

Project Report – May 2012

Simplified Enterprise Resource Planning System

Alumno: Miguel Cruz Zúnica (micruzu@ei.upv.es)
 Tutor upv: Juan Carlos Ruiz García (sri@inf.upv.es)
 Tutor leicester: Stuart Kerrigan (sk233@le.ac.uk)

 Titulación: Ingeniería Técnica en Informática de Sistemas

Project Report submitted to the University of Leicester in Partial Fulfillment for the degree of
Bachelor of Science.

Word count: 11415 words

I

Table of contents

 0 Abstract pg. 1

 1 Introduction

 1.1 Research Context pg. 1

 1.2 Aims pg. 2

 1.3 Objectives pg. 2

 2 Requirements And Specifications

 2.1 Data pg. 2

 2.2 Config pg. 3

 2.3 Sales pg. 3

 2.4 Purchases pg. 4

 3 Design

 3.1 Development Methodology pg. 4

 3.2 System Design pg. 5

 3.3 Programming Language pg. 5

 3.4 Database pg. 6

 3.5 Development Environment And Plug-ins pg. 6

 3.6 GUI Technology And Usability pg. 7

 3.7 Software Repository pg. 8

 3.8 Limitations Of Users pg. 9

 3.9 Performance pg. 9

II

 3.10 Installation Requirements pg. 9

 4 Implementation Details And Challenges

 4.1 Classes And Layers pg. 9

 4.2 Database Access Methods pg. 11

 4.3 Backup And Restore pg. 12

 4.4 Exception Handling pg. 12

 4.5 Privileged And Non-Privileged Sessions pg. 13

 4.6 Quotations To Sale Function pg. 13

 4.7 Search Dialogs And Filters pg. 13

 4.8 Interface Components pg. 14

 4.9 Creation, Saving And Deletion Procedures pg. 15

 4.10 Total Price Boxes pg. 16

 4.11 Finding And Applying Discounts pg. 16

 4.12 Database Internal Structure pg. 17

 5 Software Testing pg. 18

 6 Planning And Timescales pg. 18

 7 Usage Tutorial

 7.1 Starting/Stopping The Server pg. 20

 7.2 Client Log-in pg. 21

 7.3 Main Window pg. 21

 7.4 Users Management pg. 22

 7.5 Restore/Backup pg. 22

III

 7.6 Clients pg. 24

 7.7 Search pg. 25

 7.8 Products pg. 26

 7.9 Suppliers pg. 27

 7.10 Discounts pg. 28

 7.11 Quotations pg. 29

 7.12 Add/Edit Product pg. 30

 7.13 Sales pg. 31

 7.14 Purchases pg. 32

 8 Critical Appraisal pg. 33

 9 References pg. 35

IV

0. Abstract

Simplified Enterprise Resource Planning is a management software developed in Java [1]. It is
composed of a client and a server. The server encloses an embedded Derby relational database [2]
which stores all information in the system while preserving its structure according to a schema.
Additionally the server permits to specify the port at which it will listen for client's connections and
to start or stop itself.
The client uses Java's Swing technology to create a simple yet elegant interface focused on
efficiency. The features of the client include: creation, modification and deletion of clients,
products, suppliers, discounts, quotations, sales and purchases. In addition, only the administrator
user can create, modify or delete users as well as create or restore backups of the database.
When creating operations such as quotations, sales and purchases only the identifiers from the
products, clients and other data objects involved are required, the rest of the information is obtained
from the profile of the respective objects in the database. For selecting these identifiers proper
search functionalities are included with which objects can be searched and loaded based on their
characteristics even if their internal identifier is not known. Moreover, the system keeps track of the
product's stock and when sales or purchases are created stock is adjusted accordingly in order to
ensure the consistency of these operations. Additionally there is a unique functionality on
quotations and sales to search, and apply if available, an efficient combination of discounts for the
current operation based on the products it involves.
Another important characteristic of the system is that it is self-contained and ready to work out of
the box. Furthermore, the server's database is already initialized with the tables and fields required
by the client and it is presented with empty except for the administrator's user credentials.
Finally, the only requirement of the system to run is to have installed the Java Runtime
Environment [3], which is available in all major operating systems including Microsoft Windows
series [4], Linux [5] and Mac [6]. This enhances the versatility of the product allowing it to run
natively on any operating system indistinctly.

1. Introduction

1.1 Research Context

An enterprise resource planning [7](ERP from now on) is a system designed to manage
information from a business or an entire organization. It integrates both external and internal
information across departments. From sales, accounting and manufacturing to customer
relationship, its goal is to automate and enhance control over business' information.
Commonly it consist of a centralized database, a server and multiple clients. The system is
meant to work in real time or next to it. Moreover, the range of features it may include is
wide and usually requires to be personalized for each company's requirements. For this
reason the cost of these products highly depend on the features included as well as the
volume of transactions involved.
As mentioned before software integration is one of the goals of these systems in order to
avoid dependency on multiple different IT solutions.
Finally, ERPs are becoming a key factor for success in today's high-tech world where
competition between companies is fierce. The problem, however, is that often this kind of
software is too complex and expensive, specially for smaller businesses which usually end
up using a combination of less efficient solutions.

1

1.2 Aims

The aim of the project is to build a simplified ERP (SERP from now on) that cover the
basic features required by businesses in a simple and generic way that will allow even small
companies to use it out of the box without big investments.

