17,18]. Kruger et al. [19] found that 

spermatozoa head morphometry, determined by ASMA, was predictive of in vitro 

fertilisation rates, and it has also been reported to result in detection of fertile and 

subfertile stallions [20] and rabbit [21]. ASMA systems have never been used in 

eel species.  

ASMA has provided a series of objective parameters, which have facilitated the 

standardisation of morphological semen evaluation [22]. However, different 

problems have arisen, such as sample preparation, staining procedure and the 
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settings of the spermatozoa morphology analyser, which must be optimised for 

each species [9-11,23-25]. The computer-assisted morphometry analysis 

requires the standardisation of preparation, staining and sampling methods [9].  

The main aim of the present study was to characterise the European eel 

spermatozoa morphometrically, comparing the results obtained by computer-

assisted spermatozoa analysis and by scanning electron microscopy. 

 

Materials and Methods 

Fish and samplings 

Thirty-six farmed eel males (body weight: 137.6 ± 21.43 g) from the fish 

farm Valenciana de Acuicultura, S.A. (Puzol, Valencia; East coast of Spain) were 

moved into our facilities. Fish were gradually acclimatised to sea water (salinity 

37.0 ± 0.3 g/l; 20–22 C) for 10 days. Fish were distributed in four 96l aquaria and 

tagged with passive integrated transponders (P.I.T. tags) injected into the epaxial 

muscle for individual identification. Fish were fasted during the experiment.  

Males were hormonally treated for the induction of maturation and spermiation 

with weekly intraperitoneal injections of hCG (1.5 IU/g fish), as previously 

described by Pérez et al. [26].  

Once a week during the spermiation period, from the 5th to 12th weeks of 

treatment, fish were sampled 24 h after the hormone administration. After 

cleaning the genital area with freshwater and thoroughly drying to avoid 

contamination of samples with faeces, urine and sea water, total expressible milt 

was collected by applying gentle abdominal pressure to anesthetised males 

(benzocaine; 60 mg/l). A small aquarium air pump was modified to obtain a 

vacuum breathing force and to collect the sperm. A new tube was used for every 

male and distilled water was used to clean the collecting pipette between different 

males. Samples were maintained at 4 C. 

 

Samples evaluation by ASMA 

A fraction of collected sperm samples was diluted 1:50 with a 2.5% 

glutaraldehyde in Dulbecco's phosphate buffered saline fixative solution prepared 

with DPBS (Sigma) and glutaraldehyde solution (Sigma). Slides were visualised 

using a 1000× negative phase contrast objective (Nikon Plan Fluor) on Eclipse 
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E400 Nikon microscope. A Sony CCD-IRIS video camera transferred the image. 

The morphological parameters were analysed using ASMA software (Sperm 

Class Analyser®, Morfo Version 1.1, Imagesp, Barcelona, Spain). The 

morphometric parameters determined were: head length (μm), width (μm) and 

perimeter (μm) and head area (μm2). 

 

Scanning electron microscopy 

Sperm cells were separated from seminal plasma by centrifugation at 

1800 g for 10 min at room temperature, pre-washed twice with 0.1 M phosphate 

buffer pH 7.2 and fixed in 2% glutaraldehyde in 0.1 M phosphate buffer solution 

pH 7.2 for 1 h. The cells were washed twice with phosphate buffer and post-fixed 

in 1% osmium tetraoxide for 1 h.  

After fixation, the samples were washed twice with phosphate buffer, 

dehydrated through a graded series of alcohol and amyl acetate, and finally 

critical point-dried in liquid CO2. The dried samples were mounted on aluminium 

studs by means of conductive silver paint and then coated with gold–palladium. 

 All specimens were examined and photographed in a JEOL JSM 5 410 

microscopy operated at 15 kV. Spermatozoa head length, width, perimeter and 

area were determined using a public domain ImageJ program (developed at U.S. 

National Institutes of Health and available at www.rsb.info.nih.gov/ij/). 

 

Experimental design 
To examine the spermatozoa head morphometry with ASMA system, 203 

individual ejaculates, from 36 males, were analysed during 8 weeks. 

Approximately 75 spermatozoa were analysed in each sample.  

To examine the spermatozoa head morphometry from pictures obtained 

with scanning electron microscopy (SEM), 1 pool from 10 males, to avoid 

individual differences, was analysed using ImageJ program. A total of 100 

spermatozoa head measurements were taken. 

 

Statistical analysis 

The mean morphometry measurements for length, width, area and 

perimeter were compared by analysis of variance (General linea r model, GLM). 

The results are presented as least square means (LSM) ± standard error of the 
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means (S.E.M.). Significance level was set at P < 0.05. All statistical procedures 

were run using Statgraphics Plus® 5.1 (Statistical Graphics Corp., Rockville, MO, 

USA) [27]. 

 

Results 

A total of 100 spermatozoa were measured by SEM (Fig. 5.1) and 14,898 

spermatozoa were measured using ASMA system (Fig. 5.2).  

 

Figure 5.1. Scanning electron microscopy of European eel spermatozoa separated 

from seminal plasma by centrifugation, fixed in 2% glutaraldehyde, post-fixed in 1% 

osmium tetraoxide, dehydrated, critical point-dried in liquid CO2 and coated with 

gold–palladium. Scale bars: 10 (A) and 2 μm (B). 

 

Figure 5.2. Real pictures obtained by phase contrast optic (1000×) and schematic 

drawing showing how the Sperm Class Analyser®, Morfo Version 1.1 (Imagesp, 

Barcelona, Spain) measures different morphology parameters of European eel 

spermatozoa. a= Measured length by ASMA; x = real length of the cell. 

 

x

a

x
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Differences were found between spermatozoa head length, width, 

perimeter and area determined by ASMA and SEM system (Table 5.1, P < 0.05).  

 

Table 5.1. Spermatozoa morphological parameters: head length (μm), width 

(μm), perimeter (μm), and head area (μm2), considering spermatozoa measured 

by computer-assisted morphology analysis (ASMA) or scanning electron 

microscopy (SEM) and analysed by Image J. 

 
Length 

(μm) 
 

Width (μm) 
 

Perimeter 
(μm) 

Area (μm2) 
 

 

ASMA 4.29 ± 0.03b 1.15 ± 0.01a 14.68 ± 0.13a 5.36 ± 0.06a 

SEM 5.09 ± 0.04a 1.12 ± 0.01b 13.72 ± 0.19b 5.05 ± 0.01b 

P-
value 0.000 0.031 0.002 0.000 

Different superscript letters (a and b) indicate significant differences 

between values obtained by ASMA or SEM. 

Similar results were obtained for head length for both techniques when 

length was considered as the greater length between two points within the object 

(4.29 ± 0.03 μm versus 4.31 ± 0.04 μm for ASMA and SEM, respectively; Fig. 

5.2). 

 

Discussion 

Previous studies reported that when spermatozoa morphology is analysed 

by visual methods, the intra- and inter-observer laboratory variations are usually 

very large [30]. The ASMA systems require standardisation of methods and 

variables, but under these conditions their repeatability and validity are much 

higher than any subjective morphological evaluation [31,32].  

ASMA system has been used previously in fish, but merely to show the 

effect of mercuric chloride on goldfish spermatozoa morphology [6]. Eel 

spermatozoa morphological characteristics have been described to date by 

transmission electron microscopy (TEM) or SEM observations [1-5]. Currently, 

image analysis systems have been developed that are easy to use and allow 
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evaluation of a great number of spermatozoa, for example, in this study 14,898 

were measured. In the present study, European eel spermatozoa morphometry 

was analysed with the use of ASMA software on images captured by phase 

contrast optic or by SEM, in order to standardise the evaluation of spermatozoa 

head morphology in this species. The main findings emerging from this study 

were: (i) that spermatozoa head morphology evaluated by ASMA resulted in a 

lower length and higher width, perimeter and area than measurements 

determined by SEM, (ii) software Imagesp cannot detect the curved and 

elongated spermatozoa head form, causing an error in the length measurements, 

although not in the other morphological parameters.  

The results obtained with SEM are in good agreement with previous 

studies, in which 5.4 ± 0.4 and 1.0 ± 0.2 μm and 5.6 ± 0.5 and 0.9 ± 0.3 μm were 

reported for head length and width, respectively [5,33]. Eel spermatozoa head 

perimeter and area have been measured in the present study for the first time. 

However, significant differences were observed between SEM and ASMA 

methodologies. Spermatozoa morphology assessment is influenced by numerous 

factors, such as semen preparation, magnification level of the objectives, number 

of evaluated spermatozoa, or the fixation and staining technique [7,20]. Every 

factor appeared to be species specific [7] and play an important role in the 

optimal utilisation of computer-aided spermatozoa morphometry systems [25]. 

Boersma et al. [25] suggested that stained spermatozoa heads produce better 

contrast in the recognition and digitisation of spermatozoa. However, other works 

indicate that the stains do not necessarily provide the appropriate grey-level 

contrast for accurate morphometric analysis [35]. To stain, the samples are 

placed on a slide and dried in air before fixation, but it may be possible that air 

dried samples will shrink, flatten or collapse under these conditions [36]. On the 

other hand, fixation techniques containing aldehydes result in a low coefficient of 

variation and a high number of acceptable and correctly delineated heads [22]. 

Thus, in the present study, samples were directly fixed with 2.5% glutaraldehyde 

solution in Dulbecco's phosphate buffered saline (300 mOsm/kg). The higher 

measurements reported by ASMA could be explained at least in part because the 

SEM samples were fixed and dehydrated through a graded ethanol series and 

finally critical point-dried in liquid CO2, and perhaps this preparation process 

provokes a reduction in spermatozoa head size. The different spermatozoa head 



 

 84 

length measurement obtained between ASMA and SEM can be explained by the 

particular aspect of the head of eel spermatozoa, very different to livestock 

production animals. Fish sperm differs in many aspects from that of mammals 

[34], and the ASMA methodology used for livestock production animals is not 

directly applicable to fish [6]. The eel spermatozoa head is gently curved and 

elongated, with a hook-shaped upper end, which is directed inside in a crescent 

[5] (Fig. 1). The shape of the head is asymmetric along the longitudinal axis. This 

elongation of the spermatozoa head in eels and other elopomorph fish means a 

problem for the Imagesp ASMA system, causing an error in the length 

measurements (Fig. 2). Once the software captures one spermatozoa, the image 

is digitised and it is transformed into a variable dummy, 1 or 0 if the pixels are 

black or white in colour, respectively. The Imagesp software starts the image 

analysis, determining the maximum length of the pixel with value 1 and drawing a 

line at this point (a in Fig. 2). However, the curvature of this kind of spermatozoa 

is not recognised and, therefore, the software is not measuring the real length (x 

in Fig. 2), but measures the maximum length determined by the amplitude of 

curvature of spermatozoa head (a in Fig. 2). When this same criterion was 

applied for measuring the pictures obtained by means of electron microscopy, 

similar results of length were obtained; 4.31 ± 0.04 μm versus 4.29 ± 0.04 μm, for 

SEM and ASMA, respectively. Similar spermatozoa curved shapes have been 

reported in species such as rat [37], making its spermatozoa characterisation 

also difficult. New developments of Imagesp software are required, and different 

possibilities are present: (i) to obtain a skeleton of the figure by means of lines 

parallel to the width within the figure and drawing up to a line between the 

midpoints (ii) or by means of geodesic ratios, as after the digitalisation of the 

image, the coordinates are known for each point, and it would be possible to 

obtain the greatest longitude between two points of the object on the inside 

passing through the midpoint of the straight line that defines the width (x in Fig. 

2). Until now, it has not been clear which parameter better defines the head 

morphometry and, therefore, the fact of not having the use of the length available 

does not invalidate the use of this software, since the rest of the parameters, 

width, area and perimeter, can be used.  

In conclusion, width, perimeter and area could be used as methods of 

spermatozoa morphology evaluation, whereas the length requires a new 
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programming of the Imagesp software. This characterisation of the spermatozoa 

morphology is one of the first applications of ASMA methodology in fish and the 

first one in eel species. It confirms this system as a useful tool, mainly in terms of 

time-saving, higher accuracy and the reduced equipment required in comparison 

with electron microscopy techniques, with wide applications in future studies of 

fish spermatozoa membrane physiological response under the compared effects 

of extenders, cryoprotectants, additives, etc. Additional experiments are required 

in order to understand the correlation between usual sperm evaluation methods 

and spermatozoa head morphometry.  
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Abstract 

European eel males can be artificially matured (1.5 IU hCG/g fish), but the 

regulatory mechanisms of their reproductive development are practically 

unknown. The present study evaluated the expression of GnRHs (mGnRH and 

cGnRH) and gonadotropin expression (FSHβ and LHβ) during the hormonal 

treatment. Moreover, 11-ketotestosterone (11KT) levels, testis development, 

morphology parameters [eye index (EI), gonadosomatic index (GSI), 

hepatosomatic index (HI)] and sperm quality (motility, viability and head 

spermatozoa morphometry) were analyzed. Differences in the GnRHs expression 

were found, considering the mGnRH as responsible of gonadotropin release. 

One injection was enough to decrease dramatically the FSHβ expression, being 

close to zero during the rest of the treatment. LHβ expression registered two 

important peaks, in the 3rd and 7th weeks. These LHβ peaks could be correlated 

with two important changes in the gonad, first of them coinciding with the late 

meiosis-spermiogenesis process and the second with the sperm maturation. The 

11-KT increased with GSI, and the highest 11-KT values coincided with the later 

steps of spermartogenesis previous to spermiation. So, it can be considered that 

this androgen played an important role in the spermatogonia proliferation and in 

the last phases of spermatogenesis. Furthermore, 11-KT has influence in the 

changes of morphologic characters, presenting high values when EI and GSI 
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increased. Sperm production was obtained from the 4th week of treatment, but it 

was in the 8th week when a significant increase was observed in the sperm 

quality [viability, high motility (>75%)]. 

