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Prof. Manuel Valdés

Valencia, September 20, 2013





A mis abuelos Manolo y Feli,
a Mikel, Ama y Aita.

Shine on you crazy diamond.





g

Resumen. La presente Tesis Doctoral estudia la observación en tiempo real de
la concentración en el colector de escape de los óxidos de nitrógeno (NOx) y del
dosado (λ�1) en motores diesel sobrealimentados. Para ello se fusionan dos fuentes
de información diferentes:

• Sensores capaces de proporcionar una medida de dichas variables, y

• modelos orientados a control que estiman estas variables a partir de otras me-
didas del motor.

El trabajo parte de la evaluación de la precisión de los sensores, realizada me-
diante la comparación de su medida con la proporcionada por equipos anaĺıticos de
alta precisión, que son usados como estándares de calibración estática. También se
desarrollan en la Tesis métodos para la calibración de la dinámica del sensor; dichos
métodos permiten identificar un modelo de comportamiento del sensor y revelar su
velocidad de respuesta y retraso asociados. En general, estos sensores demuestran ser
precisos pero relativamente lentos.

Por otra parte, se proponen modelos para la estimación de NOx y λ�1. Estos
métodos, basados en relaciones f́ısicas, tablas de parámetros y una serie de correc-
ciones, emplean las medidas proporcionadas por otros sensores con el fin de propor-
cionar una estimación de las variables de interés. Los modelos permiten una esti-
mación muy rápida capaz de reproducir las caracteŕısticas dinámicas, pero resultan
afectados por efectos de deriva que comprometen su precisión.

Con el fin de aprovechar las caracteŕısticas dinámicas del modelo y mantener
la precisión en estado estacionario del sensor, se proponen técnicas de fusión de la
información basadas en la aplicación de filtros de Kalman (KF). En primer lugar, se
diseña un KF capaz de combinar ambas fuentes de información y corregir en tiempo
real el sesgo entre las dos señales. Posteriormente, se estudia la adaptación en tiempo
real de los parámetros del modelo con el fin de corregir de forma automática los
problemas de deriva asociados al uso de modelos.

Todos los métodos y procedimientos desarrollados a lo largo de la presente Tesis
Doctoral se han aplicado de forma experimental a la estimación de NOx y λ�1. De
forma adicional, la Tesis Doctoral desarrolla aspectos relativos a la transferencia de
estos métodos a los motores diesel de serie.
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Resum. La present Tesis Doctoral estudia l’observació en temps real de òxids de
nitrogen (NOx) i del dosat (λ�1) a motors Diesel sobrealimentats. Per tal d’assolir
suficient precisió i velocitat es combinen dues fonts de informació:

• Sensors que proporcionen una mesura de les variables, i

• models orientats a control basats en variables més directes del motor.

El treball desenvolupat parteix d’estudis per avaluar la precisió dels sensors.
Aquests estudis tracten de comparar la mesura dels sensors amb la proporcionada per
equips anaĺıtics d’alta precisió, equips utilitzats com estàndards de calibratge estàtic.
A partir del calibratge estàtic es desenvolupen diversos mètodes per el calibratge
dinàmic dels sensors, aquests mètodes permeten identificar un model de comporta-
ment del sensor, simulant la seva velocitat de resposta.

En general, els sensors demostren ser precisos però relativament lents. Per millorar
els temps de resposta de les mesures, a una segona part de la tesis es proposen models
orientats a control per la estimació de NOx i λ�1. Aquets mètodes, basats en relacions
f́ısiques, taules de paràmetres i una sèrie de correccions, utilitzen mesures d’altres
sensors més directes per tal de proporcionar una estimació de les variables d’interès.
La estimació obtinguda als models, a pesar de ser molt ràpida, sol estar afectada per
efectes de deriva del model, raó per la que la precisió pot veures greument afectada.

Finalment, per tal d’aprofitar les caracteŕıstiques dinàmiques del model i mantin-
dre la precisió en estat estacionari del motor, es proposen noves tècniques de fusió
de la informació basades en l’aplicació de filtres de Kalman (KF). En primer lloc,
es dissenya un KF capaç de combinar models i sensors, per corregir en temps real la
desviació de les dos senyals. I posteriorment, amb la finalitat d’eliminar els problemes
de deriva associats al model, s’estudia la adaptació en temps real dels paràmetres del
model.

Tots els mètodes i procediments desenvolupats a la present Tesis Doctoral, han
sigut aplicats de forma experimental a la estimació de NOx i λ�1. De forma addi-
cional, la Tesis Doctoral desenvolupa aspectes relatius a la possible implementació
dels mètodes a motors diesel de sèrie.
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Abstract. The dissertation covers the problem of the online estimation of the
diesel engine exhaust concentrations of the nitrogen oxides (NOx) and the fuel-to-air
ratio or richness (λ�1). Two information sources are utilised:

• On-board sensors for measuring NOx and λ�1, and

• control oriented models in order to predict NOx and λ�1.

The evaluation of the static accuracy of these sensors is made by comparing the
outputs with a gas analyser, while the dynamics are identified on-board by perform-
ing step-like transitions on NOx and λ�1 after modifying ECU actuation variables.
Different methods for identifying the dynamic output of the sensors are developed in
this work; these methods allow to identify the response time and delay of the sensors
if a sufficient data set is available. In general, these sensors are accurate but present
slow responses.

Afterwards, control oriented models for estimating NOx and λ�1 are proposed.
Regarding the λ�1 prediction, the computation is based on the relative fuel-to-air
ratio, where the fuel comes from an ECU model and the air mass flow is measured by
a sensor. For the case of NOx, a set-point relative model based on look-up tables is
fitted for representing nominal engine emissions with an exponential correction based
on the intake oxygen variation. Different correction factors for modeling other effects
such as the thermal loading of the engine are also proposed. The model is able to
predict NOx fast with a low error and a simple structure.

Despite of using models or sensors, the model drift and sensor dynamic deficiencies
affect the final estimation. In order to solve these problems, data fusion strategies are
proposed by combining the steady-state accuracy of the sensor and the fast estimation
of the models by means of applying Kalman filters (KF). In a first approach, a drift
correction model tracks the bias between the model and the sensor but keeping the
fast response of the model. In a second approach, the updating of look-up tables by
using observers is coped with different versions based on the extended Kalman filter
(EKF). Particularly, a simplified KF (SKF) allows to observe the parameters with a
low computational effort.

Finally, the methods and algorithms developed in this work are combined and
applied to the estimation of NOx and λ�1. Additionally, the dissertation covers
aspects relative to the implementation of the methods in series diesel engines.
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tenga la mente técnica más brillante que haya conocido nunca. Gracias por todo el
esfuerzo que has puesto en mı́ durante todos estos años, simplemente espero que con
este documento y todo mi trabajo haya sido capaz de compensarte. Sé que es duro
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Gracias Valencia y sobre todo gracias a ti, Vera, por haberte convertido en la
ilusión de mi vida, y por mostrarme cada d́ıa que con una sonrisa todo es más fácil.
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p�boost pboost set-point reference for controller bar
Tcool Engine coolant temperature K (�C)
Texh Exhaust temperature K (�C)
Tint Intake temperature bar
pexh Exhaust pressure bar
pint Intake pressure bar
Twic Temperature of the water of the intercooler K (�C)
Tegr EGR temperature K (�C)
n Engine speed rpm
prail Rail pressure bar
Me Engine torque Nm
pcyl In-cylinder pressure bar
Ip Current output from the UEGO sensor mA
ηv Volummetric efficiency -
EGR EGR rate %

z Sensor measurements -
x State-vector -
u Input -
x̂ State observation -
xr Actual signal -
xf Filtered signal

in order to compare with sensor outputs
Θ Adaptive look-up table -
xΘ Output from interpolating the look-up table Θ -
K Kalman gain -
K8 Steady-state Kalman gain -
KSS Steady-state Kalman gain for the SSKF -
P Covariance matrix -
σ2
w Process variance -
σ2
v Output variance -



Nomenclature xi

τ Sensor delay s (or ms)
TNOx Response time of the sensor s (or ms)
a Discrete response time parameter -
Ts Sample time ms
t time s
k Discrete instant -
s S-transform variable -
z Z-transform variable -

aNOx Discrete response time of the NOx output -
τNOx Delay of the NOx output µs
zNOx NOx output from the NOx sensor ppm
xNOx Output from the NOx model g/h (or ppm)
yNOx Filtered and delayed output from the NOx model g/h (or ppm)
xNOxf Filtered and delayed output from the NOx model g/h (or ppm)

in the state-space model
x̂NOx Actual NOx observation g/h (or ppm)
x̂NOxf Filtered NOx observation g/h (or ppm)
θNOx Bias on the NOx output g/h (or ppm)

θ̂NOx Observed bias on the NOx output g/h (or ppm)
ΘNOx Adaptive look-up table for modelling NOx g/h (or ppm)

aλ�1 Discrete response time of the λ�1 output -
τλ�1 Delay of the λ�1 output µs
zλ�1 λ�1 output from the NOx sensor -
x�1
λ λ�1 model from the fuel-to-air ratio calculation -
y�1
λ Filtered and delayed output from the λ�1 model -
xλ�1f Filtered and delayed output from the λ�1 model -

in the state-space model
x̂λ�1 Actual λ�1 observation -
x̂λ�1f Filtered λ�1 observation -
θλ�1 Bias on the λ�1 output -

θ̂λ�1 Observed bias on the λ�1 output -
Θ�1
λ Adaptive look-up table for modelling λ�1 -
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1.1 Background

The evolution of transportation systems is closely linked with the degree
of development of modern societies. As shown in Figure 1.1, developed coun-
tries present passenger car densities around 0.5 cars per inhabitant [1,2], while
developing countries, such as China or India around 0.03 [3–5], although the
economic development is expected to make this average grow. The transporta-
tion fleet is responsible for about 40% of the global fuel consumption and the
expected growth will rise the number.

The emissions regulation in diesel engines. The world attention about
environmental protection has resulted in new strict laws which establish the
requirements for pollutants emissions, and therefore define priorities in the
technology development [6]. Traditionally, two types of internal combustion
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Figure 1.1. Cars per person (bars) and gross domestic product (GDP) per capita
(line) in some selected countries, adapted from [5].

(IC) engines have dominated the transportation market: the spark ignition
(SI) or gasoline and the compression ignition (CI) or diesel engines. Particu-
larly in diesel engines, main pollutants are:

• Nitrogen oxides (NOx) are benefited from high temperatures and a lean
combustion. NOx at the engine exhaust contains NO with a proportion
between 70 and 90% while the rest is mainly NO2 [7].

• Particulate matter (PM) is a complex aggregate formed by soot, hy-
drocarbons (HC) resulting from fuel and lubrication and other minor
products. The proportion of these components varies with the engine
and operating point conditions. PM emissions have an opposite trend
with NOx, and if fuel is burnt appropriately, PM concentration decreases
while NOx increases.

• Carbon dioxide (CO2) formation is proportional to the fuel consumption.
Traditionally, CO2 emissions were not regulated, however they have been
driven by the fuel economy demanded by the users. CO2 is today a main
concern for manufacturers not only due to the fuel saving requirements
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but due to the new regulations on CO2
1. The passenger cars are partic-

ularly responsible for around the 12% of the CO2 emissions caused by
humans [9].

• Carbon monoxide (CO) is a sub-product of the combustion (more im-
portant in SI than in CI engines) and a dangerous colourless, odourless
and tasteless gas. The usual is that CO oxides at the atmosphere for
forming CO2.

• Hydrocarbons (HC) are a product of an incomplete combustion of the
injected fuel due to rich conditions and low temperatures that can locally
be achieved inside the cylinder. Partially oxidised HC and non-burnt HC
are usually included inside this group. The emissions of CO and HC in
diesel engines are of less importance than NOx, PM and CO2.

Figure 1.2 shows emissions limits for NOx and PM for the different versions
of European legislation standards [8] for diesel passenger cars and light-duty
(LD) vehicles. Specifically in mobile sources, diesel engines must reduce NOx

emissions by 20% with regards to EURO V and 50% with regards to EURO
VI if comparing with the previous EURO IV standard.

Driven by these legislations and the market demands, the diesel engine
has substantially changed from the original one designed by Rudolf Diesel.
The modern diesel engine comprises of variable geometry turbocharging [10]
for increasing the intake air mass flow, common-rail systems for allowing mul-
tiple and controlled injections [11], an exhaust gas recirculation (EGR) [12]
for reducing NOx and different after-treatment (AT) systems [13] such as the
diesel particulate filter (DPF) for trapping soot, the diesel oxidation catalyst
(DOC) for eliminating HC and the selective catalyst reduction (SCR) or the
lean NOx trap (LNT) for removing NOx. These advances make the diesel
engine a sophisticated system that requires an engine control unit (ECU) for
an appropriate management and a growing complexity on calibration and im-
plementation.

The SI engine has traditionally solved the emissions problem easier than
the CI engine by installing a three way catalyst (TWC), which simultaneously
reduces NOx and oxidises CO and HC. Nevertheless, the fuel efficiency is lower
in SI than in CI engines. In the last years, and with the idea of taking advan-
tage of the best properties of CI and SI engines, manufacturers and researchers
have put a big effort in developing a more efficient and environmentally sus-
tainable engine. These concepts usually lie on low temperature combustions

1CO2 emissions are regulated in Europe since the year 2009 by the European directive
443/2009 [8].



4 1. Introduction

1992 1996 2000 2005 2009 2014
0

0.05

0.1

0.2

0.3

0.4

0.5

0.6

year

E
m

is
si

on
s 

lim
it 

[g
/k

m
]

 

 

Euro I

Euro II

Euro III

Euro IV
Euro V

Euro VI

NO
x

PM

Figure 1.2. NOx and PM emission limits for diesel passenger cars and light-duty
vehicles (M1) from Euro I to Euro VI standards. NOx limits were first imposed in
Euro III. Euro VI is to be applied in 2014.

(LTC) [14]. Alternatively, hybrid-electric and pure electric power sources are
also becoming an option for the present and future vehicle.

Whatever the engine selected (IC, electric or hybrid), the appropriate man-
agement of all subsystems merits a special focus on the ways of retrieving in-
formation about the states (i.e. variables that determine the behaviour of the
engine). The work presented in this dissertation is focused on the estimation
of the exhaust gas concentrations of diesel engines, whose motivation is further
presented in the next section.

1.2 The need of information in diesel engines

The advancements in the diesel engines must be in the direction of guaran-
tying low emissions while achieving high efficiency, performance and reliability.
These purposes require not only efforts on the engine design and performance,
but also in the development of reliable measurement systems to get informa-
tion about the processes, which is needed for the implementation of control
strategies, paying a special attention to the transient operation. In such sense,
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standards also specify on-board diagnostics procedures (OBD) that, based on
models and measured data, are capable of detecting faults on engine or vehicle
system. Driver must be notified when emissions are out of the limits with the
malfunction indicator lamps (MIL) and the ECU must correct this fault or
recommend what to do for a correct and safe actuation.

The diesel engine itself may be split in two main systems: the fuel and the
air paths. The fuel path is controlled by the measured rail pressure and the
estimated injection fuel rate. Globally, the engine is controlled for delivering
a given referenced torque on the wheels. However, no variable is measured
downstream the combustion chamber and that means that engine management
is not based on final measurements, and emissions limits or performance are
tracked by feed-forward controllers with closed loop control on intermediate
variables.

Regarding the emissions control in LD diesel engines without SCR and
LNT, the common layout is installing no physical nor virtual sensor for track-
ing pipe-out emissions; the engine is calibrated offline before going to market.
During the calibration procedure, the emissions are measured by laboratory
sensors with limited dynamic capabilities. Furthermore, standard procedures
are often based on steady-state measurements and indeed, dynamic homologa-
tion cycles, such as the new European driving cycle (NEDC) (see Chapter 3),
are not representative of real-life driving cycles [15]. Finally, hardware unit-to-
unit dispersion (engine, sensors, etc.), system ageing and the effects of external
variables (temperature, pressure, humidity, etc.) make this procedure does not
ensure that the engine keeps working as when it was calibrated.

Narrow band lambda sensors for measuring lean or rich mixture have been
installed in SI engines from 1968 (for controlling the TWC) and wide band
lambda sensor for providing full resolution oxygen concentration can be found
in some diesel engines from the end of the 90s. Anyway, the exhaust oxygen
measurement in diesel engines is not standard and is not usually utilised for
controlling the air path (except for detecting injector drifts).

Furthermore, it is less usual finding on-board sensors for measuring engine-
out emissions in LD diesel engines. Different reasons can be stated:

• Exhaust gas concentration sensors (mainly NOx and soot) with a suf-
ficient small size and acceptable accuracy for on-board measurements
have not been available until the last decade. More recently, on-engine
NOx can be measured with NOx sensors based on the ZrO2 planar tech-
nology [16,17]. On-board soot sensors are also starting to be marketed.
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• The high cost of these on-board sensors with respect to the traditional
ones used in automotive until EURO V standards (the cost can be several
times higher according to [18]).

• Even though the steady-state accuracy of these sensors is acceptable,
the dynamic performance is still problematic due to the slow and filtered
responses in the order of 1 s, which prevent from using them with real-
time purposes.

Anyway, these sensors are being gradually introduced in the market, en-
hanced by the development of after-treatment devices2. Admittedly, some
luxury cars have already installed NOx sensors some years before. However,
the problems derived of using the raw output signal in real-time functions
must be addressed.

Models may be used as an alternative to sensors, since they can reproduce
fast transients and present offline prediction capabilities [19,20]. Nevertheless,
models suffer from drift depending on time and engine operating conditions,
and uncertainties linked with the model structure or non-considered inputs.
In commercial engine ECUs, the prevailing approach is to use look-up tables
to model nonlinear and operating point dependencies because of the simple
programming and easy comprehension. An intensive test campaign should
be made for filling the tables with a big number of steady-states for offline
calibration and a limited number of dynamic tests for validation. Anyhow, the
drift problem cannot be eliminated unless sensors with acceptable accuracy are
used.

Two main options can be considered for cancelling drift: modelling the
bias as an additive or multiplicative factor to the model, or recalibrating the
model. For both adaptive options, observers can be designed. For the former,
the bias can be tracked by designing a proper drift correction observer, while
for the latter, the model parameters can be updated for minimising the errors.

For all those techniques and cases, the Kalman filter (KF) [21] is a standard
tool for observing variables. The multiple possibilities for designing observers
make feasible to estimate drift, correct variables and indeed calibrate and
update tables and models, all in an online basis required for diesel diagnostics
or control. Anyway, computational limitations should be issued, and optimized
algorithms and simplifications are crucial, jointly with the robustness of the
algorithms.

2In HD engines it is usual finding NOx sensors for a correct urea dosing in SCR systems.
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1.3 Scope of the work

The dissertation covers the problem of the online estimation of diesel engine
exhaust concentrations of NOx and the fuel-to-air ratio or richness (λ�1). Two
information sources are utilised:

• on-board sensors for measuring NOx and λ�1, and

• control oriented models (COM) in order to predict NOx and λ�1.

The evaluation of the static accuracy of these sensors is made by comparing
the outputs with a gas analyser, while the dynamics are identified on-board
by performing step-like transitions on NOx and λ�1 after modifying ECU
actuation variables. The former are produced by provoking sharp changes in
the start of injection (SOI) while the latter by sharp changes in the injected
fuel. With a sufficient data set, the response time and delay of the sensor are
identified.

Afterwards, control oriented models for estimating NOx and λ�1 are pro-
posed. Regarding the λ�1 prediction, the computation is based on the relative
fuel-to-air ratio, where fuel comes from an ECU model and air mass flow is
measured by a sensor. For the case of NOx, the model is set-point relative
and based on look-up tables fitted for representing nominal engine emissions
with an exponential correction based on the intake oxygen variation. Different
correction factors for modelling other effects such as the thermal loading of
the engine are proposed. The model is able to predict NOx with a low error
and a simple structure.

Regardless of using models or sensors, model drift and sensor dynamic
deficiencies affect the final estimation. In order to solve this problem, data
fusion strategies are proposed by combining the steady-state accuracy of the
sensor and the fast estimation of the models. In a first approach, a drift cor-
rection model tracks the bias between the model and the sensor but keeping
the fast response of the model. A KF is used for observing the bias, acting
as a high-pass filter for the model and a low-pass filter for the sensor. In a
second approach, the updating of look-up tables by using observers is coped
with different versions based on the extended Kalman filter (EKF). Partic-
ularly, a simplified KF (SKF) allows to observe the parameters with a low
computational effort.

Finally, the methods and algorithms developed in this work are combined
and applied to the estimation of NOx and λ�1 by drift correction algorithms
and by developing adaptive look-up tables. The methods developed in this
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work are applied to NOx and λ�1, however these could be employed for other
variables such as soot, or engine parameters such as the volumetric efficiency.

1.4 Objectives

The present work provides solutions and ideas in the field of adaptive esti-
mation and drift correction of signals and models. Particularly, the following
are the main objectives of the present work:

• The introduction of a novel method for the online characterisation of
NOx sensors (Chapter 3).

• The development of a simple ECU-oriented model for diesel NOx pre-
diction (Chapter 4).

• The design of a simplified version of the EKF with similar accuracy as
the standard KF, but that requires a much lower memory resources and
calculation time, for updating look-up tables and models (Chapter 5).

• The development of a full methodology covering design, tuning and on-
engine implementation of observers for the estimation of NOx and λ�1

(Chapters 5 and 6).

• The design of a set of observers for updating an ECU-oriented model
based on physical and virtual sensors and applied to the NOx prediction
(Chapter 6).

1.4.1 Methodology

In the following, the work methodology is sketched up and split up among
the chapters.

Chapter 2 emphasises the need of information for a proper control of the
diesel engine and reviews sensors and models for estimating gas concentrations
in diesel engines, while also presents different methods for fast estimation of
variables. These methods are focused on the drift correction and updating
algorithms for look-up tables.

Chapter 3 describes the system set-up including the engine characteristics,
which in the present work has been a 2.2 litre turbocharged DICI engine, and
the different engine tests performed on that engine. Furthermore, a novel pro-
cedure for the online characterisation of NOx sensors based on SOI variations
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is depicted. Characterisation of λ�1 output from NOx sensors is also pre-
sented. This is a key point for the application of the algorithms developed in
subsequent chapters, as the knowledge on the sensor response greatly affects
the results.

Chapter 4 presents the design and validation results of ECU-oriented mod-
els for λ�1 and NOx prediction. The first is just based on the calculation of
the fuel-to-air ratio by the injected fuel mass flow and the air mass flow sig-
nals from the ECU while the second is based on a nominal set-point relative
fitting of the NOx with a series of corrections for accounting with variations
on λ�1, temperatures and other signals. The NOx model combines look-up
tables with physical-based equations and is designed for being implemented
on commercial ECUs.

Chapter 5 presents two data fusion strategies for the fast estimation of
variables when a steady-state accurate sensor and a fast model are presented.
The first is based on drift correction algorithms in order to track the bias
between a model and a sensor. In order to observe the bias, a steady-state KF
is designed and the observer tuning is also discussed.

The second strategy comes from that look-up tables are often used in
automotive control systems and there is a need for systematic methods that
can estimate or update them on-line. According to that, learning algorithms
for the online updating of look-up tables are proposed. Based on the EKF
for observing look-up tables parameters [22], two different versions that keep
some of the properties of the original KF but optimise the computation are
designed.

The methods presented in the Chapter 5 can be applied to different engine
variables. In this work, Chapter 6 applies them to the fast estimation of λ�1

and NOx. In order to do that, different algorithms based on the dynamic
estimation methods of Chapter 5 are proposed.

Afterwards, a full methodology for the fast estimation of λ�1 is presented.
This part covers the methodology, the implementation of robustness conditions
for coping with signal uncertainties and proposes an adaptive look-up table
for modelling operating point dependency of the bias. Finally, experimental
results are presented.

The second part of the chapter is centred on the fast estimation of NOx

by designing different algorithms. First, the evaluation of the methods for
updating look-up tables designed in the Chapter 5 is validated by using real
engine data for the NOx estimation. Furthermore, single 2D adaptive look-
up tables scheduled by injection and speed are proposed for modelling slow
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varying cycles. Second, different set of observers are proposed in order to
update parameters on the NOx model developed in the Chapter 4 and for
minimising the errors in the model inputs when sensor signals are available.
To conclude, the estimation of the actual NOx, solving the problems of filtering
and delay of sensors, is proposed.

Finally, Chapter 7 presents the conclusions and the future works derived
from this dissertation.

1.A Publications

The publications by the author that are directly linked with the disserta-
tion are presented next, where the Chapters related with the papers are shown
in brackets.

Journal papers

• Galindo J, Serrano JR, Guardiola C, Blanco-Rodriguez D and Cuadrado IG. An
on-Engine Method for Dynamic Characterisation of NOx Concentration Sensors. Ex-
perimental Thermal and Fluid Science, Vol. 35 no 3: 470-476, 2011. [Chapter 3]

• Guardiola C, Pla B, Blanco-Rodriguez D and Cabrera P. A Learning Algorithm Con-
cept for Updating Look-up Tables for Automotive Applications. Mathematical and
Computer Modelling, Vol. 57 no 7-8: 1979-1989, 2013. [Chapter 5]

• Guardiola C, Pla B, Blanco-Rodriguez D, Mazer A and Hayat O. A Bias Correction
Method for Fast Fuel-to-Air Ratio Estimation in Diesel Engines. Proceedings of the
Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. Vol.
227 no 8: 1099-1111, 2013. [Chapters 3, 4, 5 and 6]

• Guardiola C, Pla B, Blanco-Rodriguez D and Eriksson L. A Computationally Efficient
Kalman Filter based Estimator for Updating Look-up Tables Applied to NOx Esti-
mation in Diesel Engines. Control Engineering Practice. Vol. 21 no 11: 1455-1468,
2013. [Chapters 5 and 6]

• Guardiola C, Pla B, Blanco-Rodriguez D and Calendini PO. ECU Oriented Models
for NOx Prediction. Part 1: A Mean Value Engine Model for NOx Prediction. Sub-
mitted to Proceedings of the Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering. [Chapters 4]

• Guardiola C, Climent H, Pla B and Blanco-Rodriguez D. ECU Oriented Models for
NOx Prediction. Part 2: Adaptive Estimation by Using a NOx Sensor. Submitted to
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering. [Chapters 5 and 6]

Conference papers

• Desantes JM, Luján JM, Guardiola C and Blanco-Rodriguez D. Development of NOx

Fast Estimate Using NOx Sensors. EAEC 2011 Congress, 2011. [Chapter 6]
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Automotive Applications. Modelling for Engineering and Human Behaviour 2011,
2011. [Chapter 5]
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2.1 Introduction

Driven by the advancements in diesel engines and especially due to the
stringent regulations in the recent years that have enhanced the introduction
of the after-treatment (AT) systems, the control and diagnostic logics in the
modern ECU are accomplishing a renewal. The typical configuration of a
short route EGR and a variable geometry turbine (VGT) shall be extended
to include dual EGR loops, and different systems for eliminating particles,
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hydrocarbons and NOx in the exhaust. This modernisation must be run jointly
with the improvements in the ways of retrieving information from the states of
the engine, particularly from engine-out concentrations. This chapter gives an
overview on the actual state on technologies related with diesel engine and the
different sources of information from the exhaust gas concentration on diesel
engines: sensors, models and adaptive estimators. A specific discussion about
the λ and NOx estimation in CI engines is made due to their relevance in the
present dissertation.

2.2 Diesel engine subsystems

There exists different possible diesel engine layouts, but they all share
at some point the following subsystems [1]: the fuel path, the air path, the
after-treatment and the control system.

2.2.1 The fuel path system

The common-rail (CR) system and the direct injection (DI) is standard
in current diesel engines [2]. The main advantages of the CR against other
systems, such as the distributor pump and the unit pump injector, are the
multiple injections and the control flexibility. A pressurised deposit monitored
by a rail pressure sensor is capable of maintaining the pressure highly constant
during the injection.

In the ECU, the total injected fuel mass (mf ) is modelled by a look-up
table function of the injection duration (tid) and the rail pressure (prail). The
SOI actuation (usoi) is determined by a calibrated look-up table as function of
speed (n) and the desired mf and is measured in degrees with respect to the
top dead centre (TDC). In the case of sharp load steps and in order to avoid
the excessive emissions of HC and soot, the smoke limiter function limits mf

until the air path responds and supplies the air mass flow ( 9ma) required for
the combustion, as depicted later in Figure 2.2.

mf � fptid, prailq (2.1a)

usoi � fpn,mf q (2.1b)
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2.2.2 The air path system

In a commercial CI engine, the following subsystems can usually be found
in the air path: the air filter (in order to clean the entering air, although
causing a minimum pressure drop in the line), a (single or double stage) tur-
bocharger (TC) including an intercooler for cooling the compressed air (thus
increasing the density), the intake and exhaust manifolds, the EGR loops (high
and low pressure loops) and the pipe-out line (the after-treatment devices are
considered as an independent subsystem because of the different possibilities
existing today, even though they are really connected to the pipe-out line).

A single TC is the common layout in commercial engines, but some mount
also dual stage TC [3]. The main function is increasing the intake air mass
flow by increasing the density with a compressor usually powered by a turbine
shaft located at the engine exhaust [4]. One of the main drawbacks of the
system is the turbolag of the TC which is associated with the inertial response
of the turbo shaft to accelerations, especially at low speed and low loads, when
the exhaust energy is quite low [5]. In order to get the maximum efficiency
of the compressor and turbine, two types of control are usual: waste-gate
(WG) valves and a variable geometry turbine (VGT), also known as variable
nozzle turbine (VNT). The WG configuration is based on the use of a fixed
geometry in the turbine with a valve that acts bypassing the flow minimising
the effective exhaust flow through the turbine. This solution has practically
been replaced by the use of the VGT, which is based on movable nozzles that
vary the turbine work depending on the operating point. The VGT allows to
increment the engine performance reducing the specific fuel consumption and
also adds a major flexibility to the control, admittedly that increments the
related complexity and calibration effort. In a dual stage TC, there exists a
wide variety of possibilities of combining WG, VGT and fixed geometries in
the high pressure (HP) and low pressure (LP) turbines [6].

The exhaust gas recirculation (EGR) is the most widely extended NOx

reduction system [7] and is used in CI engines since the middle of the 90s.
The basic idea is recirculating a portion of the exhaust gas to the intake. The
principal effect of the EGR system is reducing the effective O2 (increasing
effective [CO2]int) at the intake and then diminishing the peak temperature in
the cylinder and thus reducing NOx as it is shown in Figure 2.1.
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Figure 2.1. Nominal NOx emissions depending on [CO2]int for nominal tests in the
CI engine explained in Chapter 3. Values are normalised with the maximum NOx

value for each operating point, which corresponds to uegr � 100 (fully closed) for each
pair of [n,mf ].

The EGR rate in steady-state operation can be defined as the quotient
between the total EGR mass flow 9megr and the intake mass flow ( 9mint)

9mint � 9ma � 9megr (2.2a)

EGR � 9megr

9mint
(2.2b)

The work by Ladommatos et al. [8–12] is a good reference for understanding
the effects of the EGR in the combustion and emissions. In addition to the
internal EGR (inert gas fraction that stays in the cylinder after the combus-
tion), the external EGR can comprise high pressure EGR (HPEGR) and low
pressure EGR (LPEGR) loops. The HPEGR is based on the extraction of a
portion of the exhaust gas upstream of the turbine and driven normally to the
intercooler output (hot EGR). The LPEGR extracts a portion of the exhaust
gas at some point downstream of the turbine (it is usual to locate it down-
stream of the diesel particulate filter for avoiding damage in the compressor)
and is guided at the compressor inlet (after the air filter). Besides the instal-
lation of valves for controlling the flow, coolers are installed for increasing the
flow density.
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The HPEGR, namely EGR for simplification, is the standard in CI engines
due to the simple layout and control: the pressure differences between exhaust
and intake facilitate that gas goes to the intake with some exceptions, which
can occur for high EGR rates, problem that can be solved e.g. by introducing
a throttle valve [13]. Even though the LPEGR did not enter into massive
production, there exists today a certain interest in combining both loops for
further reduction of emissions that can push up to relax the AT efficiencies
[14,15] and thus the cost of complex systems.

EGR/VGT control. The air path is managed independently of the fuel
injection system. The effects of the injection settings are considered in the air
path as instantaneous inputs for a multiple input multiple output (MIMO)
control problem. More concretely, the fuel injection quantity (mf ) and the
engine speed (n) are used as scheduling variables for defining the set-points
for the EGR and VGT actuation. Then, for a common layout of HPEGR and
VGT (or WG), the inputs are the EGR valve position (uegr) and the turbine
actuation (uvgt or uwg), besides other actuators such as valves for bypassing
the flow over the EGR cooler (ubp,egr) if necessary. If the TC is dual stage,
it is usual that only one of the turbines can be actuated. For other layouts,
different control strategies can be designed, e.g. with a twin turbo sequential
parallel configuration, an extra variable is necessary in order to coordinate the
switching [6]. Varnier [3] gives a complete review on boosting technologies and
its associated control.

The EGR/VGT control strategy basically consists on two maps for deter-
mining the set-points for the air mass flow ( 9ma) and the boost pressure (pboost),
while uegr and uvgt are commanded for reaching these set-points [16]. The cou-
pling of the EGR/VGT system is avoided by defining control regions, with and
without EGR. When engine is working in the EGR area, uegr is controlled in
closed loop for reaching the required air mass flow set-point scheduled by mf

and n. The VGT is commanded in open loop by a feed-forward controller that
imposes a given uvgt depending also on mf and n. This structure avoids the
problem of the EGR/VGT coupling that can be exemplified as follows: when
the EGR valve is opened, a closing on turbine nozzles increments the exhaust
backpressure and the turbine regime, this effect produces a higher recircula-
tion of EGR reducing the effective air mass flow at the intake (the EGR mass
flow replaces the fresh air). However, when the EGR valve is fully closed, a
closing of the turbine nozzles produces an increase of the intake air mass flow.
This occurs for medium-high engine loads and uvgt is controlled in closed loop,
while the EGR valve keeps closed. The control objective is then reaching the
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intake air mass flow set-point. Figure 2.2 schematises the air path and the
smoke limiter controller.
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Figure 2.2. Smoke limiter and air path control blocks.

Furthermore, some corrections or maps switching are applied depending on
combustion modes or for cold starting strategies (the references for injection
and air path are modified). The engine coolant temperature (Tcool) is also
used for corrections and for defining the cold starting strategies.

An alternative to the commercial air path control is using virtual and phys-
ical sensors or including adaptive strategies by feeding back the controllers
with direct measurements of exhaust conditions, e.g. exhaust gas concentra-
tions whose estimation is further discussed in the Section 2.3. Then, model
predictive control (MPC) [17, 18] or other strategies [19] can be exploited for
such control.

