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1. Introduction 

Photonically assisted Arbitrary Waveform Generation (AWG) allows frequency operation 

ranges of tens of GHz in contrast with pure electronic systems restricted close to 10 GHz. The 

ability to generate high frequency and large bandwidth signals becomes extremely important 

in different application fields such as: radar systems, wireless communications, software 

defined radio and modern instrumentation [1, 2]. Currently, a great number of approaches 

related to microwave AWG in the optical domain have been proposed including direct space-

to-time pulse shaping, temporal pulse shaping, optical spectral shaping combined with 

frequency-to-time mapping [3], optical line-by-line intensity and phase modulation [4], 

incoherent pulse shaping [5, 6] and microwave photonic filtering [7]. 

In particular, photonic schemes designed to generate chirped microwave pulses have a 

special interest since can be achieved featuring a broad frequency operation range and high 

values of time-bandwidth product (TBWP). Several applications benefit from these features, 

such as spread spectrum communications, pulsed compression radars or tomography for 

medical imaging [8–10]. Firstly, a coherent nonlinear frequency-to-time mapping in a high-

order dispersive element was proposed [11, 12]. In this case, TBWP depends on the second-

order dispersion so this technique is experimentally limited to a TBWP value of 4. In order to 

increase this product, other approaches propose to achieve a chirped behaviour by means of a 

optical source slicing obtaining TBWP values around 40 [13]. A drawback of these 

techniques consists on the lack of flexibility to experimentally reconfigure the output 

waveform. Therefore, incoherent source processing systems have been also proposed to 

generate chirped arbitrary waveforms with large TBWP [14]. Nevertheless, in this case, the 

arbitrariness of the generated signal is restricted, since the waveform envelope is electrically 

controlled. In order to increase the waveform flexibility, we recently proposed a photonic 

scheme that allows both optical arbitrary waveform generation and large TBWP by the 

processing of an incoherent optical signal using a nonlinear dispersive element which 

experimental results were reported in [15]. Recently, a high TBWP of several hundreds of 

thousands has been experimentally demonstrated by a heterodyne-beating using two lasers 

[16]. However, this system is drastically restricted to low rates (~kb/s) because of the sweep 

time of lasers dependence. In contrast, the previous systems based on coherent or incoherent 

optical processing permit to achieve high rates (hundreds of Mb/s) which are required in a lot 

of applications. 

The main restriction of incoherent light processing systems is related to a low signal-to-

noise ratio [17]. In the structures with incoherent sources proposed for AWG, this fact gives 

as a result intensity fluctuations of the optical field associated to the generated output 

waveform [5, 6, 14]. In order to avoid this limitation a proper average of the generated signal 

can be carried out [7]. Moreover, the use of a differential photodetection has been 

experimentally demonstrated to achieve a significant improvement in the signal-to-noise ratio 

of the generated waveform reducing the number of required averaging events [14, 15]. 

In this paper, we propose and analyze a novel technique based on incoherent signal 

processing which employs nonlinear dispersive element and which is adaptable to achieve 

chirped arbitrary waveforms. We have carried out several numerical simulations of the 

proposed system in order to show different capabilities in terms of chirp, frequency and 

envelope of the generated waveform. To the best of our knowledge, this is the first structure 
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which operates as an incoherent nonlinear frequency-to-time mapping system where a full 

reconfigurability can be achieved by controlling the optical source power distribution with a 

chirp value depending on the second-order dispersion. In particular, the use of realistic 

parameters corresponding to commercial devices allows to obtain TBWP value around 90. 

2. Operation principle 

The operation principle of the proposed technique is illustrated in Fig. 1. In our theoretical 

analysis we consider a broadband optical source which is given by the power spectral density 

S(ω), centred at ωo, such that the optical field of the light source describes a stationary random 

process. As Fig. 1(a) describes, each optical frequency ω' in the broadband spectrum emitted 

by the optical source is modulated by means of a modulator impulse response hmod(t) which 

full-width half maximum pulse duration is σ0, corresponding to an spectral response shown in 

Fig. 1(b). Then, the modulated signal is launched into an optical processor which is 

determined by the temporal impulse response hdisp(t). As shown in Fig. 1(c), a non-linear 

dispersive element is used as optical processor which can be described by the optical transfer 

function 
( )

( ) e
j

odisp
H H

ϕ ωω −=  where first- and second- order dispersion are considered. 