 

Introduction 

The European eel, Anguilla anguilla, is a teleost fish with a peculiar life 

cycle. Prepubertal silver eels migrate 4-5000 km from European coastal waters to 

their supposed spawning grounds in the Sargasso Sea. If prevented from this 

oceanic migration, the silver eel will remain physiologically blocked in a 

prepubertal stage [1-5]. This makes the eel a powerful model organism for 

investigating the regulatory mechanisms of reproductive development. 

Furthermore, the European eel belongs to an early branching group of teleosts 

(Elopomorphs), and the knowledge of the reproductive development in this 

species may provide information on regulatory mechanisms in other teleost 

species as well as vertebrates in general. 

In mammals, control of reproduction by the brain-pituitary-gonad (BPG) 

axis is well established. A hypothalamic decapeptide, the gonadotropin-releasing 

hormone (GnRH), is the physiologic stimulator of gonadotropin release from the 

pituitary gland. Two different types were described in Japanese eel (Anguilla 

japonica), mGnRH and cGnRH-II, finding mGnRH expression in large number 

body tissues, while the cGnRH-II expression appeared in olfactory epithelium, 

brain, pituitary and gonad [6-8]. Their distribution in the brain was studied in 

European eel [9,10], registering higher cGnRH-II peptide concentration in 

di/mesencephalon and in the posterior part of the brain (medulla oblongata, 

corpus cerebellum), while for mGnRH peptide it was in the olfactory bulbs, 

telecephalon, di/mesencephalon and pituitary. The gonadotropin stimulating 

effect of this neuropeptid in European eel was demonstrated with injections of 

GnRH-analog, but due to dopamine inhibition it was necessary to add a 

dopamine (DA) antagonist for their release [1-5]. In fact, a triple treatment using 

17β-estradiol (E2), GnRH analogues and dopamine antagonists were necessary 

to trigger endogenous production and release of gonadotropins [5]. However, in 

males a double treatment (E2 and GnRH injection) was enough to induce a low 

gonadotropin release [11]. This slight effect of GnRH, without DA antagonist, 

suggests a less effective dopaminergic inhibition in male than in female eel.  
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Unlike eel females, where the gonadotropin expression has been deeply 

analyzed [1,3,5,12-14], in male European eel the gonadotropin expression has 

never been studied during the gonadal development. The gonadotropin release 

induces the gonad development, being the gonad their principal target tissue [15-

17]. The gonadal development has been studied in eel males, and consists in the 

spermatogenesis process, which is divided in the next stages: spermatogonial 

stem-cell renewal, spermatogonial proliferation, spermiogenesis and sperm 

maturation [15,16,18-21]. Under culture conditions, Japanese and European eel 

males have immature testes containing only type A and early-type B 

spermatogonia [18,22-26]. To continue the spermatogenesis, it has been 

reported in both species that it is necessary to administrate a hormonal treatment 

with human chorionic gonadotropin, due to these species do not mature in 

captivity [22,23,27-38]. This treatment promotes an increase of 11-

ketotestosterone (11-KT) levels in the plasma, which is considered as the major 

androgen in the eel male [22,23,26]. This androgen is produced by the Leydig 

cells, being its role the induction of the spermatogenesis through of the Sertoli 

cells [18,20,21]. As a consequence of this stimulation, the Sertoli cells produce 

growth factors, such as insulin-like growth factor-I (IGF-I) and activin B, which are 

the responsible factors of spermatogonia mitosis [15,16].  

As a result of the hormonal treatment the spermatogenesis takes place 

and the spermiation begins. The European eel sperm shows a high density (3-

6x109 spermatozoa/ml [28]) and the time of spermatozoa motility is very short 

after activation, from a few seconds to a few minutes [39] making difficult the 

evaluation of sperm motility. Fish sperm quality has traditionally been estimated 

by subjective evaluation of sperm motility and concentration, but during recent 

years an intense advance has occurred in the techniques for the objective 

evaluation of sperm quality. This has been achieved by the study of motility 

parameters by CASA (computer assisted sperm analysis) systems [30,40,41], 

spermatozoa morphometry analysis using ASMA (automated sperm 

morphometry analysis; [32,37,42,43] or using fluorescent staining methods to 

evaluate membrane functionality, determining on this way the percentage of 

viable spermatozoa [33,37,38]. Sperm quality is a measure of the ability of sperm 

to fertilise an egg successfully, but this capacity may not be reliable in this 
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species, due to the reduced number of good spawns obtained from artificially 

matured European eel females. 

A physiological description of the male maturation process during the 

hormonal treatment has not been yet made in the European eel. This is the first 

study in which GnRH and gonadotropin expression are related with the most 

important reproductive parameters. Our main purpose has been to carry out a 

wide description of the European eel male gonad maturation to understand how 

this process is controlled by hormonal mechanisms, and which are the hormones 

effects on the sperm quality. This work not only could improve the knowledge of 

the control mechanisms of male sexual maturation in the European eel, as well 

as contribute to increase the knowledge in teleost male physiology.  

 

Materials and Methods 

Fish and samplings 

One hundred and fifty eel males (124.1 ± 12.6 g body weight) from the 

fish farm Valenciana de Acuicultura, S.A. (Puzol, Valencia; East coast of Spain) 

were moved into our facilities. Fish were gradually acclimatized to sea water 

(salinity 37 ± 0.3 g/l; 20ºC) for one week. Fish were equally distributed in three 

tanks of 500-L. Males were hormonally treated for the induction of maturation and 

spermation with weekly intraperitoneal injections of hCG (1.5 IU g/fish; Angelini 

Farma-Lepori, Barcelona, Spain), as previously was described by Pérez [28]. 

Once a week during all experiment (13 weeks), 10 males were sacrificed 

one day after injection obtaining morphometric parameters as gonadosomatic 

index (GSI), hepatosomatic index (HIS) and eye index (EI, [27]), and samples of 

blood, brain and pituitary. The brain was divided in different parts for its study: 

olfactory bulb, telencephalon, mesencephalon and diencephalon, cerebellum and 

medulla oblongata, but only the first 3 parts were used in this study. Each part 

was stored in 0.5 ml of RNA later (Ambion Inc, Huntingdon, UK) at -20ºC until 

extraction. The blood was centrifuged at 3000 r.p.m. during 5 minutes, and the 

blood plasma was stored at -80ºC until analysis. Moreover, sperm samples were 

taken during the spermiation weeks, analyzing the spermatozoa motility and the 

percentage of live cells before sacrificing the fish. The sperm was obtained by 

applying gentle abdominal pressure to anesthetised males (benzocaine; 60 
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mg/L), after cleaning the genital area with freshwater and thoroughly drying to 

avoid contamination of samples with faeces, urine and sea water. 

 

Evaluation of motility 

Immediately after collection, the motility of sperm samples was assessed 

by mixing one drop of sperm with 3 μl of artificial sea water [in Mm: NaCl 354.7, 

MgCl2 52.4, CaCl2 9.9, Na2SO4 28.2, KCl 9.4; 2% BSA (w/v), pH 8] adjusted to 

1000 mOsm/kg as activation media. All the sample analyses were performed by 

the same trained observer to avoid subjective differences in the motility 

evaluation. 

 

Fluorescence stain analysis 

Live/Dead Sperm Viability Kit (SYBR/Propidium Iodide (PI) of Invitrogen 

(Barcelona, Spain) was used to evaluate the viability of spermatozoa pre- and 

post-freezing. Sperm diluted in P1 medium ([30]; 1:350) was mixed with SYBR 

Green and PI, and maintained during 20 minutes in dark incubation at room 

temperature. The final SYBR Green concentration was 104 times diluted from the 

original stock (2 μM) and PI 103 times from original stock (24 μM). At least 100 

spermatozoa per sample were assessed in a Nikon Eclipse (E-400) 

epifluorescence microscope, using UV-2A (EX: 330-380 nm, DM: 400, BA: 420) 

filter. Spermatozoa were classified as dead when nuclei showed red fluorescence 

over sperm head and live when they showed green fluorescence. 

 

Spermatozoa morphology analysis 

A fraction of sperm samples was diluted 1:50 (v/v) with 2.5% 

glutaraldehyde in phosphate buffered saline fixative solution. Slides were viewed 

using a 1000X negative phase contrast objective (Nikon Plan Fluor) on an 

Eclipse E400 Nikon microscope. A Sony CCD-IRIS video camera transferred the 

image. Sperm morphology was analysed using ASMA software (Sperm Class 

Analyzer®, Morfo Version 1.1, Imagesp, Barcelona, Spain). Approximately 100 

spermatozoa from each sample were analysed in each sample. The 

morphological parameters determined were: head perimeter (μm) and head area 

(μm2). 
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RNA extraction and cDNA synthesis 

Total RNA was extracted from the different parts (5-50 mg) of the brain 

(olfactory bulb, telencephalon, mesencephalon-diencephalon) and the pituitary, 

using traditional phenol/chloroform extraction by the Trizol reagent (Invitrogen, 

Belgium), followed by a bath water during 20 minutes at 37ºC. Later, one step of 

deoxyribonuclease treatment (gDNA Wipeout Buffer, Qiagen) was performed, 

being used a total volume of 14 μl for 2 μg of total RNA as template. This 14 μl 

were used as template to synthesize the first-strand cDNA in a total volume of 20 

μl reactions. The protocol was carried out according to the manufacturer’s 

instructions. 

 

Primers and reference gene 

Acidic ribosomal phosphoprotein P0 (ARP): ARPfw: GTG CCA GCT CAG 

AAC ACG; ARPrv: ACA TCG CTC AAG ACT TCA ATG G [44,45] was used as 

reference gene in the quantitative real time Reverse Trancriptase- Polymerase 

chain reaction (qrtRT-PCR). It was used as house kepping because its mRNA 

expression does not vary with experimental treatment. The gene specific primers 

assigned to evaluate the pituitary gonadotropin expression were: FSHfw: TCT 

CGC CAA CAT CTC CAT C; FSHrv: TAG CTT GGG TCC TTG GTG ATG and 

LHfw: TCA CCT CCT TGT TTC TGC TG; LHrv: TAG CTT GGG TCC TTG GTG 

ATG [44]. 

The study of the GnRHs expression were localized in olfactory bulbs, 

telencephalon, diencephalon-mesencephalon for mGnRH, using the next specific 

primers: mGnRHfw, ACT GGT GTG TCA GGG ATG CT; mGnRHrv, TGC AGC 

TCC TCT ATA ATA TCT TGC [46], while the cGnRH-II expression was analyzed 

in diencephalon-mesencephalon (cGnRH-IIfr, CTG ACA TCC ACA CAG CGA 

CT; cGnRH-IIrv, GGT GTT CAC CAT CAC AGC TAA A [46]).  

 

SYBR Green assay (qrtRT-PCR) 

In order to monitor gene expression of gonadotropins (FSHβ, LHβ) and 

GnRHs (mGnRH, cGnRH-II), quantitative real-time RT-PCR analyses were 

performed using a Light Cycler system with SYBR Green I sequence-unspecific 
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detection (Roche, Meylan, France). After an initial Taq activation of polymerase 

at 95ºC for 10 minutes, 41 cycles of PCR were performed using the LightCycler 

with the following cycling conditions: 95ºC for 15 s, 60ºC for 5 s and 72ºC for 10 s 

in the study of gonadotropins. In the case of GnRHs, 41 cycles of PCR were 

made with this cycle: 95ºC for 10 s, 60ºC for 10 s and 72ºC for 13 s. After the 

PCR, the machine performed a melting curve analysis by slowly (0.1 ºC/s) 

increasing the temperature from 68 to 95ºC, with a continuous registration of 

changes in fluorescent emission intensity. 

The total volume for every PCR was 10 μl, performed from diluted cDNA 

template (4 μl), forward and reverse primers (0.5 pm each) and SYBR Green 

Master Mix (2 μl). 

 

Gonad histology 

After fixation in 10% buffer formalin (pH 7.4), the gonad samples were 

dehydrated in ethanol and embedded in paraffin. Sections of 5-10 μm thickness 

were made with a manual microtome Shandom Hypercut, and stained with 

haematoxylin and eosin. Slides were observed with Nikon Eclipse E400 

microscope, and pictures were taken with a Nikon DS-5M camera attached to the 

microscope. 

Stages of spermatogenesis were determinated according to the most 

advanced germ cell types and their relative abundance [47,48]: stage I was 

determined by the presence of spermatogonia type A and/or B; stage II, by the 

presence of spermatogonia and spermatocytes; stage III, appearance of 

spermatids; stage IV, by the appearance of spermatozoa in small lumen; stage V 

(maturation stage) increase in the number of spermatozoa, as well as in lumen 

size; and stage VI, characterized by dominance of spermatozoa, with a low 

proportion of the rest of other germ cells, as well as luminal fusion. 

 

Immunoenzymatic assays (ELISA) for sexual steroid (11-KT) 

The teleost-specific androgen 11-ketotestosterone (11-KT) was measured 

in blood plasma using the 11-KT EIA kit from Cayman Chemicals (distributed by 

Scharlab S.L., Barcelona, Spain) according to the instructions of the 

manufacture.  
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Statistical analysis 

The variables were subjected to analysis of variance (General Lineal 

Model, GLM). A Student-Newman-Keuls tests were used for the comparisons 

between means at a 0.05 significancy level (p<0.05). The results are presented 

as least square means (LSM) ± standard error of the means (SEM). All statistical 

procedures were run using Statgraphics Plus® 5.1 [49]. 

 

Results 

GnRHs and gonadotropins variations in eel brain 

GnRHs expression was analyzed in different parts of the brain, for the 

following weeks of the treatment: 0, 2nd, 3rd, 4th, 6th, 7th, 9th and 12th . mGnRH 

expression was studied in olfactory bulb, telencephalon, and diencephalon-

mesencephalon, and cGnRH expression was studied in diencephalon-

mesencephalon. At the start of the experiment brain samples (except pituitary) 

were not taken, and a new batch of males were injected 2 months later in order to 

have brains from males without treatment (0 week), as well as treated with 1 and 

2 hCG injections. This data have not been included in the statistic analyses, but 

results are showed in the figures to understand better the possible evolution of 

this hormone during the treatment. 