Dual EGR/VGT control. When using a dual EGR loop, in addition to
the control variables presented for the single loop, the following inputs are
necessary: LPEGR valve (ulp), intake throttle valve (uit) and/or the back-
pressure valve positions (ubp). The total EGR rate is calculated as in (2.2)
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but considering mass flows of the low and high pressure loops respectively 9mlp

and 9mhp

9megr � 9mlp � 9mhp (2.3)

Depending on the engine conditions and control needs, the EGR split
( 9mlp{ 9mhp) is selected, i.e. the set-points for 9mlp and 9mhp. The control is
similar to that of the single EGR/VGT control but designing an appropriate
algorithm for defining the EGR split [20]. A common solution in steady-state
is controlling ulp and if necessary opening uhp for reaching the 9ma set-point
(EGR is not directly measured). Indeed, the LP loop itself might be sufficient
for getting the required 9ma set-point. For transient operation, the discussion
must evaluate the characteristic response times of the systems: the HPEGR
line is faster than the LPEGR line due to the higher pressure differences and
the shorter length. This produces that different trade-offs between uhp and
ulp may be stated during transients. An intrinsic benefit of using a dual loop
EGR is that for the EGR engine area, the total 9megr quantity may be in-
creased leading to further reductions on NOx, which can alleviate the needs
of AT or could move the deNOx

1 trade-off to select a lean NOx trap (LNT)
rather than a selective catalyst reduction (SCR) system. Model based and
optimal approaches to the control problem of dual EGR loops can be found
in [15,21,22].

Control of the air and fuel paths. Some authors have proposed a joint
control of the air and fuel paths for optimising the engine transient operation.
For that, fast acting variables linked to the fuel path (usoi or prail) are able
to track NOx or soot while uegr and uvgt are arranged to improve the engine
transient response while keeping the engine operation (ensuring the torque on
wheels) without exceeding emission limits. This can be made by feeding back
the controllers with real time measurements of exhaust gas concentrations
(typically NOx and soot, or exhaust oxygen) [17, 23]. Table 2.1 sums up the
characteristic response times for step variations in the inputs, showing how
the associated fuel path responses are quite faster than the air path ones.
Furthermore, the response times of the TC are in general higher than those
related to the EGR loop due to the turbolag problem.

Some authors have proposed a transient operation optimization of the
engine management strategy (EMS), see e.g. [24]. However, manufacturers are
still reluctant to change the actual implementation in the fuel and air path

1The term deNOx refers in general to an AT system for reducing NOx, see Section 2.2.3.
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Table 2.1. Approximate characteristic response times for the main actuation vari-
ables in a CI engine.

Command Response time

uprail , usoi, uid 100-600 µs
uhp (uegr) 0.2-0.5 s
ulp 0.2-1 s
uvgt, uwg 0.5-1.5 s

system: the EMS is confided to fixed calibrations and optimised for steady-
state operation with a validation in transient operation without feedback on
exhaust engine states.

2.2.3 The after-treatment systems

The new stringent regulations have forced to get an impressive develop-
ment in diesel engines, and particularly with the after-treatment devices (AT);
Johnson [25] and Twigg [26] present complete reviews on emissions control and
available AT technologies. The standard configuration for AT in diesel engines
for EURO VI will comprise

• a diesel oxidation catalyst (DOC) for three main functions: oxidising
CO and HC, heating the exhaust gas and oxidising NO to NO2, which is
useful in the DPF regeneration and also facilitates the SCR performance;

• a diesel particulate filter (DPF) for eliminating soot; and

• a deNOx system for reducing NOx that it is usually a selective catalyst
reduction (SCR) or a lean NOx trap (LNT).

The DPF and LNT action is based on substrate materials that store the
pollutants through mechanisms or chemical principles. When the system is
full, a regeneration by means of post-injections and thus increasing exhaust
heat is necessary. The DOC system is built from ceramic and catalytic noble
metals, such as platinum or rhodium, for enhancing the oxidation of CO and
HC as well as NO to NO2. SCR systems eliminate NOx by dosing urea and
water (principle component is ammonia) and reacting with NOx for obtaining
N2 and water, where a dedicated control management is necessary for opti-
mising its dosing [27, 28]. The SCR requires an specific installation for the
urea storage that increases the cost and weight, and for this reason, the SCR
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is more extended in HD than in LD. Major concerns in SCR are the light-off
related with the minimum temperature for guarantying the efficiency of the
system (critical when the engine is cold or it is working in low-load operation);
and the ammonia slip, due to the excessive injection of urea, which does not
react with NOx, constituting an economical cost and affecting the output of
the NOx sensors based on ZrO2 (see Section 2.3.1.2).

DPF and DOC are standard in EURO V cars, and deNOx systems will
also be with the application of EURO VI. Anyway, the trade-off between SCR
and LNT is not solved [29], and different factors influence the final decision.
Thinking of future regulations, manufacturers struggle between getting lower
removal efficiencies (around 85%) by using LNT or allowing the engines to
work on much higher efficiencies and then higher NOx production but with
the use of a SCR with a removal efficiency nearly 98% [25].

The selection of the layout of the ATs in the engine is another important
trade-off and influence the correct operation of the systems. Some possibilities
are later shown in Figure 5.1; however this is a trending discussion. It seems
logical that the DOC should be located first because it is required for a proper
performance of DPF and SCR, but the trade-off between DPF and SCR or
LNT present advantages and drawbacks. Indeed, there are some research on
moving the DPF upstream of the turbine for preventing turbine and compres-
sor damage (if it is located before the EGR loop) [30] or doing something
similar with the DOC [31]. There are also some alternatives that combine
some of the systems for reducing the packaging and final weight [32].

With respect to the feedback, the knowledge of the concentrations up-
stream and downstream of the AT systems allows to diagnose the performance,
and is required for direct control of the final emissions. The temperature also
influences the regeneration of the DPF and LNT as well as it is critical for
the SCR light-off (key reactions are inhibited at low temperatures). The pres-
sure drop in the line could also be used for detecting failures or when the
DPF or LNT are full. The decision on the sensor set for a proper control and
diagnosing is a challenging problem that requires a specific study out of the
scope of this work. The use of sensors and models for estimating exhaust gas
concentrations, especially NOx and exhaust oxygen, is discussed in section 2.3.

2.2.4 The control system

As presented in previous subsections, the modern diesel engine has evolved
until reaching today an important and increasing complexity, which is reflected
with the introduction of different subsystems for improving the performance
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and minimising the emissions. The vehicle electronics in the 80s were reduced
to the radio plus simple engine controllers. At the same time, these were based
on mechanical and hydraulic devices with a simple electronic assistant, and
dedicated to specific functions such as the ignition in the case of SI engines.
However, the evolution of the engines has been closely related with the rise
of complexity of the modern embedded electronics in automotive, as it is well
depicted in [33]. Nowadays, safety performance, fuel efficiency and comfort
are major demands and these are achieved by installing proper control units.
Modern cars have between 20 and 70 control units with a size of 108 in object
instructions, while in the first 90s this was in the order of 106, according to
Ebert and Jones [33].

From all the control units in the vehicle, the ECU is in charge of managing
the engine. Others work with the braking systems, the air conditioning in the
cabin or the gear shifting management [1]. In the beginning of the 00s, the
ECU EDC16 model by Bosch for diesel engines changed the view of the diesel
control by using the final torque demand on the wheels as the feedback for a
proper air and fuel path management. This ECU also included a fully flexible
control of the common-rail (pilot, main and post-injections), the VGT and the
EGR, all in the same processor. The current EDC17 [34] model coordinates
a bigger number of data from sensors, actuators and models in order to get a
full management of the diesel engine.

From all the requirements and purposes of the ECU, the on-board diag-
nostics (OBD) standards were applied to engines in order to implement safety
routines for detecting sensors or engine systems malfunctions [35]. Currently,
about 40% of the automotive electronics are devoted to OBD functions. The
gradual introduction of the AT systems in diesel engines, especially with the
current trade-off between selecting SCR (more complex due to the urea dosing
but effective) or LNT (more simple but less effective), is requiring a renewal
of the current diesel air path control [29], and new functions and managing
strategies are being developed; see for instance Yang et al. [36] who propose
an independent control unit for the AT line separated from the main ECU.

2.2.4.1 Summary on the information required for a global diesel
management

The commercial diesel engine management focuses on references measured
upstream of the combustion chamber, with no direct feedback from the ex-
haust line. This makes that emissions are controlled in open loop and possible
changes and the ageing are not taken into account. The sensors set used in



2.2. Diesel engine subsystems 23

the automotive in the beginning of 00s [37] had hardly changed until the end
of the last decade. A major factor is the unnecessary of increasing the num-
ber and the type of sensors due to the current control logic. Furthermore,
other important factor is the low cost of pressure, temperature and rotational
motion sensors (bellow 3$ per unit) against the higher cost (minimum ¡10-
20$) of more sophisticated sensors, such as NOx or in-cylinder pressure ones
(references obtained from [37] and conversations with engine manufacturers).

Table 2.2 summarises the usual inputs and sensors that are installed in
current diesel engines, while indicating possible alternatives in a short future
[38], which are essentially driven by the emission standards (the need of ATs
control and diagnosis). It is rather complicated establishing an universal sensor
set and some discrepancies can be found, e.g. GM is starting to include pcyl
sensors in engines and some AUDI and BMW vehicles already install NOx

sensors before and/or after the SCR system.

Table 2.2. Summary of the on-board sensors and control inputs used in a commercial
LD diesel engine for control and feedback, and split between the main engine subsys-
tems. The inputs column defines the main actuator signals in the diesel engine. The
remaining columns show the variables that are measured by sensors, differentiating
between standard for EURO V cars and the possible expectations in a short future.
Admittedly, some discrepancies can exist between this distinction depending on the
considered car and sector (luxury, utility, etc.). The symbol * represents sensors that
can be found in some actual engine models but with less probability. The injection
settings are defined by the rail pressure control uprail

, the injection timing command
(usoi) and the injection duration uid, and these settings can be specified for pilot in-
jections main injections and possible post injections (variable utmi

makes reference
to the duration of the main injection only). A detailed summary on the symbols and
acronyms used in this work appears in the beginning of this document. The interested
reader is also referred to Turner [38] for finding basic comprehensive explanations
about the principles of measurement of the main automotive sensors.

System Inputs Standard Expected
sensors sensors

Injection
uprail

rusoi, uidspilot,main,post
n, prail

pcyl*
fuel quality

Air path
uvgt, uhp, ulp
uit, ubp

pboost, 9ma, Tcool
Tboost, pamb, Tamb

9megr, Tegr
nvgt, λint*

AT rusoi, uidspost, uurea NOx*, soot, λexh*

Alternatively, model based strategies present different advantages: models
can be used for engine calibration saving costs [39]; models can easily be
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linked in control and diagnosis algorithms as they present faster responses than
sensors; and the fusion of sensors and models permits to estimate variables or
update parameters on real time solving the drift and ageing and improving
the dynamic responses of the original signals.

This section has emphasised the importance of the information about en-
gine states and how to correctly retrieve them on-board. Next section deals
with the topic of exhaust gas concentration estimation in CI engines, stressing
the variables NOx and λ.

2.3 Dynamic exhaust gas concentration estimation

Previous section has made a review on the different technologies in order
to manage the diesel engine and has underlined the need of reliable methods
for estimating variables online. Test-bed measurement systems are usual for
testing and research but these present in general deficient dynamic responses
and overall limited on-board capabilities. However, in the last years, and
forced by the stringent emission laws, developments of on-board gas concen-
tration sensors have proliferated and some of them are a reality today, such
as NOx or wide-band lambda sensors. Furthermore, COMs and data fusion
(DF) techniques that combine different information sources can also be used
for real-time (RT) estimations.

Current section gives a review on the different methods for the estimation
of the exhaust gas concentration in CI engines, emphasising the on-board
methods. Therefore, in addition to being feasible from the point of view of
cost and engine implementation, the accuracy and dynamic responses of these
estimators should be issued. Hereinafter the following three main possibilities
are discussed:

• sensors,

• models and/or virtual sensors, and

• DF techniques for combining different information sources.

2.3.1 Sensors

A subsequent division is made between test bed measurements systems
and on-board gas concentration sensors, such as exhaust gas oxygen (EGO),
universal exhaust gas oxygen (UEGO) sensors, fast soot sensors and finally
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innovative solution for monitoring e.g. NOx by using the substrate materials
of the AT systems.

2.3.1.1 Test bed sensors

Some of the most common test bed sensors are the following: gas analy-
sers [40] for different gas concentrations; opacimeters based on Beer-Lambert
law [41] and smoke meters for soot; and gravimetric devices or spectrometers
for PM [42], among others. But these are expensive, require from specific in-
stallations and their dynamic responses are questionable. Nevertheless, there
have been some developments for fast response emissions analysers for NOx,
CO2 or particles and portable emission measurement systems (PEMS) [43]
are being generalised for on-board inspections but with limited dynamic accu-
racy [44] and packaging. Finally, standard procedures for measuring emissions
in test-cells can show representative errors in the dynamic cycles with respect
to the actual transient emissions [42,45] and this should be taken into account
when processing the data [46–49] (see Section 2.3.2.3).

2.3.1.2 On-board gas concentration sensors

Oxygen sensors. In 1968, the introduction of EGO sensors [50] was the
key for the implantation of the primary three way catalyst (TWC) control in
SI engines. These sensors offered a binary lean/rich resolution for measuring
oxygen concentration and thus the equivalent air-to-fuel ratio or lambda, which
represents the excess air factor with respect to the stoichiometric air-to-fuel
ratio (approximately 14.5 in diesel engines)

λ � 9ma

9mf

1

14.5
(2.4)

In the end of the 90s, planar UEGO sensors were implemented for SI and CI
engines. It is common to use directly the term lambda probe for referring
to these sensors. The term lambda is due to the characteristic shape of the
signal output in narrow-band lambda sensors, which is similar to the λ letter
from the Greek alphabet (see Figure 2.3). Furthermore, these are also known
as switching-type sensors. UEGO sensors present full and linear resolution
on oxygen over a wide range, hence the term wide-band. UEGO and EGO
response characteristics are shown in Figure 2.3.

λ measurement in CI engines is used for correcting injector drift. In
the case of low temperature combustion (LTC) processes [51], intake charge
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Figure 2.3. Characteristic outputs of oxygen lambda sensors. Left: Narrow-band
lambda or EGO sensors. Right: Wide-band lambda or UEGO sensors.

composition, and hence λ is important for the combustion stability and con-
trol [52, 53]. Some studies about wide-band lambda sensors performance can
be found in [54,55].

NOx-ZrO2 sensors. The development of on-board NOx sensors has been
driven by those which are based on ZrO2 layers [56, 57] and able to measure
gas at wet condition (i.e. without removing exhaust gas water steam con-
tent as gas analysers do). These sensors have suffered an evolution over the
last 15 years [58] and now are manufactured using the planar ZrO2 multilayer
technology [59], which combines thick film screen printing and ceramic tape
casting [60]. Modern versions offer reduced warmup time, smaller size, lower
weight and cost-effective production, which encourage their implementation
on commercial engines. This kind of sensors simultaneously provides a mea-
surement of the relative air-to-fuel ratio (λ) and NOx concentration and must
play a major role in the SCR control and diagnosis [61–64].

The working principle is well explained in Riegel et al. [60] and layout is
schematised in Figure 2.4. This sensor presents two cavities with membranes
for measuring oxygen and NOx, respectively. In a first outer cavity, an elec-
trochemical pump adjusts the oxygen concentration from the diffusing gas to
a predefined value (pump intensity Ip1) by reducing O2 to O2� with an elec-
trode (usually Pt), thus providing a linear amperometric measurement of λ.
At the same time, a faster binary output is provided, differentiating between
rich and lean conditions in the exhaust gases (similar to EGO sensor output).
The measurement principle of this first cavity is similar to that of a wide-
band UEGO sensor. In addition, NO is oxidised to NO2, and then the NO2

is diffused to a second inner cavity, where the oxygen produced through the
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Figure 2.4. Schematic representation of a NOx-ZrO2 sensor, where the main reac-
tions in the chambers and diffusion barriers are shown.

dissociation of the NO2 is pumped out in a similar way by means of a second
electrochemical pump (Ip2). The output of this pump is proportional to the
NOx concentration in the exhaust gases. A heater is necessary for keeping the
sensor at high temperatures, where the device gets good resolution, i.e. the
sensor needs some lag for starting to measure when switching on (the same
occurs for UEGO sensors). Therefore, these sensors provide three signal out-
puts: a fast binary λ (around 100 ms), lean or rich, suitable e.g. for TWC
diagnosis, a slower (around 500 ms of response time) full resolution λ and NOx

(with a response around 750 ms).

NOx and UEGO sensor limitations. Because of the importance of NOx

and UEGO sensors in the present work, response limitations of these sensors
are underlined. Several studies have evaluated the accuracy and response
times of real time NOx sensor measurements for different applications, such
as [65,66].

Conventional UEGO sensors exhibit fast response times around 70 ms with
sufficient accuracy [67]. This can be improved, as proposed in [68], moving
the O2 sensor upstream of the turbine and using a Kalman filter [69] for
taking into account pressure effect on the output signal. If the NOx sensor is
placed downstream of the AT systems, its response is affected by a considerable
transport delay and filtering. Figure 2.5 compares λ�1 signals from a UEGO
sensor located upstream of the AT systems, and from a NOx sensor located
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downstream of an AT line including DOC, DPF and SCR in a turbocharged
diesel engine. The NOx sensor signal is significantly slower and more filtered
than that of a UEGO sensor, although the steady-state accuracy seems to be
sufficiently accurate in both devices at a glance. Due to the measurement
principles of both UEGO and NOx sensors, the pressure in the runners also
compromises the steady-state accuracy of the sensor.
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Figure 2.5. λ�1 measurement from a UEGO sensor located at the turbine outlet and
from a NOx sensor downstream the after-treatment systems.

Concerning NOx output from NOx sensors, the delay is variable, depends
on operating conditions, and is in the order of 1 s. This delay is caused
for both transport and physical motives, which are difficult to model and can
vary with the engine operating conditions. This issue makes difficult to use the
raw sensor signals for RT critical functions. For illustrating sensor response,
see Figure 2.6: the actual NOx is expected to respond instantaneously when
performing start of injection (SOI) steps where the delay and response time
in the sensor are attributed to the sensor. Several studies have evaluated the
accuracy and response times of RT NOx sensor measurements [44,65,66].

Finally, since sensors are subjected to unit-to-unit manufacturing discrep-
ancies, and can be affected by significant drift during their lifespan, methods
for the online characterisation of sensors would improve the application of
these for automotive control purposes. Usual calibration methods consist of
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Figure 2.6. NOx sensor response to SOI steps (black-right axis). NOx presents a
clear delay and filtering with respect to the SOI signal (gray-left axis). The dynamic
response could be fitted with a first order delayed discrete filter. SOI units are crank
angle degrees before the top dead centre (�BTDC), while NOx is measured in ppm.
The delay is in the order of 1s while the response time is around 0.75s.

a specific test rig which generates known composition synthesis gas which is
used for the static and dynamic calibration of the sensor, while high speed
valves are needed for dynamic calibration [70]; or some solutions based on
openly mounted sensors with valves allocated before the sensor, where gas
composition is changed within milliseconds [71]. However, these calibration
methods are restricted to laboratory use and cannot be performed during the
operation phase on the engine. Chapter 3 presents a contribution for the on-
line characterisation of NOx output by means of SOI steps; furthermore, λ�1

output from wide-band lambda sensors may be characterised by means of load
steps.

Fast soot sensors. According to Kasper [72], particles with lower diameters
affect more to alveolar deposition after healthy tests with persons, which un-
derline the risk of underestimating the effect of the residual soot downstream
of the DPF. This carries out a sensitive problem for sensors: in addition to
robustness, packaging and dynamic limitations, on-board soot sensors must
measure with high resolution at low-soot values (this sensitive problem is also
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linked with NOx sensors). Another problem with soot sensors is the selec-
tion of an appropriate metric as different metrics can be used depending on
the physical measuring principle: particle number, total mass, sizes or light
absorbing properties (opacity). A common solution for fast soot sensors, de-
scribed in [73], is measuring the electrical conductivity of the carbonaceous
fraction of the PM, which acts as a resistance between two electrodes located
in the sensor. One of them is feed with a high voltage DC, while the cur-
rent generated in the other is transformed to voltage, conditioned and then
acquired for being converted into a soot estimation. This layout is similar to
other fast soot sensors, see e.g. [74, 75]. Even though these sensors have not
reached the maturity of UEGO or NOx sensors, some companies have already
introduced them in the market or are targeted for start of production in 2013.

Sensors in development, other alternatives. A relevant problem of fast
NOx-ZrO2 sensors is the low sensitivity when the NOx concentration is small,
i.e. downstream of SCR or LNT systems; and the related cross-sensitivity to
ammonia. In that field, it can be underlined the work by Ralf Moos [76–81].

An alternative is using the catalysts and/or substrate materials of the AT
devices for determining the NOx, soot or ammonia by means of measuring the
impedance variance of the material. This allows to profit the proper AT device
for measuring, developing an integrated device. These are often called in situ
monitoring devices. Moos et al. [78] show results for in situ sensors in order
to detect loadings of oxygen in TWC, NOx in LNT, NH3 in SCR-catalyst and
soot in DPF, among others. The principal advantage of the approach is the
simple and inexpensive setup required as the devices themselves are used as
sensors.

Concretely for NOx sensoring, see [79] and Groß et al. [81] who extend the
use of integrating-type NOx sensors for measuring instantaneous NOx concen-
tration, especially in the low ppm range (where NOx concentration is low),
incorporating temperature based corrections in the measurements. Groß et
al. also present results with respect to NO/NO2 differentiation and cross-
sensitivities with other gas components. Other alternatives for innovative
sensors could be using electromagnetic waves [78] or radio-frequency signals
which coincide with the oxidation/reduction rate of a TWC for determining
oxygen loading without using lambda sensors [76].

NH3 on-board sensors [77] are also being developed for closed loop urea
dosing control, based on the same principles of the wide-band lambda sen-
sors: the mixed-potential principle between electrodes, separated by a solid
electrolyte, where an electric force is created. Delphi has already marketed
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a commercial version where the reference electrode is in direct contact with
exhaust gas [82]. Schönauer et al. [80] show results with mixed potential am-
monia sensors and suggest some improvements in the technology.

2.3.2 Models and virtual sensors

Modelling or virtual sensing2 is an important tool in the design, analysis
and control of IC engines. It is not in vain that model-based strategies in
ECU have each time higher responsibilities, overall in control and OBD func-
tions [83]. Furthermore, models are quite helpful in the analysis and design
phases: hardware and software in the loop (HIL and SIL) are usual because
of the reduced cost and time-to-implement with respect to a pure experimen-
tal approach. However, the accuracy, reliability, computational cost and time
effort of models depend highly on the structure, data used for calibration and
the dynamic conditions. A classification on models for automotive is made
in [84] and these are compared in Table 2.3:

• Mean value models (MV), which average the physical quantities over
a time range, neglecting in-cycle variations. They can be further sub-
divided in data driven models (DDM) and physical mean value engine
models (MVEM).

• Emptying-and-filling models (E&FM), based on first-principle equations
and with certain capability for estimating in-cycle variations. They are
usually crank-angle solved.

• Wave Action Models (WAM), able to quantify variables in 1D space
and based on an Euler equation balance. These allow to represent wave
effects (useful e.g. for valve lifting tuning).

• Computational fluid dynamics models (CFD), based on a detailed ge-
ometrical description of the engine volumes and the application of the
Navier-Stokes equations. Due to the 3D nature of this approach, this tool
is effective for simulating mixing models, i.e. EGR distribution around
the cylinders or injection spray models. However, CFD characteristic
times of computation can range from seconds to days, preventing its use
for RT purposes.

2The term virtual sensing is often used for RT on-board models for estimating variables
that cannot be measured easily or their measurements are not reliable, in contrast with using
physical sensors.
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Table 2.3. Summary of the characteristics of different type of models used in the
automotive, reproduced from [84]. MV: mean value, acq.: acquisition, CAS: crank
angle solved, CAE: computer aided-engineering.

DDM MVEM E&FM WAM CFD

Spatial resolution 0D 0D 0D 1D 3D
Time resolution MV MV CAS CAS CAS

Typical acq. rates 0.5-100 Hz 1-200 Hz ¡1 MHz ¡10 MHz 1-100 MHz
Physical description no/very low low low medium complex

Prediction capabilities no low medium medium high
Computational cost very low low medium high very high

Main application control control CAE CAE CAE

In order to design control oriented models (COMs), MVEM and DDM
are the predominant approaches [85], basically for the relatively simple com-
putation and the good accuracy achieved, especially when the training data
set is appropriate, getting indeed higher accuracy than more complex mod-
els. MVEM and DDM rely on two main hypothesis: variables are averaged
over the time, with computation (and acquisition) rates about 50 Hz3, and
the number of states that these models can manage are reduced due to the
limited computational resources available (mainly the ECU limitations). A
straightforward classification of COMs is:

• Physical models,

• gray box models, which combine first principle equations with parame-
ters, curves and maps to be fitted with engine data, and

• black box models, which are fitted only by data and with no physical
based structure.

These approaches present advantages and drawbacks. In the following,
COMs for λ and NOx are discussed, as being core variables of the present work.
The interested reader can find a review on proposed models for these variables
in the dissertation by Schilling [86] with application to failure detection and
isolation (FDI).

3For an engine that is spinning at 3000 rpm, that is equivalent to a rate of 1-100 Hz. A
typical frequency for getting changes inside the combustion chamber could be in the order
of 1� if talking about crank angle, and this makes a required frequency (at 3000 rpm) of
50�360 = 18 MHz, quite higher than the typical rates used in MV models.



2.3. Dynamic exhaust gas concentration estimation 33

1 2 3 4 5 6 7 8
0

20

40

60

80

100
O

pa
ci

ty
 [%

]

λ [−]

0

0.2

0.4

0.6

0.8

1

N
O

x/N
O

x,
E

G
R

=
0 [−

]

Figure 2.7. Opacity (left axis and black points) and nominal NOx (gray +) emissions
depending on λ for nominal tests in the TCCI engine used in Chapter 3. NOx is
normalised with the maximum NOx value for each operating point, which corresponds
to uegr � 100 (fully closed) for each pair of [n,mf ].

2.3.2.1 λ models

λ, although not measuring emissions itself, is a key variable in order to
control emissions in CI engines. Figure 2.7 shows the opacity and NOx with
respect to λ showing the clear opposite trade-off between both variables. λ
can be directly estimated in the basis of 9ma and 9mf , see (2.4). Both signals
can be measured from the ECU or estimated by a model. In the first case, 9ma

is measured by a sensor and 9mf , inferred by a the prail and utmi (2.1a). This
computation is simple and no specific model is necessary.

Alternatively, MVEMs can be proposed for calculating λ, which will be
reduced to estimate the air mass flow at intake as mf is often considered as an
input for control models. Basic literature for principle equations of CI engines
is in [16,87,88], while Wahlström [89] develops and tune a MVEM for control
of EGR and VGT in diesel engines. In addition, other model types with higher
or lower ability to compute on RT can be proposed, Tunest̊al and Hedrick [90]
estimate λ using net heat release data and Arsie et al. [91] use neural networks
(NN) (with SI application), among other examples [92,93].
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2.3.2.2 NOx models

The case of emissions, such as NOx, is more complex than for λ. NOx can
be inferred by using predictive models that can be implemented on-engine for
RT purposes such as engine or AT control and diagnosis. Furthermore, such
models can be useful in an off-line basis for NOx simulation and prototype
design. The physical based approach presents difficulties to be applied on RT
but can be the basis for grey box approaches [94]. First, some words on NOx

physics.

NOx physical-based models. The term NOx includes all nitrogen oxides
but the nitric oxide (NO) is the predominant in diesel engines [87]. NOx

formation is affected by three different mechanisms: thermal, prompt and
from fuel-bound nitrogen [95]. The thermal mechanism is the most important
in diesel engines where high temperatures benefit reaction of N and O2 from air
producing NOx. NOx formation physics in combustion and explosion processes
were modelled by Zeldovych [96] in 1946, and formulated for IC engines by
Lavoie et al. [97] in 1970 with the well-known extended-Zeldovych mechanism

N �NO Õ NO2

N �O2 Õ NO �O
N �OH Õ NO �H

(2.5)

According to Heywood [87], the typical characteristic times of the NO forma-
tion in diesel engines combustion is in the order of seconds and thus under the
hypothesis of equilibrium of certain species, the dNO{dt can be fitted with
the initial NO formation rate by the Arrhenius equation

dNO

dt
� k1

T 0.5
e�k2{T rO2s0.5rN s (2.6)

The strong dependency with the temperature T is clear: when T increases,
NO (and thus NOx) increases exponentially. The other mechanisms can be
relevant in some specific conditions such as LTC [98,99].

Cylinder conditions such as temperature, pressure and oxygen concentra-
tion [100–102] are the most important variables for determining NOx concen-
tration.

Because of the cylinder severe conditions, price and signals problems have
prevented to use in-cylinder sensors in commercial vehicles. Although in-
cylinder pressure cost is one of the main factors burdening its application for
automotive engines, the continuous improvements of pressure sensors and its
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applications are justifying its nearby implementation [103]. The case of the
temperature sensors is more complicated [37], and their use is not foreseen in
applications. Therefore, the solution for estimating the in-cylinder conditions
on RT is then using virtual sensors.

Physical models for NOx estimation are often based in the heat release,
using pressure sensor signal for estimating flame temperature (Tf ) in the cylin-
der. The problem is not trivial and a multi-zone discretisation is advisable.
Furthermore, the residual gases (internal EGR) affect the process and these
are not always easy to estimate. An usual solution to the problem is applying
mass and energy conservation equations to each zone (walls, injector neigh-
bourhood, etc.) in conjunction with heat transfer equations, among them it
stands out the heat transfer to cylinder wall [104], which can be approached
by using Woschni equation [105]. Finally, NOx emissions for both Diesel and
gasoline engines are calculated by using the extended Zeldovych mechanism.
Good examples for estimating NOx by using heat release are [106–109]. In
the case of SI engines, some authors use the ionisation current on the spark
for approaching the pressure [110, 111], but this is not available on the diesel
engine. Nevertheless, the accuracy of the prediction is not as satisfactory as
expected, and the drift cannot be eliminated.

There is an open discussion about using time or crank angle based mod-
els for the NOx prediction. For the case of pressure based models, crank
angle sampling seems more logical as volume can be easily linked with pres-
sure trace. However, these models require heavy calculations and big memory
resources. The time required for completing one engine cycle is often bigger
than the characteristic time of the engine. In order to overcome this limitation
some authors have proposed simplifications. Guardiola et al. [108] develop a
semi-physical discrete event model based on the heat release calculation but
considering only one zone as the main contributor to the NOx formation; and
the process is supposed adiabatic, approaching Tf with the adiabatic temper-
ature of the process. This approach requires specific corrections, especially
when the combustion temperature is low. Other examples are Westlund and
Åmströng [112] who present a fast physical model for NOx and soot, or Arsie
et al. [94] who present a hierarchical model structure for engine control design
with different models and layers, ranging from physical based to mean value
approaches.

Control-oriented models for NOx. Literature about COMs for NOx is
extensive. Schilling [86] gives a short review on different COMs for NOx and
presents a NOx virtual sensor (see also references therein). His work is based
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on deriving maps from complex models [67, 113] or engine data [114, 115],
building a model that is easy to integrate into the engine ECU, but with lim-
ited extrapolation capabilities. In commercial ECUs the prevailing approach
is to use look-up tables to model nonlinear and operating point dependent
behaviours because of the simple programming in spite of the intensive tuning
effort; even though other possibilities can be commented. Winkler et al. [116]
design a virtual NOx sensor for SCR control and diagnosis. Black box models
rely on system identification [117] but are often operating point dependent
and its adaptation is not an easy task. Hirsch et al. [118] present a gray box
model for NOx and PM. Other non-linear approaches are Takagi-Sugeno fuzzy
models [114,119], Hammerstein-Wiener (HW) [120], or NN [121–124].

2.3.2.3 Identification of sensor and physical dynamics

Dynamic models describe the evolution of a state vector x along the time
t and subjected to a specific set of inputs u

9x � fpx, u, tq x P Rnx , u P Rnu (2.7a)

y � gpx, u, tq (2.7b)

The identification is the technique of designing and tuning the dynamic
models by means of a data set tu, yutendt1

over a certain time tend; see [125,126]
for comprehensives references on system identification. A common procedure
for identification is defining different black box linear model structures (AR,
ARX, ARMAX, etc.) based on polynomial relationships with a certain order
and solving the linear regression problem, usually by means of a least squares
(LS) formulation. In addition to the model parameters, the selection of an
appropriate order of the system is key for an adequate solution. If the system is
non-linear, specific structures should be utilised, e.g. piece-wise affine (PWA),
linear parameter varying (LPV) or HW models, among others.

Sensors identification for on-board strategies. Most of the dynamic
models with physical meaning used in engineering, as for instance sensor mod-
els, respond to n-order linear filters with a certain delay τ [127], at least in
the selected areas of performance. In the case of exhaust gas concentration
sensors, 1st order linear models can be sufficient for representing the sensor
response in the s-domain [44]

Gpsq � e�sτ k

1 � T s
(2.8)
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where T is the response time and k is the gain. Parameters can be fitted by LS.
However, actual sensor responses are non-linear and parameters usually vary,
especially the delay or dead-time τ , due to the hardware itself, the engine op-
erating conditions and ageing. These variations can be modelled by scheduling
strategies, where parameters are stored in look-up tables, or functions [128]
typically depending on n and ma.

Another possibility is using model structures with physical insight: e.g.
Wang [129] identifies the oxygen sensors dynamics by means of a physical
based model and Zhuiykov [130] describes and models the electrochemistry of
ZrO2 gas sensors. Adaptive filtering can also be used for taking into account
the ageing and dispersion. Furthermore, if the signal processing is made off-
line, non-causal deconvolution techniques may also be used, see e.g. [131].

DDMs are often based on static relationships such as look-up tables and
algebraic equations. In addition, the dynamics are often modelled by linear
filters and the correct identification is critical for the adaptive filtering algo-
rithms presented hereinafter.

2.3.3 Adaptive filtering

Sensors present problems when using the raw output signal in RT func-
tions, in particular the delay from engine to sensor and the response time of
the sensor. With respect to models, two problems can be underlined when
working with COMs. On one hand, the model accuracy is driven by the col-
lection of the appropriate data and calibration of all the parameters. This is
a hard and time consuming task. In fact, ECU has a big number of maps and
parameters for engine and vehicle management. On the other hand, indepen-
dently of how well the model has been calibrated there is inevitably a drift
between the system and the model as the surrounding conditions changes and
the engine ages. DDMs are highly sensitive to the calibration data set and will
have problems with the ageing, manufacturing discrepancies, slowly varying
parameters and other non-modelled variables. These affects also to dynamic
models identified for both sensor and physics filtering.