1.3 Objectives

The objective of the project is to create a modular system with starting features including:
quotes, sales, purchases, users management, clients and suppliers profiling, products and
discounts specification. The modular nature of the product should permit extending it with
additional functionalities easily, avoiding code repetition and benefiting from existing
module's resources. For the same reason the look and feel must be consistent among all
modules.
To accomplish this, both a client and a server should be developed. The server will
authenticate users login credentials and provide information from database when requested
from a client. On the other hand, the client will prompt a login screen, after which it will
present the modules available to the user depending on his access group.
Furthermore, when creating a quotation, sale or purchase only the identifier from the data
objects involved (clients, products or suppliers among others) should be required, while the
rest of information will be obtained from their respective database fields. However, as
remembering identifier numbers of objects is not realistic nor efficient, it will always be
possible to search through them by the means of dialogs. These dialogs should also permit to
filter searches by several characteristics related to the objects involved.
Additionally, after creation, deletion or modification of a sale or a purchase, the stock of the
products involved must be adjusted as required in order to keep the database consistent with
the reality. There should also be constraints applied to operations and fields to maintain
consistency among the database. An example of this would be not being allowed to create a
sale to an inexistent client.
In addition, a unique feature from this software will be a tool to find and apply an efficient
combination of discounts to a quote or a sale. It should also be possible to create a sale out
of a quotation with a single button click, preserving all the data from the quotation into the
sale and linking both objects between themselves.
Finally, the administrator, and only him, should be able to create, modify and delete users, as
well as to create backups from the database and to restore them afterwards.

2. Requirements And Specifications

The system functionalities are organized in four modules. All of them, except configuration one,
have in common that their objects can be searched through by the means of dialogs, filtering search
results by several relevant characteristics and loading desired result to be displayed and its
information completed from the database.

2.1 Data

This module is dedicated to the management of data objects that are themselves used in
other modules. Its components are:

2

• Clients
Here instances of clients can be viewed, created, deleted or modified. In addition
information about them like their first name, last name, address, email and company
name can be filled.

• Products
Here instances of products can be viewed, created, deleted or modified. In addition,
information about them like their name, family, model, serial number and price can
be filled. A count of the product's stock is displayed but can't be edited. This stock
count will be automatically adjusted by the system when processing operations like
sales or purchases.

• Suppliers
Here instances of suppliers can be viewed, created, deleted or modified. In addition,
information about them like their first name, last name, address, email and their
company name can be filled.

• Discounts
Here instances of discounts can be viewed, created, deleted or modified. In addition,
information about them like their name and the amount of money discounted can be
filled. Furthermore, a specific amount of any products can also be specified as a
requirement for the discount to be eligible to be applied.

2.2 Config

This module is dedicated to SERP's configuration and privileged operations. For this reason
this module is only presented to the administrator user:

• Users
Here instances of users can be viewed, created, deleted or modified.

• Backup/Restore
Here backups from the database can be created into a specified destination in the
server's machine. In addition, existing backups in the server's machine can be
restored specifying their path and name.

2.3 Sales

This module is dedicated to sales:

• Quotations
Here instances of quotations can be viewed, created, deleted or modified.
Furthermore, all the information related with the client or the products is obtained
from their respective profiles. Also, there is a button to create a sale out of the
current quotation. In addition, a quotation cannot be deleted or modified if there is a
sale made out of it. Quotations don't affect the stock of products. Moreover, there is a
button to search, and apply if requirements are meet, an efficient combination of
discounts based on the products involved in the quotation. Finally, there are three
fields that display the total base price of the quotation, the total discount reduction

3

and the total final price after discount reduction respectively.

• Sales
Here instances of sales can be viewed, created, deleted or modified. Furthermore, all
the information related with the client or the products is obtained from their
respective profiles or quotations. In addition, the stock of the products being sold
will be updated on creation, modification or deletion of the sale. Moreover, there is a
button to search, and apply if requirements are meet, an efficient combination of
discounts based on the products involved in the sale. Finally, there are three fields
that display the total base price of the sale, the total discount reduction and the total
final price after discount reduction respectively.

2.4 Purchases

This module is dedicated to acquisitions:

• Purchases
Here instances of purchases can be viewed, created, deleted or modified.
Furthermore, all the information related with the supplier or the products is obtained
from their respective profiles. In addition, the stock of the products being bought will
be updated on creation, modification or deletion of the purchase. Finally, there is a
field that displays the total amount of the operation.

3. Design

3.1 Development Methodology

The development methodology chosen for the project was a custom one based on the
principle of agile development [8], and more specifically on iterative development.
Following this principle, on every iteration a small functionality was designed, implemented
and tested before to move on to the next step. This effectively prevented code rewriting and
helped building a more robust system while minimizing the time spent on debugging.
A number of factors and reasons were considered in order to choose this methodology over
the rest:

• The limited experience of the developer in the ambit of software design implied that
the design was prone to require changes from the original concept. For this reason, if
a formal software development cycle [9] had been chosen, it was likely that during
the coding and testing stages design flaws would have arisen forcing the project to
return to the design stage and thus increasing the amount of time invested in the
design stage as each time the whole system would have to be redesigned instead of a
small part of it as happens on a more agile methodology.

• The also limited experience of the developer in both the programming language
chosen and the tools used in the project (ie: the database model chosen) presented a
challenge during the design stage because the coding techniques used had yet to be
researched and tested to make sure the concept designed was feasible. Once again
agile development methodologies offer the benefit of dividing development in small
iterations so that both tests are more frequent and changes are easier to adapt because
less volume of work is involved in each iteration.