GnRHs expression did not show differences in olfactory bulbs and 

telencephalon, in contrast of di-/mesencephalon. The maximum mGnRH 

expression was observed in the third week, followed by significantly lower values 

in the next weeks (Fig. 6.1B). The expression of cGnRH-II in diencephalon-

mesencephalon did not show significant differences in the studied weeks, except 

during the 4th week when a reduction was observed (Fig. 6.1B). 
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Figure 6.1. GnRHs expression in the different parts of the brain. mGnRH 

expression in olfactory bulb and telencephalon (A). cGnRH-II and mGnRH 

expression in mes/di-encephalon (B). Different letters means significant 

differences (p<0.05). 

 

 

As a consequence of hormone injections, the gonadotropins expression 

changed through the treatment. The highest level of FSHβ subunit was registered 

before the first injection of hCG (Fig. 6.2). With only one injection, the expression 

decreased 50 times, and at the 4th week of treatment it was close to zero. LHβ 

subunit showed different results: the expression increased progressively during 

the 7 first weeks, with a special increase at 3rd and resulting significant at 7th 

week. In the subsequent weeks the LHβ did not show a clear pattern of variation 

(Fig. 6.2). 
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Figure 6.2. Gonadotropin expression in the pituitary (FSHβ and LHβ 

subunit), during the treatment. Asterisks or different letters means 

significant differences (p<0.05). 

 

Analysis of morphometric parameters and 11-ketotestosterone 

Before the hormonal treatment, eels showed a gonadosomatic index of 

0.29 ± 0.13%. Four injections were necessary to obtain a significant increase 

(3.96 ± 0.87%), but the highest value (8.02 ± 1.04%; Fig. 6.3A) was found at the 

6th week of treatment. No significant variations were observed during the 

following weeks (Fig. 6.3A).  

A progressive increase of the hepatosomatic index was observed from the 

2nd to the 8th weeks, obtaining a significant increase at 7th week (Fig. 6.3B), 

maintaining until 11th week when showed again a significant increase (Fig. 6.3B).  

The eye index had a continuous increase until 6th week, but without 

significant differences until 5th week (Fig. 6.3C). After this peak, the values 

decreased until 8th week, being maintained without changes until 12th week, when 

showed a second peak (Fig. 6.3C).  

The basal level of 11-ketotestosterone in blood plasma was 1.14 ± 0.5 ng/ml. 

After one injection of hCG the values were 4 times higher (4.7 ± 0.37 ng/ml), but 

the most important increase was found at 3th week of treatment, reaching 50 

times the basal level (56.5 ± 7.27 ng/ml). From 4th week, there was a progressive 
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decrease until 8th week, and then similar lower levels were maintained during the 

rest of the treatment (Fig. 6.3D). 
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Figure 6.3. Morphometry parameters: gonadosomatic index (GSI, A), 

hepatosomatic index (HI, B), eye index (EI, C) and plasma 11-ketotestosterone 

(11KT, D) levels during the treatment. 
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Evaluation of sperm quality 

The milt was obtained from the 4th week to the end of the experiment, but 

during the 8th week the first samples considered with high quality (≥75% motile 

cells) were found (Fig. 6.4A), and was reported a significant higher percentage of 

live cell (Fig. 6.4B).  

From this week, the milt production was maintained approximately with 

the same conditions during the rest of the treatment in both parameters, except in 

the 11th week when the percentage of live cells showed a significant increase. 

The first week of spermiation (4th week) registered the lowest head size (data not 

showed), with a significant increase in the spermatozoa area in the following 

weeks, finding the highest results in the 10th and 11th. Significant improvements of 

the perimeter were reported at the 6th, 9th and 11th weeks. 
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Figure 6.4. Evolution of the (A): motility and (B): percentage of live cells 

during the treatment. 

 
Gonadal development during the treatment 

Testis development in each male was classified in six different stages 

(S1-S6; Fig. 6.5). Stages S1 to S3 are characterized by the most avanced 

germinal cell present: spermatogonia (S1), spermatocytes (S2) or spermatids 

(S3). Stages S4 to S6 are differentiated by the abundance of spermatozoa 

respect with other germ cells. 
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Figure 6.5. Photomicrographs of histological sections for the different stages 

found during the treatment. (A) Testis at stage 1, SPGA, spermatogonia-A, 

SPGB, spermatogonia-B; (B) Testis at stage 2, SPC, spermatocyte; (C) Testis at 

stage 3, SPD, spermatid; (D) Testis at stage 4, SPZ, spermatozoa; (E) Testis at 

stage 5; (F) Testis at stage 6. Scale bar, 100 μm (A-F). 

S1 was present only during the two first weeks of the treatment, while S2 

(spermatocyte appearance) was observed in males from 1st to 3th weeks (Fig. 

6.6).  
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Figure 6.6. Percentage of the different stages of gonad development 

during the weeks of treatment. 

 

The percentage of males showing stage S3, characterized by the 

appearance of spermatids without any spermatozoa present, was very low during 

3rd and 4th weeks, probably, because this is a short-time stage in the process of 

cell development. For this reason, the stages 3 and 4 (characterized by the 

appearance of first spermatozoa) were analyzed together in the figure 6.7. In the 

7th week, males in the maximum developmental stage (stage 6) were observed 

by first time, which continued present during the rest of the treatment.  

These categories of gonad development were correlated with the 

evolution of the most relevant studied parameters. The expression of LHβ subunit 

(Fig. 6.7A) registered a significant increase at S3/4, coinciding with the late 

stages of meiosis and spermiogenesis. In the same moment of gonad 

development, a significant increase was observed for the morphometric 

parameters (GSI and EI, Fig. 6.7C and 6.7D, respectively). When the gonad was 

found in the most advances stages (S5, S6), LHβ expression and EI were 

maintained with high values, while the GSI showed a new statistically significant 

increase respect to the previous stage. The 11-KT levels registered a progressive 

increase until S3/4 (spermiogenesis), followed by a significant decrease 

coinciding with the stages S5 and S6 (spermiation period, Fig. 6.7B). Sperm was 

obtained from S4 to S6 stages, reporting higher quality sperm (motility and head 

size) in the stages S5 and S6. The stage 4 showed significantly lower values in 
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both parameters (Fig. 6.7E and 6.7F), increasing in the following stages (except 

in the perimeter head spermatozoa in the 6th stage). 
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Figure 6.7. Evolution of different parameters studied in relation with the 

stage of testis development (A) Expression of LHβ subunit; (B) level of 

11-ketotestosrone (11KT) in blood plasma; (C) gonadosomatic index 

(GSI); (D) eye index (EI); (E) motility; (F) spermatozoa head 

morphometry, area and perimeter. 
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Discussion 

In artificial conditions, the European eel male does not maturate, and it is 

necessary the weekly administration of hCG (1.5 IU/g fish [29]) to induce the 

gonad development. A physiological description has been performed in response 

to this treatment, from the brain to sperm. In the present work, the repeated 

injection of hCG induced differences on the GnRHs expression in diencephalon-

mesencephalon. A significant decrease was observed at 4th week of the 

treatment for cGnRH-II expression, while a significant higher value of mGnRH 

expression was found in the third week of the treatment, coinciding with an 

increase in the LHβ expression and 11-KT levels. In contrast, the high increase 

observed in LHβ expression at the 7th week was not related with an increase in 

mGnRH expression. This opposite GnRH regulation was also observed in eel 

matured females [9,50]. Experimental matured eels showed a significant increase 

for mGnRH, and a significant cGnRH-II decrease during the treatment. 

The cGnRH-II function on gonadotropin synthesis is not clear. The 

observation of cGnRH-II fibers in the neurohypophysis, indicates a possible role 

in the gonadotropin release, but some authors proposed that the cGnRH-II can 

be affected by environmental factors or to play a role in control of sexual 

behaviour [51,52]. On one hand, the mGnRH is considered as responsible of the 

direct control of gonadotropin release [9,10] but in the present work a good 

correlation between both hormones can not be found. One possible explanation 

for these results could be that at the beginning of the maturation process, the 

mGnRH could be stimulated by high levels of 11-KT (positive effect of gonadal 

steroids was demostrated by Dufour et al. [9]), and this mGnRH promoted the 

LHβ expression. But, coinciding with more advances stages of testis 

development, the gonadotropin expression could be influenced by direct hormone 

action in the pituitary increasing its synthesis. 

The steroid effect on gonadotropin expression has been evaluated widely 

in teleosts. For example, Rebers et al. [53] reported that the 11-KT had a positive 

effect in the LHβ synthesis in the catfish. In other hand, it has been demonstrated 

that the same steroid can have different effects depending of physiological stage 

of the fish. For example, in cultured pituitary cells from immature male tilapia, the 

FSHβ expression was stimulated by exposure to testosterone [54], while in vitro 

conditions, cells of tilapia testis at the end of the spawning season, showed a 
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FHS-β decrease with the administration of T or E2, and in regressed fish, neither 

T nor 11-KT had any effect. This could explain that the 11-KT stimulated at the 

beginning of the spermatogenesis the mGnRH, and in the final phase acted 

directly promoting the LHβ expression in the pituitary.   

The brain influence seems not to be essential to complete the 

spermatogenesis process when the fish are matured by hormonal injections. In 

hypophysectomized European eel males the spermatogenesis can be completed 

by hCG administration, but the maturing cells were less numerous and 

spermiation less frequent than in intact eels [22]. These results suggest that hCG 

worked in cooperation with the pituitary hormones.  

The gonadotropic function of FSH in Japanese eel was studied by Kamei 

et al. [55] using a recombinant Japanese eel FSH (rjeFSH). They demonstrated 

that rjeFSH stimulated the testosterone and 11-KT secretion in Japanese 

immature testis, that are essential hormones for the onset of the 

spermatogenesis [22,23,56]. In the present study, one injection of hCG was 

enough to decrease dramatically the FSHβ expression. In previous works it has 

been reported that hCG promotes testosterone secretion in ovaries [57] and 

testis [22,56,23] from Japanese or European eels. It is known that testosterone 

inhibits FSHβ expression in European eel (in vivo [58]) as well as in goldfish [59] 

and seabass [60]. Probably the reduction in FSHβ in the present study has been 

caused by an increase in testosterone induced by hCG injection. This decrease 

in the FSHβ expression has been also observed in European eel female after 

salmon pituitary extracts treatment [58], likewise in Japanese eel female [61-63] 

injected with salmon pituitary extracts or salmon gonadotropin fraction. In order to 

know if the gonadotropin profiles observed in artificially matured eels are similar 

to the natural pattern, Saito et al. [63] compared the gonadotropin expression in 

naturally maturing New Zealand longfinned eel with artificially maturing Japanese 

eel. With the first injections a quickly decrease in the FSHβ expression was 

observed in artificially maturing female eels, whereas in New Zealand longfinned 

eels in mid-vitellogenic stage a FSHβ increase was observed. The artificial 

induction of maturation, by hormonal injections, can be the responsible of this 

abnormal gonadotropin profile obtained in the eel.  

Despite of inhibitory effect of hCG on FSHβ expression in European eel 

male, the spermatogenesis was promoted. The hCG is considered as a LH 
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analogue [64], and in some species, as salmon, it has been reported that the 

gonadotropins, FSH and LH, are equipotents stimulating (in vitro) the production 

of 11-KT and testosterone at the beginning of the spermatogenesis [65-67]. 

Probably, hCG acts directly on the gonad, promoting the 11-KT production as has 

been proposed in the Japanese species [15,68,69]. The 11-KT is the most 

important androgen in males, and by itself is able to promote the complete 

spermatogenesis in vitro [15,16,23,25,68]. In other works it has been reported 

that 11-KT induces in the Sertoli cells the production of growth factors, such as 

activin B [15,16], responsible of the initiation of spermatogenesis [24], and 

insulin-like growth factor-I (IGF-I) that plays an essential role in the progress of 

the spermatogenesis [15,16,69]. 

In the present study just one week of hCG treatment caused a level of 11-

KT 4 times higher (4.70 ± 0.37 ng/ml) than in the untreated males (1.14 ± 0.52 

ng/ml), with the presence of 33% males in stage 2 of development (early meiotic 

stage). In the 2nd week all the animals showed this stage of development. Stages 

3 (mid meiosis) and 4 (late meiosis and spermiogenesis) were observed in the 

gonad at the 3rd week of the treatment, coinciding with the highest values of 11-

KT. When a fish is classified in the stage 4 of the gonad development, means 

that the spermatogonies have been developed until spermatids or spermatozoa, 

therefore the meiosis has been completed. The 11-KT is considered as the 

responsible of the spermatogonia proliferation [15,16,23,25,68], but not of the 

meiotic process. In the present study, the highest 11-KT values coincided with 

the later stages of spermatogenesis (late meiosis and spermiogenesis), so this 

steroid could have a role in these steps of the spermatogenesis. In a number of 

teleost species, similar results were observed [70-72], decreasing the 11-KT after 

the onset of spermiation. At the 4th week, sperm can be obtained by abdominal 

pressure, beginning the spermiation period. From this week on the 11-KT was 

decreasing until 8th week, that was the first week with high sperm quality. Some 

authors have considered that 11-KT could be responsible for the release of 

mature spermatozoa from testicular cysts into the lobular and sperm duct in male 

rainbow trout [73], or may have an important role maintaining the viability of 

salmon spermatozoa [74]. Miura et al. [75] reported that high values of 11-KT 

causes a negative feedback on its own production in the Japanese eel, and this 
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can be the mechanism used to control the 11-KT levels during the spermiation 

period.  

hCG promoted the 11-KT production, but also the LHβ synthesis. One 

injection was enough to obtain 6 times more LHβ expression in the pituitary. At 

the 3rd week a LHβ increase was observed, although was not significant. This 

LHβ increase can be induced through an IGF-I effect because has been 

demonstrated in vitro that this growth factor promotes the LHβ synthesis [76]. 

Another possibility can be the 11-KT influence, since in some species as male 

catfish, the 11-KT has a positive effect in the LHβ synthesis [53]. 

