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Inaccuracies in the calibration of a stereoscopic system appear with errors in point correspondences between both
images and inexact points localization in each image. Errors increase if the stereoscopic system is composed of wide
angle lens cameras. We propose a technique where detected points in both images are corrected before estimating
the fundamental matrix and the lens distortion models. Since points are corrected first, errors in point correspon-
dences and point localization are avoided. To correct point location in both images, geometrical and epipolar con-
straints are imposed in a nonlinear minimization problem. Geometrical constraints define the point localization in
relation to its neighbors in the same image, and eipolar constraints represent the location of one point referred to its
corresponding point in the other image. © 2011 Optical Society of America
OCIS codes: 150.1488, 150.1135.

Calibration of a stereoscopic system consists of comput-
ing the geometrical relationship between images from
both cameras, which is represented with the fundamental
matrix. With the fundamental matrix, the projection of a
point in one image defines the line where this point is
projected in the other image. This fact reduces notably
the searching areas of corresponding points in applica-
tions such as image matching in stereoscopic systems
or scene reconstruction. The fundamental matrix repre-
sents the epipolar geometry between both images and a
precise estimation is crucial to obtain an effective solu-
tion in cited applications. The fundamental matrix is
computed from correspondences between image points
using linear or nonlinear optimization or with robust
methods.
Linear methods with data normalization are consid-

ered as a first step for other algorithms or to obtain a
quick solution. Linear methods give adequate results if
points are well located and the corresponding problem
is solved previously. If more accuracy is desired, iterative
methods are efficient with noisy data but cannot resolve
the points correspondences problem. Robust methods
can manage noisy data and errors in point correspon-
dences. Mainly, errors in fundamental matrix estimation
come from errors in point correspondences and point
localization [1].
If wide angle lens cameras are used, errors in points

correspondences and points localization increase since
high distortion is present. In these cases, lens distortion
is corrected first and the fundamental matrix is estimated
in a second step. Images are corrected but accurate point
localization is not possible since distortion models do not
correct the image entirely. Also errors in points corre-
spondence remain. Otherwise, the fundamental matrix
and the lens distortion model can be computed together
in one step. In these cases, coupling between both mod-
els can result in an absurd solution. To improve the
fundamental matrix estimation, especially with high dis-
torted images, a method is proposed to avoid errors in
point correspondences and resolve the image distortion
efficiently. First, points are corrected in both images in
a nonlinear minimization problem imposing geometric
and epipolar constraints. With the corrected set of points
the fundamental matrix and the lens distortion model is

computed separately. Since corrected points satisfy all
epipolar geometry constraints, the fundamental matrix
is computed with a linear method easily. The transforma-
tion between distorted and corrected points is done using
a distortion model. With the proposed method, errors in
point correspondences and localization are avoided
since corrected points satisfy both epipolar and geo-
metric constraints. Correction is done before fundamen-
tal matrix is computed.

To correct the set of points in both images, geometric
constraints defines the point localization in reference to
its neighbors in the same image, and eipolar constraints
represent the location of one point in relation to its cor-
responding point in the other image. Geometric con-
straints arise since a chessboard template is used to
calibrate the wide angle stereoscopic system. In the same
image, points are arranged in straight lines that are per-
pendicular and parallel to each other. In addition, since
the same scene is taken with both cameras, epipolar con-
straints help to correct locations of points in one image
referred to locations of corresponding points in the other
image. These geometric and epipolar constraints define
the rules of image formation using two cameras.

Geometric constraints referred with the image of a
chessboard are shown in Fig. 1:

– Points are arranged in straight parallel lines (JST).
– Straight lines are equally distanced. Cross-ratio

remains under perspective projection (JCR).
– Four sets of parallel lines exist that are orthogonal

to each other. Parallel lines intersect in a vanishing point.
(JVP).

– Four vanishing points exist 1;jqvp, 2;jqvp, 3;jqvp, 4;jqvp
that form the horizon line jlh. (JHL).