• The modular nature of the system propitiated the adoption of an iterative

4

development so that modules were designed and implemented one by one instead of
all being designed at the beginning before any implementation occurred.

• Along the same lines, due to the limited experience of the developer and the
existence of a deadline to finish the project, an iterative development methodology
allowed the project to grow from core functionalities to extra features ensuring that
deadline would not arrive without the project basic implementation being fully
finished.

For all these reasons the agile development methodology was considered more appropriate
for the project.

3.2 System Design

To design the system, functionality specifications were elaborated and used, and as a result
of this, implementation was faster and easier. In addition, another benefit was a reduction in
the chances of both committing mistakes and having to rewrite code once in the
implementation phrase.
Furthermore, each software product (server and client) was divided in three layers:
presentation, logic and storage, although the client only made use of the first two. On the
server the presentation layer embraced minimum aspects like switching on and off the
server through a user interface and specifying the port at which the server would listen
requests from the clients. Moreover, the logic layer of the server comprehends the proper
functionalities of the server, that is, accepting request from clients, processing them and
answering the clients back. Processing client's requests, in turn, translates to establishing
connections with the database, querying it and closing it when appropriate. Finally, the
storage layer on the server is the database itself, which is embedded into the server
application. On the other hand, the client's presentation layer embraces the user interface
and all the features related to them, while its logic layer covers the functions and
mechanisms that regulates the client's process as a whole as well as the functions that work
as a link between the server and the different modules of the client that require database
access by starting, closing and processing connections and requests with the server. The
client does not store any information as it was previously mentioned, hence does not make
any use of the storage layer.

3.3 Programming Language

The programming language chosen for this project is Java. A number of factors were taken
into consideration in order to take this decision:

• The application is meant to run on a desktop computer, hence we don't need to
consider languages only based on web platforms.

• Java is object-oriented.
• Java is free (as free beer) and so are most of its developing environments.
• Java is a very robust language, with a big community and plenty of documentation

available.
• The developer has previous experience both with the language and its tools.
• Java was taught during the degree.
• Although producing lower performance than C based languages, provides a good

balance between the easy of coding characteristic from higher level languages and
the performance characteristic from lower level ones.

• Java has a number of well integrated database options from where to choose. This is

5

a requisite of this project for obvious reasons.
• Java has excellent networking tools that will be required in the project for the server

to communicate with the clients across the Internet.
• It is platform-free and well extended, there are runtime environments available for

almost all operating systems and architectures.

This last point, being available in multiple platforms, is the most important reason why
Java was chosen as the programming language for this project. This is because one of the
key features of the project is precisely the flexibility to run it or port it to any of the major
operating systems and architectures available. The current trends in the information
technology world point towards a diversification in the usage of operating systems, with
Linux, Mac and mobile operating systems gaining a lot of presence both in the industry and
within home users. This can potentially target niches of customers that use operating
systems other than the ones in the Microsoft series and where this kind of management
solutions are not widely available. Furthermore, it allows the server to run natively into a
different operating system than the clients, what is a common practice in the industry where
most servers run in Linux, without requiring the use of a virtual machine.
Finally, the system is meant to run under the execution environment JavaSE-1.6.

3.4 Database

The database chosen for this project is the Apache Derby relational database, also known as
Javadb, in its version 10.8.2.2. The reasons are because it is free (as in free beer), it is well
documented and perfectly integrated into the Java platform, it is small sized (2MB
footprint) and compact, and on the top of that, because it can be embedded.
The database is embedded into the server in order to minimize the requirements and the
installation process. In addition, by embedding the database it can be released initialized
with all the tables, fields and configuration required by the project ready to be used out of
the box, without relying on third application tools or processes. Finally, an embedded
database offers more security as the database is closed and cannot be accessed after the
server application is closed. On the other hand, a down side of embedding the database is a
potential lose of performance and scalability as the volume of data grows, but it is deemed
acceptable because the target of this project are small business which data volume should
not represent a problem for the Derby database.

3.5 Development Environment And Plug-ins

It was decided to use an integrated development environment (IDE from now) for this
project for a number of reasons:

• They allow you to navigate through the code without worrying about namespaces or
projects.

• They have syntax correction and auto-completion that greatly enhances the coding
experience as well as minimizing the errors during the debugging phrase.

• They automatically generate code to create and initialize some objects, which saves
time at coding.

• They provide of refactoring functionalities that improve the coding experience.
• They provide of live documentation when hovering over special syntax objects,

functions and libraries.
• They warn you of errors as you type, in some cases even prior to compiling the code.

6

• They provide of an integrated and organized view of the coding environment
(console, files, code, warnings among others).

• They provide of advanced debugging tools vital for error fixing.
• They allow visual programming to some extent, as for instance they provide of tools

to visually create user interfaces and to automatically generate the code for them.
• They provide ways of testing the software with ease.

To conclude, they enhance and improve the coding experience as well as integrate multiple
tools required for developing.