Therefore, the phase response φ(ω) can be expanded as: 

 2 3

1 2 3

1 1
( )

2! 3!
o

ϕ ω ϕ ϕ ω ϕ ω ϕ ω= + + +  (1) 

where
1
φ is the group-delay time at the central optical frequency ωo and

2
φ and

3
φ are the first- 

and second-order dispersion, respectively, evaluated at the same frequency. Note that above 

parameter ω represents the relative optical frequency with respect to the reference optical 

frequency ωo and Ho corresponds to the optical losses in the dispersive element. 
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Fig. 1. Schematic diagram of the nonlinear incoherent optical processing technique operating 

as a microwave pulse generation system. PD: photodetector. Insets: (a) power spectral 

distribution of the optical source, (b) transfer function of modulator response at angular optical 

frequency ω', (c) optical delay of high-order dispersive element and (d) power spectral density 

of modulated signal at ω’ after propagation. 

After dispersive propagation, the optical field when we consider a monochromatic source 

centred at the optical frequency ω' is given by: 

 ( )'

mod
( ', ) e ( )

j t

out disp
e t h t h t

ωω = ⊗⋅  (2) 

Without considering additional assumptions, Fig. 1 represents a conventional 

electrooptical scheme of an optical carrier with a spectral distribution S(ω) by means of 
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external modulation and photodetection after propagation through a given optical processor 

Hdisp(ω) [16]. Therefore, the average intensity Iout(t) results to be a superposition of 

monochromatic carrier waves which are spectrally weighted by the optical spectral density 

S(ω) previously to dispersive propagation. In this way, according to [18], Iout(t) can be 

obtained as follows: 

 
2

( ) ( ) ( , )
2

o

out out

I
I t S t deω ω ω

π

+∞

−∞

= ∫  (3) 

where Io includes different system parameters as the optical losses of the nonlinear dispersive 

element, the responsivity and impedance of the photodetector. 

At this point, we assume that the dispersive element satisfies the condition 

0 3 2
/σ ϕ ϕ≫ which is verified by dispersive delay lines and electrical pulses commonly used in 

experiments. As described in Fig. 1(c), this condition implies that second-order dispersion is 

negligible over the input pulse but not necessarily over the optical source power spectral 

distribution. In this way, introducing Eq. (1) into Eq. (2) and considering the previous 

assumption, we can find that the average intensity for each frequency component ω' is given 

by the average intensity at the optical frequency ωo which is delayed by the dispersion in the 

following form: 

 ( )2 2 2

mod 1 2 3

1
( , ) ( , ) ( ) ( )

2
out oe t h t t whereω ω δ τ ω τ ω ϕ ϕ ω ϕ ω≅ ⊗ − = + +       (4) 

The parameter τ(ω) represents the group time delay for each optical frequency coming 

from the first-order derivative of Eq. (1) as plotted in Fig. 1(c). Therefore, introducing Eq. (4) 

into Eq. (3), we can obtain the expression of the generated electrical signal by a contribution 

which is a sum of incoherent terms given as: 

 
( ) ( )2 32

mod 2

2 3 3 2

( ) ( , ) 1 1 2
2

m

OUT m

o

o

S
I t with

I t
h t t

ω ω

ω
ω

ϕϕ
ω

π ϕ ϕ ω ϕ ϕ
=

= ⊗ =
 
− +  +  

   (5) 

For simplicity, the parameter t represents the relative time with respect to φ1. From the 

first term of Eq. (5), we observe that it corresponds with nonlinear frequency-to-time process 

since the output signal can be considered a time-domain scaled version of the power spectrum 

S(ω) with a scale factor given by ωm(t). We can see that Eq. (5) corresponds to an extension 

of the schemes based on linear incoherent optical signal processing in which second-order 

dispersion is neglected [5, 6]. Indeed, when we consider that φ3 tends to zero, the scale factor 

becomes ωm = t/|φ2|. For a general case, we obtain a nonlinear frequency-to-time relationship 

between the parameter ωm and the relative time showing a similar behavior as reported in [12] 

where a coherent regime is considered. In our case, a difference is found in the first term of 

Eq. (5) since the equivalent mapping is not only realized over the power spectral density S(ω) 

but also it is related to the local dispersion at a given optical frequency ω respect to ωo. 

