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Abstract i 

Abstract 
This thesis dissertation presents background push Content Download Services as an 

efficient mechanism to deliver pre-produced television content through existing broadcast 

networks. Nowadays, network operators dedicate a considerable amount of network 

resources to live streaming live, through both broadcast and unicast connections. This 

service offering responds solely to commercial requirements: Content must be available 

anytime and anywhere. However, from a strictly academic point of view, live streaming is 

only a requirement for live content and not for pre-produced content. Moreover, 

broadcasting is only efficient when the content is sufficiently popular.  

The services under study in this thesis use residual capacity in broadcast networks to push 

popular, pre-produced content to storage capacity in customer premises equipment. The 

proposal responds only to efficiency requirements. On one hand, it creates value from 

network resources otherwise unused. On the other hand, it delivers popular pre-produced 

content in the most efficient way: through broadcast download services. 

The results include models for the popularity and the duration of television content, 

valuable for any research work dealing with file-based delivery of television content. Later, 

the thesis evaluates the residual capacity available in broadcast networks through empirical 

studies. These results are used in simulations to evaluate the performance of background 

push content download services in different scenarios and for different applications. The 

evaluation proves that this kind of services can become a great asset for the delivery of 

television content.  
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Resumen 
Este trabajo de tesis presenta los servicios de descarga de contenido en modo push como un 

mecanismo eficiente para el envío de contenido de televisión pre-producido sobre redes de 

difusión. Hoy en día, los operadores de red dedican una cantidad considerable de recursos 

de red a la entrega en vivo de contenido televisivo, tanto sobre redes de difusión como 

sobre conexiones unidireccionales. Esta oferta de servicios responde únicamente a 

requisitos comerciales: disponer de los contenidos televisivos en cualquier momento y 

lugar. Sin embargo, desde un punto de vista estrictamente académico, el envío en vivo es 

únicamente un requerimiento para el contenido en vivo, no para contenidos que ya han sido 

producidos con anterioridad a su emisión. Más aún, la difusión es solo eficiente cuando el 

contenido es suficientemente popular. 

Los servicios bajo estudio en esta tesis utilizan capacidad residual en redes de difusión para 

enviar contenido pre-producido para que se almacene en los equipos de usuario. La 

propuesta se justifica únicamente por su eficiencia. Por un lado, genera valor de recursos de 

red que no se aprovecharían de otra manera. Por otro lado, realiza la entrega de contenidos 

pre-producidos y populares de la manera más eficiente: sobre servicios de descarga de 

contenidos en difusión. 

Los resultados incluyen modelos para la popularidad y la duración de contenidos, valiosos 

para cualquier trabajo de investigación basados en la entrega de contenidos televisivos. 

Además, la tesis evalúa la capacidad residual disponible en redes de difusión, por medio de 

estudios empíricos. Después, estos resultados son utilizados en simulaciones que evalúan 

las prestaciones de los servicios propuestos en escenarios diferentes y para aplicaciones 

diferentes. La evaluación demuestra que este tipo de servicios son un recurso muy útil para 

la entrega de contenido televisivo. 
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Resum 
Aquest treball de tesi presenta els serveis de descàrrega de contingut en mode 

push com un mecanisme eficient per a l’enviament de continguts de televisió 

produïts amb anterioritat sobre xarxes de difusió. Hui en dia, els operadors de 

xarxes dediquen una quantitat considerable de recursos de xarxa al lliurament en 

viu de contingut televisiu, tant sobre xarxes de difusió com sobre connexions 

unidireccionals. Aquesta oferta de serveis respon únicament a requisits 

comercials: disposar dels continguts televisius  en qualsevol moment i lloc. No 

obstant, des d’un punt de vista estrictament acadèmic, l’enviament en viu és 

únicament un requeriment per al contingut en viu, no per a continguts que ja han 

estat produïts amb anterioritat a la seua emissió. Més encara, la difusió no més és 

eficient quan el contingut és suficientment popular. 

Els serveis baix estudi en aquesta tesi utilitzen capacitat residual en xarxes de 

difusió per enviar contingut produït amb anterioritat per a que s’emmagatzeme en 

els equips de l’usuari. La proposta es justifica únicament per la seua eficiència. Per 

una banda, genera valor de recursos de xarxa que no s’aprofitarien d’altra forma. 

Per altra banda, realitza el lliurament de continguts produïts amb anterioritat i 

populars del mode més eficient: sobre serveis de descàrrega de continguts en 

difusió. 

Els resultats inclouen models per a la popularitat i la duració de continguts, 

valuosos per a qualsevol treball d’investigació basats en el lliurament de continguts 

televisius. A més, la tesi avalua la capacitat residual disponible en xarxes de 

difusió, mitjançant estudis empírics. Després, aquests resultats són utilitzats en 

simulacions que avaluen les prestacions dels serveis proposats en escenaris 

diferents i per a aplicacions diferents. L’avaluació demostra que aquest tipus de 

serveis són un recurs molt útil pel lliurament de contingut televisiu. 
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Chapter I  

 Introduction 

The main purpose of this initial chapter is to describe the objectives and the methodology 

of the thesis. The chapter starts with a classification of the most widely used television 

content delivery technologies. This classification is included to provide a better 

understanding of the purpose and characteristics of unidirectional background push content 

download services. Later, the chapter includes a description of the proposed service, 

presenting its architecture and describing its main features in order to facilitate the 

presentation of the objectives and the methodology.  

I.1 Classification of television content delivery technologies 

Traditionally, television service providers have used dedicated broadcast platforms for the 

delivery of television services. These broadcast platforms -satellite, cable or terrestrial- 

migrated to digital technology to cope with the increasing requirements for quality, content 

offer and interactivity. In the mean time, IP networks have emerged as a delivery channel 

for video services, fostering the appearance of different IP based video delivery 

technologies.  

Due to these developments, nowadays television service providers have many different 

options to deliver their content. Clearly, choosing the best technology depends on different 

aspects and it is important to classify them according to their characteristics. A simple 
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classification can be made based on three characteristics: Infrastructure requirements, 

delivery method and service type. 

First, content delivery technologies can be classified according to the infrastructure 

resources they require. There are content delivery technologies that use dedicated 

infrastructure and network resources, e.g. Digital Video Broadcast (DVB) or IP Television 

(IPTV) technologies. Similarly, other delivery technologies use dedicated infrastructure, 

but share network resources with other services. This is the case of video technologies 

based on Content Delivery Networks (CDNs) over the Internet. Lastly, other technologies 

use neither dedicated infrastructure nor network resources, as television services delivered 

over Peer-to-Peer (P2P) networks. 

A second characteristic to take into consideration is the delivery method used – unicast, 

multicast or broadcast. This way, unicast technologies send the video to each viewer on a 

separate IP connection. Oppositely, broadcast technologies establish a single connection 

from the source to all hosts connected to the network, regardless if the video is being 

watched or not at any particular host. Moreover, multicast technologies use a single 

connection, as in broadcast, but send the video only to interested viewers, as in unicast.  

The third characteristic of content delivery technologies regarded in this simple 

classification is the type of service, that is, whether they are based on content download or 

streaming services. Content download consists of sending the programs to the users as files. 

The video is presented after the download process is completed. Alternatively, video 

streaming technologies maintain a constant delay between the ingestion and the 

consumption of every video sample, so that the presentation of the video can be initiated at 

any point of the video timeline, without downloading the entire video. In order to 

compensate for non-constant delays (e.g. network delay or decoding delay), it is necessary 

to introduce intermediate buffers. The size of these buffers should be sufficiently high to 

guarantee a constant delay, but at the same time, it should be kept as small as possible to 

minimize end-to-end delay. An alternative between streaming and content download is 

pseudo-streaming, where the presentation can start at any point of the video timeline as in 
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streaming, except that before starting the playback, it is necessary to download a piece of 

the video file as in content download. 

Figure 1 shows this classification applied to popular technologies used to deliver television 

content. The figure also highlights two commercial stages in the life cycle of television 

content. The first phase, content released represents the time when the content is (first) 

aired in a television channel. The second phase, content downloadable represents the time 

when the content is available for download to viewers. As shown in the figure, there are 

different technologies used in each one of these phases. It is also worth noting that the 

figure does not make a distinction between network layer multicast – when the underlying 

network supports multicasting – and application layer multicast – when the network does 

not provide multicast support (P2P) and multicasting is implemented in the application 

layer. 

 

Figure 1. Classification scheme of popular content delivery technologies used for television programs. 

In recent years, the amount of network resources consumed by these technologies has 

experienced an increasing growth and the weight of video traffic is expected to continue 

rising in the years to come. As an example, according to [1], in 2010 Internet video (IPTV, 

Internet video and Video on Demand) represented 40% of consumer Internet traffic, 

reaching 62% by 2015, not including P2P video file exchange. Accounting for video P2P 
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file exchange, this percentage goes up to 90%. Moreover, according to [2], in the first 

quarter of 2012, 15% of all television viewership happened on Internet connected devices. 

This growth is forcing network operators to reconsider how video services are provided 

today and how video traffic is treated across the networks.  

Indeed, these streaming technologies were not deployed because of their network resource 

utilization efficiency, but mainly because other commercial requirements. For instance, 

HTTP and P2P streaming respond to a commercial requirement: allowing users to watch 

television content anywhere, through the Internet. Similarly, HTTP Video on Demand 

(VoD), HTTP and P2P content download respond to the demand for television content to 

be available at anytime. On the other hand, IPTV appeared to allow Internet Service 

Providers to bundle telephony, Internet access and television together in their service offer. 

Note that none of these requirements are related to resource utilization. However the core 

business of a network operator is to monetize its network resources and therefore, it is of 

capital importance that content delivery technologies use the network in an efficient 

manner. 

Nevertheless, each category in the classification above has very different characteristics 

when it comes to network resource utilization.  

First, dedicated infrastructure and network resources ensure that content is delivered with 

sufficient quality to all potential viewers inside the service area, at the expense of high 

costs in network resources. Obviously, the decision about using dedicated infrastructure 

should be made considering the economic viability of the service, whether the service will 

generate enough economic resources to sustain the initial investments -Capital 

Expenditures (CAPEX) - and the Operational Expenditures (OPEX) associated to the 

infrastructure resources. In this sense, sharing network resources with other services 

reduces both CAPEX and OPEX, but at the expense of decreasing (or at least 

compromising) the Quality of Service (QoS). 

Second, broadcast and multicast are more efficient than unicast when there are several 

simultaneous clients of the service, since broadcast and multicast use a single connection to 
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deliver the content to all viewers. In theory, the use of broadcast (or multicast) is only 

motivated when there is a critical mass of spectators looking at the same program at the 

same time. This only happens for television content that is sufficiently popular. For the rest 

of the content offering, it is more efficient to send the programs over unicast connections. 

Last, the provision of streaming services with sufficient Quality of Service (QoS) imposes 

more strict requirements to the network than content download services. In this sense, 

streaming is only a requirement for live content. Pre-produced content can be delivered any 

time after it is produced. Actually, from a network operator point of view, rather than just 

delivering the content, the challenge is to stream television content to the largest audience 

affordable, keeping a good QoS. 

Current television services do not always take these technological aspects into 

consideration. As mentioned, there were other aspects rather than economic viability 

behind the appearance of dedicated broadcast networks for television content delivery. The 

actual popularity of a program is not considered - or just in very basic terms - in order to 

decide if that program should be delivered over broadcast/multicast or unicast. Finally, 

there is no distinction between pre-produced content and live content in video streaming 

services. All these factors can be exploited by innovative content delivery technologies that 

actually take them into account, as the content download services under study in this thesis.  

The next subsection describes unidirectional background push Content Download Services 

(CDS), a content delivery technology that can be provisioned over the residual bandwidth 

of a network with broadcast or multicast support. First, the service is conceived to make the 

most of broadcast infrastructure, using the bandwidth left by streaming services to push 

content to local storage capacity in client devices. Second, the service only deals with 

popular content, well suited for broadcasting. Third, being a background content delivery 

service, it does not impose any instant bandwidth requirements on the network. Therefore, 

this kind of services can become a great asset for network operators wanting to make a 

more efficient use of broadcasting resources.  
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I.2 Unidirectional background push Content Download Services 

Popular CDSs (highlighted in Figure 1 for downloadable content) use either unicast (i.e. 

HTTP content download and HTTP video on demand) or application layer multicast (i.e. 

P2P content download) protocols to deliver the content. This means that these services do 

not benefit from the efficiency inherent to broadcast or network multicast, when the same 

content is delivered to several clients concurrently. This is because, these services have 

been designed to work across the Internet, where there is no end-to-end support for 

broadcasting or network multicasting. 

On the contrary, CDSs that use broadcast or multicast connections are referred to as 

unidirectional CDSs and they allow all clients interested in the same content item to 

download it from a single connection, thus benefiting from the efficiency inherent to 

broadcasting. Broadcast CDS can be delivered over television broadcasting networks, like 

DVB networks. Additionally, any network delivering IPTV services provides end-to-end 

support for IP broadcast and content download services can benefit from this feature. 

There are two different kinds of CDSs: push content download, where the delivery is 

initiated by the server; and pull content download, where the delivery is initiated by the 

viewer. Thus, pull CDSs generate traffic in the network after a client request, whereas the 

traffic generated by push content download services can be controlled on the server side. 

Another characteristic common to the different CDSs in Figure 1 is that they are pull CDSs 

and therefore, the bandwidth they use depends to a great extent on the user demand. 

Contrarily, unidirectional push CDSs are managed by the service provider, who is in 

control on the generated traffic. 

Finally, the concept of background CDSs is used in this thesis to refer to services that use 

network resources not used by any other service. In video broadcasting networks, video 

streaming services are delivered over reserved network resources of fixed capacity. 

However, video traffic is by nature variable with time and it follows that the reserved 

network resources are not used to their full extent at all times. This excess of reserved 

capacity can be used to provision other services with no instant capacity requirements, as 
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long as they do not compromise the QoS of the streaming services. Clearly, unidirectional 

background push CDSs can benefit from this excess of reserved capacity, since they do not 

have any instant capacity requirements and the traffic generated can be controlled at the 

server side. Hence, Unidirectional background push CDSs send multimedia content to 

customer premises devices through existing broadcast connections, without interfering with 

the primary live streaming services. 

At the client side, the service stores the files delivered by the unidirectional background 

push CDS in local storage. The download process is transparent to the user: there is no 

explicit indication from the user on which files to keep in storage. Moreover, the service 

works as a prefetching cache, downloading files in the background before they are offered 

to the user. 

Unidirectional background push CDSs reuse the network infrastructure of television 

streaming services, while at the same time consume little (and unused) network resources. 

Therefore, these services turn out to be inexpensive to network operators. Hence, 

background broadcast push CDS can improve the efficiency of television content delivery 

with very little overhead in terms of operational expenditures and no need for additional 

infrastructure.  

This kind of background services can be provisioned over any network with broadcast 

support and can play different roles in combination with other television services, either 

Linear TV services or VoD services. For the latter, the service could be used to push 

content to local storage. This way, the background service works as a prefetching cache, 

thus reducing both the traffic of the on demand service and the access time. Another use 

case, useful for both linear and on demand services, could be to detach the transmission of 

advertisements from the main transmission service or to send alternative content for 

playback under special circumstances, like no proper reception of the main service.  

These use cases show that unidirectional background push CDS could provide value for 

different actors in the value chain. Content providers make more value of the resources 
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dedicated to content delivery; network operators make a better usage of network resources; 

and television viewers benefit from improved Quality of Experience (QoE).  

I.2.1 Architecture 

Figure 2 shows the architecture of the unidirectional background push CDS proposed in 

this thesis. A CDS delivers content from a content repository, together with metadata 

descriptions of the content (Content Descriptions). The CDS implements a Scheduler, 

establishing the order at which files are delivered. The main role of the scheduler is to 

optimize the service performance, by changing the order in which files are transmitted, 

according to properties like their size or their popularity. Later, the CDS is delivered over a 

background virtual channel by means of Opportunistic Insertion. Opportunistic Insertion 

inserts packets from the Content Download Service whenever there is capacity available in 

the network. This way, the CDS is delivered over a virtual channel, the background 

channel, made of the residual transmission capacity in the reservations of a television 

service (the primary service).  

 

Figure 2.   Unidirectional background push CDS architecture. 

The client needs to implement the corresponding broadcast CDS client. The figure presents 

the protocol stack of the one implemented and under study in this thesis, the FLUTE (File 

Delivery over Unidirectional Delivery) protocol, described in the next section. The storage 
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memory is managed by a Storage Management policy, to ensure that the client uses only 

the storage capacity reserved for the background service. In this proposal, a Recommender 

uses feedback from user interaction and the metadata in the Content Guide to model the 

user preferences (User profile). With this, the Recommender is able to provide the Storage 

Management with an estimation of the usefulness of each content item. In turn, the Storage 

Management uses this information to filter the contents offered in the CDS, in order to keep 

in storage only the items that better fit the user preferences. This introduces some level of 

personalization to the service, thus improving the QoE. 

This brief overview highlights the main features of the service: Use of residual capacity to 

deliver CDSs and storage management to introduce personalization. Nonetheless, in order 

to better understand the objectives of this thesis, it is necessary to introduce the key 

concepts behind two of its main components: File delivery over unidirectional transport and 

storage management for unidirectional file delivery. 

I.2.2 File delivery over unidirectional transport 

Multicast protocols improve the scalability of data transfer services. In unidirectional 

environments, where the network does not guarantee the delivery of data without errors, it 

is necessary to provide additional mechanisms to improve the reliability of the file 

transmission. FLUTE [3] is a protocol for the reliable provisioning of content download 

services over the unidirectional IP transport protocol UDP.  

FLUTE transmissions are organized in sessions, identified by a unique Transport Session 

Identifier (TSI) and addressed to a single IP multicast group. The traffic of a FLUTE 

session can be organized in several channels, each one using a different UDP (User 

Datagram Protocol) destination port and transmission rate. In FLUTE, each file has a 

unique identifier – Transport Object Identifier (TOI) –, included in the FLUTE header of 

every packet so that clients can filter the packets of the file they want to download. The list 

of files delivered in a session and their corresponding TOIs are indicated in the File 

Delivery Table (FDT), which is a text file delivered in band (with TOI equal to 0). There 

are two different ways to schedule transmissions within a FLUTE session: file carousels 
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and scheduled file transmissions. In the latter, the session has a limited duration, bounded 

by a start time and an end time. On the other hand, in file carousels, files are transmitted 

one after another on an endless loop. 

Moreover, there are three complementary mechanisms to provide reliability in FLUTE file 

delivery sessions: retransmissions, Application Layer Forward Error Correction (AL-FEC) 

and file repair sessions. File retransmissions allow the clients to recover the missing 

packets of a file by transmitting the same file again in the session. Clearly, retransmissions 

are a reliability mechanism inherent to file carousels. Additionally, AL-FEC consist of 

generating redundancy to the transmission of a file, so that clients are able to recover 

missing packets from the redundant information. Finally, file repair sessions provide an off-

line bidirectional service to download missing packets on request.  

Regarding AL-FEC, FLUTE implements a FEC building block that allows to generate FEC 

parity from file data and send the parity over the session together with the original contents 

of the file. FLUTE divides the original file into source blocks, each consisting of n 

encoding symbols: k source symbols and n-k parity symbols generated by a FEC code 

applied over the original symbols. Each encoding symbol conforms the payload of a 

FLUTE packet. The relation k/n, or code rate, establishes the parity introduced in the file 

(the less k/n, the more protection). Sometimes, this relation is expressed as the ratio n/k, 

referred to as the FEC ratio.  

In order to generate parity symbols, the FEC encoder performs mathematical operations 

over other symbols (source symbols or previously computed parity symbols). The decoder 

performs the opposite mathematical operations to recover a missing packet from correctly 

received packets. The efficiency of an AL-FEC code is expressed as the ratio between the 

number of packets needed to recover a block and the number of source symbols k. This 

coefficient is known as the inefficiency ratio (inef_ratio).  

I.2.3 Storage management for unidirectional file delivery 

At the receiver, the service client downloads files from the FLUTE session. The storage 

size is limited and may not be sufficient to store all the files that a user is interested in. 
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Therefore, it is necessary to implement storage management policies to maximize the value 

of the files kept in memory.  

In the literature, these kinds of client applications are referred to as broadcast caches [4]. 

Previous studies indicate that the performance of broadcast caches is subject to the 

estimation of a parameter: the usefulness, that is, the probability that a file is requested in 

the near future. In this proposal, the usefulness is derived from the historical usage of the 

television service of a particular viewer, i.e. the user profile. 

As indicated in Figure 2, the service delivers a metadata description of each file in the form 

of a Content Guide. Content-based recommendation systems [5] calculate the usefulness of 

a file by comparing its metadata description to the user profile. Basically, a content-based 

recommender describes every content item on a specific semantic space. Similarly, a user 

profile expresses the user preferences in the same semantic space. Then, the usefulness of a 

content item is estimated with a similarity function between its description and the user 

profile. Hereby, the storage management uses this estimation to decide which files to keep 

in memory.  

I.3 Problem definition 

As mentioned above, in convergent television scenarios, there are multiple transport 

options for television content delivery: unicast or multicast, streaming or (push / pull) 

content download. For a network operator, there are many parameters that determine what 

is the best alternative for a given program (e.g. content audience, popularity or network 

conditions). Therefore, it is of interest for network operators to look into appropriate 

transport schemes combining seamlessly different methods to better utilize their network 

infrastructure.  

In this context, the motivation of this thesis work is to:  
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Unidirectional background push services reuse network investments meant for other 

services, while at the same time consume little (and unused) network resources. Therefore, 

these services turn out to be inexpensive to network operators. Hence, unidirectional 

background push CDS can improve the efficiency of television content delivery with very 

little overhead in terms of operational expenditures and no need for additional 

infrastructure. With this motivation, the main objective of this thesis work is to evaluate the 

benefits of the provision of background content download services for different 

stakeholders in the television content value chain: television content providers, network 

operators and consumers. 

I.4 Scope and contributions 

This thesis provides different contributions to the study of this kind of services, which are 

listed below: 

i) Unidirectional background push Content Download Services 

The first contribution of this thesis work regards the modeling of the key system aspects of 

content download services for television content delivery, taking into consideration: 

What are the quality metrics that characterize the performance of background Content 

Download Services? What models are needed to evaluate these metrics for television 

content? 

The next section, Methodology, and the Chapter II are dedicated to these questions. The 

Methodology section provides a description of the quality metrics of CDSs, together with a 

brief introduction of the models used to characterize key aspects of the system, like the 

Evaluate the use of background capacity -network capacity otherwise unused- 

to prefetch pre-produced television content over unidirectional background 

push content download services. 
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content source, the communication channel and the user requests. Later, Chapter II 

describes the different models used.  

ii) Opportunistic insertion of background television services 

Next, this thesis is dedicated to verify the viability of the service proposal and provide an 

answer to the questions: 

Is it possible to provide unidirectional background push content download services over 

television networks? What mechanisms can be used to insert data of a content download 

service together with a streaming service without compromising its QoS?  What is the 

bandwidth available for the background service? 

In this sense, Chapter III describes Opportunistic Data Insertion in first-generation 

broadcast networks and second-generation broadcast networks, as the technology enabler to 

use residual capacity for the insertion of background services. Moreover, the chapter 

provides an empirical assessment of the capacity available for opportunistic insertion in 

broadcast networks. These measurements are used in Chapter IV to obtain models for 

opportunistic insertion in different scenarios and to estimate the performance of 

background CDS over background channels. 

iii) File carousel AL-FEC and scheduler optimization.  

Later, the research work is focused on the server side, especially in the AL-FEC building 

block and the file scheduler: 

What configurations of the FLUTE AL-FEC block optimize the service performance? And 

what file scheduling policies? What is the relationship between AL-FEC and file 

scheduling? 

In this sense, Chapter V shows the improvements on the service performance brought by 

AL-FEC encoding, object multiplexing and the combination of both techniques. The 
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chapter presents a novel algorithm for object multiplexing, based on the Fluid Fair Queuing 

(FFQ) algorithm, comparing its performance to a previously proposed algorithm. 

iv) Storage management, QoE and personalization  

Finally, the last section of the thesis deals with the process at the client side, especially with 

the storage management and its relationship to the user experience: 

What are the properties of a file that should be considered by storage management 

policies? What is the optimum size of a cache for a background CDS? How does the CDS 

affect the QoE of television services? 

Chapter VI analyzes the performance of the storage management policies. The results 

assess the effect of the recommender in the service performance and the relationships 

between the storage size and the file carousel size. 

I.5 Methodology 

The methodology applied in this thesis is mainly based on the evaluation of two parameters 

that determine the performance of the service under study, the overall access time and the 

average cache hit ratio. The evaluation is performed through simulations and experimental 

measurements to validate the results of the simulations.  

The access time is regarded as the most important quality metric for content download 

services. Back to the architecture in Figure 2, at one point, the storage management 

discovers a new content item in the content guide and decides that it should be kept in local 

storage. The access time is defined as the time elapsed between the instant when the storage 

management makes the decision until the content is completely downloaded in local 

storage. Furthermore, the overall access time is defined as the average access time among 

all the different content downloads in the service area. 

On the other hand, the cache hit ratio is defined as the proportion of user requests to an on 

demand service that are successfully served from local storage, providing to the user the 

files that have been previously downloaded (pre-fetched) with the background push CDS. 
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As with the average access time, the average cache hit ratio is an average of the cache hit 

ratio among all users in the service area. 

The evaluation of the overall access time and the average cache hit ratio relies on a system 

model for unidirectional background CDSs for television content delivery. Figure 3 shows 

a schematic representation of the system model: 

 

Figure 3. Diagram of the system model 

The parameters of the model are set so as to simulate different service scenarios. Each 

scenario is characterized by the nature of the content, the average bit rate available for the 

background CDS and the amount of losses in the channel. 

In the content model, each program grid item –programs, commercials- is regarded as a 

separate file in the Content Download Service. In this study, television programs are 

characterized by their content duration, file size and popularity. The models used in this 

thesis are based on parametric statistical distributions, obtained from commercial television 

content.  

As for the server model, one of the main characteristics of the proposed service architecture 

is the use of FLUTE file carousels to deliver the content. Consequently, the server model 

simulates the generation of FLUTE file carousels, taking as input the properties of the files 

defined in the content model. As indicated, the FLUTE protocol implements an AL-FEC 

building block. Adding AL-FEC parity to the carousel improves the download time in 

channels with packet losses, at the expense of increasing the carousel cycle (i.e. the time 

needed to broadcast the different files). The simulations are aimed at finding optimal 

configurations of the AL-FEC building block for FLUTE file carousels. 
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Additionally, related literature [4], [6] shows that file carousels for television content may 

be weighted, so that files do not necessarily have the same carousel cycles, for instance, to 

foster the download of popular content. The scheduler is the system block in charge of 

shaping the file carousel. Although there are several studies about scheduling policies for 

weighted carousels, none regard packet losses and AL-FEC parity. This thesis work 

addresses the problem with a different perspective than previous works, by taking into 

account both network and application layer requirements under the same study. The 

simulations show how AL-FEC and weighted carousels affect the overall access time in the 

presence of channel losses. 

The channel model provides a model for the packet losses in the communication channel. 

More specifically, in FLUTE carousels, the channel losses determine the expected number 

of carousel retransmissions needed to download a certain program. In order to validate the 

channel model, a series of experimental results are conducted using a service prototype in 

laboratory conditions. 

At the receiver side, the storage management needs to decide which files to download from 

the file carousel and manage the storage space available for the service. Moreover, this 

decision-making process should be transparent for the user, but at the same time, it should 

introduce some degree of personalization in the service, in order to adapt to the user 

preferences. Like the AL-FEC and the scheduler building blocks, the storage replacement 

policy is subject to optimization. Specifically, this thesis defines a generic model to 

evaluate different cache management policies based on the heuristics of the well-known 

knapsack problem [7]. This model is referred to as the cache model.  

Note that the decisions made by the storage management policy are transparent to the user. 

For this reason, there are separated models for the cache application and the user model. 

The user model becomes necessary in the evaluation of the cache hit ratio, when the 

background CDS service is used as a prefetching cache for a VoD service. For this case 

study, it is necessary to model how the users generate requests for the different content 

items over time. In this thesis, QoE and personalization are related to the ability of the 
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service to successfully push programs of interest for the user. Consequently, QoE is related 

to the access time and the cache hit ratio. It is worth highlighting that the cache of the 

background content download service saves bandwidth for the primary service on every 

cache hit. Thus, the cache hit ratio is also related to the bandwidth savings brought by the 

background service.  

The following chapter is dedicated to describe in detail each of the system model blocks 

mentioned above.
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Chapter II  

 System models 

In order to evaluate the performance of background push CDSs through simulations, it is 

necessary to develop models for the content sources, the communication channel, the 

storage management and the user. This chapter is divided in three sections. The first 

section, server models, addresses the models at the server side, that is, the content sources. 

On the other hand, the second subsection describes the models used to characterize the 

communication channel. Finally, the client models section describes the models at the 

client side, that is, the models for the storage management and the user. 

Regarding the content sources, current communication network services deal with all sorts 

of data, from lightweight messages to very large files. In many cases, the evaluation of new 

service proposals relies on source models to simulate the generation of service traffic. In 

this sense, the background CDSs under study in this thesis deliver multimedia files 

containing encoded video. Therefore, in order to evaluate its performance through 

simulations, it is necessary to obtain meaningful models for the most relevant parameters of 

video files: The file size and the popularity. 

Thus, section II.1 includes parametrical statistical models for the content duration and the 

popularity of television programs. These models are obtained by fitting their curves to the 

statistics of a popular online television content repository, the Internet Movie Database 

(IMDB) [8]. Such models can be very valuable for studies dealing with television content 
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delivery to different kinds of devices. To our understanding, there is no previous work 

modeling the duration of television programs (professional content appearing in traditional 

television channels). Alternatively, the section includes models for the content duration of 

user generated content sources (YouTube) available in previous research works. 

Similarly, in order to simulate the performance of a service in a channel with packet losses, 

it is necessary to obtain models for the communication channel in the different reception 

conditions under study. Section II.2 presents the channel model used in this thesis to 

simulate channel losses, specifically designed to deal with carousel retransmissions in 

broadcast CDSs. The channel model has been validated through measurements carried out 

with an application prototype in laboratory conditions. 

Finally, after presenting the models used for the content and the communication channel, 

II.3 introduces the models used for the storage management application and the users. In a 

general sense, it can be stated that any storage management application deals with a 

combinatorial optimization problem, because it needs to decide which is the subset of the 

files in the carousel best kept in local storage, without overpassing the storage space limit. 

In combinatorial optimization, this problem is known as the knapsack-problem [7]. Section 

II.3.1 presents the model obtained for the storage management policy used in this thesis, 

which is based on a well-known heuristic that solves the knapsack problem. The cache 

model allows to simulate the decisions made by different storage management policies and 

in extension, different implementations of the client application. Later, section II.3.2 

describes the model used to simulate the generation of user requests, that is, the user model. 