The following week, 4th week, there was a significant increase in the GSI, 

coinciding with 83% of males showing stages 4 and 5 of testis development. The 

spermatozoa presence requires the hydration of the gonad, providing as a result 

higher GSI values.  

The EI showed a significant increase respect to the untreated males in the 

5th and 6th weeks. In Anguilla australis females the treatment with 11-KT caused 

external changes in the secondary morphological parameters (head shape and 

pectoral fin color [77]), and the levels of 11-KT were higher in silver females than 

non-migratory females [78]. These studies support that 11-KT has an important 

role in the development of morphological changes in the eel, and the EI increase 

registered seems be due to previous 11-KT increase. 

The stage 6 of testis development, characterized by the dominance of 

spermatozoa was observed by first time at 7th week. A significant increase in LHβ 

expression was produced during the 7th week. This major LHβ expression in the 

pituitary can be due to the IGF-I effect, produced as consequence of high levels 

of 11-KT in the previous weeks, or by 11-KT levels itself [53].  

A significant increase of HSI respect to the untreated males was 

registered in the 8th week. The IGF-I production is localized in the liver 

(furthermore Sertoli cells and germinal cells [69]), and this higher HSI could be 

consequence of this IGF-I production. 11-KT also could be responsible of this 

increase, since in Anguilla australis high levels of 11-KT increased the liver mass 

in eel females [77].  

The spermiation began at 4th week of treatment. A significant higher 

percentage of live cells was observed in the 8th week, and this was the first week 

in which the sperm showed over 75% of motile spermatozoa. Following weeks 
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registered high quality sperm. In this last period some significant differences were 

found in EI and HIS. Probably, the reason of these differences is not 

physiological changes, but could be due to high variability observed between 

males in the same week. 

To avoid these differences between males in the same week, the 

parameters related with the male maturation (LHβ expression, 11-KT, GSI, EI, 

sperm motility and spermatozoa head morphometry) were studied in function of 

the stage of gonad development. LHβ expression registered higher values when 

the gonad was in the last stages, ratifying that this gonadotropin has influence in 

the final maturation [58,62,79].  

11-KT showed a progressive increase until the late meiosis and 

spermiogenesis (stages S3/4), and decreased in the spermiation stages S5 and 

S6. Coinciding with the highest value of 11-KT, a significant increase in the GSI 

was produced, as consequence of germ cell proliferation. This confirms that one 

11-KT role is to promote the spermatogenesis process, and the fact that the high 

level coincide with the last steps of spermatogenesis indicate the possible 

function of this androgen in these phases of development. EI was high from S3/4 

to S6, supporting the influence of 11-KT in the development of secondary 

morphologic characters. Obviously, better results of motility and spermatozoa 

head morphometry were obtained when the gonad was more developed, 

coinciding with the maximum values in the rest of parameters (LHβ expression, 

GSI and EI). 

A wide study of gonad maturation in European eel male have been 

performed, being the first time that the gonadal maturation is reported analyzing 

reproductive parameters from the brain to the testis. The GnRHs and 

gonadotropin expression were studied, being the first time in which these 

parameters are described during eel male maturation process. In the future more 

studies must be carried out, including the analysis of 17α,20β-dihydroxy-4-

pregnen-3-one (DHP), to provide important information about the 

spermatogenesis process and the acquisition of motility by the European eel 

spermatozoa.  
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Abstract 

The sperm of European eel shows a high density and the time of 

spermatozoa motility is very short after activation with sea water. These 

characteristics make difficult the sperm handling and its quality assessment. 

Several diluents were previously described for the Japanese eel obtaining over 3 

weeks conservation times under refrigeration, but they rendered bad results in 

the European species. In the present study several diluents were developed 

taking as basis the P1 medium, and using different dilutions ratios (1:50,1:100) 

and two pH (6.5, 8.5). The effect of the addition of bovine serum albumin (BSA, 

2% w/v) was also evaluated. At 24 h, undiluted samples already showed 

significant lower motility and viability than sperm samples diluted in the different 

media. The results for diluents with pH 6.5 and 8.5 were different. Spermatozoa 

diluted in media at pH 6.5 can not be activated at 24 h, while samples diluted in 

the diluents with pH 8.5 and added with BSA did not show significant differences 

with respect to the fresh sperm motility until 48 h. The viability (percentage of live 

cells) did not show differences until one week, independently of the dilution ratio. 

After 1 week, the motility was around 30% in the media containing BSA, which 

presented no differences for head size of the spermatozoa (perimeter and area) 

until 72 h and 1 week, respectively. In conclusion, the combination of one 

medium having similar physic-chemical characteristics to the seminal plasma, 

including pH 8.5, and supplemented with BSA can be used in different dilution 

ratios for the sperm short-term storage, preserving its motility capacity. 
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Introduction 

During the last decades, the capture and over-explotation of European 

eels and elvers have diminished its populations, making necessary the 

development of techniques for the control of reproduction in captivity. Methods for 

the hormonal induction of gonad maturation in this species have been developed 

in previous studies, obtaining significant sperm volumes with a good quality 

(Boëtius et al. 1967; Billard and Ginsburg 1973; Meske 1973; Bieniarz and Epler 

1977; Dollerup and Graver,1985; Leloup-Hâtey et al. 1985; Khan et al. 1987; 

Amin, 1997; Pérez et al. 2000, 2003; Müller et al. 2004, 2005; Asturiano et al. 

2005, 2006; Szabó et al. 2005), as well as ovarian maturation, spawns, egg 

fertilisation and even hatching (reviewed by Pedersen 2003, 2004; Tomkiewicz 

2007). 
However, methods for the hormonal induction of gonad maturation in this 

species usually take several weeks both in males and females, and 

unsynchronised maturations can occur, avoiding egg fertilisation. Diluting media 

were developed to prevent these problems and to improve the sperm handling. 

Usually, the diluents have been used to maintain a high motility after short-term 

storage of spermatozoa, to stabilise the physic-chemical conditions in the seminal 

plasma during storage (Tan-Fermin et al. 1999), and to improve fertilization rates 

in some species (Tambasen-Cheong et al. 1995; Ohta and Izawa 1996). Fish 

spermatozoa are immotile in seminal plasma, and for this reason several authors 

have developed diluents with the same ionic composition and osmolality as the 

seminal plasma (Villani and Catena, 1991; Tan-Fermin et al., 1999; Asturiano et 

al., 2004). On the other hand, some authors have tried to prepare inactivation 

media for fish spermatozoa, with different composition respect to the seminal 

plasma (Sansone et al. 2001; Tanaka et al. 2002b, Rodina et al. 2004). 

 Several sperm conservation media have been tested in the Japanese eel 

(Anguilla japonica) using the chemical composition of the seminal plasma, and 

obtaining conservation times under refrigeration of over three weeks (Ohta and 

Izawa 1996). In a later work Ohta et al. (2001a) reported that the use of diluted 

sperm could increase the fertilization rate. Moreover, the use of diluting solutions 

could extend the life of refrigerated sperm and even increase the spermatozoa 

motility after incubation.  
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Two diluting media (K15 and K30, Ohta and Izawa 1995; Ohta et al. 

2001a) previously used in Japanese eel sperm were tested in the European eel. 

Twenty-four hours later, the sperm showed an important reduction in the 

percentage of motile spermatozoa after activation and lower motility parameters 

(VAP, angular velocity; VCL, curvilinear velocity; VSL, straight line velocity; BCF, 

beating cross frequency), concluding that these media are not useful to preserve 

the sperm of the European eel (Asturiano et al. 2004). Looking for one effective 

medium, the ionic composition and the physic-chemical characteristics of the 

seminal plasma were studied in the European eel (Pérez et al. 2003; Asturiano et 

al. 2004). The results were used to design a new diluting medium, named P1, 

isosmotic, isoionic and with the same pH (8.5) than seminal plasma, which might 

facilitate sperm dilution for quality analyses and also be used in the first step of 

dilution of the sperm before the fertilization process. 

Tanaka et al. (2002a,b) suggested that NaHCO3 has an inhibitory role of 

the movement in the Japanese eel sperm, product of its dissociation and its 

influence in intracellular pH. Two years later, Tanaka et al. (2004) described that 

NaHCO3 in aqueous solutions is dissociated in: CO2 + H2CO3 (free-CO2), HCO3
- 

and CO3
2-, but the proportion of each component depend of the pH medium. In 

acid environment the HCO3
- protonates giving H2CO3, which dissociates into H2O 

and CO2. In contrast, in basic medium HCO3
- loses the H+, rendering CO3

2-. The 

inhibitory function corresponds to CO2 (Tanaka et al., 2002), so in the present 

study, the P1 medium was tested with a low pH (6.5), to know if the inactivation 

of the sperm can improve the results obtained with P1 at pH 8.5. 

Foetal bovine serum (FBS) or bovine serum albumin (BSA) have been 

used in the sperm cryopreservation media due to their effect as buffers of the 

osmotic shock, because proteins can give a protection of mechanical type to the 

cells membrane, diminishing the risks of crystallization, recrystallization or ice 

melting during the different phases of the process of freezing and thawing 

(Cabrita et al. 2005; Peñaranda et al. submitted). In the European eel, the 

addition of 25% FBS in the sperm freezing medium has shown a positive effect, 

improving the spermatozoa survival and maintaining its head size (Marco-

Jiménez et al. 2006a; Garzón et al. 2008), but in the present study the membrane 

protector used was BSA (2%), which gave good results in previous works 

(Peñaranda et al. in press). On the other hand we have checked that the dilution 
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ratio is an important factor for the eel sperm conservation along time 

(unpublished results), including cryopreservation (Asturiano et al. 2003, 2004). 

So, taking as basis these and previous works in Japanese eel (Ohta et al., 1996, 

2001a) two different dilution ratios were tested (1:50 and 1:100).  

In conclusion, our initial hypotheses were that low pH can inhibit the 

sperm motility, BSA can protect the cells membranes and can help maintaining 

the cell viability during short-term storage of European eel sperm. In this regard 

the present study checked the effect of these three factors: pH (8.5 vs 6.5, 

adjusted using HCl 1M), BSA addition (2%, w/v) and dilution ratio (1:50 vs 1:100). 
 

Materials and Methods 

All the chemicals were reagent grade and purchased from Sigma-Aldrich 

Química S.A. (Tres Cantos, Madrid, Spain), Angelini Farma-Lepori (Barcelona), 

Invitrogen (Prat de Llobregat, Barcelona, Spain) and Panreac S.A. (Alcobendas, 

Madrid, Spain). 

 

Semen collection 

One hundred fifty European eel males (body weight: 137.6 ± 21.4 g) from 

the fish farm Valenciana de Acuicultura, S.A. (Puzol, Valencia; East coast of 

Spain) were moved into our facilities. Fish were distributed in three tanks of 500 L 

and gradually acclimatised to sea water (salinity 37.0 ± 0.3 g/L, 20 ºC) for 7 days. 

Males were hormonally treated for the induction of maturation and 

spermiation with weekly intraperitoneal injections of hCG (1.5 IU/g fish) as 

previously described by Pérez et al. (2000). To avoid contamination of samples 

with faeces, urine and sea water the genital area was cleaned with freshwater, 

total expressible milt was collected by applying gentle abdominal pressure to 

anesthetised males (benzocaine; 60 mg/L). Once a week during the spermiation 

period, from the 8th to 13th week of treatment, 10 fish were sampled 24 h after the 

hormone administration. For the experiments, semen samples from three males 

having over 50% of total motile spermatozoa were pooled to avoid individual 

male differences. 
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Evaluation of motility 

Immediately after collection, the motility of sperm samples was assessed 

by mixing one drop of sperm with 3 μl of artificial sea water [in mM: NaCl 354.7, 

MgCl2 52.4, CaCl2 9.9, Na2SO4 28.2, KCl 9.4; 2% BSA (w/v), pH 8] adjusted to 

1000 mOsm/kg as activation media. The motility was calculated evaluating the 

percentage of the cell are in movement respect to the total cells in the mix. All the 

sample analyses were performed by the same trained observer to avoid 

subjective differences in the motility evaluation. 

 

Media composition 

Taking as base the P1 medium described by Asturiano et al. (2003, 2004) 

in mM: 125 NaCl, 20 NaHCO3, 2.5 MgCl26H2O, 1 CaCl22H2O, 30 KCl, the effect 

of pH (8.5 vs 6.5, adjusted using HCl 1M), BSA addition (2%, w/v) and dilution 

ratio (1:50 vs 1:100) were evaluated in the experiment using the possible 

combinations (n=10 pools). The sampling times were 24, 48, 72 h and 1 week 

after sperm dilution, maintaining the diluted samples in Petri plates (10 ml) at 

4ºC. 

 

Fluorescence stain analysis 

Live/Dead Sperm Viability Kit [SYBR/Propidium Iodide (PI)] of Invitrogen 

(Barcelona, Spain) was used to evaluate the viability of the spermatozoa at 

different times (n=10 pools). Sperm diluted in P1 medium (Asturiano et al. 2004; 

1:350) was mixed with SYBR Green and PI, and maintained during 20 minutes of 

incubation at room temperature in the dark. The final SYBR Green concentration 

was 104 times diluted from the original stock (2 μM) and PI 103 times from original 

stock (24 μM). At least 100 spermatozoa per sample were assessed in a Nikon 

Eclipse (E-400) epifluorescence microscope, using UV-2A (EX: 330-380 nm, DM: 

400, BA: 420) filter. Spermatozoa were classified as dead when nuclei showed 

red fluorescence over sperm head and live when they show green fluorescence. 

 

Spermatozoa morphometry analysis 

A fraction of fresh samples and diluted samples was mixed with 2.5% 

glutaraldehyde in phosphate buffered saline fixative solution (Pursel and 
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Johnson, 1974), obtained a final dilution of 1:200 (v/v). Slides were viewed using 

a 1000X negative phase contrast objective (Nikon Plan Fluor) on Eclipse E400 

Nikon microscope. A Sony CCD-IRIS video camera transferred the image. Sperm 

morphology was analysed using ASMA software (Sperm Class Analyzer®, Morfo 

Version 1.1, Imagesp, Barcelona, Spain). Approximately 100 spermatozoa were 

analysed in each sample (n=5-10). The morphological parameters determined 

were: head perimeter (μm) and head area (μm2). 