Indeed, the denominator of the first term corresponds to the first-order derivative of the group 

time delay of Eq. (4). 

As we have previously pointed out, the second term of Eq. (5) represents the output pulse 

when a monochromatic source is considered. For an optimized performance of the nonlinear 

incoherent processing by enhancing the first term of Eq. (5), we have to compare the pulse 

duration between both terms to minimize the convolutional effects of the second term over the 

first one. Taking into account the coherence time σc of the optical source which is scaled as 

shown in Eq. (5) and the input pulsewidth 
0 3 2

/σ ϕ ϕ≫ , we assume the following conditions 

which establish the limits to satisfy an optimized nonlinear frequency-to-time process: 
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 3

2 0 0

1

2
c c

c

ϕ
ϕ σ σ σ σ

σ
+ ≫ ≫  (6) 

From Eq. (6), we can establish the conditions over the temporal duration of the impulse 

modulation response to reduce the convolutional effects and enhance the system performance. 

Therefore, we achieve an all optical AWG independently of the temporal impulse response. 

From above assumptions, we conclude that independently of a negligible or considerable 

dispersion over the input pulse (i.e.,
2 2

2 0 2 0
orϕ σ ϕ σ≪ ≫    , respectively), the first term of 

Eq. (5) prevails over the second one. Comparing with schemes based on linear incoherent 

optical signal processing, this fact is illustrated by the condition 
2 0 c

ϕ σ σ≫  which ensures a 

proper performance of the system [5] since the second-order dispersion is neglected. In this 

way, nonlinear incoherent optical processing brings advantages compared to coherent 

techniques which must fulfill 
2

2 0
ϕ σ≫  according to the dispersion requirements where only 

the pulsewidth σ0 is involved [10, 11]. Comparing both coherent and incoherent conditions, 

when a similar pulsewidth is considered, incoherent processes need smaller dispersion values 

since 
0 c

σ σ≫ . For typical dispersion values of around of hundreds of ps
2
, coherent schemes 

have to reduce the pulsewidth significantly making difficult the performance when an external 

modulation is involved. In fact, generally coherent techniques make use of pulsed lasers 

around hundreds of femtoseconds [11, 12] operating directly in the optical domain. 

In principle, the use of incoherent light processing is related to applications requiring high 

signal-to-noise ratio [17]. In structures proposed for AWG with incoherent optical sources, 

this fact gives as a result intensity fluctuations of the optical field associated to the generated 

output waveform [5]. Nevertheless, we have experimentally demonstrated that this restriction 

can be overcome through a proper average of the output waveforms [7]. However, an 

averaging process could be considered a restriction for real-time applications. In this sense, 

high values of SNR have been recently achieved by reducing drastically the number of 

averaging events by the introduction of low-noise figure devices in the system, such as an 

incoherent broadband light source, based on cascading an superluminiscent laser diode and an 

semiconductor optical amplifier [19] or the use of a suitable photodetection scheme based on 

differential configuration [20]. 

3. Numerical results and discussion: generation of chirped pulses 

In order to evaluate the proposed technique, we consider the adaptation of the scheme shown 

in Fig. 1 for the generation of chirped electrical arbitrary waveforms. For this purpose, we 

consider an incoherent optical source power distribution, P(ω), which is sliced with a 

periodicity of ∆ω by means an interferometric structure T(ω) as follows: 

 ( ) 1 cos
1

2
2

T
ω

ω
ω

π= +
∆

  
    

 (7) 

Thereby, the resulting optical source power spectral distribution S(ω), previously 

considered, is given by spectrum S(ω) = P(ω)·T(ω). Now, assuming conditions of Eq. (6) and 

introducing Eq. (7) into Eq. (5), the generated waveform at the output of the system can be 

written as: 

 
( )

2 3

( )( )

( ) 1 cos 2
4

mm

OUT

o

tr t

P
I t

I

ω ωω ω

ϕ ϕ ω

ω ω
π

ωπ
==

Ψ

+

  
  

= +  ∆  
  

⋅
������

 (8) 

As we observe, this signal can be described by an envelope r(t) and a time-dependent 

phase term ψ(t) depending on the nonlinear relationship given by Eq. (4) which performs the 
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chirp characteristic. Indeed, the instantaneous frequency can be obtained by the first-order 

derivative of the time-dependent phase term ψ(t) as follows: 

 
( )

3

2

2

2

( )
1 1

2
1 2

rf o

o
f

t
d t

f where f
dt

t

ψ

π ωϕ

ϕ

ϕ
= ==

∆
+

              (9) 

where fo corresponds to the central frequency of the generated signal, i.e. when t = 0. 