Based on the well-known Poisson distribution, the user model makes it possible to generate 

user requests for different files over time. 

This way, the different service models presented in this section are used in the simulations 

carried out in later chapters to produce the results. 
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II.1 Server models 

The increasing success of IP video delivery services technologies poses several challenges 

to both network operators and service providers. Services like Video on Demand and IPTV 

are becoming the most important sources of Internet traffic and for this reason, a lot of on-

going research studies focus on technologies that deal specifically with video traffic. New 

cache replacement strategies [9], hybrid multicast-unicast transport [10], P2P systems [11] 

or CDN networks [12] are few of the technologies conceived to alleviate the pressure that 

video traffic puts on IP networks. 

In this context, the duration and the popularity of video items are important parameters for 

file-based video delivery technologies, like HTTP streaming [13] or FLUTE [3]. In the 

evaluation of these technologies, it is important that these parameters are accurately 

modeled, providing statistical properties as similar as possible to real video sources. 

Ultimately, the file size of video items depends on two fundamental characteristics of 

media files: The duration and the encoding rate. While the content duration is intrinsic to 

the content itself, the encoding rate is dependent on the application. As an example, a 

service targeting mobile devices does not apply the same encoding rate as a service that 

targets High Definition television sets, but the duration of a particular program is the same 

in both cases. As Internet video is becoming more ubiquitous, it seems more convenient to 

use separate models for the content duration and the encoding rate. This is the approach 

taken in this thesis. Nevertheless, to our understanding there is no previous work modeling 

the duration of television programs (professional content appearing in traditional television 

channels). Such models can be very valuable for studies dealing with television content 

delivery to different kinds of devices. 

On the other hand, there are several use cases where a model of the popularity of television 

content becomes necessary. For instance, the design of new caching strategies based on 

content popularity [9] or the optimization of hybrid multicast-unicast transport [10] -using 

multicast for the most popular programs and unicast for the less popular programs- require 

models for the content popularity. There are several research works that analyze the 
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popularity of Internet video sharing sites (e.g. YouTube), but to our understanding, there is 

no previous work modeling the popularity of television content. Currently, television 

content is delivered through different technologies (broadcast, IPTV, Internet video) and it 

seems crucial to characterize its popularity. 

With this motivation, we have obtained parametric statistical models for the content 

duration and the content popularity of television content, obtained from the Internet Movie 

Database (IMDB) [8]. Quoting its web site, the IMDB is “the world´s most popular and 

authoritative source for movie, TV and celebrity content”. The IMDB gathers information 

about television programs aired all over the world and, with several hundred thousand 

entries, it represents a very comprehensive set of data. The parameters of the models are 

adjusted to fit the statistics of the empirical data in the database. Later, the accuracy of the 

models is numerically assessed and example applications illustrate how the models can be 

used for the analysis of the performance of video delivery technologies. Finally, the models 

are compared to other models presented in previous work dealing with UGC content.  

II.1.1 Parametric models for file sizes and content durations 

The file size is an important parameter in the evaluation of content download services. 

However, in many study cases, the sizes of all the files available through the service are not 

known a priori. This is particularly true when the evaluation has a general character, when 

the number of possible files to take into consideration is very large or when their 

characteristics are not completely determined. In these cases, it is convenient to model the 

size of files by means of statistical distributions that provide approximated values to the 

actual file sizes in a given application.  

For this reason, different research papers have investigated the statistics of web files 

(Hypertext and image files) available on the Internet, in order to obtain statistical models 

for the file sizes of web content. In [14], the file sizes of four different datasets are 

approximated by a lognormal (LN) distribution. Later, the study analyses the different 

datasets in order to find evidences of long tails in their Probability Density Functions 

(PDF). 
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Statistical distributions where one can expect very large files or very small files, compared 

to the average size, are referred to as long tail distributions. This name is due to the fact that 

the presence of large files or small files in the samples provides the PDF with an 

asymptotic behavior. As shown in Figure 4, in a long tail distribution, the components of 

the PDF that are far away from its body, or central part, have a significant weight. On the 

other hand, a file size distribution where the appearance of very large or very small files is 

a rare event is categorized as short tail distribution, as it is generally the case for lognormal 

distributions. 

 

Figure 4. Example of long tail file size distribution. 

The conclusion of [14] is that these long tails are not found in the datasets under analysis, 

unlike other previous studies on the workload of web servers [15], which stated that the 

PDF of web file sizes has a normal body but long tails. Testing that there are no long tails is 

important for the hypothesis behind the lognormal model: new web files are modifications 

of previous web files and therefore, their size can be determined by multiplying the size of 

previous web files by a random factor to a previous file size, as depicted in Figure 5. This 

assumption, known as the law of proportionate effect, is the structural cause of the LN file 

size distribution, that is, its generating model. Furthermore, the main objective of [14] is to 

prove that this generating model yields to a LN distribution. 

On the other hand, [16] presents a different generating model, where new files are not 

necessarily variations of the same file, but of a set of files. This new generating model, 
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which appears to be more flexible than the one presented in [14], yields to a Double Pareto 

Lognormal (DPLN) distribution [17]. That is, the structural cause of the DPLN file size 

distribution is the combination of applying the law of proportionate effect to several files in 

parallel, as shown in Figure 5.  

 

Figure 5. Generating models for the Lognormal and the Double Pareto Lognormal distributions. 

Regarding video content, there are different research works investigating the workload of 

video sharing Internet sites. [18] analyses the requests to YouTube from a University 

campus network during a long period of time, providing values for the mean and the 

covariance of the file size obtained from the requests. Similarly, [19] develops a lognormal 

model of the traffic generated by requests to YouTube from a campus network. The file 

size of YouTube content is estimated by randomly sampling the payload size of the 

requests. On the other hand, [20] uses a monitoring tool that issues automatic requests 

using the YouTube Data Application Programming Interface (API). The paper provides 

two fitting functions for the encoding rate and the content duration of YouTube content. 

In summary, previous related works regarding web files or videos from YouTube provide 

statistical models for the file size in their respective services. Most of the related studies 

obtain parametric statistical models that follow either the LN distribution or the DPLN 

distribution. At this point, it is worth highlighting that the importance of the LN distribution 

and the DPLN distribution lies in their underlying generating models, which can be used to 
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extrapolate future behavior of the distributions. It is important to emphasize that it is harder 

to motivate such extrapolations just by fitting statistical distributions to empirical data. 

Clearly, the models obtained in the aforementioned studies are not valid for television 

content, mainly for two reasons. The most important reason is that the nature of the content 

is different. Obviously, neither web content nor User Generated Content (UGC) have the 

same characteristics as television content, which mainly consists of television shows and 

movies. The second reason is that the file size of videos depend on the encoding rate, which 

is application dependent – a video for an Internet VOD site is not encoded in the same way 

as a video for a service targeting television sets.  

However, the same methodology can be applied to obtain the LN and DPLN distributions 

that best fit the duration of television programs. In order to do this, it is necessary to replace 

file size for content duration in the assumptions made to apply the underlying generating 

models.  

This way, according to the generating model of the lognormal approximation, the duration 

of television programs can be obtained by applying a random factor to the duration of 

previous television programs. This generating model yields to a lognormal distribution for 

the content duration. The PDF of the lognormal distribution is given by: 
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where s is a data sample. The parameter µ is referred to as the location and it is related to 

the expected value of the distribution. The parameter σ, i.e. the shape, is related to the way 

that the variation of the distribution is shaped around the location. Given a set of data 

samples, s, the estimation of the parameters of the LN distribution is very straightforward: 

µ is approximated by the mean of the logarithm of s and σ is estimated as the standard 
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deviation of the logarithm of s. On the contrary, the mean of s is given by e µ+! 2 /2( )  and its 

variance by  e2µ+! 2

e!
2

!1( ) . 

Regarding the Double Pareto-Lognormal (DPLN) distribution, the generating model also 

assumes that television programs are modifications of previous programs. The main 

difference with the lognormal generating model is that there can be several different initial 

programs in the generating model. The PDF of the DPLN distribution is:  
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where A(!," ,# ) = e!"+$
2# 2 /2 , while  and  are the PDF and the Cumulative 

Density Function (CDF) of the standard normal distribution. The parameter δ is related to 

the right tail of the distribution, whereas the parameter β is related to the left tail of the 

distribution. On the other hand, ν and τ are related to the location and the shape of the 

distribution. In general, the DPLN has long tail behavior in both tails. Furthermore, this 

behavior can be observed in the CDF and the Complementary CDF (CCDF) of the 

distribution: 

 

pdf (s) ~ !A(!," ,# )s!!!1   (s"#) pdf (s) ~ $A(!$ ," ,# )s$!1   (s" 0)
ccdf (s) ~ A(!," ,# )s!!   (s"#) cdf (s) ~ A(!$ ," ,# )s$   (s" 0)

 

(3) 

Moreover, these equations show how the parameters δ and β determine the shape of the 

tails of the distribution. On the other hand, the estimation of the parameters is more 

complicated for the DPLN distribution than for the LN distribution. [17] presents two 

different methods to obtain the parameters of the DPLN distribution, the Method of 

Moments Estimates (MME) and the method of Maximum Likelihood Estimates (MLE). 

! x( ) !c x( )
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Both are well known methods in statistics. The MME method provides an estimation of the 

parameters of the DPLN distribution from the statistics of the set of data samples, s, as:  

 

!3 = 2 /"3 + 2 / # 3                   !4 = 6 /" 4 + 6 / # 4

E(log(s)) =$ +1 / " !1 / #     var(log(s)) = % 2 +1/" 2 +1/ # 2
 (4) 

In the equation, κ3 and κ4 are the third order and fourth order cumulants of the logarithm of 

the set of data samples, s. Depending on the dataset, the MME may not provide a valid 

solution. Nevertheless, this is not a problem because the use of the MME method is only 

recommended to provide initial values for the MLE method.  

On the other hand, the MLE method is an iterative method that obtains the parameters that 

maximize the likelihood function, which is the likelihood that the empirical data is obtained 

from the distribution. The convergence of the method depends on its initial values. In the 

absence of a valid solution of the MME method, [17] indicates that the initial parameters 

for the MLE method should be find by trial and error. Moreover, it is recommended to 

check the PDF, CCDF and CDF in order to verify the asymptotic behavior in both tails of 

the distribution to avoid convergence issues.  

II.1.2 Modeling the running length of television (IMDB) content 

The last section proposed the LN and the DPLN distributions as two parametric statistical 

distributions that can be used to model the content duration of television content. In this 

section, these distributions are fitted to the distributions of the content duration of items in 

the IMDB database. The IMDB provides alternative interfaces to use the database for non-

commercial purposes. Through them, it is possible to download the content duration 

(running length) information as a plain-text file that has 741,281 entries. Figure 6 shows the 

CDF (top-left), the CCDF (bottom-left) and the PDF (right) of the content duration of 

television programs obtained from the IMDB in logarithmic scale, together with the 

asymptotic CCDF and CDF approximations in eq. 3 that evidence the power law behavior 

of the distribution. The PDF shows program durations from few seconds and up to a 

maximum length of almost a week. The PDF has its central body from approximately zero 
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to 100 minutes of duration. There are clear peaks at 30 minutes, 60 minutes and 90 minutes, 

which are very typical durations for television programs. The mean duration of the 

distribution is 55.6 minutes and the standard deviation is 53.7 minutes. The third and fourth 

order cumulants are 0.82 and 0.26. Regarding the tails of the distribution, the CDF and the 

CCDF are rather linear, which may indicate long tail behavior of the distribution for both 

short and long programs. 

 

Figure 6. Cumulative Density Function, Complementary Cumulative Density Function and Probability 
Distribution Function of the running length in the IMDB database. 

The parameters of the Lognormal distribution are obtained from the empirical data just by 

setting µ to the mean value and σ to the standard deviation [8] of the logarithm of the 

samples. This method yields to the distribution LN(3.7,1.0). Regarding the DPLN 

distribution, the MME method (eq. 4.) does not have a solution for the IMDB sample data. 

Therefore, the starting values for the MLE method must be found by trial and error [17]. 

We have initiated the search with the approximations in eq. 3. (δ = 2.22, β = 1.04, ν = 3.55, 

τ= 0), but the MLE did not converged. However, with the initial values of (δ = 2.22, β = 

1.04, ν = 8.29, τ= 1.26) the MLE method converges to the distribution DPLN(4.36, 1.26, 

4.22, 0.63). Additionally, the distribution DPLN(8.96, 2.87, 3.65, 1.20) has been obtained 

by curve fitting the PDF of the IMDB data. 
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Figure 7 shows the empirical PDF of the IMDB dataset, together with the PDFs of the 

different analytical models presented above: The lognormal (LN) distribution, the DPLN 

approximation according to eq. 3 (DPLN AP), the DPLN distribution obtained with the 

MLE method (DPLN MLE) and the curve fitted DPLN (DPLN CF). As shown in the 

figure, the LN distribution, the DPLN MLE and the curve fitted DPLN distribution provide 

good approximations for the central part of the distribution. However, there are significant 

differences between the model and the empirical data at the peaks highlighted in Figure 6, 

as well as in the left tail of the PDF. For these reasons, none of the distributions provide a 

perfect match from a goodness-of-fit point of view, although they provide density functions 

close to the empirical data. 

 

Figure 7. Probability Density Function (PDF) of the IMDB dataset together with the Lognormal 
distribution and the Double Pareto Lognormal Distributions. 

In order to show the behavior at the left tail of the distribution, Figure 8 shows the 

empirical CDF of the short duration programs (from 6 seconds to 100 minutes) in the 

dataset and the parametric models. The comparison of the CDF in Figure 8 shows that the 

LN distribution and the DPLN CF distribution approximate the CDF of the dataset with a 

similar accuracy for the short duration samples in the dataset. The DPLN MLE distribution 

provides a better fit to the central part of the distribution, but the DPLN CF approximates 

better the shortest duration samples. Moreover, it is worth noting that the DPLN is more 
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likely to provide very small program durations, whereas the LN distribution is less likely to 

provide very small program durations, both compared to the empirical CDF. 

 

Figure 8. Cumulative Density Function (CDF) of the IMDB dataset together with the lognormal 
distribution and the Double Pareto Lognormal Distribution. 

On the other hand, in order to see clearly what happens at the right tail of the distribution, 

Figure 9 presents the CCDF of long duration programs, from 10 minutes and up to 1000 

minutes. 

 

Figure 9. Complementary Cumulative Density Function (CCDF) of the IMDB dataset together with the 
lognormal distribution and the Double Pareto Lognormal Distribution. 
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The DPLN MLE distribution provides the best approximation to the empirical CCDF and 

in general, a better fit to statistics of the empirical data. On the other hand, the DPLN CF 

distribution provides an upper bound for both tails of the empirical data. This can be 

convenient in simulations verifying how the long tails affect the service performance. 

Looking at the CDF, CCDF and PDF, it is clear that the parametric distributions have 

density functions that are close to the statistics of the running length in the IMDB dataset. 

At this point, it is interesting to evaluate the expected error in a simulation. With this in 

mind, let us define the set of N durations selected randomly from the database X = [x1, x2, 

..., xN] and the set of N durations Y = [y1, y2, ..., yN], generated with a probability 

distribution. Both sets are sorted so that they are monotonically decreasing. Then, the error 

of sample i is defined as . 

 

Figure 10. Cumulative Density Function of the differences between sets of files generated with statistical 
models and randomly selected from the database. 

Figure 10 shows the CDF of the mean error found in 1,000 simulations of sets of 10, 20, 

1,000 and 20,000 random samples. The error found for the LN and the DPLN MLE 

distributions is compared to the error of a non-parametric (NP) distribution (generated with 

Matlab fitting tools) that matches exactly the statistics of the database. The DPLN CF 

!i = abs(xi ! yi ) / xi
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approximation is obviated because it provides worst results than the DPLN MLE 

distribution.  

The error of the DPLN MLE distribution is lower than the error of the LN distribution in all 

cases. Note that, due to the difficulty of modeling small sample sets, the mean error is 

higher for sets of 10 and 20 files. Moreover, the differences with respect to the error of the 

NP distribution increase with the number of files in the set. However, in every case, the 

error of the two parametric distributions is rather close to the error of the NP distribution. 

For instance, the mean error found in sets of 20 files is lower than 0.37 for 90% of the 

simulations with the LN distribution, lower than 0.33 with the DPLN MLE distribution and 

lower than 0.30 with the non-parametric distribution. Likewise, the error of the LN 

distribution is smaller than 0.22 in 90% of the simulations for sets of 20,000, whereas the 

error of the DPLN MLE distribution is smaller than 0.15 and the error of the non-

parametric distribution is smaller than 0.07. It is worth noting that the size of current 

Internet movie catalogs is in the order of thousands (e.g. around 60,000 in Netflix or 1,800 

in Amazon), so the values for sets of 1,000 and 20,000 are representative of the error 

expected when emulating streaming services. 

In conclusion, provided the great range of durations found in the database, it can be stated 

that the DPLN MLE distribution provides a simple and relatively accurate model to 

generate sets of programs from the IMDB, when the number of files required by the 

simulations is sufficiently large. On the other hand, both the LN and the DPLN models 

provide simple and accurate models for the duration of television programs when the 

number of files in the simulations is small. In any case, whether the model is valid or not 

for a particular application depends on the accuracy required in the simulations and on how 

the errors in the model affect the results of the simulation. 

Regarding the objective of this thesis, it is not so important to work with very accurate 

models, but with simple models that provide similar program durations as real television 

programs, allowing to draw general conclusions about the performance of background 

CDS. On the other hand, the number of files used in the simulations is relatively small. For 
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these reasons, the LN model is used in the rest of this work to obtain the program durations 

of the television programs in the simulations. On the other hand, the DPLN model is used 

in some studies, in order to assess the effect of the long tails (very long programs) in the 

results.  

It is worth noting that, since the models provide values for the program duration, it is 

possible to use them for different applications (e.g. High Definition video or video to 

portable devices) by adjusting the encoding rate. Additionally, for better accuracy, it is 

possible to use either the non-parametric model or the values from the dataset, at the 

expense of computational power. 

Finally, as mentioned, the IMDB collects data from television productions and movies. 

However, there are other sources of content not accounted for in the database, like user-

generated content. In order to provide a broader perspective to the study, we will use 

another set of program duration distributions from measurements performed over the VoD 

service YouTube in [18]. By the time the study was performed, Youtube had limited the 

maximum size of the content uploaded to the site. Thus, the contents in the video service 

were mainly short user-generated videos and promotional videos like advertisement, movie 

trailers or music video clips. Therefore, the dataset under analysis represents another kind 

of television content not regarded in the IMDB, but still relevant for this study. The data 

analyzed provides a mean duration of only 162 seconds and a coefficient of variation of 

0.55 seconds, which is the ratio between the standard deviation and the mean and 

consequently, the standard deviation is 89.1 seconds. Hence, the distribution LN(0.86, 

0.51) is used in following studies to model YouTube content.  

II.1.3 Parametric models for the content popularity 

The content popularity is a crucial parameter in the evaluation of the workload of content 

delivery services. In this study, content popularity is a measure of the audience of television 

programs. Therefore, the most popular program of a service is the program that has more 

views. Hence, content probability is related to the relative access probability of each 
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television program offered in the service. As with the file sizes, it is necessary to obtain 

probability distributions that can model the popularity of television content. 

[21] describes how the ZIPF distribution (and in general power law distributions) provides 

a good model for the long term, stationary behavior of complex network systems, as long as 

they have two characteristics: a) they are open networks, in the sense that new nodes are 

added continuously to the network and b) they exhibit preferential attachment, or 

preferential connectivity, meaning that better connected nodes are more likely to be 

connected to other nodes than nodes with less established connections. 

From this perspective, [22] finds evidence of the ZIPF distribution in the popularity of web 

content. Web pages are regarded as nodes and hyperlinks as links between nodes in the 

graph model of the network and the number of links to pages can be model with a ZIPF 

distribution. Furthermore, the parameter of the ZIPF distribution can be obtained from the 

underlying preferential attachment model. Thus, it is possible to simulate future states of 

the network. This model for the size of web files has been used in numerous publications. 

In a similar way, the popularity of video content can be modeled as a network. This way, 

content and users are regarded as nodes of a complex and dynamic network. A connection 

between a content item and a user is established whenever a user watches (or ranks) a 

movie. Therefore, the content popularity is determined by the number of connections to a 

content item, which can be modeled by a certain ZIPF power law distribution. This way, 

assuming preferential attachment and no information filtering, given a set of N content 

items ordered by their popularity ranking i=1,..,N, so that the item with i=1 is the most 

popular item and the item with i=N is the least popular item, the popularity of program i, 

PN(i) is defined as: 

  (5) 

Note that the ZIPF distribution has only one parameter, α, which determines how fast the 

popularity decreases with the ranking index. Given a set of empirical data, it is easy to 
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estimate α, just by linear interpolation of the logarithm of PN(i) against the logarithm of i. 

obviously, the value of α depends on the nature of the ranked items. For instance, [22] finds 

that its value is between 0.5 and 0.9 for web content, whereas [23] states that α=1 fits well 

the popularity of rented videos on a movie rental service in the United States. 

Moreover, [24] performs an in-depth analysis of the popularity of YouTube videos. This 

study confirms the power law behavior of the ZIPF distribution across several orders of 

magnitude of the popularity ranking in different video sharing sites (YouTube and Daim). 

However, the less popular videos do not fit the ZIPF probability distribution trace. It 

appears that the popularity of the less popular items is a lot lower than the one predicted by 

the ZIPF distribution and that a power law with exponential cut-off distribution fits better 

the experimental data.  

[25] shows evidence that information filtering (users not being aware of all the contents 

available) can be the cause of the exponential cutoff in the distribution of connections in 

complex information networks. Recall that the ZIPF distribution popularity model is based 

on an open network model with preferential attachment. Information filtering consists of 

hiding some nodes of the network to the rest, so that it is not possible to establish links 

between any two nodes. The number of connections to any node in this new random 

network model is modeled by a power law distribution with exponential cutoff. 

Hence, if we assume that there is information filtering in the network model, i.e. not all 

viewers are aware of all the television programs, the content popularity follows a power 

law distribution with exponential cutoff. The popularity of program i is given by: 
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The power law with exponential cut-off distribution has two parameters, α and χ. The 

power law component (determined by α) determines the popularity of most popular items, 

up to approximately 1/ χ. Hence, given an empirical sample, α can be obtained by fitting 

the popularity of most popular items with linear interpolation in a log-log scale, just as with 



Server models  

 36 

the ZIPF distribution. On the other hand, the parameter χ determines the point at which the 

exponential cut-off should override the power law component and truncate the power-law 

behavior of the distribution. 

In this sense, the empirical data in [24], [26] and [27] exhibits a cutoff in the tail of the 

power law popularity distributions. In [24], α=0.84 and χ =10-4 for Youtube content, 

whereas [26] and [27] just provide evidence of the tail truncation but no values for the 

parameters of the datasets under analysis. 

In the next section, the popularity in the IMDB dataset is adjusted to both parametric 

popularity models. 

II.1.4 Modeling the popularity of television (IMDB) content 

The IMDB database does not contain information about the audience that the television 

programs had when they were aired. However, the website allows users to rank the 

programs in the database. [18] shows that there is a correlation factor of 0.85 between user 

rankings and the number of access to video contents, meaning that an estimation of the 

popularity can be obtained from the user ratings. In order to process this information, 

anyone can download a plain file text from the IMDB alternative interfaces. The user 

ratings information consists of the total number of votes, the distribution of the votes in a 

scale from 1 to 10 points and an average rating from all the different votes. We have 

obtained an estimation of the popularity of each movie as the product between the average 

rating and the total number of votes, which is exactly the total sum of points awarded to 

each movie. Later, we have sorted the files in descending ranking order. At the time when 

this study was performed, the user ranking list in the IMDB alternative interfaces counted 

with 417,025 entries. Figure 11 plots the IMDB overall rankings together with two 

approximations that we have obtained following the methodology described in the previous 

section. 
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Figure 11. IMDB overall ratings together with the ZIPF approximation and the ZIPF with exponential cutoff 
approximation lognormal approximation. 

The comparison proves that the ZIPF distribution with α=0.34 is a good approximation to 

the overall ratings of the first items in the IMDB. The value of α is significantly lower than 

the values found in video sharing sites (YouTube) or web files in the previous studies 

mentioned above. On the other hand, the ZIPF distribution with α = 0.34 and χ =10-3 

provides a good fit to the first 1,000 content items in the ranking. However, none of the 

models fit the curve of the less popular items: The ZIPF approximation provides higher 

popularity values than the IMDB trace, while the power law approximation with 

exponential cutoff provides lower popularity values than the IMDB trace. 

These models of the popularity can be used to estimate the probability of access to the 

different television programs offered by a given service. The probability of access is the 

probability that a viewer requests a particular program. An estimation of the probability of 

access is very valuable in the evaluation of the performance of video delivery services. 

Specifically, the probability of access to a video is estimated by normalizing the popularity, 

so that the summation of the probability of access of the different files offered in the 

service is equal to one. At this point, it is interesting to evaluate the error of the two models 

in predicting the probability of access to a certain item. In this sense, Figure 12 shows the 

error of the probability of access of the two approximations compared to the probability of 
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access obtained from the IMDB dataset. If pIMDB(i) is the probability of access of file i 

estimated from the IMDB dataset and ppd(i) is the probability of access using a probability 

distribution approximation, the error is defined as !(i) = abs(pIMDB (i)! ppd (i)) / pIMDB (i) .  

 

Figure 12. Error in the probability of access for the ZIPF approximation and the ZIPF with exponential 
cutoff approximation lognormal approximation. 

The error traces bounce at zero, since they are proportional to the absolute value of the 

difference. In general, the power law with exponential cutoff distribution provides smaller 

errors than the ZIPF distribution. In any case, both provide a good fit to the probability of 

access of most popular items, (e.g. up to 100 files). However, the error of the ZIPF 

distribution becomes much larger than the error of the power law with exponential cutoff 

distribution for the less popular files. 

The main conclusion of this section is that the power law distribution with exponential 

cutoff with parameters α = 0.34 and χ =10-3 models adequately the popularity of IMDB 

content. For this reason, it is used in future studies to model the popularity of television 

content.  

The ZIPF distribution is used in some studies, in order to assess the effect of information 

filtering in the results. Additionally, the power law distribution with exponential cutoff with 

parameters α = 0.84 and χ =10-4 presented in [24] is used to model Youtube content. 
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II.2 Channel models 

In this work, the channel model allows us to evaluate the performance of the CDS server in 

different scenarios. The file size distributions in the previous section allow us to model the 

input to the CDS server. As stated, the CDS creates a carousel with the input files and will 

start pushing FLUTE packets to the network. Since the channel does not provide any 

guarantees on the delivery of the packets, it is expected that the service clients can miss 

some packets. However, in order to recover a file successfully, a client will need to receive 

all the packets of a particular file. Carousel retransmissions represent an error recovery 

mechanism, because clients can receive the packets they have missed in the first file 

transmission (after they joined the channel) in the following carousel cycles. Additionally, 

the service uses another error recovery mechanism: AL-FEC encoding, aimed at reducing 

the total number of carousel cycles needed to recover a file. 

In order to simulate carousel transmissions in channels with losses, first it is necessary to 

model the packet loss at application layer. In most communication networks, this losses are 

related to the robustness of the underlying physical layer against different effects of the 

channel, like interference or signal fading. However, for complex simulations it becomes 

necessary to develop simple models for the packet losses at application layer, that simulate 

the performance of the underlying physical layer and the communication channel. 

On the other hand, the use of AL-FEC encoding affects the way the reception of new 

packets is modeled. The basic principle of AL-FEC encoding is to add redundant packets to 

the transmission of each file. Hence, the number of packets successfully received in every 

cycle increases if AL-FEC is applied. However, with AL-FEC it is not necessary to receive 

all the original and redundant packets that are sent in every cycle. Instead, it is enough to 

receive the number of original packets multiplied by the inefficiency ratio. For modern AL-

FEC codes, the inefficiency ratio is very close to one, meaning that the number of packets 

needed to decode the file is slightly higher than the number of original packets. This way, 

the number of cycles needed is, in general terms, lower when AL-FEC is used. Below, we 

will present the model for packet losses and following, we will present two different 

models for the number of cycles, with and without AL-FEC.   
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II.2.1 Model for packet losses 

Packet erasure channel models are communication channel models that simulate the packet 

losses for packet-oriented transmission services [29]. These models are widely used in 

wireless network simulation environments. Within packet erasure channel models, 

generative discrete channel models produce endless binary sequences where zeroes 

represent correctly received packets and ones represent erroneous (erasure) packets. 

Generally, these models are able to replicate the stochastic properties of packet errors in a 

communication channel, like the average number of packet losses and the average burst 

(consecutive errors) size. 

For instance, a simple packet channel model consists of a random sequence generator with 

linear distribution in the interval [0,1]. In the sequence, a random number greater than the 

average packet loss will produce an erroneous packet (1) while a lower random number 

will produce a correctly received packet (0). This model would allow us to simulate a 

channel with a certain average packet loss, although it will not be possible to configure the 

model to provide a given average burst size.  

On the contrary, the two-state Markov model is able to produce erasure sequences with a 

given average packet loss and average burst size [29]. This model is widely used to 

simulate channel losses in wireless broadcast networks and has been used in previous 

studies to model the burst losses in broadcast networks [30]. 

The two-state Markov model is based on the Markov chain. The Markov chain assumes 

that a system can be completely described by a finite number of states. Each state is 

characterized by the probability of the system being on that state and the transition 

probabilities to change to a different state in the chain. As its name suggest, the model is 

based on two states the Good state and the Bad state [29], both generating errors at state 

dependent rates 1-g and 1-h respectively, as depicted in Figure 13: 
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Figure 13.  The two-state Markov model 

Hence, the average packet loss rate, pe and the average burst size, bs, are provided by the 

following expressions: 

 
pe = (1! g)pG ! (1! h)pB = (1! g)·

q
p+ q

+ (1! h)· p
p+ q

bs =1/ q
 (7) 

where pG is the probability of the model being in the good state and pB is the probability of 

the model being in the bad state. This way, it is possible to model a certain erasure channel 

with a two-state Markov model, by adjusting the parameters of the model to match the 

characteristics of the channel. In this sense, there is a simplified two-state Markov model 

known as the Simple Gillbert model [29], where k is equal to 1 and h is either 0 or 0.5. 

Since the Simple Gillbert model only has two degrees of freedom, it is possible to adjust its 

parameters to a channel by measuring the average packet error rate, pe and burst size, bs of 

the errors of a packet trace through the transmission channel. 

