
 

 

 

 

 

 

Operation of the Hilbert-Huang 

Transform: basic overview with 

examples 

 

 

 

 

 

 

 
Surnames, name Antonino Daviu, Jose Alfonso (joanda@die.upv.es)  

 

Department Escuela Técnica Superior de Ingenieros Industriales 

Departamento de Ingeniería Eléctrica 

Centre Universitat Politècnica de València 



 

 

 

1 Summary  

This work is intended to provide a brief overview of the operation of the Hilbert-
Huang Transform (HHT). This is a signal processing tool the use of which has gained 
an increasing importance recently in the area of non-stationary signals analysis.  

The idea of the transform relies on decomposing the analyzed signal into a set of 
signals known as Intrinsic Mode Functions (IMFs). Each IMF covers a certain 
frequency range and it reflects the time evolution of the components included 
within that band. Unlike the DWT, the frequency band associated with each IMF is 
not known a priori, since the process carried out by the HHT is an adaptive filtering 
in which the components are progressively extracted as they appear in the 
analyzed signal. This process is known as Empirical Mode Decomposition (EMD). 

The HHT was developed by NASA researchers and it has been applied with success 
in many applications, some of them critical, such as fault diagnosis in nuclear 
reactors. Due to its inherent advantages, its use has been extended to many other 
areas and applications such as biomedical diagnosis, electrical machines 
condition monitoring, seismic studies, financial applications, etc… 

2 Introduction 

The HHT was developed by Norden E. Huang and his collaborators [1, 2]. Their 
motivation relied on the fact that most traditional data-analysis methods are based 
on linear and stationary assumptions of the analyzed signals. Some approaches 
deal well with linear and non-stationary data, while others are designed for 
nonlinear but stationary and deterministic systems. Nonetheless, in many real-world 
applications, the data are both nonlinear and non-stationary. As Huang himself 
stated [1], “…new approaches are urgently needed, for nonlinear processes need 

special treatment”. The HHT was conceived to produce physically meaningful 

representations of data from non-stationary and nonlinear processes [1]. The result 
is an empirical approach, rather than a theoretical tool, which has been 
successfully used for the analysis of such data. 

The HHT has two different parts: 1) the Empirical Mode Decomposition (EMD) and 
2)the Hilbert Spectral Analysis (HSA).  

 The EMD method is the main part of the HHT and it enables to decompose a signal 

into a set of components named ‘Intrinsic Mode Functions’ (IMFs). These IMFs are 
individual, nearly mono-component signals. Their nature guarantees a good 
behaviour of their Hilbert-transform. The EMD algorithm operates in the time domain 
and it is adaptive and highly efficient. Moreover, it is valid for nonlinear and non-
stationary processes. 

On the other hand, the HSA enables to obtain the time evolution of the 

instantaneous frequency of each IMF. This time-frequency representation of the 
IMFs is crucial to comprehend the inherent structure of the analysed data set. The 
main result of the HSA is an energy-frequency-time representation, known as the 
Hilbert spectrum.   

    



 

 

 

3 Objetives 

The present work has three main goals: 

� To describe the operation of the Hilbert-Huang Transform. The intention is to 
make emphasis on the interpretation of the results of its application rather 

than focusing on its mathematical foundations. 

� To provide several illustrative examples facilitating the comprehension of the 
HHT operation. 

� To review the advantages and drawbacks of the transform, in comparison 
with classical FFT analysis and with other TFD tools. 

       This work can be useful for students involved in the signal processing area and, 
more specifically, on concrete applications of the HHT.   

4 Development 

4.1 Overview of the mathematical bases 

As pointed out by C. Charlton-Pérez, R.B. Perez et al. in their excellent work 
reviewing the operation of the HHT [3], Huang introduced a new signal analysis 

technique based on the decomposition of a signal in terms of empirical modes and 
on their representation within the framework of the Complex Trace Method, 
introduced by Gabor several decades ago [4].    

The formulation of the proposed methodology is the following: let X(q) be a signal 

(with q representing  either time or an spatial coordinate) that is the real part of a 

complex trace, Z(q) (given by Equation 1), where the imaginary part, Y(q), is the 

Hilbert transform of X(q) (given by Equation 2, where PV is the Principal Value): 

                                                            Z(q)=X(q)+iY(q)                                                           

Equation 1. Analytical signal Z(q). 
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                                Equation 2. Definition of function Y(q). 

 

The complex conjugate pair (X(q); Y(q)) defines the amplitude, a(q), and  phase 

θ(q), as an analytical function of the q-variable [3, 5] (see Equation 3), with the 
instantaneous frequency defined by Equation 4. 