As an example, a Gaussian profile P(ω) with a 3-dB optical bandwidth of 2π·10 THz (80 

nm) is plotted in Fig. 2(a). In addition, a sinusoidal slicing T(ω) is considered with a 

periodicity 1/(2π) THz (Fig. 2(b)) given the optical source spectrum S(ω) shown in Fig. 2(c). 

The modulator impulse response hmod(t) is defined through a Gaussian pulse with width σ0 = 

25 ps. The first- (φ2) and second-order (φ3) dispersion are chosen to be −200 ps
2
 and 2 ps

3
, 

respectively, which values are close to conventional single-mode fibers (SMF) or dispersion-

compensating fibers (DCF). Note as, in this case, the electrical input pulse is not affected by 

the second-order dispersion since the condition 
0 3 2

/σ ϕ ϕ≫  is widely satisfied. The resulting 

waveform has been plotted in Fig. 2(d) showing an envelope according to the optical source 

power distribution close to a Gaussian pulse with a full width half maximum (FWHM) of 12 

ns and a slight asymmetry due to the second-order dispersion considered [12]. The 

instantaneous frequency of the pulse within the FWHM (�) has been obtained by the 

reciprocal of the time period and is also plotted in Fig. 2(d) showing a negative chirped 

behavior from 4 to 7.75 GHz around a central frequency fo of 5 GHz. 

Next, the second-order dispersion has been changed to be −2 ps
3
 and the results are shown 

in Fig. 2(e). As can be observed, in this case, the behavior of the generated waveform is 

opposite to the one shown in Fig. 2(d) both in terms of the envelope and the instantaneous 

frequency. In both cases shown in Figs. 2(d) and 2(e), the TBWP is around 45. Note that, 

compared to coherent approaches based on nonlinear frequency-to-time mapping [11, 12], the 

control of the pulsewidth of the generated waveform permits to improve in one order of 

magnitude the TBWP using similar values of second-order dispersion involved in 

experimental implementation. In addition, we have added in Figs. 2(d) and 2(e) the theoretical 

prediction of the instantaneous frequency according to Eq. (9) and we can observe an 

excellent agreement with the values obtained directly by the waveform. 

Comparing the optical spectrum S(ω) of Fig. 2(c) with the generated waveforms in Figs. 

2(d) and 2(e), we emphasize that the effects of the convolution in Eq. (5) are practically 

negligible. In fact, taking into account that for a sliced source the coherence time can become 

approximated by 1
c

σ ω∆∼ , the conditions shown in Eq. (6) are fulfilled for the values used 

in simulation. 
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Fig. 2. (a) Gaussian profile P(ω) and (b) slicing T(ω) of a periodicity 1/(2π) THz introduced to 

obtain (c) the optical source power distribution S(ω). Microwave pulse generated (grey line) 

and its instantaneous frequency (����) for second-order dispersion (d) φ3 = 2 ps3 and (e) φ3 = −2 

ps3. Theoretical prediction of instantaneous frequency included in dashed line. 

The reconfigurability of the waveform envelope can be carried out by the control of the 

optical source power spectral distribution according to Eq. (5). Now, we set a uniform optical 

spectrum S(ω) as shown by the inset of Fig. 3(a). The generated waveform and its 

corresponding instantaneous frequency have been plotted in Fig. 3(a). The signal 

characteristics in terms of FWHM and instantaneous frequency behavior are similar to the one 

shown in Fig. 2(e) maintaining a TBWP around 45. Nevertheless, the envelope of the 

waveform has been changed since we are using an optical source with a uniform profile. In 

this case, we can distinguish two different effects over the waveform envelope: the 

asymmetry due to the second-order dispersion in the non-linear frequency-to-time mapping 

process and the effect of the local dispersion over S(ω) at each optical frequency ω. 