The main drawback of the two-state Markov model is that, despite it is adjusted to provide 

the average packet error rate and burst size of an error rate, it might not match other 

statistic properties of the error sample. In some cases, it is interesting to be able to model 

higher order statistical properties of the channel losses and with this motivation, the 

literature describes more sophisticated models that provide pattern losses better adjusted to 

specific wireless environments. For instance, [31] presents a comparison of the accuracy of 

different finite-state channel models in replicating the variance of the error burst length in 

mobile broadcasting systems. In their research, the authors show that such second order 
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statistical properties of the losses in wireless mobile television systems are not well 

modeled by the Gillbert model. Moreover, their research also highlights that the parameters 

of these models are highly dependent on system aspects like the configuration, the 

environment or the signal level. Another related literature shows that this conclusion can be 

extended to other systems. However, higher order statistical properties may be relevant or 

not depending on the application. For instance, the variance of the burst size is very 

important for real time streaming applications but, as reflected in [32] and [33] the Markov 

model provides accurate losses patterns to model file carousel transmissions over erasure 

channels. 

For this reason, in this thesis the two-state Markov model is used to provide the channel 

loss patterns characteristic of the scenarios under study. Recalling that the channel model is 

used to estimate the number of cycles needed to recover a file, the next section provides the 

model used to obtain the number of cycles, whereas section II.2.3 provides empirical data 

that shows that the channel model is valid for the cases under study. 

II.2.2 Model for carousel cycles 

As stated, if there are losses, it is very likely that clients need several cycles in order to 

download the file. In order to calculate the number of cycles needed to download a file, 

first it is necessary to know how many new packets are received per cycle [34]. Eq. (8) 

models the probability of receiving exactly x new packets in a loop using a hyper-geometric 

probability distribution when no AL-FEC is used. In the equation, k is the number of 

transmitted packets (source symbols) of the file, l is the number of lost packets in the loop 

and m is the total number of missing packets at the beginning of the loop.  
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The numerator expresses the possibilities of receiving exactly x new packets of the m 

missing packets out of the k - l packets received in a carousel cycle. Similarly, the 
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denominator expresses the possible combinations of x new packets within the m missing 

packets, out of the received k - l packets. Applying this hyper-geometric probability 

distribution, the expected number of packets received at loop i is: 

 x(i) = !P(!,m,k, l)
!=0

m

!  (9) 

That is, the expected number of new packets received is the expectation value of receiving 

x new packets out of the m missing packets. Finally, the number of cycles needed to 

download a file is calculated as: 

 c =min(i) / x(i) = k  (10) 

If AL-FEC is used, the probability of receive x new packets in a new loop can be modeled 

in a similar way, although there are some changes in the equations. Thus, eq. (11) -

describing the probability of receiving x new packets at cycle i with AL-FEC- is slightly 

different to eq. (8). Here, r is the number of correctly received symbols at the beginning of 

the loop, n is the total number of encoding symbols (k source symbols plus n-k parity 

symbols) of the file and l is again the number of lost packets in the loop: 
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In this case, the numerator expresses the possibilities of receiving x new packets of the n-r 

packets that have not been received correctly in previous cycles, out of the n-l packets that 

are received without errors in the current cycle. The denominator expresses the total 

number of possible combinations of n-l packets in the n transmitted packets. Then, the 

expectation value is defined as: 

 x(i) = !P(!,n, r, l)
!=0

n!r

"  (12) 
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Finally, the number of cycles needed to download a file when AL-FEC is applied is:  

 c =min(i) / x(i) = k·inef _ ratio  (13) 

where inef_ratio is the AL-FEC encoding inefficiency ratio. Therefore, with these formulas 

it is possible to calculate the number of cycles needed to download a file, depending if AL-

FEC is used or not: the expected number of new packets received per loop is calculated 

iteratively - using an hyper-geometric probability distribution - until there are enough 

packets to recover the file.  

In the calculation, the number of packets lost in every loop, l, is obtained from a two state 

Markov model. The Markov model determines which of the transmitted packets (k when no 

AL-FEC is applied and n when AL-FEC is applied) are correctly received and which are 

erroneous packets. The parameters of the Markov model are adjusted to match the 

statistical properties of error traces measured in the cases under study. Further details about 

this model are provided in [33]. 

II.2.3 Calibration of the model with measurement data 

In this section, we have used error traces collected in laboratory conditions to calibrate (and 

validate) the channel model. The measurements also evaluate the number of cycles needed 

to download a file, in order to check the accuracy of the model for content download 

services. 

 

Figure 14.  Measurement setup. 



Chapter II System models 

 45 

Figure 14 shows the setup of the measurement equipment. All service layers except for the 

physical layer are implemented in software, both at the server and at the client side.  

The server implements a video streaming server, to generate the traffic of the primary video 

service and a FLUTE server that generates the traffic for the background CDS service. It is 

worth mentioned that the FLUTE library has been implemented by the research group 

developing this thesis work. 

Hence, the server side generates the data to be transmitted to a baseband modulator. The 

baseband modulator generates an output according to the DVB-H (Handheld) specifications 

[35].  

The most outstanding aspect of the measurement setup is the usage of the baseband channel 

simulator of an Arbitrary Waveform Generator. The channel simulator is used to modify 

the received signal according to the effects introduced by wireless interfaces and mobility: 

noise interference, multipath and the Doppler effect typical of mobile channels. Moreover, 

the channel simulator allows to configure the Carrier to Noise Ratio (CNR) at the receiver. 

Additionally, the channel simulator allows to generate multipath taps, which consist of 

delayed echoes of the signal. It is possible to configure the time offset and the amplitude of 

the taps, as well as their Doppler phase shift, depending on the relative speed between 

transmitter and receiver. By configuring these parameters, it is possible to emulate many 

different reception conditions, such as fixed, pedestrian or mobile reception. 

Later, the receiver demodulates the radiofrequency signal received from the AWG, using a 

DVB hardware receiver connected to a computer. The software implements the FLUTE 

client, customized to produce the measurement results. The automation of the measurement 

procedure is achieved by allowing the client to reconfigure the parameters of the server. 

The client software controls the server through a control channel that is not part of the 

service architecture, while the parameters for the measurements are written down in test 

scripts. These scripts contain configuration parameters for the carousel, telling the server 

how many files should be included in the transmission and their respective characteristics. 
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Figure 15 and Figure 16 show the results obtained in the measurement trials. The channel 

simulator applies a TU6 channel model [36], with a Doppler speed of 50 km/h to the 

baseband signal, in order to simulate urban mobile reception. The CNR level of the 

received signal is set to two different values, to emulate two reception scenarios: good 

reception and bad reception. According to [37], a packet error rate of 5% is the maximum 

error rate that still provides an acceptable Quality of Experience for streaming services. 

Therefore, in this study, good mobile reception represents a TU6 mobile channel with a 

CINR level that provides an average error rate of 5%. Additionally, we have defined bad 

mobile reception condition, characterized by a 50% packet loss rate.  

 

Figure 15.  Number of cycles obtained under good reception conditions. 

Figure 15 shows the number of cycles against the file size for different configurations of 

the AL-FEC block: No AL-FEC parity, 20% AL-FEC parity (CR=5/6) and 50% AL-FEC 

parity (CR=2/3). The figure gathers the results obtained with the measurements and with 

the channel model, calibrated according to the error traces under good reception conditions. 

As shown in the figure, model and measurements provide very similar results in most of the 

cases.  
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Figure 16. Number of cycles obtained under bad reception conditions. 

In a similar way, Figure 16 shows the number of cycles obtained under bad reception 

conditions. Again, the results obtained from the measurements and the ones obtained with 

the channel model provide very similar results. With these results, it is clear that the models 

provide very similar number of cycles to those one could expect in a real DVB-H system. 

Hence, the models can be used in software simulations to generate results difficult to obtain 

in real systems (or even in laboratory conditions). This is the case of the evaluation of CDS 

in large service areas, with several concurrent service users. For this kind of simulations, it 

is necessary to use a model able to model the client population as well. 

II.3 Client models 

Up to this point, the analysis has covered the models for the server and the channel. This 

section describes the models used at the client side. The next subsection describes the 

models used for the background CDS client application, i.e. the application running on the 

client mobile device and in charge of downloading content to local storage. This thesis also 

analyzes how a background CDS can reduce the traffic load of a VoD service and for that 

purpose, a model for the user requests becomes necessary. This model is referred to as the 

user model and is presented in the second subsection of the client model. 
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II.3.1 Models for the background CDS client application 

Back to the architecture in Figure 2, the client implements the CDS client, the cache and 

the storage management. Moreover, the storage management uses information from the 

recommender to decide which files to keep in cache. Initially, the cache is empty. The CDS 

client will fetch a file from the carousel and store it in cache as requested by the cache 

management. It is worth noting that, since the service under study is a background service, 

the user does not implicitly requests the CDS client to download a file. Instead, it is the 

recommender that initiates the download process.  

As explained in the introduction, recommenders calculate the utility (or usefulness) of a 

content item for a particular user through a given utility function [5]. The design of the 

recommender and the details of such utility functions are out of the scope of this thesis. For 

the purpose of this study, it is enough to acknowledge that a recommender will determine 

how useful each of the content items are for the user. However, for the sake of clarity, 

Section VI.1.3 explains how a simple recommender would work inside the client 

application.  

Thus, the recommender analyses the content descriptions to determine the utility of file j, 

!pj . Later, the cache management will calculate the value of file j, vj, as a function of !pj . 

The cache has a storage capacity equal to sA. As this storage capacity may be smaller than 

the sum of the size of all files in the carousel, the storage management must decide which 

file data maximizes the overall value of the files in cache. Therefore, the cache 

management needs to find the decision vector  that maximizes the value 

of files in cache. Assuming that the cache management only keeps entire files, yj=1 if the 

storage management decides that file j should be kept in memory, or 0 otherwise. This 

problem can be expressed as: 

 Find 
 , 
yj ! {0,1} /  

 maximize 
,      

 (14) 

Y = {y1, y2,..., yn}

Y ={y1,y2 ,..., yn}

yi
i=1

n

! vi yi
i=1

n

! si " sA
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Clearly, this is an instance of the 0-1 knapsack problem, thoroughly studied in the literature 

[7]. The problem is NP-complete, but there are many algorithms that solve it in polynomial 

time, each one optimized for a particular kind of instance of the problem. 

The algorithm used in our proposal can model the decisions made by algorithms for cache 

management policies based on the branch-and-bound algorithms, which is the most basic 

approach to solve the 0-1 knapsack problem. The cache management algorithm decides 

which files should be stored in memory every time tk when the recommender provides a 

new estimation of the utility of a file. Note that the recommender may have not estimated 

the value of all files in the carousel at tk. Let Ik be the subset of files of the carousel with a 

value estimation up to the beginning tk. I0 is initially empty. The algorithm will find the 

decision vector Y={y1,y2,..,yn} by ordering the files in descending value, conditioned by 

their sizes: 

1. Sort Ik such that  

2. Find im =min(i : sj ! sAj=1

i
" )   

3. yj = 1; j < im and yj = 0; j ≥ im	
 (15) 

The branch-and-bound algorithm presented above models how the storage management 

policy handles storage space, according to an estimation of the utility of a file provided by 

the recommender. At every time tk, the cache management calculates the decision vector Y. 

If yj changes from 0 to 1, the storage management issues a download request for file j to the 

CDS client. Contrarily, if yj changes from 1 to 0, it removes the data of file j stored in the 

cache.  

Regarding the definition of value, in this study the utility is seen as an estimation of the 

future probability of access to file j, as defined in the broadcast cache literature [4], [6], 

[38]. Besides the utility, the definitions of value used in this thesis account for other 

parameters of the file, indicated in the table below: 

v j
s j
!
v j+1
s j+1
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TABLE I 
DEFINITION OF VALUE FOR DIFFERENT CACHE REPLACEMENT POLICIES 

Algorithm Value of object j in cache 

P vj = !pj  

PIX vj = !pj ·tC
j  

PIXS vj = !pj ·tC
j / sj

 
All the cache replacement policies estimate vj as a function of the utility !pj . In the first 

policy, referred to as the P policy, the value of a file in cache is equal to its utility. It is 

important to highlight that the P policy has been defined in this thesis, as opposed to the 

other two policies. The PIX policy is defined according to [4]. This study states that, for 

caches of non-uniform accessed broadcast data, the value of storing a file in memory is 

directly proportional to the future access probability of a file (here its utility !pj ) and 

inversely proportional to its relative transmission frequency (i.e. the inverse of its carousel 

cycle period tC
j ). In this policy, files with longer carousel cycles are considered more 

valuable because clients need more time to download them. Moreover, [38] states that, as in 

web caches, the size of the files should also be taken into account in the definition of its 

value. This policy considers that, although the utility of a large file may be higher than the 

utility of several smaller files, the summation of all cache hits produced by the small files 

may be higher than the cache hits of the large file. Therefore, smaller files should have a 

larger value in cache, as accounted by the PIXS. 

II.3.2 User model 

Section II.1.3 presented different methods to estimate the popularity of content items 

belonging to the same content catalogue. The models were obtained by analyzing the 

historical data of the requests issued to each item. This historical data is available for 

popular VoD services. However, historical data is not enough to model how users requests 

are distributed in time. 
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The literature presents different approaches to address this issue. In [18], the authors 

collected data from the requests to a popular VoD service generated across the university 

campus network over a three months period. This approach provided very accurate models 

for the requests for a large content catalogue, issued by a relatively small and homogeneous 

population of users. Oppositely, the authors of [23] mined the data of two content 

categories of popular video sites over time. Thus, they obtained a good model for requests 

produced by large populations over a homogeneous content catalogue. Regarding the 

distribution of video requests in time, both studies analyze data with a time granularity of a 

day. Let us provide a brief overview of their results.  

The analysis of the requests generated per day in [18] shows the dependency of the activity 

of the VoD service on the daily habits of users – since the test population mainly consists of 

university students and staff, the activity is considerably lower during the weekends. 

Furthermore, the results also show how the number of user requests slowly increases week 

after week, as the VoD service becomes more popular. 

[23] presents a model for the inter-arrival time of requests based on the daily number of 

requests per day that they measured. The study assumes that within the day, the requests are 

exponentially distributed. It follows that the mean inter-arrival time of requests, that is, the 

average time between the occurrences of two consecutive requests, is equal to 1/λ, where λ  

is the intensity of requests per unit of time. Hence, the occurrence of requests is a discrete 

statistical variable that follows a Poisson distribution with parameter λt (where t represents 

the time period, 1 day in the study). This way, by measuring the number of content request 

over a period of time it is possible to measure their intensity λ. 

Besides the distribution of requests, [23] analyses how the popularity of videos changes 

over time. The paper shows that the popularity of most new user generated content items 

rapidly decreases over time, while older videos are more stable in the rankings. It is worth 

noting that in the ranking system used in the study, videos that are not watched during one 

day are penalized with 2000 positions in the ranking. This means altogether that the 

popularity of high ranked videos is very steady over time. Additionally, the study shows 
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that few new videos increase their popularity very fast, indicating that a small percentage of 

new videos make it to the popular list. Another interesting finding is that there is a high 

correlation coefficient between the number of views after two or three days and in the long 

run. 

Now, we are going to present the time model for user requests used in this thesis. The 

model is based on the measurement of the long-term popularity of a content catalogue and 

relies on the findings of the aforementioned studies. First, as in [23], it is assumed that the 

occurrence of requests follows a Poisson distribution. Also, it is assumed that the number 

of requests per unit of time can be obtained from the number of access measured over a 

period of time. In our approach, the total number of requests to the service over a period of 

time t is fixed to a given value, namely λ. Then, the rate of requests to file j, λj is calculated 

as: 

  ! j = !·pj  (16) 

where pj is the relative popularity of item j (as in the section Content popularity). Note that 

this methodology is equivalent to that in [23], due to the properties of the Poisson 

distribution: the superposition of different Poisson processes of rates !1,!2,...,!n  is another 

Poisson process of rate ! = ! jj=1

n
! . For our study, the important fact is that, with this 

approach, it is possible to model user requests for different files without a measurement of 

actual requests, but with a measurement of the content popularity. For instance, bear in 

mind that the estimation of the popularity obtained from the IMDB used user ratings 

instead of number of views. In this sense, both [18] and [23] show there is a strong cross 

correlation between the rankings and the number of access. Hence, the relative popularity 

estimated from the rankings is equivalent to that of the number of views and can be applied 

to eq. 16.  

One of the main drawbacks of the approach followed in [23] is that, clearly, the request rate 

is not constant with time. For instance, there is evidence of this in the trace of user requests 
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per day provided in [18]. To overcome this issue, in our model, it is possible to use a non-

homogeneous Poisson process for the user requests with rate λ(t). In any case, the main 

drawback of our model is that it does not account for the variations in the popularity over 

time. This time dependency is evidenced in the results of [23], but, as stated, popularity is 

in general very steady, especially for the most popular items of a catalogue. 

Finally, as in previous sections, we provide some results provided by the model.  

 

Figure 17.  CDF of the inter arrival time for different content items of a catalogue of 100 files and ZIPF 
distribution (α=0.83).  

Figure 17 shows the effect of the popularity on the inter arrival time of user requests to 

different files. In the figure, the number of requests over a period of one day is set to 5,000, 

providing an intensity of λ=5,000/(24·60·60)=0.0579. The file catalogue is consisted of 100 

content items and the popularity follows a ZIPF distribution (α=0.83). The position in the 

ranking affects to great extent the inter-arrival times. For instance, let us compare the 

maximum inter arrival time of requests, which corresponds to the point in the figure when 

the CDF reaches 1. The maximum inter arrival time of all requests is slightly over 1 

minute, meaning that the time between two consecutive request is in always less than 1 

minute. On the other hand, the maximum inter arrival time of the requests to the most 

popular item is approximately 10 minutes. On the other hand, the maximum inter arrival 

times of files 10, 20 and 50 in the ranking are respectively 1 hour, 2 hours and 4,30 hours. 
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Hence, as expected, the inter arrival time in our model increases drastically for files with 

low popularity. 

II.4 Conclusions 

This chapter has presented the models used to characterize the content, the communication 

channel, the storage management and the generation of user requests. These models are 

used in the following chapters to conduct the simulations for the evaluation of background 

push CDS. 

Regarding the content, we have presented models for television content and User Generated 

Content (UGC). The model for television content has been developed in this thesis using a 

database for television programs available on the Internet, the IMDB. On the other hand, 

the model for UGC used is presented in [18]. 

In order to model the file size of television content, we have used the same methodology 

used in previous studies to model the file size of web content. This methodology is based 

on adjusting the parameters of probability distributions to fit the statistics of a 

representative sample of file sizes. However, instead of sampling directly the file sizes, we 

have taken samples of program durations. This allows to generate different file size 

distributions depending on the encoding rate of a given application (e.g. mobile television 

or HD television). The results show that the same probability distributions regarded for file 

sizes can be adjusted to program durations. With this, we have obtained two different 

probability distributions from the program duration dataset, the lognormal (LN) distribution 

and the Double Pareto Lognormal Distribution (DPLN). The results show that the DPLN 

distribution is a good approximation to the actual program durations in the database, 

regardless of the number of files used by the simulation. On the other hand, the LN 

distribution is a good and relatively simple approximation program duration datasets and its 

performance is very close to the DPLN distribution when the number of files needed by the 

simulations is small (10-100). Since the number of files used in the following simulations is 

in this range, the LN model is used to generate file sizes of television programs for later 

studies. 



Chapter II System models 

 55 

Regarding the popularity, we have presented two different models for the popularity of the 

content in the IMDB. Again, we have used a methodology well established in related 

works, based on adjusting parametric distributions to an empirical measurement of the 

popularity. We have regarded two different distributions, the ZIPF distribution and the 

power law with exponential cutoff distribution. We have evaluated the error produced with 

both distributions. Although both distributions model very well the popularity of most 

popular items, the power law distribution with exponential cutoff provides better results 

and is therefore used in the simulations below. 

As for the channel model, we have developed a model for the channel losses, i.e. the 

Markov model. Later, the model is used to calculate the number of carousel retransmissions 

needed to download a certain file. The model has been validated through measurements in 

laboratory conditions, proving its accuracy. Clearly, data collected in a particular 

environment (or set of environments) through field trials would produce more accurate 

results. Instead, laboratory measurements provide more general results, applicable to a 

wider range of environments, at the expense of loosing accuracy in a particular scenario. 

This consideration is taken into account in the analysis of the results of the simulations 

using the models. 

Finally, we have presented models for the storage management application and the user 

requests. The model for the storage management allows us to simulate the decisions made 

by the storage management, that is, which files should be kept in local storage at anytime. 

The model is flexible, allowing to modify different aspects of the client application, like the 

popularity estimation or the definition of value used in the decision making algorithm. 

These are important considerations in the design of the client application and for this 

reason, simulations in following chapters assess the impact they have on the service 

performance.  

Furthermore, we have presented a model for the generation of user requests. The model 

takes into account the relative popularity to each file, so that it is possible to split the total 

number of requests into the requests issued to every file. This model allows to simulate on 
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demand services and the ability of the background push CDS to prefetch content and store 

it locally. 
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Chapter III  

 Opportunistic Insertion of 
television services 

The main objective of this chapter is to evaluate the potential use of Opportunistic Data 

Insertion (ODI) for the delivery of large media files using background Content Download 

Services (CDS) over first-generation and second-generation video broadcast networks. 

Some previous research works on ODI focus on the provision of IP services with 

instantaneous QoS requirements [39] (disregarding CDS delivery), while other related 

works focus on the performance of CDS services over broadcast networks [34], [40], [41], 

[42]. On the other hand, the use of the residual capacity for the delivery of content has been 

investigated for cellular networks in [43]. 

The multiplexers in video broadcast networks use filling packets to achieve the constant 

bitrate of the transmission mode used by the network. The multiplexer needs to 

accommodate the different video services, guaranteeing that the resulting multiplex rate is 

constant and that the multiplexing process does not degrade the quality nor the 

synchronization of the elementary media streams. In case that the summation of the rates of 

the different video services is lower than the multiplex rate, the constant multiplex rate is 

achieved by inserting NULL packets, that is packets with no useful payload. Multiplexers 

use different techniques to optimize the efficiency of the multiplexing process, so as to 

minimize the insertion of NULL packets. In this sense, ODI consists of using these NULL 
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packets with packets from some datacast service, which does not have such strict timing 

requirements as streaming services. In this thesis, ODI is used to insert the packets 

belonging to the background CDS services into the broadcast Transport Stream. 

In order to provide a better understanding of ODI, we first describe first-generation 

Digital Video Broadcasting (DVB) networks in III.1. Later, III.2 presents a brief 

description of DVB networks and the timing model used in Moving Picture Experts Group 

(MPEG) systems. System components, such as an multiplexer, use this timing model to 

learn the timing dependencies between the different streams and it is therefore crucial to 

understanding why a multiplexer needs to insert filling packets. 

Later, III.3 provides a brief description of MPEG encoding and Constant Bit Rate (CBR) 

multiplexing. After describing how ODI works in a DVB multiplex, we provide an 

empirical study of the rate available for ODI in different commercial MPEG Transport 

Streams (MPEG-TS). The section gathers measurement traces of the filling bitrate found in 

the different networks. Later, these measurements are used in chapter Chapter IV to 

develop an analytical model for the long-term bitrate available during the download of 

files. 

Finally, sections III.4 and III.5 describe and evaluate the use of opportunistic insertion in 

second-generation DVB networks. In second-generation DVB networks, the overall 

capacity provided by the physical layer is divided into logical tunnels. Again, due to the 

timing requirements and the variable rate of streaming media, there is an excess of capacity 

in these tunnels that can be used by background services. This use case is addressed in the 

last section of this chapter, describing how the ODI principle can be applied to second-

generation DVB networks. Again, the section includes some empirical results of the bitrate 

available for ODI in this scenario. 

III.1 First Generation terrestrial DVB Networks (DVB-T) 

First-generation networks, like Terrestrial DVB [44] (DVB-T) Networks, are used to 

deliver television and radio services in wide areas. Figure 18 shows the main system 
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components of a DVB transport network based on DVB-T. First, the video and audio 

samples are encoded, generating separate MPEG [45] Elementary Streams (ESs). The ESs 

enter the multiplexer, together with the metadata, referred to as Program Specific 

Information / Service Information (PSI/SI) tables [46]. Additionally, the multiplexer inserts 

network information in the form of Mega-frame Initialization packets (MIPs), used to 

synchronize the different transmitter nodes in the network [47]. The adapter connects the 

resulting MPEG-TS with the primary distribution network, which is the network between 

the multiplexer and the transmitter stations. Later, the transmitters broadcast the MPEG-TS 

according to the timing information indicated in the MIP packets.  

At the receiver, the frontend demodulates the MPEG-TS, the demultiplexer filters the 

packets of the different ESs of the program and finally, the decoders generate the sequence 

of video and audio samples from the encoded streams.  

 

Figure 18. Main components in a DVB network. 

As mentioned in the introduction of this chapter, first-generation DVB networks broadcast 

constant bit rate MPEG-TSs [45]. The DVB standards provide different options for the 

configuration of the parameters of the physical layer. However, regardless of the 

configuration, the system always delivers a constant rate MPEG transport stream. This way, 

network operators have different physical layer configurations that trade off bitrate capacity 

with features like coverage or mobility. This framework allows DVB networks to adapt to 

different scenarios and applications. For instance, Figure 19 illustrates the trade-offs in the 
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physical layer configuration of DVB-T networks. In the figure, GI stands for Guard 

Interval, which is a preamble added to every modulation symbol to improve resilience 

against multipath fading. Long GIs enable the reception in environments with long delay 

spreads, for instance portable urban reception, but as seen in the picture, at the expense of 

lower net MPEG-TS bitrates. On the other hand, 64-QAM, 16-QAM and QPSK stand for 

the constellations used in the modulation of data carriers, providing 6, 4 and 2 bits per 

carrier, respectively. It can be seen that low order constellations require low levels of 

received CINR, thus providing larger cells with the same transmission power. However, 

they provide significantly lower net bitrates. 

 

Figure 19. Trade offs of DVB-T physical layer configurations. 

Moreover, the exact useful net data rate RU (Mbits/s) bitrate of the modulation is defined in 

[47] as: 

 RU = RS ·b·CRI ·CRRS ·(TU /TS )  (17) 

where RS is the DVB-T symbol rate (6,75 Msymbols/s), b is the number of bits per carrier 

(2  for QPSK, 4 for 16-QAM and 6 for 64_QAM), CRI is the inner FEC code rate (either 

1/2, 2/3, 3/4, 5/6 or 7/8) and TU/TS is the ratio between the useful symbol duration and the 

symbol duration (4/5, 8/9, 16/17 or 32/33) depending on the GI. In any case, regardless of 

the configuration of the physical layer, the useful data rate is always constant. 
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III.2 MPEG Transport time model 

It is clear that the delays of the intermediary blocks in DVB networks (e.g. the encoders, 

multiplexers, transmitters or receivers) may not be constant for every MPEG-TS packet 

(nor for every ES). However, MPEG transport systems are based on a constant delay timing 

model: the video or audio samples entering the encoder leave the decoder after a time delay 

that is constant for every sample. This model guarantees that the play-out rate of the 

decoded samples is exactly the same as the sampling rate at the video source. Therefore, it 

is necessary to provide a mechanism to inform the different system blocks about the 

temporal information of every packet in the stream. In MPEG systems, this temporal 

information is defined by means of the Transport - System Target Decoder (T-STD), which 

is an ideal decoder used to determine the temporal information of every byte in the 

transport stream. The T-STD model is presented in Figure 20: 

 

Figure 20.  Transport System Target Decoder (T-STD) model of MPEG Transport Systems. 

The T-STD represents an ideal implementation of an MPEG audio and video decoder. The 

T-STD helps ensuring that an MPEG-TS is compliant with the MPEG timing model and 

therefore, the different ESs of a service can be decoded without problems in a real decoder. 

In the T-STD, the incoming MPEG-TS packets are de-multiplexed and they enter the 

corresponding decoder (Audio, Video or System) Transport buffer. Note that the Audio and 

System decoders have a Transport Buffer and a Main buffer, while the Main buffer of the 

Video decoder is divided into the Multiplexing buffer and the ES buffer. Also, the video 

decoder has an ordering function. This is because video frames may not be presented in the 
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same order as they are decoded, since the encoder may use the information in both earlier 

and later frames to encode certain frames. 

The timing model states that byte with index i inside the stream must be present at the input 

of the ideal decoder at time t(i), which is referred to as the target decoding time of byte i. 

Similarly, each frame has a Presentation Time Stamp (PTS), which indicates the time at 

which the frame must leave the corresponding ideal decoder. 

The time reference for all timing information is the MPEG System Clock, which has a 

frequency of 27MHz. The MPEG-TS must contain samples of its 27MHz System Clock in 

the MPEG-TS. These samples are referred to as Program Clock Rate (PCR). Each PCR is 

an Integer number representing the number of ticks of a counter synchronized with the 

MPEG System Clock. The PCR is included in the header of some MPEG-TS packets. This 

way, the value PCR(i’’) represents the target decoding time t(i’’) of the last byte 

conforming the PCR value in the corresponding MPEG-TS packet header field. Thanks to 

these embedded timestamps, other components in the system (p.eg. the decoder or the 

multiplexer) can calculate the target decoding time of each byte by interpolation:  

 t(i) =PCR(i '')
27Mhz

!
i! i"

transport _ rate(i)
 (18) 

where i’’ > i and transport_rate(i) is the instantaneous transport rate of the MPEG-TS, for 

byte i, calculated as:  

 transport _ rate(i) = (i '! i '')·27MHz
PCR(i ')!PCR(i '')

 (19) 

Figure 21 depicts the time model defined by the S-STD target decoding time. The time 

between two consecutive PCRs can be calculated as the difference between the count of 

cycles of the System Clock in the two PCRs (PCR(i’)- PCR(i’’)), divided by the System 

Clock frequency (27MHz). In the figure, this time is noted as ΔtPCR. Moreover, the same 

time can be calculated as the count of bits between the two PCRs, i’ and i’’, divided by the 

transport stream rate (Eq. 19). Note that the count of bytes is always an Integer number of 
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MPEG-TS packets, noted as n. Since the MPEG-TS packet size is 188 bytes, (i’-

i’’)=n*8*188. This calculation is noted as ΔtB in the figure. Ideally, these two calculations 

should be equal to the time elapsed between the occurrence of the two PCR samples, Δt, as 

shown in the figure. Therefore, the network components (e.g. the multiplexer or the 

decoder) can calculate the timing of the bytes in the transport stream. 

 

Figure 21. Time model based on the MPEG-TS S-STD. 

