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Resumen

El uso de las redes para modelar sistemas complejos es creciente en multitud
de ámbitos. Son extremadamente útiles para representar interacciones entre genes,
relaciones sociales, intercambio de información en Internet o correlaciones entre
precios de acciones bursátiles, por nombrar sólo algunos ejemplos. Analizando la
estructura de estas redes, comprendiendo cómo interaccionan sus distintos ele-
mentos, podremos entender mejor cómo se comporta el sistema en su conjunto. A
menudo, los nodos que conforman estas redes tienden a formar grupos altamente
conectados. Esta propiedad es conocida como estructura de comunidades y esta
tesis doctoral se ha centrado en el problema de cómo mejorar su detección y ca-
racterización. Como primer objetivo de este trabajo, se encuentra la generación
de métodos eficientes que permitan caracterizar las comunidades de una red y
comprender su estructura. Segundo, pretendemos plantear una serie de pruebas
donde testar dichos métodos. Por último, sugeriremos una medida estad́ıstica que
pretende ser capaz de evaluar correctamente la calidad de la estructura de comuni-
dades de una red. Para llevar a cabo dichos objetivos, en primer lugar, se generan
una serie de algoritmos capaces de transformar una red en un árbol jerárquico y,
a partir de ah́ı, determinar las comunidades que aparecen en ella. Por otro lado,
se ha diseñado un nuevo tipo de benchmarks para testar estos y otros algoritmos
de detección de comunidades de forma eficiente. Por último, y como parte más
importante de este trabajo, se demuestra que la estructura de comunidades de
una red puede ser correctamente evaluada utilizando una medida basada en una
distribución hipergeométrica. Por tanto, la maximización de este ı́ndice, llamado
Surprise, aparece como la estrategia idónea para obtener la partición en comuni-
dades óptima de una red. Surprise ha mostrado un comportamiento excelente en
todos los casos analizados, superando cualitativamente a cualquier otro método
anterior. De esta manera, aparece como la mejor medida propuesta para este fin y
los datos sugieren que podŕıa ser una estrategia óptima para determinar la calidad
de la estructura de comunidades en redes complejas.
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Resum

L’ús de les xarxes per a modelar sistemes complexos és creixent en multi-
tud d’àmbits. Són extremadament útils per a representar interaccions entre gens,
relacions socials, intercanvi d’informació a Internet o correlacions entre preus
d’accions borsàries, per anomenar només alguns exemples. Analitzant l’estructura
d’aquestes xarxes, comprenent com interaccionen els diferents elements, podrem
entendre millor com es comporta el sistema en el seu conjunt. Moltes vegades,
els nodes que conformen aquestes xarxes tendeixen a formar grups altament con-
nectats. Aquesta propietat és coneguda com a estructura de comunitats i aquesta
tesi doctoral s’ha centrat en el problema de com millorar la seva detecció i carac-
terització. Com a primer objectiu d’aquest treball, tractarem de generar mètodes
eficients que permeteixquen caraterizar les comunitats d’una xarxa i compren-
dre la seua estructura. Segon, pretenem plantejar una sèrie de proves on testar
aquests mètodes. Finalment, suggerirem una mesura estad́ıstica que pretén ser ca-
paç d’avaluar correctament la qualitat de l’estructura de comunitats d’una xarxa.
Per dur a terme aquests objectius, en primer lloc, es generen una sèrie d’algoritmes
capaços de transformar una xarxa en un arbre jeràrquic i, a partir d’aḉı, determi-
nar les comunitats que hi apareixen. D’altra banda, s’ha dissenyat un nou tipus
de benchmarks per testar aquests i altres algoritmes de detecció de comunitats
de forma eficient. Finalment, i com a part més important d’aquest treball, es de-
mostra que l’estructura de comunitats d’una xarxa pot ser correctament avaluada
utilitzant una mesura basada en una distribució hipergeomètrica. Per tant, la
maximització d’aquest ı́ndex, anomenat Surprise, apareix com l’estratègia idònia
per obtenir la partició en comunitats òptima d’una xarxa. Surprise ha mostrat
un comportament excel · lent en tots els casos analitzats, superant qualitativa-
ment a qualsevol altre mètode anterior. D’aquesta manera, apareix com la millor
mesura proposada per a aquest fi i les dades suggereixen que podria ser una es-
tratègia òptima per determinar la qualitat de l’estructura de comunitats en xarxes
complexes.
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Abstract

Networks have become a widely used tool for modeling complex systems in
many different fields. This approach is extremely useful for representing interac-
tions among genes, social relationships, Internet communications or correlations
of prices within a stock market, to name just a few examples. By analyzing the
structure of these networks and understanding how their different elements inter-
act, we could improve our knowledge of the whole system. Usually, nodes that
compose these networks tend to create tightly knit groups. This property, of high
interest in many scientific fields, is called community structure and improving its
detection and characterization is what this thesis is all about. The first objective
of this work is the generation of efficient methods able to characterize the commu-
nities of a network and to understand its structure. Second, we will try to create
a set of tests where such methods can be studied. Finally, we will suggest a statis-
tical measure in order to be able to properly assess the quality of the community
structure of a network. To accomplish these objectives, first, we generate a set of
algorithms that can transform a network into a hierarchical tree and, from there,
to determine their most relevant communities. Furthermore, we have developed
a new type of benchmarks for effectively testing these and other community de-
tection algorithms. Finally, and as the most important contribution of this work,
it is shown that the community structure of a network can be accurately evalua-
ted using a hypergeometric distribution-based index. Thus, the maximization of
this measure, called Surprise, appears as the best proposed strategy for detecting
the optimal partition into communities of a network. Surprise exhibits an exce-
llent behavior in all networks analyzed, qualitatively outperforming any previous
method. Thus, it appears as the best measure proposed to this end and the da-
ta suggests that it could be an optimal strategy to determine the quality of the
community structure of complex networks.

vii



viii



Art́ıculos

En esta tesis doctoral se incluyen los siguientes art́ıculos:

i. Rodrigo Aldecoa & Ignacio Maŕın
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1.1. Teoŕıa de grafos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1. Historia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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Caṕıtulo 1

INTRODUCCIÓN

La realidad está formada por sistemas complejos. El Universo, el Sistema Solar,
la Tierra, nuestro páıs, nuestra ciudad, nuestra familia, incluso nosotros mismos
contenemos y a la vez formamos parte de sistemas. Cada uno de ellos está com-
puesto por diferentes elementos que, a su vez, constituyen otros sistemas comple-
jos. Y es la interacción entre estos elementos lo que hace del sistema algo más
que la suma de sus partes. Por tanto, para entender nuestra realidad, necesitamos
entender cómo la información se codifica y entrelaza para organizar todo tipo de
sistemas complejos.

En este contexto, las redes aparecen como un excelente modelo para el estudio
y análisis de sistemas biológicos, sociales, económicos o poĺıticos. Es posible repre-
sentar en forma de red cualquier conjunto de elementos que interaccionan. Formal-
mente, a estos elementos se les conoce como nodos o vértices y a las interacciones
entre ellos como aristas o arcos. Si buscamos detenidamente a nuestro alrededor,
es fácil encontrar centenares de este tipo de estructuras. Ciudades conectadas por
carreteras, empresas de un mismo sector intercambiando información, individuos
compartiendo fotos y mensajes online, protéınas de un organismo que interaccio-
nan para dar lugar a nuevas funciones, la interconexión de servidores, routers y
ordenadores personales que conforman Internet...

La mayoŕıa de estas redes que representan sistemas reales, como veremos más
tarde, comparten ciertos patrones y propiedades comunes. Este hecho ha atráıdo
la atención de la comunidad cient́ıfica, ya que estudiando la información que
contienen las redes seremos capaces de aumentar nuestro conocimiento sobre el
mundo que nos rodea. Tal interés ha provocado la creación de una disciplina
cient́ıfica propia: el análisis de redes.
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1.1. Teoŕıa de grafos

1.1.1. Historia

Aunque hoy en d́ıa parece obvio el uso de una red para modelar ciertos tipos de
datos, no fue hasta 1736 cuando se planteó y resolvió el primer problema mediante
análisis de redes. En aquella época la actual ciudad rusa de Kalilingrado, conocida
como Köningsberg hasta su conquista por las tropas soviéticas en 1945, fue testigo
y parte del nacimiento de la Teoŕıa de Grafos. El estuario del ŕıo Pregel, sobre el
que está construida la ciudad, separa sus distintos barrios de forma que sólo se
puede acceder de uno a otro mediante puentes. Esto hizo que entre los eruditos de
la época surgiese, a modo de juego intelectual, el conocido posteriormente como
Problema de los puentes de Köningsberg. El planteamiento del problema dice aśı:
“¿Es posible recorrer todos los barrios de la ciudad pasando una sola vez por cada
uno de los puentes volviendo de nuevo al punto de partida?” El matemático suizo
Leonhard Euler consiguió responder negativamente a esta cuestión [Euler 1741].
Para ello recurrió a una abstracción del mapa, representando cada barrio como
un nodo y a los puentes que los unen como conexiones entre estos nodos (Figura
1.1).

A partir de este momento clave, el estudio de los grafos y sus propiedades
ha sido creciente dentro del ámbito matemático [Bollobás 1998]. Sin embargo, no
es hasta principios del S. XX en socioloǵıa y hasta más de medio siglo después
con la difusión de la informática, cuando el análisis de redes ha pasado a ser
un elemento imprescindible en la mayoŕıa de campos cient́ıficos. Áreas como la
f́ısica [Albert y Barabási 2002], la informática [Borge-Holthoefer y Arenas 2010],
la bioloǵıa [Barabási y Oltvai 2004] o la socioloǵıa [Wasserman y Faust 1994] han
sido beneficiadas por el uso de este nuevo enfoque.

Figura 1.1: Transformación del mapa de Köningsberg en un grafo

1.1.2. Representación matemática

Una red, en su forma más simple, aparece como un grupo de puntos, de los
cuales algunos pares se encuentran unidos mediante ĺıneas (Figura 1.2). Dentro del
ámbito matemático, este conjunto de nodos y conexiones recibe el nombre de grafo,
y se representa formalmente como una tupla G = (V,E), donde V corresponde
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al conjunto de vértices (nodos) y E es el conjunto de aristas (o conexiones) que
relacionan estos nodos.

Una arista conecta dos nodos u y v, y se representa como: {u, v}. El número de
aristas que conectan a un nodo con sus vecinos se conoce como grado del nodo. En
el caso de un grafo no dirigido, como el de la Figura 1.2, las aristas son simétricas.
Es decir, la arista que conecta u con v es la misma que conecta v con u ({u, v} =
{v, u}).

Figura 1.2: Ejemplo de red no dirigida
con 8 nodos y 10 aristas.

La red social Facebook es un claro
ejemplo de grafo no dirigido. Una re-
lación de amistad significa que el in-
dividuo A es amigo del individuo B y
viceversa. Es imposible que A sea ami-
go de B y B no lo sea de A. Sin em-
bargo, hay redes donde el sentido de la
conexión es verdaderamente importan-
te, como ocurre por ejemplo en redes
epidemiológicas. Si el individuo A es
portador de una enfermedad puede contagiarla a B, que es un individuo sano.
En este caso espećıfico, el contagio de B a A no es posible. Este tipo de redes se
denominan dirigidas y sus conexiones se representan mediante flechas del nodo
origen al nodo destino.

En la red de la Figura 1.2 todas las conexiones son equivalentes, dos nodos
pueden ser o no ser vecinos (presencia o ausencia de una conexión entre ellos).
Esta relación puede ser más compleja, por ejemplo, si cada una de las conexiones
tiene asociado un valor (o peso), creando lo que se conoce como red ponderada.
En una red de transporte, una conexión entre dos nodos refleja que existe una
carretera entre esas dos ciudades. Pero además, esa conexión puede contener más
información como, por ejemplo, la distancia en kilómetros que separa a una de la
otra. En este caso, el número de kilómetros será el peso de esa conexión.

1.1.3. Redes complejas

En 1959, Paul Erdős y Alfréd Rényi [Erdős y Rényi 1959] realizan el primer
gran trabajo matemático sobre grafos. En él, proponen un generador de grafos
aleatorios en el cual cada posible conexión de la red aparece con una probabilidad
fija p, independientemente de la configuración del resto de conexiones. Esto es lo
mismo que decir que cada par de nodos tiene una probabilidad de conexión p.
Siguiendo este principio de generación, los grados de los nodos del grafo resul-
tante siguen una distribución de Poisson. Sin embargo, cuando se empezaron a
representar los primeros sistemas reales en forma de red, los cient́ıficos pronto se
dieron cuenta de que la estructura de estas redes distaba mucho de la esperada
para un grafo aleatorio [Watts y Strogatz 1998,Barabási y Albert 1999,Strogatz
2001]. Por ello, a estas redes reales se las conoce como “complejas”. En concreto,
la distribución de grados de los nodos a menudo no se asemeja a una Poisson,
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sino que muestra una larga cola caracteŕıstica de distribuciones de ley de poten-
cia, Zipf o Pareto [Barabási y Albert 1999,Newman 2005]. Esto quiere decir que,
mientras unos pocos nodos de la red están altamente conectados con otros nodos,
la mayoŕıa de ellos no tienen apenas conexiones. A medida que se profundizaba
más en el estudio de las redes complejas, se fueron encontrando interesantes pro-
piedades. Entre ellas destacan su alto coeficiente de clustering [Strogatz 2001],
alta asortatividad (los nodos tienden a estar conectados a otros nodos de grado
similar) [Croft et al. 2005] y, muchas veces, estructura jerárquica [Ravasz y Ba-
rabási 2003]. Pero además, en este tipo de redes aparecen grupos de nodos muy
conectados entre ellos (Figura 1.3). A esta propiedad se la conoce como estructura
de comunidades y es el objeto de estudio de esta tesis doctoral.

Figura 1.3: Red de co-expresión génica de Saccharomyces cerevisiae. Dos
genes aparecen conectados si sus patrones de expresión son similares. Colo-
reando los nodos de la red según la función conocida de cada gen, las zonas
densamente conectadas corresponden a grupos funcionales de genes [Magwene
et al. 2004].

1.2. Estructura de comunidades

En redes complejas, los nodos relacionados tienden a formar grupos densa-
mente conectados. Además, dichos grupos se encuentran poco conectados con
los demás grupos que conforman el resto de la red. A estas formaciones se les
denomina comunidades y su caracterización y análisis es de gran interés en di-
ferentes campos cient́ıficos [Fortunato 2010]. Dependiendo del tipo de datos, las
comunidades pueden representar complejos proteicos en redes de interacción pro-
téına-protéına [Spirin y Mirny 2003], ćırculos de amigos en redes sociales [Traud
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et al. 2011], zonas con mayor riesgo de terremotos [Abe y Suzuki 2012] o, como
en la Figura 1.3, grupos de genes relacionados funcionalmente.

Figura 1.4: Partición de una red en tres comunidades. Los nodos de cada
comunidad están más densamente conectados entre ellos que con nodos de
otras comunidades (Fuente: Wikipedia Commons).

Una partición es la división de una red en comunidades, de modo que todo
nodo pertenece a alguna de ellas (Figura 1.4). Cómo encontrar la partición óptima
de una red es uno de los problemas abiertos más importantes en el campo de la
Teoŕıa de Redes. El principal obstáculo para obtener dicha partición es la falta de
una definición formal de lo que es una comunidad [Radicchi et al. 2004,Fortunato
2010].

1.2.1. Clustering jerárquico iterativo

Se han propuesto innumerables métodos para detectar la partición óptima de
una red, cada uno con su propio concepto de qué es una comunidad. Las estrate-
gias utilizadas para optimizar las funciones objetivo de los distintos algoritmos son
numerosas: clustering jerárquico [Arnau et al. 2005,Blondel et al. 2008,Aldecoa y
Maŕın 2010], simulated annealing [Duch y Arenas 2005], compresión de la informa-
ción de la red [Rosvall y Bergstrom 2008], heuŕısticas multiresolución [Reichardt y
Bornholdt 2006,Ronhovde y Nussinov 2009,Traag et al. 2011], random walks [Pons
y Latapy 2005, Weinan et al. 2008], métodos espectrales [Shen y Cheng 2010] o
algoritmos genéticos [Shi et al. 2009].

De entre las diferentes estrategias cabe destacar, ya que será la base de la
primera parte de esta tesis, el clustering jerárquico iterativo [Arnau et al. 2005].
El objetivo de este método desarrollado por nuestro grupo es resolver un problema
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habitual en clustering, el cual aparece al intentar agrupar elementos entre cuyas
distancias existen un gran número de empates, como ocurre por ejemplo en grafos
no ponderados. En este tipo de redes, dado que todas las conexiones son idénticas,
el rango de valores distintos de las distancias mı́nimas entre nodos (si contamos
cada conexión como un paso entre dos de ellos) es muy reducido. Esto produce
que, al intentar agrupar jerárquicamente estos nodos, nos encontremos con un gran
número de alternativas posibles en cada paso. De este modo, no existe manera de
saber cuál de ellas será más efectiva para construir el árbol que más se acerca a
la topoloǵıa real de la red.

El proceso de clustering jerárquico iterativo consiste en realizar un gran núme-
ro de veces un simple y rápido algoritmo de clustering sobre la red a estudiar para
generar multitud de soluciones. Posteriormente, a partir de todas esas soluciones
simples, se calcula una matriz de distancias promedio entre cada par de nodos.
De este modo pasamos de una matriz de adyacencia, donde sólo existen valores
0 y 1, a una matriz con muy pocos empates o ninguno. Una vez obtenida dicha
matriz, se aplica un algoritmo de clustering jerárquico convencional para producir
un dendrograma que representa la topoloǵıa de la red. Cada nivel de este árbol
representa una partición en comunidades distinta y de entre ellas se selecciona
como óptima aquella que obtiene mejor puntuación al ser evaluada mediante una
función de calidad (la cual discutiremos más adelante) [Arnau et al. 2005]. Esta
estrategia fue implementada en un programa llamado UVCluster y aplicada con
éxito al análisis de redes de protéınas en Saccharomyces cerevisiae [Marco y Maŕın
2007,Marco y Maŕın 2009] y dominios proteicos en humanos [Lucas et al. 2006].

1.2.2. Comparación de algoritmos en benchmarks sintéticos

Cada uno de los algoritmos de detección de comunidades contiene, impĺıcita-
mente, su propio concepto de qué es una comunidad. Al no perseguir el mismo
objetivo, estos métodos intentan maximizar o minimizar diferentes parámetros
y devuelven distintas soluciones, haciendo complicado el comparar su eficiencia
directamente.

Habitualmente, esta comparación entre algoritmos se realiza en bancos de
pruebas (de aqúı en adelante llamados benchmarks) sintéticos [Danon et al. 2005,
Lancichinetti y Fortunato 2009, Orman y Labatut 2009]. Estos tests comienzan
con una red cuya estructura de comunidades está bien definida y es conocida a
priori. A continuación, las conexiones de la red se van aleatorizando, de modo que
las comunidades iniciales son cada vez más dif́ıciles de reconocer por los distintos
algoritmos. El primer benchmark utilizado en detección de comunidades fue pro-
puesto por Girvan y Newman (GN) [Girvan y Newman 2002]. Está compuesto por
cuatro comunidades de 32 nodos cada una y cada nodo se encuentra conectado
con 16 vecinos, al principio todos ellos de su misma comunidad. Esta red inicial
se va modificando de modo que las conexiones van desapareciendo entre nodos de
una misma comunidad y aparecen conectando nodos de distintas comunidades.
De esta manera la densidad intracomunitaria de la red inicial cada vez es menor
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y las comunidades acaban por desaparecer.
Sin embargo, estos benchmarks no reflejan apropiadamente la mayoŕıa de pro-

piedades que exhiben las redes del mundo real. En un intento de emular mejor es-
tas redes reales, Lancichinetti, Fortunato y Radicchi (LFR) propusieron un nuevo
tipo de benchmark donde tanto el tamaño de las comunidades como la distribu-
ción de grados de los nodos pueden ajustarse a una ley de potencia [Lancichinetti
et al. 2008]. Además, podemos variar un parámetro µ, que indica la fracción de
conexiones que unen cada nodo con nodos de otras comunidades, de modo que
conforme crece µ las comunidades van degradándose progresivamente.

La generación de redes LFR es útil para comparar algoritmos debido a las
diversas variables que el usuario puede controlar (distribución de grados de los
nodos, de los tamaños de comunidad, grado mı́nimo, máximo y medio de los no-
dos, tamaño máximo y mı́nimo de las comunidades). A pesar de ello, en ciertas
ocasiones, no es posible satisfacer los valores de todos estos parámetros al mismo
tiempo, ya que cada uno de ellos impone ciertas constricciones a la red. Por ejem-
plo, no se pueden generar redes con tamaños de comunidades extremos. Tampoco
es posible, en el caso de que se desee, elegir a priori el tamaño concreto de cada
comunidad.

Algunas de estas limitaciones se pueden solucionar utilizando un benchmark
similar conocido como Relaxed Caveman (RC) [Watts 2003], el cual comienza con
cliques aislados (subgrafos completos sin conexiones entre ellos) que representan
las comunidades iniciales. Los tamaños de estas comunidades son definidos por el
usuario y al progresar el benchmark las conexiones dejan de unir nodos de una
misma comunidad y pasan a conectar comunidades distintas. Aśı, se consigue un
proceso de degradación similar al de los benchmarks GN y LFR. La principal
ventaja de un benchmark RC es que podemos decidir exactamente el número de
nodos de cada comunidad y, por tanto, generar redes donde coexistan comunidades
de tamaños muy distintos.

Los benchmarks descritos han sido ampliamente utilizados para comparar el
comportamiento de distintos algoritmos. Sin embargo, sabemos que a partir de
una determinada degradación de las comunidades, la partición inicial dejará de
ser la óptima, debido a que la mayoŕıa de las conexiones que uńıan nodos de una
misma comunidad, ahora se encuentran uniendo nodos de distintas comunidades.
Por tanto, en casos donde la degradación de la red sea alta y un algoritmo devuelva
una solución que no se corresponde con la partición inicial, no podemos saber si es
porque el algoritmo no es capaz de reconocerla o porque śı que está detectando la
partición óptima pero ésta ya no se corresponde con la inicial. La causa principal
de esta limitación es que el barajeo de las conexiones es completamente aleatorio
y, por tanto, la red evoluciona hacia una estructura final desconocida, tienen
un final “abierto”. Debido a ello hemos decidido denominar open a este tipo de
benchmarks. Por contraposición, se pueden generar benchmarks cuyo final se define
a priori. A estos benchmarks donde las estructuras inicial y final son conocidas,
los hemos llamado cerrados (closed).
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1.2.3. Evaluación de la estructura de comunidades

Aunque los análisis en benchmarks sintéticos son útiles para comparar la cali-
dad relativa de los algoritmos, cuando tratamos con redes reales no tenemos infor-
mación de cómo o cuántas son las comunidades que las componen. Por tanto, no
tenemos ninguna referencia con la que comparar los resultados que obtenemos por
parte de cada método. Idealmente, deseaŕıamos tener una medida independiente
que, simplemente teniendo en cuenta la configuración de la red, asigne un valor a
una partición en función de lo bien definidas que se encuentran las comunidades
observadas.

En 2004, Newman y Girvan propusieron un ı́ndice para evaluar la calidad de la
estructura de comunidades de una red, al que llamaron Modularity Q [Newman y
Girvan 2004]. Q compara la densidad de conexiones de una comunidad con la que
esperaŕıamos dada la distribución observada de grados de los nodos. De este modo
pretende calcular la calidad de la comunidad, es decir, cómo de bien definida se
encuentra. A continuación, se suman las calidades de todas las comunidades y se
obtiene el valor global Q. Dada una partición en comunidades de una red, su valor
de Modularity se puede calcular de la siguiente manera:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

) δ(ci, cj) (1.1)

dondeAij vale 1 si i y j están conectados, siendo 0 en caso contrario. (kikj)/(2m)
es el número de conexiones esperadas por azar teniendo en cuenta los grados k de
los nodos i y j. Y, por último, δ(ci, cj) vale 1 si los nodos i y j pertenecen a la
misma comunidad y 0 en caso contrario.

Esta medida ha sido utilizada en centenares de art́ıculos cient́ıficos y es muy
popular. Sin embargo, ya en 2007 se demostró que, bajo ciertas circunstancias,
siguiendo esta estrategia no se pueden detectar comunidades más pequeñas de
un cierto umbral, el cual viene determinado por el tamaño de la red y su patrón
de conexiones [Fortunato y Barthelemy 2007, Kumpula et al. 2007]. Se ha trata-
do de solventar este problema de varias maneras, principalmente con algoritmos
multiresolución. Estos métodos, basados en modelos de Potts (que pueden ser
vistos como una generalización de Q [Reichardt y Bornholdt 2006]), utilizan un
parámetro para explorar la red a distintos niveles de resolución, buscando tan-
to las comunidades pequeñas como las de gran tamaño [Reichardt y Bornholdt
2006, Ronhovde y Nussinov 2009, Traag et al. 2011]. Sin embargo, trabajos re-
cientes han demostrado que estas estrategias son incapaces de detectar, en una
misma partición, comunidades de tamaños muy distintos [Lancichinetti y Fortu-
nato 2011,Xiang y Hu 2012].