                                             
)(

)()(
qi

eqaqZ
θ

⋅=                                                      

                               Equation 3. Analytical function Z(q).   

                                               ω(q)= dθ(q)/dq    

                             Equation 4. Instantaneous frequency.                                                                  



 

 

 

    The Complex Trace Method enables to define the concepts of instantaneous 
amplitude, phase and frequency, in such a way that the original signal can be 
expressed in terms of a Fourier-like expansion based on these concepts [1,3,5]. This 
process, along with the instantaneous frequency definition, work well for mono-
component signals. Nevertheless, in many real applications the signals are multi-
component (and often noise-polluted). In these situations, the Complex Trace 

method fails due to the fact that the Hilbert transform processing of those noisy 
waves generates spurious amplitudes at negative frequencies [3, 5]. The approach 
developed by Huang [1,2] enabled the signal analysis to avoid generating 
unphysical results. To this end, the Hilbert transform is not directly applied to the 
signal itself but to each of the members of an empirical decomposition of the signal 
into Intrinsic Mode Functions (IMFs) [3, 5]. As R.B. Perez stated [3, 5], these IMFs are 

“individual, nearly mono-component signals with ‘Hilbert-friendly’ waveforms, to 

which the instantaneous frequency defined by Equation 4 can be applied”. 

4.2 Operation of the HHT 

   Empirical Mode Decomposition (EMD) Algorithm 

The Empirical Mode Decomposition (EMD) method is the basis of the HHT. By means 
of the EMD, the analysed data set is decomposed into a set of almost orthogonal 

components named Intrinsic Mode Functions (IMFs). The algorithm to create the IMFs 
is rather simple as well as smart, as explained in [3, 5]: firstly, the local extrema of the 
data are identified; they are used to create upper and lower envelopes which 
enclose the signal completely. A running mean is created from this envelope. When 
subtracting this mean from the data, a new function is obtained; this function must 
have the same number of zero crossings and extrema (i.e. it must exhibit symmetry 
across the q-axis). Otherwise, if the function so constructed does not satisfy this 

criterion, the process continues until an acceptable tolerance is reached [1,3]. The 
process results in the first IMF, i1(q), which contains the highest frequency oscillations 

found in the data (the shortest time scales). The IMF1, is then subtracted from the 
original data, and this difference R1 is taken as if it were the original signal and then 

the sifting process is applied to the new signal. The process of finding modes, ij(q), is 

carried out until the last mode ,the residue Rn, is found. It contains the trend (i.e. , the 

“time –varying” mean). Hence, the signal X(q) can be characterised as indicated by 

Equation 5. The scheme of the whole EMD algorithm is plotted in Figure 1. 
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   Equation 5. Characterization of the signal X(q) in terms of the IMFs and the residual. 

    

   Hilbert Spectral Analysis (HSA) 

   When the IMFs have been obtained, the Hilbert transform can be applied to each 
IMF, computing the instantaneous frequency and amplitude. After applying the 
Hilbert transform to each IMF, the signal can be expressed according to Equation 6 
(aj(q) and wj(q) are, respectively, the instantaneous amplitude and frequency 

corresponding to each IMF ij(q)). 
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Equation 6. Characterization of X(q) in terms its instantaneous amplitude and 

frequency 

Equation 6 allows the representation of the instantaneous amplitude and frequency 
as functions of q in a 3-D plot or map. The time-frequency representation of the 

amplitude is named Hilbert spectrum, H(w,q) [5, 6].  

Another important concept is the marginal spectrum. Its mathematical definition is 
given by Equation 7, where Q is the total data length [7]. While the Hilbert spectrum 
provides a measure of the amplitude contribution for each frequency and time, the 
marginal spectrum offers a measure of the total amplitude (or energy) contribution 

from each frequency [5, 7]. The frequency in the marginal spectrum indicates only 
the likelihood that an oscillation with such a frequency exists; the exact occurrence 
time of that oscillation is given in the full Hilbert spectrum [2]. 
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Equation 7. Mathematical definition of marginal spectrum 

Figure 2 summarizes the results of the application of the HHT to a certain signal s(t), 

considering two IMFs. Each IMF is a waveform which extracts the components of the 
original signal within a certain frequency range. In order to know the frequencies 
covered by each IMF, its Hilbert spectrum is computed; it provides a time-frequency-
amplitude representation of the corresponding IMF.   
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Figure 1. Filtering process carried out by the DWT  
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Figure 2. Schematic representation of the HHT results  

4.3 Examples 

   In this section, several didactic examples of the operation of the HHT are 

presented. They are useful to understand how the transform works in a very simple 
way. In all the examples, the HHT is carried out and the next results shown for each 
IMF: IMF waveform, IMF Hilbert spectrum and IMF marginal spectrum. 

