
Spline Approximations for Systems
of Ordinary Differential Equations

Ph.D. Thesis

Presented by: Dr. Michael M. Tung
Advisor: Dr. Emilio Defez Candel

Universidad Politécnica de Valencia, May 2013

Departamento de Matemática Aplicada

Dr. Emilio Defez Candel, associate professor at the Valencia Polytechnic University,

CERTIFIES that the present thesis by Dr. Michael M. Tung, with the title Spline Approxima-
tions for Systems of Ordinary Differential Equations, has been directed under my supervision in the
Department of Applied Mathematics of the Valencia Polytechnic University. It constitutes his
thesis dissertation to obtain the Ph.D. degree in Mathematics.

In compliance with the current legislation, I authorize the presentation of the above Ph.D. the-
sis, signing this certificate.

Valencia, May 2013

Dr. Emilio Defez Candel

“Es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben,
nicht das Dasein, sondern das Hinkommen, was den größten Genuß gewährt.”

Carl Friedrich Gauß

To my wife
Rosa

and

To my parents and brother
Heidi, Ga-Meng, Sascha

Thanks

In first place, I am greatly indebted to my advisor, Emilio Defez, for his kind support and com-
panionship, initiating my work in this area of mathematics and guiding the research for this
thesis with him. Many thanks also go to my tutor, Antonio Hervás, for plenty of useful advise,
and to Javier Ibáñez for his expertise on MATLAB in a fruitful collaboration with him.

Further thanks to all my colleagues of the Departamento de Matemática Aplicada and the Instituto
de Matemática Multidisciplinar of the Universidad Politécnica de Valencia for providing a stimulating
environment and encouragement to pursue and complete this work.

Last but not least, my biggest appreciation belongs to my family for their continuous and full
backup in whatever matters.

Contents

0 Background and motivation . 23
References . 25

1 Numerical solutions of first-order matrix differential equations using cubic
splines . 27
1 Introduction . 27
2 Proposed general method . 29
3 Algorithm . 32
4 Example: A non-linear vector system . 32
5 Example: Sylvester matrix differential equation . 35
6 Example: Riccati matrix differential equation . 36
7 Conclusions . 40
References . 41

2 Numerical solutions of second-order matrix differential equations using cubic
splines . 43
1 Introduction . 43
2 Notation and terminology . 44
3 Construction of the method . 44
4 Algorithm . 48
5 Examples . 48

5.1 A non-linear differential vector system . 48
5.2 Incomplete second-order differential system . 51
5.3 Second-order polynomial matrix equation . 53

6 Conclusions . 53
References . 55

3 Approximate solutions of linear matrix differential equations with
higher-order splines . 57
1 Introduction . 57
2 Description of the method . 58
3 Examples . 62

3.1 Example 1 . 63
3.2 Example 2 . 64

12 Contents

4 Conclusions . 68
References . 70

4 Approximate solutions of first-order matrix differential equations with
higher-order splines . 73
1 Introduction . 73
2 Description of the method . 74
3 Numerical Examples . 79

3.1 A scalar test problem . 79
3.2 A non-linear vector system . 79
3.3 Sylvester matrix differential equation . 81
3.4 The Hénon-Heiles system . 81

4 Conclusions . 82
References . 82

5 Approximate solutions of second-order matrix differential equations with
higher-order splines . 87
1 Introduction . 87
2 Higher-Order Matrix Splines . 88
3 Algorithms and MATLAB functions . 93
4 Numerical Examples . 94

4.1 A non-linear vector system . 95
4.2 Linear second-order differential matrix equations . 97
4.3 Incomplete linear second-order differential matrix equations 99

5 Conclusions . 100
References . 101

MATLAB Code . 103
References . 120

List of Figures

1.1 Representing the Frobenius error margins for vector differential system (1.4.20)
in the interval [0, 1] with step size h = 0.1. 35

1.2 Representing the absolute error margins for the Sylvester matrix differential
equation (1.5.29) in the interval [0, 1] with step size h = 0.1. 37

1.3 Representing the absolute error margins for the Riccati matrix differential
equation (1.6.43) in the interval [0, 0.1] with step size h = 0.01. 40

2.1 Flow diagram representing the algorithm for matrix-cubic spline approximation
of differential matrix systems of type Y ′′(x) = f (x, Y (x), Y ′(x)) with constant
Y0 = Y (a) and Y1 = Y ′(a) at initial point a ∈ R. 49

2.1 Error margins for the vector differential system Eq. (2.5.18) in the interval [0, 1]
with step size h = 0.1. 51

2.2 Error margins for the incomplete second-order differential system Eq. (2.5.22)
in the interval [0, 1] with step size h = 0.1. 52

2.3 Error margins for the second-order polynomial matrix equation Eq. (2.5.25) in
the interval [0, 1] with step size h = 0.1. 54

3.1 Relative errors for the test problem (3.3.20) with fourth-order splines (m = 4)
using our proposed method with h = 0.01 and h = 0.001, respectively. 64

3.2 Approximation error for problem (3.3.20) with fifth-order splines (m = 5) using
our proposed method with h = 0.01 and h = 0.001, respectively. 67

3.3 Approximation errors for problem (3.3.21) with fourth-order splines (m = 4)
using our proposed method with h = 0.01 and h = 0.001, respectively. 69

3.4 Approximation errors for problem (3.3.21) with fifth-order splines (m = 5)
using our proposed method with h = 0.01 and h = 0.001, respectively. 70

4.1 Error for the Loscalzo-Talbot problem with splines of fourth order (m = 4)
using our proposed method for various step sizes. 83

4.2 Errors for increasing spline orders (m = 4, 5, 6) solving the Loscalzo-Talbot
problem. The step size is constant (h = 0.1). 83

4.3 Representing the 2-norm error for the vector differential system (4.3.22) using
splines of fourth order (m = 4). 84

4.4 Representing the 2-norm error for the Sylvester matrix differential
equation (4.3.27) using splines of fourth order (m = 4). 84

14 List of Figures

4.5 Error for the Henon-Heiles problem with splines of fourth order (m = 4) using
our proposed method for various step sizes. 85

4.6 Errors for increasing spline orders (m = 4, 5, 6) solving the Henon-Heiles
problem. The step size is constant (h = 0.1). 85

5.1 Relative errors for the test problem of Subsection 4.1 with fourth-order splines
(m = 6), using MATLAB function splin2order with h = 0.1, h = 0.01 and
h = 0.001, respectively. 98

5.2 Relative errors for the test problem of Subsection 4.2 with fifth-order splines
(m = 6), using MATLAB function with splin2linear h = 0.1, h = 0.01 and
h = 0.001, respectively. 99

5.3 Relative errors for the test problem of Subsection 4.3 with fourth-order splines
(m = 6) , using MATLAB function splin2lineari with h = 0.1, h = 0.01 and
h = 0.001, respectively. 101

List of Tables

1.1 Approximation for vector differential system (1.4.20) in the interval [0, 1] with
step size h = 0.1. 34

1.2 Approximation for Sylvester matrix differential equation (1.5.29) in the interval
[0, 1] with step size h = 0.1. 36

1.3 Approximation for Riccati matrix differential equation (1.6.43) in the interval
[0, 0.1] with step size h = 0.01. 40

2.1 Approximation for the vector differential system Eq. (2.5.18) in the interval
[0, 1] with step size h = 0.1. 50

2.2 Approximation for the incomplete second-order differential system Eq. (2.5.22)
in the interval [0, 1] with step size h = 0.1 and parameters Eq. (2.5.24). 52

2.3 Approximation for the second-order polynomial matrix equation Eq. (2.5.25) in
the interval [0, 1] with step size h = 0.1. 54

3.1 MATLAB solvers used in the tests. 63
3.2 Absolute errors using the matrix splines of order (a) m = 3, (b) m = 4 and (c)

m = 5 with the method given in [20] with n = 10 and h = 0.1, for Example 3.1. . . 64
3.3 Absolute errors using the spline algorithm for problem (3.3.20) with fourth-order

splines (m = 4). 65
3.4 Absolute errors using the spline algorithm for problem (3.3.20) with fifth-order

splines (m = 5). 66
3.5 Relative errors for the test problem (3.3.20) with splines (h = 0.1) and MATLAB

solvers. 67
3.6 Absolute errors for Example 3.2 using the matrix splines of order (a) m = 3, (b)

m = 4 and (c)m = 5 with the method given in [20] with n = 10 and h = 0.1. 67
3.7 Relative errors for the test problem (3.3.20) with splines (h = 0.01) and

MATLAB solvers. 68
3.8 Absolute errors for problem (3.3.21) using the matrix splines method of order

(a)m = 4 and (b)m = 5, with n = 10 and h = 0.1. 69
3.9 Approximation errors for problem (3.3.21) with splines of several orders using

MATLAB solvers and taking h = 0.02. 70

4.1 Vector approximation for system (4.3.22) in the interval [0, 1]. 86
4.2 Approximation error for vector problem (4.3.22). 86
4.3 Approximation for the Sylvester matrix problem (4.3.27). 86

16 List of Tables

4.4 Approximation error for the Sylvester matrix problem (4.3.27). 86

5.1 MATLAB solvers used in the tests. 94
5.2 Approximation for the test problem of Subsection 4.1 in the interval [0, 1] with

step size h = 0.1 and matrix splines of order m = 6. 97
5.3 Maximum 2-norm error using method [11] with m = 6 for the the test problem

of Subsection 4.1. 97
5.4 Relative errors for the test problem of Subsection 4.1 for b = 5. 98
5.5 Maximum 2-norm error using method [11] with m = 6 for the test problem of

Subsection 4.2 . 99
5.6 Relative errors for the test problem of Subsection 4.2 for b = 5. 99
5.7 Maximum approximation error for the test problem of Subsection 4.2 in the

interval [0, 1] with step size h = 0.1 and splines of order m = 6. 100
5.8 Maximum 2-norm error using method [11] for m = 6 for the incomplete

second-order differential system Eq. (5.4.28). 100
5.9 Relative errors for the test problem of Subsection 4.3. 101

Summary

A great variety of phenomena in science and engineering are modelled by using ordinary ma-
trix differential equations of first order. The fundamental objective of this Ph.D. dissertation is
the development of novel methods for the approximate solution of these equations, including
equations of the linear type, differential matrix Sylvester equations, and differential matrix Ric-
cati equations—all of them with variable coefficients. Matrix differential equations pose a higher
level of difficulty for their resolution, compared to the conventional scalar equations due, to
the obvious intricacy of the matrix structure: the dimensional increase of the problem, which
comes hand in hand with an elevated number of necessary operations to obtain the solution,
the absence of commutativity and other salient properties of the usual scalar case.

One of the proposed methods employs approximations based on cubic matrix splines. These
methods have been implemented in the form of packages in the scientific programming lan-
guage MATLAB. A selection of this code is made available in the appendix of this dissertation.
The aim in mind was to present algorithms readily exportable to other programming environ-
ments with great ease of use.

The study continues with an extension of the method for ordinary matrix differential equa-
tions of second order, but by avoiding the traditional approach, which consists of the transfor-
mation of the problem to a system of first order, since this would increase the dimension of the
new problem and come with additional computational overhead.

Regarding the usage of splines of higher than third order, we have obtained good numerical
approximations, for both, first- and second-order problems.

The results comprised in the present dissertation have been published in several scientific
journals of high impact. Furthermore, they have been communicated at various ECMI confer-
ences (European Conference on Mathematics for Industry) to accomplish the highest possible
degree of dissemination.

The topical classification of this thesis, following the standard Mathematics Subject Classification
(MCS 2010) of the American Mathematical Society (AMS) is given by: 41A15, 65D07, 65F30,
65L05.

Resumen

Una gran variedad de fenómenos en la ciencia y en la ingenierı́a son modelizados utilizando
ecuaciones diferenciales matriciales ordinarias de primer orden. El objetivo fundamental de
este proyecto de tesis doctoral es el desarrollo de nuevos métodos de resolución aproximada
de dichas ecuaciones, incluyendo las ecuaciones de tipo lineal, de tipo Sylvester y de tipo Ric-
cati, todas ellas con coeficientes variables. Las ecuaciones diferenciales matriciales añaden a las
dificultades de resolución de las ecuaciones habituales escalares la complejidad propia del caso
matricial: aumento de la dimensión del problema, y por tanto del número de operaciones nece-
sarias para hallar la solución, ası́ como la ausencia de conmutatividad y de otras propiedades
escalares habituales.

Uno de los métodos que se proponen utiliza aproximaciones construidas mediante splines
cúbicos matriciales. Estos métodos se encuentran implementados en los paquetes de software
cientı́fico MATLAB. Una selección de dichos códigos se adjuntan en un anexo final de la memo-
ria. El objetivo era obtener algoritmos exportables a otros entornos, y fácilmente utilizables.

Se estudia también la extensión del método para ecuaciones diferenciales matriciales ordi-
narias de segundo orden, pero evitando el enfoque tradicional, que consiste en transformar el
problema en un sistema de primer orden, lo que aumenta la dimensión del nuevo problema,
incrementando los costes computacionales.

En lo que se refiere a la utilización de splines de orden superior al tercero, se han conseguido
buenas aproximaciones, tanto para problemas de primer orden como de segundo.

Los resultados contenidos en la presente memoria han sido publicados en varias revistas de
alto nivel y se han presentado como ponencias en diversas ediciones del congreso internacional
ECMI (European Conference on Mathematics for Industry) para que de este modo obtuvieran
la mayor difusión posible.

La clasificación temática de esta memoria, atendiendo por áreas a la Mathematics Subject Clas-
sification (MCS 2010) según la American Mathematical Society (AMS) es: 41A15, 65D07, 65F30,
65L05.

Resum

Una gran varietat de fenòmens en la ciència i en l’enginyeria són modelitzats en utilitzar les
equacions diferencials matricials ordinàries de primer ordre. L’objectiu fonamental d’aquest
projecte de tesi doctoral és el desenvolupament de nous mètodes de resolució aproximada
d’aquestes equacions, on s’hi inclouen les equacions de tipus lineal, de tipus Sylvester i de tipus
Riccati, totes amb coeficients variables. Les equacions diferencials matricials afegeixen a les di-
ficultats de resolució de les equacions habituals escalars la complexitat pròpia del cas matricial:
l’augment de la dimensió del problema, i per tant del nombre d’operacions necessàries per
trobar la solució, aixı́ com l’absència de la propietat commutativa i d’altres propietats escalars
habituals.

Un dels mètodes que es proposen utilitza aproximacions construı̈des mitjançant splines
cúbics matricials. Aquests mètodes es troben implementats en els paquets de programari
cientı́fic MATLAB. Una selecció d’aquests codis s’hi adjunten en un annex final de la memòria.
L’objectiu era obtenir algoritmes exportables a altres entorns, i fàcilment utilitzables.

S’estudia també l’extensió del mètode per a equacions diferencials matricials ordinàries de
segon ordre, però hem evitat l’enfocament tradicional, que consisteix a transformar el problema
en un sistema de primer ordre, cosa que augmenta la dimensió del nou problema, i incrementa
el costos computacionals.

Pel que fa a la utilització de splines d’ordre superior al tercer, s’han aconseguit bones aprox-
imacions, tant per als problemes de primer ordre com per als de segon.

Els resultats continguts en la present memòria han estat publicats en diverses revistes d’alt
nivell i s’han presentat com a ponències en diverses edicions del congrés internacional ECMI
(European Conference on Mathematics for Industry) perquè d’aquesta manera obtingueren la
major difusió possible.

La classificació temàtica d’aquesta memòria, per àrees de la Mathematics Subject Classification
(MCS 2010) segons l’American Mathematical Society (AMS) és: 41A15, 65D07, 65F30, 65L05.

CHAPTER 0

Background and motivation

Many phenomena in science and engineering are modeled by using matrix differential equa-
tions of first order in the form of

Y ′(x) = f (x, Y)
Y (a) = Ya

}
, a ≤ x ≤ b (1)

where Ya, Y (x) ∈ Cr×q, f : [a, b] × Cr×q → Cr×q. For example, the matrix analogue of the
ordinary differential equations of Riccati type:

Y ′(x) = C (x)−D(x)Y (x)− Y (x)A(x)− Y (x)B(x)Y (x)
Y (0) = Y0

}
, 0 ≤ x ≤ c

where Y (x) ∈ Cp×q, A(x) ∈ Cq×q, B(x) ∈ Cq×p y D(x) ∈ Cp×p. This type of problem is known
for its central relevance in optimal control problems [1], optimization of systems with distributed
parameters [2], optimal filters [3], boundary-value problems and game theory, among many
other fields in applied mathematics and engineering, see [4] and the references therein.

Another special case of (1) is the linear problem Y ′(x) = AY (x), where the matrix A ∈ Cr×r

is a matrix with constant coefficients. Over the past years, this problem has attracted consid-
erable attention in the scientific literature due to its many-faceted applications, the difficulty to
find its analytic solutions, which in principal is provided by the matrix exponential Y (x) = eAx.
In fact, more or less accurate solutions for Y ′(x) = AY (x) may be found by employing different
approximation techniques for the matrix exponential (Padé, Taylor, etc) [5, 6].

It is obvious that the resolution of matrix differential equations, (1), is much more involved
than the resolution of the simple scalar case of conventional differential equations. The addi-
tional difficulty of the matrix case derives from the increased dimensionality of the problem
and thus the higher number of operations necessary to yield an approximate solution. More-
over, salient scalar properties such as commutativity among others are entirely absent. In fact,
for the majority of non-linear problems, (1), the analytic solution is unobtainable or unknown,
and one has to resort to numerical methods to obtain an approximate solution. One impor-
tant class of these techniques is based on the transformation of the continuous problem into
another equivalent, discrete problem, such as the well-known vectorial Runge-Kutta method
or the BDF (Backward Differentiation Formula) method; see [7, 8] for the best established ap-

24 0 Background and motivation

proaches. Another technique, frequently encountered in the literature, is the matrix multi-step
method [9, 10]. During the last decade, various linearization methods have been proposed; see,
e. g., Refs. [11]– [15] and Technical Report [16].

Regarding matrix differential equations of second order and type

Y ′′(x) = f (x, Y (x), Y ′(x))

Y (a) = Y1

Y ′(a) = Y2

 , a ≤ x ≤ b (2)

they may be recast into an extended system of first order [17]. However, this standard approach
raises the dimensionality of the problem and therefore goes in hand with a considerable increase
of computational cost.

Numerical methods for calculating the approximate solutions of the special matrix problem
Y ′′(x) = f (x, Y (x), Y ′(x) have been studied in the context of linear multi-pass matrix methods
with constant step size [18]. Although in these cases one is able to specify an upper a priori
error bound for the discretization error in terms of the data, these error bounds inconveniently
depend on the exponential of integration step-size, which then, in practise, has to be chosen
rather small. Moreover, these methods require some sort of interpolation technique to even out
the discrete results in order to obtain a continuous solution [19]. An example of an incomplete
problem is the following matrix differential problems of second order:

d2

dt2
Y (t) +

√
AY (t) = 0

Y (0) = Y0

Y ′(0) = Y1

 , 0 ≤ x ≤ a (3)

where Y0, Y1 are vectors. Eq. 3 emerges when one applies a semi-discretization technique to the
wave equation

v2
∂2ψ

∂x2
=
∂2ψ

∂t2
,

which is quite common in telecommunications engineering. Furthermore, they frequently ap-
pear in the study of diverse mechanical systems [20].

For the scalar case, cubic splines have been used in Ref. [21] to solve differential equations
of first order via approximations which are, among other advantages, differentiable in a given
interval. These cubic splines are calculated in a straightforward manner and yield an approx-
imation error of order O(h2), where h is the step size. Recently, these approach has also been
employed for the resolution of other scalar problems, see [22]– [23], vector problems [24], and
linear matrix problems [25]. Moreover, cubic matrix splines have also successfully been used
in image processing [26].

This thesis comprises various new results obtained by employing cubic matrix splines to
solve Eqs. (1) and (2) and to some degree matrix splines of higher order as well. Its contents is
divided in four chapters and an appendix. Each chapter corresponds work already published as
scientific articles in international journals—for this reason in each chapter the original notation
and nomenclature has been preserved and is accompanied by its own bibliography. The ap-
pendix enlists all relevant MATLAB and Octave code with the essential algorithms developed
for various numerical tasks.

In the following, we conclude with a brief description of each chapter:

• Chapter 1 centers on the application of cubic matrix splines for the resolution of Eq. (1). It
corresponds to Ref. [27].

0 Background and motivation 25

• Chapter 2 moves on to solve Eq. (2) with the help of cubic matrix splines and corresponds
to Ref. [28]. Special cases of Eq. (2) with incomplete differential equations were presented
as communications at several international conferences [29–33], and other applications ap-
peared as book chapters by the prestigious publisher Springer-Verlag.

• Chapter 3 focusses on the application of cubic matrix splines to tackle linear differential
equations Y ′(x) = A(x)Y (x)+b(x) with splines of order higher than 3. This work corresponds
to Ref. [34].

• Chapter 4 deals with first-order matrix differential equations, (1), and their solution in terms
of splines of order higher than 3. This method corresponds to Ref. [35], and preliminary
results were presented in a talk at an international conference [36].

• Chapter 5 uses matrix splines of order higher than cubic splines to solve matrix differential
equations of second order, (2). A special, incomplete case was presented in a talk at an
international conference and published as proceedings by Springer-Verlag [37].

• The Appendix lists a selection of MATLAB programs with the essential algorithms to produce
the data for various numerical tables and graphs in the previous chapters.

References

1. R. E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mex. 5 (1961), 102–119.
2. E. Huntley, A note on the application of the matrix riccati equation to the optimal control of distributed parameter systems, IEEE

Trans. on Automatic Control 24 (1979), 487–489.
3. R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory, Trans. ASME, J. Basic Eng. Series D 83

(1961), 95–108.
4. W. T. Reid, Riccati differential equation, Academic Press, New York, 1971.
5. C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM

Review 45 (2003), no. 1, 3–49.
6. N. J. Higham, Functions of matrices, theory and computation, SIAM, 2008.
7. J. J. Ibáñez, Computación de altas prestaciones para el cálculo de funciones de matrices y su aplicación a la resolución de ecuaciones

diferenciales, Ph.D. Thesis, 2006.
8. E. Arias, V. Hernández, J. J. Ibáñez, and J. Peinado, Solving differential Riccati equations by using BDF methods, Tech. Report

Technical Report. DSIC-II/05/05, Departamento de Sistemas Informáticos y Computación de la Universidad Politécnica
de Valencia.

9. L. Jódar, J. L. Morera, and G. Rubio, Computable explicit bounds for the discretization error of variable stepsize multistep methods,
Comp. Math. Appl. 39 (2000), 63–77.

10. J. L. Morera, G. Rubio, and L. Jódar, Higher order implicit multistep methods for matrix differential equations, Comp. Math.
Appl. 33 (1997), no. 4, 39–48.

11. C. Garcı́a López, Métodos de linealización para la resolución numérica de ecuaciones diferenciales, Ph.D. Thesis, 1998.
12. E. Arias, V. Hernández, I. Bl. Espert, and J. J. Ibáñez, Nonsingular Jacobian free piecewise linearization of ordinary differential

equations (EDO), pp. 1–5, Institut National de Recherche en Informatique et en Automatique, 1999.
13. E. Arias, V. Hernández, and J. J. Ibáñez, High performance algorithms for computing nonsingular Jacobian free piecewise linealiza-

tion of differential algebraic equations, pp. 7–12, Birkhäuser, Boston, USA, 2004.
14. E. Arias, V. Hernández, J. J. Ibáñez, and J. Peinado, A fixed point-based BDF method for solving differential Riccati equations,

Appl. Math. Comput. 188 (2007), no. 2, 1319–1333.
15. V. Hernández, J. J. Ibáñez, J. Peinado, and E. Arias, A GMRES-based BDF method for solving differential Riccati equations,

Appl. Math. Comput. 196 (2008), no. 2, 613–626.
16. E. Arias, V Hernández, J. J. Ibáñez, and P. Ruiz, Solving initial value problems for ordinary differential equations by a piecewise-

linearized method based on diagonal Padé approximations, Tech. Report Technical Report DSIC-II/04/07, Departamento de
Sistemas Informáticos y Computación de la Universidad Politécnica de Valencia.

17. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1995.
18. L. Jódar, J. L. Morera, and R. J. Villanueva, Numerical multistep matrix methods for y′′ = f (t, y), Appl. Math. Comput. 59

(1993), 257–274.
19. L. Jódar and E. Ponsoda, Continuous numerical solutions and error bounds for matrix differential equations, Int. Proc. First Int.

Colloq. Num. Anal. (Utrecht, The Netherlands) (D. Bainov and V. Covachev, eds.), VSP, 1993, pp. 73–88.
20. E. Defez, J. Sastre, J. J. Ibáñez, and P. Ruiz, Computing matrix functions solving coupled differential models, Math. Comput.

Model. 50 (2009), 831–839.
21. F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer.

Anal. 4 (1967), no. 3, 433–445.
22. E. A. Al-Said, The use of cubic splines in the numerical solution of a system of second-order boundary value problems, Comput. Math.

Appl. 42 (2001), 861–869.

26 0 Background and motivation

23. E. A. Al-Said and M. A. Noor, Cubic splines method for a system of third-order boundary value problems, Appl. Math. Comput.
142 (2003), 195–204.

24. G. Micula and A. Revnic, An implicit numerical spline method for systems for ODE’s, Appl. Math. Comput. 111 (2000), 121–
132.

25. E. Defez, L. Soler, A. Hervás, and C. Santamarı́a, Numerical solutions of matrix differential models using cubic matrix splines,
Comput. Math. Appl. 50 (2005), 693–699.

26. E. Defez, A. Hervás, A. Law, J. Villanueva-Oller, and R. Villanueva, Matrix-cubic splines for progressive transmission of images,
J. Math. Imaging Vision 17 (2002), no. 1, 41–53.

27. E. Defez, L. Soler, A. Hervás, and M. M. Tung, Numerical solutions of matrix differential models using cubic matrix splines II,
Math. Comput. Model. 46 (2007), 657–669.

28. M. M. Tung, E. Defez, L. Soler, and A. Hervás, Numerical solutions of second-order matrix models using cubic-matrix splines,
Comput. Math. Appl. 56 (2008), 2561–2571.

29. M. M. Tung, E. Defez, A. Hervás, and L. Soler, Cubic-matrix splines and second-order matrix models, The 14th European
Conference on Mathematics for Industry (ECMI 2006) (Universidad Carlos III de Madrid, Leganés, Spain), 2006.

30. E. Defez, M. M. Tung, J. J. Ibáñez, and A. Hervás, Approximate numerical solutions of autonomous second-order matrix models
using cubic-matrix splines, The 15th European Conference on Mathematics for Industry (ECMI 2008) (University College,
London, UK), 2008.

31. M. M. Tung, E. Defez, A. Hervás, and L. Soler, Cubic-matrix splines and second-order matrix models, Mathematics in Industry,
no. 12, pp. 949–956, Springer Verlag, Berlin, 2008.

32. E. Defez, M. M. Tung, and J. J. Ibáñez, A numerical approximation for incomplete second-order matrix models in engineering,
pp. 53–63, Instituto de Matemática Multidisciplinar de la Universidad Politécnica de Valencia, Valencia, 2008.

33. E. Defez, M. M. Tung, J. J. Ibáñez, and A. Hervás, Approximate numerical solutions of autonomous second-order matrix models
using cubic matrix splines, Mathematics in Industry, no. 15, pp. 785–790, Springer Verlag, Berlin, 2010.

34. E. Defez, A. Hervás, J. J. Ibáñez, and M. M. Tung, Numerical solutions of matrix differential models using higher-order matrix
splines, Mediterr. J. Math. 9 (2012), 865–882.

35. E. Defez, M. M. Tung, J. J. Ibáñez, and J. Sastre, Approximating and computing nonlinear matrix differential models, Math.
Comput. Model. 55 (2012), 2012–2022.

36. , Numerical solutions of matrix differential models in engineering using higher-order matrix splines, pp. 82–99, Instituto de
Matemática Multidisciplinar de la Universidad Politécnica de Valencia, Valencia, 2009.

37. E. Defez, M. M. Tung, J. J. Ibáñez, and L. Soler, Higher-order matrix splines and second order matrix models, The 16th European
Conference on Mathematics for Industry (ECMI 2010) (Bergische Universität Wuppertal, Wuppertal, Germany), 2010.

CHAPTER 1

Numerical solutions of first-order matrix
differential equations using cubic splines

1 Introduction

A great variety of phenomena in physics and engineering can be modelled in the form of
matrix-differential equations. Although linear matrix-differential equations, whose numerical
solutions using cubic matrix splines were presented in [1], are valid for a wide range of applica-
tions, non-linear equations are also of great interest. This work generalizes the approach of [1],
providing a novel scheme to numerically solve non-linear differential matrix equations of the
first-order. Concretely, in this work we will develop a method for the numerical integration of
the first order matrix differential equation given by

Y ′(x) = f (x, Y (x))

Y (a) = Ya

}
a ≤ x ≤ b , (1.1.1)

where Ya, Y (t) ∈ Cr×q, f : [a, b]×Cr×q 7→ Cr×q.

Different examples of problem (1.1.1) can be found in [2]. Numerical schemes to obtain ap-
proximate solutions for (1.1.1) by means of linear multistep methods with constant steps have
been devised in [3]. Although there exist a priori error bounds for these methods expressed in
function of the data problem, these error bounds are given in terms of an exponential which
depends on the integration step h. Therefore, in practice, h will take too small values. Fur-
thermore, these methods require some interpolation techniques in order to get a continuous
solution [3].

Generalizing the method proposed for the linear case in [1], here we elaborate an extension
using cubic-matrix splines in the numerical approximation for the solutions of (1.1.1). In the
scalar case, cubic splines were used in [4] for the resolution of ordinary differential equations
obtaining approximations that, among other advantages, were of class C1 in the interval [a, b].
These splines are easy to compute and produce an approximation error of onlyO(h4). Recently,
this method has been used in the resolution of other scalar problems as discussed in [5], and
even linear matrix problems (see [1]). The present work extends this powerful scheme to the

28 1 Numerical solutions of first-order matrix differential equations using cubic splines

resolution of matrix problems of the non-linear type (1.1.1).

This chapter is organized as follows. In Section 2 we develop the proposed method, whose
algorithm is then given in Section 3. Finally, in Sections 4, 5 and 6 practical examples are pre-
sented.

Throughout this work, we will adopt the notation for norms and matrix cubic splines as in
the previous work [1] and common in matrix calculus. Following this nomenclature, we define
the Kronecker product of A =

(
aij
)
∈ Cm×n and B ∈ Cr×s, denoted by A ⊗ B, as the block

matrix

A⊗ B =


 a11B . . . a1nB

...
...

am1B . . . amnB


 .

The column-vector operator on a matrix A ∈ Cm×n is given by

vec(A) =


A•1...
A•n


 , where A•k =


 a1k

...
amk


 .

If Y =
(
yij
)
∈ Cp×q and X =

(
xij
)
∈ Cm×n, then the derivative of a matrix with respect

to a matrix is defined by [6, p. 62 and 81]:

∂Y

∂X
=




∂Y

∂x11
. . .

∂Y

∂x1n
...

...
∂Y

∂xm1
. . .

∂Y

∂xmn


 , where

∂Y

∂xrs
=



∂y11

∂xrs
. . .

∂y1q

∂xrs
...

...
∂yp1

∂xrs
. . .

∂ypq

∂xrs


 .

