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ABSTRACT

Let G be a group, Pg be the family of all subsets of G. For a subset
A C G, we put A(A) = {g € G : |[gAN A| = co}. The mapping
A :Pg — Pa, A— A(A), is called a combinatorial derivation and can
be considered as an analogue of the topological derivation d : Px —
Px, A — A%, where X is a topological space and A? is the set of all
limit points of A. Content: elementary properties, thin and almost thin
subsets, partitions, inverse construction and A-trajectories, A and d.
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1. INTRODUCTION

Let G be a group with the identity e, Ps be the family of all subsets of G.
For a subset A of G, we denote
A(A) = {g € G: lgAn A] = oo},
observe that A(A) C AA™!, and say that the mapping
A:Pg— Pg, A— A(A)

is the combinatorial derivation.

In this paper, on one hand, we analyze from the A-point of view a series
of results from Subset Combinatorics of Groups (see the survey [9]), and point
out some directions for further progress. On the other hand, the A-operation
is interesting and intriguing by its own sake. In contrast to the trajectory A —
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AA™Y - (AATH(AAYH) 7L — L. the A-trajectory A — A(A) — A?(A) —
... of asubset A of G could be surprisingly complicated: stabilizing, increasing,
decreasing, periodic or chaotic. For a symmetric subset A of G with e € A,
there exists a subset X C G such that A(X) = A. We conclude the paper by
demonstrating how A and a topological derivation d arise from some unified
ultrafilter construction.

We note also that A(A) may be considered as some infinite version of the
symmetry sets well-known in Additive Combinatorics [11, p. 84]. Given a
finite subset A of an Abelian group G and « > 0, the symmetry set Sym,(A)
is defined by

Syma(A) ={g € G:|[AN(A+g)| = alAl}.
2. ELEMENTARY PROPERTIES
Claim 2.1. (A(A))"!=A(4), A(A) C AA~L
Claim 2.2. A(A) =0 & e ¢ A(A) < A is finite.
Claim 2.3. For subsets A, B of G, we let
A(A,B)={ge€ G:|gANB| =}
and note that
A(AUB)=A(A)UA(B)UA(A,B)UA(B, A),
A(ANB) CA(A)NA(B)

Claim 2.4. If F is a finite subset of G then
A(FA) = FA(A)F.

Claim 2.5. If A is an infinite subgroup then A = A(A) but the converse
statement does not hold, see Theorem 6.2.

3. THIN AND ALMOST THIN SUBSETS

A subset A of a group G is said to be [8]:

thin if either A is finite or A(A) = {e};

almost thin if A(A) is finite;

k-thin (k € N) if [gAN A| < k for each g € G\ {e};

sparse if, for every infinite subset X C G, there exists a non-empty

finite subset I C X such that [ cr g4 is infinite;

e k-sparse (k € N) if, for every infinite subset X C G, there exists a
subset I C X such that [F'| <k and (,cp gA is finite.

The following statements are from [8].

Theorem 3.1. FEvery almost thin subset A of a group G can be partitioned
in 1AW= thin subsets. If G has no elements of odd order, then A can be
partitioned in 212411 thin subsets.
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Theorem 3.2. A subset A of a group G is 2-sparse if and only if X 'X ¢
A(A) for every infinite subset X of G.

Theorem 3.3. For every countable thin subset A of a group G, there is a thin
subset B such that AU B is 2-sparse but not almost thin.

Theorem 3.4. Suppose that a group G is either torsion-free or, for every
n € N, there exists a finite subgroup H,, of G such that |Hy,| > n. Then there
exists a 2-sparse subset of G which cannot be partitioned in finitely many thin
subsets.

By Theorem 3.2, every almost thin subset is 2-sparse. By Theorems 3.3,
3.4, the class of 2-sparse subsets is wider than the class of almost thin subsets.
By Theorem 3.3, a union of two thin subsets needs not to be almost thin. By
Theorem 2.3, a union A; U...U A, of almost thin subset is almost thin if and
only if A(A;, A;) is finite for all 4,5 € {1,...,n}, By Claim 2.4, if A is almost
thin and K is finite then K A is almost thin.