In practice, any deviation in the arrival time of the PCR samples can introduce errors in the 

timing model. Furthermore, the multiplexer needs to modify the rate of the transport stream 

without introducing significant errors, which is why it is necessary to establish limits for 

the deviations in the timing model. The standard recommendation DVB Measurement 

Guidelines (DVB-MG) [47] defines quality measures for the precision of the timing 

information in MPEG-TSs. Among the different measurements defined, the most relevant 

are: 

• PCR Accuracy: it represents the time precision of the PCR samples with respect 

to their byte position inside the MPEG-TS. Relating to Figure 21, the PCR 

accuracy is measured as the difference between ΔtB and ΔtPCR. The MPEG-TS 

specifications establish a limit of 500ns for the PCR accuracy. The PCR accuracy 

is affected in the multiplexing, remultiplexing and demultiplexing processes and 

thus, it is used to assess the quality of all sorts of multiplexing devices. 

• PCR Overall Jitter: it represents high frequency components in the spectrum of 

the System Clock reconstructed from the PCR samples. The PCR Overall Jitter is 

obtained by comparing the frequency of the reconstructed System Clock with an 
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accurate reference. Moreover, the PCR Overall Jitter includes all timing errors 

introduced in the transmission chain at the input of a system component and it 

affects the System Clock acquisition in MPEG-TS devices. 

The T-STD provides an ideal timing model, but in real implementations, a simple 

interpolation may not be enough to recover the timing information of the bytes in the 

MPEG-TS. In these cases, in order to obtain the System Clock of the encoder, intermediary 

devices can use a Phase Locked Loop (PLL), as shown in Figure 22: 

 

Figure 22.  MPEG-TS System Clock acquisition with a Phase Locked Loop. 

Thanks to the PLL, the PCR samples in the MPEG-TS are compared to the count of a local 

clock with a nominal frequency of 27MHz and an initial count value equal to the first PCR 

sample received. The local reference is kept in phase with the PCR count by correcting its 

frequency with every PCR sample received. As depicted in the figure, the instantaneous 

difference between both counters is passed through a low pass filter (LPF). The purpose of 

the LPF is to minimize the effect of fast changes in the PCR count, which could be due to 

jitter introduced by errors in the transport network. At the receiver, these fast changes can 

cause the decoder to loose the phase of the clock and produce artifacts in the decoded video 

samples and must be avoided. In fact, the 500ns limit in the MPEG specifications only 

applies to the high frequency components, since the PLLs can overcome slow changes in 

the frequency (frequency drift). 

Up to this point, we have presented the time model of MPEG Systems. The next section 

will present how a Constant Bit Rate (CBR) multiplexer uses this model to maintain the 

timing information in the PCR during the multiplexing process. Additionally, the timing 

information is used to determine the insertion of filling packets, used to achieve the CBR 

requirement, providing the basis for Opportunistic Data Insertion. 
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III.3 Opportunistic Data Insertion in a DVB Multiplex 

III.3.1 Constant Bit Rate and Variable Bit Rate MPEG encoding 

A video source consists of a series of digital image samples called frames. The encoder 

reduces the size of the samples by taking advantage of both spatial (intra-frame) and 

temporal (inter-frame) redundancy. Spatial redundancy is the presence of repeated nearby 

information in the image. The best example is the presence of solid color areas. This way, 

the information of some image pixels can be encoded according to the information of 

adjacent pixels. On the other hand, temporal redundancy is the presence of repeated 

information in nearby frames. Hence, the information in some frames can be encoded 

according to the information in other frames. Depending on the pattern of the output bitrate, 

MPEG video encoders can be classified into two categories:  

• Constant Bit Rate (CBR) encoders: A CBR encoder produces an ES with a 

constant transport rate, regardless of the redundancy in the image sequence. This 

means that, if the bitrate is set sufficiently high, the encoder will be able to achieve 

good picture quality even for complex sequences with little temporal or spatial 

redundancy. However, if the sequence is simple and has a lot of redundant 

information, the encoder will waste bitrate. 

• Variable Bit Rate (VBR) encoders: VBR encoders use only the bitrate they need to 

encode a sequence, up to a fixed upper limit. Compared to CBR encoders, VBR 

encoders are able to exploit all redundancies of simple sequences and therefore 

they turn out to be more efficient. Moreover, since they adjust the bitrate to the 

complexity of the scenes, the picture quality turns out to be more constant than for 

CBR encoding. Furthermore, if the encoded picture quality is constant, the 

encoding method is referred to as constant quality encoding. 

With this, coming back to Figure 18, the multiplexer will need to generate a CBR MPEG-

TS bitrate from different contributions. It is likely that the addition of all the different 

bitrates do not match exactly the bitrate required by the physical layer configuration of the 

transmitter, which opens a window for opportunistic insertion. Next section discusses 
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briefly the details of the implementation of a CBR multiplexer with Opportunistic Data 

Insertion. 

III.3.2 Constant bit Rate multiplexer with ODI 

Figure 23 shows a CBR multiplexer with Opportunistic Data Insertion. In the figure, the 

grey shadowed area represents the actual bitrate used by the encoders and other (datacast) 

services. The black shadowed area represents the filling bitrate, not used by the encoder 

and therefore available for ODI. Additionally, the white areas represent the constant bitrate 

used for metadata (PSI/SI). 

 

Figure 23. Constant Bit Rate multiplexer with Opportunistic Data Insertion. 

The figure presents the different families of multiplexer implementations: CBR encoding 

with constant rate multiplexing, VBR encoding with statistical multiplexing and constant 

quality encoding with statistical multiplexing. 

Regarding the CBR encoding with constant rate multiplexing, the implementation is rather 

straightforward and the multiplexer only needs to know the ratios between the input 

transport rates and the output transport rate to calculate the number of packets of each 

encoder that must be copied to the output buffer. Note that the timing information at the 

output MPEG-TS must be correct. Therefore, the multiplexer needs to rewrite the PCR 

samples so that the equations in Figure 21 hold at the output. 

On the other hand, statistical multiplexing is a technology to mix together several VBR 

encoded streams, fulfilling the timing and bitrate requirements at the output. There are 

different implementations of statistical multiplexing and the technology has evolved 

significantly over time. In first generation statistical multiplexing, the pool of encoders are 

interconnected through a communication bus and negotiate the binary rate used by every 
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encoder, in order to deliver to the multiplexer a CBR stream made of several VBR streams. 

This configuration is used in the multiplexer noted as C57 in the measurements in section 

III.3.3. Another way to implement statistical multiplexing is to allow encoders to inform 

the multiplexer about the expected encoding bitrate of the forthcoming frames, using a 

communication protocol hereby referred to as statistical multiplexing protocol. The 

multiplexer weights the requirements of the different encoders and notifies each encoder of 

the available bitrate in the next time interval. At this point, the multiplexer can establish 

priorities between the different services, so that, in the event that the aggregated required 

bitrate exceeds the CBR limit, some services have better chances to get the requested 

bitrate. Later, the encoders apply the encoding rate indicated by the multiplexer. This 

allows each multiplexer to apply VBR encoding and the quality is only degraded if several 

encoders in the pool have complex sequences with few redundancies at the same time. This 

configuration is used in the multiplexer noted as C28. Normally, the management platform 

of the multiplexer at the head-end of the broadcaster lets operators to enter the minimum 

and maximum bitrates for statistical multiplexing in bits per second. Moreover, the priority 

of every stream is indicated as a percentage of the minimum allowed quality for a given 

stream, so that the highest priority stream gets the requested quality in case of contention. 

In these setups, the VBR encoders degrade the quality of the scenes in order to comply with 

the required bitrate. 

Another interesting setup is to allow the pool of encoders to work with constant quality and 

let the bitrate to vary more freely, according to the complexity of the encoded scenes. In 

Figure 23 this is noted as constant quality encoder with statistical multiplexing. In this 

scenario, ODI insertion is more relevant because it allows encoders to work with an optimal 

bitrate, adjusted to the complexity of the stream, but at the same time, thanks to ODI, it 

uses the whole CBR capacity available in the broadcast network. 

III.3.3 Measurement results 

This section includes an estimation of the actual bitrate available for ODI insertion in 

commercial DVB networks. This estimation consists of measuring the bitrate of NULL 

packets in each multiplex. As mentioned, multiplexers that do not use ODI fill the 
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modulation MPEG-TS with NULL packets. Therefore, the NULL bitrate is the capacity 

available for a hypothetical deployment of ODI in these multiplexers. 

The next results have been derived from measurement traces of 5,000 samples for each 

multiplexer. The different multiplexers under evaluation correspond to the three main 

national broadcast networks in Spain - the public broadcast network Televisión Española 

and the two main private networks, Atresmedia and MediaSet), plus the regional 

broadcaster in Televisió Autonòmica Valenciana. For each measurement sample, the 

number of null packets is measured every 4,060,800 bits of transport stream (21,600 

MPEG-TS packets). This bit count corresponds to exactly 204ms of time at the useful net 

data rate modulation (Eq. 17) of the channels (19,91Mbps - 64-QAM, inner FEC=2/3, GI 

=1/4). The transport bitrate is measured from the PCR samples in the MPEG-TS according 

to Eq. 19. Later, the NULL bitrate at instant i is calculated from the ratio of NULL packets 

to the total number of packets as: 

 NULL _bitratei =
(null _bits / all _bits)

tranport _ ratei
 (20) 

Table II summarizes the characteristics of each of the multiplexes under study together with 

the statistics of the NULL bitrate. The table shows the number of High Definition TV 

services (HDTV), Standard Definition TV services (SDTV) and digital Radio services 

included in each multiplex. Additionally, the table shows the main statistics of the Null rate 

found in each multiplex, the mean bitrate, the standard deviation (Std) and the minimum 

value found in the different measurements (Min). 
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TABLE II 
CHARACTERISTICS OF THE DIFFERENT DVB-T MUXES UNDER STUDY 

Service List NULL rate (kbps) 

 HDTV SDTV Radio Mean Std Min 

TVE C58 0
 

4
 

2
 

1,586.6
 

898. 6
 

523.4
 

A3M 
C46 2 3 0 1,052.2 250.5

 
0.0

 

C43 1 4 5 928.0 159.7 693.0 
C67 0 6 0 576.0 266.1 44.2 

MST 
C40 1 3 0 1,688.4 181.3 1,511.4 
C68 0 5 3 893.0 249.5 678.3 

RTVV 
C28 1 3 2 457.0 65.6 213.8 
C57 0 5 2 632.2 94.1 258.0 

The table shows that, in every multiplex, there are few hundred kbps available for ODI 

insertion. In some cases, the NULL rate exceeds 1Mbps. In general, the filling bitrate 

appears to be rather high. The standard deviation of the rate is, in most cases, much smaller 

than the mean rate and, except for one service, the minimum bitrate is always higher than 

zero. 

 

Figure 24. NULL bitrate available in four commercial DVB multiplexers. 

Figure 24 displays the measurement trace for the multiplexers of two different network 

operators. The top row shows the multiplexer null rate and the used bitrate of the two 
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multiplex channels managed by the first operator. The multiplex to the top-left corresponds 

to channel C57, which is allocated to SD television and radio services, as indicated in the 

table. On the other hand, the figure to the top-right corresponds to channel C28, carrying 

the only HD service offered by the network. Similarly, the second row represents the 

multiplexers of another network operator. The bottom-left figure displays the rates in 

channel C68 and the figure to the bottom-right corresponds to channel C40. The figure 

shows that both operators have some filling capacity in their multiplexes. Also, the figure 

shows that in time scales in the order of tenths of minutes, the filling bitrate is rather steady.  

In order to get a clearer picture of the statistics, Figure 25 and Figure 26 show the 

histogram of the NULL packets counted in every measurement time interval (204ms at 

modulation transport rate). The multiplexers under study have been grouped in two 

different figures according to their statistics. This classification is made for the sake of 

clarity, to use the same X and Y axis in all the plots in each figure. Figure 25 includes the 

statistics of C57 (top-left), C28 (top-right), C46 (bottom-left) and C67 (bottom-right). 

 

Figure 25. Histograms of the Null packet count in muxes with short tail distributions. 

Clearly, the filling capacity in each multiplex has a different probability distribution. Each 

of the multiplexers transports a different combination of services and different network 

operators may use different multiplexing hardware. The results corroborate this, since the 
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figures show that the histograms for each multiplex are quite different. Figure 25 shows 

that the packet count of the four muxes therein has a clear body part and low frequencies in 

the tails of the distribution. On the other hand, Figure 26 shows the histogram for 

multiplexer C68, C40, C58 and C69. It can be noted that the tails in the distributions of 

these four channels have much higher frequencies than the multiplexers in Figure 25, 

especially C58. The four histograms resemble exponential distributions. 

 

Figure 26. Histogram of the NULL packets in muxes with long tail distributions.  

With this, it does not seem appropriate to try to draw a statistical model for the available 

bitrate in any multiplex. Instead, it is necessary to specify the multiplex under study. Then, 

as with previous system parameters (file size and access probability), it is possible to use 

the empirical data of the measurements directly on the simulations, or use parametric 

statistical models with similar properties as the measurements, in order to produce more 

general results. 

In this sense, we have conducted a longer-term measurement on the bitrate available for 

ODI in channels C28 and C57, belonging to the regional network operator in Valencia, who 

participated in the study. The longer-term measurement of each channel consist of 61 

measurements traces of approximately 5,000 measurement samples each. The procedure to 

obtain each sample is the same as with the previous studies. The tuner switches between 
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channels for every measurement trace, so that the total measurement time is approximately 

36 hours in both measurements.  

 

Figure 27. Longer-term NULL bitrate measurement in channels C28 y C53. 

Note that, in order to see clearly the instantaneous NULL bitrate, the range of the Y axis is 

only 1Mbps, which is approximately 5% of the multiplex capacity. It can be noted that, in 

both measurement traces, the used capacity exhibits clear peaks above the mean value. 

However, as can be noticed in the histograms, it is rather seldom that these peaks occur. 

Hence, in general the average NULL bitrate is rather steady with time. 

Now, let us analyze the histogram of the measurement traces. Figure 28 presents the 

normalized histogram of the bitrate of C57 together with the histogram of a normal 

distribution with mean µ=644.8kbps and standard deviation σ=106.0kbps, adjusted with the 

MLE method to fit the measurement data. The distribution passes the Paerson´s Chi-square 

goodness-of-fit test, meaning that the probability distribution of the measurement data is 

consistent with the normal distribution. 
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Figure 28. Histograms of filling capacity in channel C57 and its normal probability density function 
approximation. 

It is worth noting that, out of the different muxes in Figure 25, C57 is the one better 

adjusted by a normal distribution. Clearly, the shape of the histogram resembles the PDF of 

a normal distribution. However, it is not always so straightforward to find a parametric 

statistical model that fits the null bitrate in a given multiplex. This is clearly depicted in 

Figure 29, where the normal distribution does not seem like a valid alternative to model the 

NULL bitrate in multiplex C28. For this reason, it is necessary to regard other alternatives. 

Among the different statistical distributions, the T-location distribution is useful to model 

statistical processes that have heavier tails than the normal distribution. The probability 

density function of the T-location distribution for the bitrate b is defined as:  
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where Γ is the Gamma function, υ the shape (also degree) parameter, µ is the location 

parameter and σ is the shape parameter.  

As mentioned above, Figure 29 presents the normalized histogram of the NULL bitrate 

distribution in C28, together with the T-location distribution obtained with the MLE 
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method. The parameters of the distribution are υ=53.5kbps, µ = 467.8kbps and σ 

=56.74kbps. As shown in the figure, the T-location based distribution has similar kurtosis 

(that is, they are peaked in the same way) as the measurement data. However, the 

probability density function of the measurement data is skewed or asymmetric, while the T-

location based distribution is symmetric. On the other hand, the Gamma distribution and 

the Generalized Extreme value distributions are asymmetric, but do not have the same level 

of kurtosis as the measurement data. In any case, the T-location based distribution is the 

only distribution that passes the Paerson´s goodness of fit test. 

 

Figure 29.  Histogram of filling capacity in channel C28 and its probability density function approximations. 

As a summary of this section, the measurements conducted on different commercial DVB-

T networks prove that the bitrate available for ODI is in the order of few hundreds of kbps, 

ranging from 457kbps to 1.64Mbps, depending on the multiplex. Apparently, the long-term 

average filling bitrate is rather steady in each multiplex. As for the short-term statistics, the 

results show that the bitrate in each multiplex has very different statistical properties. For 

this reason, in following simulations, it is necessary to specify the multiplex under 

evaluation. In this sense, we have derived simple parametric models from the statistics of 

the bitrate in two different multiplexes, in channels C28 and C57, managed by the same 

network operator. It appears that the NULL bitrate measured in C57 follows a normal 

distribution, while the NULL bitrate in channel C28 is well approximated by a T-location 
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based probability distribution. Both distributions pass the Paerson´s goodness-of-fit test. 

These models are used in following studies to simulate the bitrate available for ODI 

insertion in a DVB multiplex.  

III.4 Second Generation terrestrial DVB Networks 

As explained in previous sections, all services in a DVB multiplex share the same physical 

layer configuration. This can be a drawback if the services in the multiplex have different 

physical layer requirements. For instance, mobile television requires higher CINR levels 

than standard television, because the performance of antennas in mobile terminals is much 

worse than that of rooftop antennas. Additionally, mobile reception demands higher 

resilience against multipath transmission and the Doppler effect. Thus, as the operators 

offer different types of television services (p.eg. 3DTV, HDTV, mobile TV), service 

specific robustness becomes an important requirement for the network. 

In first-generation networks, hierarchical multiplexing provides a basic mean for service 

specific robustness. Hierarchical multiplexing consists of dividing the total capacity of the 

transport network into two different MPEG transport streams, the High Priority (HP) 

MPEG-TS and the Low Priority (LP) MPEG-TS. The mapping of bits to data carriers is 

done such that the modulation applied to the LP stream is a robust QPSK, while the 

modulation applied to the HP stream is a less robust QPSK or 16-QAM. 

However, hierarchical modulation is not flexible enough to provide service specific 

robustness to more than two types of services. For this reason, second-generation broadcast 

technologies incorporated more sophisticated mechanisms to provide service independent 

robustness to each service. The following sections describe these mechanisms for two 

broadcast standards: DVB-H and DVB-T2. 

III.4.1 DVB-H networks 

The DVB-H standard appeared to enable the delivery of mobile television services over 

broadcast networks. Strictly speaking, DVB-H is not considered a second-generation 
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broadcasting standard. However, it was the first broadcasting standard that incorporated 

mechanisms to provide service specific robustness.  

The DVB-H physical and transport layers maintain backwards compatibility with the DVB-

T standard. Thus, DVB-H networks broadcast a CBR MPEG-TS. However, video services 

are not transported directly in the transport stream. Instead, DVB-H defined an IP protocol 

stack [50] based on broadcast IP protocols. This way, the standard defines two different 

types of services: streaming services, using the Real-Time transport protocol (RTP) [51] 

and CDS services, using the FLUTE [1] protocol. 

IP datagrams need some encapsulation protocol in order to be transmitted on top of the 

MPEG transport streams. In this sense, DVB-H IP datacast services use the Multiprotocol 

Encapsulation (MPE) [52] protocol to form an IP tunnel over the MPEG-TS broadcast 

stream. This way, service specific robustness is provided at the IP encapsulation level. On 

one hand, it is necessary to deal with the additional packet losses caused by the worst 

reception conditions in mobile communications. Mobile reception can be improved through 

additional Forward Error Correction (FEC) applied over IP datagrams, referred to as 

Multiprotocol Encapsulation FEC (MPE-FEC) [52]. On the other hand, battery 

consumption is constrained in mobile terminals. Consequently, [52] defines a mechanism, 

time slicing, aimed at reducing the battery consumption of MPE decapsulation by sending 

the datagrams in bursts and shutting down the receiver at idle times. As an example, Figure 

30 shows the MPEG-TS bitrate used by a service with MPE-FEC and time slicing. The 

length of the MPEG-TS capture is 5.6 seconds. Each burst is approximately 1.5MB and the 

MPE-FEC encoding rate is 2/3, providing a useful burst payload of approximately 1MB. 

The multiplex bit rate is 29,273 kbps and the burst have an instantaneous bitrate of 20,154 

kpbs, yielding an average burst duration of 63ms and an average burst cycle time of 867ms. 
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Figure 30. MPEG-TS bitrate of MPE-FEC service with time slicing. 

Therefore, due to time slicing, the multiplex consists of bursts, which are made up of a 

considerable amount of video and audio packets belonging to the same mobile TV service. 

The configuration of MPE-FEC and time slicing is crucial for the QoE of mobile TV. 

MPE-FEC trades off error resilience and effective capacity. Clearly, the more MPE-FEC 

parity is added to every burst, the more robust the service is against errors. However, the 

same IP burst payload occupies more MPEG-TS packets in the broadcast stream, reducing 

the effective bitrate in the multiplex.  

Similarly, time slicing trades off battery life and zapping time, defined as the time needed 

to switch from one mobile television service to another. Regarding battery consumption, 

the battery used is proportional to the ratio between the burst duration and the burst cycle 

time. In the example, an ideal decapsulator implementation needs only to switch on the 

DVB receiver 7.2% of the time (63/867ms). On the other hand, the zapping time is related 

to time slicing and the configuration of the encoder. When a terminal tunes to a DVB-H 

service, first it needs to wait for a burst during an average time equal to half the burst 

period. Later, the encoder will need to fill the buffer for a time known as the initial buffer 

delay, required to guarantee seamless playback even if there are variations in the bit rate. 

The decoder might have to wait for a longer time in case it did not receive any intra-

prediction frame during that time. 
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III.4.2 DVB-T2 Networks 

The DVB-T2 standard [49] is a revision of the DVB-T norm. The primary objective of 

DVB-T2 is to provide broadcasters with a more advanced, more efficient alternative to 

previous broadcast standards. DVB-T2 is not meant to be an upgrade of DVB-T networks, 

but rather a complementary system that allows a more efficient usage of broadcast 

spectrum. While being able to share infrastructure with DVB-T [53], DVB-T2 provides 

improved coverage, higher capacity and better flexibility than its predecessor. 

Regarding service specific robustness, DVB-T2 implements a quite advanced mechanism, 

known as Multiple Physical-Layer Pipe (M-PLP) mode. In this configuration mode, DVB-

T2 physical layer frames are regarded as a grid of cells in the time-frequency domain, each 

cell representing a data carrier in an OFDM symbol. A PLP is composed of any arbitrary 

group of cells, making a virtual physical channel on top of the DVB-T2 frequency channel. 

Figure 31 shows a simplified schematic representing the PLP concept.  

The figure shows the frame preamble (P1), used for synchronization at the beginning of 

every T2 frame, and the L1 signaling, with information about the PLPs in the frame. After 

the preamble and the signaling, the frame contains the different data PLPs, three in the 

example above (PLP1, PLP2 and PLP3). PLP1 is signaled as a common frame, indicating 

receivers that they must demodulate this frame in addition to the PLP containing the service 

selected by the user. Also, if the PLPs do not use the overall capacity of the frame, dummy 

cells are appended at the end of the frame. Dummy cells contain no information and they 

are used to fill a frame whenever PLPs do not use all the cells available. 

 

Figure 31. DVB-T2 Physical Layer Pipes diagram. 
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Back to Figure 30, time slicing is clearly a form of Time Domain Multiplexing (TDM). 

However, the M-PLP mode provides a very flexible framework enabling combinations of 

TDM and Frequency Domain Multiplexing (FDM) or OFDMA (Orthogonal Frequency 

Domain Multiple Access). Thus, it is possible to adapt the characteristics of the virtual 

channel provided by each PLP to the demands of the service.  

III.5 Opportunistic Data Insertion in a DVB tunnel 

The previous section highlighted the mechanisms incorporated in state-of-the-art 

broadcasting systems to provide service specific robustness. On one hand, DVB-H provides 

MPE-FEC and time slicing, which enables TDM of different services. On the other hand, 

DVB-T2 implements the M-PLP mode, allowing different combinations of TDM, FDM or 

OFDMA in DVB-T2 frames. Television services are multiplexed on top of these 

mechanisms. 

As with DVB-T services, each television service may apply either CBR encoding or 

VBR encoding. If the overall sum of the bitrate of all services is less than the channel 

capacity, there is guaranteed ODI capacity available in the multiplex (MPEG-TS packets in 

DVB-H and dummy cells in DVB-T2). 

In this thesis, we propose the use of ODI to simplify the multiplexing process of 

dedicated tunnels (PLPs or MPE-FEC frames) and achieve 100% channel capacity 

utilization. This is accomplished by sending a background CDS service together with every 

video streaming service [54]. In this sense, there are different ways to multiplex each video 

service with its companion CDS service. For instance, it is possible to use opportunistic 

data insertion at MPEG-TS level, as described in section III.3.  

If the service in question incorporates an IP protocol stack, there is a second alternative: 

to perform the insertion at the IP layer level, inserting IP packets belonging to the 

background CDS into the same (MPE or PLP) tunnels that carry the streaming service. This 

implementation is compatible with both DVB-H and DVB-T2 system specifications and is 

addressed in the following subsections. 
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III.5.1 IP datagram encapsulation with ODI 

In this section we are going to highlight some implementation details of two different ways 

to insert a background CDS together with a streaming service at the IP layer. In the first 

scenario, the DVB physical layer provides a guaranteed bitrate capacity to the IP layer. The 

insertion process consists of a queuing process with priorities, where the streaming service 

packets conform the high priority queue and the CDS service packets conform the low 

priority queue, as shown in Figure 32. 

 

Figure 32. Opportunistic Data insertion in an IP tunnel. 

In the figure, the total capacity of the DVB channel is divided in three different PLPs, 

which are regarded as guaranteed bandwidth IP tunnels. The services in PLP 1 and PLP 3 

do not use the guaranteed capacity at all times. In DVB-T2, this results in the presence of 

dummy cells in the DVB-T2 frame. In PLP 2 we have a similar service, except that it uses 

ODI to insert packets from a background CDS service. Hence, ODI manages a queue that 

inserts packets into the PLP at a constant bitrate, equal to the guaranteed bitrate of the 

tunnel. The packets of the streaming priority service have priority over the packets of the 

background CDS, so that no packets from the streaming service are lost and the timing 

requirements are still met. On the other hand, the CDS has no bandwidth or timing 

requirements and the packets will always be useful payload. 

This scenario is very similar to the scenario presented in the previous section (see 

III.3.2), except that the ODI process is performed on a service basis, before the multiplex, 

and that the insertion is done at the IP layer level. In any case, the implementation is quite 

similar. First, it is necessary to detect the available residual bitrate. In case that the 

streaming services use the RTP protocol, it is possible to monitor the transport stream 

bitrate from PCR timestamps at the RTP level. [51] defines a mechanism to encapsulate 
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MPEG-TS into RTP packets where the PCR count is mapped into the timestamp field of 

the RTP packet header. Additionally, [51] specifies that the number of MPEG-TS packets 

in every IP packet should be constant (typically, 7 MPEG-TS packets per IP packet). 

Therefore, the instant bitrate can be determined by measuring the packet inter-arrival time 

in the video streaming service queue. Later, the insertion process can be carried out locally, 

with the available bandwidth detection, or remotely, as in ODI insertion in a DVB 

multiplexer. 

For the second scenario, let us assume that the multiplexing scheme applied at the 

physical layer uses some form of TDM so that the packets belonging to service arrive in 

bursts. Also, as with DVB-H, the burst periods are larger than the video sampling rate, so 

that every burst contains a set of frames, equivalent to a certain playback time. This will 

always be beneficial for battery constraint devices, because it is possible to shut down the 

receiver at idle times and still play out the frames in a burst while expecting the next one. 

Ideally, every burst should contain the data belonging to the playback of a period of time 

equivalent to the burst cycle, with at least one intra prediction frame per burst. This way, 

the player application can start playback immediately after receiving a burst. Unfortunately, 

due the intrinsic properties of video traffic, these ideal bursts do not have a constant size. 

Instead, their size changes from one burst to the next, giving two possible alternatives for 

multiplexing:  

• Deterministic multiplexing: one alternative is to allocate a fixed amount of 

capacity in the multiplex to each service, sufficient to allocate the maximum 

expected burst size of the service. If there is no data available in a given slot, 

the overall efficiency will be degraded. 

• Statistical multiplexing: consists of changing the configuration parameters 

(MPE-FEC/time slicing in DVB-H, PLP configuration in DVB-T2) dynamically 

from burst to burst, adjusting these parameters to the burst size statistics of all 

services, while at the same time keep control over QoE metrics like the video 

quality, the zapping time or the battery consumption.  
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In the second case, the efficiency gain brought by statistical multiplexing depends on the 

statistics of the bursts and there is no guarantee that the capacity of the channel is 

completely used during the whole time. It is also worth noting that in second-generation 

networks, the implementation of statistical multiplexing is more complicated than in first 

generation networks as it is necessary to take into consideration service robustness. On the 

other hand, background content download services do not have any timing constraints. 

Therefore, it is possible to provide a background content download service together with 

every video service so that the resulting burst duration, that is the time needed to transmit 

the burst size, is kept constant or within some boundaries.  

 

Figure 33. Video streaming service plus background CDS service and TDM multiplexing. 

Clearly, this simplifies the multiplexing process, making it easier to use the whole 

channel capacity, while meeting the QoS requirements of the services the whole time. The 

proposal is compatible with both deterministic multiplexing and statistical multiplexing. 

This way, there is no efficiency lost in deterministic multiplexing working with video 

services, since the reserved capacity is always be utilized either by the primary streaming 

service or by the background content download service. In statistical multiplexing, the data 

packets can be used to adjust the statistics of the burst size to optimum values for the 

specific multiplexing algorithm. 

The following subsection shows some results to help illustrating these concepts. 



Chapter III Opportunistic Insertion of television services  

 83 

III.5.2 Results of ODI in guaranteed bitrate tunnel 

 

Figure 34.  Comparison of QP and bitrate of CBR encoding and VBR encoding. 

Figure 34 provides two traces of the bitrate and the quantization parameter (QP) of the 

same video sequence encoded with Constant Bit Rate and Variable Bit Rate, using the open 

source H.264 video codec application x264 [55]. The video samples have a resolution of 

1280x720 pixels and the sampling rate is 30fps. The bitrate of the encoder is calculated as:  

 bvbr (i) =
fsize( j)

j=0

i

!

t(i)
 (22) 

In Eq. 22, fsize is the frame size and t is the time of frame i. The CBR encoder achieves the 

constant bitrate by enforcing the configured bitrate every fixed amount of encoded video 

bytes, known as the Video Buffer Verifier (VBV) size. This method ensures that a T-STD 

decoder with a Transport Buffer (Figure 20) of VBV size does not overflow or underflow at 

any time if the encoded stream is written at the encoding bitrate. 

