
D8.2.1.P2 Report: mWater prototype
#2 analysis and design

Vicente Botti (UPV), Natalia Criado (UPV), Antonio Garrido
(UPV), Juan A. Gimeno (UPV), Adriana Giret (UPV), Pablo

Noriega (CSIC)

Abstract.
CSD2007-0022, INGENIO 2010
Deliverable D8.2.1.P2 (WP8, Task 8.2)

The mWater prototype #2 analysis and design is detailed in this report.
Keyword list: mWater, e-market, analysis and design

Copyright c© 2013 The contributors

Document Identifier AT/2008/D8.2.1.P2/v0.1
Project CSD2007-0022, INGENIO 2010
Task T8.2
Version v0.1
Date Dicember 03, 2010
State draft
Distribution public

Agreement Technologies Consortium

This document is part of a research project funded by the Consolider Programme of the Ministry of Science and
Innovation as project number CSD2007-0022, INGENIO 2010.

Spanish Scientific Research Council (CSIC)
Institut d’Investigació en Intel·ligència Artificial (IIIA)
- Coordinator
Campus UAB
08193, Bellaterra
Catalonia
Spain
Contact person: Carles Sierra
E-mail address: sierra@iiia.csic.es

Universidad Rey Juan Carlos (URJC)
Centre for Intelligent Information Technologies
(CETINIA)
Campus de Móstoles
C/ Tulipán s/n E-28933 Móstoles (Madrid)
Spain
Contact person: Sascha Ossowski
E-mail address: sascha.ossowski@urjc.es

Universitat Politècnica de València (UPV)
Departament de Sistemes Informàtics i Computació
Camino de Vera s/n
40622 València
Spain
Contact person : Vicent Botti
E-mail address: vbotti@dsic.upv.es

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

IIIA-CSIC, Bellaterra
Universidad Rey Juan Carlos, Madrid
Universitat Politecnica de Valencia, Valencia

3

Changes

Version Date Author Changes
0.1 03.12.10 Adriana Giret creation

Executive Summary

mWater is a software demonstrator developed in the Agreement Technologies Project. It
is a Multi-Agent System (MAS) application that implements a market for water rights,
including the model and simulation of the water-right market itself, the basin, users, pro-
tocols, norms and grievance situations.

mWater is motivated due to the fact that water scarcity is becoming a major concern in
most countries, not only because it threatens the economic viability of current agricultural
practices, but because it is likely to alter an already precarious balance among its different
types of use.

In hydrological terms, a water market can be defined as an institutional, decentralized
framework where users with water rights (right holders) are allowed to voluntarily trade
them, always fulfilling some pre-established norms, to other users in exchange of some
compensation, economic or not. And an institutional framework such as mWater, where
water rights may be exchanged more freely and not only under exceptional conditions,
leads to a more efficient use of water.

mWater is a regulated open MAS that uses intelligent agents to manage a flexible
water-right market. One of the main goals of mWater is to be used as a simulator to assist
in decision-taking processes for policy makers. Our simulator focuses on demands and,
in particular, on the type of regulatory (in terms of norms selection and agents behaviour),
and market mechanisms that foster an efficient use of water while also trying to prevent
conflicts among parties.

mWater plays a vital role as it allows us to define different norms, agents behaviour
and roles, and assess their impact in the market, thus enhancing the quality and applica-
bility of its results as a decision support tool.

The institutional structure of mWater is described in Deliverable 8.2.1: mWater Anal-
ysis and Design. Deliverable 8.2.1 defines the backbone of the market in terms of dia-
logical and performative structures, stating the main structural regulations, processes and
roles of the system. On the other hand, this report (Deliverable 8.2.1.P2) specifies the
analysis and design of the constituent agents that can act in the institutional market of wa-
ter rights. The main focus is on the normative design and on the deliberative components
of the market staff agents and the water users.

Contents

1 mWater structure 1
1.0.1 Modelling the system as an EI 1
1.0.2 Storing the Information. Database Design 3
1.0.3 Implementation of Agents . 4
1.0.4 Simulation Tool . 6

2 A Normative module for staff agents 8
2.1 General Overview . 8
2.2 Normative Module . 9

2.2.1 Logic Preliminaries . 9
2.2.2 The situational Awareness . 10
2.2.3 The Plan Base . 10
2.2.4 The Norm Base . 10

2.3 The deliberative and decision module 12
2.3.1 Norm-based Expansion . 13
2.3.2 Decision Making . 15

3 A deliberative module for water users: a constraint programming formula-
tion for planning in electronic institutions 16
3.1 General overview and motivation . 16
3.2 Planning in electronic institutions . 17

3.2.1 Basic background on planning 18
3.2.2 A general constraint programming formulation for planning . . . 19

3.3 Planning in mWater . 22
3.3.1 Navigating through mWater . 23
3.3.2 Optimization in the trading table 23
3.3.3 Integrating navigation, optimization and execution 25

4 Conclusions and Future Work 27

iii

Chapter 1

mWater structure

mWater uses a multi-tier architecture, as depicted in Fig. 1.1. In addition to the three typ-
ical tiers of presentation, business and data persistence, we have a module that represents
the Electronic Institution (EI) for mWater. This way, the construction of mWater consists
of four stages: i) modelling the system as an electronic institution; ii) designing the in-
formation system based on a database of the entire electronic market and basin structure
(persistence tier); iii) implementing the agents (business tier); and iv) deploying the GUI
for simulation tool (presentation tier), which are described next.

1.0.1 Modelling the system as an EI

We have followed the IIIA EI conceptual model [AEN+05], whereas for the actual speci-
fication and implementation we have used the EIDE platform1. The mWater institution is
specified through a nested performative structure with multiple processes, as depicted in
Fig. 1.2 (see Deliverable 8.2.1 for further details). There are five agents’ roles: i) guests,
i.e. users before entering the market; ii) water users, i.e. the guests that have valid water
rights; iii) buyer/seller, thus representing the particular role the water user currently joins
for the market; iv) third parties, i.e. those water users that are direct or indirectly affected
by a water transfer —usually conflicting parties; and v) market facilitator and basin au-
thority, thus representing the governing roles of the market. The top structure describes
the overall market environment and includes the following elements:

• Entitlement, which represents the bootstrap routine to give access to the market

1EIDE is a development environment for Electronic Institutions, implemented at the IIIA
(http://e-institutor.iiia.csic.es/eide/pub). It consists of a set of tools that support
all the stages of EI engineering, namely: i) ISLANDER, a tool for EI specification; ii) aBUILDER, a tool to
support the automatic generation of agent (code) skeletons from ISLANDER specifications; iii) the AMELI
middleware that handles the enactment of the institution; and iv) SIMDEI, a testing and monitoring tool. We
have also used the following methods during the system design [GB04a, JB04, SJR+02, GB04b, AGV+04,
GB06, GJR+10, GV09, APA+07, BJC+06]

1

1. MWATER STRUCTURE

Figure 1.1: Multi-tier architecture of the mWater decision support tool

2 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

to those water-right holders who prove they are entitled to trade because: i) they
have an existing right, or ii) a new right is created by the mWater authorities and an
eligible holder gets it granted.

• Accreditation, which allows legally entitled water-right holders to trade by register-
ing their rights and individual data for management and enforcement purposes.

• TradingHall, which represents a nested performative structure. It basically provides
information about the market and, at the same time, allows users and trading staff
to initiate trading and ancillary operations.

• TradingTables, which represent a nested performative structure and the core of our
market. It allows a market facilitator to open a new trading table whenever a new
auction period starts (i.e. automatically) or whenever a right-holder requests to
trade a right (i.e. on demand). Our implementation accommodates different trad-
ing mechanisms and negotiation protocols, such as Dutch auction, English auction,
standard double auction and blind double auction with mediator negotiation, but
new negotiation protocols can be easily included.