Poco después de la aparición de Q, en el art́ıculo de nuestro grupo comentado
anteriormente [Arnau et al. 2005], se propone una forma alternativa de evaluar la
calidad de una partición en comunidades. El problema a resolver en ese trabajo era
cómo elegir el nivel de un dendrograma obtenido mediante clustering jerárquico
que indicase la mejor partición, aunque era obvio que, si dicho criterio funciona,
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puede extenderse a otro tipo de particiones. La idea que se exploró se basa en
comparar, de forma global, el número de conexiones observadas dentro y fuera
de las comunidades con las esperadas si las conexiones apareciesen en la red de
forma completamente aleatoria. La medida asume como modelo nulo subyacente
una generación del grafo aleatoria Erdős-Rényi [Erdős y Rényi 1959], en la cual la
probabilidad de aparición de una conexión es la misma para cada par de nodos. La
probabilidad de esa distribución de conexiones observada puede ser exactamente
calculada utilizando una distribución hipergeométrica [Arnau et al. 2005]:

I =

min(M,n)∑
j=p

(
M
j

)(
F−M
n−j

)(
F
n

) (1.2)

donde n es el número de conexiones observadas, de un máximo posible F

(F = k(k−1)
2 ), siendo k el número de nodos de la red. El número máximo de

conexiones posibles en la partición observada es M . Y, de ellas, sólo existen p
(número de conexiones intracomunitarias observadas).

Como veremos, esta medida de la calidad de una partición, o más bien su ligera
modificación S = − log I, donde S es el parámetro que llamaremos Surprise, ha
sido explorada en este trabajo.

1.3. Objetivos

El objetivo último de esta tesis doctoral es el diseño de procedimientos para
mejorar la caracterización de la estructura de comunidades en redes complejas.
Los objetivos son tres:

1. Generar una serie de algoritmos que permitan, de manera eficiente, extraer
de una red las diferentes comunidades que la componen. Para ello nos basa-
remos en el concepto de clustering jerárquico iterativo citado anteriormen-
te [Arnau et al. 2005]. Además de extraer la estructura de comunidades, esta
estrategia permite transformar el grafo en un árbol jerárquico, obteniendo
valiosa información sobre la topoloǵıa de la red.

2. Por otro lado, dada la cantidad de algoritmos de detección de comunidades
que existen en la literatura, es necesario disponer de una serie de pruebas
estándar o benchmarks que nos permitan compararlos y clasificarlos para
seleccionar los mejores de ellos. Dado que los análisis en los benchmarks
open tradicionalmente utilizados, como se ha comentado previamente, nos
impiden conocer si una solución dada es óptima o no, desarrollaremos un
nuevo tipo de tests que intente eliminar esta y otras limitaciones.

3. Finalmente, se pretende encontrar un ı́ndice matemático que permita eva-
luar de forma correcta la calidad de la estructura de comunidades de una
red. Exploraremos la idea presentada en [Arnau et al. 2005] de evaluar la
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calidad de una partición mediante una distribución hipergeométrica, a fin de
establecer si es una medida fiable de la calidad de una partición y, por tanto,
si su maximización seŕıa una buena estrategia para encontrar la estructura
de comunidades óptima de una red.
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Jerarca: Efficient analysis of
complex networks using
hierarchical clustering

Rodrigo Aldecoa and Ignacio Maŕın
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Cient́ıficas (IBV-CSIC) Calle Jaime Roig 11. Valencia, Spain

PLoS ONE 5, e11585 (2010)

Background: How to extract useful information from complex biological net-
works is a major goal in many fields, especially in genomics and proteomics. We
have shown in several works that iterative hierarchical clustering, as implemented
in the UVCluster program, is a powerful tool to analyze many of those networks.
However, the amount of computation time required to perform UVCluster analy-
ses imposed significant limitations to its use.

Methodology/Principal Findings: We describe the suite Jerarca, designed
to efficiently convert networks of interacting units into dendrograms by means of
iterative hierarchical clustering. Jerarca is divided into three main sections. First,
weighted distances among units are computed using up to three different approa-
ches: a more efficient version of UVCluster and two new, related algorithms called
RCluster and SCluster. Second, Jerarca builds dendrograms based on those dis-
tances, using well-known phylogenetic algorithms, such as UPGMA or Neighbor-
Joining. Finally, Jerarca provides optimal partitions of the trees using statistical
criteria based on the distribution of intra- and intercluster connections. Outputs
compatible with the phylogenetic software MEGA and the Cytoscape package are
generated, allowing the results to be easily visualized.

Conclusions/Significance: The four main advantages of Jerarca respect to
UVCluster are: 1) Improved speed of a novel UVCluster algorithm; 2) Additional,
alternative strategies to perform iterative hierarchical clustering; 3) Automatic
evaluation of the hierarchical trees to obtain optimal partitions; and, 4) Outputs
compatible with popular software such as MEGA and Cytoscape.
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Introduction

There are many types of data, both biological and non-biological, which can
be represented as undirected graphs. Examples in biology are networks based on
protein-protein interaction data, those based on shared protein domains, gene-
tic interaction networks or coexpression networks. Developing heuristic strategies
to extract useful information from them is an active field of research (reviewed
in [1–3]). A typical problem is how to generate partitions of a network in order to
establish clusters, groups of tightly connected units. There are two basic general
strategies to perform such a task. One option is to search for densely connected
modules, for instance using a local evaluation function that measures when adding
or eliminating units leads to a significant decrease of the average density of con-
nections within a group (see e. g. refs. [4–9]). A second possibility is to generate
complete partitions of the graph, assigning each unit to a cluster. This requires
global parameters to evaluate the quality of the alternative partitions [10–12].
Although both methods have advantages and drawbacks, the latter should be
considered preferable on theoretical grounds, given that it allows classifying all
the units of the network.

To classify data, hierarchical clustering has several advantages over other pro-
cedures. First, it is a fully unsupervised method. In the case of networks, this
allows to cluster all units without having to specify a priori the number of clus-
ters present. In addition, the generation of a hierarchical tree provides not only
partitions of the network (either by how units are grouped in agglomerative cluste-
ring, or by how the units are divided into groups, in divisive clustering), but also
allows to visualize how the basic, first-order clusters are combined into higher-
level groups. However, the development of hierarchical clustering strategies to
analyze networks is problematic. Particularly, clustering unweighted undirected
graphs (e. g. networks of interacting units) is seriously hampered by the “ties
in proximity”problem (discussed in [12]). In this type of networks, the distance
between two units is defined as the minimal number of edges that must be walked
to connect them. Then, in typical biological networks – large and with small-
world properties – the number of tied distances is astronomical. This makes it
impossible to directly obtain a reasonable hierarchical tree based on the distances
among units. The problem caused by the ties is that in each step of the clustering
process a large number of alternative agglomerations (or divisions) are possible.
Several authors attempted to solve this problem by using measures of proximity
among units different from their distances [13–15]. However, to justify the usage
of any of these alternative parameters is difficult. A few years ago, we devised a
valid strategy to solve the ties in proximity problem [12]. The first step consists
in generating a large number of alternative, mathematically equivalent partitions
of the network using the distances among the units (primary distances, accor-
ding to our nomenclature) and conventional (e. g. average linkage) hierarchical
clustering. The results are then averaged to obtain a weighted distance measu-
re for each pair of units (secondary distance). This distance corresponds to the
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fraction of alternative partitions in which two units are assigned to different clus-
ters. Finally, a dendrogram is obtained from the matrix of secondary distances.
This strategy, which we called iterative cluster analysis, has already empirically
demonstrated its usefulness. High-quality dendrograms have been obtained from
complex networks derived from different types of biological data [16–18]. Howe-
ver, performing iterative hierarchical clustering has been so far hampered by the
intrinsic slowness of obtaining a representative set of partitions. For example, our
original program, UVCluster [12], runs in O(n3) time, n being the number of no-
des. For this reason, the largest analysis published so far corresponds to a network
with just 632 units [18].

In this work, we describe a suite of programs called Jerarca (Spanish for hie-
rarch), which contains new, efficient algorithms to perform iterative hierarchical
cluster analyses. One of them is basically a faster implementation of the UVClus-
ter program. The other two, RCluster and SCluster, provide alternative ways to
obtain the matrices of secondary distances from a graph. In addition, for the con-
version of the matrix of distances into a dendrogram, two well-known phylogenetic
algorithms, UPGMA and Neighbor-Joining [19–21] have been included in Jerarca.
Finally, Jerarca also includes two different mathematical criteria to determine the
best partition of the dendrogram into clusters. The first one is a parameter ca-
lled modularity (Q) [10], which has been extensively used to measure community
structure in networks. As an alternative, we include a modification of a hyper-
geometric distribution-based index suggested in one of our previous works [12].
Several output files, useful to edit and visualize the results, are generated by the
program. All these options make Jerarca much more efficient and versatile than
our original UVCluster program.

Methods

The Jerarca suite has been written in C++. Both the source code and com-
piled versions for Windows and Linux platforms are freely available at http:

//jerarca.sourceforge.net. Figure 2.1 details the control flow structure of the
code. To perform a round of analyses, the user must execute the program from a
command window, writing four parameters in the following order: 1) the name of
a text file that describes the list of edges of the graph. The names of two linked
nodes, separated by a tab or space, must be written in each line of the file; 2) the
algorithm(s) chosen to iteratively calculate the matrix(ces) of secondary distan-
ces; 3) the algorithm(s) that will be used to obtain the dendrogram; and, 4) the
number of iterations to be performed. Therefore, a typical Jerarca input has the
following structure (parameters are indicated in brackets):

jerarca [file name] [iterative algorithm] [tree algorithm] [n iterations]

For the iterative algorithm, four options are valid: uv (UVCluster), r (RCluster),
s (SCluster) and all. This last option will produce three parallel solutions, one

15

http://jerarca.sourceforge.net
http://jerarca.sourceforge.net


Figure 2.1: Control flowchart of Jerarca. The four input parameters are file
(list of interactions that represent the edges of the network), iAlg (iterative
algorithm to use), tAlg (tree algorithm to use) and n (number of iterations to
perform).
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for each available algorithm. For the tree algorithm, three options are valid: u
(UPGMA), nj (Neighbor-joining) and all. This last option again will produce two
solutions, one for each algorithm.

A typical Jerarca analysis is shown in Figure 2.2. In summary, the program
reads the input file and creates the adjacency matrix A of the graph: Aij = 1
if vertices i and j are connected and Aij = 0 otherwise. Then, it applies the ite-
rative algorithm(s) selected as many times as the number of iterations specified.
To calculate the matrix of secondary distances, the algorithm saves, for each pair
of nodes, the number of iterations in which they have been clustered separately,
and the secondary distances between each two units are calculated by dividing
those values by the number of iterations. After creating the matrix of secondary
distances, the program uses the phylogenetic algorithm(s) chosen to build a den-
drogram. The program finally evaluates, using the two indices implemented, each
level of the dendrogram and saves the optimal partition of the tree for each index
(see below). Several convenient output files (described also in detail below) are
generated.

Figure 2.2: A typical analysis with Jerarca. The user specifies the input file
where the graph is represented. It is analyzed by the program through diverse
algorithms returning four different outputs: the tree in Newick format, a MEGA-
compatible file, a file with attributes for Cytoscape and a text file containing
the optimal partition of the tree.
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Details of the iterative algorithms

We recently developed several novel ideas that are the basis of Jerarca. We
first thought a way to notably improve the speed of the UVCluster program. UV-
Cluster contained a parameter called Affinity Coefficient (AC), which sets how
permissive the clustering process is, in such a way that the lower the AC value,
the larger the average distances among clustered units can be (see [12] for a detai-
led explanation). The maximum value of AC = 100 implies that only units that
are directly connected in the graph are clustered together. Very significantly, this
value was the only used in all our subsequent works [16–18]. Not a single useful
application for other values has ever been found. This has an important conse-
quence, given that, if we fix AC = 100, UVCluster-based iterative hierarchical
clustering can be performed using the adjacency matrix of the network instead
of the matrix of primary distances. This avoids computing the primary distances
among all units using Floyd’s algorithm, whose time complexity is O(n3). Once
noticed that important point, we decided to generate a new version of UVClus-
ter implementing this new approach. It turns out that this improved version is
qualitatively faster than our former program, running in O(n2) time.

Two new algorithms, called RCluster and SCluster, described here for the first
time, provide alternative ways to establish the matrix of secondary distances, fo-
llowing strategies related to the one implemented in the new version of UVCluster.
These programs use alternative methods to select the units to be merged. Figure
2.3 shows a compact, technical description of their differences. However, we think
that the reader may benefit from the following verbal summary of how the three
programs work. The differences in the clustering process are as follows:

1. To select which units to merge, UVCluster generates in each iteration a list
in which the units are randomly ordered and then proceeds to generate a
cluster taking the first unit in that list and searching for all the units that
can be merged to that one, according to the provided AC parameter. If
AC = 100 (fixed value in the new version of the program) this means that
UVCluster establishes cliques, i. e. groups in which each unit is connected
with all the rest of units in the group. Once the largest clique that can be
formed from the first selected unit is found, the units of that clique are set
apart (i. e. they are considered to form a cluster) and the next unit still
available in the list is used to start again the same process. This is a greedy
algorithm, which tends to favor finding compact clusters.

2. Our second algorithm, RCluster (R meaning random), also establishes cli-
ques but, instead of using a starting unit and greedily making a particular
cluster to grow from it, RCluster in each step randomly merges two clusters,
provided that all their units are connected (i. e. they form, after being mer-
ged, a clique). The program follows a hybrid strategy to select the clusters.
To start with, the program simply randomly picks up two clusters, establis-
hes whether they can be merged or not and, if indeed it is possible to merge
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them, puts all the units together into a single, new cluster. While there are
many clusters that can be merged, this simple strategy is very efficient and
it has the big advantage of not requiring to recalculate the adjacency ma-
trix in each merging step, something that is very time consuming for large
graphs. However, as the merging process progresses, the likelihood of finding
mergeable clusters just by randomly picking up two of them gets smaller.
It is then convenient to shift to a second strategy, which is indeed based
on generating in each step of the merging process an adjacency matrix, in
which a value Aij = 1 means that the units of the two clusters (i, j ) form
a clique. This second strategy is implemented in two steps: 1) The program
generates an adjacency matrix and then randomly searches for a Aij = 1
value in that matrix to merge two clusters; 2) It recalculates the adjacency
matrix. Logically, for the newly formed cluster, it assigns a value of “1” with
another cluster only when all the units in both clusters are connected. These
two processes are repeated until no clusters can be merged. The transition
from the first to the second strategy occurs when n random picks, n being
the number of nodes of the network, have failed to find two mergeable clus-
ters. Empirical analyses have shown this to be a convenient cutoff. Notice
that, in RCluster, and differently from what occurs in UVCluster, multiple
clusters grow at the same time. However, the process of choosing a random
pair of clusters to merge in each iteration makes the program slower than
the current version of UVCluster. We found that it runs in O(n2 log n) time.

3. Finally, the third alternative is our novel SCluster algorithm (S stands for
simple), which is both our greediest and our fastest algorithm, running in
O(n log n) time. SCluster just picks up a unit by random and then collapses
in a cluster that unit with all the units directly connected to it. These units
are removed from the graph and then another unit is randomly chosen and
the process is repeated until no further units remain. Notice the difference
with UVCluster and RCluster: the units collapsed in a cluster do not have
to be all connected among them (forming cliques) but just linked to the
initial unit.

Dendrogram algorithms and evaluation of the partitions

Using any/all the algorithms described above, a matrix of secondary distances
is obtained from which dendrograms can be generated. Jerarca implements two
well-known phylogenetic algorithms for this task, UPGMA and Neighbor-Joining.
The user may run one or both algorithms.

From the dendrogram, partitions of the units into clusters can be obtained.
Jerarca establishes partitions by scanning the dendrogram from the root to the
external leaves. Starting from the root, each dichotomy in the tree (that increases
the number of clusters) generates an alternative partition that can be evaluated.
Given that the neighbor-joining method generates unrooted trees, the middle
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Figure 2.3: Main loop of the three iterative clustering algorithms implemented
in Jerarca. An iteration defines a partition of the network by assigning the nodes
to clusters. These loops are repeated as many times as iterations are specified
by the user.

point of the tree is used as root [22]. Jerarca implements two mathematically
independent criteria in order to evaluate the community structure of a given
partition. The first index is the well-known and broadly used modularity (Q) [10],
which measures the distribution of within and between communities links in a
certain partition compared to the expected number of connections that should
exist given a specific degree distribution [23]. The second index (called H) is
based on the cumulative hypergeometric distribution of links, and derives from
an index proposed in the paper that described UVCluster [12]. The definition of
H is as follows:

H = − log

min(M,n)∑
j=p

(
M
j

)(
F−M
n−j

)(
F
n

) (2.1)

where F is the maximum possible number of direct interactions in the whole
network (for a network of k elements, F = k(k − 1)/2), n is the number of direct
interactions actually observed among the k elements of the network, M is the
maximum possible number of intracluster direct interactions in a given partition
and p is the total number of direct intracluster interactions actually detected in
that partition. The parameter H measures the probability of obtaining by chance
a given partition assuming a random distribution of intracluster and interclus-
ter connections. The larger the value of H, the better (“more unexpected”) the
partition of the tree.

Output files

Jerarca produces four types of output files (Figure 2.2). Their names, automa-
tically generated, include a reference to the algorithms and the evaluation criterion
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used (e. g. a typical name would be“Filename partitionH SCluster Upgma.txt”).
Moreover, the extension of a file specifies the content of the output:

1. Files with “.meg” extension contain the matrix of distances among units and
the clusters obtained in the optimal partition of the dendrogram, according
to either Q or H. This file can be directly imported into the software MEGA
4 [24] for further analyses.

2. Files with “.att” extension contain the assignment of nodes to clusters in
the best partition. These files are designed to be imported into Cytoscape
(version 2.x) [25] as attributes of the nodes (from the main Cytoscape menu:
File - Import - Node attributes).

3. Files with a “.txt” extension save the best partition of the dendrogram
obtained in text format. They include a description of the optimal partition:
number of clusters, value of the index used and the assignment of nodes to
each cluster.

4. Finally, the files with “.nwk” extension describe the dendrogram structure
in standard Newick format, which can be read by virtually all programs that
analyze trees, such as MEGA.

Results

The speed of the programs has been tested in several benchmarks. Here we
describe the results for three of them, consisting in an artificial and two real
networks:

Benchmark A
We prepared a synthetic graph of known community structure, in which
512 units were divided into 16 clusters of equal size. Within each cluster all
units were initially fully connected (for a total of (k2 − k)/2 edges, being
k the number of units in a cluster). Then, we progressively “degraded”that
structure by removing a certain percentage of edges and then randomly
shuffling a number of edges among the units. The networks generated are a
variation of the connected-caveman graphs defined by Watts [26].

Benchmark B
The proteins (nodes) that constitute 408 different protein complexes descri-
bed in the yeast Saccharomyces cerevisiae were obtained from the CYC2008
database (http://wodaklab.org/cyc2008; [27]). We then downloaded from
the BioGRID database [28] the protein-protein interactions (edges) charac-
terized so far for all these proteins. The final graph contained 1604 nodes
and 14171 edges.
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Benchmark C
The complete set of protein-protein interactions (interactome) of S. cerevi-
siae was obtained from BioGRID. These data generated a network formed
by 5735 nodes (proteins) and 51134 edges (protein-protein interactions).

Benchmark A was specifically created for testing the quality of the optimal
partitions computed by the algorithms implemented in Jerarca. We generated net-
works with progressive percentages of degradation. In this context, a percentage of
degradation of, say, 10 %, means that first, 10 % of links were eliminated and, from
the rest, 10 % shuffled among units. The shuffling process involves the random re-
moval of an edge of the graph and the later addition of a new edge between two
nodes, chosen also randomly. We previously suggested using a number of itera-
tions equal to 10 times the number of units [12]. Thus, for each of those networks,
we ran 5000 iterations of Jerarca with the parameter all for both the iterative
and the tree algorithms. This means that 12 analyses ( = 3 iterative algorithms
x2 tree algorithms x2 partition criteria) were performed for each network. With
0-30 % degradation, all algorithms recovered the original community structure of
the network without errors. However, starting at 40 % degradation, slight errors
in recovering the original community structure of the graph began to emerge, so
we focused on this case. For each of the six dendrograms constructed by using the
three iterative and the two tree algorithms, the optimal partitions given by the
two evaluation indexes implemented in Jerarca (Q and H) were exactly the same.
In all cases but one, a single unit of the network, different for each combination
of programs, was misclassified. Only the combination of SCluster and UPGMA
recovered the exact community structure of the original network. Significantly,
this particular combination also obtained the highest Q and H values. This exam-
ple shows that all the programs efficiently recover the original structure, even
when it is quite cryptic (40 % degradation means that just about a third of the
original links remain). On the other hand, it also shows the advantage of using
when possible all the programs together, given that some may perform better
than others.

We performed speed tests in a PC-compatible computer with an Intel Core
2 Quad Q8200 at 2.33 GHz and 4 GB of RAM, running Linux. The analyses
of benchmark A were very fast. The 12 analyses per network described in the
previous paragraph (5000 iterations/analysis) required just between 30 and 75
seconds. The least degraded ( = more compact) graphs, allow for the fastest
analyses. To test the speed of the program in real networks of larger sizes, we
used benchmarks B and C. For benchmark B (1604 nodes), 16000 iterations took
about 3.25 hours when using the RCluster algorithm, while for UVCluster and
SCluster the cost was 2 minutes and less than a minute respectively. This large
difference is due to the fact that this network contains densely connected modules
(each protein complex was much more tightly connected internally than with the
rest of the network), a feature that favors the greedy strategies implemented in
UVCluster and SCluster. For benchmark C (5735 nodes), 60000 iterations took
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40 minutes with SCluster and about 3 hours with UVCluster. For RCluster, we
estimated the analysis to require around 300 hours, so it was not performed in
full.

In summary, the new algorithms implemented in Jerarca make possible to
analyze large networks. As the times just detailed demonstrate, a single computer
may easily cope with problems involving several thousands of units in a reasonable
time, using both UVCluster and SCluster. Also, for networks with up to 1000
nodes, the user can test the three programs together, obtaining the results in
minutes to a few hours.

Discussion

As the amount of biological information is rapidly increasing, one of the main
goals in bioinformatics is the generation of fast programs able to deal with large
datasets. For network analyses, the bottleneck of the iterative hierarchical cluste-
ring strategy is precisely that the clustering algorithm must be repeatedly used to
generate a sufficiently large set of iterations as to be representative of the underl-
ying structure of the graph. The second part of the analysis, the construction of
the tree applying a phylogenetic algorithm is performed just once and therefore
has little effect in the time complexity of the program. As already indicated in the
Introduction, the applications of our UVCluster program were limited by the high
amount of time needed for analyzing large networks. An optimization of the ite-
rative clustering method implemented in that program was therefore mandatory.
By setting certain restrictions (fixed AC ), we have qualitatively reduced the time
complexity of the UVCluster algorithm. Traditionally limited to analyses below
1000 units, the current algorithm can cope with networks of several thousand
units in a few hours. This allows analyzing some very interesting datasets, such
as the whole interactome of the eukaryotic species Saccharomyces cerevisiae (see
benchmark C above).

A second significant advantage of Jerarca is that it also includes two novel
algorithms, RCluster and SCluster, which provide alternative ways of computing
the secondary distances between the nodes of the graph. RCluster randomly grows
multiple clusters at the same time, avoiding the greedy agglomerative process im-
plemented in UVcluster. However, the randomization process required makes the
program slower than UVCluster. SCluster is just the opposite: it is the fastest and
greediest of the three algorithms. In spite of its simplicity, its performance is also
appropriate (See results for benchmark A above). Since Jerarca allows to execute
several parallel analyses, we recommend to use the three iterative algorithms for
networks with up to 1000 nodes. A complete analysis of such networks may require
less than two hours (see Results). With larger networks, up to 10000 units, both
UVCluster and SCluster can be used, the analyses with both programs requiring
just a few hours. The inclusion of SCluster, which runs in O(n log n) time, allows
for the analyses of even larger networks. This may be of interest in fields such as
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the analysis of coexpression or gene interaction networks, in which the number of
nodes (in those cases, corresponding to genes) may be in the tens of thousands.
All these considerations obviously refer to analyses using a single computer. Ho-
wever, it is important to take into account that the programs can be very easily
parallelized, given that the iterations can be divided into multiple processors and
the results added together at the end of the computation.