4.3.1 Example 1: HHT of the addition of two sinusoidal signals 

Figure 3 represents the waveform of a signal based on the addition of two 
sinusoidal signals with respective frequencies 50 Hz and 15 Hz and respective 
amplitudes 5 and 1. Figure 4 shows the results of the application of the HHT to 
the previous signal, considering two IMFs in the decomposition. Figure 4(a) 

corresponds to IMF1, depicting: the IMF1 waveform (Figure 4(a), top), the IMF1 
Hilbert spectrum (Figure 4(a), middle) and the IMF1 marginal spectrum ((Figure 
4(a), bottom). Figure 4(b) is analogous, but for the IMF2. 

That figure illustrates the way in which the HHT works: IMF1 extracts the largest 
component present in the signal (namely, the 50 Hz sinusoidal component with 
amplitude 5). This can be perfectly noticed in the IMF1 waveform (Figure 4(a), 

top). The Hilbert spectrum of this IMF1 (Figure 4(a), middle), as expected, 
reveals a single line at 50 Hz for every time instant (recall that the Hilbert 
spectrum is just a time-frequency-amplitude representation of the IMF). Finally, 
the IMF1 marginal spectrum shows a single peak at 50 Hz. On the other hand, 
IMF2 extracts the evolution of the rest of components in the analyzed signal (in 
this case, the 15 Hz sinusoidal component with amplitude 1). This can be 
observed in Figure 4(b), top, that depicts the IMF2 waveform revealing a 
sinusoidal component with lower frequency (and amplitude) than that in 
Figure 4(a), top. This is confirmed by the Hilbert spectrum of IMF2 (Figure 4(b), 
middle) which shows a single line at 15 Hz for every time instant. Accordingly, 
the marginal spectrum of IMF2 reveals a single frequency peak at 15 Hz. 

This example shows the adaptive filtering nature of the HHT, extracting the 
components present in the signal in the different IMFs.  
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               Figure 3. Signal based on the addition of two sinusoidal signals 

 
                      

 

 

 

 

 

 

 

 

 

 

                           (a)                                                                                  (b) 

Figure 4. HHT of the previous signal: (a) IMF1: waveform (top), Hilbert spectrum (middle) and 

marginal spectrum (bottom); (b) IMF2: waveform (top), Hilbert spectrum (middle) and marginal 
spectrum (bottom). 

 

4.3.2 Example 2: HHT of the concatenation of sinusoidal signals 

The second example consists of the HHT analysis of the signal plotted in Figure 
5, which is based on the concatenation of two sinusoidal signals with 
respective frequencies 50 Hz and 15 Hz and respective amplitudes 5 and 1. As 
a consequence of the operation of the EMD algorithm, the HHT analysis leads 
to a single IMF (IMF1) which reflects the evolution of both components. Figure 6 

represents the HHT results: IMF1 waveform (top), Hilbert spectrum of the IMF1 
(middle) and marginal spectrum of IMF1 (bottom).    

    The waveform of the IMF1 (Figure 6, top) corresponds to that of the original 
signal, based on the concatenation of the two aforementioned components 
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(initially, that of 50 Hz, which is present during the initial 0,5 s and, then, the 15 
Hz component, present between 0,5 and 1 s. The Hilbert spectrum of IMF1 
(Figure 6, middle) is especially interesting; a single line at 50 Hz reveals the 
presence of the first frequency component during the initial 0,5s. A second 
trace at 15 Hz shows the occurrence of the second component during the last 
0,5 s. The lower color intensity of this second trace is due to the lower 

amplitude of the 15Hz frequency component. This Hilbert spectrum illustrates 
rather well the time-frequency nature of the tool, since it informs not only on 
which frequency components are present in the analyzed signal, but also 
when they occur. Finally, the marginal spectrum of IMF1 (Figure 6, bottom) 
shows two peaks at the corresponding frequencies present in the signal (15 Hz 
and 50 Hz), the amplitudes of which reflect the amplitude of the associated 

sinusoidal signals.   
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Figure 5. Signal based on the concatenation of two sinusoidal signals 
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Figure 6. HHT of the previous signal: waveform of the IMF1 (top), Hilbert spectrum of IMF1 (middle) 
and marginal spectrum of IMF1 (bottom). 