• Agreement Validation, which validates agreements on water-right transfers accord-
ing to the market regulation. More particularly, staff have to check whether the
agreement satisfies formal conditions and the hydrological plan normative conven-
tions.

• Contract Enactment, which represents the signature among parties involved in a
norm-abiding agreement, thus making the agreement active.

• Grievances, which represent a nested performative structure. It allows external
stakeholders to initiate a grievance and conflict resolution procedure that may over-
turn or modify an active agreement. Even if there are no grievances that modify
a contract, parties might not fulfill the contract properly and there might be some
contract reparation actions.

• Annulment, which deals with anomalies that deserve a temporary or permanent
withdrawal of water rights.

The essence of our market relies on the Trading Tables and Grievances structures.
The former implements the trading process itself, which entails the participation of the
buyer/seller and staff agents. Since the agreement execution may eventually turn con-
flicting with third party agents, the grievances structure is necessary to allow normative
conflicts to be solved within the mWater institution.

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 3

1. MWATER STRUCTURE

Figure 1.2: mWater performative structure. Participating roles: g - guest, w - water user,
b - buyer, s - seller, p - third party, m - market facilitator, ba - basin authority

1.0.2 Storing the Information. Database Design

mWater implements the persistence tier by means of a MySQL database with over 50 re-
lational tables in which historical data is stored (see Fig. 1.3). In essence, we have three
views that comprise the basin, market and grievance structure. In the first view we model
all the information about the nodes, connections, users, norms and water-right defini-
tion. In the second view we model information related to the entire market, including the
trading tables and their protocols, the water rights to be traded, participants, agreements
and contracts that can be signed. Finally, in the third view we model the information
about the legislation and conflicts that may appear after an agreement or contract and the
mechanisms for solving such a conflict, that is the negotiation stage or arbitration proce-
dure. This way, policy makers can run the whole market with real and simulated data for
drought periods, rainfall, norms and users, and analyse how they affect the final results
and the number of grievances. Furthermore, all the changes in the market are registered
in the database to provide statistical information and/or distributions to the policy makers,
which are essential in a decision-support tool.

1.0.3 Implementation of Agents

mWater implements a schema of agents that include both the internal and external roles.
Broadly speaking, there is a JADE (Java Agent DEvelopment Framework2) definition for
each class that represents the roles in the scenes. The generation of the Java classes is

2http://jade.tilab.com

4 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

Figure 1.3: Fragment of the database: basin and market structure

Figure 1.4: Schema of the agents implementation. The mapping proceeds by generating
one Java class per role in each scene it can be involved

done in an automated way, thanks to the tools provided by the EIDE development envi-
ronment. More particularly, the mapping that is used to generate the agents implemen-
tation is shown in Fig. 1.4. In particular, one Java class is created per valid role (guest,
water user, buyer, seller, third party, market facilitator and basin authority) and per scene
in which each role can participate. Intuitively, this can be seen as a basic template for an
agent participating in a given scene. It is important to note that not all roles participate in
all the scenes —see the definition of the mWater EI in Fig. 1.2—, so there are roles that
are translated into more classes than others. The main idea with this is to offer open and
flexible templates to implement different agents and norms, which provides more oppor-
tunities to the user to evaluate the market indicators under different regulations and types
of agents.

Once the templates have been automatically generated, we can extend them by imple-
menting new classes that represent different behaviours, which is interesting from a sim-
ulation perspective. Basically, we can override methods to change the original behaviour

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 5

1. MWATER STRUCTURE

that allows the agent to move from one state to another, i.e. to execute a transition, or
send a message (interact) to other agents. For instance, in the case of the buyer/seller we
have implemented a favourable and unfavourable behaviour. In the former, the agent is
always in favour of achieving an agreement to trade and follow the norms of the mar-
ket, whereas the latter is always against it and does not follow the rules. Note that we
have also two alternatives for norm enforcement [CAG+10]. The former is to implement
this reasoning process in the institution side, making it impossible for an agent to violate
the norms. Although this provides a trustful and safe environment, it is less flexible and
forces the implementation of the agents to be more aware of the legislation of the institu-
tion. Moreover, in real life problems, it may be difficult or even impossible to check norm
compliance, specially when the violation of the norm cannot be directly observable. And
perhaps, it might be preferable to allow agents to violate norms, since they may intend
to improve the organization functionality, despite violating or ignoring norms. On the
contrary, the second alternative moves the norm reasoning process to the agent side, thus
making the system more open and dynamic. In this case, the intelligence of the agent can
make it more or less law-abiding in order to obtain a higher personal benefit. If a norm is
violated and a third party is affected, the grievance mechanism activates and the conflict
resolution stage modelled in the EI is launched.

In the following Chapters the analysis and design of the deliberative components of
these agents are detailed.

1.0.4 Simulation Tool

The interface of mWater as a simulation tool is simple and intuitive, as shown in Fig.
1.5. The idea is to offer a straightforward and effective way in which the user configures a
given simulation with the following data: i) the starting and finishing date for the period to
be simulated; ii) the water users that will participate in the market (different groups/type
of water users lead to different results; e.g. a group in which water users do not trust
other members of the group results in a low number of agreements and a high number
of conflicts); and iii) the regulation to be applied in the current simulation. The tool
outputs graphical statistical information that indicates how the market reacts to the input
data in terms of the number of transfer agreements signed in the market (historical data
including information about real or simulated users), volume of water transferred, number
of conflicts generated, etc. Apart from these straightforward parameters, the tool also
shows different quality indicators based on “social” functions in order to asses values
such as the trust and reputation levels of the market, or degree of water user satisfaction,
among others.

6 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

Figure 1.5: The mWater simulator in action.

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 7

Chapter 2

A Normative module for staff agents

In this chapter the analysis and design of mWater Staff Agents are presented. We focus
on the normative module for Market Facilitator and Basin Authority roles, for reasoning
on new and or modified norms that are not included in the structural definition of the
Electronic Institution.

2.1 General Overview

In order to allow the simulation of different regulations and to observe their effects on the
behaviour of the water right market we require a deliberative module that can reason on
the regulation and acts upon them. The staff roles of mWater that enforce norm execution
are Market Facilitator and Basin Authority. In an ideal execution of these roles, they
receive messages and perceive events, determine what are the legal actions to perform
and finally execute one of these actions. This execution process is repeated in every
scene whenever any Water User requests or performs an action. But, what are the legal
actions that can be performed? Some of them are defined in the structure of the Electronic
Institution of mWater (see Deliverable 8.2.1 for more details), while others will be defined
in a dynamic fashion whenever a new simulation is configured. For this last type of norm
processing we define the normative module depicted in Figure 2.1.

Figure 2.1 shows the general design of a staff agent in mWater. The agent perceives
events of the environment (Perception) and acts upon (Actuation). In order to act it reasons
about the perceived event, the current status of the environment (Situational Awareness)
and the regulation defined. The Norm Base includes all the norms that apply in the current
simulation. The Plan Base defines the possible action sequences that can be executed in
the given scene. The Deliberative and Decision Module queries the Norm Base, the Plan
Base and the Situational Awareness in order to evaluate what action to perform.

In next sections the normative module and the deliberation process carried out by the
staff agents are detailed.