Data fusion. Data fusion (DF) utilises information from different sources
for providing a better estimation of a given variable. These information sources
can come from sensors, models and/or other DF algorithms. DF has been used
for many years in different engineering fields, such as e.g. inertial navigation
of satellites and missiles [132] or automotive applications in intelligent trans-
portation systems [133, 134] related with traffic and driver/road assistance,
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among others. Different DF methods can be used as El Faouzi et al. [133]
propose: statistical, ranging from the simplest arithmetic mean to weighted
combinations or data mining techniques [131]; probabilistic, such as Bayesian
approaches, maximum likelihoods methods and Kalman filter (KF); and arti-
ficial intelligence including NN or genetic algorithms. A more exhaustive clas-
sification and discussion on challenging problems of multisensor DF is in [135].
From DF methods, those which are applied adaptively for bounding error of
parameters, signals and parameters can be included as methods for adaptive
filtering, fusion or learning [136].

The present work centres on the use of Kalman filter (KF) [69] based tools
in order to observe exhaust gas concentration variables in CI engines. The
KF is probably the most extended adaptive filtering algorithm used in engi-
neering [137] and provides a systematic and simple way of manipulating linear
dynamic models and engine variables by supposing a priori knowledge of the
measurement and noise statistics, modelled by Gaussian distributions. This
property allows to track the estimation error by means of a covariance matrix
P that also tracks the ageing of the states, i.e. if the error in a given state is
foreseen to be higher or lower depending on when was updated the last time
and how much. The KF minimises this expected error by solving an iterative
Riccati matrix equation and setting out a Kalman gain (K) for correction.
The linear structure of the filter makes it appropriate to ECU-oriented ap-
proaches, even though simplifications shall be considered when manipulating
large state vectors. Furthermore, depending on the available data, different
fusion structures can be programmed as Gao and Harris [137] show.

Other filtering alternatives, such as RLS (recursive least squares) or pro-
portional methods can also be applied and in some cases lead to similar so-
lutions. Input observers by means of measurements of the states and outputs
can also be addressed for estimating engine variables [138,139]. The interested
reader is referred to Simon [140] and Höckerdal [141], the former for finding
a complete and broader view on optimal state estimation and KF-based al-
gorithms for engineering applications, and the latter for a key precedent and
motivation for the current work.

In the next, and due to the importance of the KF in this work, main
equations are recalled although the reader familiarised with control engineering
could skip this paragraph.
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Kalman filter. In the setting the data are assumed to be generated by the
following discrete time system

xk � fpxk�1, ukq � wk (2.9a)

yk � gpxk, ukq � vk (2.9b)

where xk P Rnx represents the state vector, uk P Rnu the input vector, yk P Rny
the output vector. If f and/or g are non-linear, a previous linearisation step
is required for the filter and then, elements ij of Fk and Hk are obtained

Fk,ij � Bfi
Bxj

|x�x̂k
Hk,ij � Bgi

Bxj
|x�x̂k

(2.10)

being F the linearised process matrix and H the linearised output matrix.
From now, the discussion is valid both for linear and non-linear systems and
KF will be used referring to Kalman filter based methods, including the non-
linear Extended Kalman Filter (EKF) [140] and the standard one.

Noises in (2.9) wk P Rnx and vk P Rny are assumed to be independent
and both generated by Gaussian distribution with zero mean and covariance
matrices Qk resp. Rk, defined by

Erwk wTk s � Qk (2.11a)

Ervk vTk s � Rk (2.11b)

In many applications these are often chosen to be constant, i.e. Q and R, and
diagonal.

Then, x̂k P Rnx is the observation of the state vector xk

x̂k|k�1 � fpx̂k�1, ukq (2.12a)

ek � yk � gpx̂k|k�1, ukq (2.12b)

x̂k � x̂k|k�1 �Kk ek (2.12c)

where Kalman gain Kk is solved by the following iterative equation

Pk|k�1 � pFkPk�1FT
k �Qq (2.13a)

Kk � Pk|k�1HT
k

�
HkPk|k�1HT

k �R
��1

(2.13b)

Pk � pI�KkHkqPk|k�1 (2.13c)

and matrix Pk is the covariance matrix of the state estimate error [126]

Pk � Erxk � x̂ksrxk � x̂ksT (2.14)
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About the methods in this work. From all the possible applications of
the KF for the gas concentration estimation, the following are exploited in the
present work:

• Dynamic estimation of engine variables by means of fusing a fast ref-
erence, often a model, and a slow but accurate sensor, for developing
robust virtual sensors or bias tracking algorithms; and

• on-line adaptation of models, especially the online updating of look-up
tables as basic structures in COMs.

These algorithms, although applied in the present work to λ and NOx, can be
used for estimating other relevant engine quantities, such as the intake air mass
flow or the volumetric efficiency [142, 143], just considering the appropriate
state-space model. In the following, the state of the art related with these
applications on automotive is reviewed.

2.3.3.1 Adaptive estimators based on the KF

Figure 2.8 shows a model signal for λ�1, based on the injected fuel mass
9mf estimated by the electronic control unit (ECU) and the air mass flow 9ma

determined from a hot wire anemometer. Comparing to the sensor, model is
faster and non-delayed but presents a bias with respect to the sensor steady-
state value.

Algorithms based on bias tracking take a fast model that keeps high fre-
quency components of the considered variable while a slow but steady-state
accurate sensor permits to correct model drift. The vector xmptq P Rnx con-
tains model signals and zptq P Rnz the sensor signals. The drift is modelled
with a vector θptq P Rnx , which contains model biases and varies with time
often slowly. If xrptq P Rnx is the vector containing the actual values of the
states, then the true bias θ is

θptq � xrptq � xmptq (2.15)

but the problem here is that xr is usually measured by a sensor z

zptq � gpxrpt� τqq (2.16)

and in general will have a certain delay τ . The discussion on identifying the
function g and delay τ was made before in Section 2.3.2.



2.3. Dynamic exhaust gas concentration estimation 41

120 125 130 135 140 145 150
0.4

0.45

0.5

0.55

time [s]

λ−
1  [−

]

 

 
zλ−1

xλ−1

λ−1

Figure 2.8. Different λ�1 estimations during a load transient in the tested diesel
engine (see Section 3.2): zλ�1 is the output of a NOx sensor located at the turbine
outlet, x�1

λ is the output of the model presented in Section 4.2 and λ�1 is the foreseen
actual value.

In order to design a drift correction algorithm, an augmented state-space
model is written. An extra-state is used for tracking the given error (θ),
creating a wide state vector xw with drift vectors and the original state vector
x P Rnx , which contains the estimations of xm,

xwptq �
�
θptq
xptq

�
(2.17)

and the state-space model

9xw � fpxw, xm,W, tq (2.18a)

z � gpxw, xm, V, tq (2.18b)

is solved by adding noises W ptq P R2nx and V ptq P Rnz to the model and
sensor output respectively.

This formulation, with different variations, is made by different authors in
order to observe the bias between two references, usually a model and a sensor.
Alternatively, the bias can be applied to the model and/or sensor by shifting
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the references when proceeding; for the latter the sensor is not steady-state
accurate and a steady-state accurate reference is required [144].

The classical approach for modelling the drift is supposing a slow variation
of the state by the dynamic equation

9θ � 0 (2.19)

and supposing that states noise W is low with respect to output noise V , for
having a smooth correction.

There exist different references with similar models as described above
for estimating engine variables. The majority of them uses the EKF due to
the non-linear equations involved, some references from 2005 are commented
bellow:

• Hsieh and Wang [62] use an EKF in order to estimate NOx up, in be-
tween and downstream of a two-series SCR configuration and consider
the ammonia cross sensitivity of a NOx sensor located in between.

• Höckerdal [142] uses an augmented model for observing the sensor bias
with an air mass flow sensor application.

• Alberer and del Re [68] use a KF for correcting an oxygen measurement
made by a UEGO sensor located upstream of the turbine in a TCCI
engine, where pressure effects in the sensor are taken into account.

• Polòni et al. [145] compare two different sensors configuration in a TC
CI engine for correcting states in a MVEM of the air path, designing a
closed loop MVEM. They use an EKF for tracking the bias on the con-
sidered states and then simulate the model with the corrected variables.
References included in this work are interesting and show other different
observer designs.

• Other examples are [17, 128,146–151] who design observers for different
relevant engine quantities, such as intake manifold temperature, soot,
individual in-cylinder air to fuel ratio or engine torque among others,
with diagnosis or control applications.

Drift models. However, there are cases where the considered bias, e.g.
model bias θ variation does not depend only on time

dθ

dt
� Bθ

Bt �
Bθ
Bn

dn

dt
� Bθ
Bmf

dmf

dt
� . . . (2.20)
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and although the bias variation associated with the system drift (Bθ{Bt) is
expected to be slow, the actual variation of the bias may be very fast, due
to the ability of the engine of performing fast transition between operating
conditions (usually defined by n and mf ). This can be solved by using specific
models for the bias, where a possible solution may be using look-up tables.

In the following, the use of adaptive virtual sensors is discussed.

2.3.3.2 Online adaptation of models

In addition to the bias and ageing, the basic structure of models lead to
errors due to uncertainties and non-considered inputs. Therefore, the model
error might be tracked and distributed between the model parameters. This
could be made on an offline basis if the variables are stored, and then the
model signals and parameters might be updated by means of executing an
optimisation method. An alternative is using adaptive filtering for directly
updating the model parameters online. Schilling [86] makes a selection on
parameters from a virtual sensor for NOx and λ; and designs an adaptive
virtual sensor for their online adaptation. Another possibility is introduced
by Pòloni et al. [145] where a set of individual observers are designed for some
states of the model. However, MVEMs often pose a mixed structure with
different parameters, curves, tables and dynamic equations. The problem
of updating all elements is not straightforward and must be faced carefully.
The design of observers for updating parameters and tables can be used for
tuning or updating DDMs and MVEMs, although stability and robustness of
the solution should be issued. Due to the relevance on the present work, the
updating of look-up tables is considered.

Look-up tables4 allow engineers to easily model systems that present com-
plex expressions by means of mapping outputs with a set of nD heuristic array
structures. Look-up tables are used in automotive for different purposes [152]:
maps of engine parameters as function of the operating-point conditions, of-
ten mf (or torque) and n; in order to provide set-points for the controllers;
or for gain scheduling, among others. Furthermore, the manipulation and in-
terpretation of look-up tables is simple and the usual offline procedures for
calibration are based on LS methods. Linear interpolation is usual for com-
puting the outputs. Anyhow, the tables are of course subjected to drift and

4Usual dimensions of look-up tables are 2D, while 1D tables are often named as curves,
but in fact they can be considered as 1D look-up tables. Using higher dimensional grids
is not usual due to the involved computational burden, excepting specific cases such as for
representing different combustion modes.
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ageing when running online. Adaptive filtering can be used for correcting the
drift and/or tuning parameters in an offline basis.

EKF for updating look-up tables. Höckerdal et al. [143] propose an EKF
for updating table elements where they are treated as states to be observed
and updated by measuring the considered output. In this approach, P repre-
sents the ageing of the states, defining a proper K for updating in such sense
that locally inactive elements see how their related variance grows monotoni-
cally and active elements see how this is modified depending on the weighted
distance to the considered element. The interpolation principle weights the
correction and P updating: more excited elements will tend to have lower
variance than the less excited ones. A bounded limit on P should be applied
for engineering applications in order to avoid robustness problems.

The first limitation of this algorithm is that although inactive elements
do not really affect the updating in a given iteration, EKF manipulates all
elements of P. The global stability of the method relies on the observability
(linked with activeness) of the states and although during each iteration only
4 elements (in a 2D example) are locally observable and the remaining are
unobservable, the calculation involves all grid areas. A second limitation is
that system matrices vary with time making impossible to derive a steady-
state Kalman filter [153]. This forces to solve the Riccati equation at every
instant for inferring K, involving a huge memory and computational resources.
By utilising a numerical example, an EKF for updating a look-up table with
20-by-20 elements gives rise to a covariance matrix of 400-by-400 elements
and thereby also a significant computational burden when solving the Riccati
equations, which grows rapidly with the grid dimensions. Therefore an im-
portant discussion of the work is how the KF can be used or modified to get
an efficient updating procedure for look-up tables without an important loss
of properties.

RLS and other approaches. An alternative solution for estimation is the
use of LS techniques, see e.g. Peyton and Muske [154] who use a RLS with
a forgetting factor for updating look-up tables. The programming of a RLS
is fairly simple and requires that table grid and data is well distributed for
avoiding robustness problems (as the authors literally claim). Vogt et al.
[152] present the normalised least mean square (NMLS) method optimised
for online-adaptation of tables and propose an interesting simplification on
this method by separating non-active and active elements of the considered
table, aspect that is also exploited in this work but for EKF-based methods.
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The results are good with much lower computation involved but with a slower
convergence with respect to the standard RLS.

Another interesting contribution due to the simplicity of the formulation
is made by Wu [155], who treats the problem of table updating as a reverse
interpolation problem. A proportional weighting is then used for updating
all the elements that were involved in the previous interpolation calculation.
The author cites it literally as multiple nodes proportional distribution. This
weighting is calculated only from the inputs and previous outputs. In that
way, the method does not take into account any noise in the measurement,
and can be considered as sub-optimal if comparing with the KF, but with a
much lower computation and memory weight because only the table values
related with observable elements are updated.

This work presents two approaches (SKF and SSKF) with some character-
istics of the commented above in order to update look-up tables efficiently.
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3.1 Introduction

This chapter is divided into two parts. The first part, which comprises
Sections 3.2 and 3.3, is devoted to the description of the experimental config-
uration and tests used for this work. Section 3.2 describes the experimental
set-up used in the present work, including the relevant characteristics of the
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engine, sensors and test cell equipment, while the Section 3.3 presents the
steady-state and dynamic tests performed to tune and validate the methods.

In the second part of the chapter, the use of online methods for characteris-
ing NOx and λ�1 output from exhaust gas concentration sensors is emphasised.
NOx output is characterised by a novel method based on SOI steps, while λ�1

output is characterised by performing injection steps.

3.2 Experimental set-up

Test engine is an automotive 2.2-litre 4-cylinder common rail DICI engine
with a sequential parallel turbocharger [1], certified according to EURO IV
standard (model DW12B from PSA). Engine specifications are shown in Ta-
ble 3.1. A bypass-allowed ECU permits varying injection parameters, such as
prail, SOI and main injection duration (tmi), and also boost and EGR con-
trol set-points. The engine is installed on an engine test bench and coupled
to a variable frequency eddy current dynamometer that allows carrying out
dynamical tests. Standard air intercooler is substituted by a water intercooler
for a proper heat extraction on the intake air mass flow. The usual experi-
mental set-up used for generating the data in this work is shown in Figure 3.1,
where the AT devices are removed and the main sensors are sketched. A back-
pressure valve is installed downstream of the turbine outlet and commanded
for replicating the pressure drop in the exhaust line of series engines. The
nomenclature for the engine positions is clarified in the Figure 3.1 and in the
list of variables at the beginning of the document as well. In some specific
tests, the sensor layout is modified and AT devices are included, however they
are indicated where proceed. The main actuators on the engine are described
in the Table 3.2.

The rapid prototyping system. In order to avoid the shifting and causal-
ity problems with the signals, the system layout shown in the Figure 3.2 is
used for acquiring from and commanding signals to the engine. A real time
(RT) PXI system (from National Instruments) is used for the acquisition of
data from series and experimental sensors. The PXI is connected via CAN
with a ES910 hardware from ETAS for acquisition and bypass of the ECU
signals, allowing to design control routines and skipping ECU logic. In ad-
dition to series sensors (already connected with the ECU), other sensors are
installed on engine and linked with the PXI for acquisition and providing feed-
back for control strategies. Labview software is used for managing PXI, while
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Figure 3.1. Engine layout with the main sensors used in this work (pressures, tem-
peratures in different positions are also measured but are not shown for clarity).

Table 3.1. Main characteristics of the DW12B engine from PSA.

Stroke (S) 96 mm
Bore (D) 85 mm
S{D 1.129
Number of cylinders 4
Displacement 2179 cm3

Turbocharging system Sequential parallel
EGR HP
Injectors Solenoid (common-rail)
Valves by cylinder 4
Maximum power 125 kW@4000 rpm
Compression ratio 17:1

INCA software is utilised for interfacing with the ES910. INTECRIO software
permits to program the engine variables for the bypass.

When bypassing, the time needed by the PXI software for writing into the
ECU channel is 20 ms, and the same for reading in the other direction. Then,
the maximum expected error between commanding and reading a signal in the
PXI is 40 ms for the round path. Lags are around 20 ms when storing data
by INCA software (used for sensors characterisation and connected with the
ES910). Acquisition frequencies are 100 Hz for integrated sensors and between
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Table 3.2. Main actuators used in the experimental setup.

EGR command uegr %
WG command uwg %
Rail pressure command uprail bar
Main Injection duration (MI) utmi µs
Start of injection of the MI usoi

�BTDC

ECUPXI

ACQUISITION + ACTUATION SENSORS

SENSORS
CAN

ES910

Feedback line for controling the engine

ETK

PC

ETH ETH

Labview INCA

INTECRIO

ENGINE

Figure 3.2. System layout for rapid prototyping (fast acquisition, bypass and control)
and integration of new sensors for testing the engine.

10-100 Hz for ECU signals (fixed by manufacturer). Commanding frequencies
depend on the test and variable.

3.2.1 Engine sensors

Besides the commercial sensors, a full set of sensors is installed on-engine
in order to measure full operating conditions (pressures, temperatures, mass
flows, engine and turbo speeds, torque and fuel consumption), atmospheric
conditions and emissions. Some of them are measured redundantly for cali-
bration. All sensors are tested and calibrated with standard procedures, both
in steady and transient-state. Table 3.3 shows the main series and test cell
sensors harnessed for measuring engine conditions. Due to the relevance in
this work, gas concentration sensors are described separately.
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Table 3.3. Sensors used in the experimental setup (gas concentration sensors are
discussed bellow).

Series sensors Symbol Location

Air mass flow (MAF) [kg/h] 9ma adm1
Boost pressure [bar] pboost boost
Engine speed [rpm] n crank
EGR valve position [%] xegr EGR valve
WG position [%] xwg WG
Rail pressure [bar] prail CR

Test cell sensors Symbol Location

Torque [Nm] Me crank
Air mass flow (sensyflow) [kg/h] 9mcell

a adm0
Fuel (gravimetric) [kg/h] 9mcell

f external

Pressures [bar] p runners
Temperatures [�C] T runners
In-cylinder pressure [bar] pcyl cyl

3.2.1.1 Exhaust gas concentrations sensors

Different gas concentration sensors are installed for designing and validat-
ing the algorithms. These can be summed up in research grade and on-board
(experimental and commercial) sensors. From the first type, a gas analyser is
used for measuring gas concentrations and an AVL 439 opacimeter for mea-
suring the opacity at the exhaust (not relevant in this work). From the second
type, λ sensors and NOx sensors are highlighted. When necessary, redundancy
is applied to sensors for comparing signals in different locations and indeed
different units, e.g. the measurement of λ�1 before and after the turbine. Ap-
pendix 3.A summarises the technical data of these sensors according to the
suppliers.

Gas analyser. A Horiba MEXA 7100DEGR gas analyser [2] is used as
calibration standard and among others, the following relevant concentrations
are measured: CO2 at the intake and exhaust, NOx at the turbine outlet
and O2 at the intake manifold and turbine outlet. The engine-out λ�1 and
NOx are inferred by locating the gas probe downstream of the turbine. λ�1

is calculated from the O2 measurement, estimated by means of a magneto-
pneumatic detection (MPD), while NOx is measured on a dry basis, by means
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of a heated chemiluminescence detector (HCLD) with a NO2/NO converter.
Calibration gases are used for the calibration of the system (zero and span).

Three key factors do not allow to use this system as a dynamic calibration
method for on-board sensors:

1. Measurement system response time, which includes the signal rising
time, is slower than the tested on-board sensors.

2. A long line is used for providing exhaust gas to the gas analyser (12m).
This long line causes not only a transport delay, but also can cause
diffusive effects.

3. Soot-free gas is needed in order to prevent sensor damage; therefore a fil-
ter is used in the line [3]. In transient engine operation, filter contributes
to substantial emission signal distortion.

It is worth noting that some studies combine experimental data and phe-
nomenological modelling approach to synchronise [4, 5] or to restore [6–8] the
signals from slow response analysers during transient engine operation. This
is done by analytical means, using simple gas diffusion models and perfect
gas mixing models, or through a control theory approach to the problem.
Section 3.4 shows static and dynamic results by using the gas analyser for
characterising the NOx sensor.

UEGO sensor for measuring λ�1. This on-board sensor may be located
in different positions in order to evaluate the possibilities of using measured
λ�1 in models and adaptive algorithms. The proposal in this work for esti-
mating engine-out λ�1 is utilising a NOx sensor, capable of measuring also
λ�1, while avoiding the use of a UEGO sensor (used for some production en-
gines). Anyway, the sensor is used for helping some explanations and as a
reference for comparison with the NOx sensor. Section 3.2.1.2 presents dif-
ferent alternatives for measuring intake λ�1 from UEGO sensors and the gas
analyser.

ZrO2-based sensor for measuring λ�1 and NOx. The availability and
the trade-off for locating NOx sensors in production diesel engine cars varies
depending on the final application. In HD engines, the NOx sensor is becoming
usual, and the normal solution is locating one NOx sensor downstream of the
SCR for diagnosing and managing the system, while exhaust NOx is observed
(saving the need of using more than one sensor unit). In LD, the sensor will
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become necessary for EURO VI diesel engines with a similar trade-off to that
of HD (although LNT might be used instead of SCR), while some luxury cars
already mount two NOx sensors for providing a valid reference before and after
the AT devices.

In this work, the AT devices are removed in the standard configuration
and the sensor is located at the turbine outlet. The capability of measuring
λ�1 permits to work without UEGO sensors. It should be clarified that even
though λ�1 is not really necessary for the control of diesel engines, it is ad-
vised for emissions control (soot and NOx) and may be used for correcting
injector drift or bounding injection (on the basis of the smoke limiter actua-
tion). Anyway, the sensor response must be assessed and this is performed in
Section 3.4.

3.2.1.2 Intake gas concentration sensors

Due to the strong dependency of NOx emissions on [O2]int, the measure-
ment of [O2]int is of major importance. However, the lack of homogeneity of
the intake mix stands a major problem in some engines. In this work, the
methodology presented in [9] has been used for analysing the homogeneity
of the mix. The method is based on feeding the gas analyser from different
probes, as sketched in Figure 3.3:

• Measurement of the [CO2]int just before the separation of the manifolds
at the intake by the gas analyser,

• extractions in the four individual cylinder intake runners and measure-
ment by the gas analyser (cylinder 1 to 4 [CO2]int independent measure-
ments),

• measurement of a sample result of the mix of the 4 extractions and made
by the gas analyser (1 measurement, from a rail where gas coming from
all the probes is mixed).

When using the gas analyser, the [CO2]int [%] is measured with a non-
dispersive infrared method (NDIR). As the intake gas is a mix of ambient air
and the results of the combustion of this air with fuel, the [O2]int is linearly
correlated with the [CO2]int (the higher the [CO2]int, the lower the [O2]int).

Additionally, and as a real time alternative, the measurement of the intake
λ by means of the UEGO sensor located in the intake manifold has been
implemented. The sensor has been located with a certain distance upstream
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Figure 3.3. Engine layout showing the main sensors used for measuring [O2]int or
equivalently [CO2]int.

the separation between individual cylinder runners for avoiding separation
effects (1 measurement).

UEGO sensor provides the ion pump current Ip [mA]. The Ip signal is
previously corrected with the effect of pboost which affects to the oxygen partial
pressure measurement. Furthermore, Ip is related with λ�1 (and thus [O2]int
and [CO2]int) by a curve given by the manufacturer.

A set of measurements is made in order to evaluate the different alterna-
tives and to determine the best method to estimate the intake gas concen-
tration. In total 4 operating points defined by the pairs [n mf ] are studied:
[2500,35], [2500,7], [1500,20] and [1500,7] (units are rpm and mg/str respec-
tively) with the rest of inputs fixed by the standard engine calibrations.

The results of the study are summarised in Table 3.4 for the 4 operating
points. Even though there exists an important dispersion among the cylinder
samples (due to not utilizing a mixer that guarantees the homogeneity of the
fluid at intake), the comparison of the mean value for the 4 cylinders with
the measurement form the rail (Cyl 1-4 probe) is satisfactory. Nevertheless,
the [CO2]int measured just before the cylinder manifolds is highly affected by
the lack of homogeneity in the mix and the signal presents a significant error
when comparing with the rest of alternatives. The results obtained by the
UEGO sensor are acceptable, despite of a slight deviation lower than that
of the gas analyser intake extraction. However, the Bosch sensor presents
a saturation when Ip ¡ 2.3 mA (low [CO2]int and high [O2]int) as shown
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Table 3.4. Comparison of different sensor outputs for determining the effective
intake [CO2]int (and thus [O2]int and λ�1) in the cylinder. std: standard deviation.

Operating point [n, mf ] [2500,35] [2500,7] [1500,20] [1500,7]

[CO2]int [%] 1.37 1.07 1.27 2.30

[CO2]int 1 [%] 1.14 0.98 2.38 2.62
[CO2]int 2 [%] 1.65 1.09 2.46 2.92
[CO2]int 3 [%] 2.07 1.11 1.89 2.64
[CO2]int 4 [%] 1.89 1.10 1.79 2.55

[CO2]int 1-4 [%] 1.62 1.07 2.27 2.73
[CO2]int mean 1-4 [%] 1.69 1.07 2.13 2.68
std 1-4 [%] 0.40 0.06 0.34 0.16

Ip [mA] 1.93 2.12 1.91 1.78
[CO2]int [%] from Ip 1.99 0.95 2.10 2.80

in Figure 3.4. Chapter 4 completes the discussion comparing the different
possibilities (sensors and models) for estimating the [O2]int.

3.3 Engine tests

Steady-state and dynamic tests are performed for obtaining the results
presented in this work. A summary on these is shown in this section.

3.3.1 Steady-state tests

A full set of steady-state tests are performed in order to characterise the
engine and fit the tables and parameters of the models described in Chapter 4.
This includes different pairs of [n,mf ] values covering:

• nominal tests, defined by the manufacturer ECU settings, with warm
conditions and variables stabilised,

• variations of the EGR rate (EGR),

• variations of the engine coolant temperature (Tcool),

• variations of the water temperature of the intercooler (Twic) to influence
the intake temperature (Tint), and

• variations of pboost to influence on 9mint.
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Figure 3.4. Equivalency between [CO2]int and the pressure corrected signal Ip from
the UEGO sensor. The saturation of the intake probe is evident for values of Ip
around 2.3, i.e. equivalent to a low [CO2]int concentration.

Ranges are selected in order to produce appreciable NOx variations but
taking into account the limits for engine operation. 363 steady measurements
are made in total. Covered engine areas are shown in Figure 3.5.

3.3.2 Transient tests

3.3.2.1 Steps

Step-like tests are used for identifying sensor and system dynamics (flow,
temperatures and pressures). Table 3.5 shows specific tests performed for
different engine operating points.

Furthermore and for demonstrating the effect of sharp variations in SOI on
the NOx emissions, 19 specific tests consisting in several consecutive steps were
performed at different engine speeds (from 1000 to 3000 rpm) with different
initial NOx concentrations (i.e. different initial engine operating conditions)
and step sizes (ranging from 1� to 4� in SOI). Regarding the fuel-to-air ratio,
specific load transients are performed by keeping the EGR valve fully closed in
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Figure 3.5. [n, mf ] set of values run for testing the engine in steady-state. In each
set, different variations of uegr, Tcool, pboost and Tint are made for characterizing
the engine. Some additional points are measured for completing the engine charac-
terization. Nominal EGR map EGR0 (white area corresponds to EGR valve closed,
EGR � 0) and full load line are also plotted.

Table 3.5. Steps performed in the engine for system and sensors characterisation.
BTDC: before top dead centre.

n [rpm] mf [mg/str] ∆usoi [� BTDC] ∆uegr [%] ∆uwg [%]

1000 7.5 �2 � 10 -30
1000 43 �2 -3
2500 35 �2 �5 �3
4000 10 �2 �5
4000 50 �2 �3

order to avoid possible interactions. Data is later used for the sensor dynamics
identification in Section 3.4.

3.3.2.2 Cycles

Different engine cycles are designed on the basis of the homologation cycle
and ad-hoc modifications for proving and testing the models and methods
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developed in this work. In the following, the cycles are described and the test
campaign is summed up in Table 3.7.

Adapted transient cycles (TRAN). A set of dynamic tests are designed
on the basis of two different modifications of the FTP cycle for HD engines
(named here as TRAN A and TRAN B), and are used for training and evalu-
ating a NOx model in transient operation. These consist of a re-escalation of
the central part of the standard FTP and are compared in Figure 3.6. Test
proposition is a full factorial design by performing modifications on set-points
for uegr (by modification on the 9ma maps), pboost (by fixing 9ma set-point and
modifying pboost map) and Tcool (modifying the engine coolant reference tem-
perature at the test cell controller). The sequence is presented in Table 3.6,
totalling 36 different tests (27 TRAN A and 9 TRAN B, both in the test cam-
paign A). For each test, three repetitions of the sequence shown in Figure 3.6
are made.
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Figure 3.6. TRAN nominal cycles designed for the model validation. TRAN A is
the black line, while TRAN B is the grey line.

The NOx sensitivity to variations on inputs and parameters is considerably
lower for transient than static conditions. This fact is due to the systems and
sensors dynamics which filter the effects. For instance, an increasing of 10%
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Table 3.6. Experimental plan of the modified TRAN cycles.

cycle Tcool [�C] ∆uegrr%s ∆pboost [mbar]

TRAN A [75,85,95] [-5,0,+5] [-100,0,+100]
TRAN B nom [-10,0,+20] [-100,0,+100]

in pboost (100 mbar) in the TRAN A cycle leads to an increase NOx around
10%, while in steady conditions produces an increase in the order of 40% for
the same conditions (while fixing 9ma set-point in the EGR area of the engine).
In all cases, the higher NOx sensitivity is found for EGR variations, especially
for TRAN B cycles, which present sharper EGR transients. Figure 3.7 shows
the effect of modifying EGR rate (by plotting [CO2]int) over the final NOx

emissions measured by the sensor.
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Figure 3.7. [CO2]int at intake and NOx emissions for TRAN B after varying the
EGR set-point. The legend in the right plot shows the values of uegr. Note that the
higher uegr the lower 9megr.

Sportive driving mountain profile (SDMP). The SDMP is designed for
covering a wide operating range of the engine by sharp variations on n and
mf . A zoom on 400 seconds (total is 1200) of the SDMP is shown in Figure 3.8
(left plot indicates the whole cycle points). Since the SDMP presents sharp
load transients, the EGR valve is mostly closed during the cycle, making that
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EGR � 0 during the major part in spite of the engine might be run in the EGR
area. This circumstance distorts the closed loop nominal engine operation.

New European driving cycle (NEDC). The NEDC is tested in cold and
warm-start conditions (at the beginning of the test). The cycle consists of a
urban part with accelerations/decelerations and idling, and an extra-urban
part that lasts 400 s. The urban part has 4 equal repetitions of a sequence
that lasts 200 s; Figure 3.9 shows last repetition of the urban part and the
extra-urban section. Cold-start cycle presents lower NOx, indeed when mf

is slightly higher because of cold starting strategies. Anyway, differences are
not considerable and can also be associated with cycle differences in operating
points (n and mf have dispersion, see left plot of Figure 3.9).
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Figure 3.8. SDMP cycle performed on the engine.

Common Artemis driving cycles (CADC). CADC cycles are designed
upon the basis of an statistical analysis of European real world driving pat-
terns, developed by the European Artemis1 project. The cycle includes three

1ARTEMIS: Assessment and Reliability of Transport Emission Models and Inventory
Systems.
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Figure 3.9. NEDC cycle performed on the engine.
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Figure 3.10. Urban CADC cycle performed on the engine.
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Figure 3.11. Rural CADC cycle performed on the engine.
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Figure 3.12. Highway CADC cycle performed on the engine.
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different variants: urban, rural road and highway. These profiles are more
realistic than the NEDC as they cover different real situations and then con-
stitute a good source for experimental testing. Three versions of the CADC
are shown in Figures 3.10 to 3.12.

Summary on the transient cycles. In total, two different test campaigns
for testing dynamic cycles have been performed for the present work; these are
separated in test campaign A and B just for remarking that they have been
performed in different moments. Table 3.7 sums up the dynamic tests made,
where an identifier (ID) names the cycles. A3 to A29, and A30 to A38 stand
for the test of the full factorial design summarised in Table 3.6.

Table 3.7. Dynamic test campaigns.

ID Cycle Calibration

Test campaign A

A1 NEDC warm nom
A2 NEDC cold nom

A3-A29 TRAN A DoE
A30-A38 TRAN B DoE

Test campaign B

B1 NEDC warm nom
B2 CADC Urban nom
B3 CADC Rural nom
B4 CADC Highway nom
B5 SDMP 1 nom
B6 SDMP 2 nom

3.4 Gas concentration sensors characterisation

In the next, the static and dynamic calibration of λ and NOx output from
the gas concentration sensors is discussed. The static calibration is based on
the linear fitting of sensor outputs by using the steady-state data-set collected
from the engine, while the dynamic characterisation is based on generating
exhaust gases with different concentrations by means of the step-like variations
on the engine injection settings.

With respect to the NOx output, this section presents an easy on-engine
experiment for NOx sensors by abrupt changes on the start of injection (SOI).
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The results shown in this section corresponds to a NOx sensor and a gas probe
located downstream of the turbine, removing the AT line.

Regarding the λ�1 output characterisation, variations on the injected fuel
mass rate 9mf are used for provoking step-like transitions on the λ output and
the methodology for identifying the sensor is similar to that of the NOx output.
Figure 2.5 already compared λ�1 output from the NOx and a UEGO sensor
in a configuration different from the standard of this work, where the former
is located downstream of the ATs while the latter at the turbine outlet. The
NOx sensor provides a slower and more filtered response than the other due
to the position and the sensor response time. However, if using a NOx sensor,
the UEGO sensor can be removed instead of using two different sensor units.
In the following, the results for the NOx sensor output located at the turbine
outlet are presented2. The conclusions and results of the characterisation
are required for the implementation of models and observers in subsequent
chapters.

3.4.1 Static calibration

Previous to the NOx sensor static calibration, some issues must be con-
sidered. On one hand, the measurement procedures of the sensors affect the
output itself, especially for NOx where a number of different species (NO and
NO2 among others) can be distinguished. This discussion is moved to the
Appendix 3.B.

On the other hand, the NOx sensor principle is based on the measurement
of the partial pressure of oxygen in order to determine both λ�1 (zλ�1) in a
first chamber (outer cavity) and NOx (zNOx) in a second one (inner cavity),
as shown in Figure 2.4. The total pressure of the manifolds affects the output,
as occurs also on UEGO and MAF sensors, and a correction (by software)
is required. A simple analysis by disposing different gas concentrations and
pressures (in a static way) in a sealed chamber allows checking the pressure
effect over the NOx sensor outputs. Two gas bottles containing pure CO2 and
a calibrated mix of NOx and N2 are used for designing the mixes when added
to atmospheric air. A ZrO2 sensor is installed and measurements are made in
steady-state.