In addition to UPGMA, already included in the original version of UVCluster,
Jerarca also allows the alternative of building the trees using the neighbor-joining
algorithm, probably the most frequently used algorithm to generate trees from a
distance matrix. We suggest to obtain both trees (which is almost instantaneous),
in order to evaluate the congruence of the results. An additional advantage of Je-
rarca respect to UVCluster refers to the determination of the optimal partitions
of the graph according to two statistical parameters (Q and H). We added these
options considering that the users may be often not only interested in obtaining a
hierarchical representation of the network, but also in how the network can be di-
vided into clusters or communities (see Introduction). The strategy used to obtain
the partitions is in fact quite simple, given that the tree is just scanned from root
to leaves. Therefore, the number of partitions examined is quite reduced (equal
to the number of nodes n). More complex methods can be easily envisaged. For
example, partitions could be generated at different distances from the root in dif-
ferent sections of the tree. However, although this option may potentially improve
the likelihood of obtaining a better partition of the network, it is computationally
much more expensive. We plan to explore this possibility in future versions of the
suite. A final advantage of Jerarca is the set of outputs that it generates, which is
much more complete than the one provided by our original UVCluster program.
The possibility to directly export the data to powerful packages such as MEGA
and Cytoscape will allow the users both to perform additional analyses that may
complement those generated by Jerarca and to obtain sophisticated graphical re-
presentations of the results. All these advantages clearly make Jerarca a better
tool to perform iterative clustering analyses of network data than our original
UVCluster program.

The program, along with the source code is freely available under the GNU
General Public License v3 at http://jerarca.sourceforge.net. The modular code
structure of Jerarca permits easily including new features to the program. New
algorithms, both iterative and for building the trees, as well as new indexes for
extracting the optimal partition of the tree, can be easily added.
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The analysis of complex networks permeates all sciences, from biology to so-
ciology. A fundamental, unsolved problem is how to characterize the community
structure of a network. Here, using both standard and novel benchmarks, we show
that maximization of a simple global parameter, which we call Surprise (S), leads
to a very efficient characterization of the community structure of complex synthe-
tic networks. Particularly, S qualitatively outperforms the most commonly used
criterion to define communities, Newman and Girvan’s modularity (Q). Applying
S maximization to real networks often provides natural, well-supported parti-
tions, but also sometimes counterintuitive solutions that expose the limitations
of our previous knowledge. These results indicate that it is possible to define an
effective global criterion for community structure and open new routes for the
understanding of complex networks.
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Introduction

A network of interacting units is often the best abstract representation of
real-life situations or experimental data. This has led to a growing interest in
developing methods for network analysis in scientific fields as diverse as mathe-
matics, physics, sociology and, most especially, biology, both to study organismic
(e. g. populational, ecological) and cellular (metabolic, genomic) networks [1–5].
A significant step to understand the properties of a network consists in determi-
ning its communities, compact clusters of densely linked, related units. However,
the best way to establish the community structure of a network is still disputed.
Many strategies have been used (reviewed in [6]), the most popular being the
maximization of Newman and Girvan’s modularity (Q) [7]. However, Q has the
drawback of being affected by a resolution limit: its maximization fails to detect
communities smaller than a threshold size that depends on the total size of the
network and the pattern of connections [8]. Since this finding, no other global pa-
rameters have been proposed to substitute Q. Alternative strategies (searching for
local structural determinants, multilevel optimization of Q) have been suggested,
but none of them has achieved general acceptance [6].

Some years ago, we suggested determining the community structure of a net-
work by evaluating the distributions of intra- and inter-community links with
a cumulative hypergeometric distribution [9]. Accordingly, to find the optimal
community structure of a network of symmetrically connected units (undirected
graph) is equivalent to maximize the following parameter:

S = − log

min(M,n)∑
j=p

(
M
j

)(
F−M
n−j

)(
F
n

) (2.2)

Where F is the maximum possible number of links in a network (i. e. [k2 − k]/2,
being k the number of units), n is the observed number of links,M is the maximum
possible number of intracommunity links for a given partition, and p is the total
number of intracommunity links actually observed in that partition. The parame-
ter S, which stands for Surprise, indeed measures the “surprise” (improbability)
of finding by chance a partition with the observed enrichment of intracommunity
links in a random graph.

In this work, we show that S has features that make it the parameter of
choice for global estimation of community structure. By using standard and novel
benchmarks and a set of high-quality algorithms for community detection, we
show that maximizing S often provides optimal characterizations of the existing
communities. When this method is applied to real networks, we obtained some
expected, logical solutions - some of them much better than those provided by Q
maximization - but also unexpected partitions that demonstrate the limitations
that the usage of inefficient tools has hitherto cast over the field.
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Results

Testing the performance of a global parameter to determine community struc-
ture requires both a set of efficient algorithms for community detection and a
set of standard benchmarks, consisting in synthetic networks of known struc-
ture. In this study, six selected algorithms (see Methods) were tested in two
types of benchmarks, which will be called LFR and RC throughout the text.
LFR (Lancichinetti-Fortunato-Radicchi) benchmarks are characterized by provi-
ding networks in which both the degrees of the nodes and the sizes of the com-
munities follow power laws [10]. RC (Relaxed Caveman) benchmarks start with
networks in which all the nodes in a community are connected. Then, this struc-
ture is relaxed by generating intercommunity links [11]. We further divided LFR
and RC benchmarks into “open” and “closed”. Open benchmarks have been com-
monly used in the past (e.g. [10, 12, 13]). In them, sets of similar networks with
different proportions of intercommunity links are tested. With many intercommu-
nity links, the networks approach randomness. In closed benchmarks, a starting
community structure is progressively transformed into a second, final structure
which is exactly known.

For each benchmark, we estimated S and Q with the six algorithms. The maxi-
mum values of S and Q obtained (Smax and Qmax) provided the partitions used to
compare with the known community structures. As in previous works [10,14,15],
Normalized Mutual Information (NMI) was used to measure the congruence bet-
ween the known and the estimated community structures. However, we also used
the Variation of Information (VI) [16] in a particular case.

Open benchmarks

Figures 2.1a and 2.1b summarize the results obtained for four standard open
LFR benchmarks that differ in number of units and community sizes [10] (see
Methods). Figure 2.1a indicates that selecting the solution with a maximum S
value leads to a perfect characterization of the network structure (NMIS = 1)
even when that structure is blurred by a large number of inter-community links,
generated by increasing the mixing parameter µ up to 0.5-0.7 (see Methods for
µ definition). If µ is further increased, the original partition is not chosen by any
algorithm (NMIS < 1). This suggests that the original community structure is
not present anymore, which is in good agreement with the fact that Smax �
Sorig, where Sorig is the S value obtained assuming that the original community
structure is still present (Table S1). S maximization qualitatively improves over Q
maximization (Figure 1b and Table S1): NMIS > NMIQ in 2827/3600 = 78,5 % of
the cases, NMIQ > NMIS in just 4.1 % of them and the rest are ties. Interestingly,
NMIQ � NMIS in quasi-random and random networks (Figure 1b), suggesting
that maximizing Q overimposes spurious community structures in those cases.
It is significant that S maximization provided better average NMI scores than
those obtained by any single algorithm in these same benchmarks [15]. Different
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Figure 2.1: Results for open LFR and RC benchmarks. a) Results for the
four standard LFR networks. B and S indicate big and small communities
respectively and 1000 or 5000 the number of nodes. µ: mixing parameter. NMI
measures the congruence between the known and the deduced community
structures. Each point is based on 100 different networks; standard errors of
the mean are too small to be visualized. Values for 100 random (R) networks
with the same number of units and degree distributions are also shown. b)
Comparison of S and Q maximizations in LFR benchmarks. The NMIQ/NMIS
ratios, which are almost always below 1, are shown. c) Results for the RC
benchmark. The parameter Degradation (D) indicates the percentage of both
deleted and shuffled links. Each black dot is based on 100 networks, again
standard errors are so small that cannot be visualized at this scale. For each
value of D, results for 100 random networks with the same number of links
are also shown (open circles). d) Relative quality of the partitions generated
by maximizing S and Q in RC benchmarks. As in panel b, NMIQ/NMIS ratios
are shown. White dots: results for random networks with different D values.
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algorithms provided the top S scores, depending on the benchmark and µ value
examined (Figure 2.2a and Figure S1).

The discovery of the resolution limit of Q showed that heterogeneous commu-
nity sizes may greatly affect the ability of global parameters to detect structure [8].
However, by construction, community sizes in the standard LFR benchmarks are
very similar. Pielou’s evenness indexes (PI) [21] ranged from 0.96 to 0.98 in the
four benchmarks used above, close to the maximum value of the index (PI = 1
for communities of identical size). Considering that it was critical to test S in
more extreme situations, we built the RC benchmarks, which have PIs as low
as 0.70 (as shown in Figure S2). Figures 2.1c and 2.1d summarize the results
for open RC benchmarks, with progressive Degradation (D; see Methods) of the
original structure. That structure is efficiently detected by S maximization, with
a slow decrease in performance when D increases (Figure 1c; see also Table S2,
Figure S2). Again, S maximization clearly improves over Q maximization in these
benchmarks (Figure 2.1d; NMIS > NMIQ in 848/900 = 94,2 % of the cases, while
NMIQ > NMIS in just 3.3 % of the cases). As occurred for the LFR benchmarks,
none of the algorithms obtained the best results in all networks (Figure 2.2b).

Closed benchmarks

The results just shown indicate that using Smax to detect community structure
has obvious advantages over maximizing Q. However, they do not allow to eva-
luate how optimal is that criterion, given that the potential maximum NMIs are
unknown. To solve this limitation, we generated closed LFR and RC benchmarks,
in which we had an a priori expectation of the maximum NMI values. Results are
shown in Figures 2.3 (LFR) and 2.4 (RC). In all cases in which Smax was used, an
almost perfectly symmetrical dynamics was observed. In the process of converting
the original structure into the final one (by increasing the Conversion parameter;
see Methods), NMI losses for the first structure are compensated by increases for
the second. The average of both NMIs is thus approximately constant, and it has
a value identical or very close to (1+NMIIF )/2, where NMIIF is obtained com-
paring the initial and final structures (Figures 2.3a-d; Figures 2.4a-c; Figures S3,
S4). This is exactly the result expected for an optimal parameter (see theoretical
details in Methods). On the contrary, maximizing Q shows a poor performance
except when community sizes are very similar/identical (Figures 2.3e, 2.4d; Figu-
res S3, S4). The same results were obtained using a second measure of congruence,
Variation of Information (VI) (Figures S5, S6). Finally, in the LFR benchmarks,
Smax was always identical or higher than Sorig (Figure 2.3f). However, this does
not happen for the RC benchmarks (Figure 2.4e). Therefore, these algorithms
sometimes fail to obtain the highest possible S values. This fact may explain the
slight departures from NMI symmetry observed in some RC benchmarks (blue
diamonds in Figures 2.4b, 2.4c).
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Figure 2.2: Average performance of the algorithms in the open LFR and RC
benchmarks. The algorithms used were described by Arnau et al. [9], Aldecoa
and Maŕın (AM) [13], Rosvall and Bergstrom (RB) [17], Ronhovde and Nussi-
nov (RN) [18], Blondel et al. [19] and Duch and Arenas (DA) [20]. a) Typical
example of the results obtained in LFR benchmarks, here with 5000 units and
big communities (see Figure S1 for all of them). After ordering the algorithms
from best to worst performance, their ranks were added for the 100 different
networks. Performance was defined as P = 6− average rank. Therefore, the
maximum value P = 5 means that an algorithm was the best in all networks
tested, while P = 0 means that it was always the worst. As it can be observed,
none of the algorithms achieved optimal results in all cases. b) Results obtai-
ned in the RC benchmark with different Degradation (D) values. Performance
evaluated as in panel a).
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Figure 2.3: Results for clo-
sed LFR benchmarks. a) LFR
benchmark with 1000 units
and big communities. For each
Conversion (C) value, NMIs
comparing the Smax partition
with the initial (black dots)
or final (red squares) commu-
nity structures were obtained.
The symmetrical results led to
NMI averages (blue diamonds)
that, with great precision, fell
in a straight line of value
(1+NMIIF )/2. Dots are based
on 100 independent analyses.
b–d) LFR benchmarks with,
respectively, 1000 units, small
communities (b), 5000 units,
big communities (c) and 5000
units, small communities (d).
Results are very similar to tho-
se in panel a). e) Average NMI
values for partitions obtained
maximizing Q are worse than
those obtained maximizing S,
especially as we move towards
C = 50, in which the real com-
munity structure is more dif-
ficult to establish. This effect
is exacerbated by large num-
ber of units and small com-
munity sizes, due to the reso-
lution limit of Q. Results for
C > 50 are symmetrical to
the ones shown here. See also
Figure S3. f) Smax/Sorig ra-
tio ≥ 1, i. e. either the origi-
nal structure or a different one
with higher S is found. These
results are compatible with the
algorithms used being able to
detect the true structure pre-
sent with great accuracy.
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Figure 2.4: Results for closed
RC benchmarks. Three net-
works with different heteroge-
neity in community sizes (Pie-
lou’s indexes equal to 0.70,
0.85 and 1.00 respectively) we-
re used as examples. a) PI =
1; b) PI = 0,85; c) PI =
0,70. Results similar to those
in Figure 2, except that the fi-
gures are not so perfectly sym-
metrical in the most heteroge-
neous networks (panels b and
c; blue diamonds slightly de-
viate from the straight line). d)
Average NMI values are much
worse when Q is used, provided
that community sizes are hete-
rogeneous. See also Figure S4.
e) Smax/Sorig < 1 with he-
terogeneous community sizes.
The algorithms used did not
detect in those cases the ma-
ximum possible S, which still
may correspond to the initial
structure. This may contribu-
te to the departures from sym-
metry shown in panel a). The
fact that Smax/Sorig � 1
with C < 0,50 and PI =
0,70 (blue diamonds) implies
that the algorithms are detec-
ting structures different from
the initial one.
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Real networks

Figure 5 summarizes the Smax results for three real networks. The first example
is based on the CYC2008 database, which compiles 1604 proteins that belong to
324 protein complexes [22]. The general agreement between communities detected
using Smax and a priori defined protein complexes is almost perfect, NMIS =
0.91. On Figure 2.5a, the 11 communities of size >20, out of the 313 detected, are
detailed to show how fine-grained is the classification obtained. On the contrary,
optimizing Q provides a very coarse classification into just 24 communities with
NMIQ = 0.57. The largest five communities alone almost cover the whole network
(Figure 2.5b). These results indicate how excellent is S performance when there are
many small, abundant communities, a typical situation in which Q, affected by its
resolution limit, radically fails. Figure 2.5c shows, as a positive control, the results
for a classical benchmark of well-known structure, the College football network
[12]. The agreement with the expected communities is again very high (NMIS =
0.93). Finally, Figure 2.5d shows the results for another well-known example, the
Zachary’s Karate club network [12, 23]. This social network supposedly contains
two communities. However, S analyses surprisingly unearthed 19 communities, 12
of them singletons (Figure 2.5d).

Discussion

In this study, we have shown the potential of maximizing the global parameter
Surprise (S) to determine the community structure present in complex networks.
The results indicate that it has a qualitative better performance than the hitherto
most commonly used global measure, Newman and Girvan’s modularity (Q). The
advantage of S over Q is maybe not that surprising, considering the different
theoretical foundations of both measures. Newman and Girvan’s Q is based on a
simple definition of community, as a region of the network with an unexpectedly
high density of links. However, the number of units within each community does
not influence the value of Q [7]. On the contrary, S evaluates both the number of
links and of units in each community (see 2.2). Therefore, S implicitly assumes a
more complex definition of community: a precise number of units for which it is
found a density of links which is statistically unexpected given the features of the
network. In this context of comparison of both measures, it is also very significant
that, while some of the algorithms used in this work were the best among those
specifically designed to maximize Q, none was devised to maximize S. Therefore,
our results actually underestimate the power of S maximization for community
detection. A direct example of that underestimation is shown in Figure 2.4e: the
maximum values of S were, in some cases, not found. The few exceptions found in
which NMIQ > NMIS (3-4 % of all the cases examined in the open benchmarks)
could be also explained by an incomplete success in determining Smax with these
algorithms.
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Figure 2.5: Community structure of the CYC2008 network (a, b), College
football network (c) and Zachary’s karate club network (d), according to S
maximization (panels a, c, d) or Q maximization (panel b). In panel c, the
known community structure is shown (squares). The broken lines in panel d
divide the network into the two communities assumed to exist. That division of
the network is not supported at all by Smax analyses. While S(2communities)

= 13.61, the optimal division found has S(19communities) = 25.69. Twelve of
these optimal communities are singletons (white dots).
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The commonly used open benchmarks are useful for general evaluations of the
performance of different algorithms, but they do not allow to establish how opti-
mal are the results obtained. For that, we have devised novel closed benchmarks
in which an initial known community structure is progressively transformed in-
to a second, also known, community structure. Provided that both community
structures are identical, it can be demonstrated that, at any point of the trans-
formation from one to the other, the average of the NMIs of the solution found
respect to the initial and final structures should approximate a constant value
([1+NMIIF ]/2), if that solution is optimal (see Methods). This feature allows es-
tablishing the intrinsic quality of the partitions obtained, with S maximization
often providing optimal results. We conclude that S maximization establishes the
community structure of complex networks with a high accuracy. Two promising
lines of research are clear. First, generating novel, specific algorithms for S maxi-
mization, which may improve over the existing ones. Second, building a standard
set of closed benchmarks to test any new algorithms for community detection. Our
LFR and RC closed benchmarks may be a good starting point for that standard
set.

When S maximization was applied to real networks, the results obtained are
of two types. On one hand, for the CYC2008 and College football networks, the
expectation was to find a clear community structure which should faithfully corres-
pond to either the complexes to which the proteins examined are part (CYC2008
network) or to the conferences to which the teams belong (College football net-
work), given that intracomplex or intraconference links are abundant (e. g. Figu-
re 2.5c). These are exactly the results found using Smax. On the other hand, the
structure of the Zachary’s karate network is far from obvious (Figure 2.5d). There-
fore, finding that, according to Smax, the network contains some small groups plus
many singletons is, at least a posteriori, not so unexpected. A natural question
is then why the scientific community has been so keen of exploring this particu-
lar network, often to establish whether an algorithm was able or not to detect
the putative two communities (e. g. refs. [7, 12, 23, 24] among many others). This
may reflect a psychological bias, to which the use of underperforming methods for
community detection may have certainly contributed. It shows to which extent
human prejudices may taint evaluations in this type of ill-defined problems.

Methods

Algorithms used to maximize S and Q

Six of the best available algorithms, selected either by their exceptional per-
formance in artificial benchmarks or their success in previous analyses of real
and simulated networks [9, 13–15, 25, 26], were used. They were the following: 1)
UVCluster algorithm [9, 13]: It performs iterative hierarchical clustering, gene-
rating dendrograms. The best values of S and Q were obtained scanning these
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dendrograms from root to leaves. 2) SCluster algorithm [13]: also performs itera-
tive hierarchical clustering, but using an alternative strategy which is faster and
sometimes more accurate than the one implemented in UVCluster. 3) Dynamic
algorithm by Rosvall and Bergstrom [17]: an algorithm based on expressing the
characterization of communities as an information compression problem. 4) Potts
model multiresolution algorithm [18]: works by minimizing the Hamiltonian of
a Potts spin model at different resolution scales, i. e. searching for communities
of different sizes. 5) Fast modularity optimization [19]: devised to maximize Q.
It provides multiple solutions from which values for S and Q can be obtained,
and the maximum ones were used in our analyses. 6) Extremal optimization al-
gorithm [20]: A divisive algorithm also developed to maximize Q. Analyses were
always performed with the default program settings.

Features of the benchmarks

First, the recently developed LFR benchmarks, specifically devised for testing
alternative community detection strategies [10], were used. In particular, we cho-
se four standard LFR benchmarks already explored by other authors [15]. The
networks analyzed had either 1000 or 5000 units and were built according to two
alternative ranges of community sizes (Big (B): 20-100 units/community; Small
(S): 10-50 units/community). For each of the four conditions (1000 B, 1000 S,
5000 B, 5000 S), 100 different networks were generated for each value of a mixing
parameter µ, which varied from 0.1 to 0.9 [15]. µ is the average percentage of links
that connect a unit to those in other communities. Logically, increasing µ weakens
the network community structure. When µ = 0.9, the networks are quasi-random
(see below).

Once found that these LFR benchmarks generated networks with communities
of very similar sizes, we decided to implement RC benchmarks in which these sizes
were more variable. All networks in these benchmarks had 512 units divided into
16 communities. One hundred networks with random community sizes, determi-
ned using a broken-stick model [27], were generated. This model provides highly
heterogeneous community sizes. Progressive weakening of the community structu-
re of the RC networks, similar to the effect of increasing µ in the LFR networks,
was obtained as follows. Initially, all units of each community in the network were
fully connected. Then, that obvious structure was progressively blurred, by first
randomly removing a certain percentage of edges and then randomly shuffling the
same percentage of links among the units. That common percentage, we have ca-
lled Degradation (D). Thus, D = 10 % means that, first, 10 % of the links present
were eliminated and then 10 % of the remaining edges were randomly shuffled
among units. Shuffling involved first the random removal of an edge of the graph
and then the addition of a new edge between two randomly chosen nodes.

In the LFR and RC benchmarks just described it was possible to compare
networks having obvious community structures (generated with low µ or D para-
meters) with others that were increasingly random. This type of benchmarks, we
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have called open. We also generated closed LFR and RC benchmarks. In them,
links were shifted in a directed way, in order to convert the original community
structure of a network into a second, also predefined, structure. In this way, it
is possible to monitor when the original structure is substituted by the final one
according to the solutions provided by Smax or Qmax. In the LFR and RC closed
benchmarks, the starting networks were the same described in the previous para-
graphs, with µ = 0.1 (LFR) or D = 0 (RC) respectively, and the final networks
were obtained by randomly relabeling the nodes. Therefore, the initial and final
networks had identical community structures but the nodes within each commu-
nity were different. Conversion (C) is defined as the percentage of links exclusively
present in the initial network that are substituted by links only present in the final
one (i. e. C = 0: initial structure present; C = 100: final structure present).

NMI symmetry as a measure of performance in closed bench-
marks

In our closed benchmarks, a peculiar symmetrical behavior of NMI values
respect to the initial and final partitions is expected. Imagine that a putative
optimal partition is estimated according to a given criterion. Let us now consider
the following triangle inequality:

NMIIE +NMIEF
2

≤ 1 +NMIIF
2

(2.3)

where NMIIE is the normalized mutual information calculated for the initial
structure (I) and the estimated partition (E), NMIEF is the normalized mutual
information for the final structure (F) versus the estimated partition and NMIIF
is the normalized mutual information for the comparison between the initial and
final structures. Inequality 2.3 holds true if the structures of I, F and E are
identical (i. e. both the number and sizes of the communities are the same, but
not necessarily are the same the nodes within each community). This follows from
the fact that

1 +NMIXY ≤
V IXY

H(X) +H(Y )
(2.4)

Where V IXY is the Variation of Information for both partitions [16] and H(X)
and H(Y) are the entropies of the X and Y partitions, respectively. Given that VI
is a metric [16], it satisfies the triangle inequality

V IAB + V IBC ≥ V IAC (2.5)

If, as indicated, the structures of all partitions are identical, then all their
entropies are also identical. In that case, the following inequality can be deduced
from formulae 2.4 and 2.5
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(1−NMIAB) + (1−NMIBC) ≥ (1−NMIAC) (2.6)

From this inequality, and substituting A, B and C with I, E and F, respectively,
formula 2.3 can be deduced. Formula 2.3 therefore means that, provided that I, E
and F have the same structure, the average of NMIIE and NMIEF may acquire a
maximum value [(1+NMIIF )/2]. Inequality 2.3 will also hold approximately true
if the entropies of I, E and F are very similar (i. e. many identical communities). In
our closed benchmarks the I and F structures are identical, and we progressively
convert one into the other. It is thus expected that the optimal partition along
this conversion is similar in structure to both I and F. Hence, deviations from the
expected average value (1+NMIIF )/2 are a cause of concern, as they probably
mean that the optimal partition has not been found. On the other hand, finding
values equal to (1+NMIIF )/2 is a strong indication that the optimal partition
has indeed been found.

It is worth noting that, although NMI has been commonly used in this field
[10, 14, 15], using VI instead has clear advantages to analyze closed benchmarks:
Formula 2.5 can be used instead of Formula 2.3, avoiding considering entropies at
all. This is why we evaluated the closed benchmark results both using NMI and
VI (see above).

Real networks

Two of the three networks explored, known as College football and Zachary’s
karate networks, have been frequently used in the past in the context of com-
munity detection [e. g. refs. [7, 12, 23, 24, 28]. The third network derived from the
CYC2008 protein complexes database [22]. This database contains information for
408 protein complexes of the yeast Saccharomyces cerevisiae. The protein com-
plex data were converted into 324 non-overlapping complexes by assigning each
protein present in multiple complexes to the largest one. This was made to allow
for NMI calculations. Once each protein (unit) was assigned to a non-overlapping
cluster (community), we downloaded from the BioGRID database [29] the protein-
protein interactions (edges) characterized so far for all these proteins. The final
graph contained 1604 nodes and 14171 edges.
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[16] M. Meilă. Comparing clusterings—an information based distance. Journal
of Multivariate Analysis, 98:873–895, 2007.