The IDE chosen for this project is the Eclipse IDE for Java Developers [10] in its 3.7
version codename Indigo. Eclipse was chosen over other popular solutions like NetBeans
[11] or Idea [12] because its free (as in free beer), open-source, it has been introduced
during the degree, it has a number of plug-ins to integrate multiple tools that were required
for this project, it is well documented and has a huge community to support it.
The following plug-ins for eclipse were used in order to provide extra functionality and to
integrate all the required developing tools into the IDE:

• Data Tools Platform Enablement for Apache Derby : provides tools to implement and
connect to the Derby database as well as an interface to manage it and interact with
it.[13]

• Swing Designer and WindowBuilder: provides graphic tools to design Swing
interfaces and to automatically generate their code.[14]

• Subclipse : provides graphic tools in the form of a contextual menu to share projects
through Subversion protocol, which was required by the university.[15]

3.6 GUI Technology And Usability

Java offers two official components in order to develop graphic interfaces: Abstract Window
Toolkit (AWT) [16] and Swing [17]. In addition to these there is an alternative component
called Standard Widget Toolkit (SWT) [18] developed by IBM [19] and maintained by the
Eclipse Foundation [20]. SERP uses Swing to create all the user graphical interfaces for a
number of reasons:

• In contrast with SWT, Swing is part of Java's library, thus it does not require
additional native libraries.

• Swing works in all major platforms.
• Swing has an integrated GUI editor for Eclipse, which is the IDE used to develop the

project.
• Swing has better support and documentation from sun than SWT.
• Swing includes all AWT features as Swing is a newer and more sophisticated version

of it.

Furthermore, usability was an important factor taken into account when designing the user
interfaces during the development process. However, in some cases performance, which is
also another form of usability, was prioritized over more descriptive or intuitive designs
because SERP not only is supposed to be used strictly by internal members of the company,
never by their clients, but it is also expected to be used intensively on a daily basis. In this
specific context it is acceptable to trade an instruction period with a reasonable learning
curve to get familiarized with the system and its functionalities for better performance and
usage speed once the mentioned instruction is completed.

7

Other aspects that were taken into account when designing the user interface were:
• Since the system is going to be used by non technical users it is important that

graphical user interfaces are as simple and minimalistic as possible.
• As the system is going to be used in a business environment, the main theme should

make use of plain and soft colors and the font should be a formal one.
• Due to the modular nature of the system, all modules should maintain the same

design patterns. This implies for example that if there are multiple objects like
buttons that share a similar functionality across different modules, they should look
as similar as possible between them, be positioned in the same place and also react to
user interaction in the same way.

• Any eventuality should be informed in a clear way to the user by the means of pop-
up messages that unambiguously inform of what happened in the system.

• Users should only be presented with the functionalities available with their access
group.

• When processing time consuming operations the cursor should change to reflect that
the system is processing the operation in order to avoid this event being
misinterpreted by the user as a collapse of the system. In addition, a message should
be displayed together with the change of cursor.

3.7 Software Repository

The usage of a Subversion software repository [21] was a mandatory requirement by the
university according to the module study guide. The process of interacting with the
repository was handled by the means of the Eclipse's plug-in Subclipse as mentioned in the
development environment and plug-in section.
Furthermore, repository was structured as follows:

• code
• serp

• branches
• tags
• trunk

• serpc
• branches
• tags
• trunk

• Docs
• Other

Other directory is empty. Docs contains both the project plan and the project final report.
Under code we can find two directories: serp and serpc that corresponds to the server and
the client's subprojects respectively. Under each subproject there are three directories:
branches, tags and trunk. Branches are empty, trunk contain the most updated version of
the code for the respective subproject and tags contain copies of the project that were
created at certain points as a milestones. In addition, most if not all of the tags and trunk's
updates were accompanied by a commentary explaining the changes being made in order to
help keeping track of the development's time-line.

8

3.8 Limitation Of Users

Although the first version of the system doesn't have any limitation on the number of
concurrent users connected to the system, a future market version would implement a limit
and charge for any extra user slot. This is not only a marketing strategy but also is required
to ensure that the performance of the system is kept under reasonable values.

3.9 Performance

Only one process per server or client should be created. Furthermore, once the application is
closed the process should die and be handled appropriately by the operating system.
Moreover, the system should run smoothly without any sensible wait time. However,
operations like searches, backups and restores are an exception and should be used with
caution by the user.
Regarding memory and cpu consumption there are no special requirements, both the client
and the server require around 35MB of ram memory to run.

3.10 Installation Requirements

The system will require the Java Runtime Environment to be installed on the system to
work. In addition, if the machine hosting the server is required to be accessible from the
Internet, the networking devices may need specific configuration to route the external ports
used by the server towards the specific machine where the server is located.

4. Implementation Details And Challenges

In this section details about the implementation of the system as well as the internal mechanisms
built and challenges faced during the coding and developing of the system will be explained and
highlighted.

4.1 Classes And Layers

Both in the server and the client applications the layers are represented by the namespaces
“app”, “data” and “ui” referring to storage, logic and user interface layers respectively.
Furthermore, in the server subproject the following classes can be found:

• Serp : Here is where the main() function is located. This creates a new server user
interface and makes it visible. Furthermore, it does also contain the functions which
start or stop the server. These functions create or stop a SwingWorker [22], which is
a class from Swing to manage threads so that the server can listen to multiple clients
simultaneously. Once the SwingWorker is created it does create a SerpServer object,
which will listen for client requests and manage their queries.

• Server_gui : This is the server's user interface. When the start or stop buttons are
clicked they execute the respective functions to start or stop the server, which are
located at the Serp class.

• SerpServer : Creates a Socket and a ServerSocket. Moreover, the ServerSocket is
initialized to listen on the port chosen by the user at the user interface. When the
server is started it does listen for new connections to arrive to the ServerSocket, at
which time it will assign the incoming connection to a Socket, then it will create and

9

start a serpServerThread class to process the mentioned Socket. In addition, when
the server is stopped it does close the ServerSocket.