8

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

Figure 2.1: General Architecture of mWater Staff Agent

2.2 Normative Module

2.2.1 Logic Preliminaries

Let us suppose the existence of a first order language L whose alphabet includes: the
logical connectives {∧,∨,¬,→}; parentheses, brackets, and other punctuation symbols;
and an infinite set of variables. These variables are implicitly universally quantified. In
addition, the alphabet contains non-logical predicate, constant and function symbols. The
set of predicate symbols is formed by action predicates (X) and state predicates (P), which
describe properties of the world and the institution. Since we have implemented the m-
Water prototype as an Electronic Institution, we consider actions as speech acts between
two or more parties. Thus, the set of action predicates X contains all the illocutions
available to the agents in the mWater institution. Let us also assume the standard definition
for wffs (well-formed formulas). Thus we make use of the standard notion of substitution
(σ) of variables in a wff, where σ is a finite and possibly empty set of pairs Y/y where Y
is a variable in a wff and y is a term. If the wff obtained from applying a substitution has
no one variable then it is defined as fully grounded, and as partially grounded otherwise.
Finally, the symbol Γ denotes a formal theory which is a set of sentences in the formal
language L. Γ is defined as a deductive theory since its content is based on some formal
deductive system (denoted by the deductive relation `) and that some of its elementary
statements are taken as axioms. Thus, any sentence which is a logical consequence of one
or more of the axioms of Γ is also a sentence of the theory Γ.

In order to represent uncertainty we define a formal language Lu which is formed by
propositions such as (γ, ρ) where γ is a logic formula in L , and ρ ∈ [0, 1] is a real number
representing the certainty of this proposition.

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 9

2. A NORMATIVE MODULE FOR STAFF AGENTS

2.2.2 The situational Awareness

The market status information is defined by the data stored in the information model of
mWater and the values of the Electronic Institution variables. In order to access to this
information the staff agents execute queries to the informational model and consult the
values of the EI variables. What data is retrieved at every moment will depend on the
particular execution time and the specific scene in which the staff agent is in.

Thus, we assume that all staff agents have theory of beliefs (ΓB ⊆ Lu) that con-
tains the market status information. Moreover, beliefs can also include inference rules,
allowing forward chaining to lead to new beliefs. Similarly, we consider that each agent
is endowed with a theory of desires (ΓD) that represent objectives or situations that the
agent would like to accomplish or bring about. Finally, staff agents are endowed with a
theory of intentions (ΓI) which are desires to which the agent has to some extent commit-
ted. This set of intentions is initially empty. When the agent selects some plan to achieve
one or more of its desires then this instantiated plan becomes an intention.

2.2.3 The Plan Base

In order to define the set of possible action sequences that a staff agent can perform in
the different scenes we have defined a knowledge base that includes all these complete or
partial plans. When dealing with Electronic Institutions this is not a very hard task since
the possible execution sequences are defined by the performative structures.

Definition 1 (Plan) Formally, a plan p is defined as a tuple 〈Σ, γ, δc, δr〉 where:

• Σ = {α1, ..., αn} is a set of actions that compose the plan. Since actions are
illocutions, each αi is a fully grounded illocution expression in X;

• γ ∈ L is the goal achieved by the plan;

• δc, δr ∈ [0, 1] are real values that represent the cost and the risk of the plan, respec-
tively.

Any staff agent has a theory of plans ΓP , which is a set of plans {p1, ..., pn} where
each pi is a plan defined as above.

2.2.4 The Norm Base

In [OPVS+09], a distinction among abstract norm and norm instance is made. Ac-
cording to this, an abstract norm is a conditional rule that defines under which con-
ditions obligations, permissions and prohibitions should be created. In particular, the

10 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

activation condition of an abstract norm defines when an obligation, permission or pro-
hibition must be instantiated. The norm instances that are created out of the abstract
norms are a set of unconditional expressions that bind a particular agent to an obli-
gation, permission or prohibition. Moreover, a norm instance is accompanied by an
expiration condition that defines the validity period or deadline of the norm instance
[CAJB09, CAB09, CAG+10, CAB10b, CJBA10, HGPRG+09].

Following this proposal, our definition of both abstract norms and norm instances is
provided.

Definition 2 (Abstract Norm) An abstract norm is defined as a tuple na = 〈D,A,E,C〉
where:

• D ∈ {F ,O} is the deontic modality of the norm. In this work, obligations (O) and
prohibitions (F) impose constraints on agent behaviours. We use a closed world
assumption where everything is considered as permitted by default. Therefore, per-
missions are not considered in this work, since they can be defined as normative
operators that invalidate the activation of an obligation or prohibition.

• A is a wff of L represents the norm activation condition. It defines under which
circunstancies the abstract norm is active and must be instantiated.

• E is a wff of L is the norm expiration condition, which determines when the norm
no longer affects agents.

• C is a wff of L represents the state of affairs or actions that are obliged, permitted,
or forbidden.

Since this work is focused on the norm compliance problem, only norms that affect
the staff agents will be considered. Thus, for simplicity, we will omit the target of a norm
since those norms addressed to other agents will not be taken into account by the reasoning
process. Moreover, no enforcement mechanisms; i.e., sanctions and rewards, is required
since the staff agents are internal agents that have been implemented as norm-oriented
agents that always comply with the norms of the mWater institution.

For example, in case of water scarcity the Basin Authority should invalidate all water
transfers:

〈F , waterScarcity ∧ validateAgr(A),¬waterScarcity, v ok(A),−,−〉

In the mWater institutions norms are labelled with a degree that represents the priority
of the norm. Therefore, all staff agents are endowed with a theory of abstract norms ΓN
which is formed by expressions such as (n, ρ) where n is a norm (according to definition
2) and ρ ∈ [0, 1] is the priority of the norm. Thus, ΓN contains all the abstract norms that
are involved with the decisions that those agents should take.

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 11

2. A NORMATIVE MODULE FOR STAFF AGENTS

Once the activation conditions of an abstract norm hold, it becomes active and several
norm instances (according to the possible groundings of the activation condition) must be
created. A norm instance is defined as:

Definition 3 (Norm Instance) Given a theory Γ, an abstract norm na = 〈D,A,E,C〉 is
instantiated into a norm instance ni = 〈D,C ′〉 where:

• Γ ` σ(A), where σ is a substitution of variables in A such that σ(A), σ(C), σ(E)
are fully grounded;

• C ′ = σ(C).

For simplicity ,we assume that once a norm is being instantiated both it is fully grounded.
Defining vA, vE, vC as the set of variables occurring in the different components of an
abstract norm (〈D,A,E,C〉), thus these variables may fulfil vA ⊆ vE ∪ vC in order to
ensure that all norm instances have not free variables.

Each norm instance is also labelled with a degree which might be interpreted as the
salience of the norm instance. Therefore, it is assumed that each agent has a theory
of norm instances ΓNI which contains formulas as (n, ρ) where n is a norm instance
(according to definition 3) and ρ ∈ [0, 1] is the salience of this concrete instantiation.
Thus, ΓNI contains all the abstract norms that are involved with the decisions that those
agents should take.

Figure 2.2 shows the logical model of the Norm Base , this is a fragment of the in-
formational model described in Section 1.0.2. The definition of a norm corresponds to
the notion of abstract norm previously presented (see Definition 2). Thus, it is not neces-
sary to represent them explicitly in norm instances (see Definition 3). The NormType is a
value from the enumeration: Obligation, and Prohibition. Every norm is associated to a
set of ontology concepts defined in the mWater information base. The association relation
is defined when a given norm affects to the ontology concept. For example, a norm N1
affects a basin B3 means that N1 is part of the regulation of B3.

2.3 The deliberative and decision module

Usually, proposals on agent architectures which support normative reasoning consider
norms as static constraints that are blindly obeyed by agents. Thus, these norm-oriented
agents are not able to learn new norms and taken into account these unforeseen norms. In
order to overcome this drawback, in [CAB10a, CAB10c] the n-BDI architecture has been
presented. It is an extension of classical BDI architecture with recognition and normative
reasoning capabilities. Thus, n-BDI agents are capable of detecting the activation of
norms and selecting those plans that obey active norms.