[17] M. Rosvall and C.T. Bergstrom. Maps of random walks on complex net-
works reveal community structure. Proceedings of the National Academy of
Sciences, 105:1118–1123, 2008.

[18] P. Ronhovde and Z. Nussinov. Multiresolution community detection for me-
gascale networks by information-based replica correlations. Physical Review
E, 80:016109, 2009.

[19] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory
and Experiment, P10008, 2008.

[20] J. Duch and A. Arenas. Community detection in complex networks using
extremal optimization. Physical review E, 72:027104, 2005.

[21] ECJ Pielou. The measurement of diversity in different types of biological
collections. Journal of theoretical biology, 13:131–144, 1966.

[22] S. Pu, J. Wong, B. Turner, E. Cho, and S.J. Wodak. Up-to-date catalogues
of yeast protein complexes. Nucleic acids research, 37:825–831, 2009.

[23] W.W. Zachary. An information flow model for conflict and fission in small
groups. Journal of anthropological research, 33:452–473, 1977.

[24] L.C. Freeman. Finding groups with a simple genetic algorithm*. Journal of
Mathematical Sociology, 17:227–241, 1993.
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Figure S1: Average perfor-
mances of the algorithms in the
LFR benchmarks. With diffe-
rent network sizes (1000, 5000
units), community sizes (small:
10 to 50 units per commu-
nity; big: 20-100 units per com-
munity) and values of mixing
parameter (µ) and for ran-
dom networks of the same size.
After ordering the algorithms
from best to worst performan-
ce, their ranges were added for
the 100 different networks. Per-
formance is defined as P = 6 -
average range.
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Figure S2: Details of the
results for the RC bench-
mark. a) Normalized Mu-
tual Information values for
the 100 networks tested,
obtained by S maximiza-
tion. Given that both a low
Pielou’s index and high D
may alter the original struc-
ture of the network, these
results would tend to un-
derestimate the real quality
of the partition into com-
munities obtained. Lines co-
rrespond to the second de-
gree polynomials that best
fit the results, which were
found to be better than the
first degree ones. b) Exam-
ples of the relative sizes
of communities for different
Pielou’s indexes, to show
the very different structu-
res provided by generating
the community sizes accor-
ding to a broken stick mo-
del. c) Summary of the re-
sults in the RC benchmark
with Q maximization. The
results are much worse than
those shown in panel a), due
to the resolution limit that
affects Q values when so-
me communities are small
(low Pielou’s indexes). Li-
nes again correspond to the
best fits according to se-
cond degree polynomials.
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Figure S3: Behavior of S and Q maximization in closed LFR benchmarks.
Notice the obvious decrease below (1+NMIIF )/2 when Q is maximized.
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Figure S4: Results for S and Q maximization in the closed RC benchmarks.
The behavior of Smax is again qualitatively better than the one of Qmax,
except when all communities are identical.
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Figure S5: Behavior of S and Q maximization in closed LFR benchmarks
using Variation of Information (VI) as a measure of congruence. As it can be
deduced from Formula 2.5 in the main text, a good behavior of a parameter
implies minimal deviations from the expected value VIIF /2 (blue line). Results
are almost identical to those shown in Figure S3 using NMI. Smax behavior is
clearly better than Qmax behavior.
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Figure S6: Results for S and Q maximization in the closed RC benchmarks,
measured with VI. The behavior of Smax is again qualitatively better than the
one of Qmax, confirming the results shown in Figure S5.
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Table S1: Detailed results obtained for the LFR benchmarks. The values of
NMI when S and Q are maximized are indicated, together with the percentage
of cases in which NMI = 1 and the values of Smax and Sorig (i.e. the S value
obtained assuming that the original structure is present). Notice that when µ
= 0.6-0.7, Smax > Sorig, meaning that the original structure is not the one
present anymore. In those cases, NMIs are expected to rapidly decrease, as
indeed is observed.
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Table S2: Details of the RC benchmark results. Same data as in Table S1, but
with variations in the Degradation (D) parameter. Data for random networks
of the same size are also included.
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Instituto de Biomedicina de Valencia. Consejo Superior de Investigaciones

Cient́ıficas (IBV-CSIC) Calle Jaime Roig 11. Valencia, Spain

Physical Review E 85, 026109 (2012)

Characterizing the community structure of complex networks is a key challenge
in many scientific fields. Very diverse algorithms and methods have been proposed
to this end, many working reasonably well in specific situations. However, no
consensus has emerged on which of these methods is the best to use in practice. In
part, this is due to the fact that testing their performance requires the generation
of a comprehensive, standard set of synthetic benchmarks, a goal not yet fully
achieved. Here, we present a type of benchmark that we call “closed”, in which
an initial network of known community structure is progressively converted into
a second network whose communities are also known. This approach differs from
all previously published ones, in which networks evolve toward randomness. The
use of this type of benchmark allows us to monitor the transformation of the
community structure of a network. Moreover, we can predict the optimal behavior
of the variation of information, a measure of the quality of the partitions obtained,
at any moment of the process. This enables us in many cases to determine the
best partition among those suggested by different algorithms. Also, since any
network can be used as a starting point, extensive studies and comparisons can be
performed using a heterogeneous set of structures, including random ones. These
properties make our benchmarks a general standard for comparing community
detection algorithms.
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Introduction

Network analysis offers a powerful approach to solve problems in many scien-
tific fields, including physics, biology, and sociology [1–4]. Community structure
is a significant property of these networks. A community can be loosely defined
as a set of nodes that are more densely connected among themselves than with
the rest of the network. The importance of community structure characterization
derives from the fact that all nodes in a community are expected to share common
attributes, features, or functional connections (reviewed in [5]). Many algorithms
and methods have been proposed for extracting the optimal partition of a network
into communities. While some of them try to improve a global quality function
such as its Modularity [6] or Surprise [7], others search for the optimal partition
by minimizing the compression of the information that best describes the net-
work [8], minimizing the Hamiltonian of a Potts-like spin model that represents
the graph [9], or deducing the maximum-likelihood model that best fits the struc-
ture of the network [10], to name just a few examples. However, none of these
algorithms achieves maximal results in all situations. Their performance varies
greatly, depending on the topological parameters of the analyzed network [7, 11].

In order to compare the performance of community detection algorithms, se-
veral benchmarks have been proposed. The first ones were based on the planted
one-partition model [12]. The most popular among them is the Girvan and New-
man (GN) benchmark [13], in which a network of 128 nodes is divided into four
communities of equal size where each node is connected with 16 other members
of its own community. This starting graph can then be progressively degraded by
replacing links within communities with links between them, keeping constant the
average node degree. The relaxed caveman (RC) benchmarks [7,14,15] are similar
in concept. In them, the starting network is formed by a set of cliques of variable
sizes, and a degradation process identical to that already described for the GN
benchmark is performed. Notice that GN and RC communities are, by definition,
Erdős-Rényi subgraphs [16] in which, all throughout the degradation process, each
pair of nodes is linked with the same probability p. This makes those benchmarks
rather inappropriate for representing real-world networks since the latter exhibit
much more heterogeneous degree distributions [17, 18]. With this idea in mind,
Lancichinetti, Fortunato, and Radicchi developed a novel type of benchmark, ca-
lled LFR [19], in which both the sizes of the communities and the distribution of
node degrees are adjusted to follow power laws. In LFR benchmarks, the fraction
of links µ that a node shares with nodes in other communities is tunable. Increa-
sing µ (often called the “mixing parameter”) generates an analogous behavior to
that of the degradation process described for GN and RC benchmarks, i.e., the
proportion of intercommunity links grows and the original communities gradually
disappear. We refer to all of these benchmarks (GN, RC, and LFR) as “open”,
given that the final outcome is “open-ended”(i.e., the precise final community
structure of the network is undetermined).

In this paper, we describe in detail a novel type of benchmark (referred to
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as “closed”) that is based on the conversion of a network of known community
structure into a second network whose communities are also known. We already
introduced the concept of a closed benchmark in a previous work [7], and we
showed how this type of benchmark can be successfully used to compare commu-
nity detection algorithms. Here, we explain it in detail, give some examples of its
performance, and discuss its potential and the significant advantages it presents
over the aforementioned open benchmarks. We show that the guided evolution of
the networks to a closed end enables us to accurately monitor the transformation
progress and to evaluate the goodness of a partition at any moment of the process.

Features of the closed benchmarks

The main concept behind the closed benchmarks is the directed conversion of
a network into another one by means of edge rewiring. The starting point is a
network whose community structure is known a priori. Any type of graph and
community structure is valid as an initial network. The algorithm then generates
a second, “final”network. The initial and final networks are precisely related. The
community structure of the final network is identical to the initial one, but the
labels of the nodes are randomly mapped from the former to the latter. Converting
the initial network into the final one involves rewiring links in a directed manner,
a process depicted in Fig. 1. The details of the procedure are as follows:

1. Links present in both the initial and the final networks will not be rewired.

2. At each step, one of the rewirable links is removed and subsequently a
new link is added between two nodes connected only in the final network.
Conversion (C) is defined as the percentage of rewirable links modified at
a particular point of the process of converting the initial network structure
into the final one.

3. At any point of this conversion process, the network can be saved for la-
ter analyses. Therefore, a wide set of intermediate structures to test the
behavior of community detection algorithms can be obtained.

4. The process stops when the final structure is reached.

A significant feature of the closed benchmarks is that, during the conversion pro-
cess and because of the directed rewiring of the links, we are approaching the
final structure at the same rate that we are leaving the initial one. Calling D the
distance between both networks, we can assert that the structure at a distance x
from the start is also at a distance D − x from the end of the benchmark. This
fact, together with the identical topology of both ends, produces a set of struc-
tures that is symmetrical about the 50 % conversion point. That is, when C =
50 %, the structure of the network is, on average, at the same distance from both
the initial and the final networks. Given these patterns of network evolution, we
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Figure 1: Transformation process in a closed benchmark. In this case, the
starting network is the GN benchmark. Links are progressively rewired from
the initial (C = 0 %) to the final network (C = 100 %). Nodes color is defined
by the initial community to which they belong, whereas their shape corresponds
to the final community in which they are contained.
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can assume that its community structure undergoes a similar behavior. As we will
describe below, this behavior is central to the evaluation of partitions in closed
benchmarks.

Any benchmark is associated with one or several measures of performance.
In the case of clustering comparison, several methods, based on counting pairs,
cluster matching, or information-theory based indexes, have been developed (re-
viewed in [5,20]). Among the latter type, the variation of information (V ) [21] is
an information-based distance useful for measuring the dissimilarity between two
partitions, A and B (VAB). In our context, we consider that it has clear advan-
tages over other criteria, especially its metric nature. This property implies that
V is positive-definite, a symmetric distance (which is a highly desirable property
when comparing clusterings), and, more important for our purposes, it satisfies
the triangle inequality [21]. This last fact turns out to be very useful for clo-
sed benchmarks evaluation. In these benchmarks, we have two known community
structures, those of the initial (I) and final (F ) networks. Moreover, the method
generates a set of intermediate, estimated structures (E) whose communities can
also be determined. We can deduce from the V triangle inequality the following
formula:

VAB + VBC ≥ VAC (2.7)

Hence, the sum of VIE and VEF is lower bounded by VIF , which is constant,
given that the partitions of the initial and final networks are fixed. If the rewiring
of the network has not yet started, the optimal estimated partition is the same
as the initial one, I = E, and therefore VIE = 0 and VEF = VIF , satisfying
the equality in Eq. 2.7. When the conversion starts, and because the network
approaches the final structure at the same rate that it leaves the initial one, VIE
should increase as much as VEF decreases. Therefore, unless the structure of the
network becomes very different from both the initial and final structures along the
conversion process (e.g., as described in the next paragraph), this should make
the equality VIE + VEF = VIF true all along the conversion of the initial into the
final structure. A significant deduction is that if, for a given estimated partition
E, the sum of VIE and VEF deviates from the constant value VIF , then E may
not be the optimal partition [7]. Thus, deviation from the expected VIF value
may indicate a suboptimal performance of a given algorithm.

If third-party structures, very different from the initial and final ones, are
formed along the conversion process, we can find VIE + VEF > VIF even if the
partition is optimal. This can be illustrated assuming that the intermediate struc-
ture becomes fully random. Two situations are then possible, depending on the
density of links in the graph. If, at some point of the rewiring, the intermediate
structure becomes a single community containing all the nodes -as expected in a
random graph with a high density of links- then VIE = H(I) and VEF = H(F ),
where H(I) and H(F ) are the entropies of the initial and final partitions. Given
that VIF = H(I) + H(F ) − 2M(I, F ), where M(I, F ) is the mutual information
between the initial and final partitions, we have that VIE + VEF must be somew-
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hat larger than VIF . This derives from the fact that M(I, F ) = 0 only if I and
F are independent, which is not the case here. On the other hand, if the density
of links is low and the network is randomized, the community structure may ap-
proach a situation in which each node is isolated in a different community. If this
is true, it can be shown that VIE = logN −H(I) and VEF = logN −H(F ), where
N is the total number of nodes. In this case, we will find VIE + VEF � VIF .
Thus, if an algorithm is performing perfectly well (VIE + VEF = VIF ) until a
certain conversion percentage, and if, when conversion progresses further, we find
VIE + VEF > VIF , this may be due to two reasons: (i) a bad performance of
the algorithm with poorly defined community structures, (ii), the emergence of a
third-party, potentially random, community structure. This interesting situation
will be illustrated in a particular case below.

Tests

Configuration

As mentioned above, the particular features of a network can greatly influen-
ce the ability of a given algorithm to detect its community structure. For this
reason, we performed tests on computer-generated networks that varied in size,
node degree distribution, number of communities, and also community sizes. This
last parameter has been shown to be crucial in community detection [7,11]. There
are two main reasons for the significant effect of community size variation. First,
networks presenting a skewed distribution of community sizes are more rapidly
degraded than those with equally sized communities because of the quick des-
truction of small clusters. Second, a skewed distribution may greatly affect the
performance of particular algorithms. For example, any algorithm maximizing a
popular global measure for community detection, Newman and Girvan’s modula-
rity (Q), will have trouble detecting small communities, given that Q is affected
by a resolution limit [22].

A suitable way to measure and compare the distribution of community sizes is
using Pielou’s index (P ), which quantifies how similar are the groups into which
a system is divided. This index takes a value of 1 for equal-sized groups and
decreases with increasing size variance [23]. In this study, we chose as starting
points four different synthetic networks with different P values that correspond
to those of already published open benchmarks. We will name them according
to the following convention: (i) Girvan-Newman (GN) [13]: already mentioned
above. A network of 128 nodes is divided into four communities of equal size
(P = 1). Nodes are connected only with members of their own community with
an average degree of 16. (ii) Lancichinetti-Fortunato-Radicchi network with small
communities (LFRS) [11,19]: a network of 5000 nodes. The average degree of the
nodes is 20, their maximum degree is 50, the exponent of the degree distribution
is -2, and the exponent of the community sizes distribution is -1. The sizes of the
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Figure 2: Graphical view of the adjacency matrices of the four initial networks
used in the tests. Nodes are ordered according to the communities to which they
belong. Black indicates that two nodes are connected. Differences in relative
community sizes are evident. In the GN network, the nodes of the four equal-
sized communities are sparsely connected. The groups in the LFRS are also
sparse. However, there are so many of them (195) that visualization is difficult
at this resolution level. The RC initial networks (RC75 and RC50) are formed by
16 cliques and the distribution of community sizes is highly skewed, especially
in RC50, where a single community dominates the network.

communities vary between 10 and 50 nodes (hence the term ”small communities”).
Among the many networks that can be generated with these parameters, we chose
one containing 195 communities of similar sizes (P = 0,98). (iii) relaxed caveman
[14] with Pielou’s index = 0.75 (RC75): Because a more skewed distribution of
community sizes was required to analyze the behavior of the algorithms in a
wider range of network structures, we generated a network of 512 nodes with
P = 0,75, which corresponds to a division into 16 communities, each of them
including from 2 to 196 nodes. In the RC75 configuration, the initial network
consisted of unconnected communities, each one maximally connected internally,
i.e., forming a clique. (iv) Relaxed caveman, P = 0,50 (RC50): this has an even
more extreme variation in community sizes. The initial network is also comprised
of 512 nodes forming 16 cliques, but now the largest one contains 354 nodes.
Figure 2 graphically displays the pattern of connections of each of these four initial
networks. Once obtained, they were progressively modified by increasing C, finally
obtaining from each one a set of 101 network structures spanning the whole range
from C = 0 (initial structure present) to C = 100 (final structure present). The
corresponding open benchmarks, with the same starting community structures
and progressive degradation toward randomness, were also analyzed following
standard methods described in previous papers (see, e.g., [13, 14, 19]). We also
discuss below in some detail closed benchmarks with random initial structures.

Algorithms

Two community detection algorithms that have shown an excellent performan-
ce in recent studies, namely Infomap [8] and SCluster [15], were used in this work.
Infomap understands finding the community structure of a network as an informa-
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tion compression problem, detecting communities while compressing the topology
of the network. It has achieved excellent results on the LFR benchmarks [7, 11].
On the other hand, SCluster uses a completely different approach. Using iterative
hierarchical clustering [15, 24], the algorithm computes the pairwise distances of
the nodes from partial clustering solutions. Subsequently, it constructs a hierar-
chical tree from which the partition of maximum Surprise [7] is chosen as the
optimal solution. Surprise is a quality function that estimates the goodness of a
partition based on the comparison between the graph and the null model genera-
ted by a random distribution of links [7,24]. SCluster has demonstrated an ability
to extract high-quality partitions when dealing with networks whose communities
strongly vary in size [7, 15]. Moreover, as a third way to extract the best clus-
tering of the network, we selected from the Infomap and SCluster solutions the
one with the highest surprise, given that we showed before that surprise maximi-
zation not only qualitatively outperformed maximizing the most commonly used
global index, namely Newman and Girvan’s Q, but it also improved the solutions
generated by any single algorithm [7].

Figure 3 illustrates the results of the three methods in our four closed bench-
marks. Each partition estimated along the conversion process is compared, using
the variation of information, with both the initial (black circles) and the final
(red squares) community structures. V = 0 means that the partitions compared
are exactly the same. We previously mentioned how the sum of the variation of
information from an estimated point to the initial and to the final optimal parti-
tions (VIE + VEF ) should optimally be constant and equal to the V between the
initial and the final partition (VIF ). For visualization reasons, half of this sum
(V = [VIE + VEF ]/2) is shown in the figures as a dashed line. V = VIF /2 is
expected if the partition is optimal.

Results

The plots show how different is the community detection process, depending
on both the algorithm applied and the topology of the network analyzed. When
using the GN network as an input, Infomap performs very well [Fig. 3(a)]. The
variation of information between the initial and the estimated partition (VIE ,
black dots) is zero or near zero along the first half of the benchmark. Moreover,
when the conversion (C) breaks the 50 % mark, the V between the estimated
and the final partition (VEF , gray squares) behaves in the same way. That is,
the algorithm recognizes the initial structure until C = 49 % and the final one
above C = 51 %. This is not the case when applying SCluster [Fig. 3(e)], which
only recognizes the initial partition up to C = 30 % and starts recognizing the
final partition beyond C = 70 %. As expected, V graphically shows this different
quality in the performance of both algorithms. While in the Infomap plot V falls
in an almost straight line, matching VIF /2, the partitions estimated with SCluster
produce a significant deviation from that line in the interval 30− 70 %, where we
already detected that the communities were poorly estimated.
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Figure 3: Variation of information behavior in the four closed benchmarks used
in this study. Black circles depict the V between the initial and the estimated
partition (VIE). Red (gray) squares show the V between the estimated and
the final partition (VEF ). V appears as a dashed line, which should follow a
straight line if the performance of the algorithm is optimal during the whole
process of conversion (i.e., VIE + VEF = VIF ).

When the input of the benchmark is the LFRS network, Infomap also produces
a symmetrical plot, with V almost perfectly matching VIF /2 [Fig. 3(b)]. SCluster
also shows in this case a symmetrical performance, although with a slight devia-
tion from the optimal values [Fig. 3(f)], i.e., working again worse than Infomap.
In these first two examples, the sizes of the communities are equal or very similar
(P ≈ 1), and they are expected to be degraded, on average, at the same time.
The original partition is thus present during the first half of the conversion (gi-
ving VIE ≈ 0), and then the community structure suddenly swaps to the final one
(and then VEF ≈ 0). On the other hand, when analyzing networks with a strongly
skewed distribution of community sizes (RC75, RC50), the performance of the al-
gorithms radically changes. In the RC75 test, Infomap exhibits a nonsymmetrical
behavior [Fig. 3(c)], with V > VIF /2 when C = 40 − 60 %. On the contrary,
SCluster shows a symmetrical pattern with V = VIF /2 [Fig. 3(g)]. We can see
how the V between the initial and the estimated partition (VIE , black circles) is
equal to zero until around the 30 %, at which point it starts to increase. It is very
significant that, in an open benchmark (see, e.g., Refs. [13,14,19]), this would be
the only available information. Thus we might conclude that from C = 30 % on,
these two algorithms fail to recognize the optimal partition. However, a bad al-
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Figure 4: Open benchmarks with starting structures identical to the initial
structures of the closed benchmarks shown in Fig. 3. These structures are
progressively degraded by randomly shuffling links. The percentage of rewired
links is indicated on the x axis. The dashed line indicates the VIF /2 value
of the corresponding closed benchmark. Stars indicate the partitions with the
highest surprise values.

gorithm performance is not the only explanation for such patterns. Alternatively,
it is possible that the initial partition must not be detected as optimal anymore
because the community structure has changed. The closed benchmarks offer a
solid way to check if this latter hypothesis is correct. In Figs. 3(c), 3(g), and 3(k),
we can see that, although VIE soon starts to grow, VEF begins to decrease at
the same rate. That is, the community structure of the initial partition is shifting
toward the final one much before the C = 50 % mark is passed, a pattern that
is due to the rapid destruction of small communities, typical of benchmarks with
low P . This behavior was impossible to check in any of the benchmarks published
so far, although it is critical for algorithm evaluation. Now, we can assert that the
behavior of SCluster is optimal, given that V follows a straight line: it satisfies the
equality in Eq. 2.7 during the whole conversion process. In the last case, RC50,
the performance of the algorithms follows a pattern that is a bit different from
the rest of the benchmarks. Infomap seems to rapidly collapse, with V moving
away from the optimal straight line, when C ≥ 10− 12 % [Fig. 3(d)]. In the case
of SCluster [Fig. 3(h)], V values are close to the line quite a bit longer (C around
30 %), but then the algorithm starts recognizing third-party structures, far away
from both the initial and final partitions (V > VIF /2). These behaviors are due
to the extremely skewed distribution of community sizes, with a very large group
that dominates the network [Fig. 2(d)]. For these reasons, a quasi-random graph
is formed as the conversion process of the benchmark approaches 50 %. Infomap
interprets this situation as if most of the network is included into a single commu-
nity. Hence, as we discussed above, V approximates H(I) (which in this example
takes a value of 1.38). SCluster, on the other hand, interprets the network struc-
ture as including many singletons. Therefore, V becomes much larger than VIF /2
for the reasons previously discussed.

Figures 3(i)-3(l) show the evolution of each benchmark using as the estimated
partition that with the highest Surprise between the solutions provided by the
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two algorithms. As expected [7], this approach always selects the best partition
between those two. The equality in Eq. 2.7 is satisfied all along the first three net-
works. In the fourth case, the pattern is identical to that produced by SCluster.
The Surprise values of the RC50 benchmark suggest that the SCluster interpre-
tation, defining many small clusters of the quasi-random intermediate structure
generated when C > 30 %, is preferable to the one suggested by Infomap (domi-
nated by a single huge cluster), in good agreement with the fact that SCluster is,
as already indicated above, performing better in this benchmark than Infomap
in the adjacent conversion range (30 % ≥ C ≥ 12 %). For comparative purposes,
we also generated the corresponding open benchmarks, which start with the same
structures as those of our closed benchmarks but are then progressively degraded
toward undetermined, random structures by rewiring their links [13,14,19]. Figu-
re 4 shows the variation of information between the original partition and those
obtained by the SCluster and Infomap algorithms. The partition with maximum
Surprise is marked with a star. We have also depicted in Fig. 4 the value of V
in the corresponding closed benchmarks (dashed line). As found before in related
cases [7], neither of the two algorithms is the best in all situations. If we use the
surprise values as a guide, it can be seen that SCluster improves upon Infomap
when degradation is very high and systematically in the benchmarks with the
lowest Pielou’s indices (RC75 and RC50), while Infomap works better when de-
gradation is low and Pielou’s index is high (see GN and LFRS benchmarks). This
situation is fundamentally caused by Infomap solutions often consisting in single
communities (this happens in all the cases shown in Fig. 4, in which the Infomap
V values are above the V dashed lines). These results for the open benchmarks
are fully compatible with those shown in Fig. 3 for closed benchmarks.