• serpServerThread : Accepts a Socket as a parameter, then it will wait until an object
is received from the Socket by an ObjectInputStream, at which time it will process
the received object with a serpProtocol class instance, which will return another
object as reply, which will be sent by an ObjectOutputStream through the Socket.
When this process finishes it will close the socket, the input and output streams and
the serpProtocol.

• serpProtocol : This class will establish a connection with the database by creating
both a Connection and a Statement instance, then it will process the object received
by the serpServerThread, return an object as a reply to the serpServerThread and
finally close the connection established with the database. To process the object
received by the serpServerThread it will assume this object is a String, then it will
check its start and depending on its start words it will proceed. In detail, five
commands are accepted, otherwise an empty object is returned. Furthermore, the
accepted commands start by “Login”, “Query”, “COMMIT”, “ROLLBACK” and
“RESTORE” respectively. Moreover, after receiving one of this commands it will
proceed as follows:

▪ “Login”: Isolates the credentials from the command as they always follow
the same structure, then it will query the database to check if they are correct
and answer accordingly with a string “Ok” or “Invalid”.

▪ “Query”: Isolates the second part of the command, which is a query for the
database, it will then query the database with the obtained query and it will
process and return the output from the database. Moreover, if the query starts
by “SELECT” the operation will be of the type Statement.executeQuery(),
while if the query starts by a different string it will be of the type
Statement.executeUpdate(). Furthermore, to process the output it will assume
the answer is in the form of a table and will create an ArrayList containing as
many ArrayLists of objects as rows has the ResultSet obtained from the
database, then it will fill each of those ArrayLists with the objects contained
in the ResultSet. In addition, to obtain the number of columns from the
ResultSet a ResultSetMetaData object is obtained from the ResultSet.

▪ “COMMIT”: This will trigger a Connection.commit() in order to commit
changes into the database. In this case the returning object is left empty.

▪ “ROLLBACK”: This will trigger a Connection.rollback() to rollback changes
from the database. In this case the returning object is left empty.

▪ “RESTORE”: This will trigger the restore function which is explained in its
own section.

On the other hand, in the client subproject the following classes can be found:

• Main : Contains the main() function, which creates a new thread with a Serpc object.

• Serpc : Maintains a pointer to the current active user interface and to the Socket
which is used to connect with the server. Furthermore, at the beginning it will create
a login interface and make it visible. In addition, it implements the following
functions:

▪ Current active user interface (JFrames) getter, setter and a specific function
to switch their visibility.

▪ check_login: Creates a connection with the server by the means of a Socket
and proceeds to check the validity of the user credentials which are obtained

10

as parameters.
▪ Query: Generic function used by the rest of the application to query the

server. It does accept an string and an integer as parameters, then it sends the
string through the Socket and reads another object from the Socket as a reply.
Finally, depending on the parameter's integer it will end sending through the
Socket either a “COMMIT” command, a “ROLLBACK” one or nothing at
all.

▪ Exit: Takes care of closing the Socket, the Input/Output Streams and calls the
system to exit().

• Additionally, the client implements one class per each user interface involved in the
subproject. Furthermore, these classes contain both the interface components and the
functionalities associated with them.

• Finally, a class called SortByDiscount is implemented to be used as the sort method
for an ArrayList of discounts to be sorted by profitability.

4.2 Database Access Methods

The following code is used to establish a connection with the database:

“Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance();
Connection
conn=DriverManager.getConnection("jdbc:derby:MyDB;user=serp;password=1234");
conn.setAutoCommit(false);”.

➢ The first line obtains a new instance of the driver in case is not available already.
➢ MyDB is the name of the database.
➢ user and password are required to access the database although this is a mere

formality because as the database is embedded into the server it should not be
accessible from elsewhere.

➢ The last line sets sets the database property autocommit to false, what implies that
the user must explicitly force a commit or rollback for changes to take effect
permanently in the database. In addition, due to Derby specifications after a commit
or rollback a new transaction is started automatically. Finally, changes are reflected
temporally while the current connection to the database lasts, but if not committed
they are not preserved. Special caution must be taken in order to either commit or
rollback before closing a connection with the database, otherwise problems may
arise on the next connection requiring the database to shutdown and restart.

The first time ever the server is executed, as the database does not exist yet an exception is
triggered, caught and handled by initializing the database internal structure (schema, tables
and administrator user credentials). To do this a new parameter “create=true” needs to be
added to the connection code for the database to be created. Afterwards the structure will be
initialized by SQL queries. Following is the new connection code with the extra parameter:

“Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance();
Connection
conn=DriverManager.getConnection("jdbc:derby:MyDB;create=true;user=serp;password
=1234");”.

11

Furthermore, after querying the database Derby specifications recommends to close the
database. To do this not only the Connection instance has to be closed but also have a new
connection must be established with an additional new parameter. The following is the
appropriate code to accomplish this:

“conn.close();
 conn =
DriverManager.getConnection("jdbc:derby:MyDB;user=serp;password=1234;shutdown=t
rue");”.

➢ The new parameter “shutdown=true” has been added to close the database.
➢ “create=true” parameter cannot be used at the same time as “shutdown=true”.

4.3 Backup And Restore

Following is the MySQL [23] query used to create a backup from the database:

“CALL SYSCS_UTIL.SYSCS_BACKUP_DATABASE('path')”. [24]

Where path is the full address to the directory where we want the backup to be created. If
the directory does not exist it will attempt to create it. In addition, the default name of the
backup is “MyDB”.