Figure 34 shows the bitrate and the Quantization Parameter (QP) of every frame for the 

same video sequence encoded with CBR and VBR. The QP is related to intra frame 

encoding. A high value of QP indicates that the information of the frame is highly 

compressed, being somewhat related to subjective quality. The CBR encoder changes the 
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QP of every frame to enforce the constant bitrate. In the example, the CBR bitrate is 

10Mbps and the VBV size is 2Mbits. On the other hand, the VBR encoding policy does not 

have such strict bitrate constraint. It is configured to provide a long-term average bitrate of 

8Mbps, but it is allowed to change the bitrate up to a 25% (6-10Mbps) according to 

complexity of the scene. Since the bitrate requirement is more relaxed, the encoder uses a 

more constant QP across frames. 

Looking at the QP traces, it is clear that the excess of bitrate used by CBR encoding does 

not actually provide any improvement in encoded video quality. The QP trace of the VBR 

is lower than the QP trace of the CBR video for most frames. Moreover, the scene increases 

its complexity at some time instants (e.g. around frame index 8000 and frame index 18000, 

causing an increase on the average QP and VBR bitrate.  

Now assuming that both encoders use tunnels of 10Mbps, the VBR encoder leaves some 

capacity for a background CDS service and no penalty on encoded video quality. As 

depicted in Figure 32, the ODI manages a queue with priorities. The output queue will 

serve at a rate equal to the capacity of the tunnel, B (10Mbps). Therefore, the capacity 

available for the background CDS service at every frame index i is given by: 

 bCDS (i) =B!
fpsize( j)

j=0

i

"

t(i)
 (23) 

where fpsize(j) is the size of the frame accounting for the packetization overhead.  
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Figure 35. Background CDS download bitrate and achieved download size. 

Figure 35 shows the bitrate  available for ODI when the video under study is 

packetized for RTP transmission and transmitted through a tunnel of 10Mbps capacity. The 

bitrate is shown together with the amount of data downloaded during the duration of the 

video. The figure shows how the CDS bitrate decreases when the scene is more complex. 

The background CDS service achieves a total download size of 6.1 Mbytes after 60 

seconds, 11.8 Mbytes after 120 seconds and 20 Mbytes after 220 seconds of video. Clearly, 

these values are rather high and the service can be used for different applications. 

III.5.3 Results of ODI with time slicing encapsulation  

The following results regard the case when the video is sent in bursts as in Figure 33. As 

explained, video streaming services have strict timing requirements. The most efficient 

mapping of video packets to TDM bursts is to insert the data corresponding to a playout 

time of length equal to the burst period into each burst. This way, the receiver can start 

playing the data received in one burst while expecting the next one. Hence, the minimum 

payload data of every burst consist of a GOP. In the CBR and VBR encoding examples, 

GOPs are made of 12 frames. Figure 36 shows the statistics of the GOP sizes found in the 

two encoded sequences. As depicted in the figure, the payload of these ideal bursts does not 

have a constant size. Regarding the CBR video, the GOP size is almost constant and the 

bCDS (i)
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histogram shows a large frequency peak in a bean centered at approximately 500kbytes. 

Contrarily, the histogram spread of the GOP size of the VBR video is much larger, with a 

minimum size around 200kbytes and a maximum size of approximately 900kbytes. 

Moreover, there are no frequency peaks in the VBR GOP size histogram. 

 

Figure 36.  Comparison of the histogram of the size of GOPs with VBR and CBR encoding. 

Now, let us compare two different time slicing encapsulation techniques: statistical 

encapsulation and deterministic encapsulation with ODI insertion. In order to perform such 

comparison, the multiplexing rate, mux_rate, is set to: 

 mux _ rate =cts ·max(gop_ size)
gop_ rate

 (24) 

In the equation, the gop_rate is defined as the frame rate divided by the number of frames 

in a GOP (30/12 in the example). In order to fulfill the timing requirements of the video, 

bursts should arrive exactly at the GOP rate. In the example, this results in a burst period of 

(12/30 = 400ms). On the other hand, the instantaneous bitrate of the multiplexer must be at 

least equal to the maximum instantaneous bitrate required by the bursts, which is exactly 

the maximum GOP size divided by the GOP rate. Otherwise, the multiplexer will not be 

able to send the largest burst completely and at the same time fulfill the timing 

requirements. Normally, the multiplexing bitrate is significantly higher than this minimum 
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value, in order to achieve short burst durations and create idle intervals between bursts. As 

explained, these idle intervals allow to multiplex different bursts of different services in the 

time domain and to shutdown the receivers to save battery. In equation (21), the ratio 

between the actual multiplexing rate and the minimum required multiplexing bitrate is 

noted as cts. 

As shown in Figure 33, the burst duration is the time necessary to transfer a burst at the 

multiplexer rate. Hence, the burst duration is equal to the burst size divided by the 

multiplexer rate. Note that Eq. 24 implies that the maximum burst duration is 1/cts of the 

burst period. At every burst period, the multiplex utilization is defined as the portion of 

time that the service uses the multiplex capacity. Alternatively, the battery reduction is the 

portion of time that an ideal receiver could shut down the demodulator. Each time slicing 

technique deals with the changing burst size in a different manner. In statistical 

encapsulation, the payload of every burst is adjusted to the GOP size and the burst duration 

will vary from one GOP to the next. In deterministic encapsulation with ODI, the payload 

of every burst is adjusted to the maximum GOP size, adding CDS packets to fill the bursts 

so that, at the end, burst size and duration are kept constant. In order to keep the timing 

requirements of the video, the burst period is equal to the frame rate divided by the GOP 

size. In the example, this results in a burst period of 400ms. 

The following example illustrates the differences between statistical encapsulation and 

deterministic encapsulation with ODI. Setting cts=2 yields the following results:  
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TABLE III 
CHARACTERISTICS OF STATISTICAL TIME SLICING AND DETERMINISTIC WITH ODI TIME SLICING 

 Statistical Deterministic+ODI 

 CBR VBR CBR VBR 
Mux bitrate (kbps) 24854.4 39011.5 24854.4 39011.5 

max burst duration (s) 0.2 0.2 

0.2 
min burst duration (s) 0.0941 0.0413 

mean burst duration (s) 0.1610 0.0928 
Battery reduction 59.75% 76.82% 50% 

Mux utilization 40.25% 23.18% 50% 

As indicated in Eq. (24), the multiplexer bitrate is set according to the maximum GOP size, 

resulting in 24.85 Mbps for the CBR video and 39.01 Mbps for the VBR video. Since cts 

equals 2, the maximum burst duration is half the GOP period (400ms/2 = 200ms). In 

statistical multiplexing, the burst duration is adjusted according to the size of every burst. 

This way, the capacity of the TDM tunnel is adjusted to the bitrate of the service, and the 

battery reduction and multiplexer utilization vary from burst to burst. The table provides 

the average of the session. On the other hand, deterministic encapsulation with ODI adjusts 

the size of every burst to the maximum GOP size, by inserting packets from the 

background service whenever necessary. Therefore, the burst duration is always equal to 

the maximum burst duration (200 ms). Consequently, the tunnel capacity is half the 

multiplexer capacity (12.43 Mbps in the case of CBR video and 19.51 Mbps in the case of 

VBR video), resulting in a battery reduction and multiplexer utilization of exactly 50% 

(1/cts). 

Furthermore the bitrate of the CDS service added by ODI insertion is approximately a 25% 

of the CBR encoder bitrate and a 10.23% of the multiplex bitrate. Also, as indicated in 

Table III, the battery reduction decreases from 59.75% down to 50%. On the other hand, 

the CDS is able to push approximately 60Mbytes of data only after 220 seconds. 
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The table highlights the benefits and drawbacks of deterministic encapsulation with ODI. 

On one hand, it simplifies the multiplexing process, because it provides constant burst 

sizes. However, by adding ODI packets, the overall multiplex utilization and the battery 

consumption increase. This effect is more noticeable with VBR.  

Figure 37 shows the performance of the CDS service with CBR encoding. In the figure, the 

burst payload and the bitrate of the background CDS service is rather constant -around 

2.4Mbps- once the CBR encoder has achieved its bitrate. This can be explained by looking 

at the histogram of CBR burst sizes. By allocating a burst size equal to the max burst size, 

the encapsulator is always using a capacity of 12.427Mbps, inserting CDS packets into 

each burst, except for the burst transporting the larger GOP. Therefore, the remaining 

bitrate for the CDS service tends to a constant bitrate of 2.427Mbps (approximately the 

tunnel capacity, 12.427Mbps minus the CBR bitrate, 10Mbps). 

 

Figure 37. Background CDS burst capacity, bitrate and total download size with CBR encoding and time 
slicing. 

Figure 38 shows the performance of deterministic encapsulation with ODI with the VBR 

encoded sequence. Note that the scale is different for the sake of clarity. In this case, the 

burst payload and the bitrate of the background CDS are more variable. The average bitrate 

of the tunnel is 19.5Mbps and the mean VBR bitrate in the encoded sequence is 8.86Mbps. 

This yields to an average bitrate for the CDS service of 10.32Mbps. Therefore, the bitrate 
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of the background CDS service with deterministic encapsulation with ODI is 116.5% of the 

bitrate of the streaming service. This means that the multiplexer utilization goes from the 

23.18% of statistical multiplexing to the 50% of deterministic multiplexing with ODI. 

Furthermore, the battery reduction achieved by statistical multiplexing is 76.82%, against 

the 50% of statistical multiplexing with ODI. On the other hand, the CDS total download 

size after 220 seconds is 274Mbytes, which is quite a significant amount of data. 

 

Figure 38. Background CDS burst capacity, bitrate and total download size with VBR encoding and time 
slicing. 

In both cases, the bitrate of the background CDS service appears to be rather large. 

Depending on the application, it could be interesting to trade off bitrate with some other 

parameter. One way to achieve lower bitrates is to use larger bursts, made of several GOPs. 

However, larger bursts mean longer burst cycles and in extent longer initial buffer delays 

and zapping times. Hence, it is possible to trade off background CDS bitrate and buffering 

delay and zapping time. 

Figure 39 shows the background bitrate achieved with different burst sizes. As the burst 

size increases, the difference between the maximum burst size and the burst size become 

smaller and consequently, the bitrate reserved for the tunnel tends to the CBR encoding 

bitrate. In turn, the capacity available for the background CDS decreases. The figure, 

highlights the big decrease in the background CDS bitrate achieved when the burst payload 
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consist of two burst. However, for burst sizes of 3 or more GOPs, the improvement is not 

so significant.  

 

Figure 39.  Background CDS bitrate with deterministic encapsulation with ODI for different burst sizes and 
CBR encoding. 

The multiplex utilization and battery consumption also decrease with the Background CDS 

bitrate. To illustrate this, Figure 40 represents the CDS bitrate and the battery consumption 

degradation against the burst size. The battery consumption degradation is defined as the 

difference in battery consumption between statistical multiplexing and deterministic 

multiplexing with ODI insertion. In Figure 40, the mux rate is kept constant. On the other 

hand, each burst transports an increasing number of GOPs and the burst period changes to 

adapt to the playback duration of every burst. As indicated, with time slicing, the zapping 

time is half the burst period. Hence, the zapping times in Figure 40 correspond to burst 

periods of 0.4 (1 GOP) to 16 seconds (40 GOPs). At this point, it is worth noting that the 

right-side values of the figure may not be useful for mobile television services. The graph 

shows that, as the burst period and the zapping time increase, the battery reduction 

decreases at the same path as the CDS bitrate. 
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Figure 40. Background CDS bitrate and battery consumption degradation against zapping time with ODI for 
different burst sizes and CBR encoding. 

With VBR encoding, the effect is similar. Figure 41 shows the CDS bitrate achieved with 

different burst sizes, from 1 GOP to 33 GOPs, with the VBR video sequence. As with 

CBR, the differences between the burst sizes decrease with larger bursts, in general, but not 

in all cases, because with VBR it depends on the statistics of the burst sizes and a larger 

burst does not always mean a lower CDS bitrate. This can be noted in the figure, since a 

burst size of 25 GOPS has a larger bitrate than a burst size of 17 GOPs. However, the 

tendency is the same as with CBR and larger burst generally mean lower CDS bitrate. 

Moreover, larger burst periods mean fewer bursts and thus, fewer opportunities for data 

insertion. Another clear effect is that using larger bursts has a smoothing effect in the CDS 

bitrate, which becomes more and more constant.  
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Figure 41. Background CDS bitrate with deterministic encapsulation with ODI for different burst sizes and 
VBR encoding. 

Figure 42 shows the CDS bitrate and the battery consumption degradation for different 

burst sizes. The multiplexer bitrate is kept constant and burst periods and sizes are changed 

to encapsulate a different number of GOPs (from one to 16) in each burst. 

 

Figure 42. Background CDS bitrate and battery consumption degradation against zapping time with ODI for 
different burst sizes and VBR encoding. 

The figure shows a decreasing tendency of the bitrate and the battery consumption 

degradation. Unlike with the CBR encoding, the battery utilization and the bitrate do not 
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follow the exact same path. This is because the battery utilization degradation is a measure 

of the difference between the battery reduction with statistic encapsulation – only the 

streaming service - and deterministic encapsulation with ODI – the streaming service plus 

the CDS service. The battery reduction is related to the idle duration while the bitrate is 

related to the burst duration. With CBR encoding, the bitrate used is constant and so it is 

the relationship between the burst duration and the idle duration, regardless of the number 

of GOPs included in every burst. However, this does not hold with VBR and it is not 

possible to state that the bitrate and the battery reduction vary in the same way. 

In summary, in time slicing, the ideal burst payload consists of a GOP. Both CBR and VBR 

encoding generate GOPs of different sizes. The differences in CBR GOPs are rather small, 

while the differences in VBR GOPs are considerably larger. Deterministic encapsulation 

with ODI achieves a constant burst size by adding packets from a background CDS service 

to every burst. This insertion results in a higher multiplex utilization and a higher battery 

consumption. With the small differences found in the burst sizes of the CBR encoded 

sample, the maximum bitrate of the background CDS is around 25% of the bitrate of the 

video streaming service. On the other hand, the large differences in the GOP sizes in the 

VBR video sequence result in a background CDS bitrate over 116% of the average video 

streaming bitrate. In both services, the total amount of download data after 220 seconds is 

quite large, over 60Mbytes in the case of CBR encoding and over 200Mbytes with VBR 

encoding. At the same time, ODI insertion simplifies the multiplexing process. On the other 

hand, the resulting CDS capacity may be too large depending on the application. In these 

cases, it is possible to increase trade-off CDS bitrate by increasing the burst size and the 

burst period, thus trading off background CDS bitrate with initial decoding delay and in 

turn zapping time. 

III.6 Conclusions 

Terrestrial broadcast networks use a constant bitrate transport stream to multiplex together 

several television services. Due to the timing requirements of digital video and the constant 

bitrate constraint of broadcast networks, multiplexers need to insert filling packets into the 

broadcast transport stream, in order to achieve the transport stream rate at all times. 
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Opportunistic Data Insertion (ODI) uses this filling capacity to broadcast additional 

services. 

We have evaluated the filling bitrate in different multiplexers belonging to one national 

public network, two private national networks and one regional public network. The results 

show that commercial DVB network operators use filling bitrates in the order of several 

hundreds of kbps. In some cases the filling capacity exceeds 1Mbps. The results show that 

the use of ODI for the delivery of download services and local storage is an interesting 

study case. For instance, the mean bitrate available for ODI -averaged in all the multiplexes 

under study- is 976.7kbps. At this bitrate, a content download service will be able to push 

around 9.8Gbytes of data a day. We have measured the filling capacity of two multiplexers 

during 36 hours in order to obtain models for the available bitrate. These models are used in 

the following chapter in order to perform a thorough evaluation of background CDS 

networks over DVB networks. 

On the other hand, second-generation DVB networks use dedicated physical layer tunnels 

for every service. The example, consisting of encoded scenes of a commercial TV program, 

showed that there is a lot of capacity remaining in a fixed capacity tunnel transporting a 

VBR encoded sequence. In this context, statistical multiplexing implies adapting the 

capacity of every tunnel to the exact bitrate of the services, dynamically, and at the same 

time, guaranteeing that the tunnel provides an optimum QoS for the service. Clearly, this is 

quite challenging. Alternatively, we have presented a multiplexing technique referred to as 

deterministic multiplexing with ODI. With this technique, each streaming service is 

associated to a background service that uses the excess of capacity in the capacity reserved 

for the primary streaming service. We have presented an example of the performance of 

this technique with a commercial video sequence of approximately 20 minutes long. In the 

example, the background content download service managed to download over 250 Mbytes 

of data during the transfer of the video. Therefore, this kind of background services can 

have several applications for both fixed and mobile terminals. 



Conclusions  

 96 

The results also show the performance of the technique in combination with time slicing, a 

technology designed to save battery in mobile devices. With time slicing, several frames 

are grouped into bursts. Then, each burst is sent at a higher rate than necessary, in order to 

conform idle intervals between bursts. With time slicing, the ideal burst payload consists of 

a GOP, since this achieves minimal initial buffering delays and zapping times. In this sense, 

both CBR and VBR encoding generate GOPs of different sizes. The differences in CBR 

GOPs are rather small, while the differences in VBR GOPs are considerably larger. 

Deterministic encapsulation with ODI achieves a constant burst size by adding packets 

from a background service to every burst. This insertion provides an additional service and 

simplifies the multiplexing process, at the expense of a higher multiplex utilization and a 

higher battery consumption. 

With the small differences found in the burst sizes of the CBR encoded sample, the 

maximum background CDS bitrate is around 25% of the bitrate of the CBR video. On the 

other hand, the large differences in the GOP sizes in the VBR video sequence produce 

bitrates over 116% of the VBR average bitrate. In both services, the total amount of 

download data after 220 seconds is quite large, over 60Mbytes in the case of CBR encoding 

and over 200Mbytes with VBR encoding. The resulting background CDS capacity may be 

too large depending on the application. In these cases, it is possible to trade-off bitrate 

capacity and zapping time by increasing the burst size (in number of GOPs).
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Chapter IV  

 Background Content Download 
Services in DVB Networks 

This section presents an evaluation of background Content Download Services (CDSs) in 

the scenarios under study, according to the measurements and models presented in previous 

sections. Each scenario is defined by different characteristics of the service architecture:  

• Content. As indicated in Chapter II, this thesis regards two different kinds of 

content catalogues: the IMDB (television content) and YouTube (short video clips, 

mainly User Generated Content). Each model is used to characterize the Content 

Repository in the context of different background CDS applications: The IMDB 

catalogue represents long duration programs, like movies and episodes of series, 

while the Youtube catalogue represents short duration programs, like music videos 

or commercials. 

• Network. Chapter Chapter III described the available bitrate for ODI in first-

generation DVB networks and second-generation DVB networks. Each one of the 

two different networks provides a different model for the ODI insertion in the 

architecture.   

• Terminal. There are two different kinds of terminals regarded in this study, 

television sets and mobile terminals. The main differences in the context of this 

study are reception and screen resolution.  
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DVB radio frequency network planning targets error free transmission for fixed (rooftop) 

reception and 5% MPE-FEC frame error rate for good mobile reception. Therefore, it is 

assumed that the physical layer is able to correct the errors introduced in the 

communication channel when the target terminal is a television set. Oppositely, for mobile 

terminals, we regard losses of 5% (good reception) and 50% (bad reception) in a TU6 [36] 

channel as explained in the Channel model section in Chapter II.  

Regarding screen resolution, both kinds of terminals have a wide range of formats. The 

Standard Definition (SD) DVB format inherits the pixel resolution of the former Phase 

Alternating Line (PAL) Analogue television format (720x576). Higher resolution formats 

include, High Definition TV (HDTV, 1280x720), full HDTV (1920X1080) or 4K Ultra 

High Definition TV (4K UHDTV, 3840 × 2160). On the other hand, mobile phones use a 

wide variety of resolution formats, from the Quarter Video Graphics Array (QVGA, 

320x240) or VGA (640x480) to the aforementioned HDTV format. In the context of this 

thesis, the resolution will determine the characteristic encoding bitrate of the videos1. The 

encoding rates used in the Youtube site [18] are used as a reference to establish the 

relationship between resolution and encoding bitrate. 

  

                                                             
1 Youtube Encoding approximate bitrates: HDTV 3.3Mbps (2-2.9Mbps video, 2x192kbps audio); full 

HDTV 5Mbps (3-4.3Mbps video, 2x192kbps audio); QVGA 0.4Mbps (0.25 video + 2x64kbps audio); 
360p 0.7Mbps (0.5Mbps video + 2x96kbps audio). 

(source: http://en.wikipedia.org/wiki/YouTube) 
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Table IV summarizes the parameters of each of the scenarios under study:  

TABLE IV 
PARAMETERS OF THE SIMULATION SCENARIOS 

 Scenario 1: Background 

CDS for television sets 

 

SDTV 

Radio
 

Scenario 2: Background 

CDS for mobile terminals  
Content source IMDB, Youtube Youtube

 

Network DVB Multiplex DVB tunnel 
Terminal Television set Mobile terminal 

Encoding bitrates 2,3.3,5,7 Mbps 0.4,0.7,2,3.3 

Channel model Ideal channel 
TU6 (50 Km/h Doppler); 

5% or 50% losses 

With this, the following section shows the performance of the background CDS server in 

the two scenarios under study. 

IV.1 Background Content Download Services for television sets 

Section III.3.2 showed the bitrate available for ODI in different commercial DVB-T 

multiplexers. The results presented the long-term statistics of the number of MPEG-TS 

packets available for ODI. In this section we are going to present the properties of the 

filling bitrate in longer time intervals. 

IV.1.1 Long term bitrate of ODI in a DVB multiplex 

Assume that a file j of size sj bytes is transferred over a background channel that uses 

Opportunistic Data Insertion in a DVB multiplex. In section III.3.2, the filling capacity is 

measured at regular measurement intervals of tmeas seconds. From the measurements, it is 

possible to derive a statistical model for the number of filling MPEG-TS packets -pODI- 

found at every measurement interval (204ms in the models in section III.3.2). With this 

model for the available bitrate, the expected bitrate during the download of a file j over the 

background channel, referred to as E[bj] is approximated by the following expression:  
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 E[bj ](bps) !
sj ·8

nm ·tmeas
,    nm / pmpegts · pODI (k) " sj

k=1

nm

#  (25) 

In the equation, the ODI inserter needs nm intervals of tmeas seconds (204ms) to transfer the 

entire file. In every interval k, the ODI manages to insert a random number of MPEG-TS 

packets pODI (pmpegts is the payload size of MPEG-TS, equal to 184 bytes). Hence, the 

transfer is completed somewhere between the interval nm and the interval nm+1, but since 

we do not have statistics about the available rate on time scales smaller than tmeas, we 

cannot estimate the bitrate with better accuracy. Let us express the equation as: 

 E[bj ](bps) !
pmpegts ·8
tmeas

· 1
nm
· pODI (k)
k=1

nm
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#

$
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&

'
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The summation indicates that the expected bitrate is an average of the underlying available 

ODI rate, characterized by the random process pODI. According to the central limit theorem, 

the distribution of the average tends to a normal distribution, regardless of the statistical 

distribution from which the average is computed: 

 nm
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where D! "! N()  means convergence to a normal distribution, while µ and σ are 

respectively the mean and the standard deviation of pODI. Thanks to the properties of the 

normal distribution, the equation can be rewritten as:  

 bm =
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This property allows us to model the average bitrate experienced during the download of a 

file of a given size. If nm is approximated as nm = ceil(si /µ·pmpegts ) , then, the expected 

bitrate E[b] can be approximated by: 

 E[bj ](bps) !
pmpegts ·8
tmeas

· bm( ),    bm D" #" N µ, 1
nm

!
$

%
&&

'

(
))

2$

%

&
&

'

(
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This approximation can be very convenient in the simulation of CDS services, because it is 

not necessary to evaluate the available bitrate every few MPEG-TS packets. Instead, the 

average bitrate over the download is estimated only once per file, depending on the file size 

si (which will provide the value of nm).  

In order to evaluate the accuracy of this approximation, we have conducted a series of 

simulations using the statistical models derived from the measurement traces of NULL 

packets in multiplexers C28 and C57. The file size is generated using the file size models 

for IMDB content and Youtube content (II.1.1) and the different encoding bitrates (2, 3.3, 

5, 7Mbps) characteristic of SDTV, HDTV, full HDTV and UHDTV television formats. For 

each encoding rate, the file size model generates 5000 different file sizes from each 

distribution.  

 

Figure 43. Average bitrate during the transmission of Youtube files with ODI over C28. 
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Regarding channel 28, Figure 43 presents the results of the simulations conducted with the 

model of the channel and Youtube files, together with the upper and lower limits of the 

95% confidence intervals of the normal distribution approximation provided in Eq. (29). 

Note that for the normal distribution of bm, the 95% confidence intervals are provided by: 

  (30) 

The figure shows the average bitrate E[bj] during the transfer of file sizes. The confidence 

intervals of the model fit the expected bitrate estimated in the different simulations, proving 

that the model efficiently provides an accurate average bitrate depending on the file size. 

The figure shows how the standard deviation of the simulation results decreases with the 

file size, as expected considering the central limit theorem. Hence, when evaluating the 

expected average bitrate during the transmission of a file, Eq. 29 produces equivalent 

results as launching simulations with the model derived from the measurements. Moreover, 

Figure 44 shows the same study, but using the IMDB file size model instead of the Youtube 

model.  

 

Figure 44.  Average bitrate during the transmission of IMDB files with ODI over C28. 

In this case, it can be noted that the file sizes produced by the IMDB model vary in a wider 

range than the file sizes produced by the Youtube model. Still, the bitrate model appears to 

CI 95%( ) = µ ! 2! / nm ,µ + 2! / nm"
#

$
%
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be rather accurate and we can conclude that the model in Eq. 29 provides a good estimation 

of the expected bitrate during the transfer of a file with ODI insertion in C28. 

Similarly, Figure 45 shows the bitrate measurements and the bitrate simulated with the 

model for the ODI bitrate obtained for the multiplex in C57. In this case, the files have been 

simulated using the Youtube file size model of section (II.1.1) and the same encoding rates 

as the previous study (2Mbps - SDTV, 3.3Mbps - HDTV, 5Mbps - full HDTV and 7Mbps - 

UHDTV). 

 

Figure 45. Average bitrate during the transmission of Youtube files with ODI over C57. 

It can be noted that the expected bitrate is higher in C57 than in channel C28. Again, the 

models and the simulations provide equivalent results and the standard deviation of the 

bitrate decreases for larger file sizes. Additionally, Figure 46 shows the same result but 

using the IMDB file size model over C57. The conclusions are the same as in previous 

cases. 
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Figure 46. Average bitrate during the transmission of IMDB files with ODI over C57.  

IV.1.2 Carousel times of Background CDSs in DVB multiplexes 

The carousel time, tC, is related to the average of the download time of each of the files in 

the file carousel. Thus, the central limit theorem can be used again to obtain the relationship 

between the mean and the variance of the download time and the mean and the variance of 

the carousel time. This way, tD
j  is the download time of file with index j and size sj in a 

carousel of N files, over a channel with an average bitrate E[bj] during the transfer of the 

file. The carousel time converges to a normal distribution as:  

 

tC = tD
j

j=1

N

! D" #" N NµD , N! D( )
2( ),   tD

j =
sj
bj

 

 (31) 

where µD and σD are the mean and standard deviation of the download time. Figure 47 

shows the mean carousel time in C28 against the number of files in the carousel for 

YouTube files encoded at the different encoding rates under study. The methodology is the 

same as in the previous studies, except that now, each carousel is evaluated 500 times. Note 

that the Y axis is in logarithmic scale and that the different curves actually show the linear 

dependence of the carousel time with the number of files in the carousel. 
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Figure 47. Mean Carousel time for different carousel sizes for Youtube content over C28. 

Figure 47 depicts the impact of both the number of files and the encoding rate in the 

carousel time. Clearly, the resulting carousel times show that the available bitrate cannot be 

used to provide a live pull content download service, because the times are too large to 

provide a satisfactory user experience for this kind of services. However, the values are 

reasonable for a background push content download services.  

For instance, a background CDS client could download 100 Youtube videos in HDTV 

format after 1.5 days, provided that the client had enough storage capacity and there were 

no losses in the channel. Although the amount of time may seem too large, the download 

process is transparent to the user, who only experiences that new additional content from 

the network provider is available almost on a daily basis. Moreover, since the average 

duration of the videos is approximately 3 minutes, the client will have almost 5 hours of 

additional content. 
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Figure 48. Mean carousel time for different carousel sizes for IMDB content over C28. 

Figure 48 shows the mean carousel time achieved for IMDB content using the available 

bitrate in C28. This kind of content has significantly larger mean duration (around 60 

minutes) and larger standard variation. It can be noted that the carousel times are 

significantly larger than those provided for YouTube content (note the different Y scale in 

both figures). However, the carousel times are reasonable for a moderate number of files in 

the carousel. Hence, the background service is also useful for IMDB content, except that 

the number of files in the carousel may be lower than the number of files for Youtube 

content. For instance, the mean carousel time for 20 HDTV content items is 1 day and 5 

hours. After this time, a background CDS client may have downloaded all the videos in the 

carousel. 

On the other hand, Figure 49 shows the average carousel time of a background CDS service 

in C57 with Youtube content. It can be noted that, since the available bitrate is higher, the 

carousel times are lower in this channel. Relating to the example above, the carousel time 

for 100 HDTV Youtube videos is 1 day, instead of approximately 1,5 days in C28. In this 

sense, the improvement in carousel time is proportional to the increase in the available 

bitrate in the channel.  
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Figure 49.  Mean carousel time for different carousel sizes for Youtube content over C57. 

Similarly, Figure 50 shows the carousel times of the background CDS over C57 with 

IMDB content. Again, the carousel times are lower than the download times obtained for 

C28, especially for short carousels. For instance, in this case, the carousel time for 5 HDTV 

videos is only 2 hours, instead of 1 day in C28. Furthermore, a carousel of 20 file sizes 

provides a mean carousel time of 17 hours instead of 1 day. 

 

Figure 50.  Mean carousel time for different carousel sizes for IMDB content over C57. 
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IV.1.3 Access times of Background CDSs in DVB multiplexes 

Finally, we are going to analyze the access time (tA) of the different study cases. The access 

time is defined as the time that the client application needs to wait from the instant of time 

that it decides that a file should be stored in local storage until that particular file is 

completely downloaded to local storage. With this in mind the access time tA depends on 

the waiting time, tW and the download time, tD. The waiting time is the time between the 

instant when the client application joins the broadcast carousel and the time when it starts 

receiving packets of that file. On the other hand, the download time is the time needed to 

download the remainder of the file, after the first packet is received.  