Figure 3.13 shows iso-NOx curves (left plot) and iso-O2 (right plot) for
different relative pressures in the chamber and for different NOx levels (ppm)
and oxygen levels (%), tested in the sealed chamber with the actual references
known beforehand. The curves are obtained discharging the vessel, which

2The UEGO sensor is used for initial phases of this work but then removed.
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Figure 3.13. Effect of the pressure over the NOx sensor for the NOx output zNOx

(left) and oxygen estimation zO2
from λ�1 output (right). It seems that the manufac-

turer has compensated the oxygen output but not the NOx output.

ensures that the concentration is constant along each one of the tests. As
it can be noticed in the plot, the oxygen output (zO2) is already pressure
compensated by the manufacturer, while the NOx output is affected and a
specific correction seems necessary if the sensor is to be used with varying gas
pressures.

The NOx sensor is installed at the turbine outlet. The turbine outlet
pressure (pout) is in all cases between 1 and 1.6 bar (in the NEDC the maximum
pout is about 1.3 bar). Derived from the limited range in pout, the possible
error due to the pressure effect is lower than the expected error according
to the specifications provided by the manufacturer (shown in Appendix 3.A);
hence no specific correction has been used in the present work.

3.4.1.1 Static calibration of the NOx output

With respect to the NOx sensor accuracy, the ZrO2 sensor is calibrated by
comparing the signal with the NOx output of the gas analyser, used as static
standard. The NOx output in the gas analyser is measured by a chemilumi-
nescence system (CLD) in a dry basis and corrected by humidity and other
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factors. The important dependability of the exhaust NOx concentration when
varying the engine operating conditions is profited for the steady calibration.
The steady-state tests are used for the calibration, causing NOx concentration
variations to cover the sensor measuring range. Figure 3.14 illustrates the
results. After removing the outliers (usually caused by human errors in the
measurement procedure of the gas analyser) and using the box-and-whiskers
method, a linear fit is performed. Mean absolute error after calibrating NOx

from ZrO2 output results of 10.7 ppm, and the residuum standard deviation
of 14.77 ppm.
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Figure 3.14. NOx from ZrO2 sensor (zNOx
) and the gas analyser under different

steady operating conditions; the linear fit and correlation coefficient are represented.

3.4.1.2 Static calibration of the λ�1 output

NOx sensor provides a very accurate information of λ�1 in steady-state
operation. Static measurements of the NOx sensor are compared to those
of the gas analyser in Figure 3.15 by using the steady-state data-set. Mean
absolute error after calibrating λ�1 from ZrO2 output results of 0.0048, and
the residuum standard deviation of 0.004.
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3.4.2 Dynamic calibration

The second step in the calibration procedure consists in the identifica-
tion of the sensor dynamics. A well-known method consists of using a step
transition in the measured quantity [10]. However, usual means for providing
step-like transition in gas concentration are complex set-ups with fast valves
and synthetic gas mixes [11], which can hardly being implemented on-board.

For solving this issue, on-engine alternatives are next presented for the
calibration of the NOx and λ�1 outputs of the exhaust concentration sensor.

3.4.2.1 Dynamic calibration of the NOx output

This subsection presents a novel method based on the variation of the SOI,
which can be easily done in current engines during their normal operation. In
order to decouple as much as possible the effect of SOI variations on the air
path of the engine, EGR rate is set to zero (EGR valve fully closed) dur-
ing the tests. Although other variables could be used for affecting the NOx

concentration (e.g. EGR valve control), SOI is selected because:
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• SOI varies the exhaust gas composition in an important way, producing
appreciable NOx concentration variations.

• SOI variations produce low variations for turbine intake temperature and
pressure. Hence conditions at the turbine inlet are not importantly var-
ied, and the turbocharged speed and boost pressure are not significantly
affected; since the EGR valve is closed, the effect of the slight variation
in the exhaust pressure may be neglected. This is considered as a key
factor since pressure and temperature variations are associated with slow
transients (because of mass and heat accumulation) which would affect
the NOx concentration.

• Other control variables correspond to slow acting valves, which will dis-
tort the step-like profile in the gas composition. However, the system
response to SOI variation can be considered instantaneous: SOI is elec-
tronically applied, thus no actuation delay is expected beyond the cycle-
to-cycle response time3. Additionally, since no EGR is performed, NOx

concentration at the cylinder exhaust port is only dependent on the
trapped air mass quantity and temperature, and injection settings dur-
ing the previous cycle (NOx contained in the residual gas fraction is
re-burned during the combustion [12]). Finally, the gas transport delay
from the cylinder to the ZrO2 sensor (located at least 1 m from the ex-
haust port) is of a few tens of ms, as it will be discussed in Section 3.4.2.3.

Figure 3.16 shows the evolution of NOx measurements during a cycle with
SOI steps, while Figure 3.17 illustrates that other significant variables (as
intake and exhaust pressure, gas temperatures, coolant temperature and air
mass flow) do not vary in an important way during the tests. The maximum
variation in these properties is 2.8% for exhaust pressure (considering a moving
average filtered value), while the rest of them varies less than 0.5%.

Sensor identification. For illustrating the applicability of using data de-
rived from the SOI steps, a dynamic identification is done assuming a linear
first order model behaviour (other possible model structures with physical
insight could be found in [13]) with the transfer equation in the s-domain

Gpsq � e�sτNOx

1 � TNOxs
(3.1)

3This delay is in the order of 20 ms maximum for an engine spinning at 3000 rpm, which
can be neglected when comparing with typical delays of the sensor, which are above 500 ms.
On the other hand, maximum software delay is below 40 ms, which is not additive to the
previous one.
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Figure 3.16. NOx concentration during a SOI step-like test at 2000 rpm and 50
mg/stroke. Legend: is SOI, is the NOx sensor (zNOx

) before the steady-state
calibration and is the gas analyser. The difference in terms of delay, dynamics
and steady-state values between both sensors is clearly noticed in the Figure.

The sensor response to the step is then

zNOxptq � zNOxpt0q � ∆NOx

�
1 � e

�
t�τNOx
TNOx



t ¥ τNOx (3.2a)

zNOxptq � zNOxpt0q t   τNOx (3.2b)

where zNOxpt0q is the zNOx initial value before the step, ∆NOx is the step-
amplitude and t the time. The sensor delay (τNOx) represents the delay from
the application of SOI (judged to be instantaneous) to the start of the sensor
output variation, and TNOx stands for the sensor time constant. For each
individual step and sensor, TNOx and τNOx are obtained. For the coefficient
identification, a least-square fit of (3.2) is performed (although more robust
recursive identification techniques could be used for the online case [14]). Even
though not shown in this work, other different models have been proved, as
for instance second order filters and AR or ARMAX models.

Figure 3.18 illustrates an example of the fit obtained with the first order
response model. Averaged values of the identified time constant TNOx and
their deviations are shown in Table 3.8. On the other hand, the standard
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Figure 3.17. Evolution of different engine variables during a SOI step-like test at
2000 rpm and 50 mg/str.
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Figure 3.18. Identified models (solid gray) and measured evolution (solid black) for
both sensors: thin lines correspond to the gas analyser while thick ones to the NOx

sensor. SOI step is reproduced with a black dashed line. The delay of the gas analyser
is clear with respect to NOx sensor.
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deviations obtained for TNOx estimates merit for additional analysis, as they
suggest that the sensor behaviour could be affected by the gas concentration
conditions during the test.

Table 3.8. Mean and standard deviations for the identified time constant TNOx .

Gas analyser NOx sensor

TNOx [s] 4.25 0.91
σk [s] 0.46 0.47

No direct influence is found on the sensors response from the gas speed,
temperature or pressure, since the identified parameters do not vary signifi-
cantly with these conditions. In order to analyse the effect of the initial zNOx

concentration (zNOxp0q) and of the step size (∆NOx), scatter plots of TNOx

are presented in Figure 3.19.
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Figure 3.19. Response time TNOx
for the NOx sensor as function of the concentra-

tion step ∆NOx and the initial concentration zNOxp0q.

In the case of the ZrO2 sensor, there exists an important variability of TNOx ,
especially at low ∆NOx, with an exponential-like shape. One reason is that, in
the case of small steps, the concentration profile is not step-like, but affected



82 3. System setup and sensors characterisation

by other slower variations (temperature, pressure, etc.) that here are not
negligible; another possible reason could be related to the diffusion speed of the
gas inside the sensor chambers, which depends on the concentration itself and
its evolution along time. Note also that the sensor presents a low sensitivity
to low NOx values [15]. This explains the larger deviations obtained in TNOx

as presented in Table 3.8. However, the response time of the gas analyser does
not present these problems and the trend is more constant (and response quite
slower) for all values (see bottom plots in Figure 3.19). For larger step sizes,
the response time of the NOx sensor is more stable, as shown in Table 3.9
where tests with ∆NOx   75 ppm have been removed. Physical modelling
approaches can be useful for identifying these behaviours by including dynamic
models for diffusion chambers [16].

Table 3.9. Identified dynamics for NOx sensors considering tests with ∆NOx ¡ 75
ppm.

Gas analyser NOx sensor

TNOx [s] 4.14 0.79
σk [s] 0.33 0.27

Furthermore, only low ∆NOx could be applied in tests with low zNOxp0q,
because SOI actuation does not permit significant variations in the gas con-
centration. Hence zNOxp0q and ∆NOx are correlated. This partly explains the
effect of high deviation presented for low zNOxp0q values shown in right-hand
plots of Figure 3.19. In addition, the low sensitivity of ZrO2 sensors to low
NOx values can be addressed [17].

The discussion about the sensor delay is included in a different subsection.
Finally, one of the main problems of automotive sensors is their degradation
during their lifespan. For ensuring the correct performance of the control
structure, the system has to be capable of checking the sensor periodically.
This methodology could be useful for these purposes.

Correspondence with the discrete filter. The results above have been
presented in the s-domain and the continuous time domain, due to the easy
interpretation and for supporting the discussion. However, electronic systems
work on the discrete domain. An alternative for converting the obtained results
to the z-domain is using the first order discrete filter to model the sensor
response

Gpzq � 1 � aNOx

1 � aNOxz�1
z�τNOx{Ts (3.3)
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instead of the continuous filter where z is the z-transform variable, aNOx rep-
resents the response time and τNOx is the delay. Depending on the sample
time (Ts), aNOx can be deduced [10].

Prospective for the on-board application. Presented method based on
shifting SOI could be easily applied during operation phase of automotive
diesel engines. That means that the ECU could use this test for identifying
the sensor behaviour, and diagnosing the sensor and system performance. This
could be periodically done during specific conditions of the engine run. The
knowledge of the dynamic sensor characteristics is needed for data fusion and
signal reconstruction techniques [18,19]. For this, the dispersion of the sensor
model might be corrected online using the combination of the mentioned tech-
niques and the sensor measurements by using the proposed method. In this
way, the robustness of the control law can be checked regarding this dispersion.

Note that the presented results correspond to a NOx sensor located up-
stream of the AT devices. Hence the presented methodology will be of direct
application for sensors in this position, which can be used for feed-forward
control of the SCR system [20]. For the case of the sensor located downstream
of a SCR system, the following two aspects must be considered:

• The method can be applied but the model should take into account
the effect of the SCR. On one hand, the important removal of the raw
NOx concentration (about 80%) compromises the NOx output due to
the insufficient accuracy of the sensor for low NOx values. On the other
hand, the cross sensitivity to ammonia affect the sensor measurement.
Because of these, the dynamic characteristics of the signal can be im-
portantly distorted (also filtering the signal and thus losing the step-like
behaviour).

• Even in the case the SCR is not operating, the possibility of exciting
the NOx sensor needs to be checked: depending on the signal dynam-
ics and the volume of AT devices, the gas concentration can sufficiently
keep its step-like profile. This issue must be verified beforehand by
installing two sensors, one up and one downstream of the AT line. Any-
way, once established the feasibility of the method, one of them may
be removed. Finally, the NH3 storage mechanism could also contribute
to unexpected variations in the NOx concentration at the SCR outlet,
and hence a sufficient delay is needed between the SCR cut-off and the
dynamic characterisation checking.
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However, the method could still be used for the SCR system diagnosing, or
a proper dynamic model as e.g. the one presented in [21] might be used for
covering the storage dynamics and NH3 effects.
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Figure 3.20. NOx concentration measured by the NOx sensor (zNOx
) and torque

evolution (Me) at 2000 rpm and 50 mg/stroke when varying SOI.

Excellent operating condition for performing the method is highway op-
eration (where torque and engine speed are reasonably constant during long
periods and SOI variations can produce appreciate variations). Figure 3.20
shows the variation in NOx concentration and torque when SOI is varied in
a 2-degree step profile while keeping constant mf and n. As shown in the
central part of the plot, the raw NOx production can clearly be increased with
a low impact on torque; that means that the driveability can be ensured while
the test is performed (corrections on mf can be performed for maintaining the
engine torque to its set-point ensuring the driver to be blind to the test). The
increase in NOx emission during the sensor testing should not importantly
impact the overall emissions, since a few seconds are enough for the test (and
also a descendent step could be used). On the other hand, in engines with
SCR technology and a NOx sensor located upstream of the SCR, the SCR
could cope with the excess of NOx.
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3.4.2.2 Dynamic calibration of the λ�1 output

The slow dynamic response of λ�1 from the NOx sensor is explained by
several reasons: the distance and the system volume between engine exhaust
and sensor location affect transport delay and distort the signal; the sensor
measurement principle and sensor hardware itself; and the acquisition chain.
Although slow, the sensor is quite precise, since several repetitions of the
same test provide similar results. This is illustrated in Figure 3.21, where 2
repetitions of the same fuel step are depicted for 2 different engine speeds.
Top plots show a step up (left) and step down (right) in injection for 1550
rpm and bottom plots the same for 2250 rpm. Despite the sensor precision, it
must be considered that the dynamic response is significantly affected by the
operative conditions (e.g. the sensor response in bottom plots in Figure 3.21
is always faster than in top plots). A model based on the fuel-to-air ratio
calculation (xλ�1) is also shown in the plots (detailed explanation is found in
the Chapter 4).
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Figure 3.21. Two sensor responses (zλ�1 in solid lines) for injection steps from 15
mg/str to 30 mg/str (left plots) and the opposite (right plots) at 1550 rpm (top plots)
and 2250 rpm (bottom plots). The model x�1

λ is provided for comparison (dashed
black).

A first order filter similar to that of (3.3) is used and parameters identified
on the basis of the data obtained by performing steps on mf , which provoke
step-like transitions on λ�1. Figure 3.22 shows the evolution of the measured
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zλ�1 and the identified sensor model y�1
λ for two different operating conditions.

Left plot is used for identification while validation is provided by the right
plot. The fitting is good (even in the right plot) although a slight error can
be appreciated, which suggests that the dependence of the sensor dynamics
with the engine operating point may be neglected in a first approach, i.e.
the response time may be taken as constant. A similar study to that of the
NOx output may be performed in order to obtain characteristic values of the
response time. Anyway, the repetitiveness of the parameters is higher than for
the NOx case, and in this work the NOx sensor response time for λ�1 output
is considered constant.
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Figure 3.22. Example of identification of the sensor behaviour for two engine speeds,
where zλ�1 and y�1

λ are depicted. Top plot: training data at 1550 rpm where param-
eters aλ�1 and τλ�1 are identified. Bottom plot: validation data at 2250 rpm, where
parameters aλ�1 and τλ�1 obtained for the top plot situation are used now for obtaining
y�1
λ .

This method could be applied when driver performs a sharp tip-on or
can profit DPF regeneration modes, even though the effect of post-injections
should be studied more deeply.

3.4.2.3 Delay in the NOx sensor

As expected, the NOx sensor delay is much lower than chemiluminescence
system delay. This occurs because the gas analyser delay is mainly caused
by the treatment operations and by the transport in the long gas line feeding
the measurement system (12 m), which adds a non-negligible delay due to
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the low flow allowed. The outputs have been plotted in Figure 3.16, and the
significant lower delay for the ZrO2 sensors with respect to the gas analyser
can be clearly noticed.

In principle, the ZrO2 sensor delay (for both λ�1 and NOx outputs) varies
with the sensor actuation possibly by gas concentrations [16] and in a minor
way by transport lag. The effect of the gas concentrations and mass flows
themselves over the final delay is appreciable and should be analysed but it
escapes from the scope of this work. With respect to the transport delay, it
could be calculated taken into account the gas flow rate and the exhaust pipe
cross section. The transport delay can take a wide range of values depending
on the operating conditions. Simulations with a wave action model [22] and
for the considered diesel engine after varying injected fuel mass and engine
speed show velocities of the exhaust flow between 10 m/s and 140 m/s. The
transport delay could be then calculated as the time that the gas takes to
reach the sensor from the combustion chamber, and goes with the inverse
of the gas velocity. From the simulations, transport delays rarely present
values above 100 ms, and according to simulations by wave action models, are
generally lower than 25 ms. The influence on the total delay is supposed to
be minimum with respect to the hardware delay.

Some authors have proposed functions for modelling the delay. For in-
stance, Trimboli et al. [23] design the following function

τpn,maq � α0 � α1

n
� α2

ma
(3.4)

Figure 3.23 shows the delay modelled by (3.4) in the cycles A1 and B5 for
both NOx and λ�1 outputs. The results show that the delay is quite constant
during part and full load operation, while it is slightly bigger when approach-
ing to idling or low loads. The variation can be explained not really by the
(minimum) transport lag but mainly by the sensor diffusion processes between
the sensor chambers, which are affected by the total oxygen and NOx concen-
trations. In the case of NOx, the delay is slightly higher than for λ�1 due to
the sensing element location is in the inner cavity. It should also be noted that
the delay tends to be overestimated during idling (about 2 s in NOx against
1.4 in the reality) due to the simple model structure (3.4). In this work, a
constant delay is used for the implementation of models and fusion strategies,
and values are shown in dashed lines in Figure 3.23 (about 0.75 s in NOx

and 0.5 s in λ�1, in line with the manufacturer technical data). The results
obtained in subsequent chapters justify this decision, in addition to the simple
programming of a constant delay against a variable one. Furthermore, the
robustness, dispersion and ageing of a delay model should be assessed more in
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detail, where scheduling strategies in line with the thesis algorithms might be
explored.
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Figure 3.23. Variable sensor delay modelled for zNOx and zλ�1 outputs from the
NOx sensor during the second half of the NEDC A01 (left) and SDMP B5 (right).
Higher peaks correspond to the idling operating conditions, which are overestimated.
In general, the bigger mf and n, the lower the delay.

3.5 Conclusions

This Chapter has described the experimental setup and the test campaign
performed in order to design and validate the models and algorithms utilised
in the current dissertation. Furthermore and considering the gas concentration
sensors used for this work, the NOx and λ�1 outputs from a ZrO2 sensor are
characterised by means of steady-state tests for static calibration and transient
steps for dynamic characterisation. More precisely:

• A simple on-engine experiment for characterising NOx output is pre-
sented. The method uses the engine as a gas generator and the procedure
consists of applying steps in SOI producing sharp variations in NOx con-
centration. With a simple variation of 2-3� in SOI, NOx concentration
is varied whilst torque values and fluid conditions remain approximately
constants.
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• A similar procedure based on performing injection fuel rate steps in order
to produce sharp variations on λ�1 is used for the dynamic characteri-
sation of this signal.

These methods allow the determination of the dynamic response of the
sensor (for both NOx and λ�1) over its entire useful life and the detection of
faults in the sensor. A simple mathematical modelling, taking as a reference a
first order model response, is proposed, although more complex models might
be utilised. According to this, the delay and the response time is modelled for
both NOx and λ�1. In both cases, and even though there exists variability in
the parameters, the delay and the response time are considered constants for
the applications made in subsequent chapters. The good results of the models
and fusion strategies for the proposed applications give validity to this decision,
provided that a deeper analysis is advised for future robust implementations.
Due to its nature, the methods could be implemented on-board for the online
dynamic calibration and development of adaptive strategies.

3.A Gas concentration sensor specifications

Table 3.10 presents the relevant characteristics of the gas concentration
sensors certified by the OEMs.

Table 3.10. Relevant characteristics of the gas concentration sensors used for this
dissertation. �Data not specified by the OEM. FS is Flux Storage.

Horiba MEXA 7100DEGR Bosch LSU 4.9 Uni-NOx sensor
Output signals CO,CO2,NOx,THC,O2 λ NOx, linear λ, binary λ

Measuring range NOx: 0-5000 ppm (Ip) 0.65 to air NOx: 0-1500 ppm
O2: 0-25 % vol. lin λ: 0.75 to air
CO2: 0-12 % vol. bin λ:¡0.75 V (λ=0.9)

bin λ: 0.2 V (λ=1.1)

Accuracy NOx: � 1.5% FS λ= 1.016 � 0.007 NOx: 100 and 500 ppm � 10%
O2: � 1.5% FS λ= 0.8 � 0.01 0 ppm � 10 ppm
CO2: � 1% FS λ= 1.7 � 0.05 lin λ: λ=1 � 6 (1000/λ) fresh

bin λ: 1.002 � 0.008

Response times NOx:   900ms   100 ms� NOx: 750 ms
O2:   750 ms λ : 550 ms
CO2:   800 ms

3.B Principles of the NOx measurement

The term NOx emissions includes the di-nitrogen oxide N2O, nitrous oxide
NO and the nitrogen oxide NO2 [24]; the most habitual at the engine exhaust
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in diesel engines is NO, with percentages about 70-90% [25, 26], while the
remainder is mainly NO2.

The gas analyser is capable of measuring NOx and separating between
NO and NO2 if necessary. For the NOx case, the total composition is first
oxidised to NO2 and then converted by a catalytic reaction to NO, that after-
wards reacts with ozone (O3) for producing NO2 and emitting photons. The
produced light is detected with the CLD and is proportional to the NO con-
centration. For detecting NO (before oxidising), the thermal catalytic phase
is avoided.

The measurement provided by the gas analyser for NOx is made in a dry
basis and for converting to a standard wet basis, the correction Kw is calcu-
lated as follows

Kw � p1 � Ffh
9mf

9ma
p1 � 0.001Haqq �Kw2 (3.5a)

Kw2 � 1.608Ha

1000 � 1.608Ha
(3.5b)

Ffh � 1.969

1 � 9mf
9ma

(3.5c)

where 9ma and 9mf are the air mass flow and the injected fuel mass flow [kg/h]
respectively, while Ha is the absolute humidity.

Furthermore, the legislation fixes the factor Khd for accounting with the
ambient conditions

Khd � 1

1 �ApHa � 10.71q �BpTatm � 298q (3.6a)

A � 0.309
9mf

9ma
p1 � 0.001Haq � 0.0266 (3.6b)

B � �0.209
9mf

9ma
p1 � 0.001Haq � 0.00954 (3.6c)

where Tatm [K] is the ambient temperature. Therefore, the NOx output after
corrections is computed

NOx � KwKhdNOgas analyser
x (3.7)

A deeper explanation on the gas analyser procedures for measuring NOx and
separating components is in [25].

In the case of the NOx sensor, the exhaust gas is diffused first to a first
chamber, where the oxygen is measured, and then diffused again to the second
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chamber. In the first chamber, NO species are oxidised to NO2, while in the
second, total NOx is reduced to oxygen and nitrogen ions. These oxygen ions
are pumped out and are proportional to the total NOx concentration. Note
that the first oxidation step is required in order to get a correct measurement
of total NOx, i.e. NO2 contains two oxygen atoms while NO contains only one
and then the oxygen ions resulted from the dissociation could not be directly
related with total NOx. The static calibration was shown in Figure 3.14, where
the fitting between ZrO2 sensor and gas analyser is quite acceptable.

References

[1] Galindo J, Luján JM, Climent H and Guardiola C. “Turbocharging System Design of
a Sequentially Turbocharged Diesel Engine by Means of a Wave Action Model”. SAE
Technical Paper 2007-01-1564, 2007. (cited in p. 58)

[2] HORIBA. “Horiba MEXA-7000DEGR Instruction Manual”, August 2001.
(cited in pp. 25 and 61)
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4.1 Introduction

Control oriented modelling is aimed to predict engine variable with a low
computational effort and is the basis of model based strategies, such as di-
agnosis or MPC [1]. Models usually have the possibility of predicting with
acceptable accuracy the transient performance of the engine. Once that the
Chapter 2 have already reviewed models for NOx and λ�1, this Chapter is de-
voted to the design of an ECU signals based virtual sensor for the estimation
of engine-out λ�1 and NOx. The reported results correspond to the DW12B
DICI engine presented in the Chapter 3 with all AT devices removed.
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4.2 λ�1 model

Instead to refer to λ, results and discussion are centred in its inverse λ�1,
namely relative fuel-to-air ratio or simply richness, as it presents a bounded
value (ranging from 0 to 1 in diesel engines, although slightly higher values
might be reached during engine load transients).

Depending on the engine configuration, an air mass flow sensor ( 9ma) may
be present (or mass flow can be estimated through the boost pressure), and
the injected fuel mass flow ( 9mf ) is usually estimated by the ECU. A simple
model may be then proposed

x�1
λ � 14.5

9mf

9ma
(4.1)

where 9mf and 9ma quantities are expressed in the same units, i.e. mg/str or
kg/s, and 14.5 stands for the stoichiometric air-to-fuel ratio. Note that the
model neglects the mass accumulation in the intake and exhaust manifolds
(the reader is referred to the Chapter 2 for finding more elaborated models).
Despite such effects should be considered for correcting 9ma during the engine
transients (for example, when boost pressure is increased or when shifting
between boosting modes [2]), they will be neglected hereinafter for simplicity.

Figure 4.1 compares model steady-state results (x�1
λ ) with gas analyser

measurements. As it can be easily noticed, the model provides a lower accu-
racy than that of the sensor (shown in Figure 3.15). Regarding the transient
behaviour, the model exhibits an almost instantaneous response; the injected
fuel mass estimate, although biased is fast; and the air mass flow measurement
characteristic time is in the order of miliseconds, while the exhaust gas sensor
response time can be of several hundreds and even seconds (depending on the
considered set-up).

λ�1 model drift. x�1
λ output presents a significant bias that strongly de-

pends on the operating conditions due to several facts:

• mf is obtained from internal calculations of the ECU, and response is
fast and non-delayed, but is based on tabulated values which rely on
rail pressure measurement and injection duration. The error of these
tables can be significant when short injections or split injection strategies
are applied. On the other hand, injector manufacturing discrepancies
and ageing can create a significant unit-to-unit (and cylinder-to-cylinder
[3–5]) dispersion in the actual injected quantity.
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Figure 4.1. x�1
λ and λ�1 from the gas analyser for different steady operating condi-

tions; the linear fit and correlation coefficient are represented.

• While 9ma sensor response is judged to be fast and non-delayed enough
for being directly used as a model input, the precision of the sensor is
not very high (for example in [6] the non-systematic error of the air mass
flow sensor is quantified with a standard deviation of 3.23%, in part due
to flow pulsations in the intake line associated with the engine speed).
On the other hand, during transient processes in which a significant
variation of the air mass accumulated in the manifolds exists, the air
mass flow measured in the intake line is different to that entering the
engine [2]. This can be corrected accounting pressure variations in the
9ma estimation, although this is not considered in the current work.

With this scenery, xλ�1 can be related to the actual value of λ�1 considering
a bias θλ�1

xλ�1 � λ�1 � θλ�1 (4.2)

The model bias is not constant and varies with the operating condition,
since 9ma error significantly depends on the engine speed, and 9mf error is
affected by the injection profile, which is usually scheduled as a function of n
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and Me. Figure 4.2 shows bias estimation for the measured steady points and
its variation with engine speed and torque.
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Figure 4.2. Model bias for the steady-state tests.

Additionally, the model bias varies with time due to the system drift, and
a slow variation could be expected. At the same time, the model drift may be
associated with injection soiling, air mass flow sensor drift, or the variations
of leakage in the intake manifold and blow-by. In order to model that, both
effects, the dependency with the operative conditions, and the drift, must be
considered

dθλ�1

dt
� Bθλ�1

Bt � Bθλ�1

Bn
dn

dt
� Bθλ�1

Bmf

dmf

dt
� . . . (4.3)

Although the bias variation associated with the system drift (Bθλ�1{Bt) is
expected to be slow, the actual variation of the bias may be very fast, due
to the ability of the engine of performing fast transition between operating
conditions (defined by n and mf ).

4.3 NOx model

A RT gray box NOx model combining first principle equations with the
use of operating-point dependent look-up tables is developed based on simple
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correlations of engine available signals. This model describes a quasi-static
representation of the engine plus some filters for describing actuators and
sensor dynamics, where the scheduling points are n and mf .

4.3.1 Previous considerations

Firstly, previous considerations related with the validity of a quasi-static
representation and definition of engine operating points, the [O2]int estimation
and the selection of the appropriate units for modelling NOx are discussed.

Comments on the engine dynamics and definition of the engine op-
erating point. The engine works in closed loop by mainly following set-
point references for air mass flow ( 9m�

a) and boost pressure (p�boost), which are
controlled by modifying the actuators for EGR (uegr) and waste-gate (uwg).
Other variables such as the coolant temperature (Tcool) are measured and
taken into account in the ECU controller. Speed (n) and injection (mf ) are
used as scheduling variables in order to build the references for the controllers
by means of look-up tables. Since the fuel path representative times are in
the order of µs, this can be considered as instantaneous if compared with the
air path dynamics. However, the major influence of the fuel path over the air
path is with the smoke limiter, which limits the injected fuel rate until 9ma or
pboost (depending on the manufacturer) reach a certain limit in order to bound
λ�1. Therefore, the engine states (X) could be modelled with the dynamic
equation

9X � fpX,n,mf , uegr, uwg, Tcoolq (4.4)

The set-point references for air and boost pressure ( 9m�
a and p�boost) are modelled

by look-up tables scheduled by n and mf

9m�
a � fpn,mf q (4.5a)

p�boost � fpn,mf q (4.5b)

The variables 9ma and pboost are measured by sensors in diesel production
engines, and if considering them as fast signals and neglecting mass storage
effects (MAF sensor for measuring 9ma is usually installed upstream of the low
pressure compressor), the dependency of the command signals uegr and uwg
might be skipped as follows

9X � fpX,n,mf , 9ma, pboost, Tcoolq (4.6)

If the engine air path states can be modelled by quasi-static representa-
tions (dynamics do not have influence on the output) or by adding filters and
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delays function only of the scheduling inputs n and mf , then the dependency
with 9ma and pboost might also be modelled as function of n and mf . The
case of temperatures, associated with slow transients is more difficult and the
measured engine variable Tcool is not able to exactly represent for instance
in-cylinder conditions. The inner wall cylinder temperature influence deserves
a specific consideration, and its influence is included in the model with a dy-
namic factor (see discussion bellow in Section 4.3). Anyway, Tcool is used as
input for switching warm-cold engine strategies. Based upon this reasoning,
X could be represented as

9X � fpX,n,mf , Tcoolq (4.7)

Putting aside the thermal dynamic effects, further simplifications could be
made if the engine performance is slow enough that 9ma and pboost are able to
track 9m�

a and p�boost fast and then, engine performance is simplified to

X � fpn,mf q (4.8)

Figure 4.3 shows examples of the set-point references and responses for
the air and fuel path and for three different cycles (NEDC A1, CADC B2
and SDMP B5), including also in the bottom plots the variables uegr and uwg
corresponding to the actuation signals for EGR and WG respectively. The
cycles correspond in that order from the slowest to the fastest transitions. In
the A1 test, the air path controllers track with a minimum error both 9m�

a and
p�boost, especially for the case of 9ma which is logical due to the slower dynamics
associated to the turbo inertia. The response for the B2 cycle is also good
but transients are a little bit more aggressive than for A1, and the errors are
slightly higher. For these two cycles, the quasi-static representation defined
by (4.8) gives good results if the engine is already warmed up (Tcool is stable).
However, for the case of B5 cycle, the transients are much more aggressive
and errors on the 9ma and pboost tracking are appreciable as well as the fact
that the EGR valve is mostly closed during the cycle and the second TC is
indeed working at some points (see Figure 4.3 when uwg reaches 100%). For
this cycle, the engine is running out of the nominal ( 9m�

a and p�boost set-points
differ from the other cycles) and the effect of the thermal loading due to the
fast transients is critical.

Thus, the selection of the model structure for a given precision would de-
pend not only on the engine characteristics but on the use cases. In all these
cases and examples, it should be considered not only the thermal transient
effects but the sensor dynamics. Therefore, (4.8) should consider the sensor
model if the output is compared with a sensor output. The model structure
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Figure 4.3. Air and fuel path response to variations in the driver’s command (uα)
for different cycles. First and second row plots: is set-point 9m�

a and p�boost, and
is measured value of 9ma and pboost. Last row plots: uwg [mg/str], uegr

[mg/str] is the smoke limit for injection. Note that 100% in uegr corresponds to the
EGR valve fully closed and around 25% the EGR mass flow is maximum (the relation
between uegr command and the effective area is not linear). For the case of uwg, 100%
corresponds to WG fully closed and the two turbo shafts working.

proposed in this Chapter, aimed to be representative of the engine performance
under different conditions, is built on the basis of (4.6) as a quasi-static model
representation and an extra-state for representing sensor dynamics (now in-
cluded in the equation):

X � fpn,mf , 9ma, pboost, Tcoolq (4.9a)

9X � fpX, t� τq (4.9b)

where t is the time and τ the sensor delay. This model structure, considering
an state for including the thermal transient effect, is used after along the
present Chapter for developing a NOx model. Alternatively, in Section 6.3.1 a
similar model to (4.8) will be considered for modelling NOx in engine cycles.
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Intake oxygen estimation. In the interest of developing a RT model for
NOx, the Arrhenius equation (2.6) can be arranged with two operating point
dependent factors C1 and C2

dNOx

dt
� C1e

�C2{T (4.10)

where C1 includes gas intake concentrations (nitrogen and oxygen) while C2

is the exponential factor. According to [7], oxygen rate in the cylinder and
operating conditions (n and mf as discussed above) seem to be suitable vari-
ables for predicting NOx emissions. Hence it is possible to find a new generic
expression whose structure is equivalent to 4.10:

xNOx � fprO2sint, x1, ..., xnq (4.11)

where xNOx is the model output. This expression relates NOx with [O2]int
and different parameters (x1, ..., xn) including temperature and time reactions
effects. The model, which is based on the thermal NOx formation mechanism,
might be calibrated for accounting for the NOx formation by other mechanism.

Figure 4.4 shows NOx versus [CO2]int in the intake manifold when varying
EGR valve position for different speed n and injected fuel rate mf . NOx is
normalised by NOx,EGR=0, which corresponds to the maximum NOx value
at every operating point (equivalent to the EGR valve fully closed). The
exponential fit in Figure 4.4 is clear, in spite of operating point dependency
of the exponential factor is not modelled yet.

[O2]int can be measured, but intake lambda probes are not always avail-
able in diesel engine production cars, and measurements errors related with
the gas non-homogeneity may appear [8, 9]. Considering the test engine, Sec-
tion 3.2.1.2 already compared the intake oxygen estimation by a UEGO sensor
with different samples in different intake positions measured by a gas analyser.
Although the steady-state accuracy is acceptable, the UEGO sensor presents
important problems linked with the pressure effects over the output signal,
which drive to saturation and the need of compensation.