12 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

-id
-name

Basin
-id
-definition

Norm
-id
-type

NormType

-Norm

0..*

-Type

1 -Norm

0..*

-Basin

0..*

-id
-description
-state
-activation_date
-expiration_date
-private/public

Contract

-Contract

0..* -Norm

0..*

-id
-state
-signature_date

Agreement

-Norm 0..*

-Agreement
0..*

-id
-name

ProtocolType

-Norm

0..*

-ProtocolType

0..*

-id
-opening_date
-closing_date
-conditions
-access_type
-deal
-protocol_parameters
-num_iterations_until_agreement
-time_until_agreement
-num_participants
-derived[WaterRight]: sellers

TradingTable
0..*

-TradingTable

0..*

-Norm

Figure 2.2: Norm Base logical model

In the m-Water prototype the n-BDI architecture has been considered as the basis for
building the m-Water staff agents. Therefore, these staff agents are endowed with rea-
soning capabilities which consider the existence of norms in their decisions. Specifically,
these staff agents carry out the norm reasoning process in two steps as follows:

• Norm-based Expansion. This first step consists in extending the theory of norm
instances. Once the norm activation conditions hold, abstract norms are instanti-
ated. Then, new desires are derived according to the current agent mental state and
the norm instances. These new desires may help the agent to select the most suit-
able plan to be intended and, as a consequence, normative actions might be carried
out by the agent.

• Decision Making. Once norms have been instantiated and considered for extending
the desire theory, then steps corresponding to decision making are performed. In
particular, both positive and negative effects of actions are considered when creating
intentions for achieving goals. Then the action selection rule chooses the next action
to be carried out. Then the agent executes the action.

2.3.1 Norm-based Expansion

The norm reasoning process is made up of two different phases: (i) instantiation of ab-
stract norms; (ii) internalization of norms. Next, these phases are explained in detail.

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 13

2. A NORMATIVE MODULE FOR STAFF AGENTS

Norm Instantiation

Once the norm activation conditions hold, then the abstract norms are instantiated and
included in ΓNI :

(〈D,A,E,C, S,R〉, ρ) ∈ ΓN , (A, ρA) ∈ ΓB, (¬E, ρ¬E) ∈ ΓB
(〈D,C〉, fActivation(ρA, ρ¬E , ρ)) ∈ ΓNI

If an agent considers that an abstract norm (na = 〈D,A,E,C〉) is currently active
(A ∧ ¬E), then a new norm instance (ni = 〈D,C〉) is generated. The salience of a norm
instance is defined by the fActivation function. It combines the certainty ascribed to the
activation condition (ρA), the certainty about the non expiration of the norm (ρ¬E) and
the norm priority (ρ). Since these three events can be defined as statistically independent,
we define fActivation as the product among the three degrees (fActivation = ρA× ρ¬E × ρ).

Norm Internalization

After performing the instantiation process for creating new norm instances, the agent must
update its theory of desires with the new normative desires. These new goals derived
from norms may help the agent to select the most suitable plan to be intended and, as a
consequence, normative actions might be carried out by the agent:

• Obligation Norm. The rule for updating the ΓD with the positive desires derived
from obligation norms is defined as follows:

(〈O, C〉, ρ) ∈ ΓNI , (C, ρC) ∈ ΓD
(C,max(ρ, ρC)) ∈ ΓD

Once a norm instance corresponding to an obligation is created (ni = 〈O,C〉),
then a new positive desire will be inferred corresponding to the norm condition
(D C,max(ρ, δ)). Thus, the desire degree assigned to the new proposition C is
defined as the maximum between the degree of the norm instance and the previous
desirability (max(ρ, δ)).

• Prohibition Norm. The rule for updating the DC for complying with prohibitions is
defined as:

(〈F , C〉, ρ) ∈ ΓNI , (¬C, ρ¬C) ∈ ΓD
(¬C,max(ρ, ρ¬C)) ∈ ΓD

Similarly to obligation norms, a prohibition related to a condition C is transformed
into a negative desire related to the norm condition (D ¬C,max(ρ, δ)).

14 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

2.3.2 Decision Making

Decision-making systems reason about future actions taking into account the agent’s
goals. Thus, norms restrict the range of goals to be pursued and the set of actions available
for achieving them. Specifically the decision making process of staff agents is formed by
two steps: (i) the generation of intentions; and (ii) the selection of actions.

Intention Generation

The set of preferred formulas which are reachable by some existing plan will derive the
intended formulas of the agent:

(Σ, γ, ρr, ρc) ∈ ΓP ,Σ = {α1, ..., αn}, (γ, ρ) ∈ ΓD
(α1, ρ

+
α1

) ∈ ΓD, (¬α1, ρ
−
α1

) ∈ ΓD, ..., (αn, ρ+
αn

) ∈ ΓD, (¬αn, ρ−α1
) ∈ ΓD,

(ρ+
∑n

k=1 ρ
+
αk

) ≥
∑n

k=1 ρ
−
αk

(Σ, fI(ρ+
∑n

k=1 ρ
+
αk ,

∑n
k=1 ρ

−
αk , ρr, ρc)) ∈ ΓI

In concrete, those desired propositions (γ, δ) which can be achieved by an action belong-
ing to a plan (Σ, γ, ρr, ρc)) will generate a new intention (Σ, fI(ρ+

∑n
k=1 ρ

+
αk
,
∑n

k=1 ρ
−
αk
, ρr, ρc))

if the desirability degree of both the actions and the state (
∑n

k=1 δ
+
αk

+ δ) is greater than
the sum of the negative effects of the actions (

∑n
k=1 δ

−
αk

). Finally, fI is a function that
combines both positive and negative effects of a plan and the risk (δr) and cost (δc) of a
plan that achieves it. In this case it is defined as:

fI(ρ
+, ρ−, ρr, ρc)) = (δ+ − δ−)× (1− ρr)× (1− ρc)

Action Selection

The intention which has the maximum degree will define the next action to be performed
by the agent. The problem of how agents carry out actions and perceive if they have
been executed correctly has not been considered. In this sense, an agent is able to check
action execution by direct observation, information from witnesses or analysing the later
evolution of the system. However, it is a complex problem which has been omitted in the
current version of the mWater prototype.

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 15

Chapter 3

A deliberative module for water users:
a constraint programming formulation
for planning in electronic institutions

This chapter focuses on the water users of mWater. In particular, we provide a double
perspective for users that participate in the water market. The former presents a constraint
programming formulation to navigate through the electronic institution that models mWa-
ter. The latter presents an optimization process, also based on constraint programming,
that aims at the optimization stage that a water user may require during the trading pro-
cess, i.e. it can be seen as a tool to assist the user on the negotiation process and reaching
the best result. These two perspectives can be integrated in order to generate the plan that
a water user has to follow to reach his/her goals, in terms of required amount of water,
money or both.

3.1 General overview and motivation

mWater is modelled as an Electronic Institution (EI), as extensively described in Deliv-
erable 8.2.1: mWater Analysis and Design. The underlying idea with EIs is to provide a
computational counterpart of conventional institutions [Nor97, RA01, Est03]. Formally,
institutions are, in an abstract way, a set of conventions that articulate agent interactions
[Nor90]. EIs implement these conventions in such a way that autonomous agents may
participate, their interactions are supported by the implementation, and the conventions
(standard practices, policies, guidelines and norms) are enforced by the system on all
participants.

EIs are engineered as regulated open MAS environments. These MAS are open in
the sense that the EI does not control the agents’ decision-making processes and agents
may enter and leave the EI at their own will. This motivates the necessity of a mechanism

16

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

to facilitate movement through the EI. Since the MAS is open, the agents can represent
many types of different users and not all of them have the entire knowledge about how
to navigate within the EI. Therefore, calculating in advance what transitions should be
followed, subject to the norms, conditions on the transitions and contextual information,
shows very appealing to make a more effective use of the EI. In other words, a mechanism
for planning in electronic institutions will improve the openness of these systems, will
promote a higher level of users’ participation and, eventually, a greater degree of success
for users in achieving their preferences and goals.