The comparison of the values of V in Figs. 3 and 4 enables us to precisely
understand the relationships between both types of benchmarks. Looking at the
dashed lines in those figures allows us to estimate the approximate difficulty of
reconstructing the community structure present in the closed benchmarks when
compared with the open ones. Thus, we can see that C = 50 % in the GN closed
benchmark corresponds to a rewiring percentage of more than 40 % in the corres-
ponding open GN benchmark, while C = 50 % in the LFRS , RC75, and RC50
closed benchmarks may correspond, respectively, to rewiring about 80 %, 60 %,
and (this can be ascertained less precisely) 50-70 % of the links in the correspon-
ding open benchmark. Thus, the GN, LFRS , and RC75 closed benchmarks always
have a substantial level of structure, which explains the good fit to the V value
observed in Fig. 3.

Random networks can also be used as starting points for a closed benchmark.
The comparison with these random network-based benchmarks may contribute
to determine whether or not a given network has a statistically significant com-
munity structure, a topic that has recently received some attention [25, 26]. To
address this issue, we generated four types of random graphs, each of them ha-
ving the same number of nodes and edges as one of the initial networks described
above (GN, LFRS , RC75, and RC50), but randomly distributed. Given that, for
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Figure 5: Random networks with the same number of nodes as the corres-
ponding closed benchmarks indicated on top. As in Fig. 3, the dashed line
corresponds to the V value, while red (gray) dots correspond to VEF values
and black squares to VIE values. The values of VIE , VEF , and V largely/fully
coincide in Infomap analyses, appearing as a single line or close parallel lines.
Notice that as soon as conversion starts, VIE + VEF � VIF . Differences bet-
ween Infomap and SCluster are due to the different way they interpret the
random structures present, i.e., as a single cluster (Infomap) or as many indi-
vidual clusters (SCluster).

generating a closed benchmark, a community structure must be assumed a priori,
Infomap and SCluster were tested in those random networks and the community
structure with the highest surprise value was selected. Figure 5 shows the results
of closed benchmarks generated using the four random networks. As occurred abo-
ve, Infomap returns partitions in which all nodes [Figs. 5(a)-5(c)], or at least more
than 90 % of the nodes [Fig. 5(d)], belong to one community. The V observed is
the entropy of the initial (or final) partition H(I) = H(F ), given that, if all nodes
are in a single community, H(E) = 0. On the other hand, SCluster generates
solutions with a high number of communities [Figs. 5(e)-5(h)], interpreting that
even a random graph contains a certain degree of community structure. In these
random graph benchmarks, an interesting point is to appreciate the extremely
fast degradation of the partitions when only 1 % of the links have been rewired
(Fig. 5). When compared with its analogous nonrandom network, VIE rises ins-
tantaneously, which is the behavior expected for networks in which communities
are barely defined. This kind of comparison between variation of information pat-
terns may enable us to evaluate the robustness of a network, similarly to what
has been done using other methods [25].
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Discussion

The development of methods that can accurately detect community structure
in networks is critical in many scientific fields, since they can reveal deep underl-
ying relationships among the elements of a system. Therefore, it is very important
to compare and evaluate such methods against a set of synthetic benchmarks in
order to select one method, or a combination of methods, that can produce relia-
ble results when analyzing real-world networks. Several standard benchmarks for
testing community detection algorithms have been proposed, most of them of the
class we called open: they start with a network of well-defined community structu-
re and then the structure is degraded by randomly rewiring links [13,14,19]. Du-
ring this process, the communities gradually disappear toward an “open end”when
the precise community structure is undetermined. This type of benchmark is useful
for comparing the relative performance of algorithms but inadequate for assessing
their intrinsic quality (i.e., whether the solutions provided are optimal or not). In
this paper, we have fully described the closed benchmarks, which also degrade an
initial network with defined communities, but this time evolving toward a second,
known network structure. This evolution is produced by a directed rewiring of the
links from the initial to the final network, and it enables us to control the progres-
sion of the structure between both ends. We have also shown that the variation of
information provides valuable information about the goodness of a partition and
its possible optimality: the configuration of our closed benchmarks allows us to lo-
wer bound the expected V value using the triangle inequality that the metric must
satisfy. Another relevant improvement over the available open benchmarks is the
fact that any network can be used as input for the degradation process, enabling
us to carry out extensive studies over a wide variety of network topologies. These
features clearly represent qualitative improvements over the benchmarks publis-
hed so far. The comparisons of open and closed benchmarks, or of networks of
known structure and random networks (Figs. 4 and 5), are also interesting ways
to further develop this methodology.

As we have shown, there may be scenarios with very skewed distributions of
community sizes, such as the RC50 network (Fig. 3), where the equality in Eq. 2.7
is not satisfied during the whole process of conversion. Nevertheless, this beha-
vior in such extreme networks does not diminish the potential of our approach
because, even then, there are several conditions that a good algorithm must ful-
fill. First, when 50 % of the links have been rewired, VIE must be, on average,
equal to VEF . Second, the initial partition has to be recognized better than the
final one during the first half of the benchmark and, from there on, the behavior
should be exactly the opposite. Third, a good algorithm will provide solutions
with VIE + VEF = VIF along a longer range of the conversion process than a bad
one. In summary, the properties of the closed benchmarks make them highly va-
luable for the development and evaluation of computational methods to effectively
characterize the community structure of a network.
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How to determine the community structure of complex networks is an open
question. It is critical to establish the best strategies for community detection
in networks of unknown structure. Here, using standard synthetic benchmarks,
we show that none of the algorithms hitherto developed for community structure
characterization perform optimally in all networks. Significantly, evaluating the
results according to their modularity, the most popular measure of the quality of a
partition into communities, systematically provides mistaken solutions. However,
a novel quality function, called Surprise, can be used to elucidate which is the
optimal division into communities. Consequently, we show that the best strategy
to find the community structure of these complex networks involves choosing
among the solutions provided by all the different algorithms the one with the
highest Surprise value. We conclude that Surprise maximization precisely reveals
the community structure of complex networks.
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The analysis of networks has profound implications in very different fields,
from sociology to biology [1–5]. One of the most interesting features of a network
is its community structure [6,7]. Communities are groups of nodes that are more
strongly or frequently connected among themselves than with the other nodes
of the network. The best way to establish the communities present in a network
is an open problem. Two related questions are still unsolved. First, which is the
best algorithm to characterize networks of known community structure. Second,
how to evaluate algorithm performance when the community structure is unk-
nown. The first question requires testing the algorithms in benchmarks composed
of complex networks where the community structure is established a priori. In
these benchmarks, it has been found that algorithm performance depends on how
different is the density of intracommunity links from the average density of links
in the network. In addition, it has been determined that most algorithms per-
form well when the networks are small and the communities have similar sizes,
but many perform quite poorly in benchmarks composed of large networks with
many communities of heterogeneous sizes [8–18]. Thus, benchmarks with the lat-
ter features have become crucial to rank algorithm performances. Among them,
the Lancichinetti-Fortunato-Radicchi (LFR) benchmarks [11–18] and the Relaxed
Caveman (RC) benchmarks [14,19,20] have shown to be particularly useful. Both
benchmarks pose a stern test for algorithms that deal poorly with the presence
of many communities, of small communities or of a mixture of communities of
different sizes (see e. g. refs. [11,13,14]).

The second question, how to determine the best performance when the com-
munity structure is unknown, involves devising an independent measure of the
quality of a partition into communities that can be reliably applied to any type
of network. The first and still today most popular such measure is called modula-
rity [21] often abbreviated as Q). Modularity compares the number of links within
each community with the expected number of links in a random graph of the same
size and same distribution of node degrees and then adds the differences between
expected and observed values for all the communities. It was proposed that the
optimal partition of a network could be found by maximizing Q [21]. However, it
was later determined that modularity-based evaluations are often incorrect when
small communities are present in the network, i. e. Q has a resolution limit [22].
Several other works have found additional, subtle problems caused by using mo-
dularity maximization to determine network community structure [17,23–26]. All
these results suggest that using Q provides incorrect answers in many cases.

We recently suggested an alternative global measure of performance, which we
called Surprise [14]. Surprise assumes, as a null model, that links between nodes
emerge randomly. It then evaluates the departure of the observed partition from
the expected distribution of nodes and links into communities given that null

74



model. To do so, it uses the following cumulative hypergeometric distribution:

S = − log

min(M,n)∑
j=p

(
M
j

)(
F−M
n−j
)(

F
n

) (2.8)

Where F is the maximum possible number of links in a network ((k2−k)/2, being
k the number of units), n is the observed number of links, M is the maximum
possible number of intracommunity links for a given partition, and p is the total
number of intracommunity links observed in that partition [14]. Thus, S measures
how unlikely (or “surprising”, hence the name of the parameter) is the distribution
of links and nodes in the communities defined in the network. In previous studies,
we showed that Surprise improved on modularity in standard benchmarks and
that choosing algorithms with high S values leads to accurate community struc-
ture characterization [14, 18]. Although these results were encouraging, whether
S maximization could be used to obtain optimal partitions was not rigorously
tested. This was due to the fact that Surprise values were estimated from the
partitions provided by just a few algorithms. Given that other algorithms could
provide even higher S values, it was unclear how optimal these results were.

Here, we test the best strategies currently available to characterize the struc-
ture of complex networks and we compare them with the results provided by
Surprise maximization in both LFR and RC benchmarks. We first show that no-
ne among a large number of state-of-the-art algorithms work consistently well in
all these complex benchmarks. Particularly, all modularity-based heuristics beha-
ve poorly. Also, we demonstrate that evaluating the performance of an algorithm
using modularity is incorrect. We then show that a simple meta-algorithm, which
consists in choosing in each network the algorithm that maximizes Surprise, very
efficiently determines the community structure of all the networks tested. This
method clearly performs better than any of the algorithms devised so far. We
conclude that Surprise maximization is the strategy of choice for community cha-
racterization in complex networks.

Results

In order to determine the performance of different algorithms for community
structure characterization, we explored two standard benchmarks, an LFR bench-
mark with 5000 units and an RC benchmark with 512 units (see Methods). Varia-
tion of Information (VI) was used to determine the degree of congruence between
the partitions into communities suggested by 18 different algorithms and the real
community structure present in the networks. A perfect congruence corresponds
to a value VI = 0. Figures 1a and 1d display the general results obtained in the
two benchmarks. A sharp VI increase was found when the community structure
was weakened by highly increasing the number of intercommunity links, as occurs
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Figure 1: Global performance of the algorithms. a) Behavior of the algorithms
in the LFR benchmark. To obtain this figure, the algorithms were first ordered
according to the VI results obtained for each µ condition. Then, we plotted the
results for the algorithm with the best VI value (black line, indicated with “1”),
the average of the top five algorithms (red line), average of the top ten ones
(blue line) or average for all the 18 algorithms (green line). The grey region
corresponds to the values of µ (0.1 - 0.7) chosen to perform the main compa-
rative analyses (see text). Beyond that region, even the best algorithms obtain
VI values considerably higher than zero, meaning that the original structure of
the network has been significantly modified by the increase in intercommunity
links. b) An example showing the five largest communities in a LFR network
(5000 units) when µ = 0,1. Nodes are distributed into two dimensions with a
spring-embedded algorithm [27] and drawn using Cytoscape [28]. Communities
are well-isolated groups. c) The five largest communities when µ = 0,7. They
are barely distinguishable in this representation because the mixing of links
was quite extreme. However, several algorithms were still often able to detect
these fuzzy communities. d) - f): The same results for the RC benchmark (512
units). Panel e depicts the five largest communities when R = 10 % and Panel
f to the same communities when R = 50 %. Again, notice in panel d) the sharp
increase in VI values when R > 50 %. An extreme degree of superimposition
among communities is observed already when R = 50 % (f). In the LFR bench-
mark, the rapid increase in VI values when the intercommunity links goes from
µ = 0.7 to 0.8 (Panel a) is explained by all communities being of similar sizes.
Therefore, they are destroyed at about the same time. On the contrary, the
more progressive increase in VI when R grows, which we observed in Panel d, is
due to the heterogeneous sizes of the communities present in that benchmark,
which break down at different times.
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when the mixing parameter µ of the LFR benchmark has values above 0.7 or the
rewiring parameter R of the RC benchmarks is higher than 50 % (see also Met-
hods for the precise definitions of µ These results mean that, above µ = 0.7 or
R = 50 %, the community structure originally present in the networks was subs-
tantially altered. In such cases, we could not determine whether the partitions
suggested by the algorithms were correct or not: there would not be a known
structure with which to compare. Thus, we decided to restrict our subsequent
analyses to the LFR networks with 0,1 ≤ µ ≤ 0,7 (100 realizations per µ value,
giving a total of 700 networks) and the RC networks with 10 % ≤ R ≤ 50 %
(again, 100 realizations per R value, for a total of 500 different networks). These
conditions generate some community structures that are very difficult to detect
(Figure 1).

Figure 2 summarizes the individual performance of the algorithms according
to three global measures of partition quality. The first one is VI, the gold standard
for algorithm performance in these benchmarks. The other two, already mentioned
above, are Surprise (S) and modularity (Q). The performance values measured
according to the VI scores shown in Figure 2 indicate two very important facts.
On one hand, none of the algorithms was the best in all LFR or in all RC net-
works. On the other hand, the best algorithms in LFR networks often performed
poorly in RC networks, and vice versa (see e. g. the results of RB, LPA or RNSC
in Figure 2). This can be rigorously shown by ordering within each benchmark
the algorithms according to their performance, assigning a rank, from best to
worst, and comparing the ranks in both benchmarks. We found that Kendall’s
non-parametric correlation coefficient for these ranks was very weak, just τ =
0.31 (p = 0.04, one-tailed comparison). We conclude that using single algorithms
for community characterization is inadvisable, given that their performance is
strongly dependent on the particular structure of the network.

If we focus now on the Surprise (S) and modularity (Q) results shown in Fi-
gure 2, another two striking facts become apparent. First, there was a very strong
correlation between the performance of the algorithms according to VI and ac-
cording to S. Kendall’s correlation coefficient for the ranks of the performances
of the algorithms ordered according to VI and to S values is τ = 0.91 in the LFR
benchmarks (p = 4.9 x 10−11, one-tailed comparison) and τ = 0.83 in the RC
benchmark (p = 1.4 x 10−8, one-tailed test). These results demonstrate that S
is an excellent measure of the global quality of a division into communities, con-
firming and extending the conclusions of one of our previous works [14]. Second,
the performance of the algorithms evaluated using Q only weakly correlated with
their performance according to VI in the LFR benchmarks (Kendall’s τLFR =
0.29, p = 0.048, one-tailed test) and these two measures did not significantly co-
rrelate in the RC benchmarks (τRC = 0.27, p = 0.66, again one-tailed test). These
results indicate that evaluating the quality of a partition according to its modula-
rity is inappropriate. It was therefore logical to find out that both the algorithms
devised to maximize Q (Blondel, EO, MLGC, MSG+VM and CNM [29–33]) and
the algorithms that use Q to evaluate the quality of their partitions (Walktrap,
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Figure 2: Performance of the algorithms according to Variation of Information
(VI), Surprise (S) and Modularity (Q) in LFR and RC benchmarks. Average
performance and standard errors of the mean are shown. Performance values
were obtained by the following method: 1) the VI, S or Q values of the partitions
provided by the 18 algorithms in each of the networks (i. e. 700 values for
LFR benchmarks, 500 values in RC benchmarks) were established; 2) For each
network, the algorithms were assigned a rank according to their performance
(1 = optimal, 18 = worse); identical ranks were given to tied algorithms (i. e.
the ranks that would correspond to each of them were summed up and then
divided by the number of tied algorithms); and, 3) Performance was calculated
as 18 – average rank, meaning that 17 is the maximum possible value that
would obtain an algorithm that outperforms the rest in all networks, and 0
equals to being the worst in all networks.
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DM [34,35] were poor performers (Figure 2).
If indeed maximization of Surprise is an optimal strategy for community cha-

racterization, as its strong correlation with VI suggests, then it should be possible
to improve on the results of any single algorithm by simply picking up among
many algorithms the one that generates the highest S value (Smax) in each parti-
cular network. Also, this S-maximization strategy should provide VI values very
close to zero in our benchmarks. These two expectations are fulfilled, as shown
in Figure 3. The top panel (Figure 3a) demonstrates that choosing in each par-
ticular case the algorithm with the highest S value is better than selecting any
of the state-of-the-art algorithms tested. It is remarkable that the Smax values in
Figure 3a derived from the combined results of as many as 7 algorithms (CPM,
Infomap, RB, RN, RNSC, SCluster and UVCluster [16, 20, 36–40]). In addition,
Figure 3b indicates that the sum of the average VI values obtained using Smax
in the 1200 networks analyzed (with µ = 0.1 - 0.7 and R = 10 - 50 %) were just
slightly above zero, i. e. almost optimal. The average values were 0.002 ± 0.000
in the LFR benchmarks and 0.100 ± 0.007 in the RC benchmarks. We may ask
why these VI values are not exactly zero, given that VI = 0 would be expected
for a perfect global measure. We detected two reasons for this minor discrepancy.
The first reason was that, in some cases (mainly in the RC benchmark with R =
50 %), the available algorithms failed to obtain the highest possible S values. We
found that the S values expected assuming that the original community structure
of the network was intact (Sorig) were often higher than Smax (Table 1). This ob-
viously means that these algorithms did not found the community structure that
maximizes S. That structure could still be the original one – which indeed has the
highest S value observed so far in our analyses – or some alternate structure, but
clearly not any of those found by the algorithms, which had lower S values. The
second reason observed was the presence of minor changes in community struc-
ture that occurred in some networks when intercommunity links increased. Thus,
the exact original structure of the network was not present anymore. This was
deduced from the fact that Smax values were sometimes slightly higher than Sorig
both in the LFR benchmarks with µ = 0.6 - 0.7 and the RC benchmarks with R =
10 - 40 % (Table 1). These results suggested that the algorithms obtained optimal
partitions, but they were a bit different from the original ones. To establish that
fact, we examined the 23 cases where Smax > Sorig in the RC benchmarks with
R = 10 %. We found that the partitions with Smax values generally differed from
the original structures in one of the smallest communities having lost single units
(Supplementary Table S1; see example in Figure 4).

Significantly, in those 23 networks we always found just one partition with
Smax > Sorig and several algorithms often recovered exactly that same partition
(Supplementary Table S1). All these results indicate that real, small changes in
community structure occurred in those networks, suggesting that the partitions
with Smax > Sorig values were indeed optimal. From the data in Table 1, we
also obtain an indirect validation of our decision of using the LFR benchmarks
with µ ≤ 0.7 and the RC benchmarks with R ≤ 50 % to evaluate algorithm
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Figure 3: A simple meta-algorithm based on Surprise maximization improves
over all known community detection algorithms. a) Performances (calculated
as in Figure 2) for all the algorithms are compared in both the LFR and the RC
benchmarks with the performance of a strategy that consists in picking up the
algorithm that provides the highest S value (Smax). b) For the Smax strategy,
the average VI values for the 1200 networks analyzed are very close to zero, i.
e. an almost optimal performance.
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Figure 4: When VI and Surprise maximum values do not coincide, the dif-
ference is often due to minimal changes in the community structure of the
network. This is an example from the RC benchmark where Smax > Sorig
(see text). a) original structure. b) after R = 10 % has been applied. Smax
is obtained when a single unit (square) is classified as being isolated from its
original 4-nodes community (highlighted). As shown in panel b), the critical
unit has become almost fully separated from the rest of the nodes in its original
community, only one link remains, while it has been connected to many nodes
in other communities.
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performance. As shown in that Table, up to those limits, the Smax and Sorig
values are not significantly different, while, beyond those limits, very significant
differences are found. This means that the original structures, or structures almost
identical to them, were indeed present in the networks examined to generate the
results summarized in Figures 2 and 3, which precisely was the only condition
required for a reliable measure of algorithm performance.

The important results described in Figures 2 and 3 indicate that S maximiza-
tion should allow determining with a very high precision the community structure
of any network. We have explored whether this may be the case even when the
community structure is very poorly defined by analyzing the results of our 600 ad-
ditional networks, corresponding to the LFR benchmark with mixing parameter
µ = 0.8 and µ = 0.9 (i. e. 200 networks) and the RC benchmark with R = 60 %
to R = 90 % (400 networks). As indicated above, in these networks, the VI-based
optimality criterion (i. e. VI = 0 means finding the original community structure)
cannot be confidently used (Figure 1; Table 1). However, alternative, unknown
structures may be present that the algorithms should be able to detect. If this
is the case, a reasonable prediction is that the algorithms that are providing the
maximum S values in the conditions that are closest to those extreme ones (i.
e. when µ = 0.7 in the LFR benchmarks and R = 50 % in the RC benchmarks)
should also provide the best S values in the most extreme networks. Figure 5

Figure 5: The performance of the algorithms in the limit cases (µ = 0.7,
R = 50 %) and beyond those limits (µ = 0.8 - 0.9, R = 60 - 90 %) are
correlated. A statistically significant correlation was found, despite the fact that
some algorithms, such as Infomap or LPA, totally collapsed. These algorithms
established partitions consisting in a single community, which led to VI = 0
when compared with the original distribution.
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shows that there is indeed a good correlation between the results obtained in the
limit cases and in the most extreme cases. Kendall’s non-parametric correlation
coefficients for the ranks of the algorithms in the limit networks and in the most
extreme networks are significant in both the LFR and RC benchmarks (τLFR =
0.42; p = 0.007 and τRC = 0.49, p = 0.020, one-tailed tests). This occurs despite
some algorithms, as Infomap or LPA [36,41], totally failing in these quasi-random
networks (Figure 5). UVCluster, RB, CPM and SCluster [16,20,37,40] emerge as
the best algorithms to characterize the structure in networks with poorly defined
communities, in good agreement with previous results [14,16].

We decided to perform some final tests to determine whether the limitations
that affect Q when communities are very small may also affect S. For this purpose,
we used two extreme networks of known structure suggested before [17, 22, 42].
The first one includes just three communities, one of them very large (400 nodes
with average degree = 100) and the other two much smaller (cliques of 13 nodes).
These three communities are connected by single links (Figure 6a). We found
in this network that the maximum value of Q (EO algorithm, Q = 0.0836) did
not correspond to a partition into the three natural communities, but, as already
noted by other authors in similar cases [17,22] led instead to a mistaken solution,
in this case with five communities. On the other hand, the three communities were
correctly found by multiple algorithms (CPM, Infomap, LPA, RNSC, SCluster and
UVCluster), and this partition indeed corresponded to the maximum value of S
(1230.73). The second extreme type of network was precisely the ring of cliques
in which the resolution limit of Q was first described [22], which is schematized
in Figure 6b. Here, a variable number of cliques, each one composed of five units,
were connected to each other by single links to form a ring. We were interested
in determining whether, even if we increase the number of cliques, a solution in
which all cliques are separately detected always has a better S value than one in
which pairs of cliques are put together. We tested networks of sizes up to 1 million
nodes, finding that the best partition was always the one in which the cliques are
considered independent communities. On the contrary, when Q is used, the cliques
are considered independent units only if the network size is smaller than 150 units.

Discussion

Our results lead to two main conclusions. The first one is that none of the
algorithms currently available generates optimal solutions in all networks (Figures
2, 3). In fact, there is just a weak correlation of the algorithm performances in
the two standard benchmarks used in this study. More precisely, we can say that
there are some algorithms that clearly fail in both benchmarks and the rest tend
to perform much better in one of the benchmarks than in the other (see Figure
2). Most of the best overall performers were already found to be outstanding
in other studies [12–14, 16, 18, 38]. The exception is RNSC [39], which had not
been tested in depth before. Among the ones that always perform poorly are
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Figure 6: Two extreme networks designed to test the behavior of Surprise
when small communities are present. a) A network with three communities
(sizes 400, 13, 13). The nodes of the largest community have an average
degree of 100, while the nodes in the two smallest communities form cliques.
The three communities are interconnected by single links, as shown. b) Cliques,
each one with five nodes, which are connected also by single links in a way that
can be depicted as a ring. The figure shows an example with eight cliques, but
that number was progressively increased to determine whether the partition
with highest S still corresponded to the one in which each cliques was an
independent community.
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all the algorithms that use modularity as either a global parameter to maximize
or as a way to evaluate partitions. This fact, together with the demonstration
that Q does not correlate with VI in networks of known structure (Figure 2),
and also the good performance of S, including its ability to cope with extreme
networks in which Q traditionally fails due to its resolution limit (Figure 6),
should definitely deter researchers from using modularity. A strong corollary is
that a reevaluation of the hundreds of already published papers in fields as varied
as sociology, ecology, molecular biology or medicine that are based on modularity
analyses seems advisable.