If X ∈ Cm×n, Y ∈ Cn×v, Z ∈ Cp×q, then the following rule for the derivative of a matrix
product with respect to another matrix applies [6, p. 84]:

∂XY

∂Z
=

∂X

∂Z

[
Iq ⊗ Y

]
+
[
Ip ⊗X

] ∂Y
∂Z

, (1.1.2)

where Iq and Ip denote the identity matrices of dimensions q and p, respectively. If X ∈
Cm×n, Y ∈ Cu×v, Z ∈ Cp×q, the following chain rule [6, p. 88] is valid :

∂Z

∂X
=

[
∂ [vec(Y)]t

∂X
⊗ Ip

][
In ⊗

∂Z

∂ [vec(Y)]

]
. (1.1.3)

If A =
(
aij
)
∈ Cm×n, the Frobenius norm of A is [7] given by:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

∣∣aij∣∣2 . (1.1.4)

The following relationship between the 2-norm and Frobenius norm holds [7]:

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 . (1.1.5)

2 Proposed general method 29

2 Proposed general method

Let us consider the problem

Y ′(x) = f (x, Y (x))
Y (a) = Ya

}
a ≤ x ≤ b , (1.2.6)

where Ya, Y (t) ∈ Cr×q, f : [a, b]×Cr×q 7→ Cr×q, f ∈ C1 (T), with

T = {(x, Y) ; a ≤ x ≤ b , Y ∈ Cr×q} , (1.2.7)

and f fulfills the global Lipschitz’s condition∥∥f (x, Y1) − f (x, Y2)
∥∥ ≤ L ‖Y1 − Y2‖ , a ≤ x ≤ b , Y1, Y2 ∈ Cr×q , (1.2.8)

which guarantees the existence and uniqueness of the continuously differentiable solution Y (x)
of problem (1.2.6), see [8, p. 99].

Let us consider h = (b− a)/n, n being a positive integer, so that the partition of the interval
[a, b] is given by

∆[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a+ kh , k = 0, 1, . . . , n . (1.2.9)

We will construct in each subinterval [a+ kh, a+ (k+ 1)h] a matrix-cubic spline approximating
the solution of problem (1.2.6). For the first interval [a, a+h], we consider that the matrix-cubic
spline is defined by

S|[a,a+h] (x) = Y (a) + Y ′(a)(x − a) +
1
2!
Y ′′(a)(x − a)2 +

1
3!
A0(x − a)3 , (1.2.10)

where the matrix A0 ∈ Cr×q is a parameter to be determined. It is straightforward to check:

S|[a,a+h] (a) = Y (a) , S ′|[a,a+h] (a) = Y ′(a) = f (a, Y (a)) .

To fully determine the matrix-cubic spline we still must obtain Y ′′(a) and A0. We consider
the functions h1 and h2 defined by

h1 : [a, b] 7→ [a, b]

h1(x) = x
,

h2 : [a, b] 7→ Cr×q

h2(x) = Y (x)
,

where Y (x) is the theoretical solution of (1.2.6). We describe now f (x, Y (x)) as a composition
of functions f and (h1, h2), that is, let φ : [a, b] 7→ Cr×q be defined by

φ(x) =
[
f ◦ (h1, h2)

]
(x) = f (h1(x), h2(x)) = f (x, Y (x)) .

30 1 Numerical solutions of first-order matrix differential equations using cubic splines

Thus, φ is a real variable function of x, and applying theorem 8.9.2 of [6, p. 170] its derivative
takes the form:

Dφ = D
(
f ◦ (h1, h2)

)
=
((
D1f
)
(h1, h2)

)
·Dh1 +

((
D2f
)
(h1, h2)

)
·Dh2 ,

where the partial derivatives of f , D1(f), D2(f) exist and are continuous since it is assumed
that f ∈ C1 (T). By (1.2.6) it is clear that

d (vec Y (x))T

dx
=
[
vec f (x, Y (x))

]T
.

Next, applying the chain rule for matrix functions (1.1.2) and then taking the derivative of a
matrix with respect to a matrix, (1.1.3), one obtains

Y ′′(x) =
∂f (x, Y (x))

∂x
+
[[
vec f (x, Y (x))

]T ⊗ Ir] ∂f (x, Y (x))
∂ vec Y (x)

. (1.2.11)

We are now in the position to evaluate Y ′′(a) using (1.2.11).

By imposing that (1.2.10) is a solution of problem (1.2.6) in x = a+ h, we have:

S ′|[a,a+h] (a+ h) = f
(
a+ h, S|[a,a+h] (a+ h)

)
, (1.2.12)

and obtain from (1.2.12) the matrix equation with only one unknown matrix A0:

A0 =
2
h2

[
f

(
a+ h, Y (a) + Y ′(a)h+

1
2
Y ′′(a)h2 +

1
6
A0h3

)
− Y ′(a)− Y ′′(a)h

]
. (1.2.13)

Assuming that the matrix equation (1.2.13) has only one solution A0, the matrix-cubic spline
is totally determined in the interval [a, a+ h].

Now, in the interval [a+ h, a+ 2h], the matrix-cubic spline takes the form

S|[a+h,a+2h]
(x) = S|[a,a+h] (a+h)+S

′
|[a,a+h] (a+h)(x − (a+ h))

+
1
2!
S ′′|[a,a+h] (a+h)(x−(a+h))

2+
1
3!
A1(x−(a+h))3 , (1.2.14)

so that S(x) is of class C2([a, b]) on [a, a+ h] ∪ [a+ h, a+ 2h], and all coefficients of the matrix-
cubic spline S|[a+h,a+2h]

(x) are determined with the exception of A1 ∈ Cr×q. By construction,
matrix-cubic spline (1.2.14) satisfies the differential equation (1.2.6) in x = a+h. We can obtain
A1 by requiring that the differential equation (1.2.6) holds at point x = a+ 2h:

S ′|[a+h,a+2h]
(a+ 2h) = f

(
a+ 2h, S|[a+h,a+2h]

(a+ 2h)
)
.

Expanding, we obtain the matrix equation with only one unknown matrix A1:

A1 =
2
h2

[
f

(
a+ 2h, S|[a,a+h] (a+ h) + S ′|[a,a+h] (a+ h)h+

1
2
S ′′|[a,a+h] (a+ h)h2 +

1
6
A1h3

)
− S ′|[a,a+h] (a+ h)− S ′′|[a,a+h] (a+ h)h

]
. (1.2.15)

2 Proposed general method 31

Let us assume that the matrix equation (1.2.15) has only one solution A1. This way the spline
is totally determined in the interval [a+ h, a+ 2h].

Iterating this process, let us construct the matrix-cubic spline taking [a+ (k − 1)h, a+ kh] as
the last subinterval. For the next subinterval [a+ kh, a+ (k + 1)h], we define the corresponding
matrix-cubic spline as

S|[a+kh,a+(k+1)h]
(x) = βk(x) +

1
3!
Ak(x − (a+ kh))3 , (1.2.16)

where

βk(x) =
2∑
k=0

1
k!
S (k)

|[a+(k−1)h,a+kh]
(a+ kh)(x − (a+ kh))k . (1.2.17)

With this definition, the matrix-cubic spline is S(x) ∈ C2

 k⋃
j=0

[a+ jh, a+ (j + 1)h]

 and

fulfills the differential equation (1.2.6) at point x = a + kh. As an additional requirement, we
assume that S(x) satisfies the differential equation (1.2.6) at the point x = a+ (k + 1)h:

S ′|[a+kh,a+(k+1)h]
(a+ (k + 1)h) = f

(
a+ (k + 1)h, S|[a+kh,a+(k+1)h]

(a+ (k + 1)h)
)
,

and expanding this equation with the unknown matrix Ak yields

Ak =
2
h2

[
f

(
a+ (k + 1)h, S|[a+(k−1)h,a+kh]

(a+ kh) + S ′|[a+(k−1)h,a+kh]
(a+ kh)h

+
1
2
S ′′|[a+(k−1)h,a+kh]

(a+ kh)h2 +
1
6
Akh3

)
− S ′|[a+(k−1)h,a+kh]

(a+ kh)− S ′′|[a+(k−1)h,a+kh]
(a+ kh)h

]
. (1.2.18)

Note that this matrix equation (1.2.18) is analogous to equations (1.2.13) and (1.2.15), when
k = 0 and k = 1, respectively. We will show that these equations have an unique solution using
a fixed-point argument.

For a fixed h, we will consider the matrix function of matrix variable g : Cr×q 7→ Cr×q

defined by

g(T) =
2
h2

[
f

(
a+ (k + 1)h, S|[a+(k−1)h,a+kh]

(a+ kh) + S ′|[a+(k−1)h,a+kh]
(a+ kh)h

+
1
2
S ′′|[a+(k−1)h,a+kh]

(a+ kh)h2 +
1
6
T h3

)
− S ′|[a+(k−1)h,a+kh]

(a+ kh)− S ′′|[a+(k−1)h,a+kh]
(a+ kh)h

]
. (1.2.19)

Relation (1.2.18) holds if and only if Ak = g(Ak), that is, if Ak is a fixed point for function g(T).
Observe that by using (1.2.17) and applying the global Lipschitz’s condition (1.2.8) it follows

that ∥∥g(T1)− g(T2)
∥∥ ≤ Lh

3
‖T1 − T2‖ .

32 1 Numerical solutions of first-order matrix differential equations using cubic splines

Taking h < 3/L, g(T) yields a contractive matrix function, which guarantees that equation
(1.2.18) has unique solutions Ak for k = 0, 1, . . . , n− 1. Hence, the matrix-cubic spline is com-
pletely determined. Taking into account [4, Theorem 5], the following result can be established.

Theorem 1.1. Let be L the Lipschitz constant defined by (1.2.8). If h ≤ 3/L, then the matrix-cubic
spline S(x) exists in each subinterval [a+ kh, a+ (k + 1)h], k = 0, 1, . . . , n − 1, as defined in the
previous construction. Furthermore, if f ∈ C3(T), then ‖Y (x)− S(x)‖ = O(h4) ∀x ∈ [a, b], where
Y (x) is the theoretical solution of (1.2.6).

3 Algorithm

The following algorithm is designed to compute the approximate solution of (1.2.6) by means
of matrix-cubic splines in the interval [a, b] with an error of the order O(h4) under conditions
of theorem 1.1.

• Determine the constant Y ′′(a) given by (1.2.11). Take n > L(b− a)/3,
h = (b− a)/n and the partition ∆[a, b] defined by Eq. (1.2.9).

• Solve the matrix equation (1.2.13) for k = 0 and determine S|[a,a+h] (x)
of Eq. (1.2.10).

• Solve the matrix equation (1.2.18) iteratively for k = 1, . . . , n− 1, and
then compute the splines S|[a+kh,a+(k+1)h]

(x) according to Eq. (1.2.16).

Depending on the function f (t, Y), matrix equations (1.2.13) and (1.2.18) can be solved
explicitly (see [9]) or using the iterative method (see for example [10]):

T s
l+1 = g(T s

l) , where T s
0 is an arbitrary matrix in Cr×q , s = 0, 1, . . . , n− 1

and g(T) is given for (1.2.19). In the following section, we will test the algorithm proposed.

4 Example: A non-linear vector system

We consider the next non-linear vector differential system

y′1(x) = −1 + ex − sin (x) + sin (y2(x))

y′2(x) =
1

4 + y1(x)2
−

1

5 + e2 x + 2 ex cos (x)− sin2 (x)

y1(0) = 2, y2(0) = π
2


0 ≤ x ≤ 1 , (1.4.20)

It is easy to check that this problem has the exact solution y1(x) = ex + cos (x), y2(x) = π/2,
so in this particular case we will be able to obtain the exact error of our numerical estimates.

We can rewrite (1.4.20) in the compact form

Y ′(x) = F (x, Y)

Y (0) =
(

2
π
2

)
 0 ≤ x ≤ 1 (1.4.21)

4 Example: A non-linear vector system 33

with

Y (x) =
(
y1(x)
y2(x)

)
∈ R2, F (x, Y) =

 −1 + ex − sin (x) + sin (y2(x))
1

4 + y1(x)2
−

1

5 + e2 x + 2 ex cos (x)− sin2 (x)

 ∈ R2.

Thus, Y ′(0) = F

(
0,
(

2
π
2

))
=
(

1
0

)
. We calculate Y ′′(0) using (1.2.11). in this case, one gets

vec(Y (x)) = Y (x) =
(
y1(x)
y2(x)

)
,
∂F (x, Y (x))

∂x
=


ex − cos (x)

2e2x + 2ex cos (x)− 2ex sin (x)− 2 cos (x) sin (x)(
5 + e2x + 2ex cos (x)− sin2 (x)

)2
 .

(1.4.22)
On the other hand, we have

[vec F (x, Y (x))]T ⊗ I2

=
(
−1 + ex − sin (x) + sin (y2(x))

1
4 + y1(x)2

−
1

5 + e2x + 2ex cos (x)− sin2 (x)

)
⊗ I2

=
((
−1 + ex − sin (x) + sin (y2(x))

)
I2

(
1

4 + y1(x)2
−

1

5 + e2x + 2ex cos (x)− sin2 (x)

)
I2

)

=
(
−1+ex−sin (x)+sin (y2(x)) 0 1

4+y1(x)2
− 1

5+e2x+2ex cos (x)−sin2 (x) 0
0 −1+ex−sin (x)+sin (y2(x)) 0 1

4+y1(x)2
− 1

5+e2x+2ex cos (x)−sin2 (x)

)
,

(1.4.23)
and

∂F (x, Y (x))
∂ vec Y (x)

=


∂F (x,Y (x))

∂y1

∂F (x,Y (x))
∂y2

 =



∂
∂y1

(
−1 + ex − sin (x) + sin (y2(x))

)
∂
∂y1

(
1

4+y1(x)2
− 1

5+e2 x+2 ex cos (x)−sin2 (x)

)
∂
∂y2

(
−1 + ex − sin (x) + sin (y2(x))

)
∂
∂y2

(
1

4+y1(x)2
− 1

5+e2 x+2 ex cos (x)−sin2 (x)

)


=


0

−2y1(x)

(4+y1(x)2)2

cos (y2(x))
0

 .

(1.4.24)
Therefore, we find

[
[vec F (x, Y (x))]T ⊗ I2

] ∂F (x, Y (x))
∂ vec Y (x)

=


(

1
4+y1(x)2

− 2
9+2e2x+4ex cos (x)+cos (2x)

)
cos (y2(x))

−2y1(x)(−1+ex−sin (x)+sin (y2(x)))
(4+y1(x)2)2

 ,

(1.4.25)
and by (1.4.22)-(1.4.25) one finds the following formula

34 1 Numerical solutions of first-order matrix differential equations using cubic splines

Y ′′(x) =
∂F (x, Y (x))

∂x
+
[
[vec F (x, Y (x))]T ⊗ I2

] ∂F (x, Y (x))
∂ vec Y (x)

=


ex − cos (x) +

(
1

4+y1(x)2
−

2
9 + 2e2x + 4ex cos (x) + cos (2x)

)
cos (y2(x))

2e2x + 2ex cos (x)− 2ex sin (x)− 2 cos (x) sin (x)(
5 + e2x + 2ex cos (x)− sin2 (x)

)2 −
2y1(x)

(
−1 + ex − sin (x) + sin (y2(x))

)(
4 + y1(x)2

)2

 .

(1.4.26)

Taking into account that y1(0) = 2, y2(0) = π
2 and evaluating Y ′′(x) of (1.4.26) when x = 0,

one gets Y ′′(0) =
(

0
0

)
.

It is straightforward to show that F , defined by (1.4.21), fulfills the global Lipschitz’s condi-
tion ∥∥f (x, Y) − f (x, Z)

∥∥ ≤ ‖Y − Z‖ , 0 ≤ x ≤ 1 , Y, Z ∈ R2 , (1.4.27)

thus, we can take L given by (1.2.8) as L = 1. Therefore, we need to take h < 3/L and thus
h = 0.1 for example. The results are generated with Mathematica using FindRoot function to
solve the emerging algebraic equations, and are summarized in Table 1. In each interval, we
evaluated the difference between the estimates of our numerical approach and the exact solu-
tion, and then take the Frobenius norm of this difference. The maximum of these errors are
indicated in the third column for each subinterval.

Interval Approximation Max. Error

[0, 0.1]
(

2 + x + 0.177917x3

π
2 − 5.62424× 10−6x3

)
2.83337× 10−6

[0.1, 0.2]
(

1.99995 + 1.00138x − 0.0138342x2 + 0.224031x3

1.5708 + 6.67857× 10−7x − 6.67857× 10−6x2 + 0.0000166377x3

)
2.83337× 10−6

[0.2, 0.3]
(

1.99975 + 1.00445x − 0.0291822x2 + 0.249611x3

1.5708− 4.57386× 10−6x + 0.00001953x2 − 0.0000270433x3

)
2.94712× 10−6

[0.3, 0.4]
(

1.99841 + 1.01783x − 0.0737602x2 + 0.299142x3

1.57079 + 0.0000126873x − 0.0000380073x2 + 0.0000368871x3

)
2.94712× 10−6

[0.4, 0.5]
(

1.99655 + 1.0318x − 0.108685x2 + 0.328246x3

1.5708− 0.0000271633x + 0.0000616192x2 − 0.0000461351x3

)
3.0698× 10−6

[0.5, 0.6]
(

1.9899 + 1.07171x − 0.188509x2 + 0.381462x3

1.57079 + 0.0000485499x − 0.0000898071x2 + 0.0000548159x3

)
3.0698× 10−6

[0.6, 0.7]
(

1.98277 + 1.10736x − 0.247933x2 + 0.414475x3

1.57081− 0.0000785694x + 0.000122058x2 − 0.0000628872x3

)
3.20977× 10−6

[0.7, 0.8]
(

1.96307 + 1.19177x − 0.368517x2 + 0.471896x3

1.57077 + 0.000117333x − 0.000157802x2 + 0.0000703796x3

)
3.20977× 10−6

[0.8, 0.9]
(

1.94382 + 1.26395x − 0.45874x2 + 0.509489x3

1.57084− 0.0001661x + 0.00019649x2 − 0.0000772419x3

)
3.37764× 10−6

[0.9, 1.0]
(

1.89829 + 1.41574x − 0.627395x2 + 0.571954x3

1.57073 + 0.000224533x − 0.000237548x2 + 0.0000835127x3

)
3.37764× 10−6

Table 1.1. Approximation for vector differential system (1.4.20) in the interval [0, 1] with step size h = 0.1.

5 Example: Sylvester matrix differential equation 35

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ax

.
er

ro
r

approx. interval

Fig. 1.1. Representing the Frobenius error margins for vector differential system (1.4.20) in the interval [0, 1] with step size
h = 0.1.

5 Example: Sylvester matrix differential equation

Linear matrix differential equations of the type

Y ′(x) = A(x)Y (x) + Y (x)B(x) + C (x)

Y (a) = Ya

 a ≤ x ≤ b , Y (x), A(x), B(x), C (x) ∈ Cr×r , (1.5.28)

arise in many fields of science and engineering. In the case of constant coefficients has been
studied by several authors (see for example [11]). However, the variable-coefficient case has
so far received little numerical treatment in the literature. We can observe that the proposed
method require the matrix functions A(x), B(x) and C (x) to be differentiable, while, for exam-
ple, in the method proposed in [12], it is necessary thatA(x), B(x) have continuous second-order
derivatives and C (x) continuous in the domain a ≤ x ≤ b.

As an example, here let us consider the Sylvester problem (1.5.28) with

A(x) =
(

0 xe−x

x 0

)
, B(x) =

(
0 x
0 0

)
, C (x) =

(
−e−x(1 + x2) −2e−xx

1− e−xx −x2

)

Y (0) =
(

1 0
0 1

)
, Y (x) ∈ C2×2 , 0 ≤ x ≤ 1

 (1.5.29)

This problem has an exact solution Y (x) =
(
e−x 0
x 1

)
, so in this particular case we will be

able to obtain the exact error of our numerical estimates.

36 1 Numerical solutions of first-order matrix differential equations using cubic splines

As we have max
x∈[0,1]

(∥∥∥∥(0 xe−x

x 0

)∥∥∥∥+ ∥∥∥∥(0 x
0 0

)∥∥∥∥) ≤ 1.69443, one can take the constant L

given for (1.2.8) as L = 2.

Taking the derivative of Y ′(x) = A(x)Y (x) + Y (x)B(x) + C (x), gives:

Y ′′(x) =
(
A′(x) + (A(x))2

)
Y (x) + Y (x)

(
(B(x))2 + B′(x)

)
+ 2A(x)Y (x)B(x) +A(x)C (x) + C (x)B(x) + C ′(x) . (1.5.30)

We see that Y ′(0) =
(
−1 0
1 0

)
, and by applying (1.5.30) it is Y ′′(0) =

(
1 0
0 0

)
.

In this numerical example, we take n = 10 such that n > L(b − a)/3 and h = 0.1 =
(b− a)/n. The results are generated with Mathematica using the Bartels-Stewart algorithm (see
for example [7]) to solve the emerging algebraic equations, and are summarized in Table 2,
where the numerical estimates have been rounded to the fourth relevant digit. In each interval,
we evaluated the difference between the estimates of our numerical approach and the exact
solution, and then take the Frobenius norm of this difference. The maximum of these errors are
indicated in the third column for each subinterval.

Interval Approximation Max. Error

[0, 0.1]
(

1− x + 0.5x2 − 0.1612x3 0
x 1

)
1.33472× 10−6

[0.1, 0.2]
(

1− 0.9994x + 0.4938x2 − 0.1406x3 0
x 1

)
1.33472× 10−6

[0.2, 0.3]
(

1− 0.9984x + 0.4890x2 − 0.1325x3 0
x 1

)
1.2445× 10−6

[0.3, 0.4]
(

0.9994− 0.9936x + 0.4728x2 − 0.1146x3 0
x 1

)
1.2445× 10−6

[0.4, 0.5]
(

0.9991− 0.9909x + 0.4661x2 − 0.1090x3 −0.0001x2

1.0001x − 0.0001x2 1

)
1.17402× 10−6

[0.5, 0.6]
(

0.9971− 0.9791x + 0.4426x2 − 0.0933x3 −0.0001x + 0.0002x2 − 0.0001x3

0.9999x + 0.0002x2 − 0.0001x3 0.9999

)
1.17402× 10−6

[0.6, 0.7]
(

0.9963− 0.9732x + 0.4361x2 − 0.0898x3 0.0002x − 0.0004x2 + 0.0002x3

1.0002x − 0.0004x2 + 0.0002x3 1

)
1.12331× 10−6

[0.7, 0.8]
(

0.9916− 0.9549x + 0.4071x2 − 0.07591x3 0.0001− 0.0004x + 0.0006x2 − 0.0003x3

0.0001 + 0.9996x + 0.0006x2 − 0.0003x3 0.9999

)
1.12331× 10−6

[0.8, 0.9]
(

0.9906− 0.9512x + 0.4025x2 − 0.0739x3 0.0002 + 0.0007x − 0.0009x2 + 0.0003x3

−0.0002 + 1.0007x − 0.0009x2 + 0.0003x3 1 + 0.0001x2

)
1.09412× 10−6

[0.9, 1.0]
(

0.9816− 0.9212x + 0.3691x2 − 0.0616x3 0.0004− 0.0011x + 0.0012x2 − 0.0004x3

0.0004 + 0.0.9989x + 0.0012x2 − 0.0004x3 0.9999 + 0.0002x − 0.0002x2

)
1.09412× 10−6

Table 1.2. Approximation for Sylvester matrix differential equation (1.5.29) in the interval [0, 1] with step size h = 0.1.

6 Example: Riccati matrix differential equation

Rectangular non-symmetric Riccati matrix-differential equation of the type

Y ′(x) = C (x)−D(x)Y (x)− Y (x)A(x)− Y (x)B(x)Y (x)

Y (0) = Y0

 0 ≤ x ≤ c, (1.6.31)

6 Example: Riccati matrix differential equation 37

 0

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 1.2e-06

 1.4e-06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ax

.
er

ro
r

approx. interval

Fig. 1.2. Representing the absolute error margins for the Sylvester matrix differential equation (1.5.29) in the interval [0, 1] with
step size h = 0.1.

where the unknown Y (x) ∈ Cp×q and coefficients A(t) ∈ Cq×q, B(x) ∈ Cq×p, C (x) ∈
Cp×q, D(x) ∈ Cp×p are differentiable matrix-valued functions arise frequently in important ap-
plications to classical control theory [13] and as decoupling techniques for both the analytic and
numerical study of boundary value problems [2]. The Riccati equation (1.6.31) has been studied
extensively, and different resolution techniques have been introduced (see [14] and references
therein).

The study of the Riccati equation (1.6.31) is closely related to the underlying linear system

X ′(x) = S(x)X (x)

X (0) =
[
Iq
Y0

]
 where X (x) =

[
U (x)
V (x)

]
, S(x) =

[
A(x) B(x)
C (x) −D(x)

]
. (1.6.32)

Specifying the solution of (1.6.31) is given by

Y (x) = V (x)U−1(x) (1.6.33)

where Y (x) is defined in the interval where U (x) is invertible, see [15].

Taking into account lemma 1 and 2 of [16], U (x) is invertible in the interval [0, δ] and the
solution Y (x) of problem (1.6.31) satisfies

‖Y (x)‖ ≤ M , M =
(
1− δq0 exp (δk0)w0

)−1
w0 exp (δk0), (1.6.34)

where δ is a positive number satisfying

δk0 + log (δ) < − log (q0w0) , (1.6.35)

38 1 Numerical solutions of first-order matrix differential equations using cubic splines

and

k0 = max
{∥∥∥∥[A(x) B(x)

C (x) −D(x)

]∥∥∥∥ ; 0 ≤ x ≤ c
}

q0 = max {‖A(x) B(x)‖ ; 0 ≤ x ≤ c}

w0 =
∥∥∥∥ IqY0

∥∥∥∥


(1.6.36)

In accordance with [17, p. 1064], we consider the matrix-valued function

F (x, Y) = C (x)−D(x)Y − Y A(x)− Y B(x)Y , (1.6.37)

then, if we define
a = sup {‖A(x)‖ ; 0 ≤ x ≤ δ}

b = sup {‖B(x)‖ ; 0 ≤ x ≤ δ}

c = sup {‖C (x)‖ ; 0 ≤ x ≤ δ}

d = sup {‖D(x)‖ ; 0 ≤ x ≤ δ}


(1.6.38)

and ‖Y ‖ ≤ M,
∥∥∥Ỹ ∥∥∥ ≤ M , with M gives by (1.6.34), the following local Lipschitz condition

holds ∥∥∥F (x, Y)− F (x, Ỹ)
∥∥∥ ≤ L∥∥∥Y − Ỹ ∥∥∥ , L = a+ d + 2bM . (1.6.39)

In addition , if ‖Y ‖ ≤ N ,

‖F (x, Y)‖ ≤ c+N (a+ d + bN) . (1.6.40)

Using the proposed spline method, the only one solution of the matrix equations (1.2.13)
and (1.2.18) for k = 1, . . . , n − 1 is guaranteed using a fixed-point argument and the global
Lipschitz’s condition (1.2.8). In our case, we need to prove the only one solution of the matrix
equations (1.2.13) and (1.2.18) using a fixed point argument and the local Lipschitz’s condition
(1.6.39).

We start with the matrix equation (1.2.13). Let us suppose that ‖T ‖ ≤ N1. Taking into account
(1.6.40), we take 

N2 = ‖Y (a)‖+ h ‖Y ′(a)‖+ h2

2 ‖Y ′′(a)‖+
h3

6 N1

N3 = c+N2(a+ d + bN2)

N4 = 2
h2 (N3 + ‖Y ′(a)‖+ h ‖Y ′′(a)‖)

(1.6.41)

with a, b, c given by (1.6.38), and let beN = max {N1,N2,N3,N4,M } withM gives by (1.6.34).
Let be A = {Y ∈ Cr×q; ‖Y ‖ ≤ N } and we consider the continuous matrix-valued function of
matrix variable g : Cr×q 7→ Cr×q defined by (1.2.19) for k = 0. It is simple to verify that if
T ∈ A, by (1.6.41) and (1.6.40) then g(T) ∈ A. Thus, g : A 7→ A and A0 is a fixed point of
g. In addition, if T1, T2 ∈ A , ‖T1‖ ≤ M, ‖T2‖ ≤ M , has then that for f defined by (1.6.37),
f fulfills the local Lipschitz’s condition (1.6.39) and taking h < 3/L, g(T) yields a contractive
matrix function, which guarantees that equation (1.2.13) has unique solutions A0. Hence, the
matrix-cubic spline is completely determined in [a, a+ h].

6 Example: Riccati matrix differential equation 39

For a fixed value of k = 1, . . . , n − 1, we construct the cubic-matrix spline S(x) by taking
[a+ (k − 1)h, a+ kh] as the last subinterval, for the next subinterval [a+ kh, a+ (k + 1)h]. To
define the corresponding spline, we need determine Ak ∈ Cr×q as the only one solution of the
matrix equation (1.2.18). Let us suppose that ‖T ‖ ≤ Ñ1. Taking into account (1.6.40), we take

Ñ2 =
∥∥∥S|[a+(k−1)h,a+kh]

(a+kh)
∥∥∥+h∥∥∥∥S ′|[a+(k−1)h,a+kh]

(a+kh)
∥∥∥∥+ h2

2

∥∥∥∥S ′′|[a+(k−1)h,a+kh]
(a+kh)

∥∥∥∥+ h3

6 Ñ1

Ñ3 = c+ Ñ2(a+ d + bÑ2)

Ñ4 = 2
h2

(
Ñ3 +

∥∥∥∥S ′|[a+(k−1)h,a+kh]
(a+kh)

∥∥∥∥+ h

∥∥∥∥S ′′|[a+(k−1)h,a+kh]
(a+kh)

∥∥∥∥)
(1.6.42)

with a, b, c given by (1.6.38), and let be Ñ = max
{
Ñ1, Ñ2, Ñ3, Ñ4,M

}
with M gives by

(1.6.34). Let be A =
{
Y ∈ Cr×q; ‖Y ‖ ≤ Ñ

}
and we consider the continuous matrix-valued

function of matrix variable g : Cr×q 7→ Cr×q defined by (1.2.19).
It is simple to verify that if T ∈ A, by (1.6.42) and (1.6.40) then g(T) ∈ A. Thus, g : A 7→ A

and Ak is a fixed point of g. In addition, if T1, T2 ∈ A , ‖T1‖ ≤ M, ‖T2‖ ≤ M , has then that
for f defined by (1.6.37), f fulfills the local Lipschitz’s condition (1.6.39) and taking h < 3/L,
g(T) yields a contractive matrix function, which guarantees that equation (1.2.18) has unique
solutions Ak. Hence, the matrix-cubic spline is completely determined.

As an additional example for our proposed method, we consider the Riccati matrix differ-
ential equation (1.6.31) with

A(x) =
(
−x 0
−x x

)
, B(x) =

(
−x2 −2
0 1

)
, D(x) =

(
−1 −x2

x x

)
,

C (x) =
(
x (−ex + exx − x3) x (2ex − x2)
(1− x)x(2 + x + 2x2) 1 + (3− 2x) x2 + ex (x − x4)

)
, Y (0) =

(
0 1
0 0

)
. (1.6.43)

In this case, the problem has an exact solution given by Y (x) =
(

0 ex

x2 x

)
, which will permit

us to obtain the total error for all our numerical estimates. A short computation using expres-
sions (1.6.34)–(1.6.39) yields the following constants

k0 = 6.13866 q0 = 3
w0 =

√
2 δ = 0.115758

M = 12.0883 a = 0.173205
b = 2.23609 c = 1.17928
d = 1.01 L = 55.2443

 (1.6.44)

which are necessary for the spline approximation in the interval [0, 0.1], where δ = 0.1 is
taken for convenience. Therefore, we need to take h < 3/L = 0.0543042 and thus h = 0.01.
The results are generated with Mathematica using FindRoot function to solve the emerging
algebraic equations, and are summarized in Table 3, where the numerical estimates have been
rounded to the fourth relevant digit. In each interval, we evaluated the difference between the
estimates of our numerical approach and the exact solution, and then take the Frobenius norm
of this difference. The maximum of these errors are indicated in the third column for each
subinterval.