 

Statistical analysis 

Motility and viability parameters were subjected to analysis of variance 

(One-Way ANOVA). General Lineal Model (GLM) was performed for 

spermatozoa head morphometry. A Student-Newman-Keuls procedure was used 

for the comparisons between means at a 0.05 significant level. The results of 

motility and viability showed presented as mean ± standard error of the means 

(SEM), while the results of spermatozoa head morphometry are showed as least 

square means (LSM) ± standard error of the means (SEM). All statistical 

procedures were run using Statgraphics®Plus 5.1 (Statistical Graphics Corp., 

Rockville, MO, USA). 

 

Results 

Motility and percentage of live cells 

Different media were tested to preserve the sperm along the time, one 

maintaining (seminal plasma-like) medium, with pH 8.5, and an inactivating 

medium, with pH 6.5. Every diluent was probed with two dilution ratios: 1:50 and 

1:100, with or without BSA.  

The sperm quality for undiluted samples decreased with only 24 h of incubation 

(Fig 7.1a) respect to fresh samples. In contrast, sperm diluted in the pH 8.5 

media preserved its motility without differences, except in the case of samples 

diluted in the media without BSA, dilution ratio 1/100, which showed a reduction 

of motility (Fig 7.1a). The pH 6.5 media caused a total absence of motility after 24 

h (Fig. 7.1a), and as a consequence of this null motility no more dates were 

obtained from these samples. The pH 8.5 media containing BSA caused 

motilities without significant differences with the fresh samples until 48 
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Figure 7.1. Evaluation of the motility of sperm samples in the different tested media compared 

with fresh and undiluted samples, at different times: (A) 24 h, (B) 48 h, (C) 72 h and (D) 1 

week. No motility was observed in the all pH 6.5 media after 24 h of incubation, and no more 

data were taken in the rest of the experiment. Different letters means significant differences 

(mean ± sem) between media at the same time of the incubation, and the number (1) 

indicates no significant difference respect to fresh samples (p<0.05).  
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hours, while the samples diluted in the media without BSA showed significant 

lower motilities at this time of incubation (Fig. 7.1b). Undiluted sperm samples 

registered motilities close to zero at 48 h, and for this reason they were not 

analyzed in the following times of the study. After 72 h and 1 week of incubation, 

all the samples, independently of the diluting media, showed lower motilities than 

fresh samples (Fig. 7.1c,d). Between media any difference was registered during 

this time, being the highest motility around 30% (BSA-1/50: 28.5 ± 13.95; BSA-

1/100: 29.0 ± 12.48) after 1 week. 

The viability did not show differences after 24 h of incubation (Fig. 7.2a), 

but at 48 h the undiluted samples registered a significant lower percentage of live 

cells (Fig. 7.2b). The BSA provided at the sperm significant higher viabilities 

respect to the media without BSA (Fig. 7.2b,c,d) and did not show any difference 

with fresh samples during all the experiment. 

 

Spermatozoa head morphometry 

Spermatozoa area corresponding to undiluted and diluted samples did not 

show any difference respect to fresh samples during the first 48 h of incubation 

(Fig. 7.3a,b). In the next times, no more data of undiluted samples were taken 

because of their low motility. The spermatozoa head area for diluted samples 

was not significantly lower than fresh samples until 1 week of incubation (Fig. 

7.3c,d), moment in which differences between media were observed. Lower 

results were registered when the spermatozoa were diluted in BSA media, and 

this decrease was significantly at dilution ratio 1:50 (Fig. 7.3d). 

Similar results were obtained when the spermatozoa perimeter was 

analyzed. Until 48 h any difference was observed with fresh samples (Fig. 

7.4a,b). At 72 h and 1 week the spermatozoa head perimeter in all the media 

suffered a significant decrease in comparison with fresh samples (Fig. 7.4c,d). 

The BSA media provided lower results than without BSA media, but only was 

significantly lower for the media with dilution ratio 1/100 at 72 h. 
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Figure 7.2. Percentage of live cells in the sperm samples diluted with the different tested 

media compared with fresh and undiluted samples at different times: (A) 24 h, (B) 48 h, (C) 72 

h and (D) 1 week. Any difference respect to the fresh samples was registered at 24 h of 

incubation for pH 6.5 media, and no more data were taken in the rest of the experiment. 

Different letters means significant differences (mean ± sem) between media at the same time 

of the incubation, and asterisks indicates no significant difference respect to fresh samples 

(p<0.05). 
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Figure 7.3. Evaluation of spermatozoa area in the sperm samples diluted with the different 

tested media compared with fresh and undiluted samples, at different times: (A) 24 h, (B) 48 h, 

(C) 72 h and (D) 1 week. Any difference respect to the fresh samples was registered at 24 h of 

incubation for pH 6.5 media, and no more data were taken in the rest of the experiment. 

Different letters means significant differences (lsm ± sem) between media at the same time of 

the incubation, and asterisk means significant difference respect to fresh samples (p<0.05). 
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Figure 7.4. Study of spermatozoa area in the sperm samples diluted with the different tested 

media compared with fresh and undiluted samples, at different times: (A) 24 h, (B) 48 h, (C) 72 

h and (D) 1 week. Any difference respect to the fresh samples was registered at 24 h of 

incubation for pH 6.5 media, and no more data were taken in the rest of the experiment. 

Different letters means significant differences (lsm ± sem) between media at the same time of 

the incubation, and asterisk means significant difference respect to fresh samples (p<0.05). 
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Discussion 

The fish spermatozoa are immotile in the seminal plasma (Stoss, 1983; Morisawa 

1985), and looking for maintaining this stage some diluents have been 

developed. Several media have been designed in fresh water species, as 

glucose solutions (Linhart et al. 1995) or potassium solutions (Cosson and 

Linhart 1996). For eel, which belongs to sea water species, two different 

strategies have been performed. First of them it is one medium with similar 

physic-chemical characteristics to the seminal plasma, where in natural 

conditions the sperm is immotile (Lahnsteiner et al. 1997; Ohta and Izawa 1995, 

1996; Ohta et al. 2001a; Peñaranda et al. in press). The second strategy is to 

develop a medium that inactivates the movement during the incubation (Sansone 

et al. 2001; Tanaka et al. 2002a,b; Rodina et al. 2004). To design them, it was 

necessary to consider the following factors: ionic composition, pH and osmotic 

pressure.  

All diluents that were tested had the same osmotic pressure, ionic 

composition and temperature of incubation. The seminal plasma composition can 

give additional information about optimal conditions for storage, energy resources 

and possible peculiarities of metabolism (Lahnsteiner et al. 1997). Consequently, 

the description of European eel seminal plasma (Asturiano et al. 2004) was used 

to design the diluent. In Japanese eel, some ions concentration had been 

increased (K+ and HCO3
-) in the medium to improve the motility (Ohta and Izawa 

1995, 1996; Ohta et al. 1997, 2001a), but similar probes in European eel did not 

give good results (unpublished results). Regarding the osmotic pressure, it was 

fixed in 325 mOsm/Kg because the osmotic pressure of seminal plasma 

remained constant around this value during the spermiation period (Asturiano et 

al. 2004). The temperature of incubation was 4 ºC, because high temperatures 

cause an increase in the spermatozoa metabolism (Cosson et al. 1985). 

 The variable parameters were the pH and dilution ratio, furthermore the 

addition of BSA. BSA has been used in other species as gilthead seabream 

(Sparus aurata; Cabrita et al. 2005), European sea bass (Dicentrarchus labrax; 

Zilli et al. 2003; Peñaranda et al. in press) or European eel (Peñaranda et al, 

submitted). There is direct evidence that BSA adheres rapidly to the spermatozoa 

membrane at the moment of dilution (Blank et al. 1976), and modifies the sperm 

lipid composition through lipid exchange or hydrolysis (Davis et al. 1979). In 
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cultures cells, addition its binding and transport functions (Kragh-Hansen 1981), 

albumin stimulate sperm cholesterol efflux thanks to its high-density lipoprotein 

(HDL; Go and Wolf 1985; Thérien et al. 1999). Significant better motilities and 

viability at 48 hours respect to the media without BSA were registered, what 

demonstrated its influence in the sperm motility. Similar effect has been 

observed, in previous works, using it as an antioxidant component in freezing 

media (Matsuoka et al. 2006; Uysal and Bucak 2007; Uysal et al. 2007), or in 

diluents to prolong the sperm motility along time (McPartlin et al. 2008; 

Peñaranda et al. in press). Hossain et al. (2007) reported that the fatty acids can 

bind to BSA-V, improving the motility and viability. Maybe, some of these 

interactions could be preserving the eel sperm membrane integrity, and so the 

motility and viability. Nevertheless, the spermatozoa diluted in BSA media 

registered lower head size with the time. One possible explanation could be that 

the lost of cholesterol and the increase of phospholipids in the membrane (Go 

and Wolf 1985; Thérien et al. 1999) had influence in the cellular osmoregulation. 

Although the osmotic pressure of the medium was the same than seminal 

plasma, possibly long incubation with BSA media can promote that the 

spermatozoa loses part of their osmoregulation capacity. The principal 

responsible of the osmoregulation is the Na+/K+ (Sancho et al. 2003), and the 

changes in the cellular membrane could finish affecting the functionality of these 

bombs. Not only the spermatozoa diluted in media containing BSA decreased 

their head size with the incubation, but the media without BSA also presented 

lower spermatozoa head morphometry values from 72 h of incubation. The 

difference respect to BSA media, it was that in the media without BSA the 

percentage of live cells was significant lower than fresh samples. Marco et al. 

2006b reported that in goat sperm the dead cells has lower head size than live 

cells, so this can be the cause of the significant decreased observed at the end of 

the experiment. This explanation can not use for the BSA media, because the 

viability in these media is not different than fresh samples. 

In other hand, fertilization probes will be necessary to know if these morphology 

changes could affect the fertilization capacity, but for the moment the poor quality 

eggs obtained in European eel females under artificial conditions makes difficult 

this type of study. 
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  The pH is considered an essential factor in the control of sperm motility 

(Lahnsteiner et al. 1997; Tan-Fermin et al. 1999; Ohta et al. 2001b; Sansone et 

al. 2001; Tanaka et al. 2002a,b; Woolsey and Ingermann 2003; Alavi et al. 2004, 

Tanaka et al. 2004; Alavi and Cosson 2005). At 24 hours the motility was zero for 

all the samples diluted in pH 6.5 media, although the cells were maintained live 

and any significant changes in the spermatozoa head morphometry was 

observed. Possibly, the pH effect had influence in the mechanism of sperm 

motility, and not in the other parameters. It has been demonstrated that CO2 

inhibits the sperm motility by decreasing the intracellular pH (Morisawa 1994; 

Woolsey and Ingermann 2003; Cosson 2004; Tanaka et al. 2002a, 2004), but the 

low values of pH could also affect other factors that have influence in the sperm 

motility. In sea urchin sperm has been demonstrated that ATPase activity is 

highly dependent on the pH of the medium (Christen et al. 1983). Other example 

can be found in rainbow trout, varying the ATP hydrolytic activity of the outer arm 

of dynein with the pH (Gatti et al. 1989). 

The combination of low pH and high NaHCO3 concentration was used by 

our group (Peñaranda et al., under revision), to arrest the activation of the eel 

sperm movement produced by DMSO in the freezing medium. To check if the 

spermatozoa can recover the movement after a few minutes of incubation in the 

pH 6.5 medium, a fraction was diluted in artificial sea water (pH 8.0-8.2). The 

spermatozoa showed motilities without difference with fresh samples, so it was 

demonstrated that the pH affects the spermatozoa movement but not the viability, 

and this inhibition is reversible. However, it is possible that a long incubation of 

the sperm at low pH can promote irreversible changes in the cell physiology, that 

affect the motility spermatic capacity.  

When the pH was in physiological values, no differences were observed 

respect to fresh samples until 48 hours for the motility and until 1 week for the 

viability when the media contained BSA. Similar studies were performed in 

Japanese eel (Ohta and Izawa 1995, 1996), maintaining higher percentages of 

movement after one week of incubation. Nevertheless, the undiluted sperm in 

European eel was zero at 72 hours, while in Japanese eel at 1 week the sperm 

motility was around 60%.  

 The tested ratios of dilution were: 1:50 and 1:100. Both dilutions have 

given good results in other species (Tan-Fermin et al. 1999; Ohta and Izawa 
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1995, 1996; Ohta et al. 2001a), and any difference was observed between them 

in the present study.  

These results have demonstrated that high values of pH preserved the eel 

sperm, with a clear improvement respect to the undiluted samples. The inclusion 

of BSA in the media provided better results when the motility and the percentage 

of live cells were analyzed. All the media maintained unchanged the spermatozoa 

head mophometry until 72 hours for the perimeter and 1 week for the area, what 

could be an important data for future fertilizations. Any difference was registered 

between both ratios of dilution, so the lowest dilution seems more useful for 

sperm storage. Despite the physiological difference between Japanese and 

European eel, more studies must be performed in this field to approach to the 

motilities described in the Japanese eel studies. 
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Abstract 

Sperm production has been obtained from European and Japanese eels, 

but its quality and quantity use to be changeable. So, its cryopreservation has 

been tried in both species. Dimethyl sulfoxide (ME2SO) is the best cryoprotectant 

for European eel sperm, but increases the medium osmolality, inducing the 

activation of spermatozoa motility. To avoid it, different combinations of pH (6.5, 

8.5) and NaHCO3 concentrations (20, 40, 80 mM) were tested with two ME2SO 

concentrations (5, 10%). Foetal bovine serum (FBS, 25% v/v) was added as a 

membrane protector to all the freezing media used in the different experiments. 

The highest ME2SO and NaHCO3 concentrations at pH 6.5 caused the best post-

thawing motility (26.27 ± 3.85%). A second experiment was carried out testing 

media with ME2SO 10% with additional NaHCO3 concentrations (100, 120 mM). 