The second, and most important, conclusion is that the community struc-
ture of a network can be determined by maximizing S, for example by simply
taking the results of as many algorithms as possible and choosing the one that
provides partitions with the highest Surprise value. In a previous paper, we sho-
wed that Surprise can be used to efficiently evaluate the quality of a partition,
behaving much better than modularity [14], but the precise performance of the
S-maximization strategy was not determined. Here, we extend those results, to
show that using S maximization leads to an almost perfect performance. We were
very close to solve the correct community structure of all the networks of the-
se two benchmarks, as is strikingly demonstrated by the Smax results shown in
Figure 3b. It is significant that they were obtained by combining results of the
7 algorithms with the best average performances, as detailed in Figure 3a: RN,
SCluster, Infomap, CPM, RNSC, UVCluster and RB. Another important result is
summarized in Figure 5, which indicates that Surprise can also be used in cases in
which the community structure is so blurred as to become almost random. Given
these results, we conclude that Surprise is the parameter of choice to characterize
the community structure of complex networks. Future works should use Surprise
maximization, instead of modularity maximization or other methods, to establish
that structure.

It is significant that only two algorithms (SCluster and UVCluster) use the
maximization of Surprise to choose among partitions generated by consensus hie-
rarchical clustering [20,40]. This may explain their good average results (Figures
2, 3, 5). However, no available algorithm performs searches to directly deter-
mine the maximal Surprise values. That type of algorithms could overcome the
limitations detected in all the currently available ones, potentially allowing the
characterization of optimal partitions even in the most difficult networks.

We may ask why Surprise is able to evaluate with such efficiency the quality
of a given partition, while modularity cannot. In our opinion, the difference rests
on the fact that modularity is based on an inappropriate definition of community.
Newman and Girvan [21] verbally defined a community as a region of a network
in which the density of links is higher than expected by chance. However, the
precise mathematical model used to deduce the modularity formula implies a
definition of community that does not take into account the number of nodes
required to achieve such a high density [21]. By not evaluating the number of
nodes, modularity falls prey of a resolution limit: small communities cannot be
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detected [17, 22]. On the other hand, Surprise analyses often choose as best a
solution where some communities are just isolated units (see examples in Figure
4 and Ref. 14). This happens because the Surprise formula precisely evaluates not
only the number of links, but also the number of nodes within each community.
For instance, incorporating a single poorly connected unit into a community is
often forbidden by the fact that such incorporation sharply increases the number
of potential intracommunity links (all those that might connect the units already
present in the community with the new unit) while barely increasing the number
of real intracommunity links. This leads to an S value much smaller than if the
unit is kept separated. It is also significant that a general problem of modularity
maximization and other related algorithms - as those based on Potts models with
multiresolution parameters - is that they cannot find a perfect equilibrium between
merging and splitting communities [17,25,26]. In these methods, each community
is evaluated independently, one at a time. The global value to be maximized is the
sum of the qualities of the individual communities. However, in complex networks
with communities of very different sizes, it may be often impossible to find a
single rule (even using a tunable parameter, as in these multiresolution methods)
to split some communities while keeping intact the rest17. Surprise analyses are
not affected by this problem, because communities are not defined independently,
one by one, but emerge as regions of nodes statistically enriched in links, according
to the general features (i. e. the total number of nodes and links) of the whole
network.

Methods

We searched the literature to select the best community detection algorithms
available to analyze networks with unweighted, undirected links. Our final results
are based on 18 of them (summarized in Table 2). Algorithms known to behave
poorly in similar benchmarks or specifically designed to characterize communities
with overlapping nodes were discarded. Some other algorithms that seemed inter-
esting but we were unable to test for diverse reasons (e. g. they were not provided
by the authors, did not complete the benchmarks, etc.) are detailed in Supple-
mentary Table S2. We performed extensive tests with these selected algorithms,
using their default parameters, in two very different benchmarks. They were cho-
sen both difficult and very dissimilar, with the idea that the results could be
general enough as to be extrapolated to networks of unknown structure. The first
was a standard LFR benchmark already used in other studies where algorithms
were compared [12–14, 17]. It is composed of networks with 5000 nodes, structu-
red in small communities with 10-50 nodes. The distribution of node degrees and
community sizes were generated according to power laws with exponents -2 and
-1, respectively. The sizes of the communities in the networks of this benchmark
have average Pielou’s indexes [43] with a value of 0.98. This index is equal to 1
when all communities are of the same size. The chief difficulty of this benchmark
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thus lies on the presence of many small communities. The second benchmark was
one of the Relaxed Caveman (RC) type, very similar to the ones used in our pre-
vious works [14, 18]. The networks in this RC benchmark have 512 units and 16
communities, with sizes defined according to a broken-stick model to obtain an
average Pielou’s index = 0.75. This makes this benchmark very difficult, given
that it consists of networks with communities of very different sizes, some of them
very small (see e. g. Figure 4). It was not convenient to our purposes to use larger
RC benchmarks given that the total number of links in these networks quickly
grows when the number of nodes is increased and many algorithms become too
slow.

These two benchmarks are “open”, meaning that they have a tunable parame-
ter that, when increased, makes the network community structure to become less
and less obvious until it shifts towards a totally unknown structure, potentially
very different from the original one and close to random [11,13,14,18]. This para-
meter increases intracommunity links and lowers the number of intercommunity
links. In the case of the LFR benchmarks, the “mixing parameter”, µ, indicates
the fraction of links connecting each node of a community with nodes outside
of the community [11]. For the RC benchmarks, we defined Rewiring (R) as the
percentage of links that is randomly shuffled among units. Thus, R = 10 % means
that 10 per cent of the links were first randomly removed and then added again,
to link randomly chosen nodes.

Variation of information (VI) [44] was used to measure the agreement bet-
ween the original community structure present in the network and the structure
deduced by each algorithm. The advantages of using VI have been discussed in
our previous works [14,18]. A perfect agreement with a known structure will pro-
vide a value of VI = 0. In addition, two global quality functions, Newman and
Girvan’s modularity (Q) [21] and Surprise (S) [14], (see Formula [1]), were also
used to evaluate the results. The values of S and Q for the partitions proposed
by each algorithm were calculated and then all the values were used to determine
the correlations of S and Q with VI and to establish these maximum values of S.
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LFR benchmark
µ Sorig Smax p

0.1 99065.69 ± 111.50 99065.69 ± 111.50 ns
0.2 82631.18 ± 93.92 82631.18 ± 93.92 ns
0.3 67847.35 ± 90.78 67847.35 ± 90.78 ns
0.4 54354.47 ± 76.71 54354.47 ± 76.71 ns
0.5 41991.16 ± 48.70 41991.16 ± 48.70 ns
0.6 30807.18 ± 40.09 30807.38 ± 40.09 ns
0.7 20563.37 ± 26.92 20570.70 ± 26.78 ns
0.8 11598.83 ± 17.91 10168.11 ± 28.15 < 0.0001
0.9 4204.50 ± 7.62 8368.94 ± 4.21 < 0.0001

RC benchmark
R Sorig Smax p
10 19012.72 ± 67.33 19012.94 ± 67.32 ns
20 13505.84 ± 34.14 13506.72 ± 34.11 ns
30 9298.98 ± 11.88 9301.12 ± 11.88 ns
40 6013.69 ± 3.92 6017.58 ± 4.09 ns
50 3487.65 ± 11.54 3479.92 ± 12.99 ns
60 1647.42 ± 13.82 1540.76 ± 16.79 < 0.0001
70 475.35 ± 10.42 899.96 ± 7.98 < 0.0001
80 11.84 ± 1.52 963.73 ± 9.42 < 0.0001
90 0.00 ± 0.00 1003.21 ± 9.95 < 0.0001

Table 1: Average Sorig and Smax values in the LFR and RC benchmarks.
Statistical significance (p) was estimated using a two-tailed Student t test. ns:
non-significant differences. In italics, the benchmarks containing quasi-random
networks, discarded for the main analyses (summarized in Figures 2 and 3),
but included in the analyses shown in Figure 5
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Name of the
Algorithm

Strategy used by the algorithm References

Blondel Multilevel modularity maximization [29]
CNM Greedy modularity maximization [33]
CPM Multiresolution Potts model [16]
DM Spectral analysis + modularity maximization [35]
EO Modularity maximization [30]
HAC Maximum Likelihood [45]
Infomap Information compression [36]
LPA Label propagation [41]
MCL Simulated flow [46]
MLGC Multilevel modularity maximization [31]
MSG+VM Greedy modularity maximization + refinement [32]
RB Multiresolution Potts model [37]
RN Multiresolution Potts model [38]
RNSC Neighborhood tabu search [39]
SAVI Optimal prediction for random walks [47]
SCluster Hierarchical Clustering + Surprise maximization [20]
UVCluster Hierarchical Clustering + Surprise maximization [20,40]
Walktrap Random walks + modularity maximization [34]

Table 2: Details of the algorithms used in this study. A summary of the stra-
tegies implemented by the algorithms and the corresponding references are
indicated.
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N.algs Algorithms Smax Sorig Differences

4 CPM, RN, RNSC,
SCluster

18616.55 18615.55 A community of 2 nodes is split into two

4 CPM, RN, RNSC,
SCluster

18881.92 18879.94 A community of 3 nodes is split into two:
2 nodes + 1 node

4 CPM, RN, RNSC,
SCluster

18442.72 18440.74 Two communities of 2 nodes are split into
two

4 CPM, RN, RNSC,
SCluster

19089.77 19088.78 A community of 2 nodes is split into two

4 CPM, RN, RNSC,
SCluster

19187.13 19186.13 A community of 2 nodes is split into two

3 CPM, RN, SCluster 18312.46 18312.11 A community of 4 nodes is divided into
two: 3 + 1 (displayed in Figure 4)

3 CPM, RN, SCluster 19897.8 19896.81 A community of 2 nodes is split into two
3 CPM, RN, SCluster 17980.46 17979.13 A community of 5 nodes is split into two:

4 + 1
3 CPM, RN, Scluster 17992.87 17991.54 A community of 5 nodes is split into two:

4 + 1
3 CPM, RN, SCluster 19579.76 19578.77 A community of 2 nodes is split into two
3 CPM, RN, SCluster 18008.52 18005.89 A community of 2 nodes is split into two

and a community of 3 nodes is split into
two: 2 + 1

3 CPM, RN, SCluster 18835.32 18834.33 A community of 2 nodes is split into two
2 CPM, SCluster 17803.45 17803.14 A community of 2 nodes is split into two

and a community of 4 nodes is split into
two: 3 + 1

2 CPM, SCluster 19928.95 19927.51 A community of 4 nodes is split into two:
2 + 2

2 CPM, SCluster 17749.38 17748.06 A community of 4 nodes is split into two:
2 + 2

2 RN, SCluster 18295.54 18295.19 A community of 4 nodes is split into two:
3 + 1

1 SCluster 18685.24 18684.48 A community of 5 nodes is split into two:
3 + 2

1 SCluster 19122.29 19121.88 A community of 4 nodes is split into two:
3 + 1

1 SCluster 18837.36 18836.58 A community of 7 nodes is split into two:
6 + 1

1 SCluster 18853.16 18852.39 A community of 5 nodes is split into two:
3 + 2

1 SCluster 19285.36 19284.95 A community of 4 nodes is split into two:
3 + 1

1 SCluster 18875.51 18875.13 A community of 4 nodes is split into two:
3 + 1

1 CPM 18141.17 18139.54 Two communities of 3 nodes are restructu-
red in two communities of 4 and 2 nodes

Table S1: Cases where Smax > Sorig in the RC benchmarks with R = 10 %.
Small differences between Smax and Sorig are due to the rapid degradation of
small communities. In most cases, several algorithms find the Smax partition
instead of the original one, strongly supporting the idea that the community
structure has actually changed.
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Name Strategy used
by the algo-
rithm

Reference Reasons for not inclu-
ding the algorithm

AFG Multiresolution
Potts Model

Arenas, A., Fernandez, A. &
Gomez, S. New Journal of
Physics 10, 23 (2008).

Ambiguous choice of the
best partition. Too slow for
good modularity optimiza-
tion heuristics in our bench-
marks

EM Maximum Like-
lihood

Ball, B., Karrer, B. & New-
man, M.E.J. Phys. Rev. E
84, 036103 (2011)

Needs initialization. Not
every nodes are assigned to
a single cluster

HQcut Multilevel
modularity
maximization

Ruan, J. & Zhang, W. Phys.
Rev. E 77, 016104 (2007).

Unable to complete all the
analyses

iMod Modularity ma-
ximization

Xu, G., Bennett, L., Papa-
georgiou, L.G. & Tsoka, S.
Algorithms Mol. Biol. 5, 36
(2010).

According to the authors,
only they can run the al-
gorithm, given its particular
platform and software de-
pendencies

Infomod Information
compression

Rosvall, M. & Bergstrom,
C.T. Proc. Natl. Acad. Sci.
USA 104, 7327 (2007).

Unable to complete all the
analyses

QMC Qualified Min-
Cut

Zhang, X.-S., Li, Z., Wang,
R.-S. & Wang, Y. J. Comb.
Optim. 23, 425-442 (2010).

Authors did not answer our
request

Random
walks

Consensus hie-
rarchical cluste-
ring

Steinhaeuser, K. & Chawla,
N.V. Pattern Recogn Lett
31: 413–421 (2010)

The number of communities
must be specified a priori

Table S2: Algorithms not included in our study.
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Exploring the limits of community
detection strategies in complex

networks

Rodrigo Aldecoa and Ignacio Maŕın
Instituto de Biomedicina de Valencia. Consejo Superior de Investigaciones

Cient́ıficas (IBV-CSIC) Calle Jaime Roig 11. Valencia, Spain

The characterization of network community structure has profound implica-
tions in several scientific areas. Therefore, testing the algorithms developed to
establish the optimal division of a network into communities is a fundamental
problem in the field. We performed here a highly detailed evaluation of commu-
nity detection algorithms, which has two main novelties: 1) the use of complex
closed benchmarks, which allow precise ways to assess whether the solutions pro-
vided by the algorithms are optimal or not; and, 2) A novel type of analysis, based
on hierarchically clustering the solutions suggested by the different methods, in
order to visualize their relationships. Surprise, a global parameter that evaluates
the quality of a partition, confirms the power of these analyses. We show that none
of the community detection algorithms tested provide consistently optimal results
in all networks and that Surprise maximization, obtained by combining multiple
algorithms, obtains quasi-optimal performances in these difficult benchmarks.
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Introduction

Complex networks are widely used for modeling real-world systems in very
diverse areas, such as sociology, biology and physics [1, 2]. It often occurs that
nodes in these networks are arranged in tightly knit groups, which are called
communities. Knowing the community structure of a network provides not only
information about its global features, i.e., the natural groups in which it can be
divided, but may also contribute to our understanding of each particular node in
the network, because nodes in a given community generally share attributes or
properties [3]. For these reasons, characterizing which are the best strategies to
establish the community structure of complex networks is a fundamental scientific
problem.

Many community detection algorithms have been proposed so far. The best
way to sort out their relative performances is by determining how they behave in
standard synthetic benchmarks, consisting of complex networks of known struc-
ture. There are two basic types of benchmarks, which we have respectively called
open and closed [4–6]. Open benchmarks use networks with a community structu-
re defined a priori, which is progressively degraded by randomly rewiring links in
such a way that the number of connections among nodes in different communities
increases and the network evolves toward an unknown, “open-ended” structu-
re [5–11]. In open benchmarks, the performance of an algorithm can be measured
by comparing the partitions that it obtains with the known, initial community
structure, being increasingly difficult to recover that structure as the rewiring
progresses. The first commonly used open benchmark was developed by Girvan
and Newman (GN benchmark) [12]. It is based on a network with 128 nodes, each
with an average number of 16 links, split into four equal-sized communities. It is
however well established that the GN benchmark is too simple. Most algorithms
are able to provide good results when confronted with it [7,8]. Also, the fact that
all communities are identical in size makes some algorithms that favor erroneous
structures (e.g., those unable to detect communities that are small relative to the
size of the network [6–8, 13–15]) to perform artificially well in this benchmark.
These results indicated the need to develop more complex benchmarks. Lanci-
chinetti, Fortunato and Radicchi suggested a new type of complex benchmarks,
called LFR, which has obvious advantages over the GN benchmark [16]. In the
GN networks, node degrees follow a Poisson distribution. However, in many real
networks the degree distribution displays a fat tail, with a few highly connected
nodes and the rest barely linked. This suggests that its distribution may be mo-
deled according to a power law. In the LFR benchmarks, both the degrees of the
nodes and the community sizes in the initial networks can be adjusted to follow
power laws, with exponents chosen by the user. In this way, realistic networks
with many communities can be built. LFR benchmarks are much more difficult
than GN benchmarks, with many algorithms performing poorly in them [6,8–11].
Notwithstanding these advantages, the parameters commonly used in the LFR
benchmarks generate networks where all communities have similar sizes [4–6, 8].
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This led to the proposal of a third type of benchmark, based on Relaxed Caveman
(RC) structures [17]. In this type of benchmarks, the initial networks are formed
by a set of isolated cliques, each one corresponding to a community, which are
then progressively interconnected by rewiring links. The possibility of selecting
the size of each initial clique makes the RC benchmarks ideal for building distri-
butions of community sizes with a high variance, which constitute a very stern
test for most algorithms [4–6].

In open benchmarks, when the original structure is largely degraded – and
especially if the networks used in the benchmark are large and have a complex
community structure – it generally happens that all algorithms suggest partitions
different from the initial one. However, this can be due to two very different
reasons: either the algorithms are not performing well or all/some of them indeed
are optimally recovering the community structure present in the network, but
that structure does not anymore correspond to the original one. The lack of a
way to discriminate between these two potential causes is a limitation of all open
benchmarks. To overcome this problem, we recently proposed a different type of
benchmark, which we called closed [4, 5]. Closed benchmarks also start with a
network with known community structure. However, the rewiring of the links is
not random, as in open benchmarks. It is instead guided from the initial network
toward a second, final network, which has exactly the same community structure
that the initial one, but with the nodes randomly reassigned among communities.
The rewiring process in these benchmarks is called Conversion (C), and ranges
from 0 % to 100 %. When C = 50 %, half of the links that must be modified in the
transition from the initial to the final networks have been already rewired and C
= 100 % indicates that the final structure has been obtained.

The main advantage of the closed benchmarks is that it is possible to obtain
quantitative information regarding whether a given partition is optimal or not.
This happens because, along the conversion process, the network moves away
from the initial structure at the same rate as it approaches the final one. We can
take advantage of this feature with a type of analyses that is based on comparing
partitions with a parameter called Variation of Information (VI; [18]). Being a
metric [18], VI satisfies the triangle inequality: VIIE + VIEF ≥ VIIF , where:
1) VIIE is the variation of information for the comparison between the original
community structure known to be present in the initial network (I) and the one
deduced for an intermediate network (E), generated at a certain point of the con-
version process; 2) VIEF is obtained comparing that intermediate structure and
the community structure of the final network (F), which is also known; and, 3)
VIIF is obtained when the initial and final structures are compared. An algorithm
that performs optimally during the whole conversion process should generate solu-
tions satisfying the equality VIIE + VIEF = VIIF – where E is in this context the
partition proposed by the algorithm – while deviations from this equality, which
can be summarized with the value VIδ = VIIF - (VIIE + VIEF ), indicate subop-
timal performance [4,5]. Another advantage of the closed benchmarks is that the
identical community structure in the original and final networks implies a second
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quantitative feature: the solutions provided by an algorithm must be symmetrical
along the conversion of one into the other. For example, at C = 50 %, a correct
partition must be equally similar to both the initial and final networks. Finally,
it is also significant to point out that closed benchmarks are very versatile, given
that any network, for example those traditionally used in open GN, LFR or RC
benchmarks, can be also analyzed in a closed configuration. All these features ma-
ke the analysis of complex closed benchmarks the best test available to evaluate
the performance of community detection algorithms.

All the analyses described so far, in both open and closed benchmarks, require
the community structure to be known a priori. Additional useful information may
be obtained by evaluating the results of the different algorithms with measures
able to establish the quality of a partition by criteria that are independent of
knowing the structures originally present in the networks. In the past, one such
global measure of partition quality, called modularity [19], was extensively used.
However, multiple works have shown that modularity-based evaluations are often
erroneous [4,6,13–15]. In recent studies, we introduced a new global measure, ca-
lled Surprise (S), which has an excellent behavior in all networks tested [4–6]. We
have shown that S can be used to efficiently evaluate algorithms in open bench-
marks and that, according to its results in those benchmarks, the best algorithm
turned out to be combining multiple methods to maximize S [6]. These results
suggest that Surprise may also contribute to evaluate algorithm performance in
closed benchmarks and raise the question of whether S maximization could also
be the best method to obtain optimal partitions in these complex benchmarks.

In this study, we carry out an extensive and detailed analysis of the behavior in
closed benchmarks of a set of algorithms already used in open benchmarks in one
of our recent papers [6]. Our work has three well-defined sections. First, we test
all those strategies in both LFR and RC closed benchmarks, being able to identify
the algorithms which perform well and those that perform poorly or are unstable.
Second, we propose a novel approach to compare methods, which involves hierar-
chically clustering all their solutions. Applying this procedure at different stages
of the closed benchmarks, we obtain a better understanding of how the algorithms
behave. Finally, we show that, as already demonstrated in open benchmarks, Sur-
prise maximization is the best strategy for community characterization in closed
ones.

Methods

Algorithms and benchmarks used in this study

In this work, we evaluated 17 non-overlapping community detection algo-
rithms, selected according to recent studies [Table 1; [4–10, 22, 30, 34]]. These
algorithms were exactly the same used in [6], except that we had to discard here
one of the programs (implementing an algorithm called MLGC), given that it was
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Name Strategy used by the algorithm References
Blondel Multilevel modularity maximization [20]
CNM Greedy modularity maximization [21]
CPM Multiresolution Potts model [22]
DM Spectral analysis + modularity maximization [23]
EO Modularity maximization [24]

HAC Maximum Likelihood [25]
Infomap Information compression [26]

LPA Label propagation [27]
MLGC Multilevel modularity maximization [28]

MSG+VM Greedy modularity maximization + refinement [29]
RB Multiresolution Potts model [30]
RN Multiresolution Potts model [31]

RNSC Neighborhood tabu search [32]
SAVI Optimal prediction for random walks [33]

SCluster Hierarchical Clustering + Surprise maximization [34]
UVCluster Hierarchical Clustering + Surprise maximization [34,35]
Walktrap Random walks + modularity maximization [36]

Table 1: Details of the algorithms used in this study. A description of the
strategies implemented by the algorithms and the corresponding references are
indicated.
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unable to complete the analyses. In general, the default parameters of the algo-
rithms were used. For the UVCluster and SCluster algorithms, we used UPGMA
as hierarchical algorithm and Surprise as evaluation measure. RB and CPM have
a tunable resolution parameter (γ) which defines the type of communities that
they obtain. Since the optimal value for such parameter cannot be defined a priori
in the absence of information about the community structure of the graph, we
tested, for each network, a wide range of values of γ and chose as solution the
most stable partition. The RB approach is equivalent to the original definition of
modularity when γ = 1 [30], so we varied the parameter from 0 to as far as 5, ensu-
ring a high coverage of the possible values of γ. In the case of the CPM algorithm,
we used 0 ≤ γ ≤ 1, the only defined range for unweighted networks [22].

Two very different types of networks were used as initial input for our closed
benchmarks. The first were standard LFR networks containing 5000 nodes, which
were divided into communities having between 10 and 50 nodes. The distribution
of node degrees and community sizes were generated according to power laws with
exponents -2 and -1, respectively. Since it was essential that the initial communi-
ties were well defined, we used a “mixing parameter” µ = 0.1. This value means
that in the starting networks each node shared only 10 % of its links with nodes
in other communities [16]. As already indicated, LFR communities are small and
very numerous, but their sizes are very similar, which may be a limitation. Pie-
lou’s index [37] can be used to measure the variation of community sizes. This
index, which takes a value of 1 for networks with equal-sized communities, was
0.98 in these LFR benchmarks. We found also that it was higher than 0.95 for
all the other standard LFR benchmarks of similar sizes used so far (unpublished
data). Thus, we decided to use a second type of benchmark with networks having
a much more skewed distribution of community sizes. To this end, we used the
Relaxed Caveman (RC) configuration. The networks used in our RC benchmarks
contained 512 nodes, split into 16 communities. The Pielou’s Index for the dis-
tribution of their sizes was 0.75, meaning that the differences in community sizes
were very high, spanning two orders of magnitude.

In order to control the intrinsic variation of our analyses, ten different networks
with the features defined above were generated as starting points both for the
LFR and for the RC configurations. For these 20 different closed benchmarks,
we obtained 99 intermediate points between the initial and the final partitions,
generated using conversion values ranging from C = 1 % to C = 99 % We expected
many different structures, with varied properties, to be produced along these
complex conversion processes, thus allowing a thorough test of the community
structure algorithms.