This concept is represented in Figure 51. In the figure, two different client applications 

want to download the second file in the carousel, F2. The first client accesses the carousel 

during the transfer of file F2. In our model, client applications need to receive the 

beginning of the transfer of a file in order to start downloading it. Hence, client 1 needs to 

wait until the next cycle until it can start downloading file 2. This is because it is assumed 

that the client of the content download protocol needs to receive metadata information 

about the file before it can start the download. For instance, with the FLUTE protocol, 

clients need to receive the FDT section describing a file before they can start downloading 

it. Hereby, it is assumed that this metadata information is sent right before the transfer of 

the file. Likewise, client 2 accesses the carousel during the transfer of file 3 and therefore, it 

also needs to wait until the next cycle to start downloading the file. It is worth mentioning 

that packet losses are not considered at this point. 

 

Figure 51. Access time in file carousels. 
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Note that the use of ODI implies that the carousel time –i.e. the time needed to broadcast all 

files in the carousel – is not constant for a given set of files. Above, the average carousel 

time is noted as TC. Assuming that the client application can join the carousel at any time 

with the same probability within the carousel cycle, the average of the waiting time is TC/2 

for any file in the carousel. Moreover, the average of the download time of file j is defined 

as TD
j , yielding the following expression for the average access time to a file j: 

 

TA
j = E[tA

j ]= E[tW
j ]+E[tD

j ]= TC / 2+TD
j

 

 (32) 

At this point, it is assumed that all the different files have the same access probability. With 

this assumption, the mean access time across the N files in the carousel is:  

 TA = E[TA
j ]= TC / 2+E[TD

j ]= TC / 2+ pi ·TD
i ,   pi =1/ N   !i

i=1

N

"
 

 (33) 

Figure 52 presents the mean access time found for HDTV content (3.3Mbps encoding rate) 

in the different study cases regarded in this section. Every point of the graph is obtained 

evaluating the download time of 500 instances of file carousels obtained with the respective 

file size model. 

 

Figure 52. Mean access times for IMDB and Youtube content encoded in HDTV over the background CDS 
in C28 and C57. 
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Obviously, the different mean access times resemble the shape of the curves found for the 

carousel times, due to the linear relationship between them, expressed in Eq. 33. Figure 52 

highlights the main conclusions of this section. First, the times found are too high to 

provide an on-demand CDS with acceptable QoE, especially when the number of files in 

the carousel is high. However, they seem reasonable for background services where users 

do not experience directly the delay. In any case, the next chapter presents object 

multiplexing, a technique aimed at reducing the access times to files by accounting for their 

relative popularity. The differences in the access time for the two different channels under 

study are proportional to the difference in the long-term bitrate of both channels. Since the 

mean duration of IMDB content is longer than the mean duration of YouTube content, the 

average access time to IMDB content increases at a much faster rate than the average 

access time to YouTube content. 

IV.2 Background Content Download Services for mobile terminals 

In this section, background services for mobile terminals, where losses are taken into 

consideration, are evaluated. Therefore, the effect of packet losses is introduced in the 

calculation of the download time and the access time. 

IV.2.1 Access times of background CDSs over DVB tunnels 

The section II.2 presented the models used to characterize the performance of broadcast 

CDS in the presence of losses. In carousel transmissions, receivers need several carousel 

cycles to download the files. Therefore, the access time is mainly dependent on the carousel 

times and the number of cycles needed to download a file. In order to illustrate this, the 

following figure represents the time needed to access a file in the presence of errors:  

 

Figure 53. Access time in channels with errors. 
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In the last section, we explained how, if there are no losses, the access time to a file in the 

carousel is the summation of the waiting time and the download time. The waiting time is a 

statistical variable dependent of the instant of time when the client enters the carousel and 

the carousel time. Assuming that the access time is uniformly distributed in time, the 

expected value of the waiting time is equal to TC/2, where TC is the expected time of the 

carousel time. Similarly, the download time of file j is a statistical variable that depends on 

the file size and the bitrate of the background CDS service. 

Oppositely, if there are losses in the reception of the carousel, the download time becomes 

dependent of the number of cycles needed to complete the download. Specifically, to 

download a file j, clients need an entire number of cycles (cj) plus a fraction of the 

transmission (lj) to download the file. For instance, in Figure 53, in order to download file 

F2, the client needs 2 entire cycles (c2=2) plus a fraction of the last cycle (l2).  

The average number of entire cycles needed to download file j is defined as  and, 

as explained in section II.2, it depends on the size of the file and the losses on the channel. 

Note that at this point, AL-FEC is not considered. If the receiver starts the download at 

cycle , after a time equal to tC
j (l)

l=k

k+cj

! , the receiver begins the downloading of the last 

portion of the file. In order to fetch this last portion, the receiver waits a time equal to 

, where lj is a fraction of the transmission of file j. Note that, with channel losses, lj is 

not necessarily equal to the portion of the file missing. In the example, in the last cycle after 

l2, the receiver recovers 20% of F2, but since there are losses, it needs to wait a longer 

fraction of the time of the file in the carousel. Thus, the average download time can be 

divided in two terms, the first of them dependent on the carousel cycle: 
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Now, as in the previous case, since the bitrate is not constant, the carousel time at every 

carousel cycle is not necessarily the same. However, if the mean carousel time TC is the 

E cj!" #$= cj

tC
j (k)

sjl j / b
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average of the carousel time measured in a number of cycles K, the average of the 

download time in the same time interval is: 
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Note that, since both summations add consecutive carousel cycles, the terms of the 

summations can be rearranged to obtain the relationship between the average download 

time of a file and the carousel time. With this expression, the average access time to file j 

is:  
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IV.2.2 Evaluation results 

As in the previous scenario, we are going to use the file size model for Youtube content. 

This time, in order to model the available bitrate in a DVB tunnel, we are going to use the 

trace of an encoded VBR video, corresponding to footages from a football match2. Figure 

54 shows the encoding bitrate of the video, together with some frames representative of the 

contents of the video.  

The video corresponds to a 3DTV stereoscopic video in Side-by-Side format, encoded 

according to the DVB specifications for 3D content [56]. The video is encoded with VBR, 

at an average bitrate of 8Mbps and a bitrate tolerance of 25%. The beginning of the video 

presents a time-lapse sequence of the audience taking their sits in the stadium. This 

sequence is quite complex and the encoder has problems to keep the bitrate below 10Mbps. 

Later, the video shows the line-ups of both teams. With the players in the foreground and 

the audience in the background, these frames also have a lot of information. Later, in most 

                                                             
2 The footage was produced by the company Mediapro. The authors have the right to use 

the footage for research purposes in the framework of the Project ImmersiveTV (TSI-
020302-2010-61). 
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of the game, frames mostly show the field, allowing the encoder to reduce the bitrate to 

approximately 7Mbps. Eventually, some close-ups of the players or interesting actions 

cause some peaks in the bitrate. 

 

Figure 54. Bitrate trace of the video used for the measurements, together with few representative frames. 

In order to generate the following results, a background channel is conformed out the 

excess of capacity in a 10Mbps tunnel in which the previous video is encapsulated. The 

background channel capacity is used to broadcast a CDS with videos targeting mobile 

terminals. Note that the target receiver is not the same for the primary streaming service 

and the background CDS –the streaming services targets stereoscopic 3DTV sets and the 

background Content Download Service targets mobile terminals. This kind of 

heterogeneous scenario can be found in different use cases, as addressed in DVB Home 

Networks [57] (DVB-HN). In DVB-HN, the services are retransmitted in the local network 

by a DVB gateway. The purpose of this gateway is to provide access to the services to 

devices in the local IP network that are not physically connected to the DVB network. In 

the following example, it is assumed that mobile terminals are connected to the gateway 

through a wireless connection.  

For every simulation, the mean carousel time is evaluated generating 500 carousel 

instances. The duration of the videos is obtained from the model for YouTube content. The 
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encoding rate applied to the videos corresponds to the resolutions QVGA (0.4 Mbps), VGA 

(0.7 Mbps), SD (2 Mbps) and HDTV (3.3 Mbps) as indicated in Table IV. For the losses in 

the mobile channel, we have considered the two different reception scenarios evaluated in 

II.2, characterized by packet error rates of 5% and 50%. 

 For every file, the mean number of carousel cycles is obtained from the model for the 

carousel cycles presented in section II.2.2. On the other hand, for every simulation, we 

select a random instant of time in the duration of the video for the start of the carousel.  

 

Figure 55.  Access time for a background CDS with Youtube content encoded at different rates over a 
communication channel with 5% channel losses. 

Figure 55 shows the access time of the background CDS with a packet error rate of 5% in 

the communication channel. As in the previous study case, the access time depends to a 

great extent on the encoding rate and the number of files in the carousel. Since the 

background CDS targets mobile devices, it is not feasible to assume that the receivers are 

connected to the background channel for a long time. For instance, in the examples in the 

previous section, it is assumed that the television sets can be connected to the background 

channel for approximately one day. This is not realistic for a mobile terminal that is not 

connected to the power supply. However, it is feasible to assume that the mobile terminal is 

connected to the wireless network during the duration of the television event, 
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approximately two hours for a football match. In the following analysis, this limit is used as 

the upper bound for the access time. 

The access time found in the example shows that the background capacity can be used to 

provide a CDS to mobile terminals, especially for low resolution videos (VGA and 

QVGA). The access time for carousels of small size (4-5 items) is less than an hour for all 

the encoding rates, except for 3.3Mbps (HDTV). For instance, if the resolution of the 

additional content is set to VGA, it is possible to send several carousel sessions with 4 or 5 

files during the duration of the match, ensuring that the interested clients are able to recover 

the different files. Moreover, it is possible to broadcast a carousel of more than 20 files 

during the whole football match. 

On the other hand, Figure 56 presents the access time for a background CDS over a channel 

with 50% packet error rate. Note that this is a quite high packet error rate, corresponding to 

rather bad reception conditions. As expected, the access times are much larger than in the 

previous case. The access time is greater than 2 hours for carousels of less than 10 files for 

all resolutions except QVGA.   

 

Figure 56. Access time for a background CDS with Youtube content encoded at different rates over a 
communication channel with 50% channel losses. 
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In the presence of channel losses, AL-FEC encoding can help decreasing the access time to 

files. The following chapter covers the improvement of the access time and the download 

time brought by AL-FEC encoding in the two reception conditions analyzed in this section. 

IV.3 Conclusions 

In this section we have evaluated two different background CDS services, one targeting 

television sets and one targeting mobile terminals. The service for television sets uses the 

background capacity available in a DVB multiplex. The simulations apply a model for the 

available bitrate that has been obtained from the measurements presented in section III.3.3. 

We have compared the average bitrate during the download of a file obtained with the 

model to the average bitrate obtained with the measurement traces. The results in both 

cases are analogous, proving the validity of the model. Later, we use the model to evaluate 

the carousel time and the access time for IMDB content and YouTube content. The results 

highlight the usefulness of the service, although the access times increase drastically with 

the number of files added to the carousel. In this sense, the following chapter presents 

object multiplexing as a technology that improves the scalability of the service with the 

number of files. 

On the other hand, the service targeting mobile devices uses the remaining capacity 

available in a fixed capacity tunnel used to deliver a live television service. We have 

introduced packet losses in the simulations, according to the channel models presented in 

II.2. The results also highlight the utility of the service, but in this case, the packet losses 

increase the access times in a drastic manner. However, a service operator can apply AL-

FEC encoding in order to reduce the number of cycles needed to download a file. The 

following chapter presents the improvements in the download time brought by AL-FEC 

encoding.
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Chapter V  

 Object Multiplexing and AL-FEC 

The goal of this chapter is to evaluate the improvement in the performance of background 

Content Download Services (CDSs) brought by two different technologies: object 

multiplexing and Application Layer Forward Error Correction (AL-FEC). The basis of 

Object Multiplexing consists of what is known as weighted carousels. In a weighted 

carousel, more popular files are sent more frequently, in order to reduce their download 

time (at the expense of increasing the download time of less popular files). Similarly, AL-

FEC encoding consists of adding redundancy in the transmission of every file so that the 

number of cycles needed to download each file is reduced, at the expense of increasing the 

carousel time. The chapter is structured as follows; the next section presents a theoretical 

analysis of the download time and the access time in background unidirectional push CDSs 

with object multiplexing and AL-FEC. Later, section V.2 presents an evaluation of the 

access time in carousels with Object multiplexing. Finally, section V.3 presents an 

evaluation of the access time in carousels with AL-FEC.  

V.1 Analysis of object multiplexing with AL-FEC 

The first step in the analysis is to model the delivery of content download services, 

including the effect of AL-FEC, object multiplexing and opportunistic insertion. Later, this 

model is used to estimate the optimal configuration of object multiplexing. For the sake of 
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clarity, first we obtain a model incorporating object multiplexing, opportunistic insertion 

and losses and later, we incorporate AL-FEC encoding.  

Thus, the unidirectional background push CDS delivers N files of sizes S = s1, s2,..., sN{ }  

that have a certain access probability in the service area. The access probability is 

represented by P = p1, p2,..., pN{ }  where pj is defined as the number of downloads of file j 

divided by the overall number of file downloads. The objective of object multiplexing is to 

schedule file transmissions so as to minimize the overall access time, that is, the average of 

the access time of all file downloads in the service area. The access time to file j, tA
j , is a 

random variable with expected value E[tA
j ] . This way, taking into account the access 

probability to files in the service area, the overall access time is calculated as: 

 E[tA ]= E[tA
j ]·pj =

j=1

N

! E[tW
j ]+E[tD

j ]( )·pj
j=1

N

!  (37) 

As in the previous chapter, tA
j  depends on the waiting time  and the download time . 

The first objective is to find an expression of Eq. 37, accounting for the effect of object 

multiplexing and opportunistic insertion. Figure 57 shows a new example of a transmission 

of three files, incorporating object multiplexing and losses.  

 
Figure 57.  Time model of the access time with object multiplexing. 

tW
j tD

j
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Figure 57 shows the purpose of object multiplexing: different files have different sub-

carousel cycle times, , which is defined as the maximum time containing the kth 

transmission of file j. The idea is that most popular files have shorter sub-carousel cycle 

times so that in turn, they have shorter access times. Note that  is not necessarily the 

same for every sub-cycle index k, since object multiplexing and/or opportunistic insertion 

can change the sub-carousel cycle times. Hence, each  can be regarded as a random 

variable (see IV.1.2 for a detail explanation). Moreover, as depicted in Figure 57, both tW
j  

and tD
j  depend on . Therefore, if  is defined as the long-term carousel cycle time 

of file j (also depicted in Figure 57), it is possible to obtain expressions of E[tW
j ]  and 

E[tD
j ]  depending on . Later these expressions can be combined in Eq. 37, in order to 

obtain an expression for the access time depending on the different . The set of values of 

that minimize this expression are the optimal long-term carousel cycle times that the 

object multiplexing scheduler needs to apply in order to minimize the overall access time. 

Hence, Eq. 37 can be used to define the optimization problem that needs to be solved in 

order to achieve optimal object multiplexing.  

Let us start with . According to Figure 57, a client application joins the channel at an 

instant of time t, within sub-cycle k. Therefore,  is a statistical variable that depends on 

the time when the client application access the channel and the sub-carousel cycle time 

. Thus, in order to obtain E[tW
j ] , it is necessary to regard all possible values of t and 

every possible k. 

This way, considering the instant of time t, we assume that the client application can join 

the carousel at any time with the same probability within tC
j (k) . Then, it is clear that the 

expected value for tW
j (k, t)  is: 

 tW
j (k) = E[tW

j k, t( )]= tCj (k) / 2   (38) 

tC
j (k)

tC
j (k)

tC
j (k)

tC
j (k) TC

j

TC
j

TC
j

TC
j

tW
j

tW
j

tC
j (k)
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Now, if we consider the sub-carousel index k, each carousel sub-cycle contains a different 

sequence of files (for instance in Figure 57, for F1, the sequence is either F1-F2 or F1-F3). 

Consequently, assuming that the instant when the client accesses the channel is uniformly 

distributed in time, the client does not join the channel at any sub-cycle with the same 

probability, just because every sub-cycle has a different duration and therefore, they do not 

have the same probability of occurrence. If !k  is the probability that the client joins the 

channel at sub-cycle k, the expected value of tW
j , calculated in K different sub-cycles is: 

 E tW
j!" #$= !ktW

j (k) =
k=1

K

% !k
tC
j (k)
2

=
k=1

K

% TC
j

2
 (39) 

Note that Eq. 39 implicitly defines  as the expected value of  in K cycles.  

On the other hand, regarding tD
j , as shown in Figure 57, due to the channel losses, clients 

need several carousel sub-cycles to download a file. Therefore, tD
j  is also a statistical 

variable that depends on the number of cycles needed to download the file and, just as with 

tW
j , it is necessary to obtain an expression regarding all possible values. This way, the 

expression of the average download time when the file starts the download at cycle k, tD
j (k)  

is:  

 E[tD
j (k)]= tC

j (i)
i=k

k+cj

! +E
sj ·l j
b

"

#
$

%

&
'  (40) 

Note that this equation is the same as Eq. 34 in section IV.2.1, but it is included here too for 

the sake of clarity. Hereby the same notation is also used: cj  is the average number of 

cycles and lj is also the percentage of the file that is downloaded in the last cycle. In order 

to obtain the expression for the download time when the download starts at any cycle tD
j , 

we make an average on K different cycles as with tW
j :  

TC
j tC

j (k)
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E[tD

j ]= !k !E
k=1

K

" [tD
j (k)]= !k ! tC

j (i)
i=k

k+cj

" +E
sj ·l j
b

#

$
%

&

'
(

)

*
++

,

-
..

k=1

K

"
 

(41) 

Both summations (over k and i) add cycles of the same file j. Hence, the terms of the 

summations can be re-arranged to obtain the relationship between  and TC
j : 

 
E[tD

j ]= cj !k ·tC
j k( )+E

k=1

K

!
sj ·l j
b

"

#
$

%

&
'= cjTC

j +E
sj ·l j
b

"

#
$

%

&
'  (42) 

Combining the expected values for the waiting time and the download time, the expected 

value for the access time of a file j becomes: 

 E[tA
j ]= E[tW

j ]+E[tD
j ]= TC

j · cj +
1
2

!

"
#

$

%
&+E

sj ·l j
b

'

(
)

*

+
,  (43) 

Once we have obtained the average of the access time depending on the long-term carousel 

cycle, we are going to introduce the effect of AL-FEC encoding. In the last expression, the 

average number of cycles and the portion of the file downloaded in the last cycle are 

mainly related to the losses in the communication channel. AL-FEC encoding reduces the 

average number of cycles  at the expense of increasing the amount data transferred when 

the file is transmitted. Recall that the ratio between the amount of data after AL-FEC 

encoding and the file size is defined by the FEC ratio, FR, (FR>1). Thus, AL-FEC 

increases the size of the data of files in the carousel to . Moreover, if AL-FEC 

is applied, the long-term carousel cycle of each file is noted as TC,FEC
j . 

Now, recall that object multiplexing sends some files more often, in order to adjust the 

long-term carousel cycle of each file. The optimum configuration for the long-term 

carousel cycles provides a minimum of the overall access time, as defined in Eq. 37. 

Therefore, in order to determine the optimization problem, it is necessary to substitute 

 
in Eq. 37 for the expression obtained in Eq. 43 with AL-FEC encoding: 

E tD
j!" #$

cj

sj
FEC = sj !FR

E tA
j!" #$
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 E tA[ ] = TC,FEC
j · cj +

1
2

!

"
#

$

%
&+E

sj
FEC ·l j
b

'

(
)

*

+
,

!

"
##

$

%
&&·pj

j=1

N

-  (44) 

Clearly not all  are the same: files that are sent more often have shorter cycles and, in 

turn, shorter access times. This way, since files have different long-term carousel cycle 

times, files are not transmitted at the same rate in the long run. Therefore, files have 

different long-term bitrates and files with shorter long-term carousel cycles can be seen as 

files with higher long-term bitrates. The long-term bitrate assigned to file j (bj) is: 

 bj =
sj
FEC

TC,FEC
j  (45) 

Taking this into account, Eq. 44 can be rewritten as: 

 
 (46) 

Note that, due to opportunistic insertion, the server works exactly at the available bitrate, b, 

establishing a constraint in the set of long-term bitrates:  

 
 (47) 

The only relationship between the different long-term bitrates is the boundary condition in 

Eq. 47, therefore they are independent variables, but subject to that condition. Thus, the 

following auxiliary function is used to solve the optimization problem: 

 
f b1,b2,...,bN( ) =

sj
FEC · cj +1/ 2( )·pj

bj
+

j=1

N

! ! b" bj
j=1

N

!
#

$
%%

&

'
((  (48) 

In order to find the minimum of Eq. 48, its derivate is equaled to zero: 

TC,FEC
j

E[TA ]=
sj
FEC

bj
· cj +

1
2

!

"
#

$

%
&·pj + E

sj
FEC ·l j
b

'

(
)

*

+
,

j=1

N

-
j=1

N

- ·pj

bj = b
j=1

N

!
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! f bj( )
!bj

= !
sj
FEC · cj +1/ 2( )·pj

bj
2 +! = 0  (49) 

Providing the set of optimal bitrates:  

 

bj =
b sj

FEC · cj +1/ 2( )·pj
si
FEC · ci +1/ 2( )·pi

i=1

N

!
 (50) 

Hence, by applying these optimal bitrates, the multiplexing process takes into account the 

file sizes after AL-FEC encoding, the expected number of cycles and the access probability 

in order to calculate the set of optimal rates. Recall that Chapter II presented models for the 

file sizes, the access probability and the average number of cycles (dependent on the AL-

FEC rate, the file size and the channel losses). In the next section, object multiplexing is 

applied to the use cases presented in section IV.1 to evaluate the improvements in the 

access time introduced with this technique.  

V.2 Object Multiplexing 

V.2.1 Lower bounds of object multiplexing with ODI 

In this section, we evaluate the average access times achieved with object multiplexing, 

applying the optimal long-term bitrates obtained in the previous section. These results can 

be regarded as the lower bounds for the access time, that is, the lowest access times that can 

be achieved with object multiplexing. The objective is to assess the potential gain of object 

multiplexing. With this motivation, we compare the lower bounds against the access times 

achieved with no object multiplexing, in the use cases defined in this thesis. 

First we are going to evaluate the access time without channel losses ( cj =1 ! j ) and no 

AL-FEC encoding ( FR=1 ). Thus, in order to evaluate the lower bounds, we need to 

characterize the available bitrate, the file size and the probability of access. The available 

bitrate is obtained from the results in section IV.1 Background services for television sets. 

Recall that this section presented the bitrate available for opportunistic insertion in two 
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different commercial multiplexers, referred to as C28 and C57. On the other hand, we use 

the IMDB and YouTube content models for the file size and the probability of access. 

 

Figure 58.  Access time for YouTube content encoded at 3.3 Mbps and 2 Mbps with and without object 
multiplexing in channel C28. 

Let us start with the evaluation of object multiplexing over channel C28, delivering 

YouTube content. Figure 58 represents the access time achieved for YouTube files, 

applying encoding rates of 2Mbps and 3.3Mbps (corresponding respectively to the SDTV 

and HDTV formats). The popularity of the content is also set according to the model for 

YouTube content in section II.1.3, a ZIPF with exponential cut-off (α= 0.84, χ=10-3). For 

each carousel size, the access time is the average over 500 simulations. 

The main conclusion of the result is that object multiplexing can reduce the access time 

drastically. The access times achieved with object multiplexing are significantly lower, 

especially when the number of files in the carousel is large. Although the figure shows the 

lower bounds for the access time, obtained from the theoretical analysis in the previous 

section, the differences show the great potential of object multiplexing, especially for large 

carousels. 

In order to evaluate the relationship between content popularity and object multiplexing, 

Figure 59 shows the object multiplexing gain for the different popularity distributions 
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presented in section II.1.3. The object multiplexing gain is defined as the ratio between the 

access time without and the access time with object multiplexing. 

 

Figure 59.  Object multiplexing gain for IMDB content in C28 with different probability distributions. 

The popularity distributions under evaluation are the ZIPF distribution with exponential 

cutoff (α=0.84 and χ=10-3) of YouTube content [18], the ZIPF distribution of web content 

(α=0.56) [22] and the ZIPF distribution with exponential cutoff (α=0.35 and χ=10-5) of 

IMDB content in II.1.3. Comparing the YouTube popularity distribution and the IMDB 

popularity distribution, it can be noted that the relationship between the object multiplexing 

gain and the α coefficient is different for large carousels and small carousels. For instance, 

the object multiplexing gain for 20 file carousels is 5 for α = 0.84 and 6.15 for α = 0.34. 

However, for 100 file carousels the object multiplexing gain is 9 for α = 0.84 and 8 for α = 

0.34. This can be extended to the comparison of any two distributions: the distributions 

where the popularity decreases more slowly (smaller α) exhibit higher object multiplexing 

gains for small carousels than distributions with greater α. However, the tendency is the 

opposite for larger carousels. 
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Figure 60. Access time for IMDB content encoded at 3.3 Mbps and 2 Mbps with and without object 
multiplexing in C28. 

On the other hand, Figure 60 shows the access time for IMDB content over channel C28, 

with the same encoding bitrates as the previous example (2 Mbps, SDTV and 3.3Mbps, 

HDTV). The popularity for the content follows the ZIPF distribution with exponential 

cutoff of IMDB content (α=0.34; λ=10-3). The results are almost equivalent to the previous 

study case. Similarly, the traces of the object multiplexing gain for IMDB content and 

different popularity distributions are depicted in Figure 61. 

 

Figure 61. Object multiplexing gain for IMDB content in C28 with different popularity distributions. 
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Compared to the YouTube case, it can be noted that, for the same probability distribution, 

the object multiplexing gain is slightly higher for IMDB content. This can be explained by 

the fact that the content lengths of IMDB content items are more variable than the content 

lengths of YouTube content (section II.1.1). This variability favors the object multiplexing 

gain. 

Figure 62 shows the access time accomplished with object multiplexing on the bitrate 

available for ODI in C57. It can be noted that the reduction in the access time is equivalent 

in the two multiplexers under study. In this sense, the figure is included only for 

information purposes, to show the access times achieved with object multiplexing at a 

different mean bitrate. 

 

Figure 62. Access time for Youtube content encoded at 2 Mbps and 3.3 Mbps with and without object 
multiplexing in C57. 

In summary, the potential benefits of object multiplexing in background Content Download 

Services (CDS) are remarkable. The simulations showed that the potential gain (reduction 

in the access time) in the different cases under study is really high. For instance, the access 

time with object multiplexing can be reduced up to 9 times for carousels of 100 YouTube 

files, using the file size and the popularity distribution of YouTube content, whereas the 

access time can be reduced by a factor higher than 8 for 20 IMDB files, using the models 

for IMDB content.  
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Nevertheless, these results should be regarded as theoretical upper bounds. There are two 

main factors that can affect the actual multiplexing gain: First, the quality of the estimation 

of the long-term bitrate and second, the accuracy of the scheduler in achieving the long-

term bitrates. 

Regarding the quality of the estimation, it is important to highlight that the optimal bitrates 

depend on the access probability and the expected number of cycles. For this reason, the 

service operator needs to estimate the access probabilities and the channel losses in order to 

apply object multiplexing. 

Specifically, the access probability can be estimated from audience measurements or access 

statistics on the primary services. Network operators invest a lot of money in audience 

metrics, which are taken into account when shaping the program grid of their television 

channels. On the other hand, frequency network planning tools (used to decide the location 

of transmitters and repeaters) need an estimation of the channel losses found in the service 

area. The accuracy of network planning tools has a direct impact on the network 

infrastructure costs. In summary, the parameters necessary to compute the optimal bitrates 

can be estimated from operational data of broadcasters. Therefore, it is feasible to assume 

that an accurate estimation of the long-term bitrate is available. In any case, the quality of 

the estimation has an impact on the object multiplexing gain in an actual implementation. 

Quantifying this impact is out of the scope of this thesis. 

On the other hand, the scheduler needs to create a carousel that provides the estimated 

long-term average bitrates, by multiplexing the different files in the time domain. The 

algorithms or heuristics used by the scheduler may not be able to achieve the estimated 

long-term bit rates, because bandwidth is not infinitively divisible. This reduces the actual 

object multiplexing gain, compared to the theoretical limits, even if the estimations of the 

popularity and the average number of cycles are very accurate. The next sections present 

algorithms to implement object multiplexing. 
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V.2.2 The Modified Virtual Clock Algorithm 

The optimal bitrates obtained in section V.1 provide an optimum share of the available 

bandwidth between the different content items. The last section showed that sending files at 

exactly those long-term bitrates could reduce the access time by factors of 8 and 9, for 

relevant carousel sizes of IMDB and YouTube content.  

The fundamental problem behind object multiplexing is to schedule the transmission of 

objects of different sizes in a shared medium of limited capacity. This problem has been 

thoroughly studied in literature related to data packet scheduling. In fact, the algorithms 

originally proposed to deal with packet scheduling, such as WFQ (Weighted Fair Queuing) 

or VC (Virtual Clock), can be adapted to work with file scheduling. This is the case of the 

Modified Virtual Clock (MVC) algorithm proposed in [4], hereby adapted to account for 

the channel losses. 

Algorithm I contains lines of pseudo-code describing how the MVC algorithm works. The 

MVC algorithm has two different phases. In the initialization phase the algorithm assigns to 

each file j a delay, which is a value directly proportional to the long-term carousel cycle 

. Note that the delay in the equation is calculated applying the analytical expression 

for the minimum long-term carousel cycles. 

In the multiplexing phase, the algorithm sorts the files according their delay value 

(QueueObjectsByOrderIncreasingTag), so that the files with shorter carousel cycles appear 

first in the sorted queue. Thus, in the multiplexing phase, the algorithm tries to adjust the 

cycle period of each data element according to their delay, placing data elements in a 

multiplexing queue that is ordered by increasing delay values. This way, the algorithm tries 

to adjust the long-term bitrates of files to the optimal values calculated in the previous 

section. It is worth noting that hereby we have introduced some modifications to the 

algorithm in [4]. First, the delays account for losses and AL-FEC encoding, by applying the 

values of the optimal bitrates obtained in this thesis. Additionally, the 

while(ActiveQueueEmpty) loop (line 9) is introduced so that the algorithm is work 

conserving, in the sense that there is always files in the active queue. 

TC,FEC
j
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ALGORITHM I: MODIFIED VIRTUAL CLOCK (MVC) ALGORITHM 

Phase 1: Initialization  
1: for j=1 to N 

2:  object(j).delay= si
FEC ·(ci +1/ 2)·pi / sj

FEC ·(cj +1/ 2)·pj
i=1

n

!  