The highest post-thawing motility (38.26 ± 2.89%) was found in the media 

containing NaHCO3 100 mM, but not significant difference was observed with the 

best in the previous experiment (NaHCO3 80 mM). In a parallel experiment, and 

trying to improve the protection ahead of the cryopreservation process, bovine 

serum albumin (BSA, 5% w/v) was added instead of FBS. Lower motilities were 

registered with BSA as membrane protector. Spermatozoa activation caused by 

addition of ME2SO can be prevented using high NaHCO3 concentrations, 

improving the cryopreservation process. This effect seems be based on some of 
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the products dissociated from NaHCO3 in aqueous solution, affecting the 

intracellular pH, essential in the sperm motility. 

 

Introduction 

The European eel cryopreservation [5,16,25] has been justified because 

the hormonally treatment to induce the eel gonadal maturation is long (9-12 

weeks), the sperm quality is variable and is necessary to synchronize the gamete 

production in both sexes [4]. 

It is known that cryopreservation causes lethal damage in spermatozoa 

and also produces an important loss of membrane function by increasing 

membrane fragility in live cells [8]. The lost of membrane permeability by 

cryopreservation process has been described as the main damage during 

freezing and thawing, and changes in membrane stability result in an increase in 

the permeability of membranes to water and cations [9]. Changes in spermatozoa 

volume are associated with osmotic imbalance in live cells [19] and volumetric 

measurement has been shown to be an appropriately precise, accurate and 

informative method for the detection of functional membrane changes [32]. 

To achieve the European eel sperm cryopreservation, studies to analyze 

the ionic composition and physio-chemical characteristics of the seminal plasma 

were done [3,31]. The results were used to design a diluting medium, named P1, 

isoionic, isosmotic and with the same pH (8.5) than with the seminal plasma of 

this species and that might facilitate its dilution for quality analyses, to get a 

freezing medium or can be used as the first step of dilution of the sperm before 

the fertilization process.  

On the other hand, foetal bovine serum (FBS) or bovine serum albumin 

(BSA) have been used in the sperm cryopreservation media due to their effect as 

buffer of the osmotic shock, because proteins can award a protection of 

mechanical type to the cells membrane, diminishing the risks of crystallization, 

recrystallization or ice melting during the different phases of the process of 

freezing and thawing [10,29,36]. In the European eel, the addition of 25% FBS in 

the sperm freezing medium had shown a positive effect, improving the 

spermatozoa survival and maintaining its head size, while the use of ME2SO was 

showed as the best election respect to others cryoprotectants, like methanol or 

glycerol [16,25]. ME2SO increases the medium osmolality [5,21], causing the 
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activation of the spermatozoa motility (cryoprotectant activation, [26]. To avoid 

the cryoprotectant activation, the present study will focus in one component of the 

freezing media: NaHCO3. On one hand, Tanaka et al. (2002) [34] suggested that 

NaHCO3 has an inhibitory role of the movement in the Japanese eel 

spermatozoa, product of its dissociation and its influence in intracellular pH. Two 

years later, Tanaka et al. (2004) [35] described that NaHCO3 in aqueous 

solutions is dissociated in: CO2+H2CO3 (free-CO2), HCO3
- and CO3

2
-, and CO2 

has inhibitory effect on the sperm motility.  

The aims have been to determine the influence of the pH and the 

concentration of NaHCO3 in the freezing medium on the sperm cryopreservation, 

and to find the best percentage of ME2SO for the freezing of European eel sperm 

(experiment 1 and 2). Parallel, the effect of BSA addition to the freezing medium 

was probed trying to improve the cryopreservation process (experiment 3). 

 

Materials and Methods 

All the chemicals were reagent grade and purchased from Sigma-Aldrich 

Química S.A. (Tres Cantos, Madrid, Spain), Angelini Farma-Lepori (Barcelona), 

Invitrogen (Prat de Llobregat, Barcelona, Spain) and Panreac S.A. (Alcobendas, 

Madrid, Spain). 

 

Semen collection 

One hundred fifty European eel males (body weight: 137.6 ± 21.4 g) from 

the fish farm Valenciana de Acuicultura, S.A. (Puzol, Valencia; East coast of 

Spain) were moved into our facilities. Fish were gradually acclimatised to sea 

water (salinity 37.0 ± 0.3 g/L, 20 ºC) for 7 days, and distributed in three tanks of 

500 L. 

Males were hormonally treated for the induction of maturation and 

spermiation with weekly intraperitoneal injections of hCG (1.5 IU/g fish) as 

previously described by Pérez et al. (2000) [30]. After cleaning the genital area 

with freshwater and thoroughly drying to avoid contamination of samples with 

faeces, urine and sea water, total expressible milt was collected by applying 

gentle abdominal pressure to anesthetised males (benzocaine; 60 mg/L). Once a 

week during the spermiation period, from the 8th to 13th week of treatment, 10 fish 

were sampled 24 h after the hormone administration. For the experiments, 
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semen samples from three males having over 50% of total motile spermatozoa 

were pooled to avoid individual male differences. 

 

Evaluation of motility 

After collection, the motility of sperm samples was assessed mixing one 

drop of sperm with 3 μl of artificial sea water (in Mm: NaCl 354.7, MgCl2 52.4, 

CaCl2 9.9, Na2SO4 28.2, KCl 9.4; 2% BSA (w/v), pH 8) adjusted to 1000 

mOsm/kg as activation medium. All the analyzed samples were performed by 

triplicate and the same trained observer to avoid subjective differences in the 

motility evaluation. 

In the freezing medium the semen is diluted 1:2, and the sperm density 

was so high to determinate the percentage of motile spermatozoa, causing a 

problem to evaluate the effect of cryoprotectants in the activation of sperm 

motility. For instance, a subjective scale was used (category I: 0 - 15%, category 

II: 16 - 50% and category III: >50%). 

 

Media composition 

The effect of pH (8.5 vs 6.5, adjusted using HCl 1M) and different 

NaHCO3 concentrations were evaluated in the experiment 1 (n = 6 pools). Four 

freezing media containing 25% FBS (v/v) were tested with ME2SO 10% or 5% 

(v/v).  

In the second experiment (n = 6 pools), six freezing media (Table 1, 

media 1-6) were tested, including two new media respect to the previous 

experiment. In this case, Me2SO 10% (v/v) and 25% FBS (w/v) were constant in 

all the media. 

Table 8.1. Composition and pH of the freezing media used on the three 

experiments. In the experiment 1, the media 1-4 were tested with 5 and 10% of 

ME2SO, while in the rest of experiments only ME2SO 10% was used. Foetal 

bovine serum (FBS; 25% v/v, media 1-6) or bovine serum albumin (BSA; 5% w/v, 

medium 7) were added as membrane protectors. 
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 Medium NaCl 
(mM)

NaHCO3 
(mM) 

MgCl2 
(mM) 

CaCl2 
(mM) 

KCl 
(mM) pH Membrane

protector 

1* 125 20 2.5 1 30 8.5 FBS 
2 125 20 2.5 1 30 6.5 FBS 
3 100 40 2.5 1 30 6.5 FBS 

Experiment 
1 

4 75 80 2.5 1 30 6.5 FBS 
5 50 100 2.5 1 30 6.5 FBS Experiment 

2 6 25 120 2.5 1 30 6.5 FBS 
Experiment 

3 7 50 100 2.5 1 30 6.5 BSA 

* P1 medium described by Asturiano et al. (2004) 

 

In the third and last experiment (n = 6 pools), 25% of FBS was substituted 

by 5% of BSA in the medium 5 (containing NaHCO3 100 mM pH 6.5), which 

showed the best in the previous experiment becoming medium 7. 

 

Freezing and thawing 

All the freezing media were maintained at 4 ºC until the sperm dilution. 

Once diluted (1:2 sperm: freezing medium, v/v [25]), the samples were 

immediately packaged in 0.25 mL straws (IMV® Technologies, Láigle, Cedex, 

France), sealed with modelling paste and frozen in liquid nitrogen vapour, 1.6 cm 

above the liquid nitrogen level for 5 min, before being plunged into the liquid 

nitrogen for storage. Thawing took place in a 20 °C water bath for 15 s. Three 

straws were thawed and analysed for each pool. 

 

Fluorescence stain analysis 

Live/Dead Sperm Viability Kit (SYBR Green/Propidium Iodide (PI), 

Invitrogen) was used to evaluate the viability of spermatozoa pre- and post-

cryopreservation. Briefly, 80 μL of SYBR Green (stock solution 2 μM) and 40 μL 

of PI (stock solution 24 μM) were mixed with 15 μL of fresh sample pools. After 

10 min of incubation at room temperature in the dark, 150 μL of glutaraldehyde 

(0.5%) diluted in Dulbecco’s phosphate buffered saline (DPBS) was added, 

acting as fixation solution.  
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At least 100 spermatozoa per sample were assessed in a Nikon Eclipse 

(E-400) epifluorescence microscope, using UV-2A (EX: 330-380 nm, DM: 400, 

BA: 420) filter. Spermatozoa were classified as dead when nuclei showed red 

fluorescence over sperm head, and live when they showed green fluorescence. 

 

Spermatozoa morphometry analysis 

Pre- and post-cryopreservation, a fraction of sperm samples was diluted 

1:50 (v/v) with 2.5% glutaraldehyde in phosphate buffered saline fixative solution 

[33]. Slides were viewed using a 1000X negative phase contrast objective (Nikon 

Plan Fluor) on Eclipse E400 Nikon microscope. A Sony CCD-IRIS video camera 

transferred the image. Sperm morphology was analysed using ASMA software 

(Sperm Class Analyzer®, Morfo Version 1.1, Imagesp, Barcelona, Spain). 

Approximately 100 spermatozoa were analysed in each sample. The 

morphological parameters determined were: head perimeter (μm) and head area 

(μm2). 

 

Experimental design 

The main aim of the present study was to inhibit the spermatozoa motility 

activation induced by osmolality changes caused by cryoprotectants 

(cryoprotectant activation) to preserve the energy spent before the 

cryopreservation, and in this way improving the post-thawing motility.  

The study was divided in three experiments. In the first of them, two 

different percentages of ME2SO (5, 10%), were probed at several NaHCO3 

concentrations and two different pHs: 8.5 and 6.5. In the second experiment, 

using the concentration of ME2SO that showed the best results, higher NaHCO3 

concentrations were tested. Parallel, using the same samples of the second 

experiment, a third experiment was done. Taking as bases these previous 

results, it was decided to use NaHCO3 100 mM freezing medium to check the 

BSA effect in the sperm cryopreservation. The choice of this medium was 

because it was reported as the best freezing medium for European eel in 

preliminary unpublished experiments. Sperm pools were evaluated pre-freezing 

and post-thawing considering the motility, the percentage of live cells by 

fluorescent microscopy, and the morphometry of the spermatozoa head by 

ASMA. 
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Statistical analysis 

Motility, viability and head morphometry parameters were subjected to 

analysis of variance (One-Way ANOVA, p<0.05), including as fixed effect dilution 

ratio and FBS addition for the first experiment. Cryoprotectant was added as fix 

element for the second experiment, and NaHCO3 concentration for third one. The 

results are shown as mean ± standard error of the means (SEM). All statistical 

procedures were run using Statgraphics®Plus 5.1 (Statistical Graphics Corp., 

Rockville, MO, USA). 

 

Results 

Experiment 1 

Pre-freezing 

Figure 8.1A shows the inhibitory effect of NaHCO3 on cryoprotectant 

activation, while the figure 8.1B shows the motility of the same sperm samples 

once activated with sea water, immediately after dilution in freezing medium 

containing ME2SO. The inhibition of activation caused by ME2SO was highly 

effective in the medium containing NaHCO3 80 mM pH 6.5 (medium 4). The 

motility showed different results depending on the percentage of ME2SO. The 

results obtained in samples diluted in media containing 5% of ME2SO did not 

registered significant differences with the activated fresh pools, while most of the 

media containing 10% of ME2SO provided significant lower motilities (Fig. 8.1B). 

 
Post-thawing 

The pools showed significantly higher motilities in comparison with post-

thawed samples, and statistical differences were also found between the media 

tested. At pH 6.5, the motility of samples frozen in media with ME2SO 10% was 

higher with respect to 5% (p<0.05, Fig. 8.2A). Medium 4 plus ME2SO 10% 

registered the highest motility (26.27 ± 3.85%), being significantly higher than 

medium 1 plus ME2SO 10% (10.97 ± 2.04%, Fig. 8.2A). 

The cryopreservation process reduced the percentage of live 

spermatozoa, but different freezing media caused no significantly different results 

(Fig. 8.2B). On one hand, the cryopreservation produced a decrease in the 
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spermatozoa head size (area and perimeter, Fig. 8.2C), but the use of the 

different media combinations affected in a similar way the spermatozoa head 

morphometry.  
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Figure 8.1. Inhibition effect on cryoprotectant activation induced by NaHCO3 (A), 

and subsequent sperm activation with sea water (B). The effect of different 

ME2SO percentages (5 and 10%) and pH (8.5 and 6.5) in the freezing media (1-

4) are shown. Different letters means significant differences (p<0.05). 

 
Experiment 2 

Pre-Freezing  

The inhibition of the cryoprotectant activation was NaHCO3 doses-

dependent. A total inhibition of cryoprotectant activation was achieved with the 

medium 6, containing NaHCO3 120 mM pH 6.5 (Fig. 8.3A), but when later these 
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samples were activated with sea water, showed a significant lower motility (70.00 

± 5.32%) than fresh samples (81.67 ± 2.79%).  
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Figure 8.2.Sperm motility (A), percentage of live cells (B) and spermatozoa head 

morphometry (area and perimeter, C) analyzed post-thawing. The effect of two 

ME2SO percentages (5 and 10%) and pH (8.5 and 6.5) in the freezing media (1-

4) are compared. Asterisks or different letters means significant differences 

(p<0.05). 
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The motility of the samples diluted with the rest of the media did not show 

significant differences with respect the pools (Fig 8.3B). 