An EI consists of: (i) a dialogical framework which fixes the context of interaction by
defining roles and their relationships; (ii) scenes that establish interaction protocols of the
agents playing a given role in that scene, which illocutions are admissible and under what
conditions; (iii) performative structures that, like the script of a play, express how scenes
are interrelated and how agents playing a given role move from one scene to another,
and (iv) rules of behaviour that regulate how commitments are established and satisfied.
From a more practical point of view, an EI can be seen as the union of performative struc-
tures and (structural) norms. A performative structure defines a workflow in the form of
scenes and networks of scenes, whereas the norms define the rules of the game and the
(un)feasible transitions that agents may follow within this workflow. Clearly, this gives
us an effective way for norm enforcement and also to verify some correctness aspects, but
unfortunately mainly focused on structural norms that do not consider dynamic norms,
e.g. emergent norms that may appear in response to several exogenous events. Again,
this dynamic behaviour makes it necessary the application of a planning method to guide
the agent when moving from one scene to the next one, as can be seen in Fig. 3.1. Let
us assume in that figure one agent wants to reach the goal from an init state. Since
the EI encapsulates different routes, the agent may not know a priori if a particular route
is feasible according to the norms in the institution and, more interestingly for the agent,
what is the best route —depicted in thick arrows in Fig. 3.1. Also, it is possible that
an agent wants not to obey the norms if this produces a better gain for the agent. And,
obviously, this is out of the scope of the institution and highly depends on the agent’s be-
haviour, interests and optimization criteria to be considered. For instance, an agent may
violate a norm if this entails a higher economic benefit, but another agent whose objective
is to increase his/her reputation may decide to be absolutely norm-abiding. In such situa-
tion, a planning method and, more specifically, an optimization algorithm becomes very
valuable. Summing up, it is not only important to find a valid route but also to be the opti-
mal one according to the agent’s interests, while also considering all the (static+dynamic)
norms included in the institution.

3.2 Planning in electronic institutions

As introduced in the previous section, planning technology can be very useful in EIs.
Planning, within the field of AI, consists of an intelligent search process to generate a

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 17

3. A DELIBERATIVE MODULE FOR WATER USERS: A CONSTRAINT PROGRAMMING FORMULATION FOR PLANNING IN ELECTRONIC INSTITUTIONS

Figure 3.1: Navigation plan within the mWater EI

sequence of actions [GNT04]. Hence, it is concerned with selecting a set of actions whose
execution will lead from a particular initial state to a state in which a goal condition is
satisfied. Intuitively speaking, planning decides which actions need to be executed and
their orderings in such a way that the logical executability of the plan is guaranteed.

3.2.1 Basic background on planning

Planning aims at finding a set of actions which allows an executive agent to transform
an initial state into another state that satisfies some goals. Basically, a classical planning
problem is usually defined as a tuple 〈I,G,A〉, where I and G represent the initial state
and the goals to be satisfied, respectively, and A is a finite set with the available actions
that can be applied. Each action in A specifies, at least, some preconditions and effects.
All preconditions need to hold before applying the action, whereas the effects represent
the results of the action application in terms of new information that is asserted and other
removed. This way, each action can be metaphorically considered as a transition that
transforms one initial state into a resulting state provided that the action’s conditions are
satisfied in the initial state. And this transition is equivalent to the information that is
stored in the workflow defined in an EI. Additionally, it is also possible to define a metric
to optimize. This means that actions in A have a positive, or negative, impact in this
metric and the planning process needs to find a plan that optimizes (or at least tries to
optimize) such a metric.

There are many planners that reason on the causal relationships created between pre-
conditions and effects. Planners usually apply planning graph techniques, heuristic es-
timates and decomposition methods, among others, to find a plan in an efficient way.
But when there are actions unknown a priori or complex norms to satisfy, modelled as

18 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

constraints on the execution of the actions, and these norms have a significant impact on
the planning metric, they do not behave as efficiently and do not always show expressive
enough [GAO09]. Actually, modelling and reasoning under scenarios with complex fea-
tures of planning (e.g. actions that have unknown or variable parameters) entail a much
higher complexity of the resolution process. To face this limitation, some researchers
have focused on the use of constraint satisfaction techniques and have delegated the
new sort of constraints to a CSP (Constraint Satisfaction Problem) solver, as proposed
in [GAO09, VG06]. The underlying idea with this is double. First, to create a general for-
mulation that includes reasoning mechanisms to manage causal relationships, orderings
and threats, i.e. the classical planning mechanisms to support preconditions and subgoal
preserving, as well as any other type of constraint such as those that promote ethical val-
ues and norms, which include a full support for obligations, prohibitions, permissions and
recommendations. Second, to model a planning problem as a CSP, with all its variables
and constraints, and solve it by applying traditional CSP techniques. More intuitively,
this approach consists of a knowledge engineering stage that can be automatized. The
navigation rules in EIs that define the causal relationships (cause-effect properties) are
automatically extracted from the EI definition together with the constraints/norms that
are also subsequently translated into preconditions/effects. This has the clear advantage
of separating the modelling stage from the solving stage and their algorithms. Conse-
quently, once the constraint programming model is formulated, it can be solved by any
CSP solver, making this approach solver-independent as well.

3.2.2 A general constraint programming formulation for planning

Let us assume a general action a used for planning with a set of preconditions {Pre(φi, a)},
which need to be supported (by other actions) before a can be executed, and that produces
some changes in {φi}—that is, a updates the values of {φi} after its execution1. In a con-
straint programming setting, a problem is represented as a set of variables, a domain of
values for each variable, and a set of constraints among the variables. A solution to this
problem is an assignment of one valid value to each variable, while all the constraints
are satisfied. In our general representation we also include the formulation of branching
situations to expand alternative partial solutions. Now, we present the mapping neces-
sary to automatically create a constraint programming formulation (in terms of variables,
domains, constraints and branching situations) for each action.

Variables and domains

Variables are basically used to define actions and the preconditions required by actions,
along with the actions that support these conditions and the time when these conditions

1In many cases, preconditions and effects are modelled as boolean variables, but we present here a more
general model that subsumes both logic and numeric variables.

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 19

3. A DELIBERATIVE MODULE FOR WATER USERS: A CONSTRAINT PROGRAMMING FORMULATION FOR PLANNING IN ELECTRONIC INSTITUTIONS

occur (time is modelled in R). For simplicity, we also include two dummy actions Start
and End; Start provides the information of the initial state, whereas End requires the
problem goals. These variables, their initial domains and their descriptions are organized
into two blocks:

• Block 1. Variables necessary for any action:

– S(a) ∈ [0,∞[represents the start time of action a (clearly, S(Start) = 0).

– dur(a) ∈ [durmin(a), durmax(a)] represents the duration of action a within
two positive bounds. Although this is useful to model actions with different
duration, we assume the duration of all actions is 1, so this variable can be
removed for the sack of simplicity. Clearly, dur(Start) = dur(End) = 0.

– InP lan(a) ∈ [0, 1] encodes a binary variable that indicates the presence of a
in the solution plan. Clearly, InP lan(Start) = InP lan(End) = 1 (true).

• Block 2. Variables for reasoning on the preconditions and effects of each action:

– Sup(φ, a) ∈ {bi} | bi supports φ for a. This symbolic variable encodes the
supporter bi of φ.

– Time(φ, a) ∈ [0,∞[represents the time at which the action bi selected as a
value for variable Sup(φ, a) updates φ.

– Vactual(φ, a) ∈]−∞,∞[represents the actual value of φ at time S(a), which
must satisfy the precondition Pre(φ, a), defined by the action itself.

– Vupdated(φ, a) ∈] − ∞,∞[represents the value that a updates for φ. This
variable is only necessary if a modifies the value of φ.