Epipolar constraints connect the two images captured
with the stereoscopic system. They are shown in Fig. 2:

– Each image has an epipole jqep and each point in
each image belongs to an epipolar line ijlep that goes
through the epipole jqep (JEL).

– One point of the scene forms two epipolar lines,
one in each image i1lep, i2lep and both lines form an
epipolar plane iπep (JEP).
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– All epipolar planes intersect in one line defined by
the focal points of both images l12 (J IL).

The correct point location is defined by its location in
the image of a chessboard template and the location of its
corresponding point in the other image. Jxx represents the
function that measures the corresponding constraint with
a set of points. Joining all proposed constraints, the fol-
lowing functionmeasures howwell the undistorted points
in both images correspond to the points of a “chessboard”
template taken with a stereoscopic system.

J ¼ JST þ JCR þ JVP þ JHL þ JEL þ JEP þ J IL ð1Þ

and i;jqd represent the location of detected points in both
images, i ¼ 1…n,where n is the number of points in the
chessboard template and j is the image 1 or 2. Expression
(1) evaluated with points i;jqd is nonzero since images are
distorted becausewide angle lens aremounted in the cam-
eras. Also, noise is present in the point detection step and
erroneous point correspondences occur. i;jqo represent
the points that accomplish geometric and epipolar

constraints perfectly. Expression (1) evaluated with
points i;jqo is equal to zero. The aim of the nonlinear mini-
mization process is to startwith detected points i;jqd and to
endwith i;jqo, which represent the correct points locations
in both images. They represent the correct location of
each point in each image since they satisfy both geometric
and epipolar constraints.

The nonlinear minimization process has as inputs the
cross-ratio value of the template points and the set of
points in the image or images i;jqd. For a given set of
points, straight lines parameters, vanishing points 1;jqvp,
2;jqvp, 3;jqvp, 4;jqvp, horizons lines jlh, epipoles in both
images jqep, epipolar lines ijqep, and epipolar planes iπep
are computed. With the computed parameters, function
(1) is evaluated and points locations i;jqd are corrected to
minimize (1). This process is repeated until (1) is zero.
When (1) is zero, distorted points detected in both images
i;jqd have been undistorted to i;jqo. The algorithm is a
Levenberg-Marquardt nonlinear minimization that starts
with the set of distorted points i;jqd and ends with undis-
torted points i;jqo which satisfy all constraints.

To improve the condition of the nonlinear minimi-
zation process, point coordinates are referred to the
center of the image and not to the left top corner. If this
nonlinear minimization process is compared with the
nonlinear minimization step of any well-established fun-
damental matrix estimation method, this process can be
considered better conditioned notably. Nonlinear mini-
mization looks for points coordinates in pixels only. This
means that all variables produce equal alteration of error
function value when a variation of one unit is done with
any of them. The nonlinear minimization step of any of
the existing methods looks for values of the fundamental
matrix elements that have different magnitudes. With the
proposed method, risks of finishing the nonlinear minimi-
zation step in a local minimum decrease. On the contrary,
the number of variables increases and the minimization
time increases significantly. Since this is an off-line pro-
cess, this fact does not represent any difficulty.

When point locations in both images have been cor-
rected, the fundamental matrix and the lens distortion
models are computed separately. One distortion model
is computed for each camera. The fundamental matrix
is computed with any of the existing linear methods.
Although a linear method is used, calibration residual will
be zero since corrected points i;jqo are used and they sa-
tisfy all epipolar constraints. The eight point algorithm
proposed in [2] computes the fundamental matrix with
the eigen vector associated to the small eigen value of a
matrix A. Matrix A is composed with the coordinates of
corresponding points in both images. In this case, the
small eigen value of A will be zero since all points that
compound matrix A satisfy all epipolar constraints. See
[2] for details. Lens distortion models are computed using
the method proposed in [3]. In this case, lens distortion
models represent the transformation between the dis-
torted points i;jqd detected in the image and the corrected
ones i;jqo of both cameras. In [3] several lens distortion
models are calibrated and the rational function lens
distortion model presented by Claus and Fitzgibbon [4]
obtains better results when high distortion is present.
See [3] for details.