 

Post-thawing  

Cryopreservation caused a reduction of sperm motility in comparison with 

fresh samples. Samples frozen in media 4 and 5 showed significantly higher 

motilities (33.95 ± 3.73% and 38.26 ± 2.89%, respectively) respect the medium 1 

(22.36 ± 1.08%), but without significant differences with the rest of the freezing 

media with pH 6.5 (media 2,3,4,5 and 6; Fig. 8.4A). 

The cryopreservation process decreased the percentage of live cells 

independently of the medium used (Fig 4B). Cryopreservation also caused a 

reduction of the morphometry parameters (area and perimeter, p<0.05), although 

spermatozoa head area for the medium 2 containing NaHCO3 20 mM, did not 

show statistical differences with fresh pools cells, and no differences were found 

between the media (Fig. 8.4C). 
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Figure 8.3. Inhibition effect on cryoprotectant activation induced by NaHCO3 

(A), and subsequent sperm activation with sea water (B) The effect of 

higher NaHCO3 concentration in the freezing media (1-7) are shown. Also, 

the BSA (5%) was adding instead of FBS (25%) in the freezing medium 7. 

Different letters means significant differences (p<0.05). 
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Experiment 3 

Pre-Freezing  

Parallel to the second experiment and looking for obtaining better results, 

instead of 25% of FBS, 5% of BSA was added in the medium 3, containing 

NaHCO3 100 mM, pH 6.5, and forming the medium 7. It was not possible to avoid 

totally the cryoprotectant activation before the freezing, but it was reduced at very 

low levels (Fig. 8.3A). After activation with sea water the motility was significant 

lower than fresh samples, but not respect the rest of the media, including the 

medium 5 having the same composition but added with FBS (Fig. 8.3B). 

 

Post-thawing  

Significant worse post-thawing motility (21.66 ± 4.23%) was obtained 

respect to the same medium with FBS (medium 5), and without difference with 

some other media, including the medium 1 (Fig. 8.4A). The percentage of live 

cells and the spermatozoa head morphometry were statistical lower than those of 

fresh samples (Figs. 8.4B and 8.4C), but any difference was found with the rest 

of freezing media. 

 

Discussion 

To approach the cryopreservation, the presence of cryoprotectant is essential to 

avoid the injury of cell membranes. ME2SO has been showed as a good 

cryoprotectant for European eel sperm [16,25], but it increases the medium 

osmolality [5,21], and this osmolality increase triggers the spermatozoa motility 

(called cryoprotectant activation, [26]). The cryoprotectant activation seems to 

spend partially the cell energy of the spermatozoa, and can be one of the causes 

of low post-thawing motility obtained until now. This activation can affect the 

sperm cryopreservation especially in this species because the time of 

spermatozoa motility is very short once diluted in sea water, from a few seconds 

to a few minutes [17,18,38]. Sodium bicarbonate was used because it was 

showed as an inhibitor factor of spermatozoa motility in the Japanese eel sperm 

and other marine species such as the turbot or flatfish [15,22,34,35]. In aqueous 

media NaHCO3 is dissociated in several products: CO2+H2CO3 (free-CO2), HCO3
- 

and CO2
3

-, and their proportion is affected by pH. If the medium is acid, the most 
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of HCO3
- will be converted in free CO2, and this free CO2 will act as inhibitor 

factor of the motility [35]. This effect has been observed in studies on sperm 

from invertebrates to mammals [11,23,24,39]  
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Figure 8.4. Sperm motility (A), percentage of live cells (B) and 

spermatozoa head morphometry (area and perimeter), C) analyzed post-

thawing. The effects of higher NaHCO3 concentration in the freezing 

media (1-7) are compared. Also, the BSA (5%) was adding instead of FBS 

(25%) in the freezing medium 7. Asterisks or different letters means 

significant differences (p<0.05). 
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Taking as basis these physiology mechanisms, the pH of P1 medium (pH 

8.5, [3]; called medium 1 in the present study) was reduced to 6.5, increasing its 

NaHCO3 to raise the proportion of free CO2 in the freezing medium. Low values of 

pH were not enough to arrest the sperm motility in contact with ME2SO, and it 

was necessary to increase NaHCO3 concentration until 80 mM to cause a 

reduction in the cryoprotectant activation effect. This reduction provided a 

significant higher post-thawing motility, being the unique freezing medium able to 

show significant differences respect to medium 1. Considering this, a total 

suppressing of cryoprotectant activation was tried. To achieve this objective, 

higher concentration of NaHCO3 with low pH (6.5) were tested. The pre-

cryopreservation motility was totally avoided with NaHCO3 120 mM, but without 

causing better post-thawing motility. It was achieved using NaHCO3 100 mM, 

with statistical difference with medium 1. Only, the media 4 (NaHCO3 80 mM) and 

5 (NaHCO3 100 mM) registered differences with medium 1, being medium 5 

which showed the best post-thawing motility. Higher number of samples could 

have been necessary to observe differences between them (media 4 and 5, 

respectively), but a positive increasing trend was observed when the 

concentration of NaHCO3 was 100 mM (Fig 4A). 

To check if the sperm can recover the motility when it was arrested in the 

freezing medium, before of cryopreservation, the diluted sperm was activated 

with sea water. The motility was recovered, but it was affected by the percentage 

of cryoprotectant and NaHCO3 concentration. The motility observed in the media 

containing ME2SO 5% was not different than fresh samples; while in the most of 

samples diluted with ME2SO 10% media was significantly lower. ME2SO usually 

is employed because of its membrane permeability; and for its preservation of the 

integrity of isolated proteins and phospholipids membranes [2,6,28]. 

Nevertheless, if it is added to the medium, increases the osmolality causing a 

dehydration of cells, and this phenomenon can affect the cell survival [14]. A 

significant morphometry decrease was reported when the European eel sperm 

was diluted in ME2SO-containing freezing medium, as a consequence of this 

osmotic stress [5]. In the European sea bass, prior to freezing, no effect of 

ME2SO concentration (2.5, 5 and 10%) was observed on the percentage of live 

cells, but a different response was observed on mitochondrias. ME2SO 10% 

caused lower mitochondrial functionality than minor percentage of ME2SO (2.5 or 
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5%), in both pre- and post-freezing samples [20]. On one hand, the cellular ATP 

content decreased when higher cryoprotectant concentrations in the medium 

[20]. These results could explain why in the present study the lowest ME2SO 

percentage (5%) showed better motilities in pre-freezing conditions.  

In the second experiment, the diluted sperm in medium 6 (with the highest 

NaHCO3 concentration) registered significantly lower motility when the samples 

were activated with sea water. One possible reason could be that the 

concentration of free-CO2 was too high in this medium, and this ion decreased 

the pH too much to recover the motility. For the eel sperm motility, a high pH is 

considered a preliminary condition, previous to the activation, since the influx of 

H+ in the cell plays an important role in the spermatic movement [34]. 

Both ME2SO concentrations were tested to find the best percentage for 

the cryopreservation. In pre-freezing conditions ME2SO 5% provided better 

results, but in post-thawing conditions, significant higher motilities were found in 

the media containing ME2SO10%. It seems that 5% of ME2SO was not enough 

concentration to protect the spermatozoa during the cryopreservation. One 

possible explanation can be that, although higher percentages could be toxic for 

the spermatozoa, a 10% of ME2SO showed major protection on the cell during 

freezing and thawing processes.  

The motility was affected by the percentage of cryoprotectant, but not 

other parameters like spermatozoa head morphometry or the percentage of live 

cells. Nevertheless, these parameters were significantly lower when they were 

measured in post-thawing conditions. Coinciding with He and Woods (2004) [20], 

the cryopreservation process reduced the viability (p<0.05), but the level of 

cryoprotectant concentration was not a significant factor. 

The spermatozoa head area and perimeter were decreased by 

cryopreservation, although the head size was not affected by the percentage of 

ME2SO. When the sperm is in contact with freezing media (with high osmolality), 

the cells shrink as water flows out [1], causing that the live spermatozoa shrink to 

reach the osmotic equilibrium, resulting in a reduction of head size. The dead 

cells are not be able to respond to stress or to maintain the isotonic volume, so 

the dead spermatozoa suffers a higher decrease than live cells in these 

conditions, with high osmolality, [24]. This phenomenon was observed in 
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European eel sperm when it was diluted in freezing medium containing ME2SO, 

showing a significant decrease in head size respect to fresh samples [5].  

The cryopreservation process provoked the loss of membrane integrity, 

causing cellular death, so the proportion of dead cells is higher than in fresh 

samples or pre-freezing conditions (Fig. 1B, 2B), causing a decrease in the mean 

morphometry of the sample (Fig. 2A, [5,24]). In the experiment 1 the difference 

between 5 and 10% of ME2SO did not produce changes in the head size, but a 

significant decrease was induced by cryopreservation process. On one hand, 

when the post-thawing viability was studied, no differences were found between 

both percentages of ME2SO. These results confirm that the difference between 5 

and 10% of ME2SO is not enough to affect these parameters (head size, 

viability), but a significant decrease respect to the post-thawing motility was 

produced with the lowest percentage of ME2SO.  

In previous studies [16,24], the addition of FBS in the freezing medium 

caused a positive effect in the European eel sperm cryopreservation. In the 

present study, BSA was tried by first time as membrane protector, considering 

the improvement of sperm cryopreservation results caused in other species as 

gilthead seabream (Sparus aurata [10]), European sea bass (Dicentrarchus 

labrax [29,40]). There is direct evidence that BSA adheres rapidly to the 

spermatozoa membrane at the moment of dilution [7], and modifies the sperm 

lipid composition through lipid exchange or hydrolysis [13].  

In pre-freezing conditions, BSA (media 7) caused lower pre-freezing sea 

water activation and post-thawing motility when was compared with a similar 

FBS-containing medium (media 5). So, some proteins or lipids could exist in FBS 

medium that are not present in the BSA and this difference could be the 

responsible of improving the cell protection and motility, but further studies in this 

field are necessary.  

In this present study, the results achieved with P1 medium at pH 8.5 ([16], 

22.2±1.5%; medium 1), were improved obtaining approximately 40% of post-

cryopreservation motilities. It was necessary to avoid the spermatozoa activation 

produced by the ME2SO decreasing the pH and adding more concentration of 

NaHCO3 in the medium (NaHCO3 100 mM, pH 6.5, ME2SO 10% and FBS 25%, 

medium 5). Probably this percentage of motile cells is enough for fertilization 

thanks to the high density of eel sperm. Nevertheless, in the future the sperm 
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cryopreservation can be improved including cryoprotectant combinations or 

sugars in the freezing media [12,37]. 
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One injection of hCG is enough to promote the spermatogenesis both in 

Japanese (Miura et al., 1991a) and European eel (Khan et al., 1987), but in both 

cases the individual response of the fish ahead of the treatment is not always the 

same. To try to explain which factors can influence in the maturation, different 

reproductive parameters were studied during the treatment. Due to any fish has 

been caught in the reproductive migration or in the spawning place, the 

physiological values during gonad development are unknown, so it was not 

possible to compare the results obtained with the natural values. Nevertheless, 

we have proposed a possible physiological model, taking as basis our results and 

studies performed in eels or other teleosts. 
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Figure 9.1. Possible physiologycal model in European eel male during gonadal 
maturation.  

 

European eel does not achieve the gonadal maturation in captivity, being 

necessary to administrate hGC injections. Although hCG is considered an 

analogue gonadotropin of LH (Loosfelt et al., 1989), it is able to induce a 

complete spermatogenesis in male eel. One possible explanation could be that 

hCG is able of acting over in both gonadotropin receptors, explaining the high 
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variability in the fish response to the treatment, since hCG could have not the 

same effectiveness than natural FSH. Furthermore, in European eel female both 

FSH and LH receptors increased their expression in response to treatment with 

salmon pituitary extracts (Jeng et al., 2007).  

Other possibility is that hCG could bind only on LHr, as it has been seen 

in African catfish and zebrafish, where hCG specifically activated LHr but not 

FSHr, while the homologous or recombinant LH recognized both receptors 

(Bogerd et al., 2001; Vischer and Bogerd, 2003; Kwok et al., 2005). Jeng et al 

(2007) also suggested that FSH receptor probably could not recognize hCG. In 

teleost LH can promote the androgen production (11-KT, Testosterone) like FSH 

does (Swanson et al., 1989; Planas et al., 1995; Maugars and Schmitz, 2008). In 

higher vertebrates, it is known that LH promotes the androgen synthesis by 

Leydig cells (Means et al., 1976; Gonzales et al., 1988), and in mammals, FSHr 

gene knockout mice can complete the spermatogenesis, being fertile animals 

(Kumar et al., 1997; Dierich et al., 1998; Abel et al., 2000; Krishnamurthy et al., 

2000). In Japanese eel, in vitro, during the hCG-induced spermatogenesis the 

FSHr expression increased only slightly, what indicates that in eel males the hCG 

is not promoting its expression (Ohta et al., 2007). On the other hand, the effect 

of LH can be different depending on the fish gonadal stage of development. In 

salmonids, at the beginning of the spermatogenesis, LH can stimulate the 

androgen production, but at the final maturation and spawning this gonadotropin 

is more potent in stimulating DHP (Planas et al., 1995; Planas et al., 2000). 

These results could explain why the same gonadotropin, hCG, is able to induce 

the whole spermatogenesis in the male eel. 

 

As a consequence of hCG injections, the 11-KT production is stimulated 

(Khan et al., 1987; Miura et al., 1991a; Ohta and Tanaka, 1997). In the present 

document one injection of hCG was enough to increase four times the 11-KT 

level, demonstrating the positive effect of this hormone in the stimulation of 11-KT 

production. The spermatogenesis can be achieved in vitro conditions by 

administration of 11-KT (Miura et al., 1991b) or in hypophysectimized European 

eel males by hCG injections (Khan et al., 1987). These results demonstrate that 

hCG has a direct effect on the gonad, and in artificial conditions the brain is not 

necessary to get a complete spermatogenesis. In contrast, when the 
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hypophysectimized European eel males were compared with no 

hypophysectimized males, the intact fish showed more sensibility to the hCG 

administration, especially in terms of induction of spermiation, suggesting the 

participation of positive feedbacks. One possibility could be that in artificial 

conditions the GnRHs and gonadotropin expression help to achieve a complete 

spermatogenesis (Ohta et al., 1997; Asturiano et al., 2005), but their presence is 

not necessary to finish the maturation process. It could be said that in the gonad 

of treated males are present the necessary factors to obtain the gonad 

development.  