Although the model may include many variables, not all of them are decision vari-
ables. This means that only S(), InP lan() and Sup() need to be considered in the search
process, whereas the others variables (Time, Vactual and Vupdated) are bounded after the
assignation of the former ones.

Constraints

Constraints represent relations among variables and correspond to assignments and bind-
ings of the values to variables, supporting and other constraints. Constraints are defined
for each variable that involves action a and each precondition/effect φ for a, and are or-
ganized into three blocks:

• Block 1. Constraints between each action and Start/End:

– S(Start) < S(a) binds any action a to start after Start.

20 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

– S(a) < S(End) binds any action a to start before End.

• Block 2. Constraints necessary for the preconditions/effects of the action:

– Time(φ, a) ≤ S(a) forces to satisfy φ before a starts.

– If Sup(φ, a) = bi then {Time(φ, a) = time when bi updates φ (i.e. S(bi) +
1, as the duration is always 1), and Vactual(φ, a) = Vupdated(φ, bi)}, which
binds the time to satisfy the supporting variable Sup(φ, a), and determines
how Vupdated(φ, bi) is propagated throughout the model.

– Pre(φ, a) = Vactual(φ, a) comp-op Expression, where comp-op ∈ {<,≤
,=,≥, >, 6=} and Expression is any combination of variables and/or values
that is evaluated in R, which represents the precondition that φ must accom-
plish for a in S(a).

• Block 3. Additional constraints:

– V ari comp-op V arj+x, where comp-op∈ {<,≤,=,≥, >, 6=} and x ∈ R,
which represents any type of binary constraint.

– Constraint(V ari, V arj . . . V arn), which represents a general customized n-
ary constraint that encodes more complex constraints among several variables
of the model and may depend on each particular problem or EI.

Constraints in block 1 are straightforward as they provide the insights of an action
within a plan, always between Start and End. Block 2 includes similar constraints for
the preconditions to satisfy the supporting condition and the assignments that are calcu-
lated by simple propagation. In particular, Vactual(φ, a) is assigned to a possible value of
Vupdated(φ, bi). Also Vactual(φ, a) must satisfy the precondition Pre(φ, a), as modelled in
the EI. Finally, block 3 includes additional constraints in the form of extra features such
as precedences, quantitative temporal deadlines that involve two or more variables, etc.
Although these three blocks may impose a high number of constraints in the model, it
is important to note that not all of them need to be considered; only the constraints that
involve an action a with InP lan(a) = 1 are applicable and, consequently, need to be
satisfied in the solution.

Branching situations

Branching is used to generate the search space of different partial solutions that appear
when supporting a precondition, or when solving a mutex (mutual exclusion relationship)
and threat between actions. Particularly, in the former case a partial plan is created for
each possible alternative (action bi) in the support. In the latter case, a distinct constraint
is posted to solve the mutex, thus preventing two actions from updating the same variable
simultaneously (effects interference):

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 21

3. A DELIBERATIVE MODULE FOR WATER USERS: A CONSTRAINT PROGRAMMING FORMULATION FOR PLANNING IN ELECTRONIC INSTITUTIONS

• Branching for the preconditions/effects of the action:

– Sup(φ, a) = bi ∧ Sup(φ, a) 6= bj | ∀bi, bj (bi 6= bj) that supports φ for a,
which represents all the possibilities to support (update the value of) φ while
|Sup(φ, a)| > 1.

– Let time(bi, φ) = S(bi)+1 and time(bj, φ) = S(bj)+1 be the time when ac-
tions bi and bj (bi 6= bj) modify the fluent φ. In that case, ∀bi, bj: time(bi, φ) 6=
time(bj, φ) must hold, which represents the mutex resolution by preventing
two actions from updating φ simultaneously.

– Let time(bi, φ) = S(bi) + 1 be the time when bi modifies φ. In that case, ∀bi
that threats causal link Sup(φ, a) with bi 6= a: (time(bi, φ) < Time(φ, a)) ∨
(S(a) < time(bi, φ)) must hold, thus solving the threat.

Again, the constraints to represent branching situations are only necessary for those
actions that belong to the plan, i.e. ∀a : InP lan(a) = 1.

Main properties

This constraint programming formulation for planning offers very interesting properties:

• The formulation shares the advantages of other CSP-like approaches, including the
expressiveness of the modelling language, which shows very appealing for specify-
ing complex planning and EI models.

• The formulation is a purely declarative representation of the planning problem and
is independent of any CSP solver. Consequently, any systematic or local search-
based solver that uses its own heuristics can interpret and handle this constraint
model.

• The whole formulation can be automatically derived from the EI definition, with-
out the necessity of specific hand-coded domain knowledge, just by following the
mapping presented above for actions, variables, domains and constraints.

3.3 Planning in mWater

The general constraint programming formulation presented above can be directly used in
the mWater’s EI. The field of application comprises two parts. First, guiding the agent
when moving from one scene to the next one, i.e. in the navigation process of the EI.
For instance, if we consider an agent that starts from the initial state and wants to reach
the contract enactment scene, it is now possible to provide him/her a plan to reach the
goals (see Fig. 3.1). Similarly, inner and probably shorter plans are also possible, that

22 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

is an agent that has been accredited and simply wants to reach and agreement. Second,
the constraint formulation can have a more specific application, thus focusing just on
the trading process in terms of finding the best plan (optimization behaviour) to reach
the agent’s goals for water and/or money. For instance, if an agent that is trading in the
trading table scene is interested in buying some water rights, the plan will provide here
the best users to trade with, i.e. those users to sell these water rights and the quantity of
water to be transferred from the sellers to the buyer.

3.3.1 Navigating through mWater

Navigation through an EI is a simple task, as each possible transition defines: (i) the
causal relationship between two scenes or networks of scenes, and (ii) the norms, in form
of constraints that must hold to apply such a transition. And this can be transformed into
a constraint programming formulation. To make this translation easy, in the mWater set-
ting we use a simple mapping, as described by algorithm 1. Each scene is modelled as
a possible action in the plan (steps 1–2), and the transitions that reach such a state are
modelled as its preconditions (steps 4–6) which are supported by the predecessor scenes.
Note that this is a simplification of the variables presented in block 2 of section 3.2.2
as no Vactual, Vupdated variables are necessary here. The reason for this is that the only
value that is updated (and later required by another scene) is the fact that the transition
has been done, which indicates whether the transition has been reached or not. More
particularly, the preconditions that support the execution of scene scni are modelled by
means of Sup(trnj done, scni), where each trnj is a transition from scnj to scni. Anal-
ogously, the effect of the scene scni is modelled by Sup(trni done, scnk), where trni
is a transition from scni to any scnk defined as a valid successor of scni in the EI. This
way, we are representing the flow of transitions followed in the workflow and what paths
of scenes are necessary (causal chains) to reach a given goal scene. The constraints and
branching situations for these variables are created as defined in section 3.2.2. It is impor-
tant to highlight that special constraints can be defined if additional norms are attached
to the transitions (see Constraints, Block 3 in section 3.2.2). For instance, if we want to
include a prohibition (deadline) for both buyer and seller to register the final deal or agree-
ment no more than 15 days later than the agreement date, we will include this constraint
’S(Register(buyer, seller)) ≤ S(Agreement(buyer, seller)) + 15’. This is a simple,
but still very effective way to deal with norm reasoning without requiring a special rea-
soner, because norms are managed as one more constraint that involves variables of the
model.