Clustering of solutions

We devised an approach for algorithm evaluation in closed benchmarks that
allows to compare their solutions and to easily visualize their relationships. In
this type of analysis, all the partitions provided by the different algorithms for a
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given network plus four additional predefined structures were considered. These
four structures were: 1) Initial and 2) Final, which respectively correspond to
the community structures present at the beginning and the end of the conversion
process; 3) One, which refers to a partition in which all nodes are in the same
community; and, 4) Singles, which corresponds to a partition in which all com-
munities have a single node. The method used was the following: we choose three
conversion values (10 %, 30 % and 49 %) and we calculated the VI values obtained
by comparing the partitions generated for a given network by all the algorithms
to be tested plus the four predefined structures just indicated. To minimize the
variance of the VI values, 100 different networks were analyzed for each conver-
sion value. In this way, a matrix of VI values was obtained for each conversion
level. Including the 4 preestablished structures, this matrix has ([k+4]*[k+3])/2
values, being k the number of algorithms. The values of this VI matrix were then
used as distances to perform agglomerative clustering using UPGMA [38]. In this
way, dendrograms that graphically depicted the relative relationships among all
partitions were obtained. Given that we are using distances, how similar are the
solutions of the different algorithms can be precisely evaluated, by considering
both the topology of the tree and how long the branches in these dendrograms
are. As we will show in the Results section, the four predefined structures were
included to be used as landmarks to interpret the dendrograms generated.

Surprise analyses

The quality of a partition can be effectively evaluated by its Surprise (S)
value [6]. S is based on a cumulative hypergeometric distribution which, given
a partition into communities of a network, computes its probability in a random
network [4,35]. Let F be the maximum possible number of links in a network with
n links, and M be the maximum possible number of intra-community links given
that partition with p intra-community links. Surprise is then calculated with the
following formula [4]:

S = − log

min(M,n)∑
j=p

(
M
j

)(
F−M
n−j

)(
F
n

) (2.9)

The higher the S value, the more unlikely (or “surprising”, hence the name of
the parameter) is the observed distribution of intra- and intercommunity links,
meaning that the communities obtained are maximally connected internally and
also maximally isolated from each other.
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Results

Detailed behavior of the algorithms

The 17 algorithms tested in the LFR and RC closed benchmarks showed very
different behaviors, which are summarized in Figures 1 - 4. In these figures, follo-
wing methods developed in previous works [4,5], we show the VI values comparing
the partitions obtained by the algorithms with the known initial (red lines) and
final (black lines) structures. A perfect agreement with any of these structures
corresponds to VI = 0. Also, the value (VIIE+VIEF )/2, (where E is the partition
suggested by the algorithm, while I and F are, respectively, the initial and final
partitions) is indicated with a blue line. As we discussed before, if the performan-
ce of an algorithm is optimal, then VIIE + VIEF = VIIF . This means that, in
these representations, the blue line should, in the best case, be perfectly straight
and located just on top of a thin dotted line also included in these figures, which
corresponds to the value VIIF /2.

Figure 1 shows the behavior of the six algorithms in the LFR benchmarks that
we considered the best, given that they were the only ones able to recover the
initial partition when C ≥ 5 %. None of the other 11 algorithms recovered even
a single optimal partition in the whole benchmark. Given that teh conditions
used (µ = 0.1, C = 5 %) involved a limited number of intercommunity links,
these results indicate that most algorithms performed deficiently. The six best
algorithms worked however quite well, as indicated by the general closeness of
their (VIIE + VIEF )/2 values and the expected VIIF /2 values (Figure 1). Among
these algorithms, Infomap [26] was the only one able to perform optimally or
quasi-optimally along the whole conversion process, although, around C = 50 %,
a slight deviation was noticeable (see blue line in Figure 1). Infomap recognizes
the initial communities until almost half of the benchmark (red line with values
VI = 0) and then, just after C = 50 %, it suddenly starts detecting the final
ones (as seen by the fact that the black line quickly drops to zero). This rapid
change is explained by the very similar sizes of all the communities present in the
LFR benchmarks, which are all destroyed at the same time and also rebuilt all
together with their final structure as conversion proceeds. Two other algorithms,
RB [30] and LPA [27] performed quite similarly to Infomap, again only failing in
the central part of the benchmark. The behavior of the other three among the six
best-performing algorithms (MCL [28], RN [31] and CPM [20]), was good at the
beginning of the conversion process, but clearly worse than Infomap quite soon
(Figure 1). Figure 2 shows the results for the other algorithms. In addition of all
them not finding any optimal solutions, the worst ones showed highly unstable
solutions (e. g. SAVI [33], MSG+VM [29]; notice the large mistakes in Figure 2)
or totally collapsed, not finding any structure in these networks (e. g. CNM [21]).
We conclude that the behavior of most of the algorithms tested is questionable
when analyzed with precision in these difficult closed benchmarks.

In general, the results of the RC benchmark are similar. Again only six algo-
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Figure 1: Best algorithms in LFR closed benchmarks. The six algorithms able
to recover the initial partition when C ≤ 5 % are shown. In these diagrams, the
x-axis shows the conversion percentage and the y-axis, the VI value. The red
line indicates the VI values obtained when the algorithm solution is compared
with the initial structure and the black line, the same comparison, but with the
final structure. A perfect identity corresponds to the value VI = 0. Comparing
the (VIIE + VIEF )/2 values (blue line) and the VIIF /2 values (dotted line,
often invisible, being just below the blue one), we can conclude that Infomap,
RB and LPA achieve optimal values until C is very close to 50 %. MCL, RN and
CPM work accurately only in the easiest analyses (both ends of the benchmark).
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Figure 2: Poor performers in LFR closed benchmarks. These algorithms were
unable to recover, even once, the correct partitions of the benchmark. The
plots show their very diverse behaviors, ranging from results resembling so-
mewhat those shown in Figure 1 (RNSC or SCluster) to others that are highly
asymmetric (MSG+VM), unstable (SAVI) or correspond to algorithms that fail
to find any structure (CNM).
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Figure 3: Best algorithms in RC closed benchmarks. As in Figure 1, this
figure shows the six algorithms that recovered the initial partition when C ≤
5 %. SCluster and RNSC showed an excellent behavior, displaying an almost
straight blue line, while UVCluster failed in the central, most difficult, part of
the benchmark. Infomap and CPM results were somewhat asymmetric, with
the latter showing also some degree of instability. RN totally collapses when
communities are not well defined.

rithms (Figure 3) provided correct values when C ≥ 5 %. Interestingly, just three,
Infomap, RN and CPM, passed the C ≥ 5 % cut in both this benchmark and in
the LFR benchmark (Figures 1 and 3). However, very significantly, none of these
three were among the top performers in the RC benchmark. We found that only
SCluster [34] and RNSC [32] achieved optimal VI values along most of the con-
version process in the RC benchmark (see again the blue lines in Figure 3). The
remaining four algorithms that passed the C ≥ 5 % cutoff (UVCluster [33, 34],
Infomap, CPM and RN) worked well during the easiest parts of the benchmark
but failed when conversion approached 50 %, in some cases showing asymmetries
(CPM and Infomap) or instabilities (CPM and RN). These problems become much
more noticeable in the worst algorithms, those that failed the 5 % conversion cut
(Figure 4). Again, the results for these algorithms are quite poor. A final point
is that, contrary to what we saw in the LFR benchmarks, a sudden swap from
the initial to the final structure at around C = 50 % is not observed in the results
provided by the best algorithms. This is explained by the greater variability in
community sizes in the RC benchmarks respect to the LFR benchmarks. The RC
communities disappear at different times of the conversion process.

Figures 5 and 6 show in more detail the deviations from the optimal values,
indicated as VIδ = VIIF - (VIIE + VIEF ), of the six best algorithms of each
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Figure 4: Algorithms that performed poorly in RC closed benchmarks. In this
case, the behavior of the algorithms was worse than in the LFR benchmarks
showed in Figure 2. MCL worked well only at the very beginning and the very
end of the benchmark. The remaining algorithms performed much worse. In
particular, MSG+VM showed a very asymmetric pattern and SAVI, CNM and
RB results were chaotic.
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benchmark. This value is equal to 0 when agreement with the optimal perfor-
mance is perfect. The larger the deviations from the optimal behavior, the more
negative are the values of VIδ. In the LFR benchmarks (Fig. 5), we confirmed
that Infomap outperformed the other five algorithms. Its solutions were just very
slightly different from the optimal ones around C = 50 %. The other algorithms
displayed two different types of behaviors. On one hand, MCL, RB and LPA
progressively separated from the optimal value toward the center of the bench-
mark. Notice, however, that this minimum should appear exactly when C = 50 %,
this not being the case for RB, which showed slightly asymmetric results (Figure
5). On the other hand, RN and CPM reached a fixed minimum value that was
maintained during a large part of the evolution of the network. This means that,
during that period, these algorithms were constantly obtaining the same solu-
tion regardless of the network analyzed. In fact, RN always allocated all nodes
to different communities while CPM split the 5000 nodes into variable groups,
all them with one to four units. Figure 6 displays the analogous analyses for the
RC benchmarks. We confirmed that SCluster and RNSC were clearly the best-
performing strategies. The other algorithms satisfied the condition of optimality
only when the network analyzed was very similar to either the initial or the final
structure. This detailed analyses also showed more clearly something that could
be suspected already looking at Figure 3, namely that RN and CPM produced
abnormal patterns. The quasi-constant value of RN around C = 50 % is explained
by the fact that all its solutions in the center of the benchmark consisted of two
clusters, one of them containing more than 99 % of the nodes. On the other hand,
CPM displayed an unstable behavior. The results in Figures 1-6 indicate that the
RC benchmarks are at least as difficult as the LFR benchmarks, even though the
number of nodes is much smaller (512 versus 5000). The considerable density of
links and the highly skewed distribution of community sizes in the RC networks
explain this fact.

Hierarchical analysis of the solutions provided by the diffe-
rent algorithms

As indicated in the Methods section, we obtained hierarchical clusterings of
the VI values of the solutions of all the algorithms, together with four artificial
partitions (Initial, Final, One and Singles). These analyses were focused on three
different stages of the benchmark, C = 10 %, C = 30 % and C = 49 %. The first two
were selected because they respectively corresponded to a low and medium degree
of community structure degradation. We thought that any reasonable algorithm
should easily recover the initial partition if C = 10 %, while the results shown in
the previous section indicated that, when C = 30 %, the communities are fuzzier
but still clearly detectable by several algorithms. Finally, when C = 49 %, the
initial communities should be in the limit of being substituted by the final ones.
However, good solutions should still be slightly more similar to the initial partition
than to the final one. Figure 7 displays the dendrograms for those three stages
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Figure 5: Details of the performance of the best algorithms in LFR bench-
marks. The y-axis (VIδ) corresponds to the difference between the expected
value, VIIF and the VIIE + VIEF value of the different solutions. VIδ values
close to zero correspond to the best performers.

Figure 6: Detailed performance in the RC benchmarks. Again, the better a
performance, the closer to a value equal to zero.
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Figure 7: Hierarchical clustering of solutions. Dendrograms representing the
hierarchical clustering of the solutions achieved by the different methods in
LFR (top panels) and RC (lower panels) closed benchmarks. Three different
stages of the network conversion process have been analyzed: C = 10 %, 30 %
and 49 %. The four predefined structures (Initial, Final, One and Singles) are
indicated in italics.
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in both benchmarks, LFR and RC. We also include in that figure the Surprise
values for each partition, as an independent measure of its quality (see below).

The LFR trees (Figure 7, top panels) display the behavior that could be ex-
pected after the detailed analyses shown in the previous section. Several of the
best algorithms (e. g. Infomap, RB, LPA), appear in the tree very close to Initial
even when C = 49 %, showing that they are indeed recognizing the initial struc-
ture or very similar ones along the whole benchmark. However, it is clear that
the distances from Initial to the solutions provided by the different algorithms are
growing with increasing values of C. This indicates that the structures recognized
by even the best algorithms are not exactly identical to the original ones, in good
agreement with the results shown in Figure 5. In the case of the RC benchmark
(Figure 7, bottom panels), the results are somewhat more complex. When C =
10 % or C = 30 %, the situation is very similar to the one just described for the
LFR benchmarks: the best algorithms generate solutions that are very similar
to Initial, just as expected. However, when C = 49 % we found that the best
algorithms in these benchmarks (SCluster, RNSC) generate solutions that are se-
parated from Initial in the tree. Interestingly, their solutions cluster with those
of other algorithms that also performed quite well in these benchmarks, such as
Infomap or CPM. These results admit two explanations. The first one would be
that the Initial structure (or a structure very similar to Initial) is still present,
but all the algorithms have a similar flaw, which makes them find related, but
false structures. The second is that, when C = 49 %, they are all recognizing a
third type of structure, very different from Initial and Final, which is indeed the
real one present in the networks. The first explanation is very unlikely given that
these algorithms use totally unrelated strategies (Table 1). However, to accept
the second one, we should have an independent confirmation that this may be the
case.

Surprise values can be used to obtain such confirmation. In Figure 7, those
values are also shown as horizontal bars with a size that is proportional to the S
value obtained for each algorithm. As it can be easily seen in that figure, there
is a strong correlation between the performance of an algorithm according to
S values and its proximity to the Initial solution. This shows that S values are
indeed indicating the quality of a partition with a high efficiency, as we already
demonstrated in previous works [4-6]. Notice also that the S values for Initial and
Final become more similar as the conversion progresses. This was expected, given
that, at C = 50 %, the optimal partition should be exactly halfway between the
initial and final community structures, and therefore, these values must then be
identical. The fact that, in both the LFR and RC benchmarks with C = 49 %,
there are structures different from the initial one is indicated by the S values for
the Initial partition not being the highest. The S value of the Infomap partition
is statistically significantly higher (p = 0.0043; t test) than Initial in the LFR
benchmarks with C = 49 %. The same occurs in the RC benchmarks with C =
49 %: both the SCluster and the RNSC partitions have Surprise values significantly
higher than the one found for Initial (p < 0.0001 in both cases; again, t tests
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were used). These results indicate that the top algorithms in these benchmarks
are recognizing real, third-party structures, very different from Initial and Final,
which emerged along the conversion process.

If the inclusion of Initial and Final was obviously critical for our purposes,
the fact that we have also included One and Singles allows to easily visualize
how some algorithms collapse, failing to find any significant structures in these
networks. In the LFR benchmarks, this happens for CNM (already when C =
10 %), RN, CPM and MSG+VM. All of them generate partitions very similar
to either One or Singles. In the RC benchmarks, this same problem occurs with
RB (again already with C = 10 %), LPA, RN and CNM. We can conclude that
these algorithms are often insensitive to the presence of community structure in
a network.

Surprise maximization results

It is obvious from all the analyses shown so far that most algorithms perfor-
med poorly in these difficult benchmarks. Even those that worked very well in one
type of benchmark often had serious problems detecting the expected partitions
in the other one. In a recent work [6], we showed in open benchmarks that a
meta-algorithm based on choosing for each network the algorithm that generated
the solution with the highest Surprise value worked better than any isolated al-
gorithm and provided values that were almost optimal. Here, following that same
strategy, we confirmed those results in closed benchmarks. Figures 8a and 8b show
the behavior of choosing the maximal value of Surprise (Smax) in, respectively,
the LFR and the RC benchmarks. Smax values were obtained selecting solutions
from six algorithms in the case of the LFR benchmark (ordered according to the
number of times that they contribute to Smax, as follows: Infomap, RN, CPM,
LPA, RB and MCL) and seven algorithms in the RC networks (i.e. CPM, RNSC,
RN, SCluster, UVCluster, Infomap and MCL, ordered in the same way). All the
other failed to provide any Smax values. As expected for a very good algorithm,
the blue lines obtained for the Smax meta-algorithm are almost straight in both
benchmarks (Figures 8a, 8b). If we measure the average distances to the dotted,
optimal line, i.e. the average of VIδ for all conversion values, we found that it is
minimal for the Smax meta-algorithm, and just slightly different from zero (Figure
8c), being clearly better than the results of all algorithms taken independently
(also shown in Figure 8c).

Discussion

We recently showed that closed benchmarks have advantages over the com-
monly used open benchmarks to characterize the quality of community structure
algorithms [5]. The main advantage is that the behavior of an algorithm can be
more precisely understood by controlling the rewiring process, which leads to two
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Figure 8: Results of the Smax meta-algorithm. Performance in LFR (panel
a) and RC (panel b) benchmarks of the meta-algorithm that selected for each
network the solution, among all the ones provided by the algorithms, which
had the highest Surprise value. Panel c): Average values of the distance to the
optimal performance (defined as the averages of the absolute values of VIδ)
for all the algorithms.
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testable predictions that any good algorithm must comply. The first is just a ge-
neral, qualitative feature, namely the symmetry respect to the initial and final
configurations along the conversion process. The second prediction is much more
precise, being based on the fact that the relationship VIIE + VIEF = VIIF indi-
cates optimal performance. These interesting properties of the closed benchmarks
were already tested with a couple of algorithms in a previous work 5. Here, we
extended those analyses to obtain a general evaluation of all the best available
community structure algorithms in two types of closed benchmarks. The general
conclusions of this work are the following: 1) Closed benchmarks can be used
to quantitatively classify algorithms according to their quality; 2) None of the
algorithms works efficiently in all benchmarks; 3) Surprise, a global measure of
quality of a partition into communities, may be used to improve our knowledge of
algorithm behavior; and, 4) Surprise maximization behaves as the best strategy
in closed benchmarks, as it does in open ones 6. We will now discuss, in turn,
these four conclusions.

Closed benchmarks allow for a much more detailed analysis
of algorithm performance than open benchmarks

We have shown that algorithms can be easily classified according to their per-
formance in closed benchmarks based on different parameters. As just indicated
above, two of them (VIIE + VIEF = VIIF relationship, expected symmetry of
the results) were already described in our previous works. In addition to these
two fundamental cues, additional parameters have been used for the first time in
this work. Among them, we have first considered the ability of the algorithms to
detect the initial community structure present in the networks when conversion
starts growing. The critical value C ≥ 5 % has been used as a cutoff value to select
the best algorithms, given that those that do not recognize the original structu-
re even when C is as low as 5 %, are clearly poor performers. Another feature
used here was VIδ, the distance to the optimal VI value, which was used both
to explore in detail the behavior of the algorithms along the conversion process
(Figures 5 and 6) or, as an average, to rate them in a quantitative way (Figure 8).
Finally, a novel strategy, based on hierarchically classifying the algorithms using
the VIs among their partitions as distances, has been also proposed (Figure 7).
We have shown that it allows to determine the behavior of the algorithms, such
as establishing that, at high C values, some algorithms group together, all pro-
posing related community structures, which are however very different from both
the initial and final ones (Figure 7). The combination of all these methods, and
its complementation with Surprise analyses (see below), allow for a very precise
characterization of the performance of the algorithms. These methods are much
more complete than simply establishing how different from the initial structure is
the solution proposed by an algorithm, as is currently done in all studies based
on open benchmarks.
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Most algorithms fail in closed benchmarks

If we now consider our results respect to how the algorithms performed, we
must be pessimistic. Only three algorithms, Infomap, RN and CPM, passed the
first cutoff, i.e., optimal performance beyond C = 5 %, in both LFR and RC
benchmarks (Figures 1, 3). Further analyses showed that others, such as RNSC,
SCluster, MCL, LPA or UVCluster work reasonably in average (Figure 8). Ho-
wever, they typically perform well in one of the benchmarks, but poorly in the
other one (see Figures 1 - 4). Finally, a single algorithm, RB, works very well in
the LFR benchmarks, but chaotically in the RC benchmarks (as becomes clear
in the results shown in Figures 1 and 4 and quantitatively evaluated in Figu-
re 8). This behavior is caused by the inability of this particular multiresolution
algorithm to detect the communities of very different sizes present in the RC
benchmarks [14, 15]. The other algorithms failed to recover accurate solutions in
both the LFR and the RC benchmarks (Figures 2, 4, 7): in addition to their gene-
ral lack of power to find the subtle structures present in these benchmarks when
C increases, they often showed asymmetries, which we noticed were sometimes
caused by a dependence of the results on the order in which the nodes were read
by the programs (not shown).

Several papers have examined many of the algorithms used here in open GN,
LFR and RC benchmarks. The general conclusions of those works can be summa-
rized as follows: 1) As indicated already in the Introduction section, the GN bench-
mark is too easy, with most algorithms doing well [7, 8] while the LFR and RC
benchmarks are much more difficult, with many algorithms working poorly [5,6,8].
This means that tests on the GN benchmark should not be used to support that
new algorithms perform well; 2) Among the ones tested here, Infomap is the best
algorithm for LFR benchmarks, with several others (RN, RB, LPA, SCluster)
following quite closely [6, 8–10]; 3) However, SCluster, RNSC, CPM, UVCluster
and RN are the best algorithms in RC benchmarks [5, 6]. Therefore, the agree-
ment of the results in LFR and RC open benchmarks is far from complete; 4)
All modularity maximizers behave poorly [6, 9, 10]. These results are in general
congruent with the ones obtained here in closed benchmarks, but some signifi-
cant differences in the details have been observed. Comparing the results of the
17 algorithms analyzed here using closed benchmarks (Figure 8) with the perfor-
mance of those same algorithms in open benchmarks that start with the same
exact network [6], we found that the top four average performers (Infomap, RN,
RNSC and SCluster) were exactly the same in both types of benchmark. Howe-
ver, several algorithms (most clearly, RB and SAVI) performed worse here. These
poor performances of RB and SAVI were due to their unstable behavior in RC
benchmarks (Figure 4). These results indicate that these closed benchmarks can
provide more information than the corresponding open ones, and thus they can
be extensively used for testing community detection algorithms.
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Surprise can be used to refine algorithm evaluation

In recent works, we have shown that Surprise (S) is an excellent global mea-
sure of the quality of a partition [4–6]. In this work, we have taken advantage
of that fact to improve our understanding of how algorithms behave. The com-
bination of the hierarchical analyses described above with Surprise calculations
have allowed to establish the presence of third-party community structures that
the best algorithms find, and which are different from both the initial and final
structures defined in the benchmarks (Figure 7). These differences are small in
the LFR benchmark, in which the best algorithms, Infomap and RB, suggested
community structures which are very similar to the initial one, even when C =
49 % (Figure 7, top). They are however quite considerable in the RC benchmark,
in which the best algorithms, SCluster and RNSC, plus several other among the
best performers, appear together in a branch distant from the initial structure
when C = 49 % (Figure 7, bottom).

Surprise maximization as the strategy of choice for commu-
nity structure characterization

In previous works, we proposed that, given that Surprise is an excellent mea-
sure for the quality of a partition into communities, a good strategy for obtaining
that partition would involve maximizing S. However, S-maximizing algorithms do
not yet exist. So far, only UVCluster and SCluster use Surprise maximization as a
tool to select the best partition among those found in the hierarchical structures
that those algorithms generate [34, 35], but the true Smax partition is often not
found with those strategies (as shown in refs. [4–6] and this work). Given that we
have not yet developed an Smax algorithm, we decided to use a meta-algorithm
that involves choosing among all the available algorithms, the one that produced
the highest S value. This simple strategy was recently shown to outperform all
known algorithms in open benchmarks [6]. In this work, we have shown that the
same occurs in closed benchmarks (Figure 8). Even more significant is the fact
that, both in open and closed benchmarks, there is only a limited room for further
improvement: by combining several algorithms using their S values as a guide, we
obtain performances which are almost optimal (see [6] and Figure 7). Therefore,
in total agreement with our previous results, we conclude here that S maximiza-
tion is the best available strategy for characterizing the community structure of
complex networks, outperforming all the other algorithms analyzed so far. The
interest of generating S-maximizing algorithms, which could improve even on the
combined strategy or meta-algorithm used so far in our works, is clear.

Conclusions

In summary, we have shown the advantages of these strategies and of using
complex closed benchmarks for community structure characterization and the
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potential of Surprise-based analyses for complementing those tests. We have al-
so shown that all currently proposed algorithms, even the best ones, fail to so-
me extent in these critical benchmarks and that a Surprise maximization meta-
algorithm outperforms all them. The heuristic potential of these closed bench-
marks is clear. They can be used in the future by anyone interested in checking
the quality of an algorithm. A program to generate the conversion process typical
of the closed benchmarks that can be applied to any network selected by the user
is freely available at https://github.com/raldecoa/ClosedBenchmarks.
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Caṕıtulo 3

DISCUSIÓN

Los resultados obtenidos se pueden dividir en tres grandes partes. Primero, la
generación y optimización de una serie de algoritmos que posibilitan una detección
eficiente de las comunidades de una red. Segundo, el desarrollo de un nuevo tipo de
benchmarks, con importantes ventajas sobre los existentes en la literatura, donde
testar la multitud de métodos publicados para extraer comunidades en redes. Y
por último, la confirmación de que Surprise es una excelente medida estad́ıstica
para evaluar, de forma precisa, la calidad de la partición en comunidades de
una red. Además, los análisis realizados para llevar a cabo cada uno de estos
tres bloques, han permitido probar y evaluar un buen número de algoritmos de
detección de comunidades. A continuación, se detallan pormenorizadamente estos
resultados.