 

One function of the steroid 11-KT is the induction of the germinal 

proliferation (Miura et al., 1991a,b 1996; Miura and Miura, 2001, 2003), 

coinciding with the observed significant increase in the GSI, caused probably as 

a consequence of highest 11-KT levels. During the weeks where the highest 

peaks in 11-KT was observed (3rd and 4th), the cells were found in late meiosis 

and spermiogenesis process, steps in which is assumed that 11-KT plays no role. 

The European eel is not the unique species that showed this 11-KT level just 

before the spermiation period (Fostier et al., 1983; Ueda et al., 1983; Mayer et 

al., 1992; Amiri et al., 1996; Pavlidis et al., 2000; Amer et al., 2001; García-López 

et al., 2006), being suggested by some authors (Baynes et al., 1985; Malison et 

al., 1994) that this androgen could have a role in the maintenance of the 

spermatozoa viability or in the release of mature spermatozoa from testicular 

cysts into the lobular duct. So, it is possible that this androgen has more than one 

function in the spermatogenesis, although further research is necessary in this 

field. 

 

In vitro conditions, the presence of 11-KT in the gonad is enough to 

induce a full spermatogenesis (Khan et al., 1987; Miura et al., 1991; Ohta and 

Tanaka, 1997). Also in vitro conditions, rjeFSH stimulated the 11-KT production 

in the gonad (Kamei et al., 2003; Ohta et al., 2007), being assumed that FSH 

promote the gonad maturation through the 11-KT.  

 

The presence of DHP is necessary to finish the spermatogenesis (Miura 

et al., 1995a; Ohta et al., 1997), which is the responsible of meiosis process 
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(Miura et al., 2006) and the acquisition of motility by spermatozoa (Miura and 

Miura, 2003). In vitro conditions, 11-KT sitmulated the DHP synthesis on germinal 

cells, what could explain that this androgen is able to develop the 

spermatogenesis by itself. Moreover, these results also can explain why the 

gonad maturation is achieved in hypophysectimized males (Khan et al., 1987). 

In the third experiment, the GnRHs and gonadotropin expression were 

studied. Despite their natural expression could be different than the results 

obtained in our experiment, we have tried to hypothesize their function in the 

maturation process.  

 

The expression of GnRHs showed significantly higher values in 

diencephalon-mesencephalon during gonad development, but differents results 

were obtained for mGnRH and cGnRH. Coinciding with Dufour et al. (1993) and 

Montero et al. (1994), a significant increase was observed for mGnRH, while a 

decrease was registered for cGnRH. Although the mGnRH expression not always 

was correlated with peaks of LHβ expression, it can be considered as the 

principal GnRH responsible of gonadotropin release in the European eel. cGnRH-

II suffered a decrease at the 4th week of the treatment, but it is not clear the 

possible role of this GnRH variant during the gonad development. Maybe, its 

function in the maturation is supporting the hypophysiotropic role of the mGnRH. 

 

The gonadal steroids can influence in the GnRH expression (Dufour et al., 

1993; Amano et al., 1997) but the steroid effect depends on the physiological 

stage of development. This situation can be a possible explanation of why the 11-

KT stimulated the GnRH release at the beginning of the gonadal maturation, but 

not when the gonad was in the more advanced stages of development.  

 

It is not possible to know the real gonadotropin profile in natural 

conditions, but when our results are compared with the profile obtained in 

naturaly matured New Zealand longfinned eel or in other teleost (Mateos et al., 

2003; Saito et al., 2003), the gonadotropin profile obtained by hCG injections can 

be considered abnormal. During the hCG treatment an over expression of LHβ (6 

times) and a dramatic decrease of FSHβ expression (50 times; in both cases 

respect to the untreated males) were registered after only one injection of hCG, 
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what could cause a premature maturation, and so a low gonad development in 

some fish. One possible explanation of this gonadotropin profile is the hormone 

used for the maturation. hCG stimulates in the gonad the expression of E2 

receptor (possibly also the E2 synthesis; Miura et al., 1999), and the production of 

the 11-KT and testosterone (Khan et al., 1987; Ohta and Tanaka, 1997; Miura et 

al., 1991a). Testosterone and E2 (in vivo) have a negative effect in the FSHβ 

expression (Jeng et al., 2007), while 11-KT, T and E2 have a positive effect in the 

LHβ expression (Dufour et al., 1983; Rebers et al., 1997; Schmitz et al., 2005; 

Jeng et al., 2007). On the other hand, the 11-KT stimulates the IGF-I synthesis 

(Miura and Miura, 2001) which induces the LH expression in the pituitary (Aroua 

et al., 2008). By different ways, the hCG has a positive effect in the LH 

expression and negative in the FSH expression. 

 

The gonad development can be divided in two phases: the seven first 

weeks of treatment, when the spermatogenesis takes place, and the following 

weeks that can be classified as spermiation period. During the first period most of 

the analyzed parameters (LHβ expression, GSI, EI, HIS, quality sperm) were 

increasing, but in the second phase high variability was observed between fish. 

One possible explanation can be that in the second phase of the treatment the 

repeated hCG injections can be inducing an over-maturation in some fish. In this 

second phase the motility was high, coinciding with high levels of LHβ 

expression. Although both parameters registered similar evolution during the 

treatment, the LH is not the direct responsible of the motility, but the DHP 

progestagen, which production is stimulated by LH effect (Miura and Miura, 2001, 

2003). For this reason, further studies about the role of progestagens will provide 

important information about sperm quality control, being a primordial work in the 

future. 

 

The induction of reproductive maturation is performed in pubertal fish by 

hormonal methods. Maybe, some fish are too young (pre-pubertal) to begin the 

sexual maturation, what could explain the different response (LHβ expression, 

quality sperm, morphometric parameters) obtained in some cases.  
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As a consequence of the spermatogenesis process the sperm is 

produced, and it can be obtained by gentle abdominal pressure. The fertilization 

is its principal destination, but first it was necessary its study. The motility is 

considered the principal parameter (appart from fertilization rate) that defines the 

sperm quality, but in this document two parameters more were applied: 

percentage of live cells and spermatozoa head morphometry. Our group was the 

first to apply the ASMA analysis of head size in the European eel, but this 

species showed problems for its analysis due to the unusual spermatozoa 

morphology. To verify if this system can be used in this species, the results 

obtained with this program were compared with those obtained with scanning 

electron microscopy. The head perimeter and area were the morphometric 

parameters that we considered more accurate for this type of study. This 

technique has provided information about the head size during the hormonal 

induction treatment. The analysis showed higher head size between 8th-11th 

weeks of hCG treatment, coinciding with the highest motilities and percentages of 

live cells. When the spermatozoa head morphometry was analyzed in the 3rd 

experiment, bigger head size and motilities were found coinciding with the most 

advanced stages of gonad development (S5, S6). Taking as basis these results, 

we can say that there is a coincidence between sperm quality and spermatozoa 

head size. On the other hand, the most important application of this technique is 

the possibility to check the cell response to processes as the cryopreservation or 

the dilution in a extender medium. We can conclude that this technique will be 

useful to work with sperm, but in the case of European eel, fertilization probes are 

necessary to know which is the optimum size to obtain high fertilization rates.  

 

Applying these techniques (motility, size head and viability) we can define 

which weeks of the treatment showed a good sperm quality. The spermiation 

began at the 5th week in the 1st experiment and at the 4th week in the 3rd 

experiment. So we can consider this time as the beginning of sperm production. 

Nevertheless, the period with high sperm quality was different between 

experiments (8th-11th, experiment 1; 10th-13th, experiment 3). These changes can 

be due to the method of maturation, which is performed by hormonal injections, 

and not all the fish responded in the same way. Fish were obtained from a local 

fish farm, looking for a higher homogeinity between the groups used in the 



CHAPTER 9 
GENERAL 
DISCUSION 

9. General discussion 
 

 171

different experiments. However, maybe the physiological stage at the beginning 

of the experiment was different in both experiment, causing dissimilar answer to 

the treatment. 

 

This study will permit a better synchronisation with the female spawns, 

since the induction of maturation in eel females is performed with hormonal 

injections, and the moment of female spawn can be very different between fish. 

Depending of the hormone used in the treatment, the time of the female spawn 

can be found between 10th-29th weeks with salmon pituitary extracts (SPE) or 

13th-20th weeks with carp pituitary extracts (CPE; Pedersen, 2003, 2004; Palstra 

et al., 2005; Perez et al 2007). Nevertheless, some problems are presented, as 

the difference between 1st and 3rd experiment respect to the weeks of the 

treatment that presented high sperm quality. On the  other hand, the fresh sperm 

only can be maintained with good motility during several hours, since after 24 h it 

is close to zero. To try to solve these problems, different techniques to preserve 

the sperm were developed. 

 

To extend the time maintaining good sperm motility, we designed one 

diluting medium (P1 medium) that can preserve the fresh sperm during several 

days. To develop this diluent, a medium was designed having the same ionic and 

osmotic characteristics of the European eel seminal plasma (Asturiano et al., 

2004), since the sperm is maintained immotile and with high motility when is 

diluted in the seminal plasma. No differences in motility were observed respect to 

fresh samples for the sperm diluted in the P1 medium containing 2% of BSA 

during the first 48 h of incubation. But perhaps the most significant date, it is that 

after 1 week of incubation the percentage of live cells was not different than fresh 

samples, although the motility was around 30%. Unpublished results 

demonstrated that anaerobic and dark conditions caused better motilties than 

aerobic environment in eel sperm. These results are undermining the loss of ATP 

or O2 as the cause of lower motilities at 1 week in aerobic conditions. One 

possible explanation could be the presence of free radicals, which are produced 

in aerobic reactions. The free radicals have a negative effect on the lipids, and 

could be affecting to some factor important for the sperm motility. These results 

open the doors to new research in this field, with the design of new media that 
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preserve a higher motility, since the cell can be maintained live during a long 

time.  

 

Finally, a new method to cryopreserve the sperm was developed, which 

will permit to keep sperm with good quality during long time. Different methods 

have been previously tested by our group to cryopreserve the eel sperm (Marco-

Jiménez et al., 2006; Asturiano et al., 2007; Garzón et al., 2008), but the post-

thawing motility was not higher than 22.2 ± 1.5%, that we considered low. Garzón 

et al. (2008) demonstrated that the DMSO was the best cryoprotectant for 

European eel sperm, but DMSO has a problem. When the DMSO was added in 

the freezing medium the osmolality increases, causing the activation of the 

spermatozoa motility, and therefore the energy spend. To avoid this activation 

was necessary to decrease the pH, and to increase the NaHCO3 concentration in 

the freezing medium. The medium that caused the highest post-thawing motility 

(38.26 ± 2.89%) contained NaHCO3 100 mM and pH 6.5. We consider this result 

as enough motility for the fertilization due to the high sperm density in this 

species.  

 

In aqueous media NaHCO3 is dissociated in several products: CO2+H2CO3 

(free-CO2), HCO3
- and CO2

3
-, and their proportion is affected by pH. Depending 

which product is predominant in aqueous solution, NaHCO3 can have a positive 

or negative effect on the motility. NaHCO3 is a buffer that can modify the 

intracellular pH, which it is an essential factor controlling the sperm motility. Low 

values of pHi inhibits the spermatozoa motility (Tanaka et al., 2004), since before 

starting the movement, a exchange K+/H+ is produced with the efflux of K+ and 

the influx of H+. If the concentration of H+ inside the cell is so high (low pHi), this 

exchange can be not achieved. When the medium is acid the NaHCO3 is 

dissociated in high proportions in CO2, which induces the decrease in the pHi, 

and as consequence the motility is arrested. But if the pH medium is high (around 

8.5), the principal component is HCO3
- which increase the intracellular pH, and so 

induces the spermatozoa motility. Further studies are necessary in this field, 

since only a small part of the sperm  movement physiology is known, especially 

in teleosts.  
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Two different methods of sperm preservation have been described, one 

for short time and another for long time. Each one will permit the application of 

new techniques inside eel reproduction. For example, the fertilization rate could 

be improved by the dilution of the sperm as was described in the Japanese eel by  

Ohta et al., (2001a), and in the case of cryopreservation, this technique would 

permit the creation of genetic banks.  

 

On the other hand, all these methods of preservation need a last probe: 

the fertilization. But for the moment the poor quality of eggs obtained from 

European eel females under artificial conditions makes difficult this type of study. 

 

Right now different groups are working in the European eel reproduction, 

providing a wide knowledge in this field. But due to the dramatic situation that this 

species is suffering, it is necessary further research. The study of new methods 

for eel sperm preservation and its reproductive physiology, not only will be 

important for eel reproduction but also to understand the reproductive physiology 

in other teleosts. 
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CHAPTER 10 
CONCLUSIONS 

1. Cell staining techniques and morphometry ASMA analysis have 

been validated as useful tools for the evaluation of European eel 

sperm quality. 

 

2. The hCG treatment (1.5 IU hCG/g body weight, weekly 

administration), induced the sperm production, showing high 

quality between 8th and 13th weeks of the treatment. 

 

3. The treatment with hCG provides an abnormal gonadotropin 

profile, if its is compared with other teleosts. 

 

4. mGnRH seems to be the responsible of gonadotropin release at 

the beginning of the hormonal treatment. 

 

5. The 11-KT plays a role not only in the spermatogonial proliferation, 

but also in the late meiosis and spermiogenesis. 

 

6. One medium able to maintain the fresh sperm during one week of 

incubation (4 ºC) with good motility (30%) was developed. 

 

7. A new cryopreservation technique and one freezing medium able 

to arrest the sperm activation caused by DMSO, were developed, 

providing approximately 40% of post-thawing motile spermatozoa. 
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