The following statements are from [7].

Theorem 3.5. For every infinite group G, there exists a 2-thin subset such
that G=XX1UX1X.

Theorem 3.6. For every infinite group G, there exists a 4-thin subset such
that G = XX 1.

Since A(X) = {e} for each infinite thin subset of G, Theorem 3.6 gives us
X with A(X) = {e} and XX ! =G.

4. LARGE AND SMALL SUBSETS

A subset A of a group G is called [8]:

large if there exists a finite subset F' of G such that G = FA;
A-large if A(A) is large;
small if (G\ A) N L is large for each large subset L of G;
P-small if there exists an injective sequence (g, )new in G such that the
subsets {g,A : n € w} are pairwise disjoint;
e almost P-small if there exists an injective sequence (g, )new in G such
that the family {g,A : n € w} is almost disjoint, i.e. go,A N g, A is
finite for all distinct n,m € w.
o weakly P-small if, for every n € w, one can find distinct elements
g1, - - -, gn of G such that the subsets g1 4, ..., g, A are pairwise disjoint.
Let G be a group, A is a large subset of G. We take a finite subset F' of G,
F ={g1,...,9n} such that G = FA. Take an arbitrary g € G. Then g;ANgA
is infinite for some i € {1,...,n}, so g; 'g € A(A). Hence, G = FA(A) and
A is A-large. By Theorem 3.6, the converse statement is very far from being
true.
If A is not small then F'A is thick (see Definition 5.2) for some finite subset
F. Tt follows that A(FA) = G. By Claim 2.4, A(FA) = FA(A)F~1, so if G
is Abelian then A is A-large.
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J. Erde proved that every non-small subset of an arbitrary infinite non-
Abelian group G A-large.

It is easy to see that A is P-small (almost P-small) if and only if there exists
an infinite subset X of G such that X ' XNPP~! = {e} (X1 XNA(X) = {e}).
A is weakly P-small if and only if, for every n € w, there exists F' C G such
that |F| =n and F~'F N PP~ = {e}.

By [8, Lemma 4.2], if AA~! is not large then A is small and P-small. Using
the inverse construction from Section 6, we can find A such that A is not
A-large and A is not P-small.

Every infinite group G has a weakly P-small not P-small subsets [1]. More-
over, G has almost P-small not P-small subset and , if G is countable, weakly
P-small not almost P-small subset. By [8], every almost P-small subset can
be partitioned in two P-small subsets. If A is either almost or weakly P-small
then G\ A(A) is infinite, but a subset A with infinite G\ A(A) could be large:
G=17,A=27.

5. PARTITIONS

Let G be a group and let G = A; U ... A, be a finite partition of G. In
section 7, we show that at least one cell A; is A-large, in particular, AiAZI is
large. If G is infinite amenable group and p is a left invariant Banach measure
on (G, we can strengthened this statement: there exist a cell A; and a finite
subset F' such that |F| < n and G = FA(A;). To verify this statement, we
take A; such that p(A;) > % and choose distinct g, .. ., gm such that p(grA; N
giA;) = 0 for all distinet k,1 € {1,...,m}, and the family {g14;,...,9mA:}
is maximal with respect to this property. Clearly, m < n. For each g € G,
we have u(gA; N grpA;) > 0 for some k € {1,...,m} so g;'g € A(A;) and
G={g1, .-, gm}A(A).

By [10, Theorem 12.7], for every partition A, U...UA,, of an arbitrary group
G, there exist a cell A; and a finite subset F' of G such that G = FAZ-AZ-_1 and
|F| < 22""'~1_ S, Slobodianiuk strengthened this statement: there are F and
A; such that |[F| < 22" ~!and G = FA(A)).

It is an old unsolved problem [5, Problem 13.44] whether ¢ and F' can be
chosen so that G = FA; A7 and |F| < n, see also [10, Question 12.1].

Question 5.1. Given any partition G = Ay U ...U A, do there exist F and
A; such that G = FA(A;) and |[F| < 2™7?
Definition 5.2. A subset A of a group G is called [11]:

e thick if G\ A is not large;

o k-prethick (k € N) if there exists a subset F' of G such that |F| < k
and F'A is thick;

e prethick if A is k-prethick for some k € N.