Jerarca : Generación y mejora de algoritmos de de-
tección de comunidades

Mayor eficiencia

Jerarca es una suite de algoritmos de clustering, que permite al usuario extraer
información sobre la topoloǵıa de una red, su estructura jerárquica y sus comuni-
dades más significativas. Como se indicó en la sección 1.2.1 de la introducción, la
heuŕıstica de los algoritmos desarrollados se basa en la estrategia conocida como
clustering jerárquico iterativo [Arnau et al. 2005]. Jerarca implementa una nue-
va versión de UVCluster, aunque significativamente más eficiente. En la versión
original, se necesitaba ejecutar internamente el algoritmo de Floyd [Floyd 1962]
para calcular las distancias entre los nodos de la red. En esta nueva implementa-
ción, en cada iteración sólo se tienen en cuenta los nodos adyacentes a un nodo
dado, con lo cual no es necesario conocer los caminos más cortos entre cada par
de nodos de la red. De este modo, la complejidad computacional pasa de O(n3)
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a O(n2). Esto ha permitido realizar durante esta tesis análisis de miles de redes
de 5000 unidades [Aldecoa y Maŕın 2013, Aldecoa y Maŕın 0000], mientras que
el máximo tamaño analizado con la versión anterior hab́ıa sido de menos de 700
nodos [Marco y Maŕın 2009].

Nuevos algoritmos

Al iniciar una iteración de UVCluster cada nodo forma su propia comunidad.
A continuación, se elige un nodo al azar y se van agregando nodos a esa comunidad
siempre y cuando cada nodo añadido tenga conexiones con todos los nodos de la
comunidad. Es decir, la comunidad se forma, vorazmente, a partir de un clique
(subgrafo completo) creciente. Cuando no existe ningún nodo agregable más, la
comunidad está completa y se empieza el proceso de nuevo, eligiendo un nodo de
los restantes al azar.

Además de esta estrategia de UVCluster, Jerarca incluye dos nuevos algorit-
mos, RCluster y SCluster. Las iteraciones de RCluster también comienzan con
cada nodo aislado en su comunidad. A partir de ah́ı y hasta un cierto criterio de
parada, se seleccionan dos comunidades al azar y se fusionan si todos los nodos de
una de ella están conectados con todos los de la otra. Es decir, por definición, cada
comunidad tiene todos sus nodos formando un clique y se unirá con otra si y sólo si
su unión forma de nuevo un clique. Cuando ya no quedan más comunidades que se
puedan unir, la partición está finalizada y se empieza una nueva iteración. Como
se puede intuir, RCluster, del mismo modo que UVCluster, genera comunidades
que son siempre cliques. La novedad de RClsuter es que los cliques se forman de
manera aleatoria, todos a la vez y no de uno en uno, como en UVCluster. Sin em-
bargo, el hecho de que RCluster tenga un coste computacional mayor, unido a que
sus resultados no sean significativamente mejores que los de UVCluster, nos hizo
descartarlo para análisis de redes superiores a unos pocos centenares de nodos. No
obstante, sigue siendo de interés si se quiere realizar un análisis exhaustivo de una
red concreta, ya que puede ser capaz de detectar comunidades con propiedades
distintas de las que detectaŕıan los demás algoritmos incluidos en Jerarca.

Por su parte, SCluster, tras inicializar cada nodo en una comunidad distinta,
selecciona uno de ellos y agrega a su comunidad a todos sus vecinos. Una vez hecho
esto, la comunidad está completa y se pasa a seleccionar otro nodo de entre los
restantes al azar. Se repite este proceso hasta que no quedan nodos seleccionables.
Este proceso, más rápido que los anteriores, consigue un coste computacional de
O(n log n), lo que permite realizar análisis de redes con decenas de miles de uni-
dades en muy poco tiempo. Aunque la estrategia es de una gran simplicidad, ha
sido el algoritmo de los incluidos en Jerarca que ha mostrado un mejor compor-
tamiento en la gran mayoŕıa de las redes. Los únicos casos observados en los que
UVCluster es superior es cuando la densidad de conexiones en la red es muy baja
y la estructura de comunidades es prácticamente inexistente (véanse las Figuras
2 y S1 en el art́ıculo original de Jerarca). La explicación se debe a que en esos
momentos, el prototipo de comunidad definido intŕınsecamente en SCluster es

126



demasiado laxo e incapaz de reflejar correctamente las relaciones vecinales entre
nodos. UVCluster por el contrario, y como ya hemos indicado, define las comu-
nidades en forma de cliques crecientes [Arnau et al. 2005] y de este modo puede
extraer de este tipo de redes al menos los triángulos y pequeños cliques que se
puedan formar.

En nuestra experiencia, tanto SCluster como UVCluster se encuentran entre
los mejores algoritmos de detección de comunidades [Aldecoa y Maŕın 2011,Alde-
coa y Maŕın 2012,Aldecoa y Maŕın 2013,Aldecoa y Maŕın 0000]. Un problema ha-
bitual en detección de comunidades es que muchas de las estrategias comúnmente
utilizadas tienen dificultades para reconocer particiones cuyas comunidades tie-
nen tamaños muy distintos. Es en este tipo de redes donde ambos algoritmos
superan a la mayoŕıa de métodos publicados hasta el momento. En particular,
SCluster aparece como el mejor algoritmo de los publicados hasta el momento en
los benchmarks RC que hemos testado [Aldecoa y Maŕın 2013, Aldecoa y Maŕın
0000].

Por otro lado, el programa original UVCluster realizaba el clustering jerárqui-
co de la matriz de distancias secundarias exclusivamente mediante UPGMA [So-
kal y Michener 1958]. Jerarca también contiene esta estrategia y además añade
Neighbor-Joining [Saitou y Nei 1987] (un algoritmo muy popular en el ámbito
del análisis filogenético) como segunda opción. La inclusión de otra alternativa se
debe a dos razones. Por un lado, en muchas ocasiones, UPGMA no es capaz de
construir el mejor árbol a partir de una matriz de distancias, siendo a menudo
superado por Neigbor-Joining [Saitou y Nei 1987]. Por otro lado, al disponer de
dos árboles, que en la mayoŕıa de los casos serán distintos, podemos evaluar el
doble de particiones a la hora de determinar las comunidades óptimas de la red.

Evaluación de la estructura de comunidades

Una vez extráıdo el árbol jerárquico en el que el proceso de clustering jerárquico
iterativo transforma la red, los cortes a diferentes alturas del dendrograma se
corresponden con diferentes particiones de la red en comunidades. Por tanto,
asumiendo que la jerarqúıa es correcta, es posible definir como mejor partición de
la red aquel nivel del árbol cuyas comunidades estén mejor definidas. Para ello,
en el art́ıculo original de UVCluster [Arnau et al. 2005] se propone una medida de
calidad basada en una distribución hipergeométrica que, como ya hemos indicado
en la Introducción, más tarde modificamos ligeramente y llamamos Surprise. En
Jerarca, además de esta medida, incluimos también la evaluación de las particiones
mediante Modularity (Q). Aunque más tarde demostramos que Q no es una buena
medida para este fin, el programa ofrece al usuario la posibilidad de extraer la
mejor partición de la red con una u otra estrategia. Además, la posibilidad de
seleccionar ambos ı́ndices como medida de calidad nos ha permitido, en todos los
trabajos posteriores, comparar fácilmente los resultados de Modularity y Surprise
en distintas redes, simplemente ejecutando Jerarca en cada una de ellas.
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Fácil interpretación de los resultados

Jerarca también presenta nuevas ventajas para el usuario final, generando fi-
cheros que pueden ser trasladados posteriormente a programas bien conocidos co-
mo MEGA [Tamura et al. 2007] o Cytoscape [Smoot et al. 2011]. Para el primero,
Jerarca produce ficheros que contienen las descripciones de los árboles jerárqui-
cos generados. Por otro lado, los ficheros creados como entrada para Cytoscape
contienen la asignación de cada nodo a su comunidad, con lo cual puede visua-
lizarse gráficamente (por ejemplo, mediante diferentes colores) la estructura de
comunidades de la red.

Por último, cabe destacar que Jerarca permite ejecutar con un solo comando
todas las posibles combinaciones de los distintos algoritmos -tres iterativos (UV-
Cluster, RCluster y SCluster), dos jerárquicos (UPGMA y Neighbor-Joining)- y
las dos medidas de calidad de las particiones (Q y S). De este modo el usuario
obtiene un amplio abanico de soluciones con las que trabajar. Dado que los tres
algoritmos iterativos (UVCluster, RCluster y SCluster) son altamente paraleliza-
bles (ya que cada iteración es completamente independiente de las demás), en un
futuro próximo Jerarca podŕıa ser capaz de analizar redes de cualquier tamaño.
También hay que resaltar la estructura modular del código de Jerarca, la cual
permite fácilmente añadir nuevos algoritmos o funciones de evaluación de las co-
munidades al programa. Por todo lo comentado anteriormente, podemos afirmar
que Jerarca cumple con los dos objetivos para los que fue diseñado. Por un la-
do, asienta la estrategia de clustering jerárquico iterativo propuesta en nuestro
anterior trabajo [Arnau et al. 2005], añadiendo nuevos algoritmos y análisis al-
ternativos, y por otro nos ofrece una poderosa herramienta, fácil de utilizar para
el usuario, para detectar comunidades en redes complejas, la cual está a la al-
tura de algunos los mejores algoritmos propuestos hasta el momento. El código
del programa, liberado bajo licencia GPLv3, puede ser libremente descargado en
http://jerarca.sourceforge.net.

Desarrollo de un nuevo tipo de benchmarks

Hemos propuesto un nuevo tipo de benchmarks, denominados cerrados [Al-
decoa y Maŕın 2012]. Este nuevo modelo direcciona el barajeo de las conexiones
hacia una estructura final predefinida, en vez de degradar las comunidades hacia
un grafo aleatorio como ocurre en los benchmarks tradicionales. Esta segunda red
es estructuralmente idéntica a la inicial, lo que favorece que se produzca un com-
portamiento simétrico conforme las conexiones se barajean desde la estructura
inicial a la final. Además, para inicializar el benchmark, el usuario puede utilizar
cualquier tipo de red, lo que permite testar el comportamiento de un algoritmo
en diferentes topoloǵıas.

La caracteŕıstica más importante de un closed benchmark es poder afirmar
si un algoritmo se ajusta al comportamiento que debeŕıa seguir en caso de ser
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óptimo. Durante el proceso de conversión de la estructura inicial (I) a la final (F),
esperamos que la red intermedia (E) se aleje de I a la misma velocidad que se
acerca a F. Por tanto, utilizando la Variación de Información [Meilă 2007] como
medida de distancia, esperamos que si se cumple la propiedad citada, la suma de
las distancias de I a E (VIIE) y de E a F (VIEF ) sea igual a la distancia de I
a F (VIIF ). De este modo, para un algoritmo óptimo, se debeŕıa cumplir VIIE
+ VIEF = VIIF durante todo el benchmark. Además, calculando la distancia
entre el lado izquierdo y el derecho de esa ecuación (a la cual llamamos VIδ en el
art́ıculo técnico), podemos obtener un valor que nos indica cuán alejada está una
partición estimada (E) del comportamiento óptimo. De esta manera, podemos
utilizar VIδ para evaluar y clasificar algoritmos [Aldecoa y Maŕın 2012]. Por otro
lado, también hay ciertas propiedades que un buen algoritmo debe satisfacer en
estos benchmarks, como que su comportamiento sea simétrico respecto al 50 % de
conversión de una red en otra y que durante la primera mitad de este proceso sus
soluciones obtenidas sean más similares a la partición inicial que a la final.

Como se puede apreciar, desde un punto de vista teórico existen importantes
diferencias respecto a todos los benchmarks publicados anteriormente. Además,
las gráficas obtenidas mediante análisis emṕıricos de diferentes algoritmos, mues-
tran diferencias entre sus comportamientos que no se podŕıan apreciar utilizan-
do open benchmarks [Aldecoa y Maŕın 2012, Aldecoa y Maŕın 0000]. Todas es-
tas propiedades hacen de los closed benchmarks una herramienta de gran in-
terés para evaluar detalladamente algoritmos de detección de comunidades. Pue-
de encontrarse un script en Perl para generar closed benchmarks en https:

//github.com/raldecoa/ClosedBenchmarks.

Surprise: Una excelente medida para evaluar la
calidad de una partición

Esta es, sin duda, la mayor aportación de esta tesis doctoral al campo de
estructura de comunidades. Establecer una medida que evalúe correctamente la
calidad de una partición en comunidades es cŕıtico en multitud de areas cient́ıfi-
cas. Un objetivo principal de nuestro trabajo era comprobar si dicha evaluación
se pod́ıa llevar a cabo eficientemente utilizando una distribución hipergeométrica
para calcular la “rareza” de la disposición de las conexiones de una partición obser-
vada, como sugerimos en [Arnau et al. 2005]. A lo largo del trabajo hemos testado
ampliamente y bajo multitud de redes con diferentes topoloǵıas esta medida, a
la que hemos denominado Surprise (S), debido a que evalúa cuán sorprendente
(es decir, cuán improbable) es la distribución de conexiones dentro y fuera de las
comunidades de una partición dada.

En un primer art́ıculo mostramos cómo este ı́ndice funcionaba apropiadamente
y sus resultados eran mejores que los de Modularity (Q), la medida más popular y
utilizada en este contexto desde 2004 [Aldecoa y Maŕın 2011]. Ambas estrategias
fueron testadas en dos benchmarks con distintas propiedades (LFR y RC) y bajo
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dos configuraciones distintas (open y closed). Los resultados de S son mejores
que los de Q en la gran mayoŕıa de los casos. Además, aplicando Surprise a redes
reales obtuvimos resultados excelentes, como en el caso de una red de interacción
protéına-protéına en Saccharomyces cerevisiae o en una red de equipos de fútbol
americano muy conocida [Aldecoa y Maŕın 2011]. El único caso donde las comu-
nidades devueltas por Surprise no fueron las esperadas a priori fue en la famosa
red de un club de kárate recopilada por W.W. Zachary [Zachary 1977]. Sin em-
bargo, prácticamente ningún método de los utilizados en la literatura detecta dos
comunidades y no existe un consenso sobre cual es la estructura de comunidades
real de la red.

Viendo el potencial de esta medida y para comprobar si realmente Surprise
podŕıa ser una buena candidata para resolver el problema de la evaluación de la
calidad de una partición, decidimos llevar a cabo análisis más exhaustivos. En
un trabajo publicado recientemente [Aldecoa y Maŕın 2013], utilizamos para ello
dos benchmarks muy distintos (LFR y RC), en sus formas open y closed y 18 de
los mejores algoritmos de detección de comunidades. Para conseguir particiones
de la red con altos valores de Surprise, elegimos de entre las soluciones de todos
algoritmos, siempre aquella de mayor S. Los resultados son contundentes. Uti-
lizando esta estrategia, obtenemos mejores resultados que con cualquiera de los
algoritmos por separado. Además las soluciones son, en la gran mayoŕıa de casos,
idénticas a las esperadas (i.e., a las particiones originales de los benchmarks). In-
vestigando las pocas situaciones en las que no ocurre esto, pudimos observar que
era debido a unos pocos nodos, siempre perteneciente a pequeñas comunidades
que se véıan ligeramente modificadas. El hecho de que esto ocurriese en casos
donde la degradación de la red era muy alta y, sobre todo, que dichas particiones
discordantes fuesen detectadas a la vez por varios algoritmos, nos dice que proba-
blemente éstas fuesen ahora las comunidades reales existentes y no las esperadas
inicialmente [Aldecoa y Maŕın 2013].

Por último, testamos Surprise en redes donde otros ı́ndices, como Q o es-
trategias multiresolución basadas en modelos de Potts, fracasan al recuperar la
estructura de comunidades. El primer escenario es el denominado anillo de cliques,
donde Q fusiona comunidades pequeñas debido a su ĺımite de resolución [Fortuna-
to y Barthelemy 2007]. Tras evaluar redes de hasta un millón de nodos generadas
con esa topoloǵıa, Surprise fue capaz de reconocer las comunidades esperadas sin
ningún problema. El segundo escenario presenta una red simple pero con comu-
nidades de tamaños muy distintos en una misma partición [Granell et al. 2012].
En esta topoloǵıa, los algoritmos multiresolución basados en modelos de Potts
son incapaces de detectar las comunidades pequeñas sin fragmentar las grandes
o de detectar las grandes correctamente sin fusionar las pequeñas [Lancichinetti
y Fortunato 2011,Xiang y Hu 2012]. Por el contrario, Surprise recupera en todo
momento la partición esperada.

En resumen, el conjunto de análisis realizados, la ausencia de problemas en
redes donde otras medidas fracasan y el extremadamente bajo error cometido en
todos los casos analizados, apuntan a que Surprise podŕıa ser una medida óptima
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para evaluar la calidad de la estructura de comunidades de una red.

Otra conclusión importante de este trabajo es la evidencia de que el uso de
Modularity para evaluar la calidad de una partición es erróneo. Aunque se sab́ıa
que la medida teńıa ciertos defectos [Fortunato y Barthelemy 2007,Lancichinetti y
Fortunato 2011,Xiang y Hu 2012], hasta ahora no se hab́ıa demostrado tan clara-
mente que sus resultados no correlacionan con la calidad real de las comunidades
de una red [Aldecoa y Maŕın 2013]. Este hecho es altamente importante, ya que
existen cientos de art́ıculos, en numerosos campos cient́ıficos, donde Modularity
ha sido utilizada para resolver problemas reales (e.g., [Lusseau et al. 2006,Hender-
son y Robinson 2011,Alexander-Bloch et al. 2012,Doron et al. 2012,Albert et al.
2013] y muchos otros) y cuyos resultados con gran probabilidad son erróneos.

Comparación de algoritmos

Clustering jerárquico de sus soluciones

En el trabajo que se encuentra en revisión [Aldecoa y Maŕın 0000], proponemos
un nuevo tipo de análisis para caracterizar y clasificar algoritmos de detección de
comunidades. La idea consiste en comparar las soluciones de los algoritmos para
una red determinada. Realizando un clustering jerárquico de todas estas solu-
ciones podemos observar las diferencias relativas entre el comportamiento de los
distintos métodos. Aunque este tipo de análisis se puede aplicar a cualquier red
individual, en dicho trabajo lo aplicamos a closed benchmarks. De este modo,
además de observar las diferencias entre algoritmos, podemos ver cómo estas rela-
ciones evolucionan conforme avanza el barajeo de las conexiones de la estructura
inicial a la final. Esta novedosa estrategia permite una caracterización más pro-
funda de los métodos de detección de comunidades y se plantea como una dura
prueba a la que poder someter cualquier nuevo algoritmo que se genere en un
futuro.

Estado de la cuestión

Como se ha comentado anteriormente, durante toda la tesis doctoral, hemos
realizado multitud de análisis con numerosos algoritmos de detección de comuni-
dades, los cuales quedan reflejados a lo largo de los diferentes art́ıculos. En nuestro
trabajo más reciente, mostramos cómo los closed benchmarks ayudan a mostrar
la gran diferencia existente entre los comportamientos de esos métodos [Aldecoa
y Maŕın 0000]. Este hecho ya se pod́ıa intuir en nuestro art́ıculo anterior, donde
se observan importantes cambios en los resultados dependiendo de la estrategia
utilizada [Aldecoa y Maŕın 2013]. Ningún algoritmo es capaz de conseguir los
mejores resultados en todos los benchmarks, lo cual es una conclusión más im-
portante de lo que podŕıa parecer en un principio. Muchos de estos algoritmos
que, hasta ahora eran considerados “buenos”, han sido aplicados a redes reales
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buscando extraer información de sus distintas comunidades (refs. [Meunier et al.
2009,Sethi et al. 2009,Lewis et al. 2010,Song et al. 2011,Kenah et al. 2011] entre
otras). Sin embargo, como queda demostrado en nuestros análisis en benchmarks
open y closed, no podemos confiar plenamente en sólo uno de ellos, dado que su
comportamiento depende de la topoloǵıa de la red analizada. Por tanto, es posi-
ble que las conclusiones de algunos de estos estudios no sean del todo acertadas
o incluso sean erróneas. Es importante también resaltar que, como cab́ıa esperar,
todos los algoritmos basados en Modularity se encuentran siempre clasificados en-
tre los que peor comportamiento tienen [Aldecoa y Maŕın 2013,Aldecoa y Maŕın
0000]. Este hecho, junto con la demostración de que Q no evalúa correctamente
la estructura de comunidades de una red, debeŕıa finalmente hacer desisitir del
uso de Q en nuevas publicaciones.

Por tanto, como demuestran nuestros dos últimos art́ıculos [Aldecoa y Maŕın
2013, Aldecoa y Maŕın 0000], la mejor estrategia para detectar la estructura de
comunidades de una red actualmente es la maximización de Surprise mediante
la combinación de algoritmos. Es decir, ejecutar el máximo número posible de
algoritmos sobre una red y, de entre sus soluciones, extraer aquella de mayor S.
Esto se debe a que no existe todav́ıa ningún método diseñado espećıficamente para
maximizar Surprise. Obviamente, la generación de algoritmos en esta dirección
puede mejorar cualitativamente el campo de la detección de comunidades en redes
complejas.

Un nuevo paradigma en la detección de comunida-
des

Surprise no es simplemente una medida más para la evaluación de comuni-
dades en redes, sino que representa una aproximación distinta al problema, un
nuevo paradigma en el campo de la estructura de comunidades. En nuestra opi-
nión, la estructura de comunidades es una propiedad sistémica de las redes. Es
decir, las comunidades no existen por śı mismas, sino que emergen como grupos
de nodos significativamente estad́ısticamente conectados dada la configuración y
el patrón de conexiones de la red entera. Esta afirmación choca de frente con una
parte importante de los estudios realizados hasta el momento y, sobre todo, con
las medidas de evaluación de comunidades presentes en la literatura.

Existe una diferencia importante, a nivel conceptual, entre Surprise (S) y otros
tipos de medidas propuestas hasta el momento, como Modularity (Q) y similares
(e.g., evaluaciones basadas en modelos de Potts). Cada uno de los términos del
sumatorio en la fórmula original de Q (fórmula 1.1 de la introducción), representa
la calidad de una comunidad. Es decir, las comunidades se evalúan localmente
y luego se suman sus calidades para obtener el valor Q. Por tanto, aunque Q
aparece como un ı́ndice global de la partición, en realidad evalúa de forma local
cada comunidad. Por el contrario, Surprise evalúa la calidad de la partición de
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forma sistémica, donde la significancia de una comunidad no depende sólo de ella
si no también de como están distribuidos el resto de las conexiones de la red. S
calcula la improbabilidad de la partición en su conjunto, teniendo en cuenta al
mismo tiempo la distribución de nodos y conexiones de la red entera.

Aunque los resultados mostrados en todos los análisis realizados hasta la fecha
nos indican que Surprise muestra un comportamiento excelente, es posible que no
sea la medida “final”, la solución al problema de la detección de comunidades. Sin
embargo, consideramos que este tipo de aproximaciones sistémicas son el camino
a explorar y la dirección a seguir para una correcta identificación de la estructura
de comunidades de una red.
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Caṕıtulo 4

CONCLUSIONES

1. Jerarca, una herramienta de gran interés desarrollada para cualquier tipo
de usuario, permite extraer información de la estructura jerárquica y de
comunidades de una red.

2. UVCluster y en especial SCluster, dos de los algoritmos incluidos en Jerar-
ca, han demostrado un excelente comportamiento a la hora de determinar
la estructura de comunidades de una red. En particular, SCluster ha mos-
trado el mejor comportamiento de entre todos los algoritmos testados en
benchmarks del tipo Relaxed Caveman.

3. El uso de closed benchmarks para evaluar algoritmos de detección de co-
munidades presenta importantes ventajas teóricas, ha demostrado ser una
prueba más dura y reporta más información que los resultados obtenidos
mediante open benchmarks.

4. Queda demostrado que la estructura de comunidades de una red puede ser
evaluada utilizando una medida basada en una distribución hipergeométri-
ca, a la que llamamos Surprise. Surprise muestra un comportamiento ex-
celente en todos los casos analizados y sus resultados son cualitativamente
superiores a los obtenidos por Modularity.

5. La evaluación de un gran número de algoritmos de detección de comunida-
des tanto en open como en closed benchmarks muestra que ninguno de ellos
es capaz de obtener buenas soluciones en todos los casos. Sin embargo, la
estrategia de maximizar Surprise (basada en elegir para cada red el algorit-
mo que consigue un valor más alto de Surprise) obtiene siempre soluciones
óptimas o cuasi-óptimas.

6. El nulo o extremadamente bajo error producido al detectar comunidades
maximizando Surprise sugiere que esta estrategia podŕıa estar muy cerca
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de solucionar el problema de la detección de la estructura de comunidades
de una red.
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