40 1 Numerical solutions of first-order matrix differential equations using cubic splines

Interval Approximation Max. Error

[0, 0.01]
(

0 1 + x + 0.5 x2 + 0.167224 x3

x2 x

)
1.39903× 10−10

[0.01, 0.02]
(

0 1.+ x + 0.499933 x2 + 0.169461 x3

x2 x

)
1.39903× 10−10

[0.02, 0.03]
(

0 1 + x + 0.499864 x2 + 0.17061 x3

x2 x

)
1.41977× 10−10

[0.03, 0.04]
(

0 1 + 1.00001 x + 0.49966 x2 + 0.172877 x3

x2 x

)
1.41977× 10−10

[0.04, 0.05]
(

0 1 + 1.00001 x + 0.499518 x2 + 0.174063 x3

x2 x

)
1.44084× 10−10

[0.05, 0.06]
(

0 1 + 1.00003 x + 0.499173 x2 + 0.176362 x3

x2 x

)
1.44084× 10−10

[0.06, 0.07]
(

0 0.999999 + 1.00004 x + 0.498952 x2 + 0.177587 x3

x2 x

)
1.46223× 10−10

[0.07, 0.08]
(

0 0.999998 + 1.00008 x + 0.498463 x2 + 0.179918 x3

x2 x

)
1.46223× 10−10

[0.08, 0.09]
(

0 0.999998 + 1.0001 x + 0.49816 x2 + 0.181181 x3

x2 x

)
1.48391× 10−10

[0.09, 0.1]
(

0 0.999996 + 1.00016 x + 0.497521 x2 + 0.183546 x3

x2 x

)
1.48391× 10−10

Table 1.3. Approximation for Riccati matrix differential equation (1.6.43) in the interval [0, 0.1] with step size h = 0.01.

 0

 2e-11

 4e-11

 6e-11

 8e-11

 1e-10

 1.2e-10

 1.4e-10

 1.6e-10

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

m
ax

.
er

ro
r

approx. interval

Fig. 1.3. Representing the absolute error margins for the Riccati matrix differential equation (1.6.43) in the interval [0, 0.1] with
step size h = 0.01.

7 Conclusions

This chapter developed a new method for the numerical integration of first-order matrix differ-
ential equations of the non-linear type Y ′(x) = f (x, Y (x)), x ∈ [a, b] using matrix-cubic splines,
and thereby generalizing the approach for the linear case in previous work [1]. An important
advantage of the proposed method is that the approximated solution is continuous in the inter-
val under consideration, is easy to evaluate, and has an error of the order O(h4).
Our method is well-suited for implementation on numerical and/or symbolical computer sys-
tems (Mathematica, MATLAB, etc.) as we have shown in Section 3 giving the explicit algorithm.

7 Conclusions 41

For a full demonstration of our approach and its advantages, we conclude with two numerical
examples for the Sylvester and Riccati matrix differential equations.

References

1. E. Defez, L. Soler, A. Hervás, and C. Santamarı́a, Numerical solutions of matrix differential models using cubic matrix splines,
Comput. Math. Appl. 50 (2005), 693–699.

2. U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical solutions of boundary value problems for ordinary differential
equations, Prentice Hall, New Jersey, 1988.

3. L. Jódar and E. Ponsoda, Continuous numerical solutions and error bounds for matrix differential equations, Int. Proc. First Int.
Colloq. Num. Anal. (Utrecht, The Netherlands) (D. Bainov and V. Covachev, eds.), VSP, 1993, pp. 73–88.

4. F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer.
Anal. 4 (1967), no. 3, 433–445.

5. E. A. Al-Said and M. A. Noor, Cubic splines method for a system of third-order boundary value problems, Appl. Math. Comput.
142 (2003), 195–204.

6. A. Graham, Kronecker products and matrix calculus with applications, John Wiley, New York, 1981.
7. G. H. Golub and C. F. Van Loan, Matrix computations, second ed., The Johns Hopkins University Press, Baltimore, MD,

USA, 1989.
8. T. M. Flett, Differential analysis, Cambridge University Press, Cambridge, UK, 1980.
9. P. Lancaster, Explicit solutions of linear matrix equations, SIAM Review 12 (1970), 544–566.

10. J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York,
1970.

11. A. Y. Barraud, Nouveaux développements sur la résolution numérique de x′ = ax+ xb+ c; x(0) = c, RAIRO, Autom. Syst. Anal.
Control 16 (1982), no. 4, 341–356.

12. L. Jódar and E. Ponsoda, Computing continuous numerical solutions of matrix differential equations, Comput. Math. Appl. 29
(1995), no. 4, 73–84.

13. J. L. Casti, Dynamical systems and their applications: Linear theory, Academic Press, New York, 1977.
14. L Jódar and J. C. Cortés López, Rational matrix approximation with a priori error bounds for non-symmetric matrix riccati equation

with analytic coefficients, IMA J. Numer. Anal. 18 (1998), no. 4, 545–561.
15. W. T. Reid, Riccati differential equations, Mathematics in Science and Engineering, Academic Press, New York, 1972.
16. L. Jódar and E. Ponsoda, Non-autonomous Riccati-type matrix differential equations: Existence interval, construction of continuous

numerical solutions and error bounds, IMA J. Numer. Anal. 15 (1995), 61–74.
17. J. Camacho, J. C. Cortés, E. Navarro, and A. E. Posso, Chebyshev rational matrix approximation with a priori error bounds for

linear and Riccati matrix equations, Math. Comp. Modelling 35 (2002), 1061–1076.

CHAPTER 2

Numerical solutions of second-order matrix
differential equations using cubic splines

1 Introduction

Matrix initial value problems of the form:

Y ′′(x) = f (x, Y (x), Y ′(x))

Y (a) = Y0 , Y ′(a) = Y1

 a ≤ x ≤ b , [a, b] ⊂ R, (2.1.1)

with matrices Y0, Y1, Y (t) ∈ Cr×q and matrix function f : [a, b] × Cr×q × Cr×q 7−→ Cr×q, are
frequent in different fields in physics and engineering. Note that Eq. (2.1.1) could e.g. be the
statement of Newton’s second law of motion for a coupled mechanical system. Models of this
kind frequently appear in molecular dynamics, quantum mechanics and for scattering methods,
where one solves scalar or vectorial problems with boundary value conditions [1–6].

Numerical methods for the calculation of approximate solutions of simpler matrix problems
Y ′′ = f (x, Y (x)) have been studied before using linear multi-step matrix methods with constant
steps [7]. In this case, there arise a priori error bounds which depend on the data given. As these
error bounds display exponential behavior with respect to the integration step h, it will in prac-
tice have to take very small values. This unfortunately comes with an increase in computational
cost. Similarly, the standard transformation [8] of the differential matrix problem (2.1.1) into
an extended first-order system induces a growth in CPU usage. Furthermore, these methods
require some additional interpolation techniques in order to obtain a continuous solution, see
Ref. [9].

Cubic splines were used in the scalar case to solve first-order differential equations [10], ob-
taining approximations that, among other advantages, were of class C 1 in a given interval [a, b]
and are easy to compute. For these first-order differential scalar problems, the associated ap-
proximation errors were of O(h4), see [10, p. 440], although this must not necessarily hold for
scalar problems of different class [11]. Moreover, this method has been used in the resolution
of various scalar problems as discussed in Refs. [12, 13], for vector problems [14], linear ma-
trix problems [15], first-order matrix differential equations [16], and also for a simpler case of
problem (2.1.1), given in Ref. [17]. In the present work, we extend previous work [15–17] to

44 2 Numerical solutions of second-order matrix differential equations using cubic splines

the resolution of second-order matrix problems, Eq. (2.1.1) without any additional increase in
dimensionality of the problem.

2 Notation and terminology

In this work, Cp×q will in general denote the set of rectangular p × q complex matrices. If the
matrix satisfies A ∈ Cr×s, then ‖A‖ will be its 2-norm defined by

‖A‖ = sup
z 6=0

‖Az‖
‖z‖ .

As usual, for a vector z ∈ Cs the Euclidean norm is ‖z‖ = (ztz)
1
2 and the maximum norm

‖z‖∞ = max
i=1,...,s

|zi| . Following the procedure given in Ref. [18, p. 56], we assume that

max
ij

∣∣aij∣∣ ≤ ‖A‖ ≤ √r smax
ij

∣∣aij∣∣ . (2.2.2)

If A =
(
aij
)
∈ Cm×n, the Frobenius norm of A is given by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

∣∣aij∣∣2, (2.2.3)

and the following relationship between the 2-norm and Frobenius norm holds (see Ref. [18])

‖A‖ ≤ ‖A‖F ≤
√
n ‖A‖ . (2.2.4)

We will denote by Pn[x] the set of matrix polynomials with degree n and real variable x.
Furthermore, we will say that a matrix function g : [a, b] 7→ Cr×q is of class k ≥ 0, written as
g ∈ C k ([a, b]), if g is k-times differentiable and its kth derivative is continuous in [a, b]. Let
[a, b] ⊂ R and consider the following partition of [a, b]:

∆ = {a = x0 < x1 < . . . < xn = b} .

Given m, an integer greater or equal than zero, we define the set of matrix splines of order m
as

M−Cr×r (∆)mm−1=
{
Q : [a, b] 7−→ Cr×q ; Q∈Cm−1 ([a, b]) , Q∣∣∣[xi−1,xi]

(x)∈Pm[x] ∀i ∈ {1, . . . , n}
}
.

For m = 3 the matrix splines are called matrix-cubic splines as in [19].

The chapter is organized as follows. Section 3 outlines the proposed method and its algorithm
given in Section 4. Finally, in Section 5, some practical examples are discussed.

3 Construction of the method

As a starting point, let us consider the initial value problem

Y ′′(x) = f (x, Y (x), Y ′(x))

Y (a) = Y0 , Y ′(a) = Y1

 a ≤ x ≤ b, (2.3.5)

3 Construction of the method 45

where Y0, Y1, Y (t) ∈ Cr×q, f : [a, b]×Cr×q ×Cr×q 7−→ Cr×q, f ∈ C 0 (T), with

T = {(x, Y, Z) ; a ≤ x ≤ b , Y, Z ∈ Cr×q} . (2.3.6)

As usual, the Lipschitz condition on function f , i.e.∥∥f (x, Y1, Y) − f (x, Y2, Y)
∥∥ ≤ L1 ‖Y1 − Y2‖ , a ≤ x ≤ b , Y1, Y2, Y ∈ Cr×q

∥∥f (x, Y, Y1) − f (x, Y, Y2)
∥∥ ≤ L2 ‖Y1 − Y2‖ , a ≤ x ≤ b , Y1, Y2, Y ∈ Cr×q

 , (2.3.7)

guarantees the existence and uniqueness of the continuously differentiable solution Y (x) for the
set of equations (2.3.5), see e.g. [20, p. 99]. For general procedures and algorithms to estimate
the Lipschitz constant for a scalar function, we refer to [21, p. 151], and [22] and references
therein. For the matrix case see e.g. [23].

In the following, we divide the interval [a, b] into subintervals according to the partition

∆[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a+ kh, k = 0, 1, . . . , n, (2.3.8)

with step size h = (b− a)/n and n being a positive integer.

For each subinterval [a + kh, a + (k + 1)h], we will construct a matrix-cubic spline approxi-
mating the solution of Eqs. (2.3.5). Starting off with the first interval [a, a + h], we assume that
the spline is given by

S|[a,a+h] (x) = Y (a) + Y ′(a)(x − a) +
1
2!
Y ′′(a)(x − a)2 +

1
3!
A0(x − a)3, (2.3.9)

where the matrixA0 ∈ Cr×q is an unknown to be determined. Given this definition of S|[a,a+h] (x),
it is straightforward to check:

S|[a,a+h] (a) = Y (a) , S ′|[a,a+h] (a) = Y ′(a) , S ′′|[a,a+h] (a) = Y ′′(a) = f (a, S|[a,a+h] (a), S
′
|[a,a+h] (a)).

By construction, Eq. (2.3.9) satisfies Eqs. (2.3.5) for x = a. However, for a complete determina-
tion of the spline in [a, a + h], we still have to find A0. This is readily done by imposing that
(2.3.9) is a solution of problem (2.3.5) at x = a+ h. Hence, we obtain

S ′′|[a,a+h] (a+ h) = f

(
a+ h, S|[a,a+h] (a+ h), S ′|[a,a+h] (a+ h)

)
. (2.3.10)

Applying Eq. (2.3.10), we then find the matrix equation with the remaining unknown matrix
A0:

A0 =
1
h

[
f

(
a+ h, Y (a) + Y ′(a)h+

1
2
Y ′′(a)h2 +

1
6
A0h3, Y ′(a) + Y ′′(a)h+

1
2
A0h2

)
− Y ′′(a)

]
.

(2.3.11)
Finally, by imposing again that the matrix equation Eq. (2.3.11) has one solution A0, the spline
is fully determined in the first subinterval [a, a+ h].

Now, we move on to the next subinterval [a+h, a+ 2h]. Here, the matrix-cubic spline takes
the following form

46 2 Numerical solutions of second-order matrix differential equations using cubic splines

S|[a+h,a+2h]
(x) = S|[a,a+h] (a+h)+S

′
|[a,a+h] (a+h)(x − (a+ h))

+
1
2!
S ′′|[a,a+h] (a+h)(x−(a+h))

2+
1
3!
A1(x−(a+h))3. (2.3.12)

Note that S(x) is defined in such a way that it is of class C 2([a, a + h] ∪ [a + h, a + 2h]), and
again all of the coefficients of the spline S|[a+h,a+2h]

(x) are determined with the exception of matrix
A1 ∈ Cr×q.

Repeating the previous procedure in the first subinterval, we use a spline of the form
Eq. (2.3.12) which satisfies the differential equation (2.3.5) at x = a+h. Then, we are in the posi-
tion to calculate A1 assuming that the differential equation (2.3.5) also holds at point x = a+2h:

S ′′|[a+h,a+2h]
(a+ 2h) = f

(
a+ 2h, S|[a+h,a+2h]

(a+ 2h), S ′|[a+h,a+2h]
(a+ 2h)

)
.

After further simplification, we can isolate the matrix equation for the only unknown quantity
A1:

A1 =
1
h

[
f

(
a+ 2h, S|[a,a+h] (a+ h) + S ′|[a,a+h] (a+ h)h+

1
2
S ′′|[a,a+h] (a+ h)h2 +

1
6
A1h3,

S ′|[a,a+h] (a+ h) + S ′′|[a,a+h] (a+ h)h+
1
2
A1h2

)
− S ′′|[a,a+h] (a+ h)

]
. (2.3.13)

Hence, assuming that the matrix equation (2.3.13) has only the solution A1, the spline of subin-
terval [a+ h, a+ 2h] is totally determined.

From the previous explanation, it should be clear how to generalize this iteration process for
all subsequent subintervals up to the last interval of the partition. For illustration, let us consider
without any loss of generality the matrix-cubic spline in any subinterval [a+ (k − 1)h, a+ kh].
Then, for the next subinterval [a+ kh, a+ (k + 1)h], we can define the corresponding spline in
a similar fashion as seen before:

S|[a+kh,a+(k+1)h]
(x) = βk(x) +

1
3!
Ak(x − (a+ kh))3, (2.3.14)

where

βk(x) =
2∑
l=0

1
l!
S (l)

|[a+(k−1)h,a+kh]
(a+ kh)(x − (a+ kh))l. (2.3.15)

With this definition, the matrix-cubic spline is of class

S(x) ∈ C 2

 k⋃
j=0

[a+ jh, a+ (j + 1)h]


and fulfills the differential equation (2.3.5) at point x = a + kh. As an additional requirement,
we assume that S(x) satisfies the differential equation (2.3.5) at point x = a+ (k + 1)h:

S ′′|[a+kh,a+(k+1)h]
(a+(k+1)h) = f

(
a+(k+1)h, S|[a+kh,a+(k+1)h]

(a+(k+1)h), S ′|[a+kh,a+(k+1)h]
(a+(k+1)h)

)
,

and the equation with the unknown matrix Ak is

3 Construction of the method 47

Ak =
1
h

[
f

(
a+ (k + 1)h, βk(a+ (k + 1)h) +

1
6
Akh3, β ′k(a+ (k + 1)h) +

1
2
Akh2

)
−β ′′k(a+ (k + 1)h)

]
. (2.3.16)

Observe that this general result for Ak reduces to Eqs. (2.3.11) and (2.3.13), when taking k = 0
and k = 1, respectively.

It remains to show that expression Eq. (2.3.16) for Ak in fact provides a unique solution of
the problem. In the following, we will demonstrate uniqueness by using a fixed-point argument
(see Ref. [16] for the first-order case).

Given a fixed step size h, we consider the matrix function g : Cr×q → Cr×q defined by

g(T) =
1
h

[
f

(
a+ (k + 1)h, βk(a+ (k + 1)h) +

1
6
T h3, β ′k(a+ (k + 1)h) +

1
2
T h2

)
− β ′′k(a+ (k + 1)h)

]
. (2.3.17)

It is clear that Eq. (2.3.16) will only be valid if and only if Ak = g(Ak), Thus, Ak is a fixed-point
solution of function g(T).

By adding and subtracting expression

f

(
a+ (k + 1)h, βk(a+ (k + 1)h) +

1
6
T2h3, β ′k(a+ (k + 1)h) +

1
2
T1h2

)
to
∥∥g(T1)− g(T2)

∥∥ using Eq. (2.3.17) and applying Lipschitz’s conditions (2.3.7), it follows that∥∥g(T1)− g(T2)
∥∥

= 1
h

∥∥f (a+(k+1)h, βk (a+(k+1)h)+ 1
3!T1h3, β ′k (a+(k+1)h)+ 1

2T1h2
)

−f
(
a+(k+1)h, βk (a+(k+1)h)+ 1

3!T2h3, β ′k (a+(k+1)h)+ 1
2T1h2

)
+f
(
a+(k+1)h, βk (a+(k+1)h)+ 1

3!T2h3, β ′k (a+(k+1)h)+ 1
2T1h2

)
− f
(
a+(k+1)h, βk (a+(k+1)h)+ 1

3!T2h3, β ′k (a+(k+1)h)+ 1
2T2h2

)∥∥
≤ 1

2h
(
L1h2

3 + L2

)
‖T1 − T2‖ .

Taking

h <

(√
24L1 + 9L2

2 − 3L2

)
/2L1

it is
1
2
h

(
L1
h

3
+ L2

)
< 1.

Therefore, g(T) is a contractive matrix function and consequently Eq. (2.3.16) has unique
solutions Ak for k = 0, 1, . . . , n − 1. This completes our proof that the matrix-cubic spline of
cubic order is completely determined.

48 2 Numerical solutions of second-order matrix differential equations using cubic splines

Summing up, the following result can been established (for an analogous argument see also
Ref. [10] by using relation (2.2.2)):

Theorem 2.1.

(i) Let L1, L2 be Lipschitz constants defined by Eq. (2.3.7). If step size h <
(√

24L1 + 9L2
2 − 3L2

)
/2L1

is chosen, then there exists a matrix-cubic spline S(x) for each subinterval [a+ kh, a+ (k + 1)h],
k = 0, 1, . . . , n− 1 (following our previously outlined construction method).

(ii) If f ∈ C 1(T), then ‖Y (x)− S(x)‖ is at least of order O(h3) ∀x ∈ [a, b], where Y (x) is the
theoretical solution of Eq. (2.3.5).

4 Algorithm

The algorithm used is a straightforward implementation of the procedure explained in Sec-
tion 3. As explained before, it will compute the approximate solution of Eq. (2.3.5) by means
of matrix-cubic splines for the interval [a, b] with an error at least of order O(h3) for step size h
of the partition ∆[a, b]. Diagram 2.1 schematically displays this algorithm in a flow diagram. It
can be easily implemented in various computer languages.

5 Examples

For some particular cases, the matrix equations (2.3.11) and (2.3.16) can be solved analyti-
cally [24], otherwise they can be tackled with standard iterative methods (see e.g. [25, 26]) using

T s
l+1 = g(T s

l),where T s
0 is an arbitrary matrix in Cr×q and s = 0, 1, . . . , n− 1,

where g(T) is given by Eq. (2.3.17).

Knowing the fully analytical results for some standard examples of matrix differential equa-
tion of second order enables us to study the quality and convergence of the approximate results
generated by our algorithm. In the following two sections, we have chosen a non-linear vector
system and an incomplete second-order differential for testing the proposed algorithm.

5.1 A non-linear differential vector system

As a toy example, let us consider the following trivial non-linear vector system:

y′′1(x) = 1− cos (x) + sin
(
y′2(x)
)
+ cos

(
y′2(x)
)

y′′2(x) =
1

4 + y1(x)2
−

1

5− sin2(x)

y1(0) = 1, y2(0) = 0,

y′1(0) = 0, y′2(0) = π


0 ≤ x ≤ 1. (2.5.18)

It is easy to verify that this problem has the exact solution y1(x) = cos (x), y2(x) = πx. Thus, we
can compare our numerical estimates with this solution in order to obtain the exact errors of
the approximation.

The system Eq. (2.5.18) can be recast in the more compact form

5 Examples 49�
�

�
�START

?

choose integer

n > 2L1(b−a)√
24L1+9L2

2−3L2

?

determine

step size h = (b− a)/n
∆[a, b] with Eq. (2.3.8)

?

LET k = 0

?

compute

Ak with Eq. (2.3.16)
S|[a,a+h] (x) with Eq. (2.3.14)

?

��
�
��

��

H
HHH

HHH

����
���

HH
H

HH
HH

IS k = n− 1?
No

Yes

- LET k = k + 1

�

?

PRINT

S(x) =
n−1⋃
k=0

S|[a+kh,a+(k+1)h](x)

�
�
�
�
�
�
�

�
�
�
�
�
�
�

?�
�

�
�END

Diagram 2.1. Flow diagram representing the algorithm for matrix-cubic spline approximation of differential matrix systems of
type Y ′′(x) = f (x, Y (x), Y ′(x)) with constant Y0 = Y (a) and Y1 = Y ′(a) at initial point a ∈ R.

50 2 Numerical solutions of second-order matrix differential equations using cubic splines

Y ′′(x) = F (x, Y, Y ′) , Y (x) =
(
y1(x)
y2(x)

)
,

Y (0) =
(

1
0

)
, Y ′(0) =

(
0
π

)
,

(2.5.19)

where

F (x, Y, Y ′) =

1− cos (x) + sin
(
y′2(x)
)
+ cos (y′2(x))

1
4 + y1(x)2

−
1

5− sin2(x)

 . (2.5.20)

Thus, we obtain

Y ′′(0) = F (0, Y (0), Y ′(0)) =
(
−1

0

)
,

and it is not difficult to show that F (x, Y, Y ′), given by Eq. (2.5.20), fulfills the global Lipschitz
conditions:

‖F (x, Y1, Y) − F (x, Y2, Y)‖ ≤ ‖Y1 − Y2‖

‖F (x, Y, Y1) − F (x, Y, Y2)‖ ≤ 2 ‖Y1 − Y2‖

 , 0 ≤ x ≤ 1 , Y, Y1, Y2 ∈ R2. (2.5.21)

Next, we determine L1 and L2 calculated by Eq. (2.3.7) as L1 = 1, L2 = 2. Theorem 2.1 implies
that we need to take h < 0.872983, so here we choose h = 0.1. To attack the emerging algebraic
equations, we have used Mathematica Most of the results are generated using its FindRoot

function. Table 2.1 summarizes all the numerical estimates, which have been rounded to the
fifth relevant digit.

Interval Approximation Error Max. Error

[0, 0.1]
(

1− 0.5x2 + 0.00833x3

3.14159x

)
4.16114× 10−6 4.16114× 10−6

[0.1, 0.2]
(

0.99998 + 0.00050x − 0.50497x2 + 0.02490x3

3.14159x

)
1.66032× 10−5 1.66032× 10−5

[0.2, 0.3]
(

0.99985 + 0.00246x − 0.51476x2 + 0.04122x3

3.14159x

)
3.72028× 10−5 3.72325× 10−5

[0.3, 0.4]
(

0.99942 + 0.00675x − 0.52908x2 + 0.05713x3

3.14159x

)
6.57658× 10−5 6.57551× 10−5

[0.4, 0.5]
(

0.99844 + 0.01412x − 0.54749x2 + 0.07247x3

3.14158x + 0.00002x2 − 0.00001x3

)
1.02012× 10−4 1.01985× 10−4

[0.5, 0.6]
(

0.99662 + 0.02507x − 0.56941x2 + 0.08708x3

3.14159x

)
1.45563× 10−4 1.45550× 10−4

[0.6, 0.7]
(

0.99365 + 0.03992x − 0.59415x2 + 0.10082x3

3.14156x + 0.00004x2 − 0.00002x3

)
1.96167× 10−4 1.96024× 10−4

[0.7, 0.8]
(

0.98928 + 0.0586x − 0.62090x2 + 0.11356x3

3.14159x

)
2.52912× 10−4 2.52907× 10−4

[0.8, 0.9]
(

0.98334 + 0.08091x − 0.64873x2 + 0.12516x3

0.00002 + 3.14153x + 0.00008x2 − 0.00003x3

)
3.15643× 10−4 3.15637× 10−4

[0.9, 1.0]
(

0.97579 + 0.10608x − 0.67670x2 + 0.13552x3

3.1416x

)
3.83638× 10−4 3.83579× 10−4

Table 2.1. Approximation for the vector differential system Eq. (2.5.18) in the interval [0, 1] with step size h = 0.1.

In each interval, we evaluated the difference between the estimates of our numerical ap-
proach and the exact solution, and then took the Frobenius norm of this difference. The cor-
responding errors are indicated in the third column. In Figure 2.1 these errors are plotted for
each subinterval. Note that although the error is growing almost linearly, the error margin is

5 Examples 51

very small, namely [0, 0.0004], and well within the bounds dictated by Theorem 2.1. To avoid
any averaging, as occurs using the Frobenius norm, we also add in the last column the error
corresponding to the maximum norm evaluated at the final point of each interval.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

er
ro

r

approx. interval

Figure 2.1. Error margins for the vector differential system Eq. (2.5.18) in the interval [0, 1] with step size h = 0.1.

5.2 Incomplete second-order differential system

The problem
Y ′′(t) +AY (t) = 0, (2.5.22)

with Y (0) = Y0, Y ′(0) = Y1, has the exact solution

Y (t) = cos
(√

At
)
Y0 +

(√
A
)−1

sin
(√

At
)
Y1, (2.5.23)

where
√
A denotes any square root of a non-singular matrix A (see e.g. Ref. [27]). A major dis-

advantage of this formal solution is the non-trivial computation of
√
A, cos (

√
At) and sin (

√
At).

Our proposed method aims at avoiding these difficulties.

For our example Eq. (2.5.22), we choose the parameters

A =
(

1 0
2 1

)
, Y0 =

(
0 0
0 0

)
, Y1 =

(
1 0
1 1

)
, t ∈ [0, 1]. (2.5.24)

The corresponding exact solution, as given in Ref. [7], is

Y (t) = sin
[(

1 0
1 1

)
t

]
=
(

sin (t) 0
t cos (t) sin (t)

)
.

In this case, we have L2 = 0 and L1 ≈ 2.82843. According to Theorem 2.1, we need to take
h < 1.45647 as in Ref. [17], so we choose h = 0.1 for example. Again, we use Mathematica to

52 2 Numerical solutions of second-order matrix differential equations using cubic splines

solve the algebraic equations which arise from the algorithm of Figure 2.1. Table 2.2 lists all nu-
merical estimates (rounded to the fifth relevant digit). The maximum error for each subinterval
is indicated in the third column of the table. Figure 2.2 gives a graphical representation for these
errors. Note again that although the error is increasing within an error margin of [0, 0.0007],
and thus much below the bounds dictated by Theorem 2.1.

Interval Approximation Error

[0, 0.1]
(
x − 0.1664x3 0
x − 0.4986x3 x − 0.1664x3

)
1.0072× 10−6

[0.1, 0.2]
(

1.00005x − 0.0005x2 − 0.1647x3 0
1.0002x − 0.0025x2 − 0.4903x3 1.0001x − 0.0005x2 − 0.1647x3

)
6.3032× 10−6

[0.2, 0.3]
(

1.0005x − 0.0025x2 − 0.1614x3 0
−0.0001 + 1.0022x − 0.0124x2 − 0.4738x3 1.0005x − 0.0025x2 − 0.1614x3

)
2.0059× 10−5

[0.3, 0.4]
(
−0.0002 + 1.0018x − 0.0069x2 − 0.1565x3 0
−0.0008 + 1.0088x − 0.0344x2 − 0.4494x3 −0.0002 + 1.0018x − 0.0069x2 − 0.1565x3

)
4.6213× 10−5

[0.4, 0.5]
(
−0.0006 + 1.0049x − 0.0147x2 − 0.1500x3 0
−0.0028 + 1.0242x − 0.0728x2 − 0.4174x3 −0.0006 + 1.0049x − 0.0147x2 − 0.1500x3

)
8.8359× 10−5

[0.5, 0.6]
(
−0.0016 + 1.0109x − 0.0266x2 − 0.1420x3 0
−0.0077 + 1.0536x − 0.1316x2 − 0.3782x3 −0.0016 + 1.0109x − 0.0266x2 − 0.1420x3

)
1.4964× 10−4

[0.6, 0.7]
(
−0.0036 + 1.0210x − 0.0436x2 − 0.1327x3 0
−0.0176 + 1.1030x − 0.2140x2 − 0.3324x3 −0.0036 + 1.0210x − 0.0436x2 − 0.1327x3

)
2.3267× 10−4

[0.7, 0.8]
(
−0.0073 + 1.0368x − 0.0661x2 − 0.1219x3 0
−0.0354 + 1.1791x − 0.3227x2 − 0.2807x3 −0.0073 + 1.0368x − 0.0661x2 − 0.1219x3

)
3.3941× 10−4

[0.8, 0.9]
(
−0.0134 + 1.0597x − 0.0947x2 − 0.1100x3 0
−0.0646 + 1.2885x − 0.4595x2 − 0.2237x3 −0.0134 + 1.0597x − 0.0947x2 − 0.1100x3

)
4.7114× 10−4

[0.9, 1]
(
−0.0229 + 1.0914x − 0.1299x2 − 0.0970x3 0
−0.1093 + 1.4378x − 0.6253x2 − 0.1623x3 −0.0229 + 1.0914x − 0.1299x2 − 0.0970x3

)
6.2838× 10−4

Table 2.2. Approximation for the incomplete second-order differential system Eq. (2.5.22) in the interval [0, 1] with step size
h = 0.1 and parameters Eq. (2.5.24).

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

er
ro

r

approx. interval

Figure 2.2. Error margins for the incomplete second-order differential system Eq. (2.5.22) in the interval [0, 1] with step size
h = 0.1.

6 Conclusions 53

5.3 Second-order polynomial matrix equation

Here, we consider the following problem in C2×2

Y ′′(t) +A1 Y ′(t) +A0Y (t) = 0, t ∈ [0, 1], (2.5.25)

where

A1 =
(
−1 1

0 −2

)
, A0 =

(
0 0
0 1

)
,

employing the method described in [28] with the general solution (2.5.25) given by

Y (t) =
(

1
0

)
D1 +

(
1 −1 1
0 −1 1

)
exp


1 1 0

0 1 1
0 0 1

 t


D2, D1 ∈ C1×2, D2 ∈ C3×2 . (2.5.26)

With the initial conditions Y (0) = Y ′(0) =
(

1 0
0 1

)
, a simple calculation shows that

D1 =
(

0 −1
)
, D2 =

1 0
0 −1
0 0

 ,

and thus the solution of the problem (2.5.25) takes the simple form:

Y (t) =
(
et −1 + et − ett
0 et

)
, t ∈ [0, 1]. (2.5.27)

Taking into account that (2.5.25), we obtain

f (t, Y, Z) = −A0Y −A1Z,

and therefore ∥∥f (t, Y1, Z) − f (t, Y2, Z)
∥∥

2 ≤ L1 ‖Y1 − Y2‖2∥∥f (t, Y, Z1) − f (t, Y, Z2)
∥∥

2 ≤ L2 ‖Z1 − Z2‖2

 , (2.5.28)

where L1 = ‖A0‖2 = 1 and L2 = ‖A1‖2 = 2.28825. Where we must take the step size given by

the constraint h <
(√

24L1 + 9L2
2 − 3L2

)
/2L1 = 0.784401.