Furthermore, to restore a backup of the database we first need to close database because
Derby specifications require the database to be restored on the very first connection
established with the database, otherwise it does not work.
After closing the database (creating a new connection with the parameter “shutdown=true”)
an SQLException is fired by the database with the code “08006” to inform that the operation
was successful, then a new connection is created with the additional parameter
“restoreFrom=path” where path must include not only the directory where it resides but
also the full name of the backup. [25]
Finally, as the database remains closed a new connection is opened so that the client can
continue working with the application.

4.4 Exception Handling

Following are some examples of exception types handled in the project:
• NumberFormatException: Handled when trying to convert a string to a number in

case the input is not a valid number.
• SQLException: Handled in all queries and operations with the database.
• IOException: Thrown by several classes like ServerSocket when attempting to listen

in a specific port.
• ClassNotFoundException: Handled when trying to create new objects from not

standard classes.
• ArrayIndexOutOfBoundsException: Handled when filling a table in case the

structure of the data does not match the one of the table.
• UnknownHostException: Thrown by Socket class when trying to connect to a server.

When any exception is fired the user is informed appropriately by the means of a pop-up
alert box using the class JOptionPane.showMessageDialog().

12

4.5 Privileged And Non-Privileged Sessions

In the client application, after a successful login, when creating the main window of the
application, the login-in process checks the credentials of the user and if the user is not the
administrator creates a different variant of the main window that does not present the
restricted operations only available for the administrator: the user management module and
the backup tool.

4.6 Quotation To Sale Function

In the client application, in the quotation module, there is a button on the right panel labeled
“Create sale” that creates a sale out of the present quotation preserving the content of the
same and linking the sale and the quotation together by the field both models have for that
purpose.

Furthermore, to accomplish this operation a second constructor for the class Sales_gui was
created which accepts as parameters information regarding the sale that is going to be
created. In addition, the standard constructor was modified to use the previous mentioned
new constructor with empty parameters in order to avoid duplicating all the code for both
constructors. The modified code for the standard constructor is as follows:

“ public Sales_gui() {
this(null,null,null,null,null,null,null,null,new DefaultTableModel());
Clear_table();

}”.

And the new constructor looks like this:

“public Sales_gui(String id, String budget, String cl_id, String fname, String lname, String
address, String email, String company, DefaultTableModel model)”.

Where id is the identifier for the new sale being created, budget is the identifier from the
quotation out of which the sale is being created, cl_id is the identifier of the client, fname
and lname, address, email, company references the first and last name, address, email
address and company name of the client respectively (this could be obtained from the
database but this way there is no need to perform that extra query) and the model is the data
structure that contains the products table information.

4.7 Search Dialogs And Filters

In order to perform searches through the database, list registered instances and load their
data into different fields of various windows, a search functionality and dialogs have been
created.
An example of this is found in the client's window: near the identifier field of the client
there is a button labeled “?” that, if clicked, opens a dialog where we can search through the
clients stored in the database, filter the search by different characteristics associated with
those instances and load one by selecting it and clicking on the button labeled “Accept” or
pressing the enter key while the desired client is selected.

13

To perform this operation this is an example of the code in the window which opens the
dialog:

“ArrayList<Object> clients = new Search_client().searchClient();
if (clients != null && clients.size() > 0)

Load_cl((Integer)clients.get(0));”.

In this case Search_client is the class of the search window, searchClient() is a function of
that class that returns an ArrayList of objects when then search process is finished and the
user has chosen to load a client.
The last two lines of code ensures that the returned array is not empty and then proceeds to
load the data from the first object into the array, which is supposed to be an integer (the
identifier of the client), by the means of the Load_cl() function which will fill the fields
related with the client's information of the window. Moreover, the returned array may
contain different data in other similar instances where search dialogs are used and that data
may be processed differently as well, for example for completing certain fields without the
use of an additional function like Load_cl was in this example.

As for the dialog's code, it is opened in modal mode, what means that the focus cannot be
changed from the dialog until this is disposed, and the mentioned searchClient() function of
the example sets the dialog's window visible and returns a result value. Moreover, as the
dialog is in modal model, the return command will only be triggered when the window is
disposed. For this reason only after the return value has been assigned with the data
requested by the user the dispose() command is executed, and subsequently, the window
closed and the value returned to the window which launched the dialog in the first place.

4.8 Interface Components

The following Swing components are used to create the user interfaces:
• JFrame: Basic component for regular windows which contains the rest of the

components.
• JDialog: Basic component for dialogs which contains the rest of the components.
• JPane: Used in all JFrames and JDialogs as a container for the other components.
• JScrollPane: Used as a container for JTables so they can be scrolled if the number of

rows displayed requires so.
• JLabel: Used to display text in a label.
• JTextField: Used to create a field for the user to fill information to be captured and

processed by the application. In addition, the property “editable” is turned off for
those fields that should not be editable by the user.

• JButton: Used to create buttons the user can click to fire events.
• JPasswordField: Used in the client's log-in to hide the password with asterisks.
• JTable: Table used to display search results, products and discounts in various

modules.
• JMenuBar: Used at the main windows to create the upper menu bar.
• JMenu: Used to add components to the menu bar.
• JMenuItem: Used to add entries to the menus.
• Event Handlers: Various event handlers are used to monitor different components

like JButtons and to fire functions when certain actions like mouse clicking on a

14

button or pressing enter key are triggered.