3.3.2 Optimization in the trading table

In mWater, the trading tables performative structure is a network of scenes that represents
the different alternatives to trade water rights. No matter the protocol that is used to trade,

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 23

3. A DELIBERATIVE MODULE FOR WATER USERS: A CONSTRAINT PROGRAMMING FORMULATION FOR PLANNING IN ELECTRONIC INSTITUTIONS

1: for all scene scni ∈ mWater EI (including the init and final scenes as Start and
End dummy actions) do

2: create InP lan(scni) ∈ [0, 1]
3: create S(scni) ∈ [0,∞[
4: for all transition trnj ∈ that reaches scni from scene scnj do
5: create Sup(trnj done, scni) and add scnj to its domain of values
6: create Time(trnj done, scni) ∈ [0,∞[

Algorithm 1: Mapping to generate all the variables for the constraint programming for-
mulation. Constraints are generated as presented in section 3.2.2

e.g. blind double auction, Dutch or English protocols, the idea is to perform a trading
action that involves a buyer and a seller. Obviously, the same buyer/seller could trade with
others participants at the same time but the atomic element is a trading action that includes
the buyer, seller, water quantity to be traded, thus representing the amount of water rights
that will be transferred, and money that needs to be paid in this transaction. Following the
constraint programming formulation presented above, but now giving special emphasis
to the optimization of the trading actions, the model for an action trade(buyer, seller) is
formulated as:

• Variables. Water Qty ∈ [0,∞[and Money Qty ∈ [0,∞[that represent the
amount of water and money, respectively, for the action. If Water Qty = 0 there
is no trading action between this pair 〈buyer, seller〉.

• Constraint. Relation betweenWater Qty andMoney Qty: Money Qty = Water Qty∗
price(buyer, seller), which also allows us to define different prices according, for
instance, to the distance between the buyer and seller.

In addition to the variables and the constraint that appears for each trading action,
there are also two additional constraints:

• Water required: (WaterBought−WaterSold) >= (WaterGoal−WaterInit),
where WaterBought =

∑
Water Qty useri for all useri that is playing the role

of buyer and WaterSold =
∑
Water Qty userj for all userj that is playing the

role of seller. WaterGoal andWaterInit represent the required and initial values,
respectively, of the water for each user.

• Money required: (MoneyReceived−MoneySpent) >= (MoneyGoal−MoneyInit),
where MoneyReceived =

∑
Money Qty useri for all useri that is playing the

role of seller and MoneySpent =
∑
Money Qty userj for all userj that is play-

ing the role of buyer. MoneyGoal and MoneyInit represent the required and
initial values, respectively, of the money for each user.

24 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

• Metric to optimize, which can be defined as any type of simple or complex ex-
pression. However, it is usually measured in terms of maximizing the expression
MoneyGoal −MoneyInit for a given user.

As can be seen, the constraint formulation for optimizing the trading actions is signif-
icantly simpler than the general model. The reason for this is that we do not need a very
complex model here; we just focus on finding the best combination of buyer, seller and
quantity variables rather than on other constraints. However, the formulation is still open
to include other types of constraints. For instance, it is common to have a prohibition for
both buyer and seller to agree to a price lower than a given value x, where x is defined by
the Basin Authority with respect to the maximum economic compensation for water right
interchange: Water Qty(buyer, seller) ∗ price(buyer, seller) ≤ x.

3.3.3 Integrating navigation, optimization and execution

The main advantage of using a common constraint programming formulation is that we
can easily integrate both the navigation through mWater and the optimization in the trad-
ing tables as a unique model. This way, the plan will provide the actions (in form of
transitions) necessary to achieve a goal, such as reaching an agreement or a contract. If
this plan requires visiting the trading tables performative structure and a particular proto-
col to trade water rights, the plan will also provide the best combination of trading actions
with tuples 〈buyer, seller,Water Qty,Money Qty〉.

Once the plan has been generated, the user needs to execute it to reach the goals.
Clearly, the execution of the plan can differ from the expected results. For instance,
some failure/delay in the validation of the water user within the institution, or perhaps
some buyers/sellers that fail to participate in the trading process —e.g. one of the wa-
ter sellers that appears in the plan is not interested in selling water anymore. In this
case a replanning stage becomes necessary to fix the plan. And here the constraint for-
mulation can be very useful again, as the model remains nearly identical, keeping the
same variables and constraints, as presented in section 3.2.2. Actually, the only differ-
ence will be in the domain of actions that will be available and in how many of those
are now relevant. For instance, if a particular seller s1 is not available, we will make
InP lan(trade(buyer, s1,Water Qty,Money Qty)) = 0 for all actions that involve s1.
This forces not to use this action in the plan. On the contrary, if we want to maintain some
actions in the plan we will make their InP lan() variable to 1. If we want the CSP solver
to decide whether an action will be in the plan, we keep its domain to the original [0,1]
values. Consequently, we are not limited to complete input plans but to semi-complete or
even empty plans. Also, we can encode new norms and requirements to allocate actions in
time by means of the variables S(), to establish ordering between actions S(ai) < S(aj)
and fix deadlines on the execution of the plan S(End) < deadline.

All in all, using a constraint programming formulation facilitates the modelling stage
of the EI, including its scenes, transitions and norms, into a unique formulation that com-

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 25

3. A DELIBERATIVE MODULE FOR WATER USERS: A CONSTRAINT PROGRAMMING FORMULATION FOR PLANNING IN ELECTRONIC INSTITUTIONS

prises variables for the transitions/scenes that need to be executed to satisfy the water and
money user’s goals. From a solving perspective, a CSP algorithm solves (and tries to
optimize) this model while also reasoning with norms, modelled as typical constraints.
This is helpful to assist in the multiple trading process in mWater, but also in any generic
goods market. Finally, from a multi-agent perspective the CSP model can also be solved
in a distributed way by using distributed CSPs, as pointed out in [SOGA08].

26 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

Chapter 4

Conclusions and Future Work

This paper has contributed with mWater, a rather sophisticated regulated open MAS-based
simulator to assist in decision taking and policy makers; we simulate and test how regu-
lations and norms modify the usersÕ behaviour and how it affects the quality indicators
of the market. The core component of mWater is an agent-based virtual market for wa-
ter rights that intends to grasp the components of an electronic market, where rights are
traded with flexibility under different price-fixing mechanisms and norms. In addition to
trading, mWater also simulates those tasks that follow trading, namely, the negotiation
process, agreement on a contract, the (mis)use of rights and the grievances and correc-
tive actions taken therein. These ancillary tasks are particularly prone to conflict albeit
regulated through legal and social norms and, therefore, they represent a crucial objective
in policy-making and a natural environment for the application of agreement technolo-
gies. In summary, this type of MAS has a vital importance for decision support as it
provides the foundations for the study of that interplay among agents, rule enforcing and
performance indicators.

mWater constitutes a rather sophisticated regulated open MAS-based simulator. The
core component of mWater is an agent-based virtual market for water rights that intends
to grasp the components of an electronic market, where rights are traded with flexibility
under different price-fixing mechanisms and norms. In this prototype analysis and design
we have put special emphasis on the normative standpoint. Thus, we have dealt with a
particular module for the staff agents of the institution (Chapter 3), and provided a con-
straint programming formulation for the water users (Chapter 4) that guarantees the norm
abiding when navigating through such an institution. It is important to note that although
we focus on a water-right market, the system is open to other types of markets, such as
energy or stock markets. In addition to trading, mWater also simulates those tasks that
follow trading, namely, the negotiation process, agreement on a contract, the (mis)use of
rights and the grievances and corrective actions taken therein. Moreover, the constraint
formulation allows the user to optimize this trading process. These ancillary tasks are
particularly prone to conflict albeit regulated through legal and social norms and, there-
fore, they represent a crucial objective in policy-making and a natural environment for

27

4. CONCLUSIONS AND FUTURE WORK

the application of agreement technologies. In summary, this type of MAS has a vital im-
portance for decision support as it provides the foundations for the study of that interplay
among agents, rule enforcing and performance indicators.