Alternatively, [O2]int can be modelled by relating [O2]int, EGR and λ�1

rO2sairp1 � λ�1q � rO2sexh (4.12)

By the oxygen balance at the intake junction

rO2sint � rO2sairp1 � EGRq � rO2sexhEGR (4.13)
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Figure 4.4. Normalised NOx emissions as function of [CO2]int for different nominal
operating points in the diesel engine explained in Chapter 3 and coming from the
steady-state campaign. Engine calibration is the standard given by the manufacturer.

and substituting the former in the latter

rO2sint � rO2sairp1 � EGRλ�1q (4.14)

that shows a direct relationship between [O2]int and EGRλ�1. The product
EGRλ�1 is often called the inert gas rate and represents the actual portion
of exhaust gas that has reacted with the injected fuel and then contains no
available oxygen; e.g Andersson et al. [10] use EGRλ�1 for designing a fast
NOx model. Figure 4.5 shows the NOx fitting with EGRλ�1 and the fitting
between EGRλ�1 and [CO2]int, where the expression (4.14) is proved.

On the other hand, Figure 4.6 shows the fitting of NOx by using EGR.
Results with EGR are much worse than with EGRλ�1 and it is difficult finding
a tendency, which proves that EGRλ�1 seems a good alternative for estimating
[O2]int (or [CO2]int) when an intake lambda probe is not installed, although
the uncertainties propagated from the different involved measurements are to
be checked [9].

About the NOx model output units. Sensor raw signal is measured in
ppm, which indicates the relative molar concentration of NOx, but the final
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NOx mass depends on the exhaust mass flow and time. The conversion from
ppm to g/h used in this work is

9x
g{h
NOx

� 0.001587xppmNOx
� p 9mkg{h

a � 9m
kg{h
f q (4.15)

considering that molecular mass of NOx is 46.1 g/mol and exhaust mass flow
density is 1.293 kg/m3, measured at 273 K and 101.3 KPa. The conversion of
mg/str to kg/h is defined as

9mkg{h � 1.2 10�4 n �mmg{str (4.16)

in a 4 cylinder basis. The use of mass flow variables is appropriate for taking
into account total emissions and calculating the real impact on the environ-
ment. In addition, AT devices such as the LNT require a count of the accu-
mulated NOx mass for regenerating the trap. Then, a mass flow seems also
suitable for OBD purposes.

For computing total NOx emissions, 9x
g{h
NOx

can be integrated in the consid-
ered cycle

Mg
NOx

�
» t2
t1

9x
g{h
NOx

dt (4.17)

where M stands for total mass.

Commercial NOx sensors measure the relative volume flow of NOx in parts
per million (ppm) and the conversion to g/h can induce some error, especially
if 9ma presents some drift or filtering effect. Anyway, the use of g/h for online
NOx tracking is justified for two reasons: (1) dilution effects are avoided as
ppm is a relative measurement and (2) the use of g/h is coincident with the
actual emissions. Dilution effects can distort the ppm output and can lead
to sign shifts in the gradient when comparing ppm output and g/h at high
load conditions (no EGR), i.e. an increase of g/h could result in a decrease of
ppm if 9ma increases. On the other hand, minimum variations of g/h can lead
to huge variations in ppm even though the relative gradient could be high in
both two, especially at low load conditions (related with low 9ma), leading to
overestimate NOx emissions when tracking ppm. In this work, the NOx model
output is calibrated for minimising the error on g/h, even though ppm output
is also considered.

Selection of the model structure. In order to find a suitable model equa-
tion for a RT NOx model, different structures may be used [11,12]. Figure 4.7
shows a visual example of point dependent fittings: single (left plot) and two-
point functions (centre and right plot). On one hand, if using a single point
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function, model variations are centred around one reference. The point should
be chosen as representative of the engine operation: NOx emissions under
nominal conditions (defined with the standard calibration of the OEM) or
maximum emissions (EGR � 0), which is used in previous figures. On the
other hand, the two point function interpolates in a two reference basis, which
in diesel engines could be around nominal EGR actuation and closed EGR (at
least for the EGR area of the engine).

Both correlations have advantages and drawbacks: single point fitting is
more flexible than two point for mathematical adjustment but with a smaller
accuracy in points far from the nominal, however the single point one is eas-
ier to calibrate as only one map or reference must be tuned. Admittedly,
extrapolation capability for the two-point function output when input values
are out of the two-point area is compromised. See for instance right plot of
Figure 4.7, the two references are quite close to each other and extrapolation
is not fair. The same occurs in diesel engines in areas where nominal EGRλ�1

is low. Here, the single reference point model is used due to simplicity and
robustness.

EGR λ-1

NOx NOx NOx

EGR λ-1 EGR λ-1

Single point Two point Two point
Close references

Figure 4.7. Single point reference model (left plot) VS two-point reference models
(center and right plots).

4.3.2 A real Time NOx model

A RT NOx model is proposed using EGRλ�1 for representing the intake
oxygen jointly with maps and corrections fitting the operating point depen-
dency [11]. The model scheme is outlined in Figure 4.8. In the top right and
for clarifying the reader, engine positions subscripts are reminded: boost is
downstream the intercooler, int the intake manifold, egr the EGR manifold at
the intake junction and exh the exhaust. The main RT NOx model requires
two additional blocks: a mean value engine calculation of the EGR flow for
obtaining EGR and the calculation of the fuel-to-air ratio λ�1. The model
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design is flexible and other structures for the EGR flow and λ�1 model or
other measurements might be utilised just replacing the corresponding blocks.
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Figure 4.8. Structure of the RT NOx model.

Following the discussion presented in the previous section about represen-
tation of engine states, an engine-out NOx model is designed considering the
state vector X

X � rxNOx yNOx CdynsT (4.18)

where xNOx is the NOx model output (actual NOx), yNOx is the filtered and
delayed NOx output (for comparing with NOx sensor) and Cdyn is a dynamic
factor for coping with in-cylinder temperature and explained after. The input
signals contained in the vector U are available in the ECU and are shown in
squares in the Figure 4.8

U � rn mf 9ma pboost Tcool HsT (4.19)

where H is the humidity and the rest of variables have already been defined.
Model output vector Y is the modelled sensor response

Y � yNOx (4.20)

in order to have a comparable signal with NOx sensor output during dynamic
tests. xNOx indicates the raw or actual NOx, which must be filtered and
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delayed. The delayed first order discrete model identified in Chapter 3 is used

yNOx � z�τNOx{Ts
1 � aNOx

1 � aNOxz�1
xNOx (4.21)

where aNOx is the sensor response time and τNOx is the total sensor delay (see
Chapter 3 for more information).

Finally, constants are also marked with squares and gray squared variables
are used as shortcut for avoiding crossed lines in the Figure 4.8.

Model hypotheses. The following hypotheses are assumed:

• The model is programmed and calibrated in discrete form and frequency
used for simulation is 50 Hz.

• The model is based on a set of static look-up tables, curves and pa-
rameters with the addition of discrete filters and lag blocks in order to
consider system dynamics.

• Intake conditions ( 9mint and Tint) are calculated on the basis of the volu-
metric efficiency and an EGR flow model by assuming constant pressures
upstream and downstream of the intake junction and an adiabatic mix-
ing model for the temperature.

• The engine combustion is tabulated by using look-up tables related to
nominal conditions and different variations of the intake conditions.

• The EGR path is modelled with a cooler model and a first order filter
for accounting with the manifold dynamics.

• Turbocharger effects are bypassed by directly using sensor signals 9ma

and pboost, the former located upstream of the compressor and the latter
downstream of the intercooler.

In the next, the model and sub-model equations are described.

RT NOx model equation. The NOx model is presented in (4.22) and
consists in a single function referenced to conditions with nominal EGR for
calculating xNOx , which is affected by an exponential EGRλ�1 correction and
additional factors CNOx and Cdyn. This structure guarantees that nominal
tests corrections are eliminated minimising the nominal error and subscript 0
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goes with nominal conditions. Then, the model xNOx output is calculated as
follows

xNOx � NOx,0 � e�kNOx �pEGRλ
�1�EGR0λ

�1
0 q � CNOx � Cdyn (4.22)

where CNOx and Cdyn are used as correction factors to the model structure,
and are explained in subsequent paragraphs.

Correction factors. The factor CNOx , defined with the product

CNOx � C
9mint � CTint � CTcool � Ch (4.23)

is calculated on the basis of previous experience and tests made in the engine
(see [13] for a sensitivity study of NOx to relevant engine inputs). For that, 4
important effects are included in CNOx : (4.24a) C

9mint indicates variations of
the intake mass flow 9mint [8]; (4.24b) CTint copes with intake temperature Tint;
(4.24c) CTcool relates engine temperature (especially for distinguishing cold and
warm conditions [14]); (4.24d) Ch considers Humidity H (if a humidity sensor
is available). The expected NOx sensitivity for the different parameters is
depicted at the right side of (4.24). Figure 4.9 shows the blocks diagram of
the CNOx model. k

9mint , kTint , kTcool , kh are calibrated by [n,mf ] dependent
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maps. If engine is operating at nominal conditions then C
9mint , CTint , CTcool �

1. Equations are shown in the following.

C
9mint � 1 � k

9mint p 9mint{ 9mint,0 � 1q Ò 9mint Ó NOx
1 (4.24a)

CTint � 1 � kTint pTint{Tint,0 � 1q Ò Tint Ò NOx (4.24b)

CTcool � 1 � kTcool pTcool{Tcool,0 � 1q Ò Tcool Ò NOx (4.24c)

Ch � 1 � khH{0.03 Ò H Ó NOx
2 (4.24d)

Thermal loading model. Tcool represents the engine coolant temperature
and is measured on-board. Tcool is used on-board for defining warm and cold
strategies. However, neither the engine block temperature nor the in-cylinder
temperature (Tcyl) are measured on-board (and rarely in test benches) and are
factors of great importance for NOx formation in diesel engines. If the engine is
working on steady-state operation and the variables are already stabilised, Tcyl
might be approximated as a function only of the operating point conditions
and Tcool as follows

Tcyl � fpTcool, n,mf q (4.25)

But if the engine is in transient operation, e.g. a tip-in, it is necessary to
consider an extra degree-of-freedom since Tcyl will be related with the historic
of the engine load. Note that Tcool itself is not capable of representing actual
Tcyl and in addition, it is controlled in closed loop for tracking a reference
making that

Tcyl � fpTcool, n,mf q (4.26)

An option is installing a temperature sensor at the exhaust but even though
this option should be interesting for improving the model accuracy, these sen-
sors are not usually available on-board.

An alternative is considering the heat conductive problem between the
cylinder walls and the coolant. The temperature wall affects the in-cylinder
temperature and should be considered as a state of the model. If analysing

1If p�boost set-point is increased for a constant air mass flow ( 9ma) set-point, then uegr
will be opened and more 9megr will enter the cylinder (consequently 9mint will be higher),
producing that NOx should be lower. This effect might be shifted if uegr is already opened,
especially at low load and regime areas, or engine is running out of the EGR area.

2Moisture increases the air specific heat cp, diminishing in-cylinder temperature Tcyl.
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the problem, as the gas temperature variation (∆Tcyl) state defines the heat

power released ( 9Q)
9Q 9 ∆Tcyl (4.27)

while the total heat dissipation between the cylinder and the coolant depends
on ∆Tcyl and the considered time, which is inversely proportional to n, then

Q � k∆Tcyl
1

n
(4.28a)

∆Tcyl 9 λ�1n (4.28b)

which shows that λ�1n is related with the thermal load in the cylinder and
could be used as an estimator for the problem.

Therefore, a multiplicative factor Cdyn to the NOx model output is pro-
posed. This factor augments the state vector X and copes with the engine
loading and indirectly Tcyl effects. The correction factor is designed for cor-
recting the NOx output only during transient, since steady state effects due to
changes in Tcool are yet corrected through CTcool . The main equation is pre-
sented in (4.29) and block diagram shown in Figure 4.10. Cdyn is built with
the filtered difference of λ�1n, which represents engine thermal load variation
(other options have also been checked, but this has given the best results for
the model, which is in line with the discussion above), and a calibrated gain
kdyn. When the engine is steady, so λ�1n is, Cdyn � 0. This factor is set to
one for steady-state simulations.

Thermal loading model
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dyn

dyn
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Figure 4.10. Block diagram of the thermal loading factor Cdyn.

Cdyn � 1 � kdynpλ�1 nq
�

1 � z�τdyn
1 � adyn

1 � adynz�1



(4.29)

Figure 4.11 shows relevant signals during a sharp engine transient in n
and mf . Texh is measured with a sensor and compared with Tcool showing two
effects: First, Tcool is much more filtered and delayed than Texh, and second,
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the sensitivity of Tcool is not sufficient for representing the actual thermal
transient occurring on-engine, i.e. Tcool hardly varies from 82 to 92 �C while
Texh goes from 200 to 700 �C. Bottom plot shows the value Cdyn tuned for the
NOx model, being lower than 1 during the transient but finally converging to
1. This is for representing that engine comes from a colder state. In that plot,
NOx sensor (zNOx) is compared with yNOx model output (see (4.21)) without
Cdyn (it overestimates NOx) and with Cdyn.
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Figure 4.11. NOx and thermal response during a sharp transient. Top plot: n
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(Tcool) during the transient. Dynamics of both signals, especially for Tcool, are slow,
which affects final NOx. Bottom plot and left axis: zNOx
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calculated by the thermal model.

The effect of the injection parameters. The injection duration (tid), the
start of injection (SOI) and the common rail pressure (prail) are critical for
NOx emissions [15] and so is the engine speed (n) that is coupled with the
others, which here is a model input. For the current structure, the engine
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commercial calibration for the injection settings is used being the injected fuel
mass (mf ) the representative variable. For that reason, all nominal conditions
(marked with subscript 0) are related to the set [n mf ], i.e every pair [n mf ]
defines nominal usoi,0, uprail,0 and uid,0. The engine torque (Me) could be used
instead of mf , but even though both Me and mf are estimated by the ECU,
mf is preferred as used in the ECU of the considered engine. SOI or prail
could be considered as exponential corrections if different from the nominal,
and such effects should be taken into account in the combustion model (this
could be useful for controlling the fuel path).

4.3.2.1 The EGR flow model

The EGR rate

EGR � 9megr

9mint
(4.30)

is calculated on the basis of a mean value model of the volumetric efficiency
(ηv) using boost pressure (pboost) and air mass flow ( 9ma) inputs coming from
commercial sensors. The model block diagram is shown in Figure 4.12.
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Figure 4.12. Structure of the EGR flow model.
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The intake manifold mass flow ( 9mint) is obtained from ηv (mapped with the
steady-state tests). pboost is assumed constant in the manifolds that confluence
at the intake (egr ,boost ,int) while Tboost is measured and Texh calculated by
means of a combustion model based on maps and corrections over Tcool and
9mint.

9mint � ηv ncyl Vd n pboost
2RTint

(4.31)

n, mf , Tboost and 9ma are measured by sensors, the unit displaced volume
(Vd) and the number of cylinders (ncyl) are known beforehand and a model is
proposed for Tint. For instance, Wahlström et al. [16] propose an isothermal
model (Tint � Tboost); for the current work a mixing model based on the energy
conservation at the intake junction is utilised, i.e. intake volume is small and
mixing is so fast that no heat is transferred to the walls.

9mintTint � 9maTboost � 9megrTegr (4.32)

and from (4.31), the product 9mintTint, defining the intake enthalpy flow, can
be inferred as

9mintTint � ηv ncyl Vd n pboost
2R

(4.33)

and rewriting the mass equilibrium at the intake junction

9megr � ηv ncyl Vd n pboost
2RTint

� 9ma (4.34)

and finally substituting in (4.32), Tint can be solved

Tint � ηv ncyl Vd n pboost Tegr
ηv ncyl Vd n pboost � 2Rmboost pTegr � Tboostq (4.35)

Two additional models (see Figure 4.12) are needed in order to calculate
Tegr (not usually measured on commercial engines): a Texh model and an EGR
cooler efficiency model.

Texh model. Temperature increase between the intake and the exhaust ∆Tie
is calculated from a steady map and corrections

Texh � Tintz
�1 � ∆Tie (4.36)

adding the discrete delay z�1 for coping with causality.
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∆Tie can be calculated on the basis of heat release functions (e.g. Wiebe
for Watson functions) and solving the principle equations of the cylinder, or
fitted to experimental values. Since the results of such physical approach may
be calculated beforehand, a map based model coherent with the full RT NOx

model is proposed with two corrections based on 9mint and Tcool

∆Tie � ∆Tie,0 � k∆m � kT (4.37)

Maps depending on [n, mf ] are used for generating references for ∆Tie,0 and
9mint,0. Then ∆m is calculated

∆m � 9mintz
�1

9mint,0
� 1 (4.38)

and defining the calibrated map output

k∆m � fp∆mq (4.39)

Finally, term kT represents the steady-state effect of the wall cylinder temper-
ature effect and is calculated from the curve

kT � fpTcoolq
noting that Tcool adds a degree of freedom to the problem as there exists a
closed loop control that manages the coolant mass flow and the set-point for
Tcool. The difference with respect to the thermal factor Cdyn is that the latter
copes with transients, while kT with the static effect.

If SOI and prail are different from the nominals used for generating the
nominal maps, then the additional factors kSOI and kprail should be calibrated
in the combustion model.

EGR cooler model. Tegr is calculated by a temperature drop and a first
order discrete filter with response time aegr and a transport delay τegr

Tegr � z�τegr
1 � aegr

1 � aegrz�1
pTexh � kegr pTexh � Tcoolqq (4.40)

where kegr is calculated by the curve

kegr � fp 9megrq (4.41)

and τegr is function of the engine characteristic time

τegr �
kτegr
n

(4.42)
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Figure 4.13. Scheme of the calibration and validation procedure for the NOx model.

4.3.3 Tuning methodology

The tuning and validation methodology is shown in Figure 4.13, splitting
the steady-state and dynamic testing. Dashed lines show critical paths, e.g.
once that NOx structure has been fixed after preliminary studies that include
[CO2]int and sensitivity analysis, changes in the NOx structure are expected
to be minimum.
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Table 4.1. Mean errors when fitting the model with different input variables. [CO2]int
from the gas analyser is the mean of the 4 extractions of the intake manifolds as dis-
cussed in Section 3.2.1.2. EGRλ�1 is calculated on the basis of the EGR mean value
flow model and the λ�1 model. Signal from the intake lambda probe (Ip) is corrected
by pressure and some data points with faulty measurements have been removed because
they present problems with the sensor saturation. NOx output is adjusted in g/h.

EGRλ�1 Corrected Ip [CO2]int from gas analyser

g/h 9.31 9.78 8.54
% 8.09 8.96 7.58

Static tuning. The steady tests are considered for having a representative
sample of the operative engine range and calibrating nominal maps, main
parameters and curves by using LS, with the following sequence:

• From all tests, ηv, 9megr and temperatures differences are calculated and
used for fitting the maps as function of the engine speed and fuel mass.

• From nominal tests, maps are built for NOx,0, EGR0λ
�1
0 and Tcool,0 as

function of the engine speed and fuel mass.

• From all tests, the RT NOx model is simulated in order to estimate the
results for 9mint and Tint. The results are used for identifying 9mint,0 and
Tint,0.

• The ratios 9mint{ 9mint,0, Tint{Tint,0 and Tcool{Tcool,0 are calculated from
all tests.

• Curves kNOx , km, kTint , kTcool and kh are fitted by LS of the main model
equation (4.22). This adjustment is made independently by using the
steady-state data set. In addition to EGRλ�1 and in order to compare
results with other possibilities for estimating [O2]int, Ip from an intake
UEGO sensor and [CO2]int from the gas analyser are evaluated. The
results are presented in Table 4.1. The best fit is for [CO2]int but this is
not available on-board, while it can be used for tuning and validation.
Therefore, the minimum error is achieved with the variable EGRλ�1,
calculated in (4.14).

Dynamic tuning. Dynamic tests are used for adjusting the Cdyn model,
the path dynamics (e.g. EGR path) and for the fine tuning of the maps and
curves fitted with the steady-state tests. Furthermore, the step tests are used
for calibrating the sensors; and the cycles for validating the model in dynamic
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state. If the validation is not satisfactory, the dynamic cycles can be repeated
and identifications checked. If the error persists, it could be advisable to
come back to the static calibration and re-tune the unreliable parameters (see
Figure 4.13).

Even though not included in the scheme, tests from different campaigns
could lead to drift because of the ageing or other effects that are not well mod-
elled. Anyway, the repetition of a specific DOE will not avoid the model drift,
and for sure, it is not a cost-effective solution. For that, adaptive strategies
are useful as discussed in next chapters.

4.3.4 NOx model results

In the following, NOx model results with static and dynamic tests are
presented. Furthermore, error metrics are built in order to determine the
model accuracy.

4.3.4.1 Steady-state results

Top plots of Figure 4.14 show xNOx and zNOx (from the NOx-ZrO2 sensor)
for both ppm and g/h units as well as histogram plots of relative and absolute
errors. The mean error is 9.31 g/h, with a minimum deviation of σ=14.74
g/h proving the validity of the calibration. The results by evaluating the ppm
output present a mean error of 30.43 ppm and σ = 54.84 ppm. It must be
noted that errors of 1% in input variables can produce final NOx errors of
33%, measured in a predictive and physics-based NOx model (see the NOx

sensitivity study published in [13]). The maximum error in a DDM, such as
the one presented here, is bounded by the tables grid and only the ageing and
dispersion errors can affect, problems that exist also in more complex models.
This fact and the results presented in this subsection justify the validity of
a data-driven NOx model, as well as the efficient computation and simple
programming.

Medium and bottom plots of Figure 4.14 show absolute and relative error
metrics for both outputs in g/h and ppm. Again, only a minimum percentage
of points (total are 363) are out of the �σ boundary, also plotted in those
plots. If a higher accuracy on ppm output is required, tuning objective can
be easily shifted to ppm.

Additional information from the model can be extracted to compare inter-
mediate variables (calculated by the model) and the corresponding measure-
ments, as for instance for the mean value EGR flow model. A multi-objective
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optimisation could be programmed if other model states should be important
for control. However, here xNOx output error has been minimised. The left plot
of Figure 4.15 compares EGR calculated by the model and by using [CO2]int
averaged from the 4 extractions of the in-cylinder manifolds. The fitting is
acceptable in the whole range. Results for Tegr are shown in the right plot
of Figure 4.15, and the fitting in general is also acceptable, but there exists a
high dispersion around the centre line. This is mainly due to areas with low
or null EGR, where Tegr does not make any sense ( 9megr=0).
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Figure 4.15. Relevant results from the EGR flow model. Left plot: EGR calculated
by the model and from the gas analyser measurements. Right plot: Tegr calculated by
the model and measured by a sensor.

Model robustness. This section turns out the attention to the model ro-
bustness analysing the model sensitivity to errors in the main parameters and
inputs. 2% disturbances in the parameters presented in Table 4.2 are applied
and the final variation in NOx model output is stored, e.g. a change of 2% in n
produce an error of 4.51% in NOx. Parameters with more influence on model
output are n, mf and 9ma. These signals basically represent the engine oper-
ating conditions, and define the EGR setting (jointly with pboost that presents
a minor influence) and the trend was already expected. pboost and ηv have the
same influence as expected because both are multiplied for calculating 9mint

and consequently 9megr.
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Table 4.2. Results over the final NOx model output of applying variations of 2% on
different variables.

Variable Variation Mean error STD error Max. error Min. error
[%] [%] [%] [g/h] [g/h]

n +2 4.51 3.27 15.23 -1.41
mf +2 3.67 2.53 13.42 -0.36

mboost +2 3.42 3.50 12.60 -1.12
NOx,0 MAP +2 2 0.00 2.00 2.00

9mint MAP -2 1.79 0.74 3.16 0.06
ηv MAP -2 1.03 2.78 8.29 -2.93
pboost -2 1.03 2.78 8.29 -2.93
Tcool +2 0.97 0.39 1.81 0.08

EGR0λ
�1
0 +2 0.66 0.79 3.22 0.00

kegr MAP -2 0.16 0.31 1.39 -0.51
∆Tie MAP +2 0.06 0.14 0.97 -0.14
kNOx MAP +2 0.04 0.48 2.46 -2.42

An important conclusion of this study is that variables with more influence
on NOx are directly measured, and then having a reliable measurement is
crucial for the model accuracy. In the second group, NOx,0, 9mint and ηv
steady maps denote the most relevant maps to calibrate. The rest of variables
have lower influence but not negligible.

4.3.4.2 Dynamic results

Figure 4.11 already showed the ability of the NOx model to fit the sensor
output and the necessity of utilising the factor Cdyn. Figure 4.16 shows the
model results with the SDMP test. This test is a good benchmark for test-
ing the dynamic ability of the model as fast transients are performed. The
influence of Cdyn is remarkable and can be seen in the left plot of the figure.
Thin gray line corresponds to the model output but cancelling the effect of
the thermal dynamic factor, i.e. Cdyn � 1, whilst the thick gray line is yNOx .
If using Cdyn � 1, NOx is overestimated (about 20% higher than expected)
due to the model does not consider the rapid load variations and the magni-
tude of them. In the SDMP, the influence of Cdyn is of crucial importance as
the profile is ranging from low to high loads (thermal transients are critical).
The right plot compares yNOx with zNOx obtaining a good fitting indeed when
using ppm as output. The mean error in the SDMP tests (B5 and B6) is in
the order of 50 ppm, which can be minimised by using online observers.
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Figure 4.17 shows results on the TRAN A (Tcool � 75�C, ∆uegr � 5%,
∆pboost � 0) cycle; the left plot compares yNOx with zNOx while the right plot
includes the xNOx estimation. The sensor model fits well enough to have a
reliable xNOx , that is observed by cancelling sensor filtering and lag. Even
though the NOx model is based on quasi-static maps, system and physics
dynamics are contained in the model inputs, which are directly measured
from sensors. As shown in this Figure, the results are also promising.

The absolute mean value for zNOx and yNOx is calculated for every FTP
cycle

meanpyNOxq �
1

ltran

ltraņ

k�1

pabspyNOxpkqqq (4.43a)

meanpzNOxq �
1

ltran

ltraņ

k�1

pabspzNOxpkqqq (4.43b)

where ltran is the total number of samples for every TRAN cycle. Results
are plotted in Figure 4.18, where the left plot shows meanpyNOxq against
meanpzNOxq while the right plot shows the error distributions in ppm. The
results demonstrate the model accuracy.
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Finally, Figure 4.19 shows the results with the NEDC A1 (warm) and
A2 (cold). Especially during the highway part, there exists a bias in both
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cycles. Since the model is optimised for a set of steady-state tests, dispersion
effects or errors due to non-modelled variables (NOx is highly affected by the
ambient conditions) can affect the model accuracy. Admittedly, the model
dynamics are able to reproduce zNOx and then the drift can be corrected by
using observers as discussed in subsequent chapters.

4.4 Conclusions

An ECU oriented NOx model has been developed by considering that vari-
ations of [O2]int cause exponential changes in the nominal NOx, which is con-
veniently mapped. A study on different alternatives for estimating [O2]int is
presented in the chapter, selecting the inert gas rate EGRλ�1 as the most
convenient. A set of corrections and factors with respect to nominal operating
points are included for considering the most sensitive parameters. Further-
more, a thermal dynamic model for simulating thermal loading is proposed
as function of the product λ�1n. Two additional models are needed for the
NOx model: an EGR gray box model for estimating EGR and a model for
estimating the fuel-to-air ratio λ�1.
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A total of 363 steady-state tests are performed for calibrating all parame-
ters and maps. Step-like tests for system and sensors identifications are made
and different cycles are tested in order to validate the model. The NOx pre-
diction is successful and the simple programming as well as the fact that all
required signals are available in commercial ECUs makes the model suitable
for online engine control or diagnosis.
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5.1 Introduction

Along the previous chapters, different sensors and models have been ex-
plored in order to estimate engine variables, with focus on the exhaust λ and
NOx. From all the possible problems in the signals, the dynamic filtering, de-
lay and drift are noticeable from sensor and model outputs. These issues are
affected not only by sensors and models themselves, but by the engine layout.

Sensor layout. Figure 5.1 shows three possible layouts for on-board gas
concentration sensors in order to estimate the engine-out NOx and λ�1 for
OBD and control of the AT devices. The final implantation depends heavily
on the AT configuration and a variety of solutions were already discussed
in the Chapter 2. Manufacturers are struggling for finding the configuration
of systems and sensors that optimises the trade-off between low emissions,
efficient torque production, low cost and robustness.

DOC

UEGO sensor

NOx sensor

DPF

DOC

SCR

DPFSCR

DOC

SCR

DPF

Fuel Request

mf

MAF sensor (ṁa) 

+ model

1 2 3

Figure 5.1. Possible UEGO and NOx sensors configuration setup for a turbocharged
diesel engine.

The usual position of UEGO sensors is directly downstream of the turbine:
this way the sensor is near of the source and avoids the large range of pressure
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variation that exists in the exhaust manifold. However, if a SCR is installed,
a NOx sensor is needed for their control. Such sensor might be placed down-
stream of the AT devices in order to measure tail-pipe emissions, as sketched
in the options 1, 2 and 3 of Figure 5.1. Hence it seems possible to avoid the
UEGO sensor and just rely on the NOx sensor information, which measures
λ�1 and NOx, as depicted in the third exhaust line of Figure 5.1. However, the
slow response of the ZrO2 sensor, if compared with that of a UEGO sensor, is
poor for RT purposes as was shown in Figure 2.5.

The drift problem on models. Models can be used instead for estimating
variables but despite of the promising results with the models presented in
Chapter 4, two problems can be underlined. On one hand, the model accu-
racy is driven by the collection of the appropriate data and calibration of all
the parameters. This is a hard and time consuming task. In fact, the ECU
has a big number of maps and parameters for the engine and vehicle manage-
ment. On the other hand and independently of how well the model has been
calibrated, there is inevitably a drift between the system and the model as
the surrounding conditions change and the engine ages (this occurs with all
kind of models). DDMs are highly sensitive to the calibration data set and
will have problems with ageing, manufacturing discrepancies, slowly varying
parameters and other non-modelled variables.

Figure 4.19 showed the NOx model (filtered) output yNOx for two NEDC
cycles (warm A1 and cold A2) and a clear drift exists, especially during the
highway part in the A1 and during the whole cycle in A2. Another example
is shown in Figure 5.2, where an old and non-optimised calibration set for the
model (maps and sensor dynamics) is used for simulating the SDMP B6 test.
The dynamics are well caught but a clear drift also exists. In this case it is
not only ageing that affects, but test or ambient conditions.

The use of adaptive strategies. The dynamic problems of the sensors
and the drift on models motivate the design of adaptive on-board strategies.
Concretely, two kind of models and algorithms are proposed in order to solve
these issues, which are:

• augmented models for drift correction and dynamic estimation of vari-
ables, and

• learning algorithms for updating look-up tables and parameters on the
basis of COMs, which can be used for calibration and/or online adapta-
tion.
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in the SDMP B6 test
with a non-optimized calibration data set. Even though the dynamics are well caught,
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In the next, the dissertation focuses on the description of the proposed meth-
ods, while Chapter 6 will give the results with experimental data.

5.2 Augmented models for drift correction

The design of augmented models for bias tracking and the implementation
of a KF for observing this bias is discussed. A known case is considering a fast
model that keeps high frequency components of the considered variable while a
slow but steady-state accurate sensor permits to correct the model drift. This
problem is solved by observing the bias θ between a reference measurement z
and an initial estimation u, considering the measurement dynamics and delay.

5.2.1 Drift correction algorithm

The model is presented in the discrete state-space form. The sample time
is considered constant and the model equation is defined as follows

xk � Fxk�1 �Buk �Wk (5.1a)

zk � Hxk � vk (5.1b)
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Without loss of generality, the problem can be stated for estimating the
drift θk P R, augmenting the standard model with such state. uk P R is the
state-space input, and corresponds to a model output with a certain delay τ .
The effect of the delay over the augmented model observation is discussed in
Chapter 6. For the models presented in Chapter 4, the vector u is as follows

uNOx
k � xNOxpk � τNOx{Tsq (5.2a)

uλ
�1

k � x�1
λ pk � τλ�1{Tsq (5.2b)

depending if NOx or λ�1 is the key variable. The sensor signal zk P R the
output, while the first order filter presented in Equation (3.3) with response
time a is used for modelling zk, giving the signal xfk P R. The state vector
xk P R2 is built as follows

xk � rθk xfksT (5.3)

F, B and H are the constant state-space matrices

F �
�

1 0
1 � a a

�
B �

�
0

1 � a

�
H � �

0 1
�

(5.4)

Noises Wk P R2 with wk P R

Wk � rwk 0sT (5.5)

and vk P R, from process and output respectively, correspond to Gaussian
processes with the following stationary constant covariance matrices

Q � covrwwT s �
�
σ2
w 0
0 0

�
(5.6a)

r � covrvvT s � σ2
v (5.6b)

The system is fully observable and linear time invariant (LTI). Note that
only a noise to the state θ is applied as far as this is the key observed variable
and the noise is directly transmitted to xf . Applying noise to xf adds an
extra degree of freedom that does not necessarily improve the identification.
The system can easily be augmented with other key variables if necessary. In
such sense, the state vector X (4.18) and the input vector U (4.19) from the
RT NOx model could be included in the vectors of the state-space model (5.1)
for a compact programming.
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The Kalman filter for drift observation. The optimal solution of the
estimation problem was addressed by Kalman [1], and has been applied by
different authors to the automotive domain (see for example [2–5]). In a
first step, the state vector is predicted considering the system input and their
expected dynamic characteristics and in a second step, this is updated by
calculating the estimation error ek and weighting it by means of the KF gain
Kk

x̂k|k�1 � Fx̂k�1 �Buk (5.7a)

ek � zk �Hx̂k|k�1 (5.7b)

x̂k � x̂k|k�1 �Kkek (5.7c)

Kalman gain Kk was solved in the Equation (2.13).

The steady-state Kalman filter. Since current application considers a
linear time invariant (LTI) and a fully observable system, the filter is steady-
state [6]. A constant Kalman gain K8

K8 � rk1 k2sT (5.8)

is then considered and calculated offline

K8pσ2
w{σ2

v , aq � lim
kÑ�8

Kk (5.9)

The use of a constant K8 leads to a sub-optimal filter neglecting the K
updating [7] but alleviating the computational burden, since all the iterative
process for obtaining K8 is performed offline. Anyway, if a more complex
sensor model (including the effect of the operating conditions on the sensor
dynamics) were employed, the Kalman gain would vary with time, and then
Kk might be approximated online by means of the steady-state solution of the
Riccati Equation (2.13):

k1 �
d
p1 � k2qσ

2
w

σ2
v

(5.10a)

k2 � s

s� 1
(5.10b)

with

s � p1 � aq
d
σ2
w{σ2

v

1 � k2
p1 � a� ak2q � a2k2 (5.11)

which is demonstrated in the Appendix 5.A.2. k2 is solved by a fixed point
iteration, and k1 by direct substitution of k2.
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Final estimation. The final estimation x̂ on a delayed basis is computed
by adding the observed bias to the input u (see (5.2))

x̂pk � τ{Tsq � uk � θ̂k (5.12)

This equation might be included in the state-space model (see Section 6.3.3);
the online estimation solving the delay problem is discussed later (see Sec-
tions 6.2.3 and 6.3.3).