In Table 2.3, we use a step size of h = 0.1 to represent the cubic-matrix approximation for
the problem at hand, rounded to the fourth significant digit. Again, the maximum error (given
by the Frobenius norm) is displayed in the fourth column of the table. Figure 2.3 displays a
graphical representation for these errors. Observe that although the error is increasing up to a
value of [0, 0.0035], it remains well within the error bounds fixed by Theorem 2.1.

6 Conclusions

In this chapter, we have presented a novel method for the numerical treatment of second-order
differential matrix systems of the type Y ′′(x) = f (x, Y (x), Y ′(x)), x ∈ [a, b], as they are fre-
quently encountered in engineering modeling. Our approach is a generalization of previously
developed methods employing matrix-cubic splines for lower-order equations.

54 2 Numerical solutions of second-order matrix differential equations using cubic splines

Interval Approximation Error

[0, 0.1]
(

1 + x + 0.5x2 + 0.1754x3 −0.5x2 − 0.3601x3

0 1 + x + 0.5x2 + 0.1756x3

)
1.53895× 10−5

[0.1, 0.2]
(

1 + 1.0006x + 0.4945x2 + 0.1939x3 0.0001− 0.0017x − 0.4828x2 − 0.4175x3

0 1 + 1.0006x + 0.4944x2 + 0.1941x3

)
6.67523× 10−5

[0.2, 0.3]
(

0.9998 + 1.0030x + 0.4822x2 + 0.2143x3 0.0006− 0.0096x − 0.4435x2 − 0.4829x3

0 0.9998 + 1.0030x + 0.4822x2 + 0.2146x3

)
1.63924× 10−4

[0.3, 0.4]
(

0.9992 + 1.0091x + 0.4619x2 + 0.2369x3 0.0026− 0.0297x − 0.3764x2 − 0.5576x3

0 0.9992 + 1.0091x + 0.4618x2 + 0.2372x3

)
3.18789× 10−4

[0.4, 0.5]
(

0.9976 + 1.0211x + 0.4320x2 + 0.2618x3 0.0080− 0.0705x − 0.2744x2 − 0.6425x3

0 0.9976 + 1.0211x + 0.4318x2 + 0.2623x3

)
5.45654× 10−4

[0.5, 0.6]
(

0.9942 + 1.0417x + 0.3907x2 + 0.2894x3 0.0201− 0.1430x − 0.1293x2 − 0.7392x3

0 0.9942 + 1.0419x + 0.3903x2 + 0.2899x3

)
8.61682× 10−4

[0.6, 0.7]
(

0.9876 + 1.0746x + 0.3358x2 + 0.3198x3 0.0439− 0.2618x + 0.0686x2 − 0.8492x3

0 0.9875 + 1.0749x + 0.3352x2 + 0.3205x3

)
1.28740× 10−3

[0.7, 0.8]
(

0.9760 + 1.1241x + 0.2651x2 + 0.3535x3 0.0867− 0.4454x + 0.3309x2 − 0.9741x3

0 0.9759 + 1.1246x + 0.2642x2 + 0.3543x3

)
1.84731× 10−3

[0.8, 0.9]
(

0.9570 + 1.1956x + 0.1758x2 + 0.3907x3 0.1593− 0.7176x + 0.6712x2 − 1.1159x3

0 −0.9568 + 1.1964x + 0.1745x2 + 0.3917x3

)
2.57055× 10−3

[0.9, 1]
(

0.9270 + 1.2955x + 0.0648x2 + 0.4318x3 0.2766− 1.1086x + 1.1055x2 − 1.2768x3

0 0.9267 + 1.2969x + 0.0628x2 + 0.4331x3

)
3.49171× 10−3

Table 2.3. Approximation for the second-order polynomial matrix equation Eq. (2.5.25) in the interval [0, 1] with step size
h = 0.1.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

er
ro

r

approx. interval

Figure 2.3. Error margins for the second-order polynomial matrix equation Eq. (2.5.25) in the interval [0, 1] with step size
h = 0.1.

There are several important advantages of our proposed method. Firstly, the algorithm is
straightforward to implement on numerical and symbolical computer systems or by even using
suitable low-level programming languages. Secondly, in the case of second-order differential
matrix systems, our method does not require to disentangle the system at hand and reduce it to
a higher dimensional system of lower order, commonly practice in problems of this kind. This
reduction would only come at the price of increasing computational cost. Thirdly, all spline
solutions are by construction already continuous in the interval under consideration. Three ex-
plicit numerical examples have tested the method and have shown that errors are at most of
the order O(h3). By adapting the step size to a particular problem, in principle, any desired

6 Conclusions 55

accuracy can be reached.

With these benefits, it is hoped that our approach provides an alternative method to existing
ones and may open up new avenues to the numerical integration of second-order models in
practical applications. Especially, if work in progress will show that it may be a second option
to yet existing boundary-value integrators, such as MATLAB’s BVP routines.

References

1. P. Marzulli, Global error estimates for the standard parallel shooting method, J. Comput. Appl. Math. 34 (1991), 233–241.
2. J. M. Ortega, Numerical analysis: A second course, Academic Press, New York, 1972.
3. B. W. Shore, Comparison of matrix methods to the radii Schrödinger eigenvalue equation: The Morse potential, J. Chemical Physics

59 (1971), no. 12, 6450–6463.
4. C. Froese, Numerical solutions of the hartree-fock equations, Can. J. Phys. 41 (1963), 1895–1910.
5. J. R. Claeyssen, G. Canahualpa, and C. Jung, A direct approach to second-order matrix non-classical vibrating equations, Appl.

Numer. Math. 30 (1999), 65–78.
6. J. F. Zhang, Optimal control for mechanical vibration systems based on second-order matrix equations, Mechanical Systems and

Signal Processing 16 (2002), no. 1, 61–67.
7. L. Jódar, J. L. Morera, and R.J. Villanueva, Numerical multistep matrix methods for y′′ = f (t, y), Appl. Math. Comput. 59

(1993), 257–274.
8. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
9. L. Jódar and E. Ponsoda, Continuous numerical solutions and error bounds for matrix differential equations, Int. Proc. First Int.

Colloq. Num. Anal. (Utrecht, The Netherlands), VSP, 1993, pp. 73–88.
10. F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer.

Anal. 4 (1967), no. 3, 433–445.
11. E. A. Al-Said, The use of cubic splines in the numerical solution of a system of second-order boundary value problems, Comput. Math.

Appl. 42 (2001), 861–869.
12. M. K. Kadalbajoo and K. C. Patidar, Numerical solution of singularly perturbed two-point boundary value problems by spline in

tension, Appl. Math. Comput. 131 (2002), 299–320.
13. E. A. Al-Said and M. A. Noor, Cubic splines method for a system of third-order boundary value problems, Appl. Math. Comput.

142 (2003), 195–204.
14. G. Micula and A. Revnic, An implicit numerical spline method for systems for ODE’s, Appl. Math. Comput. 111 (2000), 121–

132.
15. E. Defez, L. Soler, A. Hervás, and C. Santamarı́a, Numerical solutions of matrix differential models using cubic matrix splines,

Comput. Math. Appl. 50 (2005), 693–699.
16. E. Defez, L. Soler, A. Hervás, and M. M. Tung, Numerical solutions of matrix differential models using cubic matrix splines II,

Mathematical and Computer Modelling 46 (2007), 657–669.
17. M. M. Tung, L. Soler, E. Defez, and A. Hervás, Cubic-matrix splines and second-order matrix model, The 14th European

Conference on Mathematics for Industry (ECMI 2006) (Universidad Carlos III de Madrid, Spain), 2006.
18. G. H. Golub and C. F. Van Loan, Matrix computations, second ed., The Johns Hopkins University Press, Baltimore, MD,

USA, 1989.
19. E. Defez, A. Hervás, A. Law, J. Villanueva-Oller, and R. Villanueva, Matrix-cubic splines for progressive transmission of images,

J. Math. Imaging Vision 17 (2002), no. 1, 41–53.
20. T. M. Flett, Differential analysis, Cambridge University Press, 1980.
21. C. T. Kelley, Iterative methods for optimization, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.
22. G. Wood and B. Zhang, Estimation of the Lipschitz constant of a function, J. Global Optim. 8 (1996), no. 1, 91–103.
23. L. Jódar and H. Abou-Kandil, A resolution method for Riccati differential systems coupled in their quadratic terms, SIAM Journal

on Mathematical Analysis 19 (1988), no. 6, 1425–1430.
24. P. Lancaster, Explicit solutions of linear matrix equations, SIAM Review 12 (1970), 544–566.
25. P. T. Boggs, The solution of nonlinear systems of equations by a-stable integration techniques, SIAM J. Numer. Anal. 8 (1971),

no. 4, 767–785.
26. J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York,

1970.
27. G. I. Hargreaves and N. J. Higham, Efficient algorithms for the matrix cosine and sine, Numerical Algorithms 40 (2005),

383–400.
28. L. Jódar and E. Navarro, Rectangular co-solutions of polynomial matrix equations and applications, Appl. Math. Lett. 4 (1991),

no. 2, 13–16.

CHAPTER 3

Approximate solutions of linear matrix
differential equations with higher-order

splines

1 Introduction

Matrix differential equations emerge frequently in a great variety of models in physics and
engineering [1–3]. Apart from problems where the mathematical framework is cast in matrix
form, they also appear when special techniques to solve scalar or vectorial problems are used.
Examples of such situations are the embedding methods for the study of linear boundary value
problems [4], shooting methods for scalar or vectorial problems with boundary values con-
ditions [5], lines method for the numerical integration of partial differential equations [6] or
homotopic methods to solve non-linear systems equations [7].

The vectorization techniques to transform a matrix problem into a set of scalar equations
has several drawbacks [8]. Firstly, the physical sense of the magnitudes is lost with vector-
ization techniques. Secondly, the computational cost increases. Moreover, these vectorization
techniques interfere with the advantages of symbolic languages especially adapted to deal with
matrix expressions.

In this work we will develop a method for the numerical integration of first-order matrix
differential linear equations given by

Y ′(x) = A(x)Y (x) + B(x), a ≤ x ≤ b

Y (a) = Ya

}
. (3.1.1)

Here, we assume Ya, Y ∈ Cr×q, A : [a, b] → Cr×r , B : [a, b] → Cr×q with A,B ∈ Cs ([a, b]),
s ≥ 1, which guarantees the existence of a unique and continuously differentiable solution Y (x)
of (3.1.1), see [9, p. 99].

Problem (3.1.1) is not only used in the mathematical modelling of many different techno-
logical applications [10], but also permits to deal with nonlinear problems, such as Riccati
equations [11–13], after employing some linearization techniques. Numerical methods for the
calculation of approximate solutions of problems of the type (3.1.1) by means of linear multi-

58 3 Approximate solutions of linear matrix differential equations with higher-order splines

step methods with constant steps have been studied in [14]. Although for these methods exist a
priori errors bounds as function of the problem data, these error bounds will be given in terms
of an exponential depending on the integration step h, and thus require in practice a very small
value for h. Therefore, these methods will involve some interpolation techniques in order to
obtain a continuous solution, [14]. Other methods, based on the developments of Magnus and
Fer [15], require the calculation of the matrix exponential at high computational cost. Another
alternative method would be the so-called B-splines method, which combines linear multi-step
methods and B-splines interpolation (see [16] and references therein).

In the scalar case, cubic splines were used in for the resolution of ordinary differential equa-
tions [17], obtaining approximations that, among other advantages, were of class C 1 in the
interval [a, b], and easily to evaluate with an error of the order O(h4). Recently, splines have
also been used in the resolution of other scalar problems [18]. For example, Ref. [19] devel-
ops an implicit spline method by means of Hermite interpolation techniques to tackle vector
problems.

The corresponding generalizations of the Loscalzo-Talbot method to the matrix framework
have been carried out in Refs. [20, 21]. Unfortunately, as already detected by Loscalzo and
Talbot in [17], their scalar procedure is divergent when higher-order spline functions are
used [17, p. 444–445]. Their numerical computations have explicitly shown that the system
y′ = y, y(0) = 1, contains significant divergences for splines of order m > 3. However, our new
method avoids these problems with divergences for splines S(x) of order m, provided they are
of differentiability class C1.

In this chapter, we propose a method using higher-order matrix splines for the numerical
approximation to the solution of (3.1.1). The present work extends all important advantages
already obtained in [17] for the scalar case to the matrix framework.

We adopt the following organization. In section 2 we develop the proposed method including
the study of the approximation error and formulate a constructive algorithm. Finally, in section
3 we conclude with some illustrative examples of the new method.

Along this work we will denote by Cp×q the set of rectangular p × q complex matrices, and
‖A‖ denotes any induced norm of matrix A ∈ Cp×q. Further, we will denote by Pn[x] the set of
matrix polynomials of degree n for the real variable x. If a matrix function g : [a, b] → Cr×q is
k-times differentiable, and its kth derivative is continuous in [a, b], we will say that it is of class
k ≥ 0. We will represent it as g ∈ Ck ([a, b]). For the interval [a, b] ⊂ R consider the partition

∆ = {a = x0 < x1 < . . . < xn = b} .

Given an integer m ≥ 0, we proceed to define the set of matrix splines of order m and class
Cn ([a, b]) as

M−Cr×r (∆)m1 =

Q : [a, b] −→ Cr×q;


Q∣∣∣[xi−1,xi]

(x) ∈ Pm[x], i ∈ {1, . . . , n} ,

Q ∈ Cn ([a, b])

 .

For m = 3, n = 2 these matrix splines are called matrix cubic splines [22].

2 Description of the method

Let us consider the following first-order matrix problem

Y ′(x) = A(x)Y (x) + B(x)
Y (a) = Ya

}
a ≤ x ≤ b, (3.2.2)

2 Description of the method 59

where the unknown matrix is Y (x) ∈ Rr×q, and Ya ∈ Rr×q is constant. The matrix coefficients
depend on the parameter x ∈ [a, b] such thatA : [a, b]→ Rr×r ,B : [a, b]→ Rr×q. The condition
A,B ∈ Cs ([a, b]), s ≥ 1, guarantees the uniqueness of solution Y (x) of problem (3.1.1), which
is continuously differentiable [9, p. 99].

The partition of the interval [a, b] shall be given by

∆[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a+ kh, k = 0, 1, . . . , n, (3.2.3)

where n is a positive integer with step size h = (b−a)/n. For each subinterval [a+kh, a+(k+1)h]
we will construct a matrix spline S(x) of order m ∈ N with 1 ≤ m ≤ s, where s is the order
of differentiability. Then, the solution for problem (3.2.2) can be approximated by the matrix
spline S(x) ∈ C1 ([a, b]).

In the first interval [a, a+ h], we define the matrix spline as

S|[a,a+h] (x) =
m−1∑
j=0

1
j!
Y (j)(a)(x − a)j +

1
m!
α0(x − α)m, (3.2.4)

where α0 ∈ Rr×q is a matrix parameter to be determined. It is straightforward to check

S|[a,a+h] (a) = Y (a), S ′|[a,a+h] (a) = Y ′(a) = A(a)Y (a) + B(a),

and therefore the spline satisfies the differential equation Eq. (3.2.2) at x = a.
In order to determine the matrix spline (3.2.4), we still must obtain the values for the matri-

ces Y ′′(a), Y (3)(a), . . . , Y (m−1)(a), and A0. For the second-order derivative Y ′′(x), we proceed to
compute

Y ′′(x) = A′(x)Y (x) +A(x)Y ′(x) + B′(x)
= g1(x, Y (x)) , (3.2.5)

where g1 ∈ Cs−1 ([a, b]). Using (3.2.5), we now can evaluate Y ′′(a) = g1 (a, Y (a)).
For the third derivative, one continues in a similar manner:

Y (3)(x) = A′′(x)Y (x) + 2A′(x)Y ′(x) +A(x)Y ′′(x) + B′′(x)

= g2 (x, Y (x)) ∈ Cs−2 ([a, b]) , (3.2.6)

and one calculates Y (3)(a) = g2 (a, Y (a)) using (3.2.6). For the next higher-order derivatives
Y (4)(x), . . . , Y (m−1)(x), we proceed similarly and finds

Y (4)(x) = g3 (x, Y (x)) ∈ Cs−3 ([a, b])
...

Y (m−1)(x) = gm−2 (x, Y (x)) ∈ Cs−(m−2) ([a, b])

 . (3.2.7)

Note that it is fairly easy to create a table summarizing all such derivatives by using automatized
programs on standard computer algebra systems. Substituting x = a in (3.2.7), one obtains
Y (4)(a), . . . , Y (m−1)(a). All matrix parameters of the spline which were to be determined are
now known, except for α0. To determine α0, we suppose that (3.2.4) is a solution of problem
(3.2.2) at x = a+ h, which gives

S ′|[a,a+h] (a+ h) = A(a+ h)S|[a,a+h] (a+ h) + B(a+ h). (3.2.8)

60 3 Approximate solutions of linear matrix differential equations with higher-order splines

Next, we obtain from (3.2.8) the matrix equation with only one unknown α0:(
I −

h

m
A(a+ h)

)
α0 = (3.2.9)

(m− 1)!
hm−1

A(a+ h)
m−1∑
j=0

hj

j!
Y (j)(a)−

m−2∑
j=0

hj

j!
Y (j+1)(a) + B(a+ h)


Assuming uniqueness of the solution α0 given by the matrix equation (3.2.9), the matrix spline
introduced in Eq. (3.2.4) is then totally determined in the interval [a, a+ h].

In the subsequent interval [a+ h, a+ 2h], the matrix spline takes the form

S|[a+h,a+2h]
(x) = (3.2.10)

S|[a,a+h] (a+ h) +
m−1∑
j=1

1
j!
Y (j)(a+ h)(x − (a+ h))j +

1
m!
α1(x − (a+ h))m,

where
Y ′(a+ h) = A(a+ h)S|[a,a+h] (a+ h) + B(a+ h). (3.2.11)

The expressions
Y ′′(a+ h), . . . , Y (m−1)(a+ h)

are similar to the previous results, obtained after evaluating the respective derivatives of Y (x)
using S|[a,a+h] (a+ h) in (3.2.5)–(3.2.7). In more compact form, we may write

Y ′′(a+ h) = g1

(
a+ h, S|[a,a+h] (a+ h)

)
,

...

Y (m−1)(a+ h) = gm−2

(
a+ h, S|[a,a+h] (a+ h)

)
.

(3.2.12)

Note: the spline S(x) defined by (3.2.4) and (3.2.10) is of differentiability class C1 ([a, a+ 2h]),
contrary to the splines introduced by Loscalzo and Talbot [17], which were of differentiability
class Cm−1 ([a, a+ 2h]). In Ref. [20], our approach to obtain the coefficients of the approxima-
tion Y (k)(a+ h)(x−(a+h)), for k > 2 was based on the derivatives for each spline in the previous
interval. Now our approach to obtain an estimate for theses coefficients consists in employing
the functions defined in Eq. (3.2.12).

By construction, the spline (3.2.10) satisfies the differential equation (3.2.2) at x = a + h. All
of its coefficients are determined with the exception of α1 ∈ Rr×q. To obtain the value of α1 we
only require the spline (3.2.10) to be a unique solution of (3.2.2) at point x = a+ 2h:

S ′|[a+h,a+2h]
(a+ 2h) = A(a+ 2h)S|[a+h,a+2h]

(a+ 2h) + B(a+ 2h).

2 Description of the method 61

An expansion yields the matrix equation with the only unknown A1:(
I −

h

m
A(a+ 2h)

)
α1 = (3.2.13)

(m− 1)!
hm−1

(
A(a+ 2h)

(
S|[a,a+h] (a+ h) +

m−1∑
j=1

hj

j!
Y (j)(a+ h)

)

−
m−2∑
j=0

hj

j!
Y (j+1)(a+ h) + B(a+ h)

 .

Let us assume again that the matrix equation (3.2.13) has only one solution α1. This way the
spline is totally determined in the interval [a+ h, a+ 2h].

Iterating this process, we proceed to construct the matrix spline consecutively up to the last
subinterval [a+ (n− 1)h, b]. For example, the general subinterval [a+ kh, a+ (k + 1)h] will
contain the matrix spline

S|[a+kh,a+(k+1)h]
(x) = (3.2.14)

S|[a+(k−1)h,a+kh]
(a+kh) +

m−1∑
j=1

1
j!
Y (j)(a+ kh)(x − (a+ kh))j

+
1
m!
αk(x − (a+ kh))m,

where
Y ′(a+ kh) = A(a+ kh)S|[a+(k−1)h,a+kh]

(a+ kh) + B(a+ kh). (3.2.15)

In a similar manner as before, one abbreviates

Y ′′(a+ kh) = g1

(
a+ kh, S|[a+(k−1)h,a+kh]

(a+ kh)
)
,

...

Y (m−1)(a+ kh) = gm−2

(
a+ kh, S|[a+(k−1)h,a+kh]

(a+ kh)
)
.

(3.2.16)

With this definition, the matrix spline S(x) ∈ C1
(⋃k

j=0[a+ jh, a+ (j + 1)h]
)

fulfills the differ-
ential equation (3.2.2) at point x = a + kh. Recall that Eq. (3.2.16) was necessary to obtain the
spline coefficients Y (k) by using the known derivatives of the solution of the previous spline.
Now we assume that S|[a+kh,a+(k+1)h]

(x) satisfies (3.2.2) at point x = a+ (k + 1)h, i.e.

S ′|[a+kh,a+(k+1)h]

(
a+ (k + 1)

)
=

A
(
a+ (k + 1)

)
S|[a+kh,a+(k+1)h]

(
a+ (k + 1)

)
+ B
(
a+ (k + 1)h

)
.

62 3 Approximate solutions of linear matrix differential equations with higher-order splines

Expanding this expression yields(
I −

h

m
A(a+ (k + 1)h)

)
αk = (3.2.17)

(m− 1)!
hm−1

[
A(a+ (k + 1)h)

(
S|[a+(k−1)h,a+kh]

(a+ kh) +
m−1∑
j=1

hj

j!
Y (j)(a+ kh)

)

−
m−2∑
j=0

hj

j!
Y (j+1)(a+ kh) + B(a+ (k + 1)h)


 .

Observe that the final result (3.2.17) relates directly to equations (3.2.9) and (3.2.13), when
setting k = 0 and k = 1. Note also that solubility of equation (3.2.17) is guaranteed by showing
that the matrix

(
I − h

mA(a+ (k + 1)h)
)

is invertible, for k = 0, 1, . . . , n − 1. To see this, let us
denote

M = max {‖A(x)‖ ; a ≤ x ≤ b} , (3.2.18)

where any induced norm applies. Then, one obtains∥∥∥∥I −(I − h

m
A(a+ (k + 1)h)

)∥∥∥∥ =
h

m
‖A(a+ (k + 1)h)‖ ≤

h

m
M. (3.2.19)

If we take h ≤ m/M , according to Lemma 2.3.3 in [23], it follows that matrix I − (h/m)A(a +
(k + 1)h) is invertible, and therefore equation (3.2.17) has a unique solution αk, for each k =
0, 1, . . . , n− 1. In summary, we have proved the following theorem:

Theorem 3.1. For the first-order matrix differential equation (3.2.2), assume that A,B ∈ Cs ([a, b]),
s ≥ 1. Let h > 0 so that h ≤ m/M , where M is given by (3.2.18) and 0 < m ≤ s + 1. We also
consider the partition (3.2.3) with step size h < m/L. Then, a matrix spline S(x) of order m ∈ N and
differentiability class C1[a, b] exists for each subinterval [a+ kh, a+ (k + 1)h], k = 0, 1, . . . , n − 1,
following the method of construction detailed before.

It is important to observe that these splines have a local error ofO(hm). This is a consequence
of an analysis similar to Loscalzo and Talbot’s work [17].

The approximate solution of (3.2.2) can be computed by means of matrix splines of order m
in the interval [a, b] with a local error of the order O(hm) under the conditions of Theorem 3.1.
The procedure is as follows:

• Compute the functions g1(x, Y (x)), . . . , gm−2(x, Y (x)) given by Eqs. (3.2.5)–(3.2.7) to de-
termine constants Y ′′(a), . . ., Y (m−1)(a). Compute constant M of Eq. (3.2.18). Choose
n > M (b − a)/m so that h = (b − a)/n, which produces the partition ∆[a,b] defined by
Eq. (3.2.3).

• Solve equation Eq. (3.2.9) to find α0, and determine S|[a,a+h] (x) of Eq. (3.2.4).

• Solve Eq. (3.2.17) iteratively for k = 1, . . . , n−1 to determine all αk. Then compute splines
S|[a+kh,a+(k+1)h]

(x) according to Eq. (3.2.14).

3 Examples

In this section, we test our MATLAB implementations for the proposed spline method with
problems where the exact solution is known, using the same examples as in Ref. [20]. All tests

3 Examples 63

have been carried out on an Intel Core 2 Duo T5600 with 2 GB main memory, using MATLAB
version 7.9. For our programs we have developed symbolic as well as numerical algorithms.
The symbolic algorithm uses the Symbolic Math Toolbox of MATLAB for computing the deriva-
tives of matrices A and B and for solving the implicit equations (3.2.17). In the numerical
algorithm, the derivatives are provided by a function that calculates the derivatives of the ma-
trices A and B for any value of x. The newly implemented algorithms based on our method
have been compared with the results produced by the corresponding MATLAB functions solv-
ing ordinary differential equations (see Table 3.1). The values of RelTol and AbsTol for these
functions have been chosen such to obtain the maximum precision with minimum execution
time. These values are RelT ol = 2.22045 · 10−14 and AbsT ol = 1.0 · 10−14.

SOLVER PROBLEM METHOD

ode45 non-stiff differential equations Runge-Kutta
ode23 non-stiff differential equations Runge-Kutta
ode113 non-stiff differential equations Adams
ode15s stiff differential equations NDFs (BDFs)
ode23s stiff differential equations Rosenbrock
ode23t moderately stiff differential equations Trapezoidal rule

ode23tb stiff differential equations TR-BDF2

Table 3.1. MATLAB solvers used in the tests.

3.1 Example 1

Let us consider the problem

Y ′(x) =
1

x3 − x − 1

(
2x2 − 1 x2 − 2x − 1
−x − 1 x3 + x2 − x − 1

)
Y (x), 0 ≤ x ≤ 1,

Y (0) =
(

1
0

)
, Y (x) ∈ C2.

 (3.3.20)

This problem has the exact solution Y (x) =
(
ex

x ex

)
, so that we will be able to calculate the ap-

proximation error. Since max
x∈[0,1]

‖A(x)‖ ≤ 3, we take m = 3 and choose h ≤ m/3. Conventional

matrix cubic splines (m = 3), as introduced in Ref. [20], produced the absolute errors listed
in Table 3.2(a). The values in the error column correspond to the maximum of the 2-norm for
each subinterval.

What happens if we increase the order of the splines using the same technique as in Ref. [20]?
For fourth-order splines (m = 4), we obtain the results given in Table 3.2(b). If we further
increase the order of the splines, the result is worsening, as shown in part (c) of Table 3.2 for
spline order m = 5.

For the same problem, we now use the new algorithm proposed in this work with fourth-
order splines (m = 4). The results, obtained with Mathematica version 7.0, are shown in Ta-
ble 3.3 together with their corresponding absolute errors. We also present the results for fifth-
order splines (m = 5) in Table 3.4. Figures 3.1 and 3.2 depict the approximation behavior for
splines of fourth-order and fifth-order with different step sizes h = 0.01 and h = 0.001, respec-
tively. Tables 3.5 and 3.7 present the results of the proposed method, with h = 0.1 and h = 0.01,

64 3 Approximate solutions of linear matrix differential equations with higher-order splines

[xi, xi+1] ERRORS

[0, 0.1] 6.33721× 10−6

[0.1, 0.2] 6.05558× 10−6

[0.2, 0.3] 8.14626× 10−6

[0.3, 0.4] 7.81749× 10−6

[0.4, 0.5] 11.5296× 10−6

[0.5, 0.6] 11.6396× 10−6

[0.6, 0.7] 16.357× 10−6

[0.7, 0.8] 17.359× 10−6

[0.8, 0.9] 23.29× 10−6

[0.9, 1] 24.6909× 10−6

(a)

[xi, xi+1] ERRORS

[0, 0.1] 1.14628× 10−7

[0.1, 0.2] 8.81776× 10−7

[0.2, 0.3] 2.2721× 10−6

[0.3, 0.4] 9.75288× 10−6

[0.4, 0.5] 0.000033

[0.5, 0.6] 0.00012

[0.6, 0.7] 0.00045

[0.7, 0.8] 0.0016

[0.8, 0.9] 0.0060

[0.9, 1] 0.022

(b)

[xi, xi+1] ERRORS

[0, 0.1] 1.7956× 10−9

[0.1, 0.2] 5.7101× 10−8

[0.2, 0.3] 5.46782× 10−7

[0.3, 0.4] 5.32517× 10−6

[0.4, 0.5] 0.000051

[0.5, 0.6] 0.00049

[0.6, 0.7] 0.0048

[0.7, 0.8] 0.047

[0.8, 0.9] 0.45

[0.9, 1] 4.50

(c)
Table 3.2. Absolute errors using the matrix splines of order (a) m = 3, (b) m = 4 and (c) m = 5 with the method given in [20]
with n = 10 and h = 0.1, for Example 3.1.

compared to the results produced by MATLAB functions. The second column indicates the ex-
ecution time in seconds and the third column the relative errors at x = 10.

 1e-017

 1e-016

 1e-015

 1e-014

 1e-013

 1e-012

 1e-011

 1e-010

 1e-009

 0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

o
r

Interval

h=0.01

h=0.001

Fig. 3.1. Relative errors for the test problem (3.3.20) with fourth-order splines (m = 4) using our proposed method with
h = 0.01 and h = 0.001, respectively.