By [3, Theorem 5.3.2], for a group G, the following two conditions (i) and
(ii) are equivalent:
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(i) for every partition G = AU B, either G = AA~! or G = BB™!;
(ii) each element of G has odd order.

If G is infinite, we can show that these conditions are equivalent to
(iii) for every partition G = AU B, either G = A(A) or G = A(G).

6. INVERSE CONSTRUCTION AND A-TRAJECTORIES

Theorem 6.1. Let G be an infinite group, A C G, A = A, e € A. Then
there exists a subset X of G such that A(X) = A.

Proof. First, assume that G is countable and write the elements of A in the
list {a, : n < w}, if A is finite then all but finitely many a,, are equal to e.
We represent G\ A as a union G \ A = J,,,, Bn of finite subsets such that
By, € Bnt1, B, = B,,. Then we choose inductively a sequence (X,,)nec. of
finite subsets of G,

X, = {ana Tnly---yTnn, A0OTn0; - - - anxnn}

such that X, X,; ' N B,, = {e} for all m < n < oco.

After w steps, we put X = J,, o, Xn. By the construction, A(X) = A.

If |A] < Xg but G is not countable, we take a countable subgroup H of G
such that A C H, forget about G and find a subset X C H such that A(X) is
equal to A in H. Since gAN A = & for each g € G\ H, we have A(X) = A.

At last, let |A| > Ry. By above paragraph, we may suppose that |A| = |G].
We enumerate A = {aq, : a < |G|} and construct inductively a sequence
(Xa)a<|q of finite subsets of G and an increasing sequence (Hy)q<|q| of sub-
group of G such that if « =0 or « is a limit ordinal, n € w,

Xa-i—n = {xa+n707 LTa+4n,1y+- s Latn,ny Galat+n,0y - -« aa-{—nxa-i-n,n};

XaJrn g Ha+n+1 \Honrn; XaJrnXil g AU (HaJrnJrl \HaJrn)-

a+n

After |G| steps, we put X = J,<|g| Xa- By the construction, A(X) = A. O

Let Ay,..., A, be subsets of an infinite group G such that G = A;U...UA,,.
By the Hindman theorem [4, Theorem 5.8|, there are exists i € {1,...,m}
and an injective sequence (gn)new in G such that FP(gn)new C A;, where
FP(gn)new is a set of all element of the form g¢;, g, ... g4y, 11 < ..., < w,
k€ w.

We show that there exists X C FP(gn)new such that A(X) = {e} U
FP(gn)new U (FP(gn)new) t. We note that if G is countable, at each step
n of the inverse construction, the elements z,g,...,Z,, can be chosen from
any pregiven infinite subset Y of G. We enumerate FP(¢,)necw in a sequence
(an)new and put Y = {g, : n € w}. Using above observation, we get the
desired X.

If G is countable, we can modify the inverse construction to get X such that
A(X) = Aand | XNgiNg2X| < oo for all distinct g1, g2 € G\{e}, in particular,
X is 3-sparse and, in particular, small.
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Another modification, we can choose X such that X N ¢gX # @ for each
g € G. If we take A not large, then we get X which is not P-small and X is
not A-large, see Section 4.

Theorem 6.2. Let G be a countable group such that, for each g € G\ {e}, the
set \Jg={x € G: x? = g} is finite. Then the following statements hold:

(Tr1) Given any subset Xo C G, X = Xo_l, e € Xy, there exists a sequence
(X0 )new of subsets of G such that A(X,41) = X, and X,,NX,, = {e},
0<m<n<w.

(T'rq) There exists a sequence (X, )nez of subsets of G such that A(X,) =
Xnt+1, Xm N X, ={e}, myn € Z,m # n.

(Trs) There exists a subset A of G such that A(A) = A but A is not a
subgroup.

(Try) There exists a subset A such that A D A(A) D A%(A) D ...

(Trs) There exists a subset A such that A C A(A) C A%2(A) C ...