4.9 Creation, Saving And Deletion Procedures

Following is a typical procedure to save an instance:

1. Data that composes the fields of the object being saved is gathered from the user
interface.

2. Several checks are carried out to ensure all constraints and requirements are meet,
otherwise operation is aborted. For example checking that the client exists or that
mandatory fields are not empty.

3. If the identifier field is equal to “X” then the instance is considered new and a new
identifier should be found. This new identifier will be the immediate highest natural
number than the current highest identifier from the respective database table.

4. If there are multiple object types involved, like for example products or discounts
and the quotation, sale or purchase is not a new instance (a existing one is being
updated) previous relations of products or discounts with the quotation, sale or
purchase are deleted from database to avoid repetition.

5. If there are multiple object types involved, like for example products or discounts,
data from each of them is gathered individually and a new instance of the relation
main_object-secondary (the main object being a quotation, sale or purchase and the
secondary the products or discounts) are created through a SQL query. In addition, if
the main object is a sale or a purchase the involved product's stock are updated
accordingly with another SQL update query.

6. Depending if the object is new or already existed a SQL query performing an insert
or an update is created and executed with the information from the main object.

7. If everything else worked without errors a commit command is sent to the database,
otherwise a rollback is forced. In addition, the new or updated instance is reloaded to
reflect the changes.

Following is the typical procedure to delete an instance:

1. Data that composes the fields of the object being deleted is gathered from the user
interface.

2. Checks are carried out to ensure that the object meets the requirements to be deleted.
For example in case of a quotation it cannot be linked to an existing sale.

3. If there are products or discounts involved, individual relations between the main
object and them are deleted from the database and if its a sale or a purchase the
stock of the products is adjusted accordingly.

4. The instance is deleted through a SQL delete query.
5. If everything worked without errors commit command is sent to the database,

otherwise a rollback is performed. In addition, the instance with the closest lower
identifier is loaded if possible, otherwise the fields are cleared.

A typical query to find a new identifier would be:
“SELECT id FROM TABLE WHERE id >= ALL(SELECT id FROM TABLE WHERE
id<"+id+")”.

15

4.10 Total Price Boxes

The pointers at the bottom of quotations, sales and purchases reflecting the base price, total
discount and total price of the operation are updated always that there is some change into
the products or discounts table.

Furthermore, the calculation for the total price is obtained from the formula: (total price) =
(base price) – (total discount). In addition, if the total price is negative, it is then set to 0.

4.11 Finding And Applying Discounts

Both in the quotation and sale modules there is a button labeled “Find Discounts”. When
one of these buttons is actioned the system searches and attempts to apply the best
combination of discounts available. The following represents how the algorithm performs
this operation:

1. Empty the discounts table in the user interface.
2. Gather data from products involved in the operation and discounts registered in the

database.
3. Create three HashMaps: the first is filled with data from the products involved, with

the keys being the products ids and the values the amount of units. The second
HashMap is filled with information of the discounts requirements, the keys are the
identifier from the discounts and the values are ArrayLists that contain one
ArrayList per requirement of the discount with values of the required product id and
the amount of units. The third HashMap remains empty and will be filled with the
discounts applied to the instance, with the discount identifier as key and the amount
of times it has been applied as value.

4. Then the HashMap containing the discounts requirements is iterated filtering only
those discounts that meet the requirements of the present quotation or sale. These are
stored into an ArrayList that contains one ArrayList per valid discount, which
contains the identifier and the discounted amount as data. To create this list
discounts are first discarded when a not valid requirement is meet and then the
remaining ones are considered valid.

5. Following, while exists discounts into the list of valid ones, they are ordered by the
amount of money they subtract multiplied by the number of time they can be
applied, most profitable first and subsequently applied as many times as the units of
products involved in the operation permits, removing discounts from the list of valid
ones as they are found to violate the requirements. In addition, the identifier and
number of time that has been applied is stored in the third HashMap we mentioned.

6. When no more discounts can be applied or existence of products ran out, the data
with the discounts that have been applied is introduced into the discounts table in the
user interface, what triggers an update in the total discounted amount and total price
boxes.

Note the operation is not committed until the instance is saved. In addition, the button
labeled “Clear Discounts” empties the discounts table in the user interface.

16

4.12 Database Internal Structure

The following SQL queries were executed to create the database tables:
• “CREATE SCHEMA SERP”.
• “CREATE TABLE SERP.LOGIN (USERNAME VARCHAR(255) NOT NULL,

PASSWORD VARCHAR(255),PRIMARY KEY(USERNAME))”.
• “CREATE TABLE SERP.CLIENTS (ID INT NOT NULL,FNAME

VARCHAR(255),LNAME VARCHAR(255),ADDRESS VARCHAR(255),EMAIL
VARCHAR(255),COMPANY VARCHAR(255),PRIMARY KEY(ID))”.

• “CREATE TABLE SERP.PRODUCTS (ID INT NOT NULL,NAME
VARCHAR(255),MODEL VARCHAR(255),SN VARCHAR(255),PRICE
DECIMAL(9,2),STOCK INT,PRIMARY KEY(ID))”.

• “CREATE TABLE SERP.BUDGETS(ID INT NOT NULL,CLIENT INT NOT
NULL,SALE INT,PRIMARY KEY(ID),FOREIGN KEY(CLIENT) REFERENCES
CLIENTS(ID),FOREIGN KEY(SALE) REFERENCES SALES(ID))”.