5.2.2 Observer tuning

The KF is tuned with the adequate selection of the quotient σ2
w{σ2

v that
affects the model and sensor respectively, defining an optimal K8. Figure 5.3
shows the different values of the two elements of K8 for different values of
σ2
w{σ2

v . k1 is the bias gain, while k2 corrects the sensor model. Note that
the lower the sensor noise is considered (higher σ2

w{σ2
v), the faster the states’

estimations are updated (because sensor measurement is propagated to the
states). The filter behaves as a low pass filter for the sensor and a high pass
filter for the model.
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Coordinate axis is in logarithmic scale and a � 0.8.

Hence the filter tuning defines how fast the bias is cancelled, but two issues
must be considered:
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• The filter also rejects the sensor noise. Using a very high Kalman gain
implies do not filtering the measurement noise.

• If the sensor dynamics characteristics are not perfectly known, a high
value of the gain causes the system to rely on incorrect information, and
then peaks appear in the estimation especially during transients.

For illustrating the latter issue, the augmented model (5.1) is simulated
by using synthetic signals. A step transition in the objective variable, named
xr P R is produced by defining the following parameters for the sensor model

a1 � a� σa τ 1 � �στ
with an initial drift θ0 and a final drift after the step θ1. Since synthetic
signals are used, filter performance can be evaluated through the comparison
of x̂ with actual xr (which in real applications it is not usually known). The
results can be seen in Figure 5.4.

The basic cases correspond to:

1. Sensor perfectly known (a1 � a, τ 1 � τ) with an step in the bias (θ0 �
θ1). In this case, the higher K8 is, the faster the bias is corrected, as
depicted in top plots of Figure 5.4.

2. Constant bias and uncertainty on the sensor description (a1 � a, τ 1 � τ).
In this case, higher K8 values yield to rely excessively on the poorly
known sensor dynamics, creating artificial peaks, as shown in bottom
plots of Figure 5.4.

The general error case in the sensor modelling is a (non-linear) superpo-
sition of the previous cases, and it is clear that a trade-off in the selection of
K8 must be considered according to the signals uncertainties and the required
convergence speed. For the sensors considered in this work, sometimes they
exhibit a significant variation in their dynamic properties and a consistent
model cannot be derived for the whole engine operating range. This would
force a low value of K8 (and hence a slow correction of the model bias), but
several modifications are proposed in the implementation.

Even though data based methods could be used for estimating the appro-
priate noise trade-off [8], trial-and-error tuning is usual when working with
KF. A Monte Carlo based method application presented in [9] is proposed for
tuning the filter, where the uncertainties on the sensor knowledge, expected
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Figure 5.4. Top plots: Observation of the augmented model when the sensor model
is perfectly known (a1 � a, τ 1 � τ) with an step in θ. Bottom plots: Observation of
the augmented model when the sensor model is not perfectly known (a1 � a, τ 1 � τ)
and with a constant θ. The left plots show the model estimation x̂ when the sensor
performance is perfectly known and for two different σ2

w{σ
2
v quotients, i.e. two differ-

ent values for K8. The right plots show the sensor model estimation x̂f for these two
K8 values.
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working points (n and mf values) and different expected θ are used for eval-
uating the filter performance under different σ2

w{σ2
v values. These variations

are considered with statistical distributions, and the configuration which min-
imises the total error is selected.

5.3 Learning algorithms for updating look-up tables

Look-up tables are often used in automotive in order to model systems
with complex (and highly non-linear) expressions in a grid basis. The table
elements are used for interpolating in order to generate the outputs. They can
be included in a model, such as the NOx model presented in Chapter 4, or can
be used directly for storing the bias θ calculated in the previous section. The
possibility of developing RT algorithms for updating tables makes possible
to develop adaptive look-up tables. The methods based on the EKF are well-
suited but require a heavy computation burden, topic that is especially treated
in this section. In the following, the section describes the problem of updating
look-up tables and presents three methods based on the EKF.

Defining look-up tables. A look-up table Θ P R
±N
i�1 ni is defined as a

N-Dimensional mapping tΘ : RN Ñ Ru represented by a grid in N P Z�
dimensions, where each one has ni grid points. The mapping further relies
on a multivariate interpolation qp�q to calculate the function value from the
input using the grid for the interpolation variables and Θ. In automotive
systems, the multivariate interpolation schemes are often linear in each one of
the dimensions, and this is the case that will be considered here. Without loss
of generality the presentation will use 2D tables as being the most frequently
occurring dimensions, since working with other dimensions is only a matter of
reducing or increasing indexes. Then, for N=2,

Θ � rΘi,js (5.13)

where i � 1, .., nr and j � 1, .., nc (r stands for row and c for column). The
multivariate interpolation function for generating the output xΘpkq from the
input uk � ru1pkq u2pkqsT can be expressed as

xΘpkq � vec pqpukqqT vecpΘq (5.14)

vecp�q is the vector transformation and qpukq is the interpolation matrix that
both selects the elements to be interpolated and contains the weights. In the
2D case qkpukq selects the 4 (2N in the ND case) active elements Θi,j , Θi,j�1,
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Θi�1,j , Θi�1,j�1 (with i, j fulfilling u1,k P rri, ri�1s and u2,k P rcj , cj�1s) and
thus contains the following block with non-zero weights�

qpukqi,j qpukqi,j�1

qpukqi�1,j qpukqi�1,j�1

�
�
�p1 � η1,kqp1 � η2,kq p1 � η1,kqη2,k

η1,kp1 � η2,kq η1,kη2,k

�
(5.15)

where

η1,k � u1,k � ri
ri�1 � ri

, η2,k � u2,k � cj
cj�1 � cj

(5.16)

This Section analyses the computational aspects of updating look-up tables
with the KF. Two algorithms are designed based on the KF for a computa-
tionally efficient table updating: a simplified KF (SKF) which manipulates the
covariance matrix P and the associated updates efficiently, and a steady-state
approach for the KF (SSKF) which directly neglects covariance information.
Both methods are inspired by the works presented in [10–12].

Modelling for learning, drift or ageing in tables. In the setting, Θ
models a nonlinear function and the interesting aspect is to allow the model
to adapt to the system to either learn the system and/or follow the ageing of
the system. This is modelled in the standard way as a random walk process,
where the table parameters are collected in a state vector xk P Rnr�nc . The
full model can be written as follows

xk � xk�1 � wk (5.17a)

zk � vecpqpukqqT xk � vk (5.17b)

noting that no uncertainties are allowed in the interpolation variable uk. For
convenience, the non-zero elements in vecpqpukqq are denoted qok P R1�4 (o
stands for observable) and the corresponding elements in the state vector,
xok P R4 for the 2D case. Then, the following expression is obtained for the
output

zk � qok x
o
k � vk (5.18a)

qok � rp1 � η1,kqp1 � η2,kq η1,kp1 � η2,kq p1 � η1,kqη2,k η1,kη2,ks (5.18b)

where Q and R are

Q � σ2
wInr�nc (5.19a)

R � σ2
v (5.19b)

and Inr�nc P Rnrnc is the identity square matrix. If there is application
knowledge available, σ2

w might be selected individually for each table element
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building a vector Σ2
w � rσ2

w,1 ... σ
2
w,nr�ncs that contains individual variances

in such way Q � Σ2
wInr�nc . In automotive, this is useful for considering the

order of magnitude of the parameters, i.e. the absolute error will not be the
same for low emissions at lower loads than highest peaks at higher loads, and
on the other hand, if a driving pattern exists, the noise could be mapped over
the table grid. This is linked with the foreseen probability that the engine
is running at a certain operating condition, i.e. the ageing of the elements
corresponding to more frequent areas will be lower and the opposite.

5.3.1 The extended Kalman Filter, KF

The EKF (along the text and figures, the acronym KF refers to both EKF
and KF) can now be used to observe xk, when measurements zk are given. At
every iteration, the table is updated by

x̂k � x̂k�1 �Kkpzk � vecpqpukqqT x̂kq (5.20)

where Kk is calculated using Equation (2.13), Hk � vecpqpukqqT varies with
the operating point conditions. Although only the active elements xok are
updated at every k, all P elements enter in the equation, which leads to
huge calculations and big required memory resources. This makes difficult the
implementation in commercial ECUs.

There are several publications on computational aspects of Kalman filters.
Some authors have studied the filter optimization when different nonlinear
functions are handled as for instance [13–15]; where the latter makes an in-
teresting study on the total number of operations required for the updating
phase. Chandrasekar et al. [16] present an interesting methodology when the
system order is extremely large by using the finite-horizon optimization tech-
nique for obtaining reduced-order systems. But the key observation here is
that the look-up table estimation has structural properties that can be ex-
ploited to reduce the computational and memory requirements significantly in
a simple way, as suggested by Vogt et al. [11].

To understand the problem, the covariance matrix P in the KF is stud-
ied. For instance, a 2D look-up table with a size nrnc needs system F and
covariance matrices P of pnrncq � pnrncq. However, only the active elements
are influenced during the update and by defining a local observable system
(which corresponds to the active elements), one receives a system which is
4 � 4 against pnrncq � pnrncq. That means that the non-active elements do
not affect the updating until they become active (zero values for the K related
elements). Furthermore, P is a symmetrical and positive-semidefinite matrix,
which allows further simplifications in the KF calculations.
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The local observable system. The Local Observable System is defined
and analysed and a computationally efficient approximation for the KF is
described. Following with the 2D look-up table application, at every iteration
a maximum number of 4 elements can be updated and then, if no dynamics
are considered, the general nrnc system (5.17) can be simplified to

xok � I4�4x
o
k�1 � wk (5.21a)

zk � qokx
o
k � vk (5.21b)

where I4 P R4�4 is the unitary matrix and xok P R4 is the state-vector that
stores the active states at every k. The simplest 2D map is a table of only
4 elements, and where the one existing area is always active, i.e. the system
(5.21) is exactly (5.17). For the general case, (5.21) must be rewritten at every
k as elements and matrices change.

About the system observability. The system (5.17) is not fully observ-
able in one iteration. But the local observability is ensured if the parameters or
states in the local system (5.21) converge with a given data set. As the system
is not LTI, the ordinary observability rank condition [17] is not directly appli-
cable. qok depends on the input data, and it is evident that if a enough level of
excitation is given, then the system could be observed, whatever the method
chosen. This minimum level of excitation could be proved if 4 elements have
been excited. A sufficient observability matrix for local observability may be
built with the first 4 independent observations not necessarily consecutive in
instants i1, i2, i3 and i4 of the elements of the involved area:

O � �
qoi1 qoi2 qoi3 qoi4

�T
(5.22)

and if the rank of this matrix is 4, then the system (5.21) might be observable.
But here the problem is linked with the noise tuning and indeed full rank O
does not lead to system full convergence (full observability does not lead to full
convergence as the method and the model structure affect). The most of the
elements are also included in other neighbour areas and because of this, the
minimum condition of observability of a given state depends on the number
of independent measurements that affects every state. The condition stated
in [10] gives a general condition.

5.3.2 The steady-state KF approach, SSKF

If the problem is considered stationary (the same input is repeated once
and again), then qok � qo and the filter is steady-state. In addition to this and



140 5. Adaptive observers for the dynamic estimation of engine variables

given a noise ratio σ2
v{σ2

w, Kk in (2.13) converges after a certain number of
iterations as expressed in (5.9). That occurs although P does not converge and
can be ill conditioned. Then, the stationary equivalent filter is obtained and
an analytical expression is derived for the local observable system, resulting a
Kalman gain Kss P R4

KSS �

�
���

kipη1, σ
2
v{σ2

wq � kipη2, σ
2
v{σ2

wq
kipη1, σ

2
v{σ2

wq � kip1 � η2, σ
2
v{σ2

wq
kip1 � η1, σ

2
v{σ2

wq � kipη2, σ
2
v{σ2

wq
kip1 � η1, σ

2
v{σ2

wq � kip1 � η2, σ
2
v{σ2

wq

�
��� (5.23)

where ki is computed as follows

kipη, σ2
v{σ2

wq �
0.5p1 � ηqp1 � sq

0.5p1 � sqp1 � 2η � 2η2q � σ2
v{σ2

w

(5.24a)

s �
d

1 � 4

p1 � 2η � 2η2q
σ2
v

σ2
w

(5.24b)

These expressions are solved in Appendix 5.A.2.

The user can evaluate (5.23) for the 2D case for a given σ2
v{σ2

w or can sim-
ulate the functions off-line for mapping the values and reduce the computing
time, which is the option suggested by the authors. Figure 5.5 shows the val-
ues of the KSS elements for two different σ2

v{σ2
w quotients. The symmetry of

the functions is clear when comparing the elements of KSS . Both the noise
tuning and the relative position of the operating points affect to the estima-
tion. On one hand, as the operating point approaches to one grid node, the
gain is closer to the maximum (it is not linear) and the opposite. On the other
hand, a higher σ2

v{σ2
w leads to a higher correction. Non-active elements have

a null correction, i.e. their related gain is zero.

This approach allows to map KSS and this only depends on the inputs
(η1 and η2 from (5.16)) and the noise trade-off σ2

v{σ2
w. Nevertheless, as the

parameters ageing is not considered nor the estimation error computed, the
algorithm is quite fast and light but the robustness must be assessed in the
applications. The pseudo-code of the algorithms is in the Appendix 5.B. The
next subsection presents the SKF algorithm which tracks the estimation error
in an efficient way.

5.3.3 The simplified Kalman filter, SKF

Despite that only the associated active elements affect Kk, all Pk elements
are predicted and updated at every k. Pk can be reorganised in such way that
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variances related with observable Po
k and unobservable Pu

k elements are split.

Pk �

�
���

�
Pu

k �
�

� � � Po
k

�
��� (5.25)

Kk, qk and Q can also be split in the same way. Iterating one step ahead
(2.13c) is written

Pk�1 �

�
��� I 0

0 I4�4 �Ko
kq
o
k

�
���
�
���

�
Pu

k �Qu �
�

� � � Po
k �Qo

�
���

�

�
���

�
Pu

k �Qu �
�

� � � pI4 �Ko
kq
o
kqpPo

k �Qoq

�
���

(5.26)
where all observable sub-matrices are 4x4, while the unobservable ones are
pnrnc�4q�pnrnc�4q. (5.26) shows how the diagonal elements of Pu

k are only
affected by adding the diagonal matrix Qu. However, both diagonal and non-
diagonal elements of Po

k are affected as in a 4x4 KF. The crossed relationships
between the observable and the unobservable system, shown as dots in the
matrix, are kept constant. This allows simplifying the complete system to
the 4x4 active state-space system, whose resolution is highly computationally
efficient.

The current work develops an approximation of the KF that requires both
less memory and computations in the iterations and is named SKF. The SKF
builds and solves the local observable system (5.21) at every k. Some simpli-
fications are assumed: for the non-active elements, whose covariance matrix
is Pu, non-diagonal elements are neglected building a vector P u � diagpPuq.
This is justified for two reasons. First, when the system is running, then leaves
one area and later returns to it, related variances reflect the time that the sys-
tem has been out of this area. This is a desired property since the ageing is
captured by the variance increase due to Qu, which indeed for this application
it is defined as a diagonal matrix. Older crossed correlations are maintained
over the time and whether or not they are valid is not sure. Second, the simu-
lation results show that the full EKF and the SKF have similar performances
when running on synthetic data and real data from the engine application.
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Then, at every iteration, the local system (5.21) is solved with the only addi-
tional operation of P uk � Qu (converted to a vector calculation). The SKF is
a suboptimal filter but with a similar behaviour than KF, as demonstrated in
Sections 5.3.4.

The pseudo-code for the SKF implementation is in Algorithm 5.B. Note
that the code is to show the algorithm where some variables are not strictly
needed in the computer programming, e.g. P uk always that Pk exists, but
these steps are kept for the sake of clarity. The noise variance σ2

w is selected
equal and constant for all elements, allowing to pre-define a diagonal matrix
Qo � σ2

wI4�4 for the active system and a vector Qu � σ2
wdiag pInr�nc�4q for

the non-active one.

In the next, the memory allocation and computational complexity of the
three methods, full EKF (here denoted KF), the SKF as well as the SSKF are
described.

Analysis of the memory and computations. A computation time study
is made programming code in the Matlab software on a laptop computer equip-
ping Intel Core 2DUO T9300 2.5 GHz with Windows VISTA 64 bits. Figure
5.6 shows the relative computation time used by the three methods for updat-
ing 2D look-up tables of different sizes. Only square n � n tables have been
considered with n ranging from 2 to 21, since it is the total number of elements
in vecpT q that influences memory allocation and computations. The Y-axis
shows the relative computation time with respect to the averaged time that
the SSKF takes for performing 1000 iterations, i.e., a relative time of 1 means
that the method needs exactly the same time than the SSKF. The SKF needs
around 1.15 times the SSKF calculation time, whatever the number of param-
eters. This slight difference is explained by the manipulation of variances and
the need of redefining the active vector and matrices Po, and xo when the
active area changes (see lines 4 and 5 of the Algorithm 2 and compare with
Algorithm 1, both included in Appendix 5.B). However, the required time for
the KF rapidly grows when the number of parameters increases, i.e. for 256
parameters (16 � 16), the KF needs around 7.8 times the one for the SSKF.
An exponential function may be fitted by the least squares method to the KF
time as function of the number of parameters np, whose result is the relative
time that the KF takes with respect to the one of the SSKF.

Table 5.1 summarises the required memory resources and computation
times for the algorithms. The SKF permits to reduce the requirements in
terms of memory resources and the general system pnrncq � pnrncq is reduced
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Figure 5.6. Relative computation time required for the methods for updating 2D
look-up tables. Times are normalised with the averaged time that the SSKF needs for
computing 1000 iterations of the filter.

to a simple 4x4. These results show the benefits when using the SSKF and
the SKF compared to the full KF.

Table 5.1. Memory storage and computational burden comparison between the
Kalman filter KF, the simplified Kalman filter SKF and the steady-state approach
SSKF.

P K Rel. Time
KF pnrncq � pnrncq pnr � ncq � 1 (by (2.13)) 0.82expp0.0087npq

SKF 4 � 4 + pnr � ncq � 1 4 � 1 (by (2.13)) 1.15
SSKF 4 � 4 4x1 (by (5.23)) 1

5.3.4 Simulation of the updating algorithms

The convergence and robustness of the approximations need also to be
studied and this is first performed by simulations. The objective of this section
is comparing the abilities and performance of the algorithms against different
synthetic cases where no dynamics are accounted (the real system and the
model are statics; Section 5.3.5 later discusses how to consider the dynamics).
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For automotive applications, engine speed n and fuel mass injection quan-
titymf usually define the engine operating point and the look-up table schedul-
ing points selected in the simulation are inspired by these quantities. Hence
r represents a grid for u1pkq (the speed in rpm) and c for u2pkq (the injected
fuel mass in mg/str)

r � r500 1500 2500 3500s (5.27a)

c � r0 20 40 60s (5.27b)

and the true map (the objective map to update) Θr is defined with the surface

Θr �

�
���

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

�
��� (5.28)

where xr � vecpΘrq is the expanded state vector objective of the estimation
process. No initial process knowledge is considered: x0, xo0, P0 are initialised
with zeros. σ2

v{σ2
w � 1 for all cases, unless it were pointed.

System measurements are given and the algorithms performance is evalu-
ated. As synthetic signals are used, this allows defining error metrics. Simu-
lations include two worst-cases and a favourable one:

• Input with random variation: a random shot of values following an uni-
form probability distribution. This is an ideal situation for learning as
all areas are excited and the parameters ageing is low (the excitation is
high). Measurements are perfect and constant, thus zk � 1@k.

• Linear variation: varying u2 keeping constant u1. This variation tests a
degenerated case where observability is critical along the u1-dimension.
Measurements are perfect and constant: zk � 1@k.

• Measurement noise rejection: Studying the effects of noise transmission
between output and observation when the measurement vector of the
previous case is noisy.

5.3.4.1 Simulation 1: Input with random variation

The sequence tuku1000
k�1 following an uniform distribution over the grid de-

fined in (5.27) is used for exciting the system. A complete identification is
possible as the grid is completely covered. This situation is not so far of the
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Figure 5.7. Random variation of inputs u1 and u2 shown with small dots and table
grid with thick dots.

reality for diesel engines, e.g. urban cycles with a lot of speeding/braking
actions cause quasi-random variations in partial-low load areas of the engine
map. The selected grid and covered points are shown in Figure 5.7.

In this case, the variance information is not as relevant as in other cases,
because of the stochastic nature of inputs. The mean value of all states is
plotted at each time step in Figure 5.8. All three methods perform well and
the rate of convergence can be tuned varying σ2

v and σ2
w.

A quick view on the effects of the hypothesis for the SKF is shown for one
element x6 in top plot of Figure 5.9, which shows the variance P6 of x6 for
the KF and the SKF (not applicable for the SSKF). This value indicates the
observability of x6: when it increases monotonically, x6 is not observable. In
some parts, an offset between P6 for the KF and the SKF appears because of
the neglected covariances in the SKF, but in the end, this offset is absorbed
and the two methods behave similar. The bottom plot of Figure 5.9 shows
x6 evolution for the three methods. x6 is updated when the element becomes
observable. Note that x6 is already active in the first iteration and KSS

1 ,
which represents the converged value of the equivalent LTI system, is non-
null. Then, the SSKF updates x6 in k � 1 while K1 for the KF and the SKF
is null. Anyway, this is not an advantage of this method: the KF and the SKF
can behave similar if P0 is non-null, but here for the simulations P0 � r0s.
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When there exists no previous knowledge of the system to be learnt, it should
advisable to initialize P0 with a certain value for speeding up the updating
during the first iterations.

5.3.4.2 Simulation 2: Input with a linear variation

Θr is identified with a sequence tuku200
k�1 where u1 varies monotonically

from 0 to 60 (from k � 0 to 100) and coming back from 60 to 0 (from k � 101 to
200), while u1 � 2000@k. This condition is highly restrictive as the excitation
level is not high: at each k only small variations of input u2 are applied and
due to this, the full convergence condition is not fulfilled in the first running of
one area, and the interactions between areas and the way back are necessary
to ensure the convergence of both the KF and the SKF. Three matrix areas
are excited (see (5.29)); area 1: elements 5,6,9,10; area 2: 6,7,10,11; area
3: 7,8,11,12. Moreover, due to the inputs nature, the row 5-8 evolution is
equivalent to that of 9-12.

Θk �

�
���

� � � �
x5,k x6,k x7,k x8,k

x9,k x10,k x11,k x12,k

� � � �

�
��� (5.29)

Figure 5.10 shows the evolution of the 4 states x5 to x8. First thing to
note is the similar performance of the KF and the SKF and the instabilities of
the SSKF. For instance, x5 is in the area 1, and during the first run it is not
capable of converging, but in one complete round the KF and SKF methods
converge, and the SSKF seems to do it, at least in k � 200. The other states
have slightly different performances, because the first area has been already
been covered; e.g. x6 is closer to the convergence as being a member of area
1 and area 2, but until the way round it does not get the full convergence for
the KF and SKF methods. Similar behaviours are observed for x7 with these
methods. In addition, x8, as member of the area 3, has the advantage that
areas 1 and 2 have been covered first, and the information is already available
for getting the full convergence for the KF and SKF in k � 100. The full
observability (in the sense of convergence) of these 8 elements is reached only
when O in (5.22) copes with the three areas when using the KF and SKF.
Nevertheless, the SSKF estimation does not converge for x6, x7 and x8 due to
no state error information is tracked, and the system and convergence becomes
more dependent on data.
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Figure 5.10. States evolution for a monotonically varied inputs sequence. Black
thick line is KF, gray line is SKF, thin black is SSKF and dashed line shows when
the element is observable (1 is active; 0 is not active).

In order to understand how KF and SKF behave, it is informative to
also study the variance and covariance evolution (remember that this is not
present for the SSKF). Figure 5.11 shows the variance evolution for row el-
ements, while Figure 5.12 shows the evolution of a few selected covariances
between states (corresponding to non-diagonal elements of P). As for the
random case in Figure 5.9, variance evolution for the KF and SKF is similar,
although some deviation exists in elements 6 and 7. This is explained for co-
variances or non diagonal Pij @i � j elements that the SKF only accounted
for active areas. This is shown in Figure 5.12 where some crossed covariances
are plotted. When the pair of elements is not active, covariances of these are
not tracked, equivalent to reset them to zero in the global P. This is the par-
ticular difference with the KF, which always tracks the covariance, although
the area would not be active, increasing the computing requirements without
a justified improvement in the estimation. However, when an area is active,
the SKF covariance evolves as the KF and in the limit is equivalent to the
KF. The difference is larger initially but after the observations have converged
the difference is negligible, as shown in Figure 5.10. This pattern may slightly
be modified linking the covariance values to elements pairs and not to the
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involved areas (excepting boundaries, all pair of elements are shared in two
different areas), although final results are similar.
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Figure 5.11. Pii analysis for a monotonically varied inputs sequence. Values are
normalised by 100. Variances of elements 9-12 are equal to those of 5-9 because of
symmetric properties. Black line is KF, gray line is SKF and dashed line shows when
the element is active (1 active; 0 is not active).

5.3.4.3 Simulation 3: Measurement noise rejection

An uniform distributed noise with zero mean and maximum amplitude of
0.2 is applied to the measurement given in simulation 2; zk is shown in Figure
5.13. A robust method must filter this noise and converges to the true values.

The resulting estimations are shown in Figure 5.14, and the evolutions are
quite similar to the ones of Figure 5.10 although with a slight noise transmis-
sion. The KF and SKF perform well, being able to also filter the noise, but the
SSKF is not capable of converging again having a similar response as in the
simulation 2. Variance and covariances are exactly the same of Figures 5.11
and 5.12 as the state-space system and the inputs sequence does not change.
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Figure 5.12. Pij analysis for a monotonically varied inputs sequence. Values are
normalised by 100. Black line is KF, gray line is SKF and dashed line shows when
the element is active (1 active; 0 is not active).
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Figure 5.13. Measurement zk plot with the addition of a uniform distributed noise
with zero mean and maximum amplitude of 0.2.
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Figure 5.14. States evolution for noisy measurements. Black thick line is KF, gray
line is SKF, thin black is SSKF and dashed line shows when the element is active (1
is active; 0 is not active).

5.3.4.4 Conclusions from the simulations

The SKF method is demonstrated to have similar accuracy as the KF,
at least for the numerical cases proved in this section. Furthermore, the KF
and SKF solutions converge for all cases, including the simulations 2 and 3,
which are specifically restrictive because of the low level of excitation. The
KF, as shown in Figure 5.6 and table 5.1, is computationally heavy. The
SSKF is the fastest and lightest method as the variance is not tracked and
KSS formulation is derived analytically. The SKF only needs around 1.15
times the SSKF time for calculation, and the required memory resources are
similar, except for the track of the variances. The SSKF behaves well in
situations where the variance tracking is not critical, e.g. the simulation 1,
but it is less robust when the data is structured and the level of excitation is
low, e.g. simulations 2 and 3. The KF and SKF are also capable of filtering the
noise, a minimum condition for a correct updating, and SSKF also filters the
noise, but its stability depends on the data. In comparison, the SKF method,
derived from the KF, is demonstrated to be an efficient and accurate method
for updating look-up tables, at least for the presented simulation conditions.
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5.3.5 The dynamic equations for learning

The learning algorithms presented in the previous subsections have consid-
ered a quasi-static model, i.e. the model outputs are directly calculated by a
table interpolation. In this subsection, the state-space model (5.17) is slightly
modified for coping with sensor dynamics and inputs u are treated as well.

Usual inputs for the tables in diesel engines are the signals of the ECU:
speed n and injection mf , and as far as they are fast signals, no special treat-
ment is necessary in principle, while the delays are still needed to phase the
system correctly with the NOx sensor

u1,k � z�τ{Ts npkq (5.30a)

u2,k � z�τ{Ts mf pkq (5.30b)

where τ represents the averaged sensor delay obtained with the procedures
shown in Chapter 3 (Ts is the sampling period). This is preferred to apply the
delay in the state-space model for avoiding to increase the dimensions of the
system.

In this basis, the table output xΘpkq P R is calculated by means of inter-
polating the adaptive map Θk

xΘpk � τ{Tsq � Θkpu1,k, u2,kq (5.31)

defining a quasi-static representation of the table output where k defines the
current time.

Sensor dynamics are considered as in Equation (3.3) for computing xΘf pkq P
R

xΘf pkq � 1 � a

1 � az�1
xΘpk � τ{Tsq (5.32)

and the global system (5.17) must be augmented with one extra-dimension
considering xΘf pkq

xwk �

�
��� Inrnc�nrnc

p1 � aqqk a

�
���xwk�1 � wk (5.33a)

zwk � Hwxwk � vk (5.33b)

with

xwk � rx xΘf sTk (5.34)
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Hw � r0 � � � 1s (5.35)

being xwk P Rnrnc�1 with xk P Rnrnc as in (5.17), and zwk P R. The Index w
stands for wide.

The local observable system (5.21) is now

xowk � F owk xowk�1 � wk (5.36a)

zowk � Howxowk � vk (5.36b)

F owk �

�
�����

0
I4�4 0

0
0

p1 � aqqok a

�
����� (5.37)

How � r0 0 0 0 1s (5.38)

xowk � rxo1 xo2 xo3 xo4 xΘf sTk (5.39)

where How is constant, because qok and the filtering parameter a are included
now in the time varying process matrix Fow

k . Qow process noise matrix is also
augmented, and includes an extra-noise term σ2

f for the new state xΘf

Qow �

�
��� Q 0

0 σ2
f

�
��� (5.40)

Even though the new local system has one more dimension (5 � 5), the
SKF hypotheses are still applicable as proved in Appendix 5.C. Chapter 6
will prove the algorithms under real conditions in a diesel engine considering
dynamics (the sensor output will be used there as reference) and completing
the study on the methods capabilities.

5.4 Conclusions

This Chapter has presented different observers based on the KF in order
to estimate engine variables and update look-up tables.

First, a drift correction algorithm is proposed by augmenting a state-space
model with an extra-state for tracking the drift which exists between a fast
biased model and a delayed and filtered but steady-state accurate sensor signal.
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The data fusion is done through a steady-state KF, which may be computed
beforehand. The algorithm allows to estimate online the actual considered
signal.

Second, the attention turns out to the design of adaptive algorithms for
look-up tables fitting and updating. Kalman filtering is used for updating
because of its capability for tracking the system and parameters ageing. Com-
putational issues involved when of updating look-up tables online with the KF
based methods are then addressed. Two novel methods are designed for the
current work:

• A steady-state KF (SSKF) approach using precalculated membership
functions based on an off-line solution to the KF main equation. Table
elements are updated in a fast way and the computational burden is
low. The method relies on neglecting the covariance information, given
by the standard KF, and then setting out the stationary problem where
the inputs can be considered as constants in order to calculate the steady-
state gain.

• A simplified KF (SKF) with similar accuracy as the standard KF, but
that requires a much lower memory resources and calculation time. The
local observable system serves as inspiration for analysing the variance
matrix performance and is used for comparison. The SKF is based on
the KF but neglects covariances of locally unobservable states.

The only requirement for the full table adaptation when using online learn-
ing algorithms is running the engine in all the matrix areas. The stability and
convergence is assessed by means of simulating the algorithms. The mem-
ory saving and computational reduction that SKF offer, as well as the robust
performance, make this algorithms suitable for being implemented on com-
mercial ECUs. The SSKF has also an interesting performance and a very low
computational burden, although the stability depends on the data quality.

In the following Chapter, these algorithms are combined and different re-
sults are presented in order to estimate NOx and λ�1 in diesel engines.

5.A Analytical solutions to the Riccati equations

The drift correction algorithm (Section 5.2.1) and the SSKF approach
(Section 5.3.2) for updating look-up tables constitute steady-state versions
of the KF. This special property drives to calculate a steady-state Kalman



156 5. Adaptive observers for the dynamic estimation of engine variables

gain, allowing to precompute it and saving online resources. The Riccati iter-
ative matrix system (2.13) becomes a matrix algebraic system and analytical
expressions may be solved.

5.A.1 Drift correction model

The dynamic Riccati equation (2.13) is steady-state as K and P converge
after a certain number of iterations [7], which depend on the initial values.
Then, it is possible to derive an analytical solution as proved by Kalman and
Bucy [6]. Some authors have given solutions to particular problems, such
as [18–21] or indeed computationally effective solutions as [22]. Here, an ana-
lytical solution to the Riccati matrix algebraic system (2.13) considering the
model (5.1) is derived.

Pk�1 matrix is

Pk�1 �
�
p1 p2

p3 p4

�
(5.41)

Operating (2.13a), Pk|k�1 results

Pk|k�1 �
�

p1 � σ2
w p1 � aqp1 � ap2

p1 � aqp1 � ap3 q

�
(5.42)

where

q � p1 � aqpp1 � aqp1 � ap2q � ap1 � aqp3 � a2p4 (5.43)

Calculating Kk from (2.13b)

Kk �
�
k1

k2

�
�
�

p1�aqp1�ap2

q�σ2
v

q
q�σ2

v

�
(5.44)

From (2.13c)

Pk �
�
p1 � σ2

w � pp1�aqp1�ap2qpp1�aqp1�ap3q
q�σ2

v
pp1 � aqp1 � ap2q σ2

v
q�σ2

v

pp1 � aqp1 � ap2q σ2
v

q�σ2
v

qσ2
v

q�σ2
v

�

(5.45)

The Kalman filter is steady-state and observable and sequences tPkuk�8k�1

and tKkuk�8k�1 are convergent. The system solution can be computed through
solving the system that results from setting (5.41) and (5.45) as equal.
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p1 �p1 � σ2
w �

pp1 � aqp1 � ap2qpp1 � aqp1 � ap3q
q � σ2

v

(5.46a)

p2 �pp1 � aqp1 � ap2q σ2
v

q � σ2
v

(5.46b)

p3 �pp1 � aqp1 � ap3q σ2
v

q � σ2
v

(5.46c)

p4 � qσ2
v

q � σ2
v

(5.46d)

k1 �p1 � aqp1 � ap2

q � σ2
v

(5.46e)

k2 � q

q � σ2
v

(5.46f)

From (5.46b) and (5.46c), p2 � p3, which was already known as P is
symmetric, and system (5.46a) really has 5 equations with 5 unknowns.