Fig. 1. Geometric constraints that represent the image
formation of a set of parallel and perpendicular straight lines.

Fig. 2. Epipolar constraints that connect the location of one
point in the scene with its location in two images.
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To test the performance of the proposed method, the
estimation of the fundamental matrix and the lens distor-
tion models is compared with two out of the several
methods presented in [5] where a survey of 19 of the most
used methods is done. Two techniques have been cho-
sen. Method 1: the Least-Median-Squares [6] obtain the
best results when outliers are present. Distortion is cor-
rected previously. In this case the lens distortion is cor-
rected using the principle of straight lines should be
straight presented in [7]. Method 2: the fundamental ma-
trix is computed together with the distortion model with
the method proposed in [8]. Point correspondences be-
tween images are resolved with the algorithm proposed
by Zhang [9]. With methods 1 and 2, corresponding points
are normalized with the method proposed in [10]. Experi-
ments with simulated and real data have been done.
Simulated data is generated with two pin-hole cameras
where distortion, noise and erroneous point correspon-
dences are added. Real data are acquired with a stereo-
scopic system that has been built up with two IP wide
angle lens cameras AXIS M3204. Two images of 640 ×
480 pixels are captured. Figure 3 shows images from the
two cameras. Detected points are in blue and corrected
points using the lens distortion model computed with the
proposed method are in red. The corrected points using
the lens distortion model computed with method 1 are
shown in gray. Results using method 2 are quite similar
to method 1. Gray dots show deficiencies of method 1
and 2 since points should form straight lines. When dis-
tortion is corrected they are still distorted. Red dots show
that the proposed method corrects the distortion accu-
rately. Numerical results are shown in Table 1. Every cell
shows the mean and standard deviation in pixels of the
discrepancy between points and epipolar lines and
straight lines measured with (1). Results with simulated
data show that the computed fundamental matrix and the
lens distortion models are accurate if the proposed meth-
od is used. Since epipolar geometrical constraints are
used in the calibration process, the computed models re-
present the wide angle stereoscopic system accurately.

Method 1 obtains better results than method 2 when
noise or outliers are present. Since method 2 computed
both the fundamental matrix and the lens distortion mod-
els in one step, coupling between both models creates an
ill conditioned nonlinear minimization process and a
local minimum can be reached easily. The proposed
method uses the nonlinear minimization to compute the
correct location of corresponding points in both images.
Since only points locations are searched the process is
better conditioned.

In conclusion an accurate method for calibrating a
wide angle stereoscopic system has been defined. Wide
angle lens distort images and errors in point correspon-
dences and localization arise. With the proposed method
detected points are corrected previously using both geo-
metric and epipolar constraints. With corrected points
errors in point localization and correspondences are
avoided and the fundamental matrix can be computed
using any linear method easily. Distortion model is ad-
justed to map from points detected in the images to
the corrected ones. This method improves the nonlinear
minimization process since points coordinates are com-
puted only.
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Fig. 3. (Color online) Images from a wide angle stereoscopic
system build up with two IP cameras AXIS M3204. Blue dots are
detected points in captured distorted images. Red dots repre-
sent blue dots corrected with the proposed method. Gray dots
are detected points of the image corrected with method 1.

Table 1. Experimental Results with Simulated and
Real Data

Noise—outliers Method 1 Method 2 Proposed

1 pixel—0% 0:75� 0:06 0:83� 0:02 0:02� 0:008
2 pixels—0% 1:67� 0:27 1:56� 0:64 0:45� 0:062
0 pixels—15% 2:75� 0:62 3:68� 0:79 0:24� 0:075
1 pixel—15% 3:64� 0:95 4:98� 1:64 0:68� 0:045
2 pixels—15% 5:25� 2:35 7:55� 3:56 0:69� 0:035
Real data 1:15� 0:15 1:47� 0:24 0:15� 0:075
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