 

 

 

4.3.3 Example 3: Addition of a sinusoidal signal and two chirp signals 

The third example is based on the HHT analysis of the signal plotted in Figure 7 
(a). This signal is based on two waveforms: a 50 Hz sinusoidal signal with 
amplitude equal to 10 (Figure 7 (b)) and a signal based on the concatenation 
of two chirp functions (Figure 7(c), the first chirp with linearly decreasing 

frequency (from 50 Hz to 0 Hz) and  the second chirp with frequency 
increasing linearly from 0 to 50 Hz). 

Figure 8 represents results of the HHT analysis considering two IMFs. Figure 8 (a) 
plots the IMF1 waveform (top), the Hilbert spectrum of IMF1 (middle) and the 
IMF1 marginal spectrum (bottom). Figure 8 (b) is analogous but for IMF2.   
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(a)                                               (b)                                               (c) 

Figure 7. Signal (a) based on the addition of a sinusoidal signal (b) and two chirp 

signals (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                  (b) 

Figure 8. HHT of the previous signal: (a) IMF1: waveform (top), Hilbert spectrum (middle) and 
marginal spectrum (bottom); (b) IMF2: waveform (top), Hilbert spectrum (middle) and marginal 
spectrum (bottom)  
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The results plotted in Figure 8 are rather logical. IMF1 extracts the largest 
component present in the analyzed signal, i.e., the 50 Hz sinusoidal component 
with amplitude equal to 10. Figure 8(a), top confirms this fact, since IMF1 
waveform corresponds to sinusoidal function with the aforementioned 
amplitude and frequency. Accordingly, the IMF1 Hilbert spectrum shows a 
single line at 50 Hz for every time instant. Of course, the IMF1 marginal 

spectrum is also coherent with these facts, revealing a single peak at 50 Hz. 

On the other hand, IMF2 extracts the rest of components present in the signal. 
This is, the component based on the concatenation of the two chirp functions. 
IMF2 waveform confirms this idea (see similarity between Figure 8(b), top and 
Figure 7 (c); the slight deviations are due to inherent border effects of the 
analysis). Figure 8 (b), middle shows how the Hilbert spectrum of IMF2 is 

coherent with the time evolution of the frequency of such component based 
on the two chirps: first, its frequency decreases from near 50 Hz to 0 Hz and 
later increases from 0 Hz to near 50 Hz, leading to a V-shaped pattern that 
characterizes the time-frequency evolution of such component. Finally, Figure 
(b), bottom shows a blurred marginal spectrum due to the varying nature of 

the frequency of the IMF2 (between 0 and 50 Hz). 

This example illustrates rather well the adaptive filtering nature of the HHT 
(since it separates the components present in the signal in different IMFs 
corresponding to different frequency bands). Moreover, it illustrates the time-
frequency decomposition process carried out by the transform (since it 
indicates the frequencies present and when they occur).   

5 Closing 

This work presents a basic overview of the operation of the Hilbert-Huang Transform 
(HHT). This is a cutting-edge time-frequency decomposition tool that has been used 
with success for the analysis of non-stationary signals. The HHT is based on two parts; 

the EMD algorithm which enables to decompose the analyzed signal into IMFs and 
the HSA process, which computes the time-frequency map associated with each 
IMF. Both parts are explained in this work, briefly reviewing their mathematical 
foundations. 

The main purpose of the work is to introduce the operation of the HHT under an 
engineering perspective, rather than deepening in mathematical details. 
Moreover, some didactic examples illustrating the operation of the transform are 
included: the HHT analysis of a signal based on the addition of two sinusoidal 
signals, the HHT analysis of a signal based on the concatenation of two sinusoidal 
signals and the HHT analysis of a signal based on the addition of a sinusoidal signal 
and a signal based on the concatenation of two chirp functions. All three didactic 
examples are useful to understand the adaptive filtering nature of the transform, as 

well as its ability to obtain a time-frequency map of the analyzed signal.  

   As a conclusion of the ideas exposed in this work we can summarize some of the 
the advantages of the HHT in the following points: 

- Adaptive nature; it avoids fixed limits of the bans covered by each IMF.  

- Possible higher flexibility in comparison with other TFD tools. 

- Easy interpretation of the results 



 

 

 

     With regards to its drawbacks we can remark, among other, the following ones: 

- Number of necessary IMFs is not known a priori. 

- Possible constraints when distinguishing different components with near 
frequencies. 

- Possible masking problems when high energy components are present in the 
signal.  
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