3.3.1 Primers and references genes
3.3.2 SYBR Green assay
3.4 IMMUNOENZYMATIC ASSAY (ELISA) FOR SEXUAL STEROID 11KT
3.5 GONAD HISTOLOGY
3.6 EVALUATION OF THE MOTILITY
3.7 FLUORESCENCE STAIN ANALYSIS
3.8 SPERMATOZOA MORPHOLOGY ANALYSIS
3.9 SCANNING ELECTRON MICROSCOPY
4 EXPERIMENT 1
Effects of hCG as spermiation inducer on European eel semen quality
Abstract
Introduction
2. Materials and methods
2.1. Fish and sampling
2.2. Sperm quality evaluation
2.3. Sperm viability assessed by Hoechst 33258 staining
2.4. Mitochondrial function determined by JC-1 staining
2.5. Spermatozoa morphology analysis
2.6. Statistical analysis
3. Results
Discussion
Acknowledgements
References
5 EXPERIMENT 2
Morphometry characterisation of European eel spermatozoa with computer-assisted spermatozoa analysis and scanning electron microscopy

Abstract

Introduction

Materials and Methods

Fish and samplings

Samples evaluation by ASMA

Scanning electron microscopy

Experimental design

Statistical analysis

Results

Discussion

Acknowledgements

References

6 EXPERIMENT 3

Molecular and physiological study of the artificial maturation process in the European eel males from brain to testis

Abstract

Introduction

Materials and Methods

Fish and samplings

Evaluation of motility

Fluorescence stain analysis

Spermatozoa morphology analysis

RNA extraction and cDNA synthesis

Primers and reference gene
8 EXPERIMENT 5

Improvement of European eel sperm cryopreservation method by preventing spermatozoa activation caused by cryoprotectants

Abstract

Introduction

Materials and Methods

Semen collection

Evaluation of motility

Media composition

Freezing and thawing

Fluorescence stain analysis

Spermatozoa morphometry analysis

Experimental design

Statistical analysis

Results

Experiment 1

Experiment 2

Experiment 3

Discussion

Acknowledgements

References

9 GENERAL DISCUSSION
INDEX OF THE TABLES

Chapter 4: Experiment 1

Table 4.1. Sperm volume, concentration and frequency of motility categories produced by eel males between 5th and 12th weeks of hCG treatment. 63

Table 4.2. Least square means ± standard error of the means for each of the measured parameters (head length, width, perimeter and area) from 5th to 12th weeks of hCG treatment. 65

Table 4.3. Principal components existing on the head spermatozoa morphology obtained by hCG treatment: influences of the different parameters and its correlations (inside parenthesis) on the two components. 66

Chapter 5: Experiment 2

Table 5.1. Spermatozoa morphological parameters: head length (μm), width (μm), perimeter (μm), and head area (μm²), considering spermatozoa measured by computer-assisted morphology analysis (ASMA) or scanning electron microscopy (SEM) and analysed by Image J. 82

Chapter 8: Experiment 5

Table 8.1. Composition and pH of the freezing media used on the three experiments. In the experiment 1, the media 1-4 were tested with 5 and 10% of ME2SO, while in the rest of experiments only ME2SO 10% was used. Foetal bovine serum (FBS; 25% v/v, media 1-6) or bovine serum albumin (BSA; 5% w/v, medium 7) were added as membrane protectors. 146

INDEX OF THE FIGURES

Chapter 1: Introducción

Figure 1.1. Distribution of eel in the world (Aoyama and Tsukamoto, 1997). 11

Figure 1.2. Life cycle of Anguilla anguilla. 12

Figure 1.3. Example of leptocephali (Tanaka et al., 2001) 13

Figure 1.4. Brain–pytuitary-gonad axis in teleosts 14

Figure 1.5. Principal parts of the brain in European eel (Weltzien et al., 2005b). 16
Figure 1.6. Spermatogenesis stages (Miura and Miura, 2003).
Figure 1.7. DHP effect in the spermatozoa (Miura and Miura, 2003).
Figure 1.8. Informatic program CASA system.
Figure 1.9. Parameter measured by ASMA system.
Figure 1.10. Example of SYBR and IP staining in eel sperm.
Figure 1.11. Example of Hoechst staining in eel sperm.

Chapter 3: General Material and Methods
Figure 3.1. Aquaria and tanks where the eels were distributed.
Figure 3.2. (A) Intraperitoneal injection of hCG. (B) Extraction of the different parts of the eel brain.
Figure 3.3. Process of sperm extraction: began with the fish capture, followed of anaesthetic step, the clean and dried of fish abdominal, and finishing with the extraction.
Figure 3.4. Light Cycler system with SYBR Green I sequence-unspecific detection (Roche).
Figure 3.5. Example of ELISA plate.
Figure 3.6. Evaluation of the sperm motility.
Figure 3.7. Eel spermatozoa observed by scanning electron microscopy.

Chapter 4: Experiment 1
Figure 4.1 (A) Sperm viability obtained by Hoechst 33258 staining, expressed as percentage of dead spermatozoa. (B) Mitochondrial function determined by JC-1 staining, shown as percentage of cells showing low mitochondrial functionality. Different letters indicate significant differences.
Figure 4.2. Evolution of the different spermatozoa morphometry components, obtained by the Principal Component Analysis, between 5th and 12th weeks of hCG treatment. (A) Spermatozoa size or component 1 and (B) spermatozoa width or component 2. Results are shown as 95% HSD intervals over the means. Different letters indicate significant differences.