3:  object(j).tag = object(j).delay 
4:  object(j).count = 0 
5:  object(j).enabled = TRUE  
6:   QueueObjectsByOrderIncreasingTag() 
7: end 
Phase 2: Multiplexing 
8: while (not_exit) 
9:  while (ActiveQueueEmpty) 
10:   for j=1 to N 
11:    object(j).count = object(j).count + 1 
12:    if (object(j).count >= object(j).delay) 
13:     object(j).count = object(j).count-object(j).delay 
14:     object(j).enabled = TRUE 
15:    end 
16:  end 
17:  l = FindObjectWithLeastTagInActiveQueue() 
10:  SendObject(l) 
11:  object(l).tag = object(l).tag + object(l).delay 
12:  object(l).enabled = FALSE 
13:  for j=1 to N 
14:   object(j).count = object(j).count + 1 
15:   if (object(j).count >= object(j).delay) 
16:    object(j).count = object(j).count-object(j).delay 
17:    object(j).enabled = TRUE 
18:   end 
19:  end 
20: end 

In order to show the performance of the MVC algorithm, we include a comparison between 

the optimal long-term bitrates obtained analytically and the bitrates achieved with the MVC 

algorithm.  
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Figure 63.  Long-term bitrates achieved with the MVC algorithm (YouTube content) in C57. 

Figure 63 shows the mean long-term bitrate achieved with the MVC algorithm for every 

file in 20 file carousels, sorted by their popularity ranking. For this example, we use a ZIPF 

distribution with α=1. Figure 63 shows the average computed over 500 different 

simulations, each with different file sizes generated with the YouTube file size model. The 

simulations account for MPEG-TS encapsulation and ODI, using the channel model for 

C57. It can be noted that the object multiplexing technique provides slightly lower values 

than the analytical values, although the difference is, in general, small. However, this 

assumption does not hold if we regard the bitrates of a specific carousel, instead of the 

average on 500 different iterations.  
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Figure 64. Bitrates achieved with MVC for files with different rankings (1, 5 and 15) using ODI in C57. 

Figure 64 shows the bitrate achieved for three content items with different rankings, 

together with the analytical long-term bitrates that the MVC needs to accomplish. First it is 

important to note the convergence of the bitrates of the MVC algorithm with time. The 

three traces tend to steady values. In this sense, the MVC algorithm manages to adjust the 

relative bitrates of files to different values in time. The problem is that these values do not 

match with the ideal bitrates obtained analytically. This can be noted by comparing the 

different MVC bitrates with their respective ideal bitrates. Therefore, by evaluating the 

long-term bitrate for any particular carousel, it can be concluded that the MVC algorithm 

fails to adjust the long-term bitrates to the desired values. 

There are two reasons for these deviations. The first of them is a fundamental problem of 

resource management: Resources like bandwidth or time are not infinitively divisible. For 

this reason, it is not possible to fulfill the optimal bitrates exactly at all times. This is the 

reason why the MVC bitrate trace has a “saw teeth” shape. The other reason is that the 

MVC as defined in [4] does not manage appropriately carousels composed of files of 

different sizes. As noted in the MVC algorithm, the object count is incremented in 1 unit 

every time a file is transmitted, regardless of the size of the files. For this reason, the 

algorithm does not actually account for the size of files appropriately.  
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V.2.3 The Modified Weighted Fair Queuing Algorithm 

The Modified Weighted Fair Queuing (MWFQ) algorithm is a modification of the 

Weighted Fair Queuing (WFQ) algorithm that tries to apply the principles of Fluid Fair 

Queuing (FFQ) to file scheduling. [58] provides a good overview of the principles of FFQ 

as well as describing the VC and WFQ algorithms among other packet switching 

algorithms. An FFQ system is characterized by the set of bitrates [b1, b2, … bN] of N 

different flows. Then, at any time t, the service rate for a non-empty queue i is exactly 

bi ·C
bjj=1

N
!

, where C is the channel capacity. Since bandwidth it is not infinitively 

divisible, real life algorithms can only approximate the FFQ system performance. For 

instance, the WFQ algorithm selects items from the active queues according to their service 

times in the corresponding FFQ system at the instants of time when the service needs to 

schedule an output packet. 

This way, at every time t a WFQ algorithm selects the item with the lowest FFQ service 

time, that is the item with the shortest deadline for its ideal scheduling time. Applied to file 

scheduling, the FFQ service time for the kth transmission of file j is: 

 

tFFQ
j k( ) = k·sjFEC / bj =

k·sj
FEC sj

FEC · cj +1/ 2( )·pj
i=1

N

!

b sj
FEC · cj +1/ 2( )·pj

= k·tFFQ
j  (51) 
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The WFQ principle applied to file scheduling yields the following algorithm: 

ALGORITHM II: MODIFIED WEIGHTED FAIR QUEUING (MWFQ) 

Phase 1: Initialization  
1: for i=1 to N 
2:  object(i).step= tFFQ

j  
3:  object(i).tag = object(i).step 
4:  object(i).count = 0 
5:  object(i).enabled = TRUE  
6:   QueueObjectsByOrderIncreasingTag() 
7: end 
Phase 2: Multiplexing 
8: while (not_exit) 
9:  while (ActiveQueueEmpty) 
10:   for j=1 to N 
11:    object(j).count = object(j).count + 1 
12:    if (object(j).count >= object(j).step) 
13:     object(j).count = object(j).count-object(j).step 
14:     object(j).enabled = TRUE 
15:    end 
16:  end 
17:  k = FindObjectWithLeastTagInActiveQueue() 
10:  SendObject(k) 
11:  object(k).tag = object(k).tag + object(k).step 
12:  object(k).enabled = FALSE 
13:  for l=1 to N 
14:   object(l).count = object(l).count + 1 
15:   if (object(l).count >= object(l).step) 
16:    object(l).count = object(l).count-object(l).step 
17:    object(l).enabled = TRUE 
18:   end 
19:  end 
20: end 

The main difference with respect to the MVC algorithm is that, in the multiplexing phase, 

the algorithm tries to adjust the transmission time of every file to the corresponding time in 

the FFQ system, instead of trying to adjust the long-term bitrate of each file. 

At this point, let us compare the performance of the algorithm against the analytical 

bitrates. Figure 65 represents the average long-term bitrate achieved by the MWFQ 

algorithms, using 500 simulations with carousels of 50 files and applying the YouTube file 

model with α=1 for the ZIPF popularity distribution. The carousels use the available bitrate 

in channel C57. 
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Figure 65. Long-term bitrates achieved with the MVC algorithm with ODI in C57. 

Also, as in the previous case, let us use one of the iterations to compare the long-term 

bitrates achieved with the MWFQ algorithm against the ideal bitrates. Figure 66 shows the 

MWFQ long-term bitrate of files with popularity rankings 1, 5 and 15 out of the 50 files in 

the carousel (instead of the 20 files used to evaluate the MVC algorithm). Note that the 

long-term bitrates of every file are lower than those of Figure 64, simply because there are 

more files in the carousel. Actually, we have selected two different carousel sizes because 

the MVC algorithm did not manage to adjust the bitrate for large carousels, due to its 

problems to deal with different file sizes. On the other hand, the bitrates achieved by the 

MWFQ algorithm are the same as the analytical ideal bitrates. 
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Figure 66. Bitrates achieved with MWFQ for files with different rankings (1, 5 and 15) using ODI in C57. 

Note that this time, the bitrates do converge to the ideal values in the three cases 

highlighted. Finally, in order to compare both algorithms, Figure 67 highlights the average 

error in the long-term bitrate accuracy -i.e. the difference between the ideal bitrate of a file 

and the long-term average bitrate achieved with the object multiplexing algorithm. The 

bitrate accuracy is displayed against the difference between the mean file size and the 

actual file size. 

 

Figure 67. Comparison of the bitrate accuracy achieved by the MVC and the MWFQ algorithms. 
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The figure highlights that the MVC algorithm does not manage non-constant file sizes 

appropriately. For instance, the average error found in files that are 10 Mbytes larger or 

smaller than the mean file size is approximately 28% of the optimal weight. Note however 

that for some applications this might not be a problem, as long as the file size is relatively 

constant. On the other hand, the bitrate accuracy of the MWFQ algorithm does not depend 

on the differences in file sizes: The value is approximately 1.5% of the optimal carousel 

weight regardless of the differences between the file size and the mean file size. 

As a summary of this section, if we consider that the access probabilities are not the same 

for every file in the carousel, the average access time can benefit from object multiplexing. 

We have presented the potential gain of object multiplexing for different access 

probabilities, considering both YouTube and IMDB content. The results showed the great 

potential benefits of object multiplexing. We have evaluated the performance of two packet 

scheduling algorithms adapted to work with file scheduling, the MVC algorithm, originally 

proposed in [4] and the MWFQ algorithm, proposed in this thesis. The results show that the 

MVC does not achieve the optimal long-term bitrates when the sizes of files are not 

sufficiently similar. Unfortunately, this is the case for the two content catalogues under 

study in this thesis work. However, the MWFQ provides long-term bitrates only about 

1.5% different from the optimal values, thus adjusting the bitrate to the analytical optimal 

values.  

V.3 AL-FEC 

The last section showed the reduction in the average access time and the download time 

obtained with object multiplexing in broadcast carousels. This section focuses on the 

evaluation of the reduction achieved with AL-FEC, completing the theoretical analysis of 

the effect of AL-FEC presented in section V.1. 

The trade-offs of AL-FEC have been discussed already: AL-FEC parity increases the size 

of the carousel, but this redundant information helps receivers to recover the files in fewer 

cycles. The model for the average number of cycles needed to download a file, depending 

on the channel losses, the amount of AL-FEC parity and the file size is presented in section 
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II.2.3. In this section, this model is used to evaluate the effect of AL-FEC in the carousel 

time and the access time of file carousels. 

 

Figure 68. Traces of the bitrate used in the two study cases for AL-FEC. 

The evaluation considers two different study cases. First, we regard a channel with a 

constant capacity of 2.1Mbps. This scenario helps providing an overview of the 

performance of AL-FEC encoding in unidirectional push CDS, as well as establishing the 

relationships between AL-FEC encoding and object multiplexing. Later, AL-FEC encoding 

is applied to the unidirectional background push CDS for mobile terminals presented in 

section IV.2, using the available bitrate for opportunistic insertion in a tunnel of 10Mbps. 

The bitrate capacity of the two study cases is depicted in Figure 68. As shown in the figure, 

the bitrate achieved with opportunistic insertion changes with time. However, both 

scenarios have the same average capacity (that is, the average of the background capacity is 

2.1Mbps). 

Another objective of the evaluation is to provide guidelines for planning background push 

content delivery services in packet erasure channels. A question to ask then is: What is the 

best AL-FEC encoding rate to apply in a given scenario? 

A thorough answer to this question is outside the scope of this thesis, because the topic is 

sufficiently complex to be treated separately. In fact, we have contributed with different 
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proposals [32], [33] as well as with the undergoing thesis of the main author of the 

aforementioned research papers. Hereby, AL-FEC is regarded as a technology enabler that 

reduces in a drastic manner the number of carousel cycles needed to download a file. We 

assume that the service operator applies the same AL-FEC code (for instance LDPC) and 

encoding rate to all files in the carousel. Later, we evaluate the improvement in the average 

download time in two different extreme situations: very low packet losses (5%) and very 

high packet losses (50%). These study cases only regard homogeneous packet losses in the 

service area, that is, all users experience the same packet loss rate at all times. Obviously, 

the packet losses in wireless networks are heterogeneous and therefore, the study cases are 

not situations found in real life wireless networks, where the packet loss ratio experienced 

by each user inside the service area depends on the characteristics of their respective 

communication channel towards the server.  In our methodology, we evaluate two extreme 

situations, assuming that it is possible to extrapolate the results to intermediate loss rates 

and, in extension, to the specific distribution of packet loss rates of a given scenario. With 

this approach, we provide a high level evaluation of AL-FEC encoding in unidirectional 

background push CDSs, lacking the accuracy of more sophisticated simulations, but 

sufficiently strict to draw general conclusions. 

Therefore, in order to determine which AL-FEC parity configuration provides the best 

service performance, the first results in V.3.1 evaluate the performance of different 

configurations of AL-FEC encoding – adding no AL-FEC parity, 5%, 10%, 25% or 50% 

AL-FEC parities - with the two different packet loss ratios mentioned above. Later, the 

results evaluate what is the maximum number of files that can be transmitted in a carousel, 

provided that the service operator wants to guarantee a minimum bitrate for the service. 

Additionally, we present the download times for different carousel sizes, in order to relate 

with previous sections. In section V.3.2, These results are repeated with and without object 

multiplexing, to analyze the relationship between AL-FEC and object multiplexing. Finally, 

section V.2.3 evaluates the effect of using a background channel instead a constant bitrate 

channel. 
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V.3.1 Improvement of the download time with AL-FEC 

Figure 69 represents the Complementary Cumulative Density Function (CCDF) of the 

goodput (the bitrate perceived at application level) during the download of a file from a 

carousel with 100 items in the two scenarios regarded in the simulations. The goodput is 

calculated by dividing the file size by the download time of every file in the carousel, 

taking into account the different iterations in the simulations. Thus, the goodput accounts 

for varying file sizes, carousel periods and retransmissions. The files are generated using 

the YouTube file size model, applying an encoding rate of 2Mbps. 

The CCDF of the goodput can be useful for planning background CDS services, because it 

allows establishing a lower bound for the goodput experienced by a percentage of users 

during the download of a file. As an example, we look at the AL-FEC configurations 

providing the highest goodput in each scenario: 10% AL-FEC parity with 5% channel 

losses and 50% AL-FEC parity with 50% channel losses. This way, in the 5% packet loss 

rate scenario, the CCDF for 10% AL-FEC parity shows that the goodput is higher than 

15kbps in 90% of the cases. Likewise, the goodput is higher than 2kbps in 90% of the 

cases, with 50% AL-FEC parity and 50% packet losses. 

In addition to this, Figure 69 shows the ranges in which the goodput varies. The results 

show that the goodput varies in a wider range when AL-FEC parity is added to the 

carousel. This is due to the relationship between the channel losses, the AL-FEC parity and 

the inefficiency ratio (i.e. the ratio between the amount of data needed by an AL-FEC 

decoder to recover the contents of the file and the file size). Ideally, the sender should 

include at least an amount of AL-FEC such that, after one cycle, there are enough packets 

at the input of the receiver to decode the file.  



Chapter V Object Multiplexing and AL-FEC  

 141 

 

Figure 69. CCDF of the goodput in a 100 files carousel with no object multiplexing. 

Furthermore, in [32] we show that the inefficiency ratio of LDPC AL-FEC codes is slightly 

higher than one when the percentage of AL-FEC parity added is near the channel packet 

loss rate. Consequently, the optimal AL-FEC parities for a single file with the channel loss 

rates under study should be around 10% for a 5% packet loss rate and over 50% with a 50% 

packet loss rate. Figure 69 confirms that this result holds in file carousels. In both 

scenarios, the lowest download time among the different configurations corresponds to the 

optimal AL-FEC encoding rates. Adding less parity provides shorter carousel times, but 

higher number of cycles. On the other hand, adding more AL-FEC parity provides longer 

carousel times, but lower number of cycles. Therefore, the other configurations provide 

lower goodputs. Moreover, adding any amount of AL-FEC to the carousel improves the 

goodput to a great extent. This is because, in both scenarios, AL-FEC reduces significantly 

the number of cycles needed to download the files. 

Moreover note that the CCDFs of the AL-FEC configurations are wider than the CCDFs 

with no AL-FEC parity. This is due to the variation in the instantaneous channel losses: In 

some cases, it can happen that the receiver requires several cycles to recover the file, 

because the amount of AL-FEC is too short; In some other cases, the goodput is penalized 

because the amount of AL-FEC parity is too large. These factors change the shape of the 

CCDF, increasing the span of possible goodput values. 
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Figure 70 shows the CCDF of the goodput for different carousel sizes in the two channel 

losses under study, applying the AL-FEC encoding rate that provides the best goodput in 

each scenario. The figure highlights how the goodput decreases when the number of files 

added to the carousel is increased. This plot is useful to estimate the number of files that 

can be added to the carousel, provided a lower bound on the goodput. For instance, if a 

service operator wants a minimum goodput of 50kbps in 90% of the cases with a packet 

loss rate of 5%, the carousel should not include more than 25 files. 

 

Figure 70.  CCDF of the goodput for different carousel sizes with no object multiplexing 

Figure 71 presents the mean download with a packet loss rate of 5%. All the configurations 

of AL-FEC improve the download time achieved with no AL-FEC parity. For instance, for 

carousels of 100 files, the average download time with no AL-FEC parity is almost 1 day. 

The addition of only 5% AL-FEC parity reduces the download time approximately to 12 

hours. With 10% AL-FEC encoding, the download time is approximately 6 hours. 



Chapter V Object Multiplexing and AL-FEC  

 143 

 

Figure 71. Mean download time on a channel with 5% packet losses without object multiplexing. 

 

Figure 72. Mean download time on a channel with 50% packet losses without object multiplexing. 

On the other hand, Figure 72 shows the mean download times achieved with the same AL-

FEC encoding rates in a channel with 50% packet loss ratio. As expected, the download 

times are a lot higher than in the previous study case, but again, they are drastically reduced 

with AL-FEC encoding. The average download time for carousels with 50 files is around 3 

days. Applying AL-FEC encoding with 5% parity reduces the average download time down 

to 36 hours. If the AL-FEC parity is increased to 50%, the average download time is less 

than 24hours. 
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In order to show clearly the improvement in the download time, Figure 73 shows the 

reduction in percentage of the download time without AL-FEC encoding, achieved by the 

different configurations of AL-FEC in the two cases under study. The results display the 

mean values and the 95% confidence interval.  

 

Figure 73.  Reduction of the download time for different AL-FEC configurations. 

Note that the reduction is more or less independent of the number of files in the carousel in 

all cases. The trace of 50% AL-FEC parity and 5% packet loss rate seems to be more 

dependent of the carousel size, but the variations are very similar to the confidence 

intervals. The relative reduction is really high in all cases. It can be noted that an AL-FEC 

parity of 25% provides a high reduction in both packet loss scenarios: 82% reduction with 

5% channel losses and 78% with 50% channel losses. These values are close to the 

download time reduction achieved with the optimal configurations.  

Now, let us take back the initial considerations opening this section: a) The service operator 

applies the same AL-FEC encoding rate to all files and b) users experience channel losses 

distributed in a range between 5% and 50%. Clearly, the actual rate providing the minimum 

mean download time depends on the specific distribution of channel losses experienced by 

users. Applying this optimum encoding rate would require a feedback channel from the 

clients back to the server and also, applying the AL-FEC encoding rate in a dynamic way, 
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as suggested in [33]. If this is not possible, a service operator willing to bound the access 

time to files should probably apply an amount of AL-FEC parity, sufficiently high to 

guarantee a low number of cycles with the minimum amount of channel losses expected in 

the service area, but sufficiently low to not penalize too much the access time of clients 

with a good connection. Moreover, looking at the results for 5% losses in Figure 73, it can 

be noted that the addition of more AL-FEC parity than 10% does not degrade the access 

time as much as having too less parity. Hence, the addition of more AL-FEC parity than the 

optimum for the minimum expected losses should provide a good trade-off for intermediate 

loss rates. In this sense, the addition of 25% AL-FEC parity provides high reductions in 

both scenarios under evaluation. In any case, in order to find the best configuration for a 

given scenario, it is necessary to conduct measurements with the specific channel loss rates 

found in the particular study case. 

V.3.2 AL-FEC in combination with Object Multiplexing 

The following results show the improvement in the download time achieved by AL-FEC 

encoding in carousels with object multiplexing. Recall that the main objective of object 

multiplexing is to reduce the carousel time of most popular files, at the expense of 

increasing the carousel time for the less popular files. In channels without losses, the 

reduction of the carousel time leads to a reduction of the waiting time. In the presence of 

packet losses, the download time is also affected by the carousel time and it is expected that 

object multiplexing can also reduce the download time.  

Let us start by analyzing the effect of adding AL-FEC at different encoding rates to a 

carousel of 100 files with object multiplexing. As in the previous case study, the file sizes 

are generated with the YouTube model, with a mean encoding rate of 2Mbps. Figure 74 

shows the CCDF of the goodput of file carousels using object multiplexing in a channel 

with 5% channel losses and different AL-FEC encoding rates (No AL-FEC, 5%, 10%, 25% 

and 50% of AL-FEC parity). 

Regardless of the channel losses, the CCDF with object multiplexing is very similar to the 

CCDF without object multiplexing depicted in Figure 69, except that the goodput is slightly 
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higher with object multiplexing (that is, the CCDFs appear to be shifted upwards). This 

means that object multiplexing does not alter the download time to the same extent as 

experiencing channel losses. 

 

Figure 74. CCDF of the goodput with AL-FEC and object multiplexing. 

Figure 75 shows the CCDF of the goodput for carousels of different file sizes with 5% and 

50% channel losses, using 10% and 50% of AL-FEC parity in each case. The probability 

that the goodput is higher than a given value is higher with object multiplexing, due to the 

object multiplexing gain. This means that object multiplexing allows to either send more 

files in the carousel, provided the same lower bound on the goodput, or to send the same 

carousel at a higher goodput. For instance, regarding 5% packet losses with no object 

multiplexing, a carousel of 25 files provides a minimum goodput of 50kbps for 90% of the 

cases. With object multiplexing, the same carousel size provides a minimum goodput of 

60kbps. On the other hand, instead of sending 50 file carousels at a higher goodput, it is 

possible to send carousels of up to 70 files with the same requirement on the minimum 

goodput.  
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Figure 75.  CCDF of the goodput for different carousel sizes with object multiplexing. 

Figure 76 shows the mean download time of file carousels using AL-FEC and object 

multiplexing in a channel with 5% packet loss rate. 

 

Figure 76. Mean download time on a channel with 5% packet losses with object multiplexing. 

By comparing the results of Figure 76 and Figure 71, it can be noted that applying object 

multiplexing reduces the download time for all the configurations of AL-FEC analyzed. As 

in the previous case study, the lowest download times are provided with an AL-FEC parity 

of 10% and the worst results are obtained when no AL-FEC parity is added to the carousel. 
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Recall that the average download time for 100 file carousels with no object multiplexing is 

around 1 day. The average time is reduced down to 14 hours applying object multiplexing 

with no AL-FEC. With 5% AL-FEC parity, the download time is slightly higher than 6 

hours and with 10% AL-FEC parity, the download time is around 2 hours. 

 

Figure 77. Mean download time on a channel with 50% packet losses with object multiplexing. 

Figure 77 shows the mean download times for carousels with object multiplexing on 

channels with 50% channel losses and different configurations of the AL-FEC rate. In this 

case, the results also show lower mean download times than those obtained without object 

multiplexing (Figure 72) for all the configurations of AL-FEC parity under study. The 

minimum download time with this channel loss rate is accomplished with an AL-FEC 

parity of 50%. The rest of AL-FEC configurations provides similar download times, 

improving to a great extent the download time achieved with object multiplexing alone.  

In order to evaluate the actual gain of AL-FEC in carousels with Object Multiplexing, 

Figure 78 presents the reduction of the download time achieved with the different 

configurations of AL-FEC under study.  
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Figure 78. Reduction of the download time for different AL-FEC configurations with object multiplexing. 

Comparing the results of AL-FEC with and without object multiplexing (Figure 73), the 

improvement of combining both techniques is noticeable with 5% packet losses. The 

improvement is about 5% higher for the different AL-FEC parities, except for the 25% AL-

FEC parity, which exhibits an improvement of about 10%. However, it can be noted that 

reduction of the download time with 50% packet losses is the same with and without Object 

Multiplexing. Recall that the reduction of the download time is relative to the download 

time achieved with object multiplexing but no AL-FEC parity in the carousel. Therefore, 

the aforementioned 5% improvement is due to the combination of object multiplexing and 

AL-FEC parity, rather than just to the effect of AL-FEC encoding. 

V.3.3 AL-FEC with Variable ODI bitrate 

The previous study case showed the mean download time with object multiplexing and AL-

FEC over a channel with constant capacity. In this study, we are going to analyze the 

statistics of the effective bitrate over a background channel (presented in section III.5.2). 

Later, the results are compared to the statistics of the effective bitrate over a constant 

capacity channel. In the simulations, the bitrate available for opportunistic insertion 

described in the introduction (Figure 68) is circularly shifted, so that the carousels start at a 

random point of the time line of the available bitrate. Then, the shifted bitrate trace is 

repeated a number of times in order to complete the simulation time. Therefore, the 
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available bitrate consists of a periodic trace with a period of approximately 25 minutes. 

Otherwise, the simulations use the same methods as previous studies. 

 

Figure 79. a) CCDF of the goodput and b) CCDF of the available bitrate for different carousel sizes. 

Figure 79 a) shows the CCDF of the goodput with variable bitrate (VBR), against the 

goodput with constant bitrate (CBR) for two different carousel sizes (25 and 100 files). The 

simulations apply 5% packet losses and 10% AL-FEC parity. The figure shows how the 

variable bitrate changes the statistics of the goodput: the CCDF of the goodput with VBR 

changes with respect to the CCDF with CBR for both carousel sizes. These differences are 

due to the statistics of the variable bitrate, depicted in Figure 79 b). There are complex 

video scenes that require high video bitrates, leaving very little bandwidth available for the 

background services. On the other hand, the probability that the bitrate is higher than the 

average (2.1 Mbps) is around 71%. This is because, most of the time, the encoders are able 

to reduce the bitrate significantly, leaving a lot of bandwidth available for the background 

service.  

For this reason, the CCDF of the goodput with VBR improves for short carousels (25 files) 

and low goodputs: the probability that the goodput is higher than a given value increases 

with VBR, compared to CBR. For instance, with 25 file carousels the probability that the 

goodput is higher than 50kbps is 0.96 with VBR and 0.88 with CBR. This shows that, for 
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short carousels, it is likely that there are no complex scenes during the transmission of the 

carousel, thus increasing the probability of having a high goodput. On the other hand, for 

long carousels (100 files), the CCDF of the low goodputs is worst with VBR than with 

CBR. Longer carousels take more time to be transmitted, increasing the probability that 

several video bitrate peaks occur during the download of a file. For instance, with 100 file 

carousels the probability that the bitrate is higher than 20kbps is 0.80 with VBR and 0.93 

with CBR. On the other hand, the CCDF improves for high goodputs: the probability that 

the bitrate is higher than 100kbps is 0.15 with VBR and 0.03 with CBR. 

Therefore, the use of opportunistic insertion changes the statistics of the goodput. The 

actual changes depend on the carousel duration and the video scenes.  

V.4 Conclusions 

This chapter has presented object multiplexing and AL-FEC: Two technologies to reduce 

the average access time to files in carousel transmissions. First, we have presented a 

theoretical analysis of the access time with object multiplexing and AL-FEC. This analysis 

provides a lower bound for the average access time. The evaluation of the lower bound 

showed that the potential gain (reduction in the access time) is really high, proving that the 

access time can be reduced almost tenfold for the different study cases. 

The section has also presented two different algorithms to implement object multiplexing, 

the Modified Virtual Clock (MVC) algorithm and the Modified Weighted Fair Queuing 

algorithm (MWFQ). The MVC algorithm has been proposed in a previous work and hereby 

adapted to work with channel losses and AL-FEC. On the other hand, the MWFQ 

algorithm has been proposed in this thesis. The results show that the MVC cannot adjust 

the bitrate of each file adequately when the file sizes in the carousel vary in a wide range. 

On the other hand, the MWFQ achieves accurate long-term bitrates regardless of the file 

sizes in the carousel. 

Regarding AL-FEC, the results have shown that it achieves a great reduction of the access 

time in the presence of channel losses. Applying AL-FEC is a must for any CDS service 
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dealing with packet losses. We have evaluated the access time in two different packet loss 

scenarios, with 5% and 50% packet channel losses. In both cases, AL-FEC reduces the 

access time to almost 90% of the access time without AL-FEC. Regarding the optimum 

AL-FEC encoding rate, the results show that there is an optimum encoding rate that 

provides the best access time, depending on the channel losses. However, the results also 

show that adding additional AL-FEC parity above the optimum value does not degrade the 

access time considerably. For this reason, it is recommended to apply additional AL-FEC 

parity, above the optimal value for the expected packet channel loss ratio. 

The results also show the CCDF of the goodput with object multiplexing AL-FEC and 

channel losses. The CCDF of the goodput is useful to plan background CDS, because it 

allows establishing a minimum goodput for a percentage of the file downloads in the 

service area. The results compare the goodput achieved in a constant channel and in a 

background channel, showing that the effect of opportunistic insertion depends on the 

carousel size.  
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Chapter VI  

 Popularity, Storage Management, 
Personalization and QoE 

The final section of this thesis regards the management of storage capacity at the client 

side, the service personalization and the QoE. These three aspects of the service are tightly 

related to the content popularity. First, recall that the server performs an estimation of the 

content popularity that is used by the file scheduler to adjust the long-term bitrate of every 

item in the carousel. Therefore, it is easier for client applications to fetch the most popular 

files from the carousel than to fetch the less popular items. Second, although all client 

applications receive the same broadcast carousel, the storage management policy of a 

particular client keeps in storage only the files that better fit the preferences of the user 

(personalization). Hence, the user experience is related not only to the estimation of the 

popularity made by the server, but also to the ability of the recommender to estimate the 

probability of access of each content item. In this sense, Section VI.1 provides a brief 

overview of the means available for service providers and client applications to estimate the 

popularity. Third, the performance of the storage management policy also depends on the 

relationship between the file sizes, the carousel scheduling, the carousel size and the 

available storage capacity.  

These aspects of background content download services are analyzed in the following 

subsections. Section VI.2 regards storage management for stand-alone background push 
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CDSs, that is, the performance of the storage management policy is evaluated only 

regarding the quality metrics of a push content download service. On the other hand, VI.3 

evaluates the performance of the background push CDS working as a local cache for a 

primary VoD service. 

VI.1 Estimation of the popularity of television content 

VI.1.1 Audience measurements 

Originally, television was a highly time-dependent, hardly accessible media. There were no 

means to store programs to watch them at a later time, broadcasting was expensive and so 

were television terminals. Therefore, viewers had limited and fleeting opportunities to 

watch the content they like and huge masses gathered to watch the few television programs 

available. These facts motivated the development of strong relationships between television 

as a service and the influence it had on society, known as social aspects of TV [59]. Given 

the many ramifications of this area and the topic of the chapter, this section only focuses on 

social aspects accounted for in the estimation of the popularity of television content and its 

application to the management of television content delivery systems. 

The most representative aspect is the relationship between the popularity of television 

content and the content scheduling. Recalling that there were no other means to access 

content, popular programs gathered many simultaneous spectators and broadcasters used 

this gathering to shape their program grids, placing popular shows in the day parts with 

more potential viewers and giving birth to the concept of prime time. Up to the date, 

popularity is the most important metric for television service operators, since the 

viewership of programs has a direct impact on their incomes. 

The way that popularity is measured depends on the topology of the service. Traditional 

television broadcast platforms lack of a feedback channel from the user back to the 

television service provider. For this reason, it was necessary to develop audience estimation 

systems based on other mechanisms, like telephone surveys or by installing audience 

measurement equipment on a representative sample of the population. Nowadays, audience 
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measurement agencies still use these techniques to estimate the popularity of television 

content. The advertisement rates are calculated according to these measurements. 