From (5.46a) and (5.46e)

σ2
w � k2

1pq � σ2
vq (5.47)

and from (5.46f)

q � σ2
v �

σ2
v

1 � k2
(5.48)

and combining these two expressions,

k1 � σw
σv

a
p1 � k2q (5.49)

which relates k1 to k2.

q parameter (5.43) depends on P elements and must be re-arranged for
the correct problem solution. Then, from the symmetry of P (p2 � p3), and
considering (5.46b) and (5.46e)

p2 � p3 � σwσv
a

1 � k2 (5.50)

From (5.46d) and (5.46f)
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p4 � k2σ
2
v (5.51)

and finally from (5.46b), (5.48) and (5.50)

p1 � aqp1 � ap2 � p2

1 � k2
� σwσv

?
1 � k2

1 � k2
(5.52)

Substituting (5.50), (5.51) and (5.52) in (5.43)

q � p1 � aq p1 � a� ak2q
d

σ2
wσ

2
v

1 � k2
� a2k2σ

2
v (5.53)

For convenience, (5.53) is set as function of the noise covariance trade-off
σ2
w{σ2

v

q �
�
p1 � aq p1 � a� ak2q

b
σ2
w{σ

2
v

1�k2
� a2k2



σ2
v � sσ2

v (5.54)

defining parameter s � fpσ2
w{σ2

vq

s � p1 � aq
d
σ2
w{σ2

v

1 � k2
p1 � a� ak2q � a2k2 (5.55)

Considering (5.46f), (5.49) with (5.54), K can be computed

k1 �
d
p1 � k2qσ

2
w

σ2
v

(5.56a)

k2 � s

s� 1
(5.56b)

The set (5.56) represents an analytical solution of the steady-state Kalman
filter that may be solved iteratively. Moreover, (5.56) shows that K depends
exclusively on the noise covariance trade-off σ2

w{σ2
v given a certain system

(5.1).

P is solved from (5.46a)-(5.46d) and (5.56)



5.A. Analytical solutions to the Riccati equations 159

p1 �
d

σ2
wσ

2
v

1 � k2

�
1 � ak2

1 � a



(5.57a)

p2 �p3 �
a
σ2
wp1 � k2q (5.57b)

p4 �k2σ
2
v (5.57c)

although is not really necessary for the algorithm implementation.
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Figure 5.15. Kalman gain K and covariance matrix P calculation for two noise
sets with a � 0.8. Solid lines corresponds to the standard Kalman formulation by
the iterative Riccati equation (2.13), while dashed lines correspond to the proposed
analytical formulation ( (5.56) for K and (5.57) for P).

Numerical example. A numerical example using (5.56), (5.57) for calculat-
ing P and K of a steady-state Kalman filter is presented. The result must be
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equal to calculate the converged Pk and Kk from (2.13) when the simulation
time is high enough:

K � lim
kÑ�8

Kk (5.58a)

P � lim
kÑ�8

Pk (5.58b)

Parameter a is 0.8 and in all cases σ2
v � 1, while two different values are

applied to σ2
w: σ2

w1 � 1 and σ2
w2 � 2.

Figure 5.15 shows the results applying the standard Kalman formulation
and the ones calculated by the analytical formulation. Note that x axis shows
the number of iterations (k), which only makes sense for the standard Kalman
formulation as far as the proposed solution is calculated beforehand. Final val-
ues after convergence are exactly the same proving the validity of the proposed
formulation.

5.A.2 The SSKF for updating look-up tables

Given the system (5.17) for updating look-up tables and a filter tuning
σ2
v{σ2

w, the value of P does not converge under normal operation, nor does
Kk. This is because Hk matrix is not constant and depends on the engine
operating conditions. But if the operating point condition is constant, system
runs in a constant point (Hk � H) with a certain σ2

v{σ2
w, then it is possible to

derive a constant KSS , although P does not really converge. This is observed
from simulations and then it can be set out for a 2D grid

KSSpη1, η2, σ
2
v{σ2

wq � lim
kÑ�8

Kk (5.59)

Taking into account the symmetric property of the problem, the solution
is set out for a 1D table Θ, whose elements are expanded in a state vector and
whose 1D local observable has a state vector

xok � rΘi Θi�1sTk P R2

where i denotes the position of the first active element in Θ. The state-space
equations of the local observable system are

xok � I2�2x
o
k�1 � wk (5.60a)

zk � qokx
o
k � vk (5.60b)
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with
qok � r1 � η ηs (5.61)

and considering r as the vector that defines the 1D grid

ηpkq � uk � ri
ri�1 � ri

(5.62)

where uk P R is now the scheduling point considered as input to the table.

Noise covariances are

Q �
�
σ2
w

σ2
w

�
; R � σ2

v (5.63)
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Figure 5.16. Membership functions for the Kalman gain correction for the 1D case
for σ2
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2
w � 0 (black), σ2
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2
w � 0.01 (medium grey) and σ2

v{σ
2
w � 0.1 (light grey).

By imposing the condition 5.59, the value of Kalman gain ki can be derived
analytically with a certain effort

kipη, σ2
v{σ2

wq �
0.5p1 � ηqp1 � sq

0.5p1 � sqp1 � 2η � 2η2q � σ2
v{σ2

w

(5.64)

where

s �
d

1 � 4

p1 � 2η � 2η2q
σ2
v

σ2
w

(5.65)
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showing explicitly the dependance of ki with the noise trade-off σ2
v{σ2

w and
the interpolation function defined by η. The result is used for calculating gain
correction for the node i, when the observable region is between i and i� 1 in
the 1D case. By using symmetric properties

ki�1 � kip1 � η, σ2
v{σ2

wq (5.66)

The function is plotted in Figure 5.16. For the 2D case, KSS (see (5.59))
can be solved by considering at the same time the interpolation properties,
and then the gain for a local observable system of a given 2D table with
interpolation weightings η1 and η2 defined in (5.16) has the solution

KSS �

�
���

kipη1, σ
2
v{σ2

wq � kipη2, σ
2
v{σ2

wq
kipη1, σ

2
v{σ2

wq � kip1 � η2, σ
2
v{σ2

wq
kip1 � η1, σ

2
v{σ2

wq � kipη2, σ
2
v{σ2

wq
kip1 � η1, σ

2
v{σ2

wq � kip1 � η2, σ
2
v{σ2

wq

�
��� (5.67)

The obtained solution can be easily generalised for the nD case by solving

n¹
i�1

kipξi, σ2
v{σ2

wq (5.68)

where ξ � ηi or ξ � 1 � ηi depending on the considered node.
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5.B Pseudo-codes of the SSKF and SKF methods

Algorithm 1: Pseudo-code of the SSKF method

input : x̂k�1, uk
output: x̂k

1 while Algorithm is running do
2 if Active area changes then
3 xok�1 is stored in the correct positions of xk�1

4 Redefinition of new xok�1 ;

5 end
6 Computation of η1,k and η2,k as in (5.16)
7 Definition of qkpη1,k, η2,kq as in (5.15)
8 Computing KSS as in (5.23)
9 xok � xok�1 �KSS

k pzk � qok x
o
k�1q

10 end
11 Updating of xk considering xok

Algorithm 2: Pseudo-code of the SKF method

input : x̂k�1, uk, Pk�1, R, Qo, Qu

output: x̂k, Pk

1 while Algorithm is running do
2 if Active area changes then
3 xok�1 is stored in the correct positions of xk�1

4 diagpPo
k�1q and P uk�1 are stored in a global vector Pk�1

5 Redefinition of Po
k�1, P uk�1, xok�1

6 end
7 Computation of η1,k and η2,k as in (5.16)
8 Definition of qokpη1,k, η2,kq as in (5.15)
9 Po

k|k�1 � Po
k�1 �Qo

10 Ko
k � Po

k|k�1qoT
k

�
qo
kPo

k|k�1qoT
k �R

	�1

11 xok � xok�1 �Ko
k pzk � qok x

o
k�1q

12 Po
k|k�1 � pI4�4 �Ko

kq
o
kqpPo

k �Qoq
13 P uk � P uk�1 �Qu

14 end
15 Updating of xk and Pk considering xok, diagpPo

kq and P uk
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5.C The dynamic system for the SKF method

The system (5.36) is the local dynamic observable system. For this system,
the split in (5.25) is still valid. The only modification is that the new observable
part Pwo

k has n extra dimensions corresponding to the n:th order discrete filter.
In the paper, a first order discrete filter is used, and then Pwo

k is 5 � 5.

Pw
k �

�
��� Pu

k

Pwo
k

�
��� (5.69)

Pwo
k �

�
��� Po

k Pndok
T

Pndok P dok

�
��� (5.70)

where P dok is the scalar variance coupled to sensor dynamics and Pndok is the
vector 1 � 4 with the covariances between sensor estimation and observable
parameters. Pw

k is a positive-semidefinite matrix, so is Pwo
k . Kk is reordered

to contain the unobservable part Ku
k � 0 and the observable part Ko

k , and the
latter in the parameters related Kθ

k and dynamics related part Ks
k

Kw
k �

�
�����������

Ku
k

Ko
k

�
�����������
�

�
�������������

0

Kθ
k

Ks
k

�
�������������

(5.71)

and (5.26) is now

Pk�1 �

�
���

I 0

0 I5x5 �Ko
kH

w

�
���

�
���

�
Pu

k �Qu �
�

� � � Fw
k Pwo

k pFw
k q

T �Qwo

�
���

�

�
���

�
Pu

k �Qu �
�

� � � pI5�5 �Ko
kH

wqpFw
k Pwo

k pFw
k q

T �Qwoq

�
���

(5.72)
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which shows that the SKF hypotheses are also applicable for the widespread
dynamic system. Pk is a positive-semidefinite matrix so are Pw

k and Pwo
k .
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Adaptive estimation of NOx and λ�1
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6.1 Introduction

This Chapter uses the adaptive algorithms developed in Chapter 5 in order
to estimate λ�1 and NOx, when a NOx sensor is available. The use of adaptive
algorithms also allows to tune model parameters with and without an initial
knowledge [1], i.e. the algorithms can be used for online model fitting. For
that purpose, three different algorithms are designed and the filter gains are
calculated on the basis of the methods presented in Chapter 5:
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• Algorithm A: The drift correction algorithm corrects the bias in the
λ�1 and NOx models. The bias is tracked online but models are not
re-calibrated.

• Algorithm B: An adaptive table is used for learning and prediction with-
out requiring the RT NOx model. This approach is valid for slow cycles,
such as the NEDC. The table is updated by using the SKF or the SSKF
methods, as advisable.

• Algorithm C: Model is adapted and re-tuned online by tracking the nom-
inal NOx. With this strategy, the nominal NOx map can be fitted by
using the dynamic tests, indeed avoiding the steady-state campaign usu-
ally needed for its calibration. The state-space system (5.17) built for
updating look-up tables should be slightly modified in order to consider
the model structure.

Figure 6.1 schematises the three options, particularising for the NOx esti-
mation. The objective is on one hand, obtaining a fast and reliable estimation
of the considered variable, i.e. without sensor filtering and delay and, on the
other hand, introducing adaptive capabilities to the models.

In the following, these algorithms are selected for the fast estimation of
λ�1 and NOx.

6.2 Fast estimation of λ�1

The estimation of λ�1 is the core of this section, where a complete method-
ology based on the drift correction model developed in Section 5.2.1 is pro-
posed. The original problem is modified in order to consider the model and
sensor uncertainties as well as the actual variation of the bias θλ�1 with respect
to the operating point and time as remarked in (4.3). In addition, the variable
λ�1 is a relevant input for the NOx model, and its observation by KF methods
can be integrated in an adaptive NOx model. First, the problem set-up and
the methodology are explained.

6.2.1 Problem set-up and methodology

The goal is providing an estimation x̂λ�1 of the actual value of λ�1 com-
bining the information provided by the sensor zλ�1 and the model xλ�1 . The
basic idea is keeping the model dynamics while correcting the model bias (and
its drift) profiting the sensor steady performance.
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Figure 6.1. From top to bottom, algorithms 1 to 3: drift correction model, adaptive
table for NOx estimation and adaptive NOx model.
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Figure 6.2 shows an schematic representation of the proposed structure.
All calculations and equations are set-up in discrete form where Ts represents
the sampling period, which corresponds to 20 ms for the results shown in this
work. Main inputs are the injected fuel mass mf , the air mass flow ma, the
speed n and the sensor signal zλ�1 .

Because of the bias strong dependence with the operating point conditions,
an adaptive 2D look-up table Θλ�1,k P Rnr�nc updated at instant k is used
for accounting with this variation depending on the engine speed and load
(see discussion in Section 4.3.1 about engine operating point representation).
Hence the current bias at the instant k may be represented as

θλ�1pkq � Θλ�1,kpnpkq,mf pkqq � wk (6.1)

where a noise wk P R is added to the tabulated value coming from the table
Θλ�1,k at instant k for considering modelling errors, and for dealing with the
system drift.

Through the combination of the sensor and the model information (conve-
niently delayed for being comparable), a KF is used for tracking the value of
the bias and of the filtered value of λ�1, thus providing the estimates θ̂λ�1 and
x̂λ�1f . A set of ’freezing’ conditions adds robustness to the algorithm stopping
the integration when the sensor signals or the model are not reliable.

In order to cope with the system drift, the look-up table Θ�1
λ is updated

on the basis of the adaptive SSKF algorithm that uses the estimate θ̂λ�1

Θλ�1,k � fpΘλ�1,k, θ̂λ�1pkqq (6.2)

Finally, the estimation x̂λ�1 is built up from the current model output xλ�1

and the tabulated value of the bias (see (6.5)).

6.2.2 Robustness against signals uncertainties

Three main circumstances affect the correct algorithm performance:

• Sensor saturation: NOx sensors exhibit saturation problems for high
O2 partial pressures (low λ�1). Figure 6.3 shows the saturation point
for the tested NOx sensor, where two units of this model are located
downstream of the turbo and downstream of the engine here equipped
with an AT line. If the KF is active, the integration would be incorrect
in these situations as far as zλ�1 is not reliable.
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Figure 6.2. Schematic view of the proposed procedure for λ�1 estimation.

• Sensor and model uncertainties during sharp dynamic transients: The
sensor behaviour, defined by aλ�1 and τλ�1 , varies with time, boundary
conditions, system conditions and because of the ageing and unit-to-unit
dispersion. For avoiding wrong integrations, these must be considered.
Furthermore, the sensor model considered in (3.3) could not be complex
enough for accounting with the actual sensor performance. An incorrect
sensor model leads to peak errors, especially when a sharp transient
occurs.

• Spurious measurements: Signals involved can present outliers or errors
that could be fatal for the algorithm.

When these occur, the integration must be stopped. A set of deactivation
IF-THEN or ’freezing’ rules have been programmed for that. If any of the
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Figure 6.3. zλ�1 measurements from two NOx sensors, the first located downstream
of the turbine (gray) and the second downstream of the AT line (black) in an engine
equipped with DOC, SCR and DPF (see the third configuration of Figure 5.1). Both
sensors are the same commercial model and present a saturation in approximately
λ�1 =0.1.

following conditions is true, the updating of the KF is null; i.e. ek � 0:

ek
1 � z�1

Ts
¡ F1 (6.3a)

xλ�1

1 � z�1

Ts
¡ F2 (6.3b)

zλ�1

1 � z�1

Ts
¡ F3 (6.3c)

zλ�1   F4 (6.3d)

zλ�1 ¡ F5 (6.3e)

x̂λ�1   F6 (6.3f)

x̂λ�1 ¡ F7 (6.3g)

where (6.3a) to (6.3c) deactivate the filter in sharp dynamic transients or
in the case of spurious measurements; (6.3d) if sensor saturation or outliers
appear; (6.3e) if measurement outliers are detected; finally (6.3f) and (6.3g)
are included for providing robustness to the estimation. These conditions
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make the table update highly insensitive to sensor model errors, sensor output
errors and model output errors.

The freezing conditions allows to set a faster integration, i.e. a higher
Kalman gain, as integrations at points with high expected errors on θ̂λ�1

are avoided. The definition of thresholds needs to be done accordingly with
the level of uncertainty in the sensor knowledge, signals noise level, model
reliability and assumptions concerning the dynamic characteristics of the λ�1

evolution.

Figure 6.4 compares x̂λ�1 obtained with two different tunings of the thresh-
olds and for one sharp injection transient, where λ�1 value is drastically varied
and the bias is affected by the operating conditions (it varies from 0 at the
beginning of the test to 0.1 after the step). In all cases, a significant error
in the sensor model is assumed (a1λ�1 � aλ�1 and τ 1λ�1 � τλ�1). It can also
be noticed that including freezing mitigates the overshoot in the correction;
although a conservative tuning will result to completely deactivating the inte-
gration of the filter, and then no bias integration would be made during the
engine operation. The Monte Carlo calibration method presented in [2] might
be used for tuning the thresholds F1 to F7.
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Figure 6.4. x̂λ�1 for two different conditions of freezing for an injection step from
15 to 30 mg/str at 2250 rpm. Thin solid lines represents x̂λ�1 , lighter to darker gray
is less to more severe freezing condition. x̂λ�1f models linked with the estimate x̂λ�1

are also included with dashed lines.
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6.2.3 An adaptive look-up table for modelling the drift

An adaptive look-up table (see Figure 6.2) is used for coping with the bias
dependence with the operative conditions. The look-up table interpolation
principle is based on a 2D bilinear interpolation. At every iteration, the initial
estimation of the bias is interpolated from the table Θ�1

λ conveniently updated

θ̂λ�1pk|k � 1q � Θλ�1,k�1pnpk � τ{Tsq,mf pk � τ{Tsqq (6.4)

where the table scheduling inputs n and mf are conveniently delayed in order
to consider the sensor delay. The KF provides an updated value of the bias
(at the delayed input conditions) that is used for updating the table with a
given learning method. Chapter 5 have made a review and developed two
methods based on the EKF for updating look-up tables. For this formulation,
the SSKF method presents the advantage that the table can be considered as
an independent block, and then the converged K8 for the drift correction is
still applicable. In this section, the results by using the SSKF are presented
(although for a robust implementation, the SKF is advised).

Once the table has been adapted, an updated value of the bias is obtained
for the current operative conditions. This is used for building the final esti-
mation

x̂λ�1pkq � xλ�1pkq �Θλ�1,kpnpkq,mf pkqq (6.5)

where the current values of the inputs and the model are used at the instant k,
in order to provide the more updated information and avoiding the causality
problem related with the sensor delay when the table is not used.

For illustrating the look-up table performance, Figure 6.5 shows the sim-
ulation of λ�1 for a repetition of the same profile. τλ�1 is known and null
and aλ�1 presents a certain error. The top plot represents the evolution if the
adaptive table is not used. In the case of using the adaptive table (right plot),
first part of the cycle serves for the bias identification (initially all elements
of the table are set to zero), and in the second part of the cycle the estima-
tion is significantly improved because of the stored values. Note that during
transients, the error integration starts slightly after the step because of the
freezing rules.

Different tables may also be used in case of using different combustion
modes (split injection, exhaust system regeneration) for coping with the dif-
ferent trend of the bias on the mf estimate when the injection settings change.
Each table is updated only when the mode is activated and can add more ac-
curacy to the estimate although incrementing the programming complexity.
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Figure 6.5. x̂λ�1 without table (left) and using an adaptive table (right) changing
the operating point condition of the engine repeating two times a cycle by simulating.
Black line is zλ�1 , dashed black line is xλ�1 and gray line is x̂λ�1 . Deactivation
freezing rules are applied.

6.2.4 Experimental results

In order to provide a reference signal for assessing the algorithm, injection
steps are performed in the engine and x̂λ�1 calculated. Since the injection
is a fast acting control variable, the actual λ�1 response is judged to be in-
stantaneous and no more than one engine cycle delay is expected; being able
to generate a reference for comparison. Furthermore, this signal is available
online, making that the algorithm may be tuned and proved without a specific
test rig beyond the engine and the ECU itself.

The Sensor model identification was discussed in Chapter 3, hence a de-
layed first order filter (see (3.3)) with parameters aλ�1 � 0.92 and τλ�1 � 0.5s
with a sampling frequency of 50 Hz (Ts=0.02s) is used. K8 is precalculated
offline for all cases as the KF is steady-state. Figure 6.6 shows the results for a
set of different injection steps for a constant engine speed n � 1500 rpm. For
that Figure, the ZrO2 sensor has been moved downstream of the AT systems
and a significant bias, 5% of its own value, has been added for exaggerating
the correction; i.e xdrift

λ�1 � 1.05xλ�1 . Furthermore, xλ�1 presents a significant
variable bias depending on the operating point with respect to zλ�1 . The drift
correction algorithm is applied to the estimation of λ�1. Freezing conditions
are relaxed because the sensor is well modelled. The left plot shows an ex-
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ample where the integration is quite slow; the right plot shows the opposite
situation where the integration is quite fast, provoking some peaks but with
a lower settling time. Here, no model or table is used for modelling θλ�1 .
This makes that after every step, θλ�1 shall be integrated for coping with its
variation.
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Figure 6.6. x̂λ�1 performing injection steps at 1500 rpm without using a look-up
table. Left plot: Slow correction, with σ2

w{σ
2
v � 10�5. Right plot: Fast correction,

with σ2
w{σ

2
v � 10�4. Legend: Thick black is zλ�1 , thin black is xλ�1 and gray is x̂λ�1 .

The use of an adaptive table Θ�1
λ smoothes the bias integration when the

operating point changes once the table has been learnt. Figure 6.7 shows the
same situation of Figure 6.6 but now using a look-up table with the grid

r � r750 1000 : 500 : 5000s (6.6a)

c � r0 : 5 : 30 34 : 4 : 50 55 : 5 : 80s (6.6b)

Figure 6.8 shows final results for three different injection steps of the previ-
ous cycle once that the bias has been perfectly learnt. x̂λ�1 keeps fast dynamics
but converges to the steady-state value of xλ�1 , in contrast to the biased model
and the slow sensor.

Finally, the algorithm is proven with the NEDC B1 cycle and is shown in
Figure 6.9 for a window of the cycle. The described conditions and data for
previous tests are still valid here. x̂λ�1 keeps the model dynamics but evolves
correcting the drift and relying on the steady-state value of the sensor. This
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Figure 6.7. x̂λ�1 performing injection steps at 1500 rpm and using an adaptive
look-up table for modelling θλ�1 . Legend: Thick black is the sensor zλ�1 , thin black is
the model x�1

λ and gray is x̂λ�1 . Values for tuning the KF are σ2
w{σ

2
v � 1{80.
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Figure 6.8. x̂λ�1 using table and freezing conditions performing different injection
steps at 1500 rpm.
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test is representative of real driving conditions and the procedure demonstrates
its feasibility for being used in commercial vehicles.
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Figure 6.9. Top and bottom: x̂λ�1 using the table and applying freezing conditions
to the NEDC B01 cycle. zλ�1 is the sensor output (thick black), x�1

λ is the model
output (thin black) and x̂λ�1 is the observation (gray). The drift is corrected while
the dynamics of the observation x̂λ�1 are maintained.

6.3 Fast estimation of NOx

The attention is turned out to the problem of the online NOx estimation.
With an algorithm like B, an adaptive NOx map can be used in order to
infer NOx as function of only mf and n as in (4.8), which is justified if the
transitions are slow enough for utilising a quasi-static approach (plus a filter
for the sensor dynamics). An algorithm C permits to update NOx model
parameters and look-up tables. Finally, and for both designs, the algorithm A
and the drift correction algorithm could be used in order to track the model
bias.

This section also completes the comparison of the different methods for
updating look-up tables already presented in Chapter 5 by testing the cycle
SDMP B5 and the algorithm B. Afterwards, the adaptive tuning of the RT
NOx model is proposed. On the basis of the presented results, the estimation
of the actual NOx is proposed.
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6.3.1 Online updating of look-up tables for modelling NOx

In a first approach, NOx is modelled by using a 2D adaptive look-up table
function of n and mf , whose parameters are estimated with the updating
methods. The state-space model (5.33) is used for designing an observer like
the algorithm B presented in Figure 6.1.

The model parameters are estimated online while the engine is running
without any special calibration procedure or test rig, beyond the sensor mea-
surements. The first time that the engine is running, parameters evolve, and
when the engine switches off, the stored parameters can be used for predicting
NOx. When the engine is running again, the parameters keep evolving for
correcting drift and slowly varying effects. Furthermore, the observer built for
updating the map can be profited for having an actual NOx estimation, i.e.
avoiding the filtering and the delay of the sensor. The SKF updating method
is appropriate for online usage because of the light computational burden and
the estimation capabilities.

Moreover, this configuration might be applied to estimate local models
for defining the NOx emissions as function of usoi and uegr, and for different
engine operating points [3,4]. These maps are useful for the joint air and fuel
path control [5].

With respect to the dimensions of the maps used for the adaptive esti-
mation of NOx and according to the author’s experience, usual dimensions
for look-up tables in production engines are between 200 and 400 parameters.
The selection of the appropriate dimensions is a trade-off between the accu-
racy and the computational resources. An excessive density can compromise
the table convergence, but a higher density of scheduling points can improve
the accuracy of the solution.

Figure 6.10 shows the nominal NOx,0 map used for the NOx model in
Chapter 4. This map was filled with an intensive DOE comprising 363 steady-
state tests. The NOx sensitivity depends on the engine area, with a clear
difference between the EGR area, transition and the areas without EGR. Note
that all elements of NOx,0 are filled in order to avoid numerical problems,
indeed areas that are not reached for the engine (out of the full load line).

The grid used in this work for the observation is defined as follows

r � r750 1000 1250 1500 1750 2000 : 500 : 4500s (6.7a)

c � r0 : 5 : 30 34 : 4 : 50 55 : 5 : 80s (6.7b)

where r represents the grid for n [rpm] and c stands for mf [mg/str].
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Figure 6.10. NOx variation as function of n and mf in the directions. Left plot:
along n direction. Right plot: along mf direction.

6.3.1.1 Comparison of the updating methods

The SDMP B5 cycle is used for comparing the algorithms with real engine
data. ΘNOx,0 is the null matrix and is updated with the cycle. The state-space
model (5.33) is built with the following numerical values

aNOx � 0.96; τNOx � 0.75s (6.8)

while the sampling frequency is 50 Hz (Ts � 20ms). Sensor parameters come
from the methods presented in Chapter 3 by performing SOI steps. The state-
space model output zNOx is given by the NOx sensor, while the inputs are

u1,k � z�τNOx{Ts npkq (6.9a)

u2,k � z�τNOx{Ts mf pkq (6.9b)

and the state vector x is

xk � rvecpΘNOxq xNOxf sTk (6.10)

The filter is tuned with the values

σ2
v � 252; σ2

w � 152; σ2
f � 502 (6.11)
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Figure 6.11. NOx prediction for the three methods by performing the SDMP B5
cycle. The maps are updated during 400 s, i.e. a subset of 20000 measurements
of zNOx

. yNOx
is simulated with the updated tables at 400 s ΘNOx,400. The sensor

measurement zNOx
is provided for comparison.

and a test subset of t � 400s is used for updating the adaptive map and the
look-up table ΘNOx,400 is used for predicting NOx in the whole cycle plus
considering the first order filter that models the sensor response.

yNOx �
1 � aNOx

1 � aNOxz�1
ΘNOx,400pu1,k,u2,kq (6.12)

The KF, SKF and SSKF methods are used for updating the model and the
results can be seen in Figure 6.11. All three methods behave well and are
capable of predicting NOx emissions. Dynamics assumptions are also good
enough for having a good fitting in the SDMP. Note that the SSKF results
are also acceptable as the covariance tracking is not relevant in this cycle as
it is in slow varying tests. The fitting should be optimized by independently
tuning the filter for each method.

It is worth comparing the convergence of the methods and for this, the
SDMP cycle is also used as benchmark for testing the absolute mean error
when the updating time is varied monotonically around the cycle

eM pkq �
°ny
i�1 pzNOxpiq � yNOxpiq|t�kTsq

kTs
(6.13a)



182 6. Adaptive estimation of NOx and λ�1

where t is the time that the table has been updated and yNOx is calculated
by (6.12). The results are shown in Figure 6.12. Focusing the attention in
the lines generated with the filter calibration Cal (6.11), eM tends to be lower
as t grows at least during first iterations when the system knowledge is poor.
The horizontal line shows the benchmark model error, which is constant as
the model calibration is fixed. It is clear how all the three methods converge
to an error similar to that of the benchmark model, but with the advantage
that the drift and ageing are considered by the online versions but not by the
model. The KF and SKF behaviour is quite similar as expected. On the other
hand, Figure 6.12 also shows that the KF and the SKF are faster than the
SSKF and this is due to the filter tuning. Anyway, there exists a trade-off
between the convergence speed and the estimation robustness, e.g. the KF
and SKF have a significant oscillation with respect to the SSKF around the
benchmark model line. This is a matter of the noise tuning and the results
are also generated by using a lower gain observer with the calibration set

σ2
v � 252; σ2

w � 72; σ2
f � 502 (6.14)

for the KF and the SKF. The results are shown in lines generated by Cal (6.14)
in Figure 6.12. With this configuration, the convergence speed is lower but the
noise transmission and overfitting is avoided when t is large. This goes in the
direction of the robustness and the optimised calibration data set must solve
this trade-off, considering uncertainties in the sensor behavior knowledge or in
the model quality and data-set quality, among others. Strategies such as the
freezing applied to the λ�1 estimation may also be applied to this problem.

With respect to the global observability, variances of the 4 table param-
eters are compared for both the KF and SKF using the calibration (6.14).
Figure 6.13 shows the results. The top plot shows an element that is never
observed during first 200 s and due to this, the variance increases monotoni-
cally and x126 is still null in t � 200. Second and third elements represent two
elements that are active at some instants. This is clearly seen when the vari-
ance decreases, while when the elements are not active, the variance increases
again monotonically. Note that in a production system application, that will
run for the life time of a vehicle, the elements of the estimation error covari-
ance matrix need to be limited so that they do not grow too much and cause
numerical problems, see e.g. Höckerdal et al. [6] who propose a saturation for
avoiding too large variances. The bottom plot shows the variance related to
xNOxf that is fairly constant and is a proof of the system global observability.

The variances by using the KF and the SKF behave similar and differ-
ences can only be found when zooming in the Figure 6.13. Therefore, the
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Figure 6.12. Evolution of the mean of the absolute error eM for the different meth-
ods in the SDMP B5 cycle and for two different filter calibrations. SSKF dashed line
is calculated by using the filter calibration (6.11). Lines left to the SSKF one: using
calibration (6.11). During first iterations, the error is high, as far as the table has no
initial knowledge, but once that the time is around 400 seconds, the error is minimum,
although the noise transmission is evident. Lines right to the SSKF one: using cali-
bration (6.14), noise transmission is reduced but the convergence speed as well. The
chosen filter tuning must be a trade-off between the robustness and convergence speed.

SKF method performs quite similar to the standard KF but with a much
lower computational burden. Due to the SDMP presents sharp transients, the
SSKF method also performs quite well, and proves that this method can be
useful when the considered data set fulfils some conditions in order to ensure
robustness. To the nature of the application considered here, the SKF is the
best solution for online updating of maps.

6.3.1.2 Adaptive maps for predicting NOx

The SDMP is a test with sharp variations on the operating point condi-
tions but the homologation cycles, such as the NEDC, are much slower. This
could compromise the global observability since higher levels of excitation are
beneficial for updating. As shown in Figure 4.3, the air path dynamics are
fast enough to follow the load variations in the NEDC and then 9ma and pboost
are able to track their references. In such case, the model (4.8) is valid and
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Figure 6.13. Variance analysis by updating a NOx map in the cycle SDMP B5.
From top to bottom, variances of elements 126, 126, 133 and 217 are plotted. Black
line is the KF and gray line is the SKF.

the table ΘNOx might directly replace the nominal NOx,0 table in the RT NOx

model (see (4.22)). Despite NOx,0 could be used for initializing ΘNOx , here
the null matrix is the initial map, which is a worst-case condition.

The NEDC A1 cycle is run for updating the map. Figure 4.19 already
showed the RT NOx model output when comparing with zNOx in that cycle,
where a clear drift exists. After using an adaptive map and the SKF method
with the calibration (6.14), the results are shown in Figure 6.14. There, yNOx

is calculated on the basis of a table ΘNOx which has been updated during the
whole cycle. After comparing with zNOx and xNOx coming from the NOx model
(see Figure 4.19), the adaptive map approach gets a good NOx estimation
which is slightly better than the one of the NOx benchmark model.

The SKF could be used for the online adaptation and/or calibration of com-
plex models, where a large number of maps and parameters must be updated.
Anyway, a deep study is required for ensuring the observability, convergence
and robustness properties and for getting a computationally efficient learning
structure. A big number of parameters and maps should be updated and the
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Figure 6.14. Adaptive NOx estimation in the NEDC A01, where it is estimated with
a table that is updated during the whole cycle and then used for simulating yNOx

. zNOx

is provided for comparison. The estimation keeps the dynamic properties of zNOx
but

after updating, the drift in Figure 4.19 is cancelled.

problem is non-convex. Admittedly the computational issue is critical and
there the SKF can be an effective solution.

In the case of a fast cycle, i.e. the SDMP, the EGR valve is closed the
most of the time. Therefore, the states are function of n and mf for the
engine settings corresponding to a closed EGR valve

x � fpn,mf ,m
�
apn,mf q, p�b pn,mf qquegr�100 � fpn,mf quegr�100 (6.15)

In the case of the NEDC or CADC cycles, the transients are much slower and
the engine works closer to the nominal settings. In such case, the states are
also function of n and mf but for the nominal operation of the EGR-VGT
controller. Possible states can now be approximated with

x � fpn,mf ,m
�
apn,mf q, p�b pn,mf qq0 � fpn,mf q0 (6.16)

This point links with the discussion of Section 4.3.1 about how to represent
the engine conditions. Figure 6.15 shows the predicted NOx emissions in the
cycles SDMP B6 (top plot) and NEDC B1 (bottom plot) after using a map
ΘNOx that has been updated in the cycle SDMP B5. The table output is
filtered and delayed by a sensor model with the parameters aNOx � 0.96 and
τNOx � 0.75s. The ability to reproduce NOx on the SDMP B6 is clear while a
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Figure 6.15. Offline NOx prediction yNOx
(gray) against NOx sensor (black) by

using a table ΘNOx updated online in the SDMP B5 cycle. Top plot: results in the
SDMP B6 cycle. Bottom plot: results in the NEDC B1 cycle.
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Figure 6.16. Offline NOx prediction yNOx
(gray) against NOx sensor (black) by

using a table ΘNOx
updated online in the NEDC B1 cycle. Top plot: results in the

SDMP B6 cycle. Bottom plot: results in the CADC B2 cycle.
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slight drift exists in the NEDC B01. Anyway, the NOx estimation during the
urban part is not as bad as in the highway part, where NOx is overestimated
as expected (ΘNOx has been fitted with nearly zero EGR conditions).

However, if updating ΘNOx with the NEDC B1 cycle and then using the
results for predicting the SDMP B6, shown in top plot of Figure 6.16, the
results are quite bad as a big area of the engine map is not excited and the
covered areas present lower NOx emissions because of the EGR actuation. The
prediction using ΘNOx in the CADC B2 urban cycle is quite better, as the
covered areas are similar.