Chapter 5: Experiment 1
Figure 5.1. Scanning electron microscopy of European eel spermatozoa separated from seminal plasma by centrifugation, fixed in 2% glutaraldehyde, post-fixed in 1% osmium
tetraoxide, dehydrated, critical point-dried in liquid CO2 and coated with gold–palladium. Scale bars: 10 (A) and 2 µm (B).

Figure 5.2. Real pictures obtained by phase contrast optic (1000×) and schematic drawing showing how the Sperm Class Analyser®, Morfo Version 1.1 (Imagesp, Barcelona, Spain) measures different morphology parameters of European eel spermatozoa. a= Measured length by ASMA; x = real length of the cell.

Chapter 6: Experiment 3

Figure 6.1. GnRHs expression in the different parts of the brain. mGnRH expression in olfactory bulb and telencephalon (A), cGnRH-II and mGnRH expression in mes/diencephalon (B). Different letters means significant differences (p<0.05).

Figure 6.2. Gonadotropin expression in the pituitary (FSHβ and LHβ subunit), during the treatment. Asterisks or different letters means significant differences (p<0.05).

Figure 6.3. Morphometry parameters: gonadosomatic index (GSI, A), hepatosomatic index (HI, B), eye index (EI, C) and plasma 11-ketotestosterone (11KT, D) levels during the treatment.

Figure 6.4. Evolution of the (A): motility and (B): percentage of live cells during the treatment.

Figure 6.5. Photomicrographs of histological sections for the different stages found during the treatment. (A) Testis at stage 1, SPGA, spermatogonia-A, SPGB, spermatogonia-B; (B) Testis at stage 2, SPC, spermatocyte; (C) Testis at stage 3, SPD, spermatid; (D) Testis at stage 4, SPZ, spermatozoa; (E) Testis at stage 5; (F) Testis at stage 6. Scale bar, 100 µm (A-F).

Figure 6.6. Percentage of the different stages of gonad development during the weeks of treatment.

Figure 6.7. Evolution of different parameters studied in relation with the stage of testis development (A) Expression of LHβ subunit; (B) level of 11-ketotestosterone (11KT) in blood plasma; (C) gonadosomatic index (GSI); (D) eye index (EI); (E) motility; (F) spermatozoa head morphometry, area and perimeter.

Chapter 7: Experiment 4

Figure 7.1. Evaluation of the motility of sperm samples in the different tested media compared with fresh and undiluted samples, at different times: (A) 24 h, (B) 48 h, (C) 72 h and (D) 1 week. No motility was observed in the all pH 6.5 media after 24 h of incubation, and no more data were taken in the rest of the experiment. Different letters means significant differences (mean ± sem) between media at the same time of the incubation, and the number (1) indicates no significant difference respect to fresh samples (p<0.05).

Figure 7.2. Percentage of live cells in the sperm samples diluted with the different tested media compared with fresh and undiluted samples at different times: (A) 24 h, (B) 48 h,
(C) 72 h and (D) 1 week. Any difference respect to the fresh samples was registered at 24 h of incubation for pH 6.5 media, and no more data were taken in the rest of the experiment. Different letters means significant differences (mean ± sem) between media at the same time of the incubation, and asterisk indicates no significant difference respect to fresh samples (p<0.05).

Figure 7.3. Evaluation of spermatozoa area in the sperm samples diluted with the different tested media compared with fresh and undiluted samples, at different times: (A) 24 h, (B) 48 h, (C) 72 h and (D) 1 week. Any difference respect to the fresh samples was registered at 24 h of incubation for pH 6.5 media, and no more data were taken in the rest of the experiment. Different letters means significant differences (lsm ± sem) between media at the same time of the incubation, and asterisk means significant difference respect to fresh samples (p<0.05).

Figure 7.4. Study of spermatozoa area in the sperm samples diluted with the different tested media compared with fresh and undiluted samples, at different times: (A) 24 h, (B) 48 h, (C) 72 h and (D) 1 week. Any difference respect to the fresh samples was registered at 24 h of incubation for pH 6.5 media, and no more data were taken in the rest of the experiment. Different letters means significant differences (p<0.05).

Chapter 8: Experiment 5

Figure 8.1. Inhibition effect on cryoprotectant activation induced by NaHCO3 (A), and subsequent sperm activation with sea water (B). The effect of different ME2SO percentages (5 and 10%) and pH (8.5 and 6.5) in the freezing media (1-4) are shown. Different letters means significant differences (p<0.05).

Figure 8.2. Sperm motility (A), percentage of live cells (B) and spermatozoa head morphometry (area and perimeter, C) analyzed post-thawing. The effect of two ME2SO percentages (5 and 10%) and pH (8.5 and 6.5) in the freezing media (1-4) are compared. Asterisks or different letters means significant differences (p<0.05).

Figure 8.3. Inhibition effect on cryoprotectant activation induced by NaHCO3 (A), and subsequent sperm activation with sea water (B). The effect of higher NaHCO3 concentration in the freezing media (1-7) are shown. Also, the BSA (5%) was adding instead of FBS (25%) in the freezing medium 7. Different letters means significant differences (p<0.05).

Figure 8.4. Sperm motility (A), percentage of live cells (B) and spermatozoa head morphometry (area and perimeter), C) analyzed post-thawing. The effects of higher NaHCO3 concentration in the freezing media (1-7) are compared. Also, the BSA (5%) was adding instead of FBS (25%) in the freezing medium 7. Asterisks or different letters means significant differences (p<0.05).

Chapter 9: General Discussion

Figure 9.1 Possible physiological model in European eel male during gonadal maturation