Furthermore, the central frequency of the generated waveform depends on the slicing of 

the optical source power distribution according to Eq. (9). We set an optical source spectra 

with a periodicity of 1/(4π) THz giving the generated waveform and the corresponding 

instantaneous frequency plotted in Fig. 3(b). As can be observed from the instantaneous 

frequency graph, a variation from 8 to 15.5 GHz is existing with the central frequency around 

10 GHz. In our experimental proof [15], we performed the slicing process by a Mach-Zehnder 

Interferometer (MZI) which permits to realize a continuous frequency tuning in contrast with 

other techniques existing in the literature that make use of other inflexible interferometric 

structures as Sagnac-Loop Filters [11, 12]. Moreover, as can be observed from Fig. 3(b), the 

envelope of the waveform shows an accurate uniform profile since we have set a suitable 

profile plotted in the inset of Fig. 3(b), maintaining a FWHM around 12 ns. In this case, the 

TBWP achieved is around 90. Therefore, the control over the waveform using the optical 

source permits to avoid the effects of the second order dispersion in the frequency-to-time 

process and the local dispersion over S(ω) at each optical frequency ω. Note that coherent 

systems usually generate Gaussian waveforms since the femtosecond pulsed lasers have a 

broadband transform-limited ultrashort Gaussian spectrum and shaping to a different profile 
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involves a non-efficient use of the available power spectral density [11–13]. Besides, the easy 

reconfiguration of the waveform envelope directly in the optical domain is in contrast with 

other approaches based on incoherent processing where the control of the waveform envelope 

is carried out electrically by an external modulation [14]. 
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Fig. 3. Generated waveform (grey line) and instantaneous frequency (����) for (a) 5 GHz and (b) 

10 GHz central frequencies where the optical source power distribution corresponds to a 

uniform (Inset a) and compensated uniform (Inset b) profiles, respectively. Instantaneous 

frequency theoretical prediction (dashed line). 

As we have shown, the capacity of generating arbitrary signals is related to the capacity of 

reconfiguration that the system offers by controlling the power spectral density of the optical 

source. In contrast, a large TBWP is mainly referred to the available optical bandwidth. 

Therefore, the input optical source can be considered as the key element of the structure to 

enhance an envelope reconfigurability and TBWP control. The input optical source of the 

system can be implemented by combining a broadband optical source and a programmable 

optical filter which determines the optical power spectral distribution S(ω). We can find 

commercial devices as optical channel selectors [7] or optical power shapers based on two-

dimensional liquid crystal on silicon (LCoS) pixel array [21] in order to control the profile 

with a high flexibility. Regarding the reconfiguration time of the waveforms generated, the 

response time is given by the programmable optical filter which is limited to to milliseconds. 

Nevertheless, previous configurations related to reconfiguration switching offer the possibility 

of using the electrical modulation pulse at high rates to incorporate flexibility to the system 

[22, 23]. This key idea permits to implement alternative structures by combining the 

incoherent optical processing using nonlinear dispersive elements and the fast reconfiguration 

switching in order to achieve a fast reconfigurable AWG in the range of several hundreds of 

picoseconds. 

4. Conclusions 

In this paper, we have proposed a novel technique based on the incoherent processing of a 

broadband optical signal through a nonlinear dispersive element for the generation of 

microwave arbitrary waveforms. As far as we are aware, this is the first time that a nonlinear 

relationship is set between the power spectral density of the optical source and the generated 

microwave pulse. A theoretical analysis of the system has been developed to obtain a detailed 

expression for the generated signal. In order to evaluate the performance of the system we 

have focused on the generation of chirped pulses. In this sense, we have demonstrated the 

control of the pulse characteristics in terms of chirp, envelope and central frequency by means 

of the second-order dispersion and the optical source power distribution. In this sense, the use 

of a broadband optical source allows us to increase the TBWP up to 90, and therefore, 

improving in more than one order of magnitude the values experimentally achieved by 

coherent processes using typical dispersion. Moreover, the direct reconfigurability of the 
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signal in the optical domain adds flexibility to the system since no electrical processes are 

involved. 
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