Contrarily, IP based TV content delivery technologies provide technical means to measure 

the audience directly.  For instance, TV on Demand portals run on Content Management 

Systems (CMS) able to log the requests that are issued to each program. Media players can 

trigger events related to the play-out of the video and inform the server of when the video is 

paused or what is the percentage of video that has actually been consumed. Again, 

advertisement revenues are calculated based on the audience measurements. It is worth 

noting that the costs of streaming are proportional to the workload of the servers and in 

extension to the actual content consumption. Therefore, there is a direct relationship 

between investments and revenues that does not exist in broadcasting. 

However, regardless of the content delivery technology, broadcasters use audience tracking 

for positioning content: television operators must ensure that the access to most popular 

contents is easier. Hence, most popular shows are scheduled on privileged time slots in 

linear TV program grids and are reserved the most visible areas of TV on Demand portals. 

In summary, popularity is an important aspect of their revenue streams and they invest 

heavily to obtain good estimations. 

Regarding unidirectional background push CDSs, it is clear that the estimation of the 

popularity needed by the file scheduler is already used in the management of the other 

primary services (e.g. broadcasting and VoD). Furthermore, these services make the same 

usage of the estimation of the popularity: To favor the delivery of popular content. 

VI.1.2 Audience segmentation and content personalization 

Beside the audience ratings, audience measurement regards demographic aspects (e.g., 

gender, age, geographical proximity) and social aspects (e.g. level of education, cultural 

proximity) of the audience, because these are also important business metrics for 

broadcasters, since they are helpful to better focus content to specific target groups. This 

practice, known as audience segmentation, improves the effectiveness of advertisement 
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campaigns (including campaigns for related programs), increases user satisfaction and, in 

turn, helps at gaining audience in general terms. 

In traditional broadcast TV services, audience segmentation can only be achieved by 

creating thematic channels or by configuring the program grid, for instance, to favor 

specific age groups (like showing cartoons in the morning). Then again, IP based TV 

services offer more means to better implement audience segmentation. Since users do not 

necessarily share the same interface with the service, it is possible to adapt it according to 

the information about the user that is available to the service operator. There are different 

alternatives to obtain demographic information about a user, for instance, explicitly when 

the user subscribes to the service. In this sense, social networks [59] represent an 

outstanding source of information for TV service providers. Therein, users do not only 

provide explicit demographic or social information, but in addition, there is a lot of implicit 

information, including information about social links between users. All this information 

can be used to narrow down the service segmentation to more homogeneous and smaller 

groups to which the content offer is adapted for. 

Ultimately, when the segmentation strategy considers information about the users as 

individuals, service segmentation becomes service personalization. Personalization is 

nowadays a common feature in most popular video on demand web sites, which implement 

recommender systems [5] to highlight content of interest for the user (as well as 

advertisements of interesting products).  

Similarly, the unidirectional background push CDS service presented in this thesis uses the 

information of a recommender system for personalization: The recommender determines 

the future probability of access of every content item. This information is used by the 

storage management policy in order to decide which files must be kept in cache. Next 

section provides a brief overview of recommender systems for background push CDSs. 

VI.1.3 Recommender Systems for background push CDS 

The role of the recommender in the architecture of the client application has been discussed 

at several sections since the beginning of the thesis. In the service architecture description 
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(Figure 2), the recommender receives information from the user interface to build a user 

profile. Later, the user profile is compared to the content description of a content item in 

order to obtain an estimation of the probability of access to that particular content item. As 

explained in Section II.3.1, the storage management uses this information to decide which 

files should be stored in cache. This decision is made every time that the storage 

management policy receives feedback from the recommender. This section provides an 

overview of how this estimation is calculated. 

The architecture in Figure 2 implicitly describes a content filtering recommender [5]. 

Content filtering recommenders work with metadata descriptions, according to a specific 

data model. Common metadata systems like the PSI/SI [46] used in DVB services or the 

standard TVAnytime [60] provide data models that can be used to build very rich content 

descriptions. The metadata description can contain any kind of information, such as the 

genre of the content, its length or its language. DVB television systems include metadata 

descriptions, compliant with the PSI/SI specifications, which are used to build Electronic 

Program Guides (EPGs). 

The basic principle of a content filtering recommender is to compare the content 

description of an item with the user profile: A metadata description of the preferences of 

the user. There are different ways to learn the preferences of the user in order to obtain the 

user profile. They can be classified into two basic categories, explicit methods and implicit 

methods. Basically, explicit methods ask users for their preferences, while implicit methods 

learn the user preferences from the historical usage of the service. This way, the user profile 

is updated every time that the user interacts with a content item, for instance, by adding the 

content description of the content item watched to the user profile. 

In order to compare the user profile with the metadata, it is necessary to obtain an 

Information Retrieval model of the corresponding data. Basically, an Information Retrieval 

model is a mathematical model of the metadata, which provides the basis to perform the 

comparison. The most widely used Information Retrieval models in recommender systems 



Estimation of the popularity of television content  

 

 158 

are the vector space model, used by heuristic recommenders, and the standard Boolean 

model, used by Bayesian recommenders. 

The vector space model is based on semantic spaces. A semantic space is an algebraic 

representation of the content description as a vector in which each dimension is a different 

characteristic of the content item. This way, different properties of the metadata file are 

regarded as independent magnitudes (i.e. orthogonal dimensions) in which a content item 

can be represented. For instance, the genre or the language of a content are regarded as 

different dimensions. Thus, content descriptions are regarded as vectors representing the 

content in a particular semantic space. The similarity between two vectors is computed as 

the cosine function between the vector representing the content item and the vector 

representing the user profile. 

As an example, let dj = (w1,j, w2,j, … wt,j) be the vector in t dimensions representing the 

metadata description of content item j and wn,k be the weight of the description in 

dimension n. Similarly, let du = (w1,u, w2,u, … wt,u) be the vector representing the user 

profile of user u. The probability of access of the content j for the user u is computed as the 

cosine of the angle between the two vectors Φj,u: 

 

pj = cos(! j,u ) =
dj ·du
dj du

 (52) 

Mainly, the complexity of a heuristic recommender depends on how the vectors are 

computed from the metadata description and on how the user profile is built. Both aspects 

are tightly related to the data model used to build the content descriptions. For instance, 

some fields of the PSI/SI EPG specification, like the Short Program Description, support 

free-text input (a plain text value of any length) descriptions of the programs, like a brief 

synopsis of the content or information about the main cast. Obtaining a vector model from 

free-text entries requires some sort of natural language processing called Latent Semantic 

Analysis. On the other hand, the value of other EPG data fields, like the content descriptor, 

only accepts a coded value in a predefined range. 
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The content descriptor is present in the Event Information Table (EIT), which is the name 

given to the metadata that describes a program in the DVB SI specifications. The value of 

the Content Descriptor group is an array of 4-bit value pairs called content nibbles, which 

are two-level genre identifiers. The nibble of level 1 encodes the genre category of the 

content and can take a value from 0x1 (movie drama) to 0xF (user defined). The nibble of 

level 2 classifies the genre of the content within a content category. The encoded value of 

the content nibble 2 is related to the level of generality of the genre definition. Regardless 

of the category, an encoded value of 0x0 means general. For instance, if the content nibble 

1 is 0x2 – news/current affairs, a content nibble 2 of 0x0 means general news/current 

affairs, a value of 0x2 means news/weather report, a value of 0x3 documentary and a level 

of 0x4 means discussion/interview/debate. These coded values can be mapped directly into 

a semantic vector model. As an example, Figure 80 illustrates a possible mapping of the 

value of the Content Description into a vector model. 

 

Figure 80. Mapping of Content Descriptor into a semantic vector model. 

The content nibble values can be mapped into a semantic space of 15 dimensions, one per 

every admitted value of content nibble 1, as shown in Figure 80. In each dimension, the 

magnitude represents the level of generality of the genre, provided by the encoded value of 

the content nibble 2.  

This way, the array of content nibble value pairs encoded in a content descriptor can be 

mapped into a vector representation of the metadata. The vector representing the user 

profile can be constructed from the historical usage of the service, for instance as the mean 

between the vectors of the programs watched, or from explicit feedback from the user. 
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Later, it is possible to compute the cosine of the angle between the two vectors to compute 

the probability of access to the content. 

On the other hand, the standard Boolean model is based in Boolean logic and regards 

content descriptions as finite sets of index terms, that is, dj = {k1,j, k2,j, … ks,j}, where ko,j is 

the keyword o in the content description j. This mathematical model provides the basis for 

Bayesian recommenders, or naïve Bayes classifiers. Bayesian recommenders use the Bayes 

principle to calculate the probability that the content item belongs to category Ci, P(Ci|dj), 

as: 

 

P(Ci | dj )!P(Ci ) P
l
" (kl, j |Ci )  (53) 

where P(Ci) is the probability that a content item belongs to the category Ci, while P(kl,j|Ci) 

is the probability that the keyword kl,j occurs in the category i. 

Note that Bayesian recommenders obtain a value proportional to the probability that a 

content item belongs to a category. Hence, in order to use a Bayesian recommender to 

obtain a probability of access, it is necessary to define a meaningful set of categories in the 

range of probability access [0,1]. For instance, a possible set of categories is: 

 

C1 = {pj ! [0, 0.5[},  C2 = {pj ! [0.5,1]}  (54) 

where C1 can be regarded as the category with low probability of access C2 can be regarded 

as the category with a high probability of access. Thus, a Bayesian recommender provides 

the category with the highest P(Ci|dj) for a content item. Later, the storage management 

policy needs to assign a numerical value to the probability of access of each category, in 

order to apply the heuristic of the knapsack problem. For instance, in the example above, 

the storage management can assign a value of 0.25 to C1 and 0.75 to C2.  

Despite their simplicity, Bayesian recommenders are widely used in recommender systems 

because they are simple to implement. They require little training data to estimate the 

probabilities, compared to other approaches. In this sense, the complexity of the 
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implementation of a Bayesian recommender mainly depends on how the probabilities in 

Eq. 54 are computed from the user interaction. Just as with heuristic recommenders, the 

application can use specific feedback, asking the user to place the content into a category 

after it is consumed. Otherwise, the application can infer the category by observing the user 

behavior (zapping patterns, time spent watching a particular show, etc.). 

Regarding unidirectional background push CDSs, the most important requirements for the 

recommender are low complexity and lack of explicit feedback. It is important to keep the 

recommender as simple as possible in order to avoid any negative effect on the 

performance of the primary services. On the other hand, although the inference of 

preferences from user patterns is in general more complex than requesting explicit 

feedback, it does not seem appropriate to bother the user asking for feedback from a 

background service, so it is necessary to incorporate some implicit inference into the 

recommender. In this sense, it is interesting to look into recommender applications that can 

infer user patterns from the usage of the primary streaming services [60]. In this reference, 

the authors translate user actions into an Integer value, negative actions having a negative 

sign and positive actions having a positive sign. For instance, zapping away from a 

program is translated into -2 and watching the entire program is translated into +2. Then, 

the user profile is updated by adding up the numerical values corresponding to the user 

interaction. 

VI.2 Storage management for background push CDSs 

VI.2.1 Evaluation of the loading time 

The loading time is the time needed by the storage management policy to fill the cache with 

the files that maximize the value of the cache, according to the heuristic of the knapsack 

problem presented in section II.3.1. The simulations use the model for the available bitrate 

in the DVB multiplex C28 presented in section III.3.3. The evaluation regards three 

different parameters: The storage utilization, the overall probability of access and the 

loading time. The storage utilization is the average of the percentage of storage capacity 

occupied by the files in cache. On the other hand, the overall probability of access is the 
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sum of the probability of access of the files stored in cache. Thirdly, the loading time is the 

time needed to fill the cache. 

From a broader perspective, the storage utilization is proportional to the overall play-out 

time of the files in local storage. For instance, with a constant encoding rate of 5 Mbps, 

1GB storage is approximately 30 minutes of play-out time. Similarly, the total probability 

is related to the contents that are not downloaded into a particular client and therefore to the 

level of personalization introduced in the service. On the other hand, the loading time is 

related to the time needed to push the files into local storage. An optimum end-to-end 

system configuration should regard the number of files in the carousel and the client 

storage size, in order to achieve an optimum storage utilization and level of personalization 

after a target loading time. 

 

Figure 81.  Probability of access to files in storage and used storage against time for IMDB content.  

With this in mind, the results in Figure 81 show the performance of the storage 

management policy against time for three different storage capacities (1 GB, 5 GB and 10 

GB). The carousel scheduler applies object multiplexing with the MWFQ algorithm 

presented in section V.2.3. The figure shows results for carousels with 10, 20, 50 and 100 

files. The file sizes have been generated with the file size model for television content 
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presented in section II.1.1, applying an encoding rate of 5Mbps. We have generated 1000 

different carousels for each configuration under study. 

The straight lines in the storage utilization graphs show the average speed at which the 

background push service fills the storage capacity. It can be noted that this speed is rather 

constant regardless of the number of files in the carousel, for each of the cache sizes under 

study. At a given point, the storage capacity usage stops increasing, either because the 

storage capacity is full (it approaches 100%) or because all the files in the carousel are 

completely downloaded (the probability of access reaches 1). For instance, with a cache 

size of 5GB, the storage capacity downloads all the files of the 10-file carousel after an 

average time of 15 hours, using approximately 60% (3GB) of the storage capacity. With the 

same storage capacity, 20-file carousels reach a maximum average storage usage of 87% 

after approximately 28 hours. Similarly, 50-file carousels and 100-file carousels reach 

100% average storage usage after the same average time of 28 hours. Hence, as expected, 

larger carousels require longer loading times, but achieve higher average storage usage 

percentages. Another interesting result is that, since the files are rather large, the 100% 

storage capacity usage is only reached for carousels with large number of files. This is 

particularly noticeable in the 1GB study case. 

The overall probability of access in the left-hand graphs also increases monotonically with 

time, although the effect of the carousel size is not the same as with the average storage 

usage. In this case, larger carousels require longer loading times to achieve the maximum 

overall probability of access, but shorter carousels achieve higher average overall 

probabilities. Following the example above, with 5GB storage, 10-file carousels achieve an 

overall probability of access of 1 after approximately 15 hours. 20-file carousels achieve a 

probability of access of 0.95 after approximately 25 hours. 50-file carousels and 100-file 

carousels achieve a maximum probability of access around 0.75 and 0.55 after 

approximately 28 hours. This is because with shorter carousels, it is easier to download 

most of the files of the carousel to local storage, thus achieving a higher overall probability 

of access. 
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Let us analyze the results from the point of view of end-to-end service management, 

focusing on the relationship between the carousel size and the local storage capacity. Given 

the encoding rate of 5Mbps, the video play-out time corresponding to each case is 

approximately, 30 minutes for 1GB, 2.5 hours for 5GB and 5 hours for 10GB. This play-

out time is achieved after a loading time of respectively 13 hours, 26 hours and 50 hours, 

provided that there are enough files in the carousel. Focusing on the cache size of 5GB, a 

background push CDS operator working with the background capacity left in C28 could 

provide around 2.5 hours of alternative content every 26 hours. Recall that this encoding 

bitrate is characteristic of HD content. The carousels should be sufficiently large (for 

instance 50 or 100 files) in order to leave some margin for personalization. Larger storage 

sizes would allow users to store larger number of files over time. These results clearly 

depict the potential of background services over terrestrial DVB networks. 

Similarly, Figure 82 shows the average overall probability of access, the average storage 

usage and the loading time achieved for YouTube content. Again, the scheduler uses the 

MWFQ algorithm and the background capacity model emulates the background capacity 

found in multiplexer C28. The figure presents the results obtained after 1000 simulations 

with carousels of 20, 50, 100 and 200 files. In this study case, the cache sizes evaluated are 

0.5GB, 1GB and 2GB. 

 

Figure 82.  Probability of access to files in storage and used storage against time for YouTube content. 
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Comparing the results for 1GB storage in Figure 81 and Figure 82, it can be noted that the 

loading time is approximately the same (around 5 hours) for both kinds of content, 

provided that there are enough files in the carousel. Moreover, since the files are smaller, it 

is easier to achieve higher storage utilization. For instance, with 1GB of local storage, 100-

file YouTube carousels achieve 99% storage utilization, while 100-file IMDB carousels 

achieve 95% storage utilization. Otherwise, the results in the two graphs are equivalent. As 

with IMDB content, the more files are added to the carousel the lower is the local 

probability of access and consequently, the greater is the margin for optimization. 

As in the previous example, the results can be used to evaluate the potential of background 

push CDS dealing with YouTube content. Provided that the encoding rate used is 5Mbps, 

the cache sizes under evaluation are equivalent to approximately 15 minutes, 30 minutes 

and 1 hour of content play-out. Moreover, the cache loading times are approximately 3, 6 

and 12 hours. With a local cache of 1GB, a content provider could push approximately 30 

minutes of alternative Youtube content every 6 hours. The carousels should have more than 

100 files, so that the storage management policy can introduce some personalization in the 

service. 

VI.2.2 Object multiplexing and storage management 

In this section we present the relationships between the storage management policy and the 

configuration of other system blocks: The file scheduler, the definition of value used by the 

knapsack algorithm to decide which files should be kept in local storage and the local 

estimation of the probability of access. Let us start with the evaluation of the effect of 

object multiplexing in the loading time. Figure 83 shows the performance of the storage 

replacement policy with two different carousel schedulers: object multiplexing with the 

MWFQ algorithm working with the optimal long-term bitrates and a sequential scheduler. 

The sequential scheduler sends the files in descending order of popularity ranking (most 

popular file first, less popular file last). It is worth noting that, although the sequential 

scheduler is simpler, it also requires an estimation of the popularity. The results show the 

overall probability of access and the storage usage achieved after 1000 simulations with 10-

file and 100-file carousels, generated with the IMDB content model. The cache sizes under 
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analysis are 1GB, 5GB and 10GB. The encoding rate is 5Mbps as in the previous study 

case. 

 

Figure 83.  Loading time for carousels with and without object multiplexing. 

Looking at the overall probability of access, it is clear that object multiplexing with the 

MWFQ algorithm improves the results obtained with sequential scheduling in the loading 

stage. To illustrate this, note that with a 10GB cache and 100-file carousels, after 10 hours, 

the mean overall popularity with sequential scheduling is 0.2 and the mean overall 

popularity with the MWFQ algorithm is 0.4. This improvement is due to the fact that the 

MWFQ algorithm fosters a more efficient use of the storage space. Consequently, clients 

achieve higher levels of popularity of access at an earlier time during the loading phase. 

However, after the loading time is completed, both scheduling policies reach the same 

overall probability of access.  

The effect on the mean storage usage is similar, although less acute. During the loading 

phase, the MWFQ scheduler yields higher storage utilization percentages than the 

sequential scheduler. Although both reach the same level of occupancy after the loading 

time is completed, the loading time for the sequential scheduler is significantly larger. 

On the other hand, section II.3.1 presented different broadcast cache storage management 

policies found in related literature, namely, the PIX policy, which considers the frequency 



Chapter VI Popularity, Storage Management, Personalization and QoE  

 167 

of access in the definition of value and the PIXS algorithm, which considers both the 

frequency of access and the size of files. 

TABLE V 
EVALUATION OF DIFFERENT CACHE REPLAMENT POLICIES 

 P PIX PIXS 

Value P P*Tc P*Tc/s 

Cache size (GB) 5 10 50 5 10 50 5 10 50 

0.9 Load time (hours) 18.4 18.2 18.0 18.2

2 

18.3 18.2 18.1 18.5 18.3 

maximum probability 0.95 1.00 1.00 0.95 1.00 1.00 0.95 0.99 1.00 

Storage usage (%) 87.2 57.8 11.8 86.6 57.7 11.7 87.0 58.2 11.8 

We have repeated the simulations of the previous study case for the three policies. The 

parameters under evaluation are the 0.9 load time - which hereby is the time needed to 

achieve an overall probability of access equal to 0.9 - the maximum overall probability at 

the end of the simulation and the maximum mean storage usage. Table V provides a 

summary of the results obtained with 20-file carousels using IMDB content. 

As shown in the table, all the different cache replacement policies exhibit very similiar 

performance. In general, it seems like the PIX and PIXS policies provide slightly better 

results than the P policy. However, the differences are very small in all cases. The 0.9 load 

time is around 18 hours and the differences between the different policies are in the order 

of tenths of minutes. Similarly, the maximum difference found in the maximum storage 

usage is around 1%. The reason for this is that the power law behavior of the popularity 

introduces great differences between the value of each file. On average, these differences 

are much larger than the differences in the file sizes. Additionally, the carousel cycle is 

inversely proportional to the popularity. Therefore, file sizes and carousel cycles are taken 

into consideration, the values still depend mainly on the popularity. Due to this, the three 

policies end up making very similar decisions and achieve similar performance. 
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It is important to bear in mind that the implementation of the PIX and PIXS policy is 

slightly more complex than the implementation of the P policy, because the clients need to 

know (or estimate) the carousel period of every file. The server can signal this information 

together with the metadata description of every file, but this implies that the server needs to 

know in advance when will be the next time that the item will be transmitted. Looking at 

Table V, the slight improvement in the results does not justify the added complexity 

associated to these policies. 

Similarly, we have repeated the simulations with different estimations of the local 

popularity at the client. The objective is to assess how simple probability estimations affect 

the performance of the storage management. In this experiment, we repeat the 

configuration parameters above. Again, we assume that the actual preferences of the user 

are modeled by the same power law distribution as estimated by the server for the whole 

content area. 

TABLE VI 
EVALUATION OF DIFFERENT PROBABILITY ESTIMATION METHODS 

 10-file, 1GB 20-file, 5GB 50-file, 10GB 

Method I 5C 2C I 5C 2C I 5C 2C 

Load time (hours) 3.6 3.7 3.7 18.3

2 

18.3 18.4

3 

49.3 49.4 50.7 

Overall probability 0.70 0.70 0.68 0.96 0.95 0.97 0.75 0.75 0.75 

Storage usage (%) 83.9 84.6 83.6 85.4 84.6 83.6 98.3 98.2 98.4 

In order to emulate the effect of the recommender, we use three different methods to 

simulate virtual recommenders. The first one (I) provides the exact value of the local 

popularity of every file. This is the method used in previous studies. The other two methods 

emulate Bayesian recommenders, providing an estimation in a finite set of values. The first 

(virtual) Bayesian recommender (5C) provides a probability estimation in the set {0.1, 0.3, 

0.5, 0.7, 0.9}, that is, it uses five different categories. The second Bayesian recommender, 

(2C) provides a value in the set {0.25,0.75} (two different categories). 
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Similar to the previous study case, the different methods used to estimate the probability 

provide very similar results. This is due to the fact that popular items are a lot more popular 

than less popular items. Since the popularity decreases very rapidly, the storage 

management policies end up taking the same decisions with the three popularity estimation 

methods of the popularity. It is particularly relevant that a Bayesian recommender with 

only two categories provides only slightly worse results than an ideal estimation of the 

popularity. This indicates that the storage management does not need an accurate 

estimation of the popularity from the recommender, provided that the probability follows a 

power-law distribution. 

VI.3 Background push CDS as a VoD local cache 

In this section we are going to evaluate the performance of the background push CDS 

working as a prefetching cache for a VoD service. The metric used for the evaluation is the 

cache hit ratio, which is the ratio of programs that are directly served from the local cache, 

instead of being served from the remote VoD server. Therefore, the cache hit ratio is related 

to the bandwidth savings in the VoD server. Moreover, since the download process occurs 

in the background, the users do not experience the cache loading time. Instead, the latency 

of access experienced by users is reduced when the files are present in the local cache. 

Hence, the cache hit ratio is also related to the QoE of the service. This section gathers 

results from two different studies, without losses (section VI.3.1) and with losses (section 

VI.3.2).  

VI.3.1 Cache hit ratio without channel losses 

In order to evaluate the cache hit ratio, for the first study in this section we generate 

carousels using the IMDB and Youtube file size models and applying an encoding rate of 

5Mbps. The scheduler applies object multiplexing with the MWFQ algorithm. There are 

three different combinations of carousel size and local storage size under evaluation: 10-file 

carousels working with 1GB caches, 50-file carousels working with 5GB caches and 100-

file carousels working with 10GB carousels. The total number of requests, λ is set to 5000 

requests per day. The requests issued to every file j are generated using a Poisson 

distribution where the number of requests per second, λj is calculated as λ·pj. This model is 
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described in detail in section II.3.1. The cache hit ratio is calculated as the ratio between the 

requests to files already stored in cache to the total number of requests issued. Figure 84 

shows the cache hit ratio against time for the different configurations under study.  

 

Figure 84.  Cache Hit ratio against time for different carousel configurations and cache sizes. 

Figure 84 highlights the most important features of background push CDS working as local 

caches. First, the main drawback of the proposal is the long loading times required to 

provide high cache hit ratios. For instance, for IMDB content, the loading times are about 

15 hours (10 file carousels and 1GB storage), 30 hours (50 file carousels and 5GB storage) 

and 60 hours (100 file carousels and 10GB storage). Once the loading time is completed, 

the cache hit ratio is rather high (0.69, 0.75 and 0.76 in the three cases under study). It is 

clear that the proposal is only valid for VoD servers dealing with rather stationary 

catalogues that are not frequently updated and which probability can be easily estimated. 

Although these assumptions do not hold for User Generated Content, the loading times can 

easily fit the requirements of television program grids. 

VI.3.2 Cache hit ratio with channel losses 

In this study case, we are going to evaluate the effect of the loading time in two reception 

conditions, characterized by packet loss ratios of 5% and 50%. We apply AL-FEC 

encoding at two different encoding rates, adding 5% of AL-FEC parity and 50% AL-FEC 
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parity. The results are compared to the case when no parity is added to the carousel. In 

order to generate the carousels, we use the Youtube content duration model, and apply an 

encoding rate of 5Mbps. The background capacity is modeled with the empirical model 

obtained for C28. On the other hand, the carousel size is set to 400 files and the storage 

capacity is set to 2GB. 

 

Figure 85. Cache hit ratio for 2GB caches for Youtube content with 400-file carousels with different AL-
FEC parity and 5% channel losses. 

Figure 85 shows the cache hit ratio against time with channel packet losses of 5%. The 

channel losses make it difficult for the clients to download the files and consequently, the 

loading time increases. Due to this, the loading time without AL-FEC parity increases to up 

to 50 hours. On the other hand, with AL-FEC parity, the increase in the loading time is not 

so drastic: the addition of 10% AL-FEC parity yields to a loading time of about 12 hours, 

while the addition of 50% AL-FEC parity results in a loading time of about 15 hours. 

However, once the loading time is completed, the three configurations exhibit the same 

level of cache hit ratios. 



Background push CDS as a VoD local cache  

 

 172 

 

Figure 86. Cache hit ratio for 2GB caches for Youtube content with 400-file carousels with different AL-
FEC parity with 50% channel losses. 

Figure 86 shows the cache hit ratio with 50% channel losses. It can be noted that the same 

effect happens here, although as expected, the loading time increases to a greater extent 

(note the different scale in this figure). In this case, the loading time without AL-FEC parity 

is almost 200 hours. On the other hand, the addition of 10% AL-FEC parity produces a 

loading time of about 40 hours and the addition of 50% AL-FEC parity a loading time of 

approximately 30 hours. 

From these results, it is clear that AL-FEC parity improves to a great extent the loading 

times of caches in channels with losses. Nevertheless, the loading times achieved are still 

longer than in channels without losses. In relation to previous results, the improvement 

achieved for a given packet loss rate depends on the amount of AL-FEC parity added to the 

carousel. The best results are provided by the same AL-FEC parities that minimize the 

download time of a file: 10% AL-FEC parity in channels with 5% packet losses and 50% in 

channels with 50% packet losses. In this sense, the differences between two different 

configurations are not as large as the differences with respect to carousels without AL-FEC 

parity. Therefore, it is always convenient to apply AL-FEC encoding to some extent, even 

though the exact packet loss rate is not known a priori. 
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In summary, the same conclusions than for the case without channel losses apply here: The 

proposal is only valid for rather stationary content catalogues. The content cannot be 

updated frequently or otherwise, the local cache does not reach significant values. In any 

case, the use of AL-FEC parity becomes necessary in channels with packet losses, in order 

to keep the loading time as short as possible. 

VI.4 Conclusions 

In this final chapter of the thesis, we have analyzed the features of background CDS related 

to storage management, personalization and QoE. First, we have introduced the system 

aspects related to the estimation of the popularity of television content. The estimation of 

the content popularity is a key aspect of object multiplexing. As explained, it is also a 

fundamental metric in the business model of television content providers and therefore, 

content providers use different techniques to accurately track content popularity. On the 

other hand, the storage management policies need an estimation of the probability of access 

of the different content items. This chapter describes how recommender systems can be 

adapted to provide such estimations. 

Regarding the QoE, the results evaluate the cache hit ratio, i.e. the proportion of file 

requests that are served from a local cache loaded with content by a background push CDS. 

Files served from local cache exhibit zero latency and therefore, the cache hit ratio is 

crucial for the user experience. 

The results show that such caches can serve a considerable amount of VoD requests using 

little storage capacity (few gigabytes) in the client. We have presented results for 

meaningful carousel sizes and local storage capacities, with and without channel losses and 

AL-FEC. In the different study cases, the cache hit ratio increases with time until it reaches 

a maximum value. In the results, this loading time is in the order of hours. This is not so 

critical for pre-produced television content, because it is normally available for delivery 

long time before it is programmed for transmission. Once the loading time is completed, 

the cache hit ratios achieved are rather high. For instance, for Youtube carousels of 400 
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files and 2GBytes of local storage capacity, the cache hit ratio is 0.82. On the other hand, 

with 100 IMDB files and 5 GBytes local storage, the cache hit ratio is 0.78. 

Regarding object multiplexing, the results show that they improve the probability of access 

to files during the loading time, but it does not affect the maximum cache hit ratio. On the 

other hand, regarding the client application, the results show that the most relevant 

parameter to assess the value of files in cache is the future probability of access. Moreover, 

simple estimators based on Bayesian recommenders achieve equivalent results than using 

exact probability estimations in the storage management application. Apparently, taking 

into account the size of files or their broadcast frequency does not improve the cache hit 

ratio. However, knowing the scheduling beforehand could help at reducing the battery 

consumption in battery constraint devices, because the receiver could shutdown the 

background reception during the transmission of files that are not to be downloaded. This is 

important because battery consumption is one of the main drawbacks of background 

services for mobile terminals. 

Channel losses do not affect the maximum cache hit ratio, but the loading time. In this 

sense, AL-FEC drastically reduces the cache loading times in the presence of packet losses, 

improving the usefulness of the service proposal. The results prove that background push 

CDS can be a valuable asset for content providers dealing with television content delivery 

for television sets and mobile terminals. 
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