Our current works addresses the following issues. First, to develop a richer normative
regulation in order to allow us to simulate more complex types of norms and to observe
what are the effects of a given regulation when different types of water users interact in the
market. Second, to design specific heuristic estimations to improve the performance of
the CSP solving algorithms used within these tasks. Third, to elaborate more expressive
performance measures to evaluate social issues in the market behaviour in order to asses
values such as trust, reputation, and usersÕ satisfaction. We believe that this type of
measures will provide the policy makers with extra valuable data for decision making
about new regulation. Fourth, although we now consider mWater as a simulation tool for
decision-support taking, as a long-term research we are also interested in it as an open
environment to human users for conducting social and participatory simulations. This
would allow us to: i) let stakeholders use directly the system, ii) apply this approach to a
specific basin and particular regulation, and iii) see how this is able to reproduce some real
data. In such situations, human subjects will take part in the simulation to see the effects
of their interaction with virtual agents, applicable norms and their adaptation. Finally,
although we focus on a water-right market, the MAS framework is open to other types
of (virtual or real) markets, such as energy (electricity) or stock markets. In this line, it
would be interesting to compare whether this agent-based water-right market would differ
from electricity trading and the systematic effect on the market outcomes.

Apart from the normative components analyzed in this deliverable we will deal in
future works with the argumentation module for conflict resolution and grievances. A
trust and reputation model will be also included to add more realistic behaviour to the
market and the agents playing in the system.

28 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

Bibliography

[AEN+05] Josep Arcos, Marc Esteva, Pablo Noriega, Juan Rodriguez-Aguilar, and
Carles Sierra. Engineering open environments with electronic institutions.
Engineering Applications of Artificial Intelligence, (18):191–204, 2005.

[AGV+04] E. Argente, A. Giret, S. Valero, V. Julian, and V. Botti. Survey of mas
methods and platforms focusing on organizational concepts. In Recent
Advances in Artificial Intelligence Research and Development, volume 13,
pages 309–316, 2004.

[APA+07] E. Argente, J. Palanca, G. Aranda, V. Julian, V. Botti, A. Garcia-Fornes,
and A. Espinosa. Supporting agent organizations. In H.D. Burkhard et
al. (Eds.). Multiagent Systems and Applications. LNAI 46696, pages 236–
245, 2007.

[BJC+06] Javier Bajo, Vicente Julian, Juan Manuel Corchado, Carlos Carrascosa,
Yanira de Paz, Vicente Botti, and Juan Francisco de Paz. An execution
time planner for the artis agent architecture. In Engineering Applications
of Artificial Intelligence, volume 21, pages 769–784, 2006.

[CAB09] N. Criado, E. Argente, and V. Botti. A normative model for open agent or-
ganizations. In International Conference on Artificial Intelligence (ICAI),
pages 101–108, 2009.

[CAB10a] N. Criado, E. Argente, and V. Botti. A BDI Architecture for Normative
Decision Making (Extended Abstract). In 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), pages 1383–1384, 2010.

[CAB10b] N. Criado, E. Argente, and V. Botti. A bdi architecture for normative de-
cision making (extended abstract). In Proc. 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), volume I, pages 1383–
1384, 2010.

[CAB10c] N. Criado, E. Argente, and V. Botti. Normative Deliberation in Graded
BDI Agents. In Eighth German Conference on Multi-Agent System Tech-
nologies (MATES-10), volume 6251 of LNAI, pages 52–63. Springer,
2010.

29

BIBLIOGRAPHY

[CAG+10] Natalia Criado, Estefania Argente, Antonio Garrido, Juan A. Gimeno,
Francesc Igual, Vicente Botti, Pablo Noriega, and Adriana Giret. Norm
enforceability in electronic institutions? In Proceedings of the MAL-
LOW Workshop on Coordination, Organization, Institutions and Norms in
Agent Systems in On-Line Communities (COIN@MALLOW), pages 49–
64, 2010.

[CAJB09] N. Criado, E. Argente, V. Julian, and V. Botti. Designing virtual orga-
nizations. In 7th International Conference on Practical Applications of
Agents and Multi-Agent Systems (PAAMS2009), volume 55, pages 440–
449, 2009.

[CJBA10] N. Criado, V. Julian, V. Botti, and E. Argente. A norm-based organization
management system. In AAMAS Workshop on Coordination, Organiza-
tion, Institutions and Norms in Agent Systems (COIN). LNAI 6069, pages
19–35, 2010.

[Est03] M. Esteva. Electronic Institutions: from specification to development. IIIA
PhD Monography, 19, 2003.

[GAO09] A. Garrido, M. Arangu, and E. Onaindia. A constraint programming for-
mulation for planning: from plan scheduling to plan generation. Journal
of Scheduling, 12(3):227–256, 2009.

[GB04a] A. Giret and V. Botti. Holons and agents. In JOURNAL OF INTELLI-
GENT MANUFACTURING, volume 15, pages 645–659, 2004.

[GB04b] A. Giret and V. Botti. Towards an abstract recursive agent. In INTE-
GRATED COMPUTER-AIDED ENGINEERING, volume 11, pages 165–
177, 2004.

[GB06] A. Giret and V. Botti. From system requirements to holonic manufac-
turing system analysis. In International Journal of Production Research,
volume 44, pages 3917–3928, 2006.

[GJR+10] A. Giret, V. Julian, M. Rebollo, E. Argente, C. Carrascosa, and V. Botti.
An open archtecture for service-oriented virtual organizations. In L.
Braubach, J.P. Briot and J. Thangarajab (Eds.): Programing Multiagent
Systems. LNAI 5919, pages 118–132, 2010.

[GNT04] M. Ghallab, D. Nau, and P. Traverso. Automated Planning. Theory and
Practice. Morgan Kaufmann, 2004.

[GV09] A. Giret and V.Botti. Engineering holonic manufacturing systems. In
Computers in Industry, volume 60, pages 428–440, 2009.

30 Dicember 03, 2010 AT/2008/D8.2.1.P2/v0.1

D8.2.1.P2 Report: mWater prototype #2 analysis and design CSD2007-0022, INGENIO 2010

[HGPRG+09] S. Heras, J. A. Garcia-Pardo, R. Ramos-Garijo, A. Palomares, V. Botti,
M. Rebollo, and V. Julian. Multi-domain case-based module for customer
support. In Expert Systems with Applications, volume 63, pages 6866–
6873, 2009.

[JB04] V. Julian and V. Botti. Developing real-time multi-agent systems. In INTE-
GRATED COMPUTER-AIDED ENGINEERING, volume 11, pages 135–
149, 2004.

[Nor90] D.C. North. Institutions, institutional change, and economic performance.
Cambridge Univ Pr, 1990.

[Nor97] P. Noriega. Agent-mediated auctions: The fishmarket metaphor. IIIA Phd
Monography, 8, 1997.

[OPVS+09] N. Oren, S. Panagiotidi, J. Vázquez-Salceda, S. Modgil, M. Luck, and
S. Miles. Towards a formalisation of electronic contracting environments.
Coordination, Organizations, Institutions and Norms in Agent Systems IV,
pages 156–171, 2009.

[RA01] J.A. Rodrıguez-Aguilar. On the design and construction of agent-mediated
electronic institutions. IIIA Phd Monography, 14, 2001.

[SJR+02] J. Soler, V. Julian, M. Rebollo, C. Carrascosa, and V. Botti. Towards a
real-time multi-agent system architecture. In Workshop: Challenges in
Open Agent Systems. AAMAS 2002, pages 1–11, 2002.

[SOGA08] O. Sapena, E. Onaindia, A. Garrido, and M. Arangu. A distributed CSP
approach for collaborative planning systems. Engineering Applications of
Artificial Intelligence, 21(5):698–709, 2008.

[VG06] V. Vidal and H. Geffner. Branching and pruning: an optimal temporal
POCL planner based on constraint programming. Artificial Intelligence,
170:298–335, 2006.

AT/2008/D8.2.1.P2/v0.1 Dicember 03, 2010 31