• “CREATE TABLE SERP.BUDGET_PRODUCTS(ID INT NOT NULL,BUDGET INT
NOT NULL,PRODUCT INT NOT NULL,PPU DECIMAL NOT NULL,UNITS INT
NOT NULL,DISC DECIMAL NOT NULL,PRIMARY KEY(ID),FOREIGN
KEY(BUDGET) REFERENCES BUDGETS(ID),FOREIGN KEY(PRODUCT)
REFERENCES PRODUCTS(ID))”.

• “CREATE TABLE SERP.SALES(ID INT NOT NULL,CLIENT INT NOT
NULL,BUDGET INT,PRIMARY KEY(ID),FOREIGN KEY(CLIENT) REFERENCES
CLIENTS(ID),FOREIGN KEY(BUDGET) REFERENCES BUDGETS(ID))”.

• “CREATE TABLE SERP.SALE_PRODUCTS(ID INT NOT NULL,SALE INT NOT
NULL,PRODUCT INT NOT NULL,PPU DECIMAL NOT NULL,UNITS INT NOT
NULL,DISC DECIMAL NOT NULL,PRIMARY KEY(ID),FOREIGN KEY(SALE)
REFERENCES SALES(ID),FOREIGN KEY(PRODUCT) REFERENCES
PRODUCTS(ID))”.

• “CREATE TABLE SERP.SUPPLIERS (ID INT NOT NULL,FNAME
VARCHAR(255),LNAME VARCHAR(255),ADDRESS VARCHAR(255),EMAIL
VARCHAR(255),COMPANY VARCHAR(255),PRIMARY KEY(ID))”.

• CREATE TABLE SERP.PURCHASES(ID INT NOT NULL,SUPPLIER INT NOT
NULL,PRIMARY KEY(ID),FOREIGN KEY(SUPPLIER) REFERENCES
SUPPLIERS(ID))”.

• “CREATE TABLE SERP.PURCHASE_PRODUCTS(ID INT NOT
NULL,PURCHASE INT NOT NULL,PRODUCT INT NOT NULL,PPU DECIMAL
NOT NULL,UNITS INT NOT NULL,PRIMARY KEY(ID),FOREIGN
KEY(PURCHASE) REFERENCES PURCHASES(ID),FOREIGN KEY(PRODUCT)
REFERENCES PRODUCTS(ID))”.

• “CREATE TABLE SERP.DISCOUNTS(ID INT NOT NULL,NAME VARCHAR
(255),AMOUNT DECIMAL NOT NULL,PRIMARY KEY(ID))”.

• “CREATE TABLE SERP.DISCOUNT_PRODUCTS(ID INT NOT NULL,DISCOUNT
INT NOT NULL,PRODUCT INT NOT NULL,UNITS INT NOT NULL,PRIMARY
KEY(ID),FOREIGN KEY(DISCOUNT) REFERENCES
DISCOUNTS(ID),FOREIGN KEY(PRODUCT) REFERENCES PRODUCTS(ID))”.

• “CREATE TABLE SERP.CONFIG(COMPANY VARCHAR(255),TELEPHONE
VARCHAR(255),EMAIL VARCHAR(255),ADDRESS VARCHAR(255))”.

• “CREATE TABLE SERP.BUDGET_DISCOUNTS(ID INT NOT NULL, BUDGET
INT NOT NULL, DISCOUNT INT NOT NULL, AMOUNT DECIMAL NOT NULL,

17

UNITS INT NOT NULL, SUBTOTAL DECIMAL NOT NULL,PRIMARY KEY(ID),
FOREIGN KEY(BUDGET) REFERENCES BUDGETS(ID),FOREIGN
KEY(DISCOUNT) REFERENCES DISCOUNTS(ID))”.

• “CREATE TABLE SERP.SALE_DISCOUNTS(ID INT NOT NULL, SALE INT NOT
NULL, DISCOUNT INT NOT NULL, AMOUNT DECIMAL NOT NULL, UNITS INT
NOT NULL, SUBTOTAL DECIMAL NOT NULL,PRIMARY KEY(ID), FOREIGN
KEY(SALE) REFERENCES SALES(ID),FOREIGN KEY(DISCOUNT)
REFERENCES DISCOUNTS(ID))”.

• “INSERT INTO LOGIN VALUES ('root','1234')”.

Where budget refers to quotations due to an early naming.

5. Software Testing

After each iteration of the development cycle tests were carried out to ensure the correct
functionality of the features being implemented. In addition, after certain milestones, like
completely finishing a module, were meet a test involving the entire application was carried out to
ensure that the new functionality did not interfere with previous ones.
Furthermore, the mentioned tests were primarily black-box tests where functionality was tested by
introducing certain relevant inputs and contrasting outputs with expected ones. Moreover,
exceptions were also taken into account and tested to make sure they were properly handled.
The software has also been tested to run in different operating systems like Linux Debian 7 [26] and
Microsoft Windows XP.

6. Planning And Timescales

The development cycle, which was composed of iterations of designing, coding and testing sessions
was expected to require the most part of the available time. It was also difficult to predict the exact
amount of time invested in this phrase as the very nature of it made it unpredictable. In the rare case
that everything went abnormally smooth, additional features could have been implemented as the
modular design of the system permits to extend it with ease. The last weeks were supposed to be
spent on elaborating the final report.
This was the estimated time-line:

18

However, in the end there were some modifications: both the system design phrase and the user
interfaces construction were merged onto the agile development iteration cycles. In addition, the
server development phrase was not totally differentiated from the client one, but in reality after a
first approach to both the server was changed again to its final design and then proceeded with the
client until the end with only minor tweaks for bug fixing on the server part. Moreover, the final
report took