3.2 Example 2

Consider the matrix problem

Y ′(x) = A(x)Y (x) + B(x)

Y (0) =
(

3 0
1 1

)
, x ∈ [0, 1]

 (3.3.21)

where

3 Examples 65

[xi, xi+1] APPROXIMATION ERRORS

[0, 0.1]
(

1 + x + 0.5x2 + 0.1667x3 + 0.0428x4

x + x2 + 0.5x3 + 0.1720x4

)
1.14× 10−7

[0.1, 0.2]
(

1 + 0.9991x + 0.5002x2 + 0.1653x3 + 0.0473x4

0.99995x + 1.0008x2 + 0.4931x3 + 0.1949x4

)
2.62× 10−7

[0.2, 0.3]
(

1.0000 + 0.9999x + 0.5011x2 + 0.1618x3 + 0.0522x4

0.9994x + 1.0056x2 + 0.4750x3 + 0.2206x4

)
4.51× 10−7

[0.3, 0.4]
(

1.0000 + 0.9994x + 0.5036x2 + 0.1557x3 + 0.0577x4

0.0002 + 0.9969x + 1.0189x2 + 0.4430x3 + 0.24953x4

)
6.89× 10−7

[0.4, 0.5]
(

1.0002 + 0.9981x + 0.5088x2 + 0.1465x3 + 0.0638x4

0.0009 + 0.98995x + 1.0466x2 + 0.3939x3 + 0.2821x4

)
9.89× 10−7

[0.5, 0.6]
(

1.0005 + 0.9952x + 0.5180x2 + 0.1338x3 + 0.0705x4

0.0028 + 0.9741x + 1.0966x2 + 0.3240x3 + 0.3189x4

)
1.36× 10−6

[0.6, 0.7]
(

1.0013 + 0.9895x + 0.5328x2 + 0.1166x3 + 0.07794x4

0.0073 + 0.9424x + 1.1788x2 + 0.2289x3 + 0.3602x4

)
1.82× 10−6

[0.7, 0.8]
(

1.0031 + 0.9793x + 0.5553x2 + 0.0944x3 + 0.0861x4

0.0171 + 0.8849x + 1.3063x2 + 0.1032x3 + 0.4067x4

)
2.37× 10−6

[0.8, 0.9]
(

1.0064 + 0.9623x + 0.5882x2 + 0.0663x3 + 0.0952x4

0.0360 + 0.7871x + 1.4952x2 − 0.0590x3 + 0.4589x4

)
3.05× 10−6

[0.9, 1]
(

1.0123 + 0.9352x + 0.6344x2 + 0.0311x3 + 0.1052x4

0.0707 + 0.6291x + 1.7657x2 − 0.2649x3 + 0.5177x4

)
3.86× 10−6

Table 3.3. Absolute errors using the spline algorithm for problem (3.3.20) with fourth-order splines (m = 4).

A(x) =
(

1 −1
1 ex

)
, B(x) =

(
−3e−x − 1 2− 2e−x

−3e−x − 2 1− 2 cosh(x)

)
,

which has the exact solution

Y (x) =
(

2e−x + 1 e−x − 1
e−x 1

)
.

which asymptotically converges to

lim
x→∞

Y (x) =
(

1 −1
0 1

)
.

Since max
x∈[0,1]

‖A(x)‖ ≤ 6, we take M = 6 and choose h ≤M/6. Using conventional matrix cubic

splines [20], we obtain the errors given in Table 3.6(a). The absolute errors are calculated as in
Example 3.1.

66 3 Approximate solutions of linear matrix differential equations with higher-order splines

[xi, xi+1] APPROXIMATION ERRORS

[0, 0.1]
(

1 + x + 0.5x2 + 0.1667x3 + 0.0417x4 + 0.0085x5

x + x2 + 0.5x3 + 0.1667x4 + 0.0427x5

)
1.80× 10−9

[0.1, 0.2]
(

1 + x + 0.4996x2 + 0.1667x3 + 0.0413x4 + 0.0094x5

x + 0.99997x2 + 0.5003x3 + 0.1647x4 + 0.0481x5

)
4.09× 10−9

[0.2, 0.3]
(

1 + x + 0.4999x2 + 0.1670x3 + 0.0405x4 + 0.0104x5

1.0000x + 0.9997x2 + 0.5021x3 + 0.1595x4 + 0.0542x5

)
7.00× 10−9

[0.3, 0.4]
(

0.99998 + 1.0000x + 0.4997x2 + 0.1678x3 + 0.0390x4 + 0.0115x5

1.0002x + 0.9983x2 + 0.5072x3 + 0.1502x4 + 0.0611x5

)
1.07× 10−8

[0.4, 0.5]
(

0.99998 + 1.0002x + 0.4991x2 + 0.1695x3 + 0.0368x4 + 0.0127x5

−0.0001 + 1.0010x + 0.9943x2 + 0.5178x3 + 0.1360x4 + 0.0688x5

)
1.53× 10−8

[0.5, 0.6]
(

0.99996 + 1.0005x + 0.4977x2 + 0.1725x3 + 0.0336x4 + 0.0140x5

−0.0003 + 1.0031x + 0.9852x2 + 0.5370x3 + 0.1157x4 + 0.0774x5

)
2.10× 10−8

[0.6, 0.7]
(

0.9999 + 1.0013x + 0.4949x2 + 0.1773x3 + 0.0294x4 + 0.0155x5

−0.0009 + 1.0083x + 0.9671x2 + 0.5686x3 + 0.0880x4 + 0.0871x5

)
2.80× 10−8

[0.7, 0.8]
(

0.9996 + 1.0030x + 0.4900x2 + 0.1846x3 + 0.0239x4 + 0.0171x5

−0.0024 + 1.0194x + 0.9342x2 + 0.6176x3 + 0.0515x4 + 0.0980x5

)
3.65× 10−8

[0.8, 0.9]
(

0.9991 + 1.0062x + 0.4817x2 + 0.1954x3 + 0.0170x4 + 0.0189x5

−0.0057 + 1.0410x + 0.8782x2 + 0.6901x3 + 0.0045x4 + 0.1101x5

)
4.67× 10−8

[0.9, 1]
(

0.9981 + 1.0119x + 0.4685x2 + 0.2105x3 + 0.0083x4 + 0.0209x5

−0.0126 + 1.0805x + 0.7877x2 + 0.7939x3 − 0.0550x4 + 0.1238x5

)
5.90× 10−8

Table 3.4. Absolute errors using the spline algorithm for problem (3.3.20) with fifth-order splines (m = 5).

What happens if we increase the order of the splines using the same technique as in Ref. [20]?
For fourth-order splines, we obtain the result given in Table 3.6(b). If we increase the order of
the spline, the quality of the approximation gets worse, which is shown in Table 3.6(c) for splines
of order m = 5.

3 Examples 67

 1e-019

 1e-018

 1e-017

 1e-016

 1e-015

 1e-014

 1e-013

 1e-012

 0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

o
r

Interval

h=0.01

h=0.001

Fig. 3.2. Approximation error for problem (3.3.20) with fifth-order splines (m = 5) using our proposed method with h = 0.01
and h = 0.001, respectively.

Method Time [s] Error
Spline of order m = 4 0.006679 6.825762e− 008
Spline of order m = 5 0.008287 8.749450e− 010
Spline of order m = 6 0.011020 1.015738e− 011

ode45 0.428922 3.438694e− 007
ode23 15.370957 4.448549e− 006
ode113 0.033385 6.488040e− 013
ode15s 0.548005 1.041483e− 011
ode23s 70.147383 1.737104e− 001
ode23t 64.297144 1.446478e− 009

ode23tb 291.413931 2.441626e− 007
Table 3.5. Relative errors for the test problem (3.3.20) with splines (h = 0.1) and MATLAB solvers.

[xi, xi+1] ERRORS

[0, 0.1] 3.3824× 10−6

[0.1, 0.2] 3.3824× 10−6

[0.2, 0.3] 3.3704× 10−6

[0.3, 0.4] 3.3704× 10−6

[0.4, 0.5] 3.4512× 10−6

[0.5, 0.6] 3.4512× 10−6

[0.6, 0.7] 3.8211× 10−6

[0.7, 0.8] 3.8211× 10−6

[0.8, 0.9] 4.9777× 10−6

[0.9, 1] 6.3207× 10−6

(a)

[xi, xi+1] ERRORS

[0, 0.1] 5.0639× 10−8

[0.1, 0.2] 3.9495× 10−7

[0.2, 0.3] 1.0951× 10−6

[0.3, 0.4] 4.4842× 10−6

[0.4, 0.5] 0.000015

[0.5, 0.6] 0.000057

[0.6, 0.7] 0.00021

[0.7, 0.8] 0.00076

[0.8, 0.9] 0.0028

[0.9, 1] 0.01

(b)

[xi, xi+1] ERRORS

[0, 0.1] 6.7494× 10−10

[0.1, 0.2] 2.1233× 10−8

[0.2, 0.3] 2.0815× 10−7

[0.3, 0.4] 2.0325× 10−6

[0.4, 0.5] 0.00002

[0.5, 0.6] 0.00019

[0.6, 0.7] 0.0018

[0.7, 0.8] 0.018

[0.8, 0.9] 0.17

[0.9, 1] 1.68

(c)
Table 3.6. Absolute errors for Example 3.2 using the matrix splines of order (a) m = 3, (b) m = 4 and (c) m = 5 with the
method given in [20] with n = 10 and h = 0.1.

68 3 Approximate solutions of linear matrix differential equations with higher-order splines

Method Time [s] Error
Spline of order m = 4 0.055846 9.994253e− 013
Spline of order m = 5 0.075211 1.944154e− 013
Spline of order m = 6 0.097185 1.848712e− 013

ode45 0.428922 3.438694e− 007
ode23 15.370957 4.448549e− 006
ode113 0.033385 6.488040e− 013
ode15s 0.548005 1.041483e− 011
ode23s 70.147383 1.737104e− 001
ode23t 64.297144 1.446478e− 009

ode23tb 291.413931 2.441626e− 007

Table 3.7. Relative errors for the test problem (3.3.20) with splines (h = 0.01) and MATLAB solvers.

We now use the algorithm proposed in this work for the same problem using fourth-order
splines. The results, obtained with Mathematica 7, are shown in Table 3.8(a) with absolute
errors. Similarly, the results using fifth-order splines are shown in Table 3.8(b).

Figures 3.3 and 3.4 illustrate the approximation behavior for splines of fourth and fifth order
for step sizes h = 0.01 and h = 0.001, respectively. In Figure 3.4 we observe that h = 0.001
yields an accuracy very close to machine precision. Table 3.9 presents the results of the pro-
posed method in the interval [0, 3] with step size h = 0.01 compared with the results produced
by the MATLAB functions. The second column indicates the execution time in seconds and the
third column the relative errors at x = 3. For the evaluation using MATLAB functions it was
necessary to vectorize problem (3.3.21). For x ≥ 3 all solvers and splines presented convergence
problems.

4 Conclusions

This chapter proposes a method for the numerical integration of first-order matrix linear dif-
ferential equations of the type Y ′(x) = A(x)Y (x) + B(x), x ∈ [a, b], using higher-order ma-
trix splines. Contrary to existing spline methods in the literature, this new algorithm provides
continuous spline approximations of the global order O(hm−1) by requiring only first-order
derivatives—a significant advantage over existing approaches. Additionally, our method is well-
suited for implementation on numerical and/or symbolical computer systems.

For an explicit demonstration of our proposed method and its advantages over existing con-
ventional methods, we discussed two numerical test (the same examples as chosen in [20]) with
excellent results and considerable improvements compared to the different methods imple-
mented in MATLAB. Our approach excels not only in speed but also in accuracy. One has to
take into account that MATLAB’s solvers strongly rely on adaptive algorithms, which still have
to be included in the method we propose and will certainly lead to further performance boosts.

In future works, we hope to develop a complete analysis of the stability for B-splines follow-
ing the scheme outlined in Ref. [16]. A closer focus on the behavior of stiff problems should
also be interesting.

4 Conclusions 69

[xi, xi+1] ERRORS

[0, 0.1] 5.0639× 10−8

[0.1, 0.2] 1.01878× 10−7

[0.2, 0.3] 1.5456× 10−7

[0.3, 0.4] 2.0995× 10−7

[0.4, 0.5] 2.7002× 10−7

[0.5, 0.6] 3.3797× 10−7

[0.6, 0.7] 4.1898× 10−7

[0.7, 0.8] 5.2140× 10−7

[0.8, 0.9] 6.5853× 10−7

[0.9, 1] 8.5131× 10−7

(a)

[xi, xi+1] ERRORS

[0, 0.1] 6.7494× 10−10

[0.1, 0.2] 1.3578× 10−9

[0.2, 0.3] 2.0596× 10−9

[0.3, 0.4] 2.7970× 10−9

[0.4, 0.5] 3.5963× 10−9

[0.5, 0.6] 4.4994× 10−9

[0.6, 0.7] 5.5749× 10−9

[0.7, 0.8] 6.9335× 10−9

[0.8, 0.9] 8.7516× 10−9

[0.9, 1] 1.1307× 10−8

(b)
Table 3.8. Absolute errors for problem (3.3.21) using the matrix splines method of order (a)m = 4 and (b)m = 5, with n = 10
and h = 0.1.

 1e-016

 1e-015

 1e-014

 1e-013

 0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

o
r

Interval

h=0.01

h=0.001

Fig. 3.3. Approximation errors for problem (3.3.21) with fourth-order splines (m = 4) using our proposed method with h = 0.01
and h = 0.001, respectively.

70 3 Approximate solutions of linear matrix differential equations with higher-order splines

 1e-017

 1e-016

 1e-015

 1e-014

 0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

o
r

Interval

h=0.01

h=0.001

Fig. 3.4. Approximation errors for problem (3.3.21) with fifth-order splines (m = 5) using our proposed method with h = 0.01
and h = 0.001, respectively.

Method Time [s] Error
Spline of order m = 4 0.007799 4.093852e− 12
Spline of order m = 5 0.009094 1.539909e− 14
Spline of order m = 6 0.010771 3.070086e− 14

ode45 0.122250 6.402663e− 14
ode23 2.412271 1.610360e− 12
ode113 0.013974 8.550309e− 14
ode15s 0.098997 7.226276e− 12
ode23s 34.756489 2.618326e− 09
ode23t 7.692395 9.432798e− 10

ode23tb 7.580115 9.772905e− 10

Table 3.9. Approximation errors for problem (3.3.21) with splines of several orders using MATLAB solvers and taking h = 0.02.

References

1. S. Barnett, Matrices in control theory, Van Nostrand-Reinhold, New York, 1971.
2. L. D. Faddeyev, The inverse problem in the quantum theory of scattering, J. Math. Physics 4 (1963), no. 1, 72–104.
3. W. T. Reid, Riccati differential equations, Academic Press, New York, 1972.
4. M. Scott, Invariant imbedding and its applications to ordinary differential equations, Addison-Wesley Pub. Co., Reading, MA,

1973.
5. P. Marzulli, Global error estimates for the standard parallel shooting method, J. Comput. Appl. Math. 34 (1991), 233–241.
6. K. Rektorys, The method of discretization in time and partial differential equations, D. Reidel Pub. Co., Dordrecht, The Nether-

lands, 1982.
7. P. T. Boggs, The solution of nonlinear systems of equations by a-stable integration techniques, SIAM J. Numer. Anal. 8 (1971),

no. 4, 767–785.
8. A. Graham, Kronecker products and matrix calculus with applications, John Wiley & Sons, New York, USA, 1981.
9. T. M. Flett, Differential analysis, Cambridge University Press, Cambridge, UK, 1980.

10. U.M. Ascher, R.M.M. Mattheij, and R.D. Russell, Numerical solutions of boundary value problems for ordinary differential
equations, Prentice Hall, New Jersey, USA, 1988.

4 Conclusions 71

11. L. Jódar and E. Ponsoda, Non-autonomous riccati-type matrix differential equations: Existence interval, construction of continuous
numerical solutions and error bounds, IMA J. Numer. Anal. 15 (1995), no. 1, 61–74.

12. L. Jódar, J. C. Cortés, and J. L. Morera, Construction and computation of variable coefficient sylvester differential problems, Com-
puters Maths. Appl. 32 (1996), no. 8, 41–50.

13. Jódar and J. C. Cortés, Rational matrix approximation with a priori error bounds for non-symmetric matrix Riccati equations with
analytic coefficients, IMA J. Numer. Anal. 18 (1998), no. 4, 545–561.

14. L. Jódar and E. Ponsoda, Continuous numerical solutions and error bounds for matrix differential equations, Int. Proc. First Int.
Colloq. Num. Anal. (Utrecht, The Netherlands), VSP, 1993, pp. 73–88.

15. S. Blanes, F. Casas, J. A. Oteo, and J. Ros, Magnus and Fer expansion for matrix differential equations: the convergence problem, J.
Phys. Appl. 31 (1998), 259–268.

16. A. Sestini F. Mazzia and D. Trigiante, B-spline linear multistep methods and their conitinuous extensions, SIAM J. Numer. Anal.
44 (2006), no. 5, 1954–1973.

17. F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer.
Anal. 4 (1967), no. 3, 433–445.

18. E. A. Al-Said and M. A. Noor, Cubic splines method for a system of third-order boundary value problems, Appl. Math. Comput.
142 (2003), 195–204.

19. G. Micula and A. Revnic, An implicit numerical spline method for systems for ODE’s, Appl. Math. Comput. 111 (2000), 121–
132.

20. E. Defez, L. Soler, A. Hervás, and C. Santamarı́a, Numerical solutions of matrix differential models using cubic matrix splines,
Comput. Math. Appl. 50 (2005), 693–699.

21. E. Defez, L. Soler, A. Hervás, and M. M. Tung, Numerical solutions of matrix differential models using cubic matrix splines II,
Math. Comput. Modelling 46 (2007), 657–669.

22. E. Defez, A. Hervás, A. Law, J. Villanueva-Oller, and R. Villanueva, Matrix-cubic splines for progressive transmission of images,
J. Math. Imaging Vision 17 (2002), no. 1, 41–53.

23. G. H. Golub and C. F. Van Loan, Matrix computations, second ed., The Johns Hopkins University Press, Baltimore, MD,
USA, 1989.

CHAPTER 4

Approximate solutions of first-order matrix
differential equations with higher-order

splines

1 Introduction

In this chapter, we propose a novel algorithm to tackle matrix differential equations of the
first order. Matrix differential models are relevant for the description of many phenomena in
physics and engineering, ranging from such diverse applications as control theory to game
theory [1]. In particular, we will develop in this work a method for the numerical integration
of first-order matrix differential equations with initial conditions. For different examples of this
class of problems, we also refer to Ref. [2].

In their seminal work, Loscalzo and Talbot introduce spline function approximations for
solutions of scalar differential equations [3]. These spline solutions S(x) are of degree m = 2, 3
and continuity class Cm−1. Recently, this method has been used in the resolution of other scalar
problems as discussed in Ref. [4]. The corresponding generalizations to the matrix framework
have been carried out in Refs. [5, 6].

Unfortunately, as detected by Loscalzo and Talbot, their scalar procedure is divergent when
higher-order spline functions are used [3, p. 444–445]. They have explicitly shown by numerical
computations that the equation y′ = y, y(0) = 1 contains noticeable divergences for splines of
order m > 3. However, our new method avoids these problems with divergences for splines
S(x) of order m but only require them to be of differentiability class C1.

Throughout this work, we will adopt the notation for norms and matrix cubic splines as in
the previous work [5] and common in matrix calculus. Following this nomenclature, we define
the Kronecker product of A =

(
aij
)
∈ Cm×n and B ∈ Cr×s, denoted by A ⊗ B, as the block

matrix

A⊗ B =

 a11B . . . a1nB
...

...
am1B . . . amnB

 .

The column-vector operator on a matrix A ∈ Cm×n is given by

74 4 Approximate solutions of first-order matrix differential equations with higher-order splines

vec(A) =

A•1
...

A•n

 , where A•k =

 a1k
...

amk

 .

Here and in the following, we denote vectors and vector-valued functions by bold-face charac-
ters.

If Y =
(
yij
)
∈ Cp×q and X =

(
xij
)
∈ Cm×n, then the derivative of a matrix with respect to

a matrix is defined by [7, p. 62 and 81]:

∂Y

∂X
=


∂Y

∂x11
. . .

∂Y

∂x1n
...

...
∂Y

∂xm1
. . .

∂Y

∂xmn

 , where
∂Y

∂xrs
=


∂y11

∂xrs
. . .

∂y1q

∂xrs
...

...
∂yp1

∂xrs
. . .

∂ypq

∂xrs

 .

If X ∈ Cm×n, Y ∈ Cn×v, Z ∈ Cp×q, then the following rule for the derivative of a matrix
product with respect to another matrix applies [7, p. 84]:

∂XY

∂Z
=

∂X

∂Z

[
Iq ⊗ Y

]
+
[
Ip ⊗X

] ∂Y
∂Z

, (4.1.1)

where Iq and Ip denote the identity matrices of dimensions q and p, respectively. If X ∈
Cm×n, Y ∈ Cu×v, Z ∈ Cp×q, the following chain rule [7, p. 88] is valid :

∂Z

∂X
=

[
∂ [vec(Y)]t

∂X
⊗ Ip

][
In ⊗

∂Z

∂ [vec(Y)]

]
. (4.1.2)

We proceed as follows. In Section 2, we give a description of the proposed method and give
details of the corresponding procedure. Section 3 concludes the discussion with some numerical
examples for the scalar, vector and matrix cases, respectively.

2 Description of the method

As usual, let us consider the following first-order matrix problem

Y ′(x) = f (x, Y (x))

Y (a) = Ya

 , a ≤ x ≤ b, (4.2.3)

where the unknown matrix is Y (x) ∈ Rr×q with initial condition Ya ∈ Rr×q. The matrix-valued
function f : [a, b]×Rr×q → Rr×q is of differentiability class f ∈ Cs (T), s ≥ 1, with

T = {(x, Y); a ≤ x ≤ b, Y ∈ Rr×q} , (4.2.4)

and f fulfills the global Lipschitz’s condition∥∥f (x, Y1)− f (x, Y2)
∥∥ ≤ L ‖Y1 − Y2‖ , a ≤ x ≤ b, Y1, Y2 ∈ Rr×q (4.2.5)

to guarantee the existence and uniqueness of the continuously differentiable solution Y (x) of
problem (4.2.3), see Ref. [8, p. 99].

The partition of the interval [a, b] shall be given by

2 Description of the method 75

∆[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a+ kh, k = 0, 1, . . . , n, (4.2.6)

where n is a positive integer with the corresponding step size h = (b − a)/n. We will construct
in each subinterval [a+ kh, a+ (k + 1)h] a matrix spline S(x) of order m ∈ N with 1 ≤ m ≤ s,
where s is the order of the differentiability class of f . This will approximate the solution of
problem (4.2.3) so that S(x) ∈ C 1 ([a, b]).

In the first interval [a, a+ h], we define the matrix spline as

S|[a,a+h] (x) = Y (a) + Y ′(a)(x − a) +
1
2!
Y ′′(a)(x − a)2 +

1
3!
Y (3)(a)(x − a)3

+ · · ·+
1

(m− 1)!
Y (m−1)(a)(x − a)m−1 +

1
m!
A0(x − a)m, (4.2.7)

where A0 ∈ Rr×q is a matrix parameter to be determined. It is straightforward to check

S|[a,a+h] (a) = Y (a), S ′|[a,a+h] (a) = Y ′(a) = f (a, Y (a)),

and therefore the spline satisfies the differential equation Eq. (4.2.3) at x = a.
We must obtain the values Y ′′(a), Y (3)(a), . . . , Y (m−1)(a), and A0 in order to determine the

matrix spline (4.2.7). To compute the second-order derivative Y ′′(x), we follow the procedure
given in Ref. [6] and use the nomenclature as already outlined in the introduction. We then
obtain

Y ′′(x) =
∂f (x, Y (x))

∂x
+
[[

vec f (x, Y (x))
]T ⊗ Ir] ∂f (x, Y (x))

∂ vec Y (x)
= g1 (x, Y (x)) , (4.2.8)

where g1 ∈ Cs−1 (T). We are now in the position to evaluate Y ′′(a) = g1 (a, Y (a)) using (4.2.8).
Similarly, we can assume that f ∈ Cs (T) for s ≥ 2. Then, the second partial derivatives of f
exist and are continuous. This yields the third derivative:

Y (3)(x) =
∂2f (x, Y (x))

∂x2
+
([

vec f (x, Y (x))
]T ⊗ Ir) ∂

∂x

(
∂f (x, Y (x))
∂ vec Y (x)

)

+

(
∂
[
vec f (x, Y (x))

]T
∂x

⊗ Ir

)
∂f (x, Y (x))
∂ vec Y (x)

+
([

vec f (x, Y (x))
]T ⊗ Ir) ∂

∂ vec Y (x)

(
∂f (x, Y (x))

∂x

)

+
([

vec f (x, Y (x))
]T ⊗ Ir)

(
∂
[
vec f (x, Y (x))

]T
∂ vec Y (x)

⊗ Ir

)
∂f (x, Y (x))
∂ vec Y (x)

+
([

vec f (x, Y (x))
]T ⊗ Ir)([vec f (x, Y (x))

]T ⊗ Ir2q

) ∂2f (x, Y (x))

(∂ vec Y (x))2

= g2 (x, Y (x)) ∈ Cs−2 (T) . (4.2.9)

Now we can evaluate Y (3)(a) = g2 (a, Y (a)) using (4.2.9). For all higher-order derivatives
Y (4)(x), . . . , Y (m−1)(x) we proceed in like manner and calculate

76 4 Approximate solutions of first-order matrix differential equations with higher-order splines

Y (4)(x) = g3 (x, Y (x)) ∈ Cs−3 (T)
...

Y (m−1)(x) = gm−2 (x, Y (x)) ∈ Cs−(m−2) (T)

 . (4.2.10)

A list of all these derivatives can be easily established by employing standard computer algebra
systems. Substituting x = a in (4.2.10), one gets Y (4)(a), . . ., Y (m−1)(a). In summary, all matrix
parameters of the spline which were to be determined are known, except for A0. To determine
A0, we suppose that (4.2.7) is a solution of problem (4.2.3) at x = a+ h, which gives

S ′|[a,a+h] (a+ h) = f
(
a+ h, S|[a,a+h] (a+ h)

)
. (4.2.11)

Next, we obtain from (4.2.11) the matrix equation with only one unknown A0:

A0 =
(m−1)!
hm−1

[
f
(
a+ h, Y (a) + Y ′(a)h+ · · ·+ hm−1

(m−1)!Y
(m−1)(a) + hm

m!A0

)
− Y ′(a)− Y ′′(a)h− 1

2Y
(3)(a)h2 + · · ·+ 1

(m−2)!Y
(m−1)(a)hm−2

]
. (4.2.12)

Assuming that the implicit matrix equation (4.2.12) has only one solution A0, the matrix
spline (4.2.7) is totally determined in the interval [a, a+ h].

In the following interval [a+ h, a+ 2h], the matrix spline takes the form

S|[a+h,a+2h]
(x) = S|[a,a+h] (a+ h) + Y ′(a+ h)(x − (a+ h)) +

1
2!Y

′′(a+ h)(x − (a+ h))2 + · · ·+ 1
(m−1)!Y

(m−1)(a+ h)(x − (a+ h))m−1

+ 1
m!A1(x − (a+ h))m, (4.2.13)

where
Y ′(a+ h) = f

(
a+ h, S|[a,a+h] (a+ h)

)
, (4.2.14)

and Y ′′(a+ h), . . . , Y (m−1)(a+ h) are the similar results obtained after evaluating the respective
derivatives of Y (x) using S|[a,a+h] (a+h) in (4.2.8)–(4.2.10). In more compact form, we may write

Y ′′(a+ h) = g1

(
a+ h, S|[a,a+h] (a+ h)

)
,

...

Y (m−1)(a+ h) = gm−2

(
a+ h, S|[a,a+h] (a+ h)

)
.

(4.2.15)

Observe that the matrix spline S(x) defined by (4.2.7) and (4.2.13) is of differentiability class
C1 ([a, a+ h] ∪ [a+ h, a+ 2h]), contrary to the splines introduced by Loscalzo and Talbot [3],
which were of class Cm−1 ([a, a+ h] ∪ [a+ h, a+ 2h]). By construction, spline (4.2.13) satisfies
the differential equation (4.2.3) at x = a + h. and all of its coefficients are determined with the
exception of A1 ∈ Rr×q.

The value of A1 can be found by taking the spline (4.2.13) as a solution of (4.2.3) at point
x = a+ 2h:

S ′|[a+h,a+2h]
(a+ 2h) = f

(
a+ 2h, S|[a+h,a+2h]

(a+ 2h)
)
.

An expansion yields the matrix equation with the only unknown A1:

2 Description of the method 77

A1 =
(m− 1)!
hm−1

[
f

(
a+ 2h, S|[a,a+h] (a+ h) + Y ′(a+ h)h+

h2

2!
Y ′′(a+ h)+

+ · · ·+
hm−1

(m− 1)!
Y (m−1)(a+ h) +

hm

m!
A1

)
− Y ′(a+ h)− Y ′′(a+ h)h

− · · · −
1

(m− 2)!
Y (m−1)(a+ h)hm−2

]
. (4.2.16)

Let us assume that the matrix equation (4.2.16) has only one solution A1. This way the spline is
totally determined in the interval [a+ h, a+ 2h].

Iterating this process, we can construct the matrix spline approximation by taking the inter-
val [a+ (k − 1)h, a+ kh] as the last subinterval. For the succeeding interval [a+ kh, a+ (k + 1)h],
we define the corresponding matrix spline as

S|[a+kh,a+(k+1)h]
(x) = S|[a+(k−1)h,a+kh]

(a+ kh) + Y ′(a+ kh)(x − (a+ kh))

+ 1
2!Y

′′(a+ kh)(x − (a+ kh))2 + · · ·+

1
(m−1)!Y

(m−1)(a+ kh)(x − (a+ kh))m−1 + 1
m!Ak(x − (a+ kh))m, (4.2.17)

where
Y ′(a+ kh) = f

(
a+ kh, S|[a+(k−1)h,a+kh]

(a+ kh)
)
, (4.2.18)

and in a similar manner one abbreviates

Y ′′(a+ kh) = g1

(
a+ kh, S|[a+(k−1)h,a+kh]

(a+ kh)
)
,

...

Y (m−1)(a+ kh) = gm−2

(
a+ kh, S|[a+(k−1)h,a+kh]

(a+ kh)
)
.

(4.2.19)

With this definition, the matrix spline S(x) ∈ C1

 k⋃
j=0

[a+ jh, a+ (j + 1)h]

 fulfills the dif-

ferential equation (4.2.3) at point x = a + kh. As an additional requirement, we assume that
S|[a+kh,a+(k+1)h]

(x) satisfies (4.2.3) at point x = a+ (k + 1)h:

S ′|[a+kh,a+(k+1)h]
(a+ (k + 1)h) = f

(
a+ (k + 1)h, S|[a+kh,a+(k+1)h]

(a+ (k + 1)h)
)
,

and expanding this expression gives

Ak =
(m− 1)!
hm−1

[
f
(
a+ (k + 1)h, S|[a+kh,a+(k+1)h]

(a+ (k + 1)h) + Y ′(a+ kh)h

+ · · ·+
hm−1

(m− 1)!
Y (m−1)(a+ kh) +

hm

m!
A1

)
− Y ′(a+ kh)− Y ′′(a+ kh)h

− · · · −
hm−2

(m− 2)!
Y (m−1)(a+ kh)

]
. (4.2.20)

78 4 Approximate solutions of first-order matrix differential equations with higher-order splines

Observe that the final result (4.2.20) relates directly to equations (4.2.12) and (4.2.16), when
setting k = 0 and k = 1. We will demonstrate that these equations have a unique solution using
a fixed-point argument.

For a fixed h and k, we consider the matrix function g : Rr×q → Rr×q defined by

g(T) =
(m− 1)!
hm−1

[
f
(
a+ (k + 1)h, S|[a+kh,a+(k+1)h]

(a+ (k + 1)h) + Y ′(a+ kh)h

+ · · ·+
hm−1

(m− 1)!
Y (m−1)(a+ kh) +

hm

m!
T

)
− Y ′(a+ kh)− Y ′′(a+ kh)h

− · · · −
hm−2

(m− 2)!
Y (m−1)(a+ kh)

]
. (4.2.21)

Relation (4.2.20) holds if and only if Ak = g(Ak), that is, if Ak is a fixed point for function g(T).
By using the definition (4.2.21) of g and applying the global Lipschitz’s condition (4.2.5) for f ,
it immediately follows that

∥∥g(T1)− g(T2)
∥∥ ≤ Lh

m
‖T1 − T2‖ .

Taking h < m/L, the matrix function g is contractive. Therefore equation (4.2.20) has unique
solutions Ak for k = 0, 1, . . . , n − 1, and the matrix spline is completely determined. In sum-
mary, we have proved the following theorem:

Theorem 4.1. For the first-order matrix differential equation (4.2.3), let L be the corresponding Lipschitz
constant defined by (4.2.5). We also consider the partition (4.2.6) with step size h < m/L. Then, the
matrix spline S(x) of orderm ∈ N exists in each subinterval [a+ kh, a+ (k + 1)h], k = 0, 1, . . . , n−1,
as defined in the previous construction and is of class C1[a, b].

Observe that the so constructed splines have a global error of O(hm−1), which follows from an
analysis similar to Loscalzo and Talbot’s work [3].

The approximate solution of (4.2.3) can be computed by means of matrix splines of order m
in the interval [a, b] with an error of the order O(hm−1) under the conditions of Theorem 4.1.
The procedure is as follows:

• Compute the functions g1(x, Y (x)), . . . , gm−2(x, Y (x)) given by (4.2.8)–(4.2.10) to deter-
mine the constant Y ′′(a), . . . , Y (m−1)(a). Choose n > L(b − a)/m so that h = (b − a)/n with
the partition ∆[a,b] defined by Eq. (4.2.6).

• Solve equation (4.2.12) to find A0, and determine S|[a,a+h] (x) of Eq. (4.2.7).

• Solve equations (4.2.20) iteratively for k = 1, . . . , n − 1 to find all Ak, and then compute
the splines S|[a+kh,a+(k+1)h]

(x) according to Eq. (4.2.17).

In order to find Ak for k = 0, 1, . . . , n− 1, one may solve equations (4.2.12) and (4.2.20) either
explicitly [9], or by employing an iterative method [10]. For example, we can consider the
recursion relation T s

l+1 = g(T s
l). Here, T s

0 is an arbitrary matrix in Rr×q for s = 0, 1, . . . , n − 1,
and g(T) is given by (4.2.21).

3 Numerical Examples 79

3 Numerical Examples

3.1 A scalar test problem

This simple test problem is motivated by Loscalzo and Talbot’s seminal work on scalar spline
function approximation for ordinary differential equations [3]. Unfortunately, their otherwise
very efficient method had the drawback to be divergent for higher degree spline functions
(m > 3). Here, we will compare our procedure with their test case for the spline solution of
y′ = y with initial condition y(0) = 1.

Figure 4.1 depicts the error of fourth-order spline solutions for the Loscalzo-Talbot problem
which were constructed by our proposed method. Observe that for h = 0.01 the results already
reach the accuracy of 10−14, compared to the serious error of the conventional Loscalzo-Talbot
method [3]. It also becomes clear that a further reduction in step size h does not necessarily
improve the approximation.

It may be interesting to study the increasing quality of the approximation with higher-order
splines. Figure 4.2 shows how the solutions improve by taking m = 4, 5, 6, respectively, with a
constant step size h = 0.1.

3.2 A non-linear vector system

As a second example of our method, we choose the following vector differential system for the
interval x ∈ [0, 1], which is clearly non-linear:

y′1(x) = −1 + ex − sin x + sin (y2(x))

y′2(x) =
1

4 + y2
1(x)
−

1

5 + e2 x + 2 ex cos x − sin2 x

 (4.3.22)

with the initial values
y1(0) = 2

y2(0) = π/2

 .

We can then rewrite the problem using vector notation y(x) =
(
y1(x)
y2(x)

)
with y(0) =

(
2
π/2

)
to

obtain the nonlinear vector problem y′(x) = f(x, y(x)), where

f
(
x, y(x)

)
=


−1 + ex − sin x + sin (y2(x))

1

4 + y2
1(x)
−

1

5 + e2 x + 2 ex cos x − sin2 x

 . (4.3.23)

According to Ref. [6] this problem has the exact solution y1(x) = ex + cos x and y2(x) = π/2,
and hence for this test case we will be able to assess the exact error of our numerical esti-
mates. Our proposed method serves to construct the splines of fifth order for the problem
given in Eq. (4.3.22). For this we require to calculate y′′(x), y(3)(x) and y(4)(x), which in general

is straightforward. We may derive y′′(x) =
(
y′′1(x)
y′′2(x)

)
using a computer algebra system such as

Mathematica, which readily produces:

80 4 Approximate solutions of first-order matrix differential equations with higher-order splines

y′′1(x) = ex − cos (x) + cos
(
y2(x)
)
y′2(x)

y′′2(x) =
2e2x + 2ex cos (x)− 2ex sin (x)− 2 cos (x) sin (x)(

5 + e2x + 2ex cos (x)− sin (x)2
)2 −

2y1(x)y′1(x)(
4 + y1(x)2

)2


. (4.3.24)

Taking into account that y1(0) = 2, y′1(0) = 1, y2(0) = π
2 , and y′2(0) = 0, it follows by Eq. (4.3.24)

that y′′(0) =
(

0
0

)
. We similarly calculate the third-order derivative y(3)(x) =

(
y(3)1 (x)
y(3)2 (x)

)
with

components:

y(3)1 (x) = ex + sin (x)− sin
(
y2(x)
) (
y′2(x)
)2

+ cos
(
y2(x)
)
y′′2(x)

y(3)2 (x) = −
8 (cos (2x)− 2ex (ex − sin (x)))

(9 + 2e2x + 4ex cos (x) + cos (2x))2

−
64 (ex + cos (x))2 (ex − sin (x))2

(9 + 2e2x + 4ex cos (x) + cos (2x))3

+
8
(
y1(x)
)2 (

y′1(x)
)2(

4 +
(
y1(x)
)2)3 −

2
(
y′1(x)
)2(

4 +
(
y1(x)
)2)2 −

2y1(x)y′′1(x)(
4 +
(
y1(x)
)2)2



(4.3.25)

In like manner as before, we consider y1(0) = 2, y′1(0) = 1, y′′1(0) = 0, y2(0) = π/2, y′2(0) = 0,

and y′′2(0) = 0 with (4.3.25) to deduce y(3)(0) =
(

1
0

)
. Similarly, we may then derive the explicit

results for the components of y(4)(x) =

(
y(4)1 (x)
y(4)2 (x)

)
. In the final step, it remains to substitute

the known values y1(0) = 2, y′1(0) = 1, y′′1(0) = 0, y′′′1 (0) = 1, y2(0) = π/2, y′2(0) = 0, y′′2(0) =

0, y′′′2 (0) = 0, into the last expression to obtain y(4) =
(

2
0

)
.

Also, it is not difficult to see that f , defined by (4.3.23), fulfills the global Lipschitz’s condition∥∥f (x, y)− f (x, z)
∥∥ ≤ ∥∥y− z

∥∥ , 0 ≤ x ≤ 1, y, z ∈ R2. (4.3.26)

Comparing with the general form (4.2.5), we note that L = 1. Therefore, by Theorem 4.1
we need to take h < 5. In the following, for example we choose h = 0.1 and summarize
the numerical results in Table 4.1. In each interval, we evaluated the difference between the
estimates of our numerical approach and the exact solution, and then take the Fröbenius norm
of this difference, following the procedure explained in Ref. [6]. Table 4.2 lists the maximum of
these errors for each subinterval.

For the solution of the vector differential system (4.3.22), Figure 4.3 illustrates the approx-
imation behavior of various splines of the fourth order (m = 4) with the different step sizes
h = 0.1, 0.01, and h = 0.001. All vector splines lie well in the predicted range of Theorem 4.1
and provide excellent approximations for the problem at hand with the benefit of very low
computational cost. Observe that at step size h = 0.001 the limit of machine precision is prac-
tically reached and explains the random fluctuations around 10−15. Hence, it obviously is of
lesser interest to obtain more accurate approximations for m = 4 and h = 0.001.

3 Numerical Examples 81

3.3 Sylvester matrix differential equation

In many areas of science and engineering linear matrix differential equations appear of the type

Y ′(x) = A(x)Y (x) + Y (x)B(x) + C (x)
Y (a) = Ya

}
a ≤ x ≤ b, (4.3.27)

where Y (x), A(x), B(x), C (x) ∈ Rr×r . The case of constant coefficients has been studied by
several authors [11], whereas the variable-coefficient case has so far received little numerical
treatment in the literature.

Following Ref. [6], we choose the following Sylvester problem (4.3.27) as a final example:

A(x) =
(

0 xe−x

x 0

)
, B(x) =

(
0 x
0 0

)
,

C (x) =
(
−e−x(1 + x2) −2e−xx

1− e−xx −x2

)
,

Y (0) =
(

1 0
0 1

)
, Y (x) ∈ R2×2, 0 ≤ x ≤ 1.

(4.3.28)

According to [6] we know that this problem has the exact solution

Y (x) =
(
e−x 0
x 1

)
with the Lipschitz constant L = 2. The higher-order derivatives of Y (x) are required for the
construction of the spline approximation and can be readily obtained.

For splines of the fifth order (m = 5), we take n = 10 partitions and h = 0.1. The results
are summarized in Table 4.3, where the numerical estimates have been rounded to the sixth
relevant digit. In Table 4.4, we evaluated the difference between the estimates of our numerical
approach and the exact solution, and then take the Fröbenius norm of this difference. The
maximum of these errors are indicated for each subinterval.

For the solution of the Sylvester matrix problem (4.3.27), Figure 4.4 depicts the approx-
imation behavior of various splines of the fifth order (m = 5) with the different step sizes
h = 0.1, 0.01, and h = 0.001. As before, all matrix splines lie well in the predicted range of
Theorem 4.1. It becomes evident that the splines for step sizes h = 0.01 and h = 0.001 are
almost indistinguishable and reach the same precision of almost 10−14.

We also carried out the computations for the sixth order matrix splines (m = 6) with the
step sizes h = 0.1, 0.01, and h = 0.001, and as expected, we could observe that h = 0.01 yields
an accuracy close to machine precision. Interestingly, higher step sizes do not improve these
approximations—the quality of approximation indeed deteriorates due to the accumulation of
rounding errors.

3.4 The Hénon-Heiles system

The Hénon-Heiles equation [12] is a nonlinear nonintegrable Hamiltonian system defined by

x′′ = −
∂V (x, y)
∂x

y′′ = −
∂V (x, y)
∂y

 , a ≤ t ≤ b, (4.3.29)

82 4 Approximate solutions of first-order matrix differential equations with higher-order splines

where the potential-energy function is conserved during motion and given by the following
expression

V (x, y) =
1
2

(
x2 + y2 + 2x2 −

2
3
y3

)
.

The differential system (4.3.29) can be recast in vectorial form u′(t) = f (t,u(t)), where u(t) =
(u1(t) u2(t) u3(t) u4(t))

T ∈ C4 and

f (t,u) =


u2

−u1 − 2u1u3

u4

−u3 − u2
1 + u2

4

 .

For these benchmark tests, we have taken t ∈ [0, 1] with the initial conditions x(0) = 1, ẋ(0) =
0.5, y(0) = 1, and ẏ(0) = 0.5. Since the solution is unknown, we have considered as reference
values the results generated by MATLAB ODE solver ode45. The parameters RelTol and AbsTol
were chosen to obtain the maximum precision (RelT ol = 2.22045·10−14,AbsT ol = 1.0·10−14).
The ODE solver ode45 allows to solve non-stiff differential equations and is based on the Runge-
Kutta method.

The numerical estimates are shown in Figures 4.5 and 4.6. Figure 4.5 depicts the errors for
splines of order m = 4 with variable step size h = 0.1, 0.01, 0.001, whereas in Figure 4.6 the
step size h = 0.1 is fixed and the spline order varies m = 4, 5, 6.

As can be seen in Figure 4.5, the error is situated well within the expected margins improving
with each lower value of h. On the other hand, in Figure 4.6 with h = 0.1 the error is not
exceeding the predicted maximum estimate O(hm−1) for m = 4, 5, 6.

4 Conclusions

The present chapter focused on the presentation of a new method for the numerical integration
of first-order matrix differential equations of the type Y ′(x) = f (x, Y (x)) in the interval [a, b]
using higher-order matrix splines (m > 3). Contrary to existing spline methods in the literature,
this new method only requires first-order derivatives for the construction of the splines to pro-
vide a continuous approximation of order O(hm−1). Additionally, our method is well-suited for
implementation on numerical and/or symbolical computer systems.

For an explicit demonstration of our proposed method and its advantages over existing
conventional methods, we discussed three numerical test cases with excellent results. It is hoped
that this new approach to approximating matrix differential models will motivate and open up
alternative avenues to tackle different related problems in science and engineering.

References

1. G. Freiling and A Hochhaus, On a class of rational matrix differential equations arising in stochastic control, Linear Algebra
Appl. 379 (2004), 43–68.

2. U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical solutions of boundary value problems for ordinary differential
equations, Prentice Hall, New Jersey, 1988.

3. F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer.
Anal. 4 (1967), no. 3, 433–445.

4. E. A. Al-Said and M. A. Noor, Cubic splines method for a system of third-order boundary value problems, Appl. Math. Comput.
142 (2003), 195–204.

5. E. Defez, L. Soler, A. Hervás, and C. Santamarı́a, Numerical solutions of matrix differential models using cubic matrix splines,
Comput. Math. Appl. 50 (2005), 693–699.

6. E. Defez, A. Hervás, L. Soler, and M. M. Tung, Numerical solutions of matrix differential models using cubic matrix splines II,
Math. Comput. Modelling 46 (2007), 657–669.

4 Conclusions 83

10
-16

10
-14

10
-12

10
-10

10
-8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
rr

o
r

interval

h=0.1

h=0.01

h=0.001

Fig. 4.1. Error for the Loscalzo-Talbot problem with splines of fourth order (m = 4) using our proposed method for various
step sizes.

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
rr

o
r

interval

m=4

m=5

m=6

Fig. 4.2. Errors for increasing spline orders (m = 4, 5, 6) solving the Loscalzo-Talbot problem. The step size is constant (h = 0.1).

7. A. Graham, Kronecker products and matrix calculus with applications, John Wiley, New York, 1981.
8. T. M. Flett, Differential analysis, Cambridge University Press, Cambridge, UK, 1980.
9. P. Lancaster, Explicit solutions of linear matrix equations, SIAM Review 12 (1970), 544–566.

10. J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York,
1972.

11. A. Y. Barraud, Nouveaux développements sur la résolution numérique de x′ = ax + xb + c; x(0) = c, R.A.I.R.O., Automa-
tique/Systems Analysis and Control 16 (1982), no. 4, 341–356.

12. M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astron. J. 69 (1964),
73–79.

84 4 Approximate solutions of first-order matrix differential equations with higher-order splines

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
rr

o
r

interval

h=0.1

h=0.01

h=0.001

Fig. 4.3. Representing the 2-norm error for the vector differential system (4.3.22) using splines of fourth order (m = 4).

10
-16

10
-14

10
-12

10
-10

10
-8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
rr

o
r

interval

h=0.1

h=0.01

h=0.001

Fig. 4.4. Representing the 2-norm error for the Sylvester matrix differential equation (4.3.27) using splines of fourth order
(m = 4).

4 Conclusions 85

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
rr

o
r

interval

h=0.1

h=0.01

h=0.001

Fig. 4.5. Error for the Henon-Heiles problem with splines of fourth order (m = 4) using our proposed method for various step
sizes.

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
rr

o
r

interval

m=4

m=5

m=6

Fig. 4.6. Errors for increasing spline orders (m = 4, 5, 6) solving the Henon-Heiles problem. The step size is constant (h = 0.1).

86 4 Approximate solutions of first-order matrix differential equations with higher-order splines

Interval Approximation
[0, 0.1]

(
2.+ x + 0.166667x3 + 0.0833333x4 + 0.00833619x5

1.5708

)
[0.1, 0.2]

(
2.+ 1.x − 3.98676× 10−7x2 + 0.166671x3 + 0.0833075x4 + 0.0083996x5

1.5708 + 1.02341× 10−9x2 − 9.53254× 10−9x3 + 4.27272× 10−8x4 − 7.27159× 10−8x5

)
[0.2, 0.3]

(
2.+ 1.x − 9.78808× 10−6x2 + 0.166723x3 + 0.0831609x4 + 0.00856703x5

1.5708− 2.80891× 10−9x + 2.68447× 10−8x2 − 1.2696× 10−7x3 + 2.96285× 10−7x4 − 2.72203× 10−7x5

)
[0.3, 0.4]

(
2.+ 1.00001x − 0.000070073x2 + 0.166941x3 + 0.0827649x4 + 0.00885657x5

1.5708− 2.3641× 10−8x + 1.51773× 10−7x2 − 4.84484× 10−7x3 + 7.68203× 10−7x4 − 4.83576× 10−7x5

)
[0.4, 0.5]

(
2.+ 1.00005x − 0.000295117x2 + 0.167541x3 + 0.0819626x4 + 0.00928717x5

1.5708− 1.04291× 10−7x + 5.05234× 10−7x2 − 1.21958× 10−6x3 + 1.46618× 10−6x4 − 7.01984× 10−7x5

)
[0.5, 0.6]

(
1.99998 + 1.0002x − 0.000921692x2 + 0.168862x3 + 0.080566x4 + 0.00987867x5

1.5708− 3.25859× 10−7x + 1.26869× 10−6x2 − 2.46395× 10−6x3 + 2.3864× 10−6x4 − 9.21882× 10−7x5

)
[0.6, 0.7]

(
1.99993 + 1.00062x − 0.00237386x2 + 0.171395x3 + 0.0783551x4 + 0.0106518x5

1.5708− 8.18293× 10−7x + 2.66421× 10−6x2 − 4.32971× 10−6x3 + 3.51164× 10−6x4 − 1.13697× 10−6x5

)
[0.7, 0.8]

(
1.9998 + 1.00162x − 0.00534205x2 + 0.175805x3 + 0.0750753x4 + 0.0116284x5

1.5708− 1.76297× 10−6x + 4.93332× 10−6x2 − 6.89355× 10−6x3 + 4.80962× 10−6x4 − 1.34027× 10−6x5

)
[0.8, 0.9]

(
1.99947 + 1.00376x − 0.0108784x2 + 0.18297x3 + 0.0704351x4 + 0.0128313x5

1.5708− 3.38486× 10−6x + 8.30591× 10−6x2 − 0.0000101804x3 + 6.23218× 10−6x4 − 1.52432× 10−6x5

)
[0.9, 1.0]

(
1.99873 + 1.00796x − 0.0205098x2 + 0.19401x3 + 0.0641039x4 + 0.0142844x5

1.5708− 5.93162× 10−6x + 0.000012961x2 − 0.0000141487x3 + 7.71598× 10−6x4 − 1.68162× 10−6x5

)

Table 4.1. Vector approximation for system (4.3.22) in the interval [0, 1].

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Max. error 8.2362× 10−12 4.8717× 10−11 1.27357× 10−10 2.50353× 10−10 4.24194× 10−10

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

Max. error 6.55672× 10−10 9.51896× 10−10 1.32033× 10−9 1.7688× 10−9 2.30555× 10−9

Table 4.2. Approximation error for vector problem (4.3.22).

Interval Approximation
[0, 0.1]

(
1.− 1.x + 0.5x2 − 0.166667x3 + 0.0416667x4 − 0.00816941x5 0.

x. 1.

)
[0.1, 0.2]

(
1.− 1.x + 0.499997x2 − 0.166626x3 + 0.0413976x4 − 0.00739198x5 0.

1.x 1.

)
[0.2, 0.3]

(
1.− 0.999997x + 0.499961x2 − 0.166422x3 + 0.0408023x4 − 0.00668854x5 0.

1.x 1.

)
[0.3, 0.4]

(
0.999999− 0.999979x + 0.499834x2 − 0.165957x3 + 0.0399455x4 − 0.00605204x5 0.

1.x 1.

)
[0.4, 0.5]

(
0.999995− 0.999925x + 0.499542x2 − 0.16517x3 + 0.0388822x4 − 0.00547612x5 0.

1.x 1.

)
[0.5, 0.6]

(
0.999983− 0.999797x + 0.499x2 − 0.16402x3 + 0.0376596x4 − 0.00495499x5 0

1.x 1.

)
[0.6, 0.7]

(
0.999954− 0.999547x + 0.498127x2 − 0.16249x3 + 0.0363175x4 − 0.00448346x5 0

1.x 1.

)
[0.7, 0.8]

(
0.999896− 0.999117x + 0.496844x2 − 0.160578x3 + 0.0348899x4 − 0.00405681x5 0

1.x 1.

)
[0.8, 0.9]

(
0.999792− 0.998438x + 0.495083x2 − 0.158291x3 + 0.033405x4 − 0.00367075x5 0

1.x 1.

)
[0.9, 1.0]

(
0.999617− 0.997437x + 0.492785x2 − 0.155651x3 + 0.0318868x4 − 0.00332143x5 0

1.x 1.

)

Table 4.3. Approximation for the Sylvester matrix problem (4.3.27).

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Max. error 2.6999× 10−10 5.1438× 10−10 7.36134× 10−10 9.38797× 10−10 1.1268× 10−9

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]

Max. error 1.30572× 10−9 1.48252× 10−9 1.66579× 10−9 1.86603× 10−9 2.09601× 10−9

Table 4.4. Approximation error for the Sylvester matrix problem (4.3.27).

CHAPTER 5

Approximate solutions of second-order
matrix differential equations with

higher-order splines

1 Introduction

Splines are an important tool to solve scalar first-order differential equations [1], obtaining ap-
proximations that, among other advantages, are of class C1 in a given interval [a, b]. Splines
are easy to compute and the associated approximation errors are only of O(h4). They also have
been used in the resolution of other scalar problems, as discussed in [2–4], for vector prob-
lems [5], linear matrix problems [6] and for first-order matrix differential equations [7]. Recent
work in this field can be found in Refs. [8–10]. Recently, numerical schemes with cubic splines
were extended to the resolution of second-order matrix problems without any additional in-
crease in dimensionality of the problem [11]. To achieve this goal, these schemes do not require
the reduction of the system to a higher dimensional system of lower order—a common practice
in problems of this kind. All spline approximations are by construction already continuous in
the interval under consideration. Some explicit numerical examples have been used to test the
methods and have shown that errors are only of the order O(hm−1), where m is the order of
the spline. By adapting the step size h and the order m of the spline to a particular problem,
in principle, any desired accuracy can be reached. Unfortunately, as detected by Loscalzo and
Talbot, their scalar procedure is divergent when higher-order spline functions with m > 3 are
used [1, p. 444–445]. They have explicitly shown by numerical computations that the equation
y′ = y, y(0) = 1 contains noticeable divergences for splines of order m > 3. For matrix differ-
ential equations of first order, we already presented in Ref. [12] a method which avoids these
problems with divergences for splines S(x) of order m. Our goal in this work is to extend this
method to second-order matrix equations without increasing the dimension of the problem,
using splines S(x) of order m but only of differentiability class C2.

With these benefits, it is hoped that our approach provides an alternative method to existing
ones and may open up new avenues to the numerical integration of second-order models in
practical applications.

Throughout this work, we will adopt the notation for norms and matrix cubic splines as in
the previous work [6] and common in matrix calculus. Following this nomenclature, we define

88 5 Approximate solutions of second-order matrix differential equations with higher-order splines

the Kronecker product of A =
(
aij
)
∈ Cm×n and B ∈ Cr×s, denoted by A ⊗ B, as the block

matrix

A⊗ B =


 a11B . . . a1nB

...
...

am1B . . . amnB


 .

The column-vector operator on a matrix A ∈ Cm×n is given by

vec(A) =


A•1...
A•n


 , where A•k =


 a1k

...
amk


 .

If Y =
(
yij
)
∈ Cp×q and X =

(
xij
)
∈ Cm×n, then the derivative of a matrix with respect to a

matrix is defined by [13, p. 62 and 81]:

∂Y

∂X
=




∂Y

∂x11
. . .

∂Y

∂x1n
...

...
∂Y

∂xm1
. . .

∂Y

∂xmn


 , where

∂Y

∂xrs
=



∂y11

∂xrs
. . .

∂y1q

∂xrs
...

...
∂yp1

∂xrs
. . .

∂ypq

∂xrs


 .

If X ∈ Cm×n, Y ∈ Cn×v, Z ∈ Cp×q, then the following rule for the derivative of a matrix
product with respect to another matrix applies [13, p. 84]:

∂XY

∂Z
=

∂X

∂Z

[
Iq ⊗ Y

]
+
[
Ip ⊗X

] ∂Y
∂Z

, (5.1.1)

where Iq and Ip denote the identity matrices of dimensions q and p, respectively. If X ∈
Cm×n, Y ∈ Cu×v, Z ∈ Cp×q, the following chain rule [13, p. 88] is valid:

∂Z

∂X
=

[
∂ [vec(Y)]t

∂X
⊗ Ip

][
In ⊗

∂Z

∂ [vec(Y)]

]
. (5.1.2)

2 Higher-Order Matrix Splines

Frequent in different fields of physics and engineering are matrix initial value problems of the
form:

Y ′′(x) = f (x, Y (x), Y ′(x))

Y (a) = Y0 , Y ′(a) = Y1

 a ≤ x ≤ b, (5.2.3)

Note that Eq. (5.2.3) could e.g. be the statement of Newton’s second law of motion for a coupled
mechanical system. Moreover, models of this kind often appear in molecular dynamics, quan-
tum mechanics and for scattering methods, where one solves scalar or vectorial problems with
boundary values conditions [14–19].

Let us consider the initial matrix value problem Eq. (5.2.3) where Y0, Y1, Y (t) ∈ Rr×q, f :
[a, b]×Rr×q ×Rr×q −→ Rr×q, f ∈ Cs (T), with

T = {(x, Y, Z) ; a ≤ x ≤ b , Y, Z ∈ Rr×q}

2 Higher-Order Matrix Splines 89

and Rr×q will in general denote the set of r × q rectangular real matrices.

The Lipschitz conditions on the function f∥∥f (x, Y1, Y) − f (x, Y2, Y)
∥∥ ≤ L1 ‖Y1 − Y2‖ , a ≤ x ≤ b , Y1, Y2, Y ∈ Rr×q

∥∥f (x, Y, Y1) − f (x, Y, Y2)
∥∥ ≤ L2 ‖Y1 − Y2‖ , a ≤ x ≤ b , Y1, Y2, Y ∈ Rr×q

 , (5.2.4)

guarantees the existence and uniqueness of the continuously differentiable solution Y (x) for the
set of equations (5.2.3), see e.g. [20, p. 99].

The partition of the interval [a, b] shall be given by

∆[a,b] = {a = x0 < x1 < . . . < xn = b} , xk = a+ kh, k = 0, 1, . . . , n, (5.2.5)

where n is a positive integer with the corresponding step size h = (b−a)/n. To be brief, we will
denote Ik = [a+ kh, a+ (k + 1)h)], k = 0, 1, 2, ...

Theorem 5.1.

(i) Let f ∈ C s(T) and m = s + 3, then, there exists a matrix spline S(x) ∈ C 2 ([a, b]), S(x) of order
m for each subinterval Ik, k = 0, 1, . . . , n− 1, if the step size h is chosen as

h <

(√
L2

2m
2 + 4m(m− 1)L1 −mL2

)
/2L1

where L1, L2 are Lipschitz constants defined by Eq. (5.2.4).

(ii) If f ∈ C s(T) with m = s+ 3, then ‖Y (x)− S(x)‖ is at least of order O(hm−1) ∀x ∈ [a, b], where
Y (x) is the solution of Eq. (5.2.3).

Proof. We will construct in each subinterval Ik a matrix spline S(x) of order m ∈ N with m =
s + 3, where s is the order of the differentiability class of f . This will approximate the solution
of problem (5.2.3) so that S(x) ∈ C2 ([a, b]).

In the first interval I0, we define the matrix spline as

S|I0 (x) = Y (a) + Y ′(a)(x − a) +
1
2!
Y ′′(a)(x − a)2 +

1
3!
Y (3)(a)(x − a)3

+ · · ·+
1

(m− 1)!
Y (m−1)(a)(x − a)m−1 +

1
m!
A0(x − a)m. (5.2.6)

Here the matrix coefficient A0 ∈ Rr×q is a parameter still to be determined. Observe that
S|I0 (a) = Y (a) = Y0, S ′|I0

(a) = Y ′(a) = Y1 and S ′′|I0
(a) = Y ′′(a) = f (a, Y (a), Y ′(a)), and thus

equation (5.2.3) is fulfilled by the spline at point x = a.

For the construction of matrix spline (5.2.6), we first must find the values of Y (3)(a), Y (4)(a),
. . ., Y (m−1)(a). To compute the third-order derivative Y (3)(x), we consider the functions h1, h2

and h3 defined by

h1 : [a, b] 7→ [a, b]

h1(x) = x
,

h2 : [a, b] 7→ Cr×q

h2(x) = Y (x)
,

h3 : [a, b] 7→ Cr×q

h3(x) = Z (x)

90 5 Approximate solutions of second-order matrix differential equations with higher-order splines

where Y (x) is the theoretical solution of (5.2.3) andZ (x) = Y ′(x). We describe now f (x, Y (x), Y ′(x))
as a composition of functions f and (h1, h2, h3), that is, let φ : [a, b] 7→ Cr×q be defined by

φ(x) =
[
f ◦ (h1, h2, h3)

]
(x) = f (h1(x), h2(x), h3(x)) = f (x, Y (x), Z (x)) .

Thus, φ is a real variable function of x, and applying theorem 8.9.2 of [13, p. 170] its derivative
takes the form:

Dφ = D
(
f ◦ (h1, h2, h3)

)
=
((
D1f
)
(h1, h2, h3)

)
·Dh1+

((
D2f
)
(h1, h2, h3)

)
·Dh2+

((
D3f
)
(h1, h2, h3)

)
·Dh3,

where the partial derivatives of f , D1(f), D2(f), D3(f) exist and are continuous since it is
assumed that f ∈ Cs (T). By (5.2.3) it is clear that

d (vec Y ′(x))T

dx
=
[
vec f (x, Y (x), Y ′(x))

]T
.

Next, applying the chain rule for matrix functions (5.1.1) and then taking the derivative of a
matrix with respect to a matrix, (5.1.2), one obtains

Y (3)(x) =
∂f (x, Y (x), Y ′(x))

∂x
+
[
[vec Y ′(x)]T ⊗ Ir

] ∂f (x, Y (x), Y ′(x))
∂ (vec Y (x))

+
[[
vec f (x, Y (x), Y ′(x))

]T ⊗ Ir] ∂f (x, Y (x), Y ′(x))
∂ (vec Y ′(x))

= g1 (x, Y (x), Y ′(x)) , (5.2.7)

where g1 ∈ Cs−1 (T). Using (5.2.7), we are now in position to evaluate Y (3)(a) = g1 (a, Y (a), Y ′(a))
It is safe to take f ∈ Cs (T) for s ≥ 2. For all higher-order derivatives Y (4)(x), . . . , Y (m−1)(x), we
proceed in a similar way and calculate

Y (4)(x) = g2 (x, Y (x), Y ′(x)) ∈ Cs−2 (T)
...

Y (m−1)(x) = gm−3 (x, Y (x), Y ′(x)) ∈ Cs−(m−3) (T)

 . (5.2.8)

Apart from the matrix coefficient A0, all other parameters of the spline are already known.
To find A0, we assume that (5.2.6) is a solution of equation (5.2.3) at x = a+ h, and thus yields

S ′′|I0
(a+ h) = f

(
a+ h, S|I0 (a+ h), S ′|I0

(a+ h)
)
. (5.2.9)

The only unknown parameter A0 is now given by the following implicit matrix equation ob-
tained from (5.2.9):

A0 =
(m− 2)!
hm−2

[
f

(
a+ h, Y (a) + Y ′(a)h+ · · ·+

hm−1

(m− 1)!
Y (m−1)(a) +

hm

m!
A0,

Y ′(a) + Y ′′(a)h+ · · ·+
hm−2

(m− 2)!
Y (m−1)(a) +

hm−1

(m− 1)!
A0

)
− Y ′′(a)− · · · −

hm−3

(m− 3)!
Y (m−1)(a)

]
. (5.2.10)

2 Higher-Order Matrix Splines 91

The matrix equation (5.2.10) has only one solution A0, which we shall see in the following.
After finding the solution for A0, the matrix spline (5.2.6) is totally determined within the first
interval I0. For the second interval I1 we define

S|I1 (x) = S|I0 (a+ h) + S ′|I0
(a+ h)(x − (a+ h)) + (5.2.11)

1
2!Y

′′(a+ h)(x − (a+ h))2 + · · ·+ 1
(m−1)!Y

(m−1)(a+ h)(x − (a+ h))m−1

+ 1
m!A1(x − (a+ h))m,

and we use the following shorthand notation

Y ′′(a+ h) = f

(
a+ h, S|I0 (a+ h), S ′|I0

(a+ h)
)
,

Y (3)(a+ h) = g1

(
a+ h, S|I0 (a+ h), S ′|I0

(a+ h)
)
,

...

Y (m−1)(a+ h) = gm−3

(
a+ h, S|I0 (a+ h), S ′|I0

(a+ h)
)
.

(5.2.12)

The splines introduced by Loscalzo and Talbot [1] and the ones employed in [11] were of
class Cm−1 (I0 ∪ I1). In contrast, here the matrix spline S(x) defined by (5.2.6) and (5.2.11) is of
differentiability class C2 (I0 ∪ I1). All of the coefficients in (5.2.11) are completely determined
except for the parameter A1 ∈ Rr×q. By definition, spline (5.2.11) satisfies the differential equa-
tion (5.2.3) at point x = a + h. To find the value of A1 we also assume that the spline (5.2.11)
satisfies (5.2.3) at point x = a+ 2h:

S ′′|I1
(a+ 2h) = f

(
a+ 2h, S|I1 (a+ 2h), S ′|I1

(a+ 2h)
)
,

which readily may be recast in the following form to provide a matrix equation for the only
unknown A1:

A1 =
(m− 2)!
hm−2

[
f

(
a+ 2h, S|I0 (a+h)+S

′
|I0
(a+h)h+

h2

2!
Y ′′(a+ h)+ · · ·+

+
hm−1

(m− 1)!
Y (m−1)(a+ h) +

hm

m!
A1, S ′|I0

(a+ h) + Y ′′(a+ h)h+ · · ·

+
hm−2

(m− 2)!
Y (m−1)(a+h) +

hm−1

(m− 1)!
A1

)
− Y ′′(a+ h)

− Y (3)(a+ h)h− · · · −
hm−3

(m− 3)!
Y (m−1)(a+ h) (5.2.13)

Now we proceed in exactly similar manner as before. Namely, let us assume that the implicit
matrix equation (5.2.13) has a unique solution A1, so that the spline is totally determined in the
interval I1. By iteration, we may construct the matrix spline taking Ik−1 as the last subinterval.
For the next subinterval Ik, we define the corresponding matrix spline as

92 5 Approximate solutions of second-order matrix differential equations with higher-order splines

S|Ik (x) = S|Ik−1
(a+ kh) + S ′|Ik−1

(a+ kh)(x − (a+ kh))

+ 1
2!Y

′′(a+ kh)(x − (a+ kh))2 + · · ·+

1
(m−1)!Y

(m−1)(a+ kh)(x − (a+ kh))m−1 + 1
m!Ak(x − (a+ kh))m, (5.2.14)

where again

Y ′′(a+ kh) = f

(
a+ kh, S|Ik−1

(a+ kh), S ′|Ik−1

(a+ kh)
)
,

Y (3)(a+ kh) = g1

(
a+ kh, S|Ik−1

(a+ kh), S ′|Ik−1

(a+ kh)
)
,

...

Y (m−1)(a+ kh) = gm−3

(
a+ kh, S|Ik−1

(a+ kh), S ′|Ik−1

(a+ kh)
)
.

(5.2.15)

Thus, the matrix spline S(x) ∈ C2

 k⋃
j=0

Ij

 is solution of the differential equation (5.2.3) at

point x = a+kh. In order to find Ak, we impose the additional requirement that S|Ik (x) satisfies
equation (5.2.3) at point x = a+ (k + 1)h:

S ′′|Ik
(a+ (k + 1)h)=f

(
a+ (k + 1)h, S|Ik (a+ (k + 1)h), S ′|Ik

(a+ (k + 1)h)
)
,

which can be rewritten as

Ak =
(m−2)!
hm−2

[
f

(
a+ (k + 1)h, S|Ik−1

(a+ kh) + S ′|Ik−1

(a+ kh)h+ · · ·+

+ hm−1

(m−1)!Y
(m−1)(a+ kh) + hm

m!Ak, S ′|Ik−1

(a+ kh) + Y ′′(a+ kh)h+ · · ·

+ hm−2

(m−2)!Y
(m−1)(a+ kh) + hm−1

(m−1)!Ak

)
− Y ′′(a+ kh)

−Y (3)(a+ kh)h− · · · − hm−3

(m−3)!Y
(m−1)(a+ kh)

]
. (5.2.16)

Eqs. (5.2.10) and (5.2.13) are just a particular case of the final result (5.2.16), letting k = 0 and
k = 1.

We are now in the position to demonstrate the uniqueness of equation (5.2.16) by using a
fixed-point argument. For any choice of step size h and partition number k, we look at the
matrix function g : Rr×q → Rr×q defined by

g(T) = (m−2)!
hm−2

[
f

(
a+ (k + 1)h, S|Ik−1

(a+ kh) + S ′|Ik−1

(a+ kh)h+ · · ·+

+ hm−1

(m−1)!Y
(m−1)(a+ kh) + hm

m!T, S
′
|Ik−1

(a+ kh)+

+Y ′′(a+ kh)h+ · · ·+ hm−2

(m−2)!Y
(m−1)(a+ kh) + hm−1

(m−1)!T
)

−Y ′′(a+ kh)− Y (3)(a+ kh)h− · · · − hm−3

(m−3)!Y
(m−1)(a+ kh)

]
. (5.2.17)

3 Algorithms and MATLAB functions 93

Observe that relation (5.2.16) holds if and only if Ak = g(Ak), which means that Ak is a fixed
point for function g(T). The definition (5.2.17) of g in combination with the global Lipschitz’s
condition (5.2.4) for f , implies immediately that

∥∥g(T1)− g(T2)
∥∥ ≤ (L1h2

m(m− 1)
+

L2h

m− 1

)
‖T1 − T2‖ .

Selecting h <
(√

L2
2m

2 + 4m(m− 1)L1 −mL2

)
/2L1 gives

(
L1h2

m(m−1) +
L2h
m−1

)
< 1 and the

matrix function g is contractive. Therefore, equation (5.2.16) has the unique solutions Ak for
each k = 0, 1, . . . , n − 1. Thus, the matrix spline is completely determined, which concludes
this proof.

Remark 5.2. Observe that the constructed splines have a global error at least of order O(hm−1),
which follows from an analysis similar to Loscalzo and Talbot’s work [1].

Remark 5.3. For carrying out the derivatives in (5.2.7) and (5.2.8), one may make extensive use
of standard symbolic software, such as Mathematica etc.

3 Algorithms and MATLAB functions

For solving Equation (5.2.3), we consider the initial matrix value problem

Y ′′(x) = f (x, Y (x), Y ′(x))

Y (xk) = Y0 , Y ′(xk) = Y1

 xk ≤ x ≤ xk + h, (5.3.18)

where h is the step size, and Y0 and Y1 are the values of Y and Y ′ obtained in the above step at
xk, respectively. If we denote by Sk(x) the spline of order m in the interval [xk, xk + h], then

Sk(xk + h) = B(0)
k +

hm

m!
Ak,

S
′

k(xk + h) = B(1)
k +

hm−1

(m− 1)!
Ak,

S
′′

i (xk + h) = B(2)
k +

hm−2

(m− 2)!
Ak,

where

B(0)
k =

m−1∑
i=0

Y (i)(xk)hi

i!
, B(1)

i =
m−1∑
i=1

Y (i)(xk)hi−1

(i− 1)!
, B(2)

i =
m−1∑
i=2

Y (i)(xk)hi−2

(i− 2)!
.

If we substitute the above expressions in (5.3.18), we obtain

B(2)
k +

hm−2

(m− 2)!
Ak = f

(
x, B(0)

k +
hm

m!
Ak, B

(1)
i +

hm−1

(m− 1)!
Ak

)
. (5.3.19)

Then matrix Ak can be obtained by solving (5.3.19).
The MATLAB function splin2order computes the solution of (5.2.3) by a fixed-point

method or another method, as for example the Newton method (for online availability of the
software, see Ref. [21]). The function used for solving (5.3.19) by the fixed-point method is

F (Ak) =
(m− 2)!
hm−2

[
f

(
x, B(0)

k +
hm

m!
Ak, B

(1)
i +

hm−1

(m− 1)!
Ak

)
− B(2)

k

]
.

94 5 Approximate solutions of second-order matrix differential equations with higher-order splines

Hence, the values of Y and Y ′ at xk + h are

Y (xk + h) = B(0)
k +

hm

m!
Ak,

Y
′

k (xk + h) = B(1)
k +

hm−1

(m− 1)!
Ak.

The computer storage required for the MATLAB function implies the use of seven internal
matrices. However, it can be further optimized for some special classes of second-order differ-
ential equations. Consider, for example, the following second-order linear differential system

Y ′′(t) +A1 Y ′(t) +A0Y (t) = 0, t ∈ [a, b], (5.3.20)

whereA0, A1 ∈ Rn×n are constant matrix coefficients. In this case, the MATLAB function which
solves the above equation is called splin2linear (and available online [21]). If (5.3.20) is incom-
plete, i.e. A1 = 0, the computational costs can be cut down considerably. We have also devel-
oped the MATLAB function spline2lineari, which is an optimized version of spline2linear
for the incomplete differential linear equation Y ′′(t) +A0Y (t) = 0. In both cases, the successive
derivatives are computed within the corresponding function. The memory requirements for
these functions are eleven and ten matrices, respectively.

4 Numerical Examples

The goal of this section is to show the effectiveness of our method by testing MATLAB and sym-
bolic implementations of it. We will use some standard benchmarks examples to compare its
numerical estimates with those obtained from higher-order splines constructed by the method
proposed in [11]. It is important to remark that our method is not only a viable alternative to
existing approaches, but has been applied successfully in several other practical examples.

The MATLAB benchmark tests have been carried out on an Intel Core 2 Duo T5600 with
2 GB main memory and using Mathematica version 7.0. and MATLAB version 7.9. We test the
MATLAB implementations for each of our proposed spline methods with problems where the
exact solution is known. The symbolic implementations employ the Symbolic Math Toolbox of
MATLAB for calculating derivatives of functions, such that the derivatives are provided by a
function which calculates their values. In particular, these new implementations based on our
proposed methods have been compared with the results produced by MATLAB solver functions
with RelTol and AbsTol parameters equal to 10−14. Table 5.1 lists all MATLAB functions used in
these tests. The functions are based on adaptive methods to solve non-stiff, ordinary differential
equations of the type

y′ = f (x, y), x ∈ [a, b],
y(a) = y0,

where y ∈ Rr .

MATLAB SOLVER PROBLEM METHOD

ode45 non-stiff differential equations Runge-Kutta
ode23 non-stiff differential equations Runge-Kutta
ode113 non-stiff differential equations Adams

Table 5.1. MATLAB solvers used in the tests.

4 Numerical Examples 95

We have also implemented specific MATLAB functions in order to solve Eq. (5.2.3) with
fixed step size based on classical methods: Nyström of order 4 [22, p. 284], an extrapolation
method [22, p. 294] and an explicit Störmer method [22, p. 462], but we only provide the results
of the first one, because it gives much better results than the others. The implemented function
based on this method is named nystrom2order.

4.1 A non-linear vector system

Consider the following non-linear vector differential system

y′′1(x) = 1− cos (x) + sin
(
y′2(x)
)
+ cos

(
y′2(x)
)

y′′2(x) =
1

4 + y1(x)2
−

1

5− sin2(x)

y1(0) = 1, y2(0) = 0,

y′1(0) = 0, y′2(0) = π


0 ≤ x ≤ 1. (5.4.21)

with exact solution y1(x) = cos (x), y2(x) = πx. The system Eq. (5.4.21) can be written in the
more compact form

Y ′′(x) = F (x, Y, Y ′) , Y (x) =
(
y1(x)
y2(x)

)
, Y (0) =

(
1
0

)
, Y ′(0) =

(
0
π

)
, (5.4.22)

where

F (x, Y, Y ′) =


1− cos (x) + sin

(
y′2(x)
)
+ cos (y′2(x))

1
4 + y1(x)2

−
1

5− sin2(x)

 . (5.4.23)

It is easy to check that F (x, Y, Y ′) satisfies the global Lipschitz conditions:

‖F (x, Y1, Y) − F (x, Y2, Y)‖ ≤ ‖Y1 − Y2‖

‖F (x, Y, Y1) − F (x, Y, Y2)‖ ≤ 2 ‖Y1 − Y2‖

 , 0 ≤ x ≤ 1 , Y, Y1, Y2 ∈ R2. (5.4.24)

It is not difficult to evaluate Y ′′(0) using (5.4.22), thus Y ′′(0) = F (0, Y (0), Y ′(0)) =
(
−1
0

)
.

We can calculate Y (3)(0) using (5.2.7). This will illustrate how the calculation of (5.2.7) can be
done. In this case, one gets

vec Y (x) = Y (x), vec Y ′(x) =
(
y′1(x)
y′2(x)

)
,

∂F (x, Y (x), Y ′(x))
∂x

=


sin (x)

−2 sin (x) cos (x)(
5− sin2(x)

)2
 .

On the other hand, we have

96 5 Approximate solutions of second-order matrix differential equations with higher-order splines

∂F (x, Y (x), Y ′(x))
∂ (vec Y (x))

=


∂F (x, Y (x), Y ′(x))

∂y1(x)

∂F (x, Y (x), Y ′(x))
∂y2(x)

 =



0
−2y1(x)(

4 + y2
1(x)
)2

0
0


,

∂F (x, Y (x), Y ′(x))
∂ (vec Y ′(x))

=


∂F (x, Y (x), Y ′(x))

∂y′1(x)

∂F (x, Y (x), Y ′(x))
∂y′2(x)

 =



0
0

cos
(
y′2(x)
)
− sin

(
y′2(x)
)

0


,

and, if we denote by A = 1 − cos (x) + sin
(
y′2(x)
)
+ cos (y′2(x)) and B = 1/

(
4 + y1(x)2

)
−

1/
(
5− sin2(x)

)
, one obtains

[vec Y ′(x)]T ⊗ I2 =
(
y′1(x) 0 y′2(x) 0

0 y′1(x) 0 y′2(x)

)
,

[
vec f (x, Y (x), Y ′(x))

]T ⊗ I2 =
(
A 0 B 0
0 A 0 B

)
.

Thus, using (5.2.7) we have

Y (3)(x) =

 sin (x)

−2 sin (x) cos (x)

(5−sin2(x))2

+
(
y′1(x) 0 y′2(x) 0

0 y′1(x) 0 y′2(x)

)
0

−2y1(x)

(4+y2
1(x))

2

0
0



+
(
A 0 B 0
0 A 0 B

)
0
0

cos
(
y′2(x)
)
− sin

(
y′2(x)
)

0



=


sin (x) +

(
cos
(
y′2(x)
)
− sin

(
y′2(x)
)) (1

4+y2
1(x)
− 1

5−sin2(x)

)
−2 sin (x) cos (x)

(5−sin2(x))2 −
2y1(x)y′1(x)

(4+y2
1(x))

2

 . (5.4.25)

Taking into account that y1(0) = 1, y2(0) = 0, y′1(0) = 0, y′2(0) = π , and evaluating Y (3)(x) when

x = 0 from (5.4.25), finally one concludes that Y (3)(0) =
(

0
0

)
.

If we consider matrix splines of order m = 6, Theorem 5.1 requires to take h < 2.12404,
and thus we select h = 0.1. In Table 5.2, we provide the numerical estimates, which have been
rounded to the fourth relevant digit. We also give the Frobenius norm of the difference between
the estimates of our numerical approach and the exact solution. Their maximum errors are
shown also in the first column. Note that as we increase the order of the spline using the same
technique as in [11], we obtain the results given in Table 5.3, where in the last two intervals the
maximum error increases dramatically.

4 Numerical Examples 97

interval Spline
error

[0, 0.1]

(
1.− 0.5x2 + 0.0417x4 − 0.0014x6

3.1416x

)
2.14828× 10−13

[0.1, 0.2]

(
1.− 0.5x2 + 0.0417x4 − 0.0014x6

3.1416x

)
2.01417× 10−12

[0.2, 0.3]

(
1.− 0.5x2 + 0.0417x4 − 0.0014x6

3.1416x

)
8.15548× 10−12

[0.3, 0.4]

(
1.− 0.5x2 + 0.0417x4 − 0.0001x5 − 0.0013x6

3.1416x

)
2.13535× 10−11

[0.4, 0.5]

(
1.− 0.5x2 − 0.0001x3 + 0.0418x4 − 0.0002x5 − 0.0013x6

3.1416x

)
4.42526× 10−11

[0.5, 0.6]

(
1.− 0.4999x2 − 0.0002x3 + 0.042x4 − 0.0004x5 − 0.0012x6

3.1416x

)
7.94035× 10−11

[0.6, 0.7]

(
1.− 0.4998x2 − 0.0005x3 + 0.0424x4 − 0.0006x5 − 0.0011x6

3.1416x

)
1.29235× 10−10

[0.7, 0.8]

(
1.− 0.0001x − 0.4996x2 − 0.001x3 + 0.043x4 − 0.001x5 − 0.0010x6

3.1416x

)
1.96032× 10−10

[0.8, 0.9]

(
1.− 0.0003x − 0.4990x2 − 0.0019x3 + 0.0438x4 − 0.0014x5 − 0.0009x6

3.1416x

)
2.81915× 10−10

[0.9, 1]

(
1.0001− 0.0006x − 0.4981x2 − 0.0033x3 + 0.0451x4 − 0.002x5 − 0.0008x6

3.1416x

)
3.88818× 10−10

Table 5.2. Approximation for the test problem of Subsection 4.1 in the interval [0, 1] with step size h = 0.1 and matrix splines
of order m = 6.

interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4]
max. error 2.14828× 10−13 1.16367× 10−11 7.7013× 10−11 8.46736× 10−10

interval [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8]
max. error 8.23407× 10−9 8.17369× 10−8 8.08793× 10−7 8.0067× 10−6

interval [0.8, 0.9] [0.9, 1]
max. error 0.0000792582 0.0014899

Table 5.3. Maximum 2-norm error using method [11] with m = 6 for the the test problem of Subsection 4.1.

For another test, the MATLAB function splin2order was used. Figure 5.1 displays the ap-
proximation behavior for splines of order m = 6 with different step sizes h = 0.1, h = 0.01 and
h = 0.001, respectively. Table 5.4 compares splin2order (spline of order m = 9) with the other
MATLAB functions, taking h = 0.1 and b = 5. The second column indicates the execution time
in seconds and the third column the relative errors. For the fixed-step codes, we have chosen
the optimal step size, i.e. the step size giving the lowest error possible with the best execution
time.

4.2 Linear second-order differential matrix equations

Linear second-order differential matrix equations present another interesting testing ground
for efficient matrix spline algorithms. In fact, it is possible to develop efficient algorithms for
solving this type of problems. The MATLAB function spline2linear is an implementation of
the method described in the previous section.

98 5 Approximate solutions of second-order matrix differential equations with higher-order splines

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

o
r

Interval

h=0.1

h=0.01

h=0.001

Fig. 5.1. Relative errors for the test problem of Subsection 4.1 with fourth-order splines (m = 6), using MATLAB function
splin2order with h = 0.1, h = 0.01 and h = 0.001, respectively.

MATLAB function Time [s] Error
splin2order (m = 9, h = 0.1) 0.091408 3.457835·10−16

nystrom2order (h = 2 · 10−3) 0.246637 3.622907·10−14

ode45 0.090288 1.289173·10−15

ode23 6.683251 2.280581·10−15

ode113 0.014599 9.203065·10−16

Table 5.4. Relative errors for the test problem of Subsection 4.1 for b = 5.

We consider the problem (5.3.20) with the following matrix coefficients

A1 =
(
−1 1

0 −2

)
, A0 =

(
0 0
0 1

)
,

and the initial conditions

Y (0) = Y ′(0) =
(

1 0
0 1

)
.

The analytical solution is known to be

Y (t) =
(
et −1 + et − ett
0 et

)
, t ∈ [0, b]. (5.4.26)

In this case, it is f (t, Y, Z) = −A0Y −A1Z , and therefore∥∥f (t, Y1, Z) − f (t, Y2, Z)
∥∥

2 ≤ ‖Y1 − Y2‖2∥∥f (t, Y, Z1) − f (t, Y, Z2)
∥∥

2 ≤ 2.28825 ‖Z1 − Z2‖2

 . (5.4.27)

If we consider again matrix splines of order m = 6, we must take the step size given by the

constraint h <
(√

36L2
2 + 120L1 − 6L2

)
/2L1 = 1.91732. In this case, the errors are increasing

4 Numerical Examples 99

up to a value of [0, 1.77112 × 10−8], but they remain well within the error bounds fixed by
Theorem 5.1. If we compare these results with those given by a sixth-order spline using the same
technique as in Ref. [11], we obtain comparable results for the first five intervals. However, our
method truly improves the results in the last five intervals. Table 5.5 shows the results obtained
in the last four intervals with the method from Ref. [11].

interval [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1]
max. error 0.00014554 0.00140688 0.0136004 0.131485

Table 5.5. Maximum 2-norm error using method [11] with m = 6 for the test problem of Subsection 4.2 .

Figure 5.2 depicts the approximation behavior for splines of order m = 6 with different step
sizes h = 0.1, h = 0.01 and h = 0.001, respectively. Table 5.6 shows the results of spline2linear
(spline of order m = 10) and the other MATLAB functions for h = 0.1 and b = 5. The second
column gives the execution time in seconds and the third column the relative errors.

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

o
r

Interval

h=0.1

h=0.01

h=0.001

Fig. 5.2. Relative errors for the test problem of Subsection 4.2 with fifth-order splines (m = 6), using MATLAB function with
splin2linear h = 0.1, h = 0.01 and h = 0.001, respectively.

Method Time [s] Error
splin2linear (m = 10, h = 0.1) 0.003051 5.320190·10−15

nystrom2order (h = 5 · 10−4) 0.246637 2.891663·10−14

ode45 0.175877 6.800561·10−15

ode23 9.808279 5.398916·10−14

ode113 0.017892 1.101141·10−14

Table 5.6. Relative errors for the test problem of Subsection 4.2 for b = 5.

4.3 Incomplete linear second-order differential matrix equations

As a second example, we study

100 5 Approximate solutions of second-order matrix differential equations with higher-order splines

Y ′′(t) +AY (t) = 0, (5.4.28)

where

A =
(

1 0
2 1

)
, Y (0) =

(
0 0
0 0

)
and Y ′(0) =

(
1 0
1 1

)
, t ∈ [0, b]. (5.4.29)

with the known analytical solution

Y (t) = cos
(√

At
)
Y (0) +

(√
A
)−1

sin
(√

At
)
Y ′(0). (5.4.30)

As usual,
√
A denotes the square root of the non-singular matrix A (see [23]). In this example,

we choose L2 = 0 and L1 ≈ 2.82843 as suggested in [11]. If we consider b = 1 and matrix
splines of order m = 6, according to Theorem 5.1, we need to take h < 3.25678 as in Ref. [24],
so we selected h = 0.1. Table 5.7 provides all numerical results (rounded to the third relevant
digit) for the maximum error in each interval.

interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4]
max. error 5.66188× 10−11 3.09994× 10−10 7.54205× 10−10 1.37841× 10−9

interval [0.4, 0.5] [0.5, 0.6] [0.6, 0.7] [0.7, 0.8]
max. error 2.16706× 10−9 3.10015× 10−9 4.15361× 10−9 5.29975× 10−9

interval [0.8, 0.9] [0.9, 1]
max. error 6.50774× 10−9 7.74422× 10−9

Table 5.7. Maximum approximation error for the test problem of Subsection 4.2 in the interval [0, 1] with step size h = 0.1
and splines of order m = 6.

If we consider high-order splines, for example with m = 6, and if we use the same technique
as in [11], we obtain essentially the same results for the error in the first six intervals. For the
last four intervals, the error increases considerably (see Table 5.8), showing a bad performance
for this method.

interval [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1]
max. error 0.000189424 0.00187658 0.0185907 0.184173

Table 5.8. Maximum 2-norm error using method [11] for m = 6 for the incomplete second-order differential system
Eq. (5.4.28).

In the following test we consider b = 5. Figure 5.3 depicts the approximation behavior for
splines of six-order with different step sizes h = 0.1, h = 0.01 and h = 0.001, respectively.
Table 5.9 shows the results of function splin2lineari (spline of order m = 10) compared to
the results produced by the other functions, taking h = 0.1. The second column indicates the
execution time in seconds and the third column the relative errors.

5 Conclusions

One goal of this chapter was to presented a generalized method for the numerical treatment
of second order differential matrix systems. Our approach is a generalization of previously
developed methods employing matrix-cubic splines. A second goal was to provide techniques
to get reliable algorithms that are straightforward to implement.

All spline solutions are by construction already continuous in the interval under consider-
ation. Several benchmark examples have been used to test our proposed method producing

5 Conclusions 101

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

o
r

Interval

h=0.1

h=0.01

h=0.001

Fig. 5.3. Relative errors for the test problem of Subsection 4.3 with fourth-order splines (m = 6) , using MATLAB function
splin2lineari with h = 0.1, h = 0.01 and h = 0.001, respectively.

MATLAB function Time [s] Error
splin2lineari (m = 10) 0.002224 7.707535·10−15

nystrom2order (h = 1 · 10−3) 0.502466 5.538301·10−14

ode45 0.197101 1.836483·10−14

ode23 11.563673 7.383291·10−14

ode113 0.019096 2.026853·10−15

Table 5.9. Relative errors for the test problem of Subsection 4.3.

errors only of the order O(hm−1), where m is the order of the spline. By adjusting the step size
h and selecting a corresponding higher-order spline, one can achieve a reliable estimate with
high accuracy for any practical problem. Our method also makes clear the great precaution
which is required when approximating second-order models in realistic applications.

Our method is well-suited for implementation on numerical and/or symbolical computer
systems (Mathematica, MATLAB, etc). Three MATLAB implementations have been developed
based on the spline method developed in this chapter. In order to assert the advantages of these
implementations, extensive stress tests were made in three case studies by comparing these
implementations under equal conditions with built-into MATLAB functions and an implemen-
tation of a Nyström method of fourth order. The results clearly demonstrated that the relative
errors of our MATLAB implementations are lower than relative errors of the other, standard
functions, and have in general lower execution times.

References

1. F. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions of ordinary differential equations, SIAM J. Numer.
Anal. 4 (1967), no. 3, 433–445.

2. E. A. Al-Said, The use of cubic splines in the numerical solution of a system of second-order boundary value problems, Comput. Math.
Appl. 42 (2001), 861–869.

3. M. K. Kadalbajoo and K. C. Patidar, Numerical solution of singularly perturbed two-point boundary value problems by spline in
tension, Appl. Math. Comput. 131 (2002), 299–320.

4. E. A. Al-Said and M. A. Noor, Cubic splines method for a system of third-order boundary value problems, Appl. Math. Comput.
142 (2003), 195–204.

102 5 Approximate solutions of second-order matrix differential equations with higher-order splines

5. G. Micula and A. Revnic, An implicit numerical spline method for systems for ode’s, Appl. Math. Comput. 111 (2000), 121–132.
6. E. Defez, L. Soler, A. Hervás, and C. Santamarı́a, Numerical solutions of matrix differential models using cubic matrix splines,

Comput. Math. Appl. 50 (2005), 693–699.
7. E. Defez, L. Soler, A. Hervás, and M. M. Tung, Numerical solutions of matrix differential models using cubic matrix splines II,

Mathematical and Computer Modelling 46 (2007), 657–669.
8. Hermann Brunner, On the divergence of collocation solutions in smooth piecewise polynomial spaces for volterra integral equations,

BIT Numerical Mathematics 44 (2004), 631–650.
9. G. Micula, Approximate solutions of the differential equation y′′ = f (x, y) with spline functions, Math. Comp. 27 (1973), 807–816.

10. Uri Ascher, S. Pruess, and Robert D. Russell, On spline basis selection for solving differential equations, SIAM J. Numer. Anal.
20 (1983), 121–142.

11. M. M. Tung, E. Defez, and J. Sastre, Numerical solutions of second-order matrix models using cubic-matrix splines, Comput. Math.
Appl. 56 (2008), 2561–2571.

12. Emilio Defez, Michael M. Tung, Javier Ibáñez, and Jorge Sastre, Approximating and computing nonlinear matrix differential
models, Math. Comput. Model. 55 (2012), no. 7–8, 2012–2022.

13. A. Graham, Kronecker products and matrix calculus with applications, John Wiley & Sons, New York, USA, 1981.
14. P. Marzulli, Global error estimates for the standard parallel shooting method, J. Comput. Appl. Math. 34 (1991), 233–241.
15. J. M. Ortega, Numerical analysis: A second course, Academic Press, New York, USA, 1972.
16. B. W. Shore, Comparison of matrix methods to the radii Schrödinger eigenvalue equation: The Morse potential, J. Chemical Physics

59 (1971), no. 12, 6450–6463.
17. C. Froese, Numerical solutions of the hartree-fock equations, Can. J. Phys. 41 (1963), 1895–1910.
18. J. R. Claeyssen, G. Canahualpa, and C. Jung, A direct approach to second-order matrix non-classical vibrating equations, Appl.

Numer. Math. 30 (1999), 65–78.
19. J. F. Zhang, Optimal control for mechanical vibration systems based on second-order matrix equations, Mechanical Systems and

Signal Processing 16 (2002), no. 1, 61–67.
20. T. M. Flett, Differential analysis, Cambridge University Press, New York, USA, 1980.
21. J. J. Ibáñez, MATLAB Implementation for Matrix Splines (MIMS).
22. E. Hairer, S. P. Nörsett, and G. Wanner, Solving ordinary differential equations i: Nonstiff problems, Springer-Verlag, Berlin,

Germany, 2008.
23. G. H. Golub and C. F. Van Loan, Matrix computations, second ed., The Johns Hopkins University Press, Baltimore, MD,

USA, 1989.
24. M. M. Tung, L. Soler, E. Defez, and A. Hervás, Cubic-matrix splines and second-order matrix model, The 14th European

Conference on Mathematics for Industry (ECMI 2006) (Universidad Carlos III de Madrid, Spain), 2006.

APPENDIX

MATLAB Code

MATLAB [1–5] and its open-source companion Octave [6–9] are the most suitable numerical
computing environments to carry out the matrix calculations at hand. Both are high-level in-
terpreted 4GL language, primarily intended for numerical chores and strongly based on data
in matrix format. Whereas MATLAB is commercially available since 1984 and maintained by
MathWorks [1], Octave [7] is freely distributed under the GNU public license and maintained
by a group of dedicated programmers and users. Octave may be used directly via an interactive
command-line, which makes it also ideal for lengthier calculations on a UNIX based system
by the usage of scripts [9]. Furthermore, most MATLAB code is readily available in Octave as
well, due to its high level of compatibility.

In the following, we give a concise exemplary selection of various commented MATLAB
code used for some of the computation and numerical data acquisition in the previous chapters.

The MATLAB code for second-order differential matrix equation Y ′′ = f (x, Y (x), Y ′(x))
within the interval [a, b] and with boundary conditions Y (a) = Y0 and Y ′(a) = Y1. As usual h
gives the step size and m represents the order of the spline.

Program 1: splin2linear.m

function [Y0,x]=splin2linear(A0,A1,Y0,Y1,a,b,h,m)

% This function compute the solution of a second order linear

% differential matriz equation y’’+A0*Y+A1*Y’=0 at [a,b]

% Y(a)=Y0, Y’(a)=Y1

5 %Inputs:

% A0 and A1 are the matrix coeficients

% Y0 and Y1 are the initial condition matrices

% [a,b] is the integration interval

% h is the step size

10 % m is the order of spline

%Outputs:

% Y0 and x: Y0 contains the solution at x (a<=x<a+h)

%

104 MATLAB Code

ph(1)=h;

15 fac=[1 2 6 24 120 720 5040 40320 362880 3628800];%factorials

for k=2:m%Compute the powers of h

ph(k)=ph(k-1)*h;

end

n=size(A0,1);

20 I=eye(n);

nt=round((b-a)/h);%number of integrate subintervals

x=a;

for i=1:nt

Aux0=Y0;

25 Aux1=Y1;

Aux2=-A1*Aux1-A0*Aux0;

B0=Y0+Aux1*ph(1)+Aux2*ph(2)/fac(2);

B1=Aux1+Aux2*ph(1);

B2=Aux2;

30 for k=2:m-2

Aux0=Aux1;

Aux1=Aux2;

Aux2=-A1*Aux1-A0*Aux0;

B0=B0+Aux2*ph(k+1)/fac(k+1);

35 B1=B1+Aux2*ph(k)/fac(k);

B2=B2+Aux2*ph(k-1)/fac(k-1);

end

x=x+h;

X=(m*(m-1)*ph(m-2)*I+m*A1*ph(m-1)+A0*ph(m))\(-B2-A1*B1-A0*B0);

40 Y0=B0+X*ph(m);

Y1=B1+m*X*ph(m-1);

end

Program 1: splin2linear.m

Program 2: prsplin_second_order.m

function prsplin_second_order(i,m,b,h0)

%prsplin_second_order(1,9,5,0.1)

%prsplin_second_order(2,10,5,0.1)

%prsplin_second_order(3,10,5,0.1)

5 options=odeset(’RelTol’,2.22045e-14,’AbsTol’,1e-14);

for k=1:20

rand(1000)*rand(1000);

end

10 if i==1

f=’df_ej1’;

y0=[1;0];y1=[0;pi];a=0;%Ejemplo 3.1

z0=[y0(:);y1(:)];

15 solver=’solver_g’;

MATLAB Code 105

tic

[y,x]=splin2order(solver,f,y0,y1,a,b,h0,m);

t0=toc;

ys=ej1s(x);

20 er0=norm(ys-y)/norm(ys);

ej=’ej1’;

fprintf(’Spline General: Error=%e\tTiempo=%f\n’,er0,t0)

25 elseif i==2

F=’df_ej2’;

[df,A0,A1]= feval(F,1,1,1,1);

y0=eye(2);y1=y0;a=0;%Ejemplo 3.2

30 tic

[Y,x]=splin2linear(A0,A1,y0,y1,a,b,h0,m);

t0=toc;

ys=ej2s(x);

er0=norm(ys-Y)/norm(ys);

35 fprintf(’Spline Lineal2: Error=%e\tTiempo=%f\n’,er0,t0)

z0=[y0(:);y1(:)];

ej=’ej2’;

40

else

F=’df_ej3’;

[df,A0]= feval(F,1,1,1,1);

y0=zeros(2);y1=[1 0;1 1];a=0; %Ejemplo 3.3

45

tic

[Y,x]=splin2lineari(A0,y0,y1,a,b,h0,m);

t0=toc;

ys=ej3s(x);

50 er0=norm(ys-Y)/norm(ys);

z0=[y0(:);y1(:)];

ej=’ej3’;

55 fprintf(’Spline Lineal: Error=%e\tTiempo=%f\n’,er0,t0)

end

if i==1

tic

60 [x,z]=ode45(ej,[0 b],z0,options);

t2=toc;

l=length(z);

Z=reshape(z(l,1:2)’,2,1);

ys=ej1s(x(end));

65 er2=norm(ys-Z)/norm(ys);

106 MATLAB Code

fprintf(’ode45: Error=%e\tTiempo=%f\n’,er2,t2)

tic

[x,z]=ode23(ej,[0 b],z0,options);

70 t2=toc;

l=length(z);

Z=reshape(z(l,1:2)’,2,1);

ys=ej1s(x(end));

er2=norm(ys-Z)/norm(ys);

75 fprintf(’ode23: Error=%e\tTiempo=%f\n’,er2,t2)

tic

[x,z]=ode113(ej,[0 b],z0,options);

t2=toc;

80 l=length(z);

Z=reshape(z(l,1:2)’,2,1);

ys=ej1s(x(end));

er2=norm(ys-Z)/norm(ys);

fprintf(’ode113: Error=%e\tTiempo=%f\n’,er2,t2)

85

tic

[x,z]=ode15s(ej,[0 b],z0,options);

t2=toc;

l=length(z);

90 Z=reshape(z(l,1:2)’,2,1);

ys=ej1s(x(end));

er2=norm(ys-Z)/norm(ys);

fprintf(’ode15s: Error=%e\tTiempo=%f\n’,er2,t2)

95 tic

[x,z]=ode23s(ej,[0 b],z0,options);

t2=toc;

l=length(z);

Z=reshape(z(l,1:2)’,2,1);

100 ys=ej1s(x(end));

er2=norm(ys-Z)/norm(ys);

fprintf(’ode23s: Error=%e\tTiempo=%f\n’,er2,t2)

tic

105 [x,z]=ode23t(ej,[0 b],z0,options);

t2=toc;

l=length(z);

Z=reshape(z(l,1:2)’,2,1);

ys=ej1s(x(end));

110 er2=norm(ys-Z)/norm(ys);

fprintf(’ode23t: Error=%e\tTiempo=%f\n’,er2,t2)

tic

[x,z]=ode23tb(ej,[0 b],z0,options);

115 t2=toc;

MATLAB Code 107

l=length(z);

Z=reshape(z(l,1:2)’,2,1);

ys=ej1s(x(end));

er2=norm(ys-Z)/norm(ys);

120 fprintf(’ode23tb: Error=%e\tTiempo=%f\n’,er2,t2)

else

tic

[x,z]=ode45(ej,[0 b],z0,options);

t2=toc;

125 l=length(z);

Z=reshape(z(l,1:4)’,2,2);

er2=norm(ys-Z)/norm(ys);

fprintf(’ode45: Error=%e\tTiempo=%f\n’,er2,t2)

130 tic

[x,z]=ode23(ej,[0 b],z0,options);

t2=toc;

l=length(z);

Z=reshape(z(l,1:4)’,2,2);

135 er2=norm(ys-Z)/norm(ys);

fprintf(’ode23: Error=%e\tTiempo=%f\n’,er2,t2)

tic

[x,z]=ode113(ej,[0 b],z0,options);

140 t2=toc;

l=length(z);

Z=reshape(z(l,1:4)’,2,2);

er2=norm(ys-Z)/norm(ys);

fprintf(’ode113: Error=%e\tTiempo=%f\n’,er2,t2)

145

tic

[x,z]=ode15s(ej,[0 b],z0,options);

t2=toc;

l=length(z);

150 Z=reshape(z(l,1:4)’,2,2);

er2=norm(ys-Z)/norm(ys);

fprintf(’ode15s: Error=%e\tTiempo=%f\n’,er2,t2)

tic

155 [x,z]=ode23s(ej,[0 b],z0,options);

t2=toc;

l=length(z);

Z=reshape(z(l,1:4)’,2,2);

er2=norm(ys-Z)/norm(ys);

160 fprintf(’ode23s: Error=%e\tTiempo=%f\n’,er2,t2)

tic

[x,z]=ode23t(ej,[0 b],z0,options);

t2=toc;

165 l=length(z);

108 MATLAB Code

Z=reshape(z(l,1:4)’,2,2);

er2=norm(ys-Z)/norm(ys);

fprintf(’ode23t: Error=%e\tTiempo=%f\n’,er2,t2)

170 tic

[x,z]=ode23tb(ej,[0 b],z0,options);

t2=toc;

l=length(z);

Z=reshape(z(l,1:4)’,2,2);

175 er2=norm(ys-Z)/norm(ys);

fprintf(’ode23tb: Error=%e\tTiempo=%f\n’,er2,t2)

end

Program 2: prsplin_second_order.m

Program 3: splin2orderm.m

function [Y0,x]=splin2orderm(solver,derf,Y0,Y1,a,b,h,m)

% This function compute the solution of a second order

% differential matrix equation y’’=f(x,y,y’), at [a,b]

% Y(a)=Y0, Y’(a)=Y1

5 %Inputs:

% solver is a MATLAB function which solves Equation (21)

% derf is a MATLAB function which allows to compute the function f and

% its derivatives

% problem and their derivatives

10 % Y0 and Y1 are the initial condition matrices

% [a,b] is the integration interval

% h is the step size

% m is the order of spline

%Outputs:

15 % Y0 and x: Y0 contains the solution at x (a<=x<a+h)

fac=[1 2 6 24 120 720 5040 40320 362880 3628800];%factorials

ph(1)=h;

20 for k=2:m%Compute the powers of h

ph(k)=ph(k-1)*h;

end

nt=round((b-a)/h);%number of integrate subintervals

x=a;

25 Y2=feval(derf,1,x,Y0,Y1);

for i=1:nt

%Computes B_i^(0), B_i^(1) and B_i^(2)

B0=Y0+Y1*ph(1)+Y2*ph(2)/fac(2);

B1=Y1+Y2*ph(1);

30 B2=Y2;

for k=2:m-2

Aux=feval(derf,k,x,Y0,Y1);

MATLAB Code 109

B0=B0+Aux*ph(k+1)/fac(k+1);

B1=B1+Aux*ph(k)/fac(k);

35 B2=B2+Aux*ph(k-1)/fac(k-1);

end

x=x+h;

X=feval(solver,derf,x,B0,B1,B2,m,ph);%Solve the equation X=F(X)

%Compute of values of y, y’ and y’’ at x=x+h

40 Y0=B0+X*ph(m);

Y1=B1+m*X*ph(m-1);

Y2=B2+m*(m-1)*X*ph(m-2);

end

45

Program 3: splin2orderm.m

Program 4: prsplin_second_order_lineal_gnuplot.m

function prsplin_second_order_lineal_gnuplot(m)

%Ejemplo 1

5 f=’df_ej1’;

y0=[1;0];y1=[0;pi];a=0;%Ejemplo 3.1

solver=’solver_g’;

file_id= fopen(’spline6_ej1_0.1’,’w’);

10 xb=0;h=0.1;

fprintf(file_id,’0 1e-16\n’);

for i=1:10

xb=xb+h;

Ya=splin2order(solver,f,y0,y1,a,xb,h,m);

15 Ys=ej1s(xb);

norm_Ys=norm(Ys);

er=norm(Ys-Ya)/norm_Ys;

fprintf(file_id,’%f %e\n’,xb,er);

end

20 fclose(file_id);

file_id= fopen(’spline6_ej1_0.01’,’w’);

xb=0;h=0.01;

fprintf(file_id,’0 1e-16\n’);

25 for i=1:100

xb=xb+h;

Ya=splin2order(solver,f,y0,y1,a,xb,h,m);

Ys=ej1s(xb);

norm_Ys=norm(Ys);

30 er=norm(Ys-Ya)/norm_Ys;

fprintf(file_id,’%f %e\n’,xb,er);

end

110 MATLAB Code

fclose(file_id);

35 file_id= fopen(’spline6_ej1_0.001’,’w’);

xb=0;h=0.001;

fprintf(file_id,’0 1e-16\n’);

for i=1:100

xb=xb+10*h;

40 Ya=splin2order(solver,f,y0,y1,a,xb,h,m);

Ys=ej1s(xb);

norm_Ys=norm(Ys);

er=norm(Ys-Ya)/norm_Ys;

fprintf(file_id,’%f %e\n’,xb,er);

45 end

fclose(file_id);

%Ejemplo 2

A0=[0 0;0 1];A1=[-1 1;0 -2];y0=eye(2);y1=y0;a=0;fs=’ej2s’;

50

file_id= fopen(’spline6_ej2_0.1’,’w’);

xb=0;h=0.1;

fprintf(file_id,’0 1e-16\n’);

for i=1:10

55 xb=xb+h;

Ya=splin2linear(A0,A1,y0,y1,a,xb,h,m);

Ys=feval(fs,xb);

norm_Ys=norm(Ys);

er=norm(Ys-Ya)/norm_Ys;

60 fprintf(file_id,’%f %e\n’,xb,er);

end

fclose(file_id);

file_id= fopen(’spline6_ej2_0.01’,’w’);

65 xb=0;h=0.01;

fprintf(file_id,’0 1e-16\n’);

for i=1:100

xb=xb+h;

Ya=splin2linear(A0,A1,y0,y1,a,xb,h,m);

70 Ys=feval(fs,xb);

norm_Ys=norm(Ys);

er=norm(Ys-Ya)/norm_Ys;

fprintf(file_id,’%f %e\n’,xb,er);

end

75 fclose(file_id);

file_id= fopen(’spline6_ej2_0.001’,’w’);

xb=0;h=0.001;

fprintf(file_id,’0 1e-16\n’);

80 for i=1:100

xb=xb+10*h;

Ya=splin2linear(A0,A1,y0,y1,a,xb,h,m);

MATLAB Code 111

Ys=feval(fs,xb);

norm_Ys=norm(Ys);

85 er=norm(Ys-Ya)/norm_Ys;

fprintf(file_id,’%f %e\n’,xb,er);

end

fclose(file_id);

90 %Ejemplo 3

A0=[1 0;2 1];y0=zeros(2);y1=[1 0;1 1];a=0;fs=’ej3s’;

file_id= fopen(’spline6_ej3_0.1’,’w’);

xb=0;h=0.1;

95 fprintf(file_id,’0 1e-16\n’);

for i=1:10

xb=xb+h;

Ya=splin2lineari(A0,y0,y1,a,xb,h,m);

Ys=feval(fs,xb);

100 norm_Ys=norm(Ys);

er=norm(Ys-Ya)/norm_Ys;

fprintf(file_id,’%f %e\n’,xb,er);

end

fclose(file_id);

105

file_id= fopen(’spline6_ej3_0.01’,’w’);

xb=0;h=0.01;

fprintf(file_id,’0 1e-16\n’);

for i=1:100

110 xb=xb+h;

Ya=splin2lineari(A0,y0,y1,a,xb,h,m);

Ys=feval(fs,xb);

norm_Ys=norm(Ys);

er=norm(Ys-Ya)/norm_Ys;

115 fprintf(file_id,’%f %e\n’,xb,er);

end

fclose(file_id);

file_id= fopen(’spline6_ej3_0.001’,’w’);

120 xb=0;h=0.001;

fprintf(file_id,’0 1e-16\n’);

for i=1:100

xb=xb+10*h;

Ya=splin2lineari(A0,y0,y1,a,xb,h,m);

125 Ys=feval(fs,xb);

norm_Ys=norm(Ys);

er=norm(Ys-Ya)/norm_Ys;

fprintf(file_id,’%f %e\n’,xb,er);

end

130 fclose(file_id);

Program 4: prsplin_second_order_lineal_gnuplot.m

112 MATLAB Code

The program splin2orderm.m for arbitrary order m of the matrix splines and the script
for graphics generation prsplin second order lineal gnuplot.m, which passes the results to
the gnuplot programming language [10], both rely on the external function call solver g()

provided by the following code:

Program 5: solver_g.m

function z= solver_g(f,x,dy0,dy1,dy2,m,h)

fac=[1 2 6 24 120 720 5040 40320 362880 3628800];

aux=fac(m-2)/h(m-2);

z=aux*(feval(f,1,x,dy0,dy1)-dy2);

5 ea=1;

while ea>eps

z1=aux*(feval(f,1,x,dy0+z*h(m)/fac(m),dy1+z*h(m-1)/fac(m-1))-dy2);

ea=norm(z-z1);

z=z1;

10 end

Program 5: solver_g.m

Some of the examples for the numerical solutions of first-order matrix differential models
using higher-order matrix splines were produced with the following MATLAB programs:

Program 6: pr_spline.m

function pr_spline(xb,h)

%pr_spline(1,0.02); definite example

%

%Example 1 for publication in the journal

5 %Mediterranean Journal of Mathematics

path(path,’G:\Docs\Documentos\Dropbox\Investigacin\Splines\matlab\numerico’)

options=odeset(’RelTol’,2.22045e-14,’AbsTol’,1e-14);

for i=1:20

10 rand(1000)*rand(1000);

end

tic

[xb,Y0]=splin_AY(’ej1’,0,xb,ones(2),[1;0],h);

15 time=toc;

Ys=feval(’ej1s’,xb);

norm_Ys=norm(Ys);

if norm_Ys>0

er=norm(Ys-Y0)/norm_Ys;

20 else

er=norm(yas-ya);

end

fprintf(’Spline4(h=%4f): Time=%f er=%e\n’,h,time,er)

MATLAB Code 113

25 tic

[xb,Y0]=splin_AY4(’ej14’,0,xb,ones(2),[1;0],h);

time=toc;

Ys=feval(’ej1s’,xb);

norm_Ys=norm(Ys);

30 if norm_Ys>0

er=norm(Ys-Y0)/norm_Ys;

else

er=norm(yas-ya);

end

35 fprintf(’Spline5(h=%4f): Time=%f er=%e\n’,h,time,er)

tic

[xb,Y0]=splin_AY5(’ej15’,0,xb,ones(2),[1;0],h);

time=toc;

40 Ys=feval(’ej1s’,xb);

norm_Ys=norm(Ys);

if norm_Ys>0

er=norm(Ys-Y0)/norm_Ys;

else

45 er=norm(yas-ya);

end

fprintf(’Spline6(h=%4f): Time=%f er=%e\n’,h,time,er)

50 tic

[x,y]=ode45(’ej1ode’,[0 xb],[1;0],options);

time=toc;

l=length(x);

Ys=feval(’ej1s’,x(l));

55 norm_Ys=norm(Ys);

Y0=y(l,1:2)’;

if norm_Ys>0

er=norm(Ys-Y0)/norm_Ys;

else

60 er=norm(yas-ya);

end

fprintf(’ode45: Time=%f er=%e\n’,time,er)

tic

65 [x,y]=ode23(’ej1ode’,[0 xb],[1;0],options);

time=toc;

l=length(x);

Ys=feval(’ej1s’,x(l));

norm_Ys=norm(Ys);

70 Y0=y(l,1:2)’;

if norm_Ys>0

er=norm(Ys-Y0)/norm_Ys;

else

114 MATLAB Code

er=norm(yas-ya);

75 end

fprintf(’ode23: Time=%f er=%e\n’,time,er)

tic

[x,y]=ode113(’ej1ode’,[0 xb],[1;0],options);

80 time=toc;

l=length(x);

Ys=feval(’ej1s’,x(l));

norm_Ys=norm(Ys);

Y0=y(l,1:2)’;

85 if norm_Ys>0

er=norm(Ys-Y0)/norm_Ys;

else

er=norm(yas-ya);

end

90 fprintf(’ode113: Time=%f er=%e\n’,time,er)

tic

[x,y]=ode15s(’ej1ode’,[0 xb],[1;0],options);

time=toc;

95 l=length(x);

Ys=feval(’ej1s’,x(l));

norm_Ys=norm(Ys);

Y0=y(l,1:2)’;

if norm_Ys>0

100 er=norm(Ys-Y0)/norm_Ys;

else

er=norm(yas-ya);

end

fprintf(’ode15s: Time=%f er=%e\n’,time,er)

105

tic

[x,y]=ode23s(’ej1ode’,[0 xb],[1;0],options);

time=toc;

l=length(x);

110 Ys=feval(’ej1s’,x(l));

norm_Ys=norm(Ys);

Y0=y(l,1:2)’;

if norm_Ys>0

er=norm(Ys-Y0)/norm_Ys;

115 else

er=norm(yas-ya);

end

fprintf(’ode23s: Time=%f er=%e\n’,time,er)

120 tic

[x,y]=ode23t(’ej1ode’,[0 xb],[1;0],options);

time=toc;

l=length(x);

MATLAB Code 115

Ys=feval(’ej1s’,x(l));

125 norm_Ys=norm(Ys);

Y0=y(l,1:2)’;

if norm_Ys>0

er=norm(Ys-Y0)/norm_Ys;

else

130 er=norm(yas-ya);

end

fprintf(’ode23t: Time=%f er=%e\n’,time,er)

tic

135 [x,y]=ode23tb(’ej1ode’,[0 xb],[1;0],options);

time=toc;

l=length(x);

Ys=feval(’ej1s’,x(l));

norm_Ys=norm(Ys);

140 Y0=y(l,1:2)’;

if norm_Ys>0

er=norm(Ys-Y0)/norm_Ys;

else

er=norm(yas-ya);

145 end

fprintf(’ode23tb: Time=%f er=%e\n’,time,er)

Program 6: pr_spline.m

Program 7: pr_spline_A_B.m

function pr_spline_A_B(xb,h,pr)

%pr_spline_A_B(2,0.01,1); definite example for article

path(path,’G:\Docs\Documentos\Dropbox\Investigacin\Splines\matlab\numerico’)

options=odeset(’RelTol’,2.22045e-014,’AbsTol’,1e-14);

5 %options=odeset(’RelTol’,1e-17);

%options=odeset(’AbsTol’,1e-14);

for i=1:20

rand(1000)*rand(1000);

end

10

if pr==1

%Example 2 first version for Mediterranean Journal of Mathematics

f1=’ej2’;f2=’ej24’;f3=’ej25’;

fs=’ej2s’;

15 f0=’ej2ode’;fos=’ej2sode’;

A0=[-1 0 0;1 0 1;0 -1 1];B0=[2 3;-1 4;1 -1];

Y0=[1 1;0 -1;0 0];Yo0=[1;0;0;1;-1;0];

elseif pr==2

%Example 2 second version for Mediterranean Journal of Mathematics

20 f1=’ej5’;f2=’ej54’;f3=’ej55’;

fs=’ej5s’;

116 MATLAB Code

f0=’ej5ode’;fos=’ej5sode’;

A0=[1 -1;1 1];B0=[-4 0;-5 -1];Y0=[3 0;1 1];Yo0=[3;1;0;1];

end

25

tic

[xb,Ya]=splin_AY_B(f1,0,xb,A0,B0,Y0,h);

time=toc;

Ys=feval(fs,xb);

30 norm_Ys=norm(Ys);

if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

else

er=norm(Ys-Ya);

35 end

fprintf(’Spline4: Time=%f-h=%4f-er=%e\n’,time,h,er)

tic

[xb,Ya]=splin_AY_B4(f2,0,xb,A0,B0,Y0,h);

40 time=toc;

Ys=feval(fs,xb);

norm_Ys=norm(Ys);

if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

45 else

er=norm(Ys-Ya);

end

fprintf(’Spline5: Time=%f-h=%4f-er=%e\n’,time,h,er)

50 tic

[xb,Ya]=splin_AY_B5(f3,0,xb,A0,B0,Y0,h);

time=toc;

Ys=feval(fs,xb);

norm_Ys=norm(Ys);

55 if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

else

er=norm(Ys-Ya);

end

60 fprintf(’Spline6: Time=%f-h=%4f-er=%e\n’,time,h,er)

tic

[x,y]=ode45(f0,[0 xb],Yo0,options);

time=toc;

65 [m,n]=size(y);

Ys=feval(fos,x(m));

norm_Ys=norm(Ys);

Ya=y(m,1:n)’;

if norm_Ys>0

70 er=norm(Ys-Ya)/norm_Ys;

else

MATLAB Code 117

er=norm(Ys-Ya);

end

fprintf(’ode45: Time=%f er=%e\n’,time,er)

75

tic

[x,y]=ode23(f0,[0 xb],Yo0,options);

time=toc;

[m,n]=size(y);

80 Ys=feval(fos,x(m));

norm_Ys=norm(Ys);

Ya=y(m,1:n)’;

if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

85 else

er=norm(Ys-Ya);

end

fprintf(’ode23: Time=%f er=%e\n’,time,er)

90 tic

[x,y]=ode113(f0,[0 xb],Yo0,options);

time=toc;

[m,n]=size(y);

Ys=feval(fos,x(m));

95 norm_Ys=norm(Ys);

Ya=y(m,1:n)’;

if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

else

100 er=norm(Ys-Ya);

end

fprintf(’ode113: Time=%f er=%e\n’,time,er)

tic

105 [x,y]=ode15s(f0,[0 xb],Yo0,options);

time=toc;

[m,n]=size(y);

Ys=feval(fos,x(m));

norm_Ys=norm(Ys);

110 Ya=y(m,1:n)’;

if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

else

er=norm(Ys-Ya);

115 end

fprintf(’ode15s: Time=%f er=%e\n’,time,er)

tic

[x,y]=ode23s(f0,[0 xb],Yo0,options);

120 time=toc;

[m,n]=size(y);

118 MATLAB Code

Ys=feval(fos,x(m));

norm_Ys=norm(Ys);

Ya=y(m,1:n)’;

125 if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

else

er=norm(Ys-Ya);

end

130 fprintf(’ode23s: Time=%f er=%e\n’,time,er)

tic

[x,y]=ode23t(f0,[0 xb],Yo0,options);

time=toc;

135 [m,n]=size(y);

Ys=feval(fos,x(m));

norm_Ys=norm(Ys);

Ya=y(m,1:n)’;

if norm_Ys>0

140 er=norm(Ys-Ya)/norm_Ys;

else

er=norm(Ys-Ya);

end

fprintf(’ode23t: Time=%f er=%e\n’,time,er)

145

tic

[x,y]=ode23tb(f0,[0 xb],Yo0,options);

time=toc;

[m,n]=size(y);

150 Ys=feval(fos,x(m));

norm_Ys=norm(Ys);

Ya=y(m,1:n)’;

if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

155 else

er=norm(Ys-Ya);

end

fprintf(’ode23tb: Time=%f er=%e\n’,time,er)

Program 7: pr_spline_A_B.m

Program 8: pr_spline_A_B_gnuplot.m

function pr_spline_A_B_gnuplot(pr)

%

path(path,’G:\Docs\Documentos\Dropbox\Investigacin\Splines\matlab\numerico’)

5

if pr==1

%Example 2 first version for Mediterranean Journal of Mathematics

MATLAB Code 119

f1=’ej2’;f2=’ej24’;f3=’ej25’;

fs=’ej2s’;

10 A0=[-1 0 0;1 0 1;0 -1 1];B0=[2 3;-1 4;1 -1];

Y0=[1 1;0 -1;0 0];Yo0=[1;0;0;1;-1;0];

elseif pr==2

%Example 2 second version for Mediterranean Journal of Mathematics

f1=’ej5’;f2=’ej54’;f3=’ej55’;

15 fs=’ej5s’;

A0=[1 -1;1 1];B0=[-4 0;-5 -1];Y0=[3 0;1 1];Yo0=[3;1;0;1];

end

file_id= fopen(’spline4_ej2_0.01’,’w’);

20 xb=0;h=0.01;

fprintf(file_id,’0 0\n’);

for i=1:100

xb=xb+h;

[x,Ya]=splin_AY_B(f1,0,xb,A0,B0,Y0,h);

25 Ys=feval(fs,x);

norm_Ys=norm(Ys);

if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

else

30 er=norm(Ys-Ya);

end

fprintf(file_id,’%f %e\n’,xb,er);

end

fclose(file_id);

35

file_id= fopen(’spline4_ej2_0.001’,’w’);

xb=0;h=0.001;

fprintf(file_id,’0 0\n’);

for i=1:100

40 xb=xb+10*h;

[x,Ya]=splin_AY_B(f1,0,xb,A0,B0,Y0,h);

Ys=feval(fs,x);

norm_Ys=norm(Ys);

if norm_Ys>0

45 er=norm(Ys-Ya)/norm_Ys;

else

er=norm(Ys-Ya);

end

fprintf(file_id,’%f %e\n’,xb,er);

50 end

fclose(file_id);

file_id= fopen(’spline5_ej2_0.01’,’w’);

xb=0;h=0.01;

55 fprintf(file_id,’0 0\n’);

for i=1:100

xb=xb+h;

120 MATLAB Code

[x,Ya]=splin_AY_B4(f2,0,xb,A0,B0,Y0,h);

Ys=feval(fs,x);

60 norm_Ys=norm(Ys);

if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

else

er=norm(Ys-Ya);

65 end

fprintf(file_id,’%f %e\n’,xb,er);

end

fclose(file_id);

70 file_id= fopen(’spline5_ej2_0.001’,’w’);

xb=0;h=0.001;

fprintf(file_id,’0 0\n’);

for i=1:100

xb=xb+10*h;

75 [x,Ya]=splin_AY_B4(f2,0,xb,A0,B0,Y0,h);

Ys=feval(fs,x);

norm_Ys=norm(Ys);

if norm_Ys>0

er=norm(Ys-Ya)/norm_Ys;

80 else

er=norm(Ys-Ya);

end

fprintf(file_id,’%f %e\n’,xb,er);

end

85 fclose(file_id);

Program 8: pr_spline_A_B_gnuplot.m

References

1. The Mathworks Inc. Staff, MATLAB - The Language of Technical Computing, The Mathworks Inc., Natick, MA, 2004.
2. Hans Benker, Ingenieurmathematik Kompakt - Problemlösungen mit MATLAB: Einstieg und Nachschlagewerk für Ingenieure und

Naturwissenschaftler, Springer, Berlin, 2010.
3. Jaan Kiusalaas, Numerical Methods in Engineering with MATLAB, Cambridge University Press, Cambridge, 2010.
4. Brian Hahn and Dan Valentine, Essential MATLAB for Engineers and Scientists, Academic Press, New York, 2007.
5. Aslak Tveito, Hans Petter Langtangen, Bjorn Frederik Nielsen, and Xing Cai, Elements of Scientific Computing, Springer,

Berlin, 2010.
6. John W. Eaton, GNU Octave Manual, Network Theory Limited, Bristol, UK, 2002.
7. GNU Octave, http://www.gnu.org/software/octave/.
8. Alfio Quarteroni, Fausto Saleri, and Paola Gervasio, Scientific Computing with MATLAB and Octave, Texts in Computational

Science and Engineering, Springer, Berlin, 2010.
9. Hans Petter Langtangen, Scripting in Computational Science, Springer, Berlin, 2004.

10. Philipp K. Janert, gnuplot in Action: Understanding Data with Graphs, Manning Publications Co., Greenwich, CT, 2009.

http://www.gnu.org/software/octave/

MATLAB Code 121

122 MATLAB Code

	Background and motivation
	References

	Numerical solutions of first-order matrix differential equations using cubic splines
	Introduction
	Proposed general method
	Algorithm
	Example: A non-linear vector system
	Example: Sylvester matrix differential equation
	Example: Riccati matrix differential equation
	Conclusions
	References

	Numerical solutions of second-order matrix differential equations using cubic splines
	Introduction
	Notation and terminology
	Construction of the method
	Algorithm
	Examples
	A non-linear differential vector system
	Incomplete second-order differential system
	Second-order polynomial matrix equation

	Conclusions
	References

	Approximate solutions of linear matrix differential equations with higher-order splines
	Introduction
	Description of the method
	Examples
	Example 1
	Example 2

	Conclusions
	References

	Approximate solutions of first-order matrix differential equations with higher-order splines
	Introduction
	Description of the method
	Numerical Examples
	A scalar test problem
	A non-linear vector system
	Sylvester matrix differential equation
	The Hénon-Heiles system

	Conclusions
	References

	Approximate solutions of second-order matrix differential equations with higher-order splines
	Introduction
	Higher-Order Matrix Splines
	Algorithms and MatLab functions
	Numerical Examples
	A non-linear vector system
	Linear second-order differential matrix equations
	Incomplete linear second-order differential matrix equations

	Conclusions
	References

	MatLab Code
	References