6.3.2 Online updating of the NOx model

In Chapter 4, a NOx model was developed based on a set of look-up tables
for representing nominal engine conditions with several corrections based on
the estimated intake oxygen, thermal loading and others as in (4.22). In this
section, adaptive capabilities are proved in the NOx model [7], and the new
state-space vector Xw might be augmented as follows

Xw � �
xNOx yNOx x�1

λ y�1
λ vecpΘNOxq θ

�T
(6.17)

where besides xNOx and yNOx , the following states are included: x�1
λ and y�1

λ

representing the actual λ�1 and the filtered λ�1 (for comparing with the λ�1

output from the sensor as was made in (6.12) for NOx) respectively and used
as inputs for the RT NOx model, the nominal NOx map ΘNOx and the model
bias θNOx .

On one side, the use of an observer for λ�1 if the NOx sensor is available
is completely justified due to the NOx sensitivity to errors on mistaking the
intake oxygen [8] (see Table 4.2). Furthermore, the error sources in the λ�1

model were already explained in Section 4.2 and an example of λ�1 observation
is shown for the NEDC in Figure 6.9 where the model drift is not negligible.
Figure 6.17 precisely compares the model output yNOx when a drift on x�1

λ

estimation occurs. The top plot shows zλ�1 by a ZrO2 sensor, x�1
λ from (4.1)

and the observation x̂λ�1 by a KF, when a clear drift on x�1
λ exists1. If the

drifted signal is used for inferring NOx by the model, the output is also drifted
from the sensor signal as shown in the bottom plot. However, if observing x̂λ�1

1The drift on x�1
λ is caused due to failures in the air mass flow or the injected fuel mass

signals. This drift will affect to the EGR flow model and the look-up tables interpolation.
In those cases, the sensor signal zλ�1 can be used for correcting errors on the air mass flow
and/or injected fuel mass signals. In this section and for the simulation, the error is only
considered in the x�1

λ model.
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by a KF, the NOx output keeps the model accuracy. Therefore, the benefits
of observing λ�1 are clear.
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Figure 6.17. λ�1 and NOx estimations in a TRAN B (Tcool � nom, ∆uegr �
0%, ∆pboost � 0). Top plot: zλ�1 sensor signal (black), x�1

λ calculated by the model
(dashed thin black) and x̂λ�1 observed by a drift augmented model (gray). Bottom
plot: NOx estimation by three ways, zNOx

sensor signal (black), yNOx
by the NOx

model using x�1
λ as input (dashed thin black) and yNOx

by using an adaptive model
with x̂λ�1 as λ�1 input.

On the other side, model errors and ageing can be corrected online by
tracking the bias in the same way as explained in Section 6.2 for λ�1, or by
observing the nominal NOx,0 table for also improving the prediction capabil-
ities of the model. The former is useful for actual NOx prediction, while the
latter is advisable for ensuring the model accuracy.

A learning algorithm for updating the NOx model. The state-space
vector

Xw � �
xNOx yNOx x�1

λ y�1
λ vecpΘNOxq

�T
(6.18)

is built for designing an algorithm like C (see Figure 6.1) in order to adapt the
nominal NOx table (NOx,0) to possible changes in the NOx emissions, mainly
due to the ageing. Nevertheless, this structure is useful not only for learning
NOx,0 where

ΘNOx � NOx,0 (6.19)

but for fitting a table without initial knowledge. Depending on the model and
sensor uncertainties, the strategy of the filter tuning can be conservative (slow
corrections) or aggressive (fast corrections).
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The new state-space model remains similar to that of (5.33), used for the
observer B, but including NOx model variations and corrections around the
nominal values (see (4.22)) in the output matrix Hk

Hw
k � rzerosplengthpvecpΘNOxqqq Cmods (6.20)

where

Cmod � e�kNOx �pEGRλ
�1�EGR0λ

�1
0 q � CNOx � Cdyn (6.21)

Other model maps and parameters, such as the ηv, might be updated by
just applying an EKF similar to that applied to NOx,0 (with the correspondent
linearisation). If a full adaptive model is proposed, in a way that all model
parameters are observed, then the learning structure would lack of robustness
and it would be difficult to discriminate the observed error between all tables,
curves and coefficients. An alternative strategy could be to observe a drift
θNOx and afterwards weighting the error between model the parameters by
LS or other strategies. Other limitations are the computational and memory
resources or the lack of awareness in the error sources, making inadvisable to
design an strategy based on the together updating of all model parameters
and tables [9].

ΘNOx is designed with the grid defined by (6.7) and is updated with the
SKF method. The RT NOx model is simulated with the tests of the campaign
B and the errors are computed. Due to the system ageing, the model presents
a drift. The SKF method is also used for updating NOx,0 coming from the
NOx model and thus cancelling the drift. The updated model is simulated in
those cycles and the new errors are computed.

For the application, the NOx sensor output zNOx is converted from ppm
to g/h by using (4.15) and the updating method is run with the output in g/h
in order to directly modify NOx,0 table.

The noise calibration is adjusted by the trial and error method and is not
guaranteed to be the optimised one

σ2
v � 1; σ2

w � 0.01; σ2
f � 1 (6.22)

The tests in the test campaign B are run by maintaining the calibra-
tion (6.22), and the offline NOx prediction is calculated just after finishing
the cycle by using the updated NOx,0 in the NOx model. The computed er-
rors are compared with the ones of the model. The cycles used for the updating
are the B1 to B6, totalling 6 tests. In these simulations, the initial matrix is
NOx,0 fitted for the NOx model in Chapter 4. Figure 6.18 shows the results
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on 4 different cycles, where the original and updated yNOx are compared with
the sensor signal zNOx . yNOx with the original calibration presents a bias with
respect to zNOx that is corrected after running the cycles with the SKF.
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Figure 6.18. Comparison of the NOx estimation by three different sources in 4
different cycles: sensor signal zNOx (black), yNOx by using the RT NOx model (dashed
thin black) and yNOx computed by updating the NOx,0 table with the SKF method
(gray). Left to right and top to bottom: NEDC B1, CADC B2, CADC B3 and CADC
B4 cycles.

Table 6.1 compares the absolute mean errors by using the original model
output and the predictions of the updated model

e � meanp
k�lend¸
k�1

zNOxpkq � yNOxpkqq (6.23)

where lend defines the number of samples taken for the considered cycle. The
errors can be minimised achieving quite better results by using the learning
structure. These results validate the SKF method and the capabilities for
updating models.

With respect to the filter tuning, it has not been optimised for obtaining the
results, and a trial-and-error method has been followed. Further improvements
are in the line of optimising the tuning by improving the sensor model, e.g.
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Table 6.1. Mean absolute errors (g/h) in the NOx model output for different tests,
and comparing the error of the original model (Model column) with the ones of the
updated model (Updated column). The cycles are run one time and the matrix NOx,0

is updated online.

Cycle Model Updated

NEDC B1 6.14 3.08
CADC Urban B2 6.40 3.75
CADC Rural B3 14.81 10.46

CADC Highway B4 36.23 22.51
SDMP B5 49.46 49.13
SDMP B6 46.34 43.64

including a variable delay, or augmenting the state vector with other model
parameters. Anyway, the obtained results show the capabilities of the method
for its online implementation in order to re-tune models and fit tables and
parameters.

6.3.3 Online observation of the actual NOx

The actual NOx can be predicted by utilizing the state-space models and
tables properly. For that, the state vector is augmented with an extra-state
for representing the actual NOx, i.e. NOx emissions before sensor filtering and
correcting the delay. Estimating the actual NOx is advisable for RT purposes,
such as on-board NOx control or diagnosis.

One of the important problems when of working on RT systems is the
causality of the solution, as far as sensors usually measure in a delayed basis,
mainly due to the transport and hardware delays. In this work, two possibil-
ities are described for solving this issue: tracking the bias and the use of a
model learning structure. Both possibilities are similar, and are based on the
ageing cancellation by means of adaptive filtering.

Actual NOx by drift correction models. The following state-space vec-
tor is built

Xw � rθNOx xNOx xNOxf sT (6.24)

where now xNOxpkq P R is added to track the actual NOx, the model input
uk � xNOxpk � τNOx{Tsq is conveniently delayed and zk � zNOxpkq. Matrices
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F, B and H are modified accordingly

F �
�
� 1 0 0

1 0 0
0 1 � aNOx aNOx

�
� B �

�
� 0

1
1 � aNOx

�
� H � �

0 0 1
�

(6.25)

Due to the sensor delay, the bias θ̂NOxpk � τNOx{Tsq at the instant k is
observed with a certain delay τNOx , and that means that at a given time, the
actual drift will be calculated with the delay τNOx

x̂NOxpkq � xNOxpkq � θ̂NOxpk � τNOx{Tsq (6.26)

However, the actual NOx estimation should be

x̂NOxpkq � xNOxpkq � θ̂NOxpkq (6.27)

which corresponds to a non-causal operation.

Using the delayed θ̂NOxpk� τNOx{Tsq could lead to important errors when
sharp load transients. Alternatively, an adaptive map ΘNOx P R2 : rn,mf s Ñ
θNOx could be introduced for modelling the drift as a function of the operat-
ing point conditions, as was made for λ�1. This option is well described in
Chapter 5: a map ΘNOx is adapted by means of a steady-state version of a
KF (similar to a RLS filtering) and is interpolated in a 2D basis for giving
an initial estimate in the prediction of the state, in such way that the KF is
modified as follows

x̂k � FΘNOx,kpnpkq,mf pkqq �Buk �K8 pzNOxpkq �H pFx̂k�1 �Bukqq
(6.28)

and the table ΘNOx is independently updated from the KF in order to store
θNOx

ΘNOx,k � f pΘNOx,k�1, x̂k, zNOxpkqq (6.29)

The map itself is interpolated for inferring θNOx avoiding the causal problem
and huge integrations when the drift varies with the operating point conditions
and time. The final estimation is then calculated as follows

x̂NOxpkq � xNOxpkq �ΘNOx,kpnpkq,mf pkqq (6.30)

Actual NOx by updating look-up tables. The state-space model for
learning maps is useful not only for calibrating the map but also for the RT
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observation of the NOx signal. Therefore, the matrices and the state vector in
(5.33) are also modified and augmented for introducing xNOx

Xw � rvecpΘNOxq xNOx xNOxf sT (6.31)

with the local observable matrix Fo
k

Fo
k �

�
�������

0 0
I4�4 0 0

0 0
0 0

Cmod qk 0 0
0 p1 � aNOxq aNOx

�
�������

(6.32)

For the case of the algorithm B for updating only look-up tables, Cmod � 1
(model (4.8)). For the case of an algorithm like C and for the NOx model,

Cmod � e�kNOx �pEGRλ
�1�EGR0λ

�1
0 q � CNOx � Cdyn (6.33)

with the parameters calibrated offline. Finally, Hw is now constant for both
algorithms B and C

Hw � r0 0 � � � 1s (6.34)

The use of the table allows to solve the non-causalities related with the
RT estimation in a smart way: note that the observer is built on the basis of
delayed inputs.

The use of a drift correction model or adaptive look-up tables NOx leads
to similar results, but the look-up tables structure is beneficial as far as can
be used also for updating the model. In order to decouple the filter tuning for
updating the look-up table and the output drift correction, the two methods
could be combined by observing both the table parameters, the bias and the
filtered output, designing a state-space vector

Xw � rvecpΘNOxq θNOx xNOx xNOxf sT (6.35)

Results. The model with the state-space vector (6.31) is observed in order
to show an application example of the fast estimation of the actual NOx,
taking into account that this algorithm can be adapted to other applications.
Therefore, the look-up tables learning structure can be utilised for updating
models and also estimating actual signals. Figure 6.19 shows results in the
cycle SDMP B5, by fitting the NOx model NOx,0 map with initial null values
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and keeping the calibration set (6.14). x̂NOxf represents the observation of
zNOx by using the adaptive map at every iteration. The adaptive map provides
a perfect fitting in about 30 seconds (it might be accelerated varying the
filter calibration but it is not advisable if the sensor model is not perfectly
identified). Alternatively, yNOx |t�100 shows the offline NOx sensor prediction
using the model ΘNOx,100 with acceptable results.

Tje table itself might predict the actual NOx emissions if interpolating the
table directly applying no delay nor filtering. Furthermore, the actual NOx is
directly observed with the state-space system for learning having a compact
programming and providing an adaptive estimation. For that, xNOx is included
in the state vector. This does not compromise the assumptions made for the
SKF. Coming back to Figure 6.19, x̂NOx is the online observation of the actual
NOx. This signal is advised for using it as a valid reference of the actual NOx.

6.4 Conclusions

This section has presented different applications for the methods developed
in Chapter 5 applied to the fast estimation of λ�1 and NOx.
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For the case of λ�1, a complete procedure for the drift correction of a λ�1

model is presented by programming an augmented model. The robustness
against signal uncertainties, coming from sensors or models, is ensured by
introducing the so-called freezing rules that deactivate the updating when
some conditions are fulfilled. A map for modelling the bias is proposed in
order to solve the drift problem and to overcome the temporal and operating
point variability of the bias.

The second part of the chapter emphasises the fast estimation of NOx by
following different methods.

First, the only use of look-up tables and a model sensor for estimating
NOx is presented. This section completes the experimental validation of the
different methods for updating look-up tables, presented in Chapter 5. The
results with all the methods are acceptable, but due to the robust properties
of the SKF, this method is selected for the rest of the work.

Second, different observers are proposed in order to the online adaptation
of the NOx model presented in Chapter 4: the λ�1 observation, the online
updating of the nominal NOx,0 table and the model bias correction. The
results show that the model bias can be tracked by the online updating of the
model parameters and inputs.

Finally, the estimation of the actual NOx by avoiding the delay and sensor
filtering is proposed by augmenting the state-space models in order to observe
the actual signal. Concretely, two alternatives are proposed: a drift correction
model and a look-up tables learning model. The results are presented and
validated by utilising the second option.
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[6] Höckerdal E, Frisk E and Eriksson L. “EKF-based Adaptation of Look-up Tables with an
Air Mass-Flow Sensor Application”. Control Engineering Practice, Vol. 19, pp. 442–453,
2011. (cited in pp. 9, 40, 44, 137, 139, and 182)

[7] Schilling A, Amstutz A, Onder CH and Guzzella L. “A Real-Time Model for the Pre-
diction of the NOx Emissions in DI Diesel Engines”. In Proceedings of the 2006 IEEE
International Conference on Control Applications, Munich, Germany, 2006.

(cited in pp. 6, 36, 132, and 187)
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7.1 Main contributions and conclusions

The present dissertation covers the topic of the online dynamic estima-
tion of λ�1 and NOx in diesel engines. For that purpose, different sources of
information are utilised:

• physical sensors for measuring exhaust gas concentrations (and intake
oxygen when necessary), and

• control oriented models using ECU signals as fast inputs for estimating
gas concentrations.
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By combining the sensor and models, data fusion strategies are designed by
means of observers based on the Kalman filter (KF) for the adaptive estimation
of engine variables.

Specific tools, covering the online characterisation of sensors, the design of
fast models and adaptive observers are developed in this work. Even though
the methods of this work are applied to the estimation of λ�1 and NOx, these
can be applied to other engine variables, such as other gas concentrations
or the volumetric efficiency, if a set-up with sensors and models is available.
In the following, the main contributions and conclusions are presented and
organised according to the thematic.

7.1.1 Online characterisation of gas concentration sensors

The measurement of engine-out gas concentration variables of a diesel en-
gine is subjected to gas dilution, transport delays and is affected by the sensor
hardware. In this work, a NOx-ZrO2 sensor is used for measuring λ�1 and
NOx at the exhaust line of a diesel engine (while a gas analyser and a UEGO
sensor are used for calibration and comparison when necessary). NOx sensors
are useful for control and diagnosis of AT systems, but the specific characteris-
tics of the dynamic response must be assessed. The methods for the dynamic
characterisation used in this work are based on the application of step-like
transitions of the objective variables. For that purpose, ECU actuators are
used for generating these profiles, allowing the on-board implementation of
these methods.

Static characterisation of λ�1 and NOx. Both λ�1 and NOx outputs of
the ZrO2 sensor are compared with those of a gas analyser, used as standard
reference for the signals. The static accuracy, after measuring a representative
set of the engine operating conditions, is enough for engine control purposes.
A linear correlation is calculated with the static results.

Dynamic characterisation of the NOx output. A simple on-engine ex-
periment is proposed for the NOx output characterisation. The method uses
the engine as a gas generator and consists of applying steps in the start of
injection (SOI) producing sharp variations (∆NOx) in the NOx concentration.
The use of SOI is justified by the high sensitivity of NOx to SOI variations;
the fact that SOI variations produce low variations in temperatures and pres-
sures; and that SOI application is nearly instantaneous and no more than a
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cycle-to-cycle response time is expected. Furthermore, the SOI command can
easily be varied in the diesel engine.

The dynamic response of the sensor is identified with a delayed first order
filter. The main parameters, namely response time and delay, are identified
by utilising least squares (LS) tools. The response time of the sensor is highly
constant whatever the conditions, even though some variations appear at low
NOx and/or low ∆NOx conditions. The identified delay has a bigger disper-
sion, especially when also approaching to idling. However the supposition of
a constant delay for the designed algorithms gives satisfactory results.

Dynamic characterisation of the λ�1 output. A similar procedure to
that of the NOx output is made by performing injection step transitions pro-
voking fast responses of λ, and thus λ�1. LS methods are also used for identi-
fying the delay and response time of a first order filter that models the sensor
response.

The conclusions reached for the NOx output are also applicable to the λ�1

output. The difference here is that the responses are a little bit faster, both in
terms of delay and response time, because the output generated by an oxygen
ion pump is located in a first cavity closer to the engine runner; while the
NOx output is proportional to a second oxygen ion pump located in a second
chamber, thus increasing the delay and filtering.

In this work, a constant response time and delay have been utilised for
modelling both NOx and λ�1 outputs from the NOx sensor. The results with
the applied algorithms justify the selection of these simplistic sensor models.

7.1.2 Control oriented models for λ�1 and NOx

The present dissertation designs virtual sensors for the on-board prediction
of λ�1 and NOx by means of fast models which take profit of signals coming
from the ECU.

Fast modelling of λ�1. The relative fuel-to-air ratio (λ�1) is estimated
on the basis of the ECU signals for the injected fuel mass flow ( 9mf ) and the
air mass flow ( 9ma). Both signals are fast, which in principle guarantees the
dynamic response of the model. For simplicity, this model neglects the mass
accumulation effects that affect the intake and exhaust manifolds. Such effects
could be considered for correcting the value 9ma during the engine transients,
e.g. when the boost pressure (pboost) is increased.
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The model presents significant errors in the steady-state determination of
λ�1. This is due to the deviations that exhibit the hot wire sensor used in the
series engine for measuring 9ma, and because the fuel mass is not measured,
but determined through the rail pressure and the injection duration.

The bias on 9ma is expected to vary with the speed (because of the fluc-
tuation patterns in the manifolds) and load (different set-points for pboost and
9ma). Possible leaks in the manifold and blow-by also depend on the engine

load, thus affecting the total signal error. On the other hand, the error in
9mf estimation is affected by the injection settings (and hence load and engine

speed).

When comparing the dynamic performance of the model with that of the
sensor, the model exhibits almost instantaneous response: 9mf estimate, al-
though biased, is instantaneous; and 9ma characteristic response time is in the
order of milliseconds.

Fast modelling of NOx. An ECU oriented model for estimating NOx is
designed based on an exponential variation around the nominal behaviour as
a function of the available intake oxygen and a set of corrections for catching
possible deviations from the nominal. First principle equations function of
different ECU signals, such as n,mf , 9ma, pboost and the engine coolant tem-
perature (Tcool), are combined with different maps used for modelling the
steady-state behaviour of the engine.

The available intake oxygen is approximated by means of the product of the
EGR rate and λ�1. A calculation based on the volumetric efficiency map, and
the 9ma and pboost signals, is utilised for estimating the EGR rate, after com-
puting the intake temperature by a mixing model. The exhaust temperature
(Texh) is modelled by tables and used for inferring the EGR manifold temper-
ature (Tegr). A set of corrections (CNOx) for coping with different deviations
in the intake mass flow ( 9mint), the intercooler temperature (Twic), ambient
humidity (H) and the intake temperature (Tint) is proposed. The effect of the
thermal transients is considered by means of a factor Cdyn that considers the
temperature in the cylinder walls by means of a dynamic equation depending
on the thermal loading, characterised by the product λ�1n.

The model is tuned by means of steady-state tests for filling the maps
and parameters, while it is also validated by means of dynamic engine cycles.
The identified sensor model for the NOx output of the ZrO2 sensor is used for
comparing the model with the sensor output.
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The results are satisfactory with both static and dynamic cycles, showing
the capabilities of the model. The dynamic assumptions are sufficient for
getting acceptable dynamic responses. The model tuning (mainly maps) is
dependent on the calibration data set, and the ageing and changing conditions
affect the model output, producing a biased response.

7.1.3 Observers for the fast estimation of engine variables

Two different observers are proposed for being used as adaptive estimators
of engine variables:

• augmented models for drift correction, and

• on-board methods for updating look-up tables.

It is worth noting that these methods, presented in Chapter 5, are suited
for a general problem, and can be applied for other engine variables if required
inputs are available.

Augmented models for drift correction. The data fusion is done through
a steady-state KF for observing the bias between a fast model affected by drift
and a slow but accurate sensor. The filter works as a pass filter that keeps
the high frequency components of the model and the low frequencies of the
sensor. The model states are augmented for tracking the model bias. The
steady-state analytical solution of the Kalman gain is solved and computed
beforehand as function of the response time of the sensor and a noise quotient
between the process and sensor noises. Guidelines for the observer tuning are
proposed by a sensitivity analysis of the estimations covering possible errors
or variations in the sensor modelling.

Methods for updating look-up tables. The problem of updating look-
up tables by methods based on the extended Kalman filter (EKF) is treated.
The table parameters are treated as states that can be observed if an output
measurement is given. The table output is computed with a first order linear
interpolation, which defines the output matrix of the learning state-space sys-
tem. In a first approach, the problem has been focused on the use of a static
table whose output is directly the aimed variable, i.e. the sensor dynamics are
not considered in a first approach.

The EKF, with respect to other recursive methods for identification such
as the recursive least squares (RLS), presents the advantage of tracking the
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estimation error by means of a covariance matrix. Nevertheless, when coping
with large systems, the computational burden is high, in terms of memory,
fact that makes difficult its implementation for on-board strategies.

Beyond the EKF and based on it, two methods are developed:

• A steady-state KF (SSKF) calculated by means of building independent
state-space models for every relative position of the matrix, which cor-
responds to a given operating point, e.g. scheduled by n and mf in a
general case. Therefore, if the inputs are considered stationary, the KF
is steady-state under these hypotheses and a constant Kalman gain can
be derived (the filter is linear time invariant). If covering the whole grid,
the Kalman gain can be mapped for the operating range, depending on
the inputs and noise trade-off.

The analytical solution of the steady-state filters is demonstrated and
a proportional correction method is developed, resulting in a fast filter,
whose gains can also be mapped beforehand if the noise variances are
constants. Even though the method does not track the covariance error,
the magnitude of the corrections could be modified online just varying
the noise trade-off and recalculating the Kalman gain (by the analytical
functions of by interpolating the map). The method behaves well for
data when variations are rapid, closer to random data. However, it
presents some convergence problems when the system knowledge is poor
and the excitation level is not sufficient.

• A simplified KF (SKF) that lights the computation of the covariance
matrix of the KF. This method exploits the fact that a N-D look-up
table has a structure where at every iteration a maximum number of 2N

elements are active, allowing to skip the updating of the elements out
of this area. Nevertheless, a KF tracks the ageing of all elements, in-
deed the inactive ones, by means of storing large covariance matrices and
compromising the memory and processing. The SKF method neglects
the non-diagonal relationships of the covariance matrix (crossed covari-
ances between table elements), but keeps the updating of the diagonals
(variances).

The SKF method requires similar resources to those of the SSKF, but
the performance is more similar to the one of the KF. The solution of
the SKF is robust and the method behaves well under different data
settings. The SKF is well-suited for a robust on-board implementation
of look-up table estimators.
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The static look-up tables can be linked with first order filters for repre-
senting dynamic equations, related with the sensor measurement or physical
processes. For including the filters in the learning structure, an augmentation
of the state-space model is proposed. After validating the methods by learning
an adaptive table that models the NOx emissions, the SKF method is advised
instead of the KF (heavier) or the SSKF (less robust), due to its performance
is similar to that of the KF but with a comparable computational cost to that
of the SSKF.

7.1.4 Application of adaptive estimators to infer λ�1 and NOx

in diesel engines

Considering the methods developed in Chapter 5, the following three al-
gorithms present useful data fusion strategies:

• algorithm A for tracking bias by an augmented model and a steady-state
KF estimator,

• algorithm B for directly updating a static look-up table, and

• algorithm C for including the algorithm B structure inside a model for
updating a table or parameter of a given model.

The results with the proposed structures are shown by applying to the
engine-out λ�1 and NOx signals in a diesel engine. The uncertainties on the
sensors and the models are considered as well.

7.1.4.1 Fast observation of λ�1

An observer is initially proposed for tracking the bias on the λ�1 signal
computed on the basis of the fuel-to-air ratio. A set of rules is established in
order to stop the bias integration when certain conditions do not ensure the
problem robustness, which are:

• uncertainties on the sensor model when sharp transients,

• saturation problems of the sensor, and

• unexpected behaviours due to inaccuracies in the model or involved sen-
sor signals, i.e. mf , 9ma, λ

�1.
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The estimation is accurate, even though two problems are underlined.
First, the causality of the solution since the sensor response is delayed and
therefore the actual bias is not computed on real time; second, the bias varies
with the operating point conditions which involve high variations of the state.

These problems are solved by introducing an adaptive look-up table for
modelling the bias. The table elements and the bias can be included directly
in the observer structure. However, the table is kept as an independent block
of the drift correction, being able to program independent filters for the bias
and the table. Both the SSKF and the SKF methods are suitable for updating
the table, although the results are shown by applying the former. The table
output gives the prediction for the bias, while a steady-state KF is applied to
update this bias and at the same time for giving the reference for also updating
the table, and so on.

7.1.4.2 Fast observation of NOx

The three different algorithms (A, B and C), and some modifications based
on them, are applied to the estimation of NOx emission in diesel engines.

Adaptive look-up tables for modelling NOx. NOx emissions are mod-
elled first by introducing a static 2D look-up table, as function of n and mf

in order to catch the nominal NOx, and a first order filter for representing the
sensor dynamics.

The three learning methods (EKF, SKF and SSKF) are implemented and
the results compared in order to fill the table parameters without any previous
knowledge. The results are satisfactory for the three methods, but due to the
special properties of the SKF, this method is advisable.

These tables can model with acceptable accuracy NOx emissions when the
cycles are slow enough, allowing to simplify the closed loop engine response
to a function that depends uniquely on n and mf . Under this condition,
the learning on a given cycle, i.e. NEDC, can be used for representing NOx

emissions in other similar cycles such as the CADC, provided that the table
elements have already been updated.

Online updating of the NOx model. Different modifications are intro-
duced to improve the online and offline capabilities of the NOx model: the
observation of λ�1 when a sensor signal is available, the adaptation of the
main table of the NOx model (NOx,0), and the possible state augmentation
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by tracking the model bias (discussed in the next paragraph). These modifi-
cations are proposed for correcting the ageing while rejecting spurious signals.

The benefits of the λ�1 observation are clear from the λ�1 estimation,
avoiding that incorrect model estimations affect the NOx model output. A
drift correction algorithm is proposed when the NOx sensor (or a UEGO sen-
sor) is available.

The use of a learning model for updating the NOx,0 table in the NOx

model allows to avoid the ageing, minimising the online estimation error and
the offline prediction error (model is adaptive). The SKF method is used for
the application. The updating method is useful for both fitting a table when
no initial knowledge exists or updating the model for cancelling the drift.

Online observation of the actual NOx. The actual NOx is inferred on
the basis of the adaptive filtering models. Two alternatives are designed in
this work.

First, a drift correction model is proposed for tracking the bias, and thus
correcting the filtered NOx model output when a NOx sensor is available. This
model is augmented with a state for tracking the actual NOx (before filtering
and delaying), resulting from adding the bias to the NOx model output. The
algorithm and causality problems are similar to those of the λ�1 estimation.

Second, the learning model for look-up tables can also be augmented with
the actual NOx state. In this case, the structure avoids the causality problem
when the RT estimation is required. The direct interpolation of the table is
the actual NOx output, when the only delays are associated with the ECU
signals, mainly n,mf , 9ma and pboost.

A further augmentation of the model with a bias state makes possible to
decouple the table updating with respect to the fast actual NOx estimation,
in such a way that the related noises for the bias and table elements are tuned
separately:

• Table parameters may be updated slowly by selecting a low noise related
to those parameters,

• while the bias can be integrated faster if the sensor model is reliable and
hence selecting a bigger noise for this state.

Other different trade-off might be selected in order to speed up the table con-
vergence, but this structure allows to decouple in some way the table updating
and the bias tracking. Of course that the lower the model error (table output)
the lower the bias.
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7.2 Future works

Even though the results presented in this work prove the validity of the pro-
posed methods, the on-board implementation of them still deserves a deeper
study. Particularly, the works to be performed as a continuation of this dis-
sertation can be divided into those related with possible improvements of the
sensor models, the design of an adaptive MVEM of the engine air path, the
design of more complex emission models (and their possible adaptation), the
validation of the methods and the different applications of the algorithms.

Sensor knowledge. A deeper study on the NOx sensor response is manda-
tory in order to identify a physical model that can predict both the delay
and response time with higher accuracy. The sensor delay and response times
are variable, especially at low loads and low NOx emissions (partly due to
the loss of accuracy of the sensor for low NOx concentrations [1]). Different
phenomena and effects deserve an attention: the protective layer distortion,
the internal diffusion speed between chambers and the effect of flux velocities,
pressures, temperatures and concentrations over the final sensor output. Even
though the pressure effect over the NOx output from the NOx sensor has been
identified and it is not high for the pressures that can appear at the diesel
engine exhaust, a deeper study should be conducted in order to characterise
an appropriate correction. Furthermore, the influences of the pressure and
other operation variables over the sensor should also be analysed.

To sum up, the use of a first order filter model with constant response
times and delay could be improved by considering possible variations in these
parameters as well as other influences that can be modelled for instance with
transfer functions, or alternatively by considering a more representative non-
linear model. In order to fulfil this task, the use of fast response measurements
is required for calibration and validation.

Design of an adaptive MVEM for the air path. The air path model
used for computing the EGR mass flow entering the engine is based on the
volumetric efficiency and the measurements of the air mass flow and the boost
pressure. The influence of the storage dynamics at the intake and the exhaust
junction are not considered nor the dynamic effects over the intake and ex-
haust temperatures. Furthermore, the exhaust temperature is also modelled
by a map with a set of corrections. The model could also consider the tur-
bocharger (TC), the air filter, the actuators or the intercooler as well as the
after-treatment (AT) systems.
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The design of a MVEM considering these effects is not a challenge (this
topic is well covered in the bibliography and the state of the art) but the
adaptation of a MVEM is an interesting problem. Different strategies, similar
to those presented in this work, can be implemented in order to estimate model
states and inputs (see e.g. [2]).

With regards to the observation of the model inputs and states, drift cor-
rection models can be set for tracking the bias between the model states and
sensor measurements. Good examples are the drifts on 9ma (by considering a
model for the TC) and the injector (by using λ�1 and the corrected 9ma).

With respect to the observation of model parameters as states, the fusion
strategies can be utilised for updating the model while also for fitting the ECU
parameters. Hence the drift correction and the updating algorithms are useful
tools. However, there exists a problem with respect to the observability of the
states and the filter tuning, i.e. it is difficult to weight the errors between all the
parameters and the robustness must be assessed. The problem could be split
up by designing local observers for the different sub-models, e.g. observing
compressor maps by comparing with the MAF sensor output. Anyway, the
closed-loop interaction should be assessed and a global cost function optimised.

This problem deserves a specific study and the use of synthetic signals
should be a first step for evaluating the possibilities of the observers for solving
a global optimisation problem. When involving look-up tables (frequent on
MVEMs and ECUs), methods like the SKF permit the online adaptation with
an affordable computational effort.

If the updating problem is designed globally and considering the closed loop
interaction on real time, the discussion made for the SKF in order to simplify
the KF when the system is large and only a few parameters are observable is
also valid. Here, the use of parameters for defining how observable elements
are at every iteration (e.g. grammians) allows to simplify the observation
problem.

Emission models. The designed NOx and λ�1 models are based on static
maps and equations with a set of corrections and ECU signals as inputs, plus
filters and delays for modelling physical and sensor dynamics. If other sensors
are available, such as a cylinder pressure sensor, the prediction of the exhaust
conditions can be benefited from a more accurate combustion model. The
model states could also be augmented by including the soot prediction and
considering further states from a MVEM of the air path.
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In addition, an interesting improvement is modelling the AT devices. For
instance, the monitoring of soot upstream and downstream of the DPF and
the tight control of the exhaust λ�1 is required for an optimal control of the
DPF. For a correct estimation, the combination of sensors and models with
similar methods to those developed in this dissertation is advisable. The same
example can be applied to SCR.

The physical interactions should also be included in control-oriented mod-
els of the AT line [3]. This is of particular importance for tracking the NOx

emissions at different points, i.e. although the total NOx could be highly
constant upstream of the deNOx system (SCR or LNT), the concentration of
NO and NO2 species vary due to the oxidation in the DOC. And of course, the
total NOx will be reduced after deNOx systems. The crossed effects over other
concentrations (e.g. soot) and over the sensor signals, as well as other factors
such as the ammonia cross sensitivity should be taken into account. For such
cases, the data fusion of sensors and models by observers is also interesting,
as shown in Hsieh and Wang [4].

Validation of the models and adaptive methods. The assessment of the
estimations and sensors should be validated with fast response measurement
systems that can offer a dynamic and accurate reference of the considered
variables. They are necessary for improving the sensor model identification
and the validation of the methods.

Fast gas analysers based on CLD for measuring NOx present response times
around 2 ms, those based on NDIR for measuring CO/CO2 (thus oxygen or
λ�1) reach 8 ms, while for soot these can be lower than 100 ms. These devices
are suitable in order to identify the sensor dynamics and validate the results.

Applications. Once these methods and models are validated, the RT esti-
mation of engine states (NOx and λ�1 in the present work) could be used for
the following functions:

• Control of the air path, fuel path and AT devices with feedback on
exhaust emissions and other engine states,

• OBD of the AT systems,

• serving as inputs for other models or functions, as for instance, soot
models (which depends on the exhaust λ�1), and

• tuning of controller parameters by model based optimisation [5].
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To sum up, if a proper sensor set is available, engine variables and pa-
rameters can be observed. In addition to λ�1 and NOx, interesting examples
could be the volumetric efficiency, the intake oxygen concentration, the mass
flows, temperatures and pressures in the manifolds, and other relevant exhaust
concentrations. Due to the EURO VI and future legislations, this topic is of
high interest, and recent advancements in sensor technology, as the case of
soot sensors, may be benefited by the presented methods. Anyway, the final
quality on the estimation also falls on the accuracy of the models used for the
data fusion and the knowledge of the sensor behaviour.
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