(T'rg) For each natural natural number n, there exists a periodic A-trajectory
Xo, cee ;Xn—l oflength n: X1 == A(XO)7X2 = A(Xl), ey Xn == A(Xn—l)
such that X; N X; = {e}, i < j <n.

Proof. We use the following simple observation
(*) if F is a finite subset of an infinite group G and g ¢ F then the set
{x € G: 27 gz ¢ F} is infinite.
In constructions of corresponding trajectories, at each inductive step, we use
a finiteness of \/g and (*) in the following form:

(**) if a € G, F is a finite subset of G, F'N {e,a™} = @ then there exists
x € G such that

{zF (az)* Yot (ax)F I N F = 2.

We show how to get a 2-periodic trajectory: X, Y, A(X) =Y, A(Y) = X,
XNY = {e}. We write G as a union G = |J,,, Fn of increasing chain
{F, : n € w} of finite symmetric subsets Fy = {e}. We put Xo =Y, = {e} and
construct inductively with usage of (**) two chains (X, )new, (Yn)new of finite
subsets of G such that, for each n € w,

X1 = {(2)*, (ye()) ™ 1y €YoU...UYa},
Y1 = {(y(@)*, (zy(x) ™z e XoU...UX,},
(XoU...UX,)N (Y U...UY,) ={e},
Xnt1Xns1 N (Frpi \ (Y U...UY,)) =2,

Yo 1Vis1 N (Fugr \ (Xo U... UX,)) = &
(XoU...UXp)Xns1 N (Far1\ (YoU...UYy)) = &,
(YoU...UY) Vi1 N (Fagr \ (XoU...UX,)) = &

After w steps, we put X = X, Y = Unew Yn- O

ncw
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7. A AND d

For a subset A of a topological space X, the subset A? of all limit points of A
is called a derived subset, and the mapping d : P(X) — P(X), A — A%, defined
on the family of P(X) of all subsets of X, is called the topological derivation,
see [6, §9].

Let X be a discrete set, X be the Stone-Cech compactification of X. We
identify X with the set of all ultrafilters on X, X with the set of all principal
ultrafilters, and denote X* = X \ X the set of all free ultrafilters. The
topology of 3X can be defined by the family {A : A C X} as a base for open
sets, A = {p € BX : A € p}, A* = AN G*. For a filter p on X, we put
P={pefX pCp}, o =pNG"

Let G be a discrete group, p € SG. Following [2, Chapter 3], we denote

c(A,p)={g€ G:A€gp}, gp={gP: P €p},
say that cl(A,p) is a closure of A in the direction of p, and note that

A(A) = () cl(A,p).
pEA*

A topology 7 on a group G is called left invariant if the mapping l, : G — G,
ly(x) = gz is continuous for each g € G. A group G endowed with a left
invariant topology 7 is called left topological. We note that a left invariant
topology 7 on G is uniquely determined by the filter ¢ of neighbourhoods of
the identity e € G, ¥ and ¢* are the sets of all ultrafilters an all free ultrafilters
of G converging to e. For a subset A of G, we have

Al = ﬂ cl(A,p),

pe(T*)

and note that A? C A(A) if A is a neighbourhood of e in (G, 7).

Now we endow G with the discrete topology and, following [4, Chapter 4],
extend the multiplication on G to 8G. For p,q € BG, we take P € p and,
for each g € P, pick some @4 € g. Then Ugep 9@Qp € pg and each member of
pq contains a subset of this form. With this multiplication, SG is a compact
right topological semigroup. The product pg can also be defined by the rule [2,
Chapter 3]:

ACG, Aepg< (A, q) €p.

If (G, 1) is left topological semigroup then 7 is a subsemigroup of SG. If
an ultrafilter p € 7 is taken from the minimal ideal K(7) of 7, by [2, Theorem
5.0.25]. there exists P € p and finite subset F' of G such that Fcl(P,p) is
neighbourhood of e in 7. In particular, if 7 indiscrete (7 = {&,G}), p €
K(BG)) and P € p then cl(P,p) is large. If G is infinite, p € K(BG) is free,
so cl(P,p) C A(P) and P is A-large. If a group G is finitely partitioned
G =A;U...UA,, then some cell A; is a member of p, hence A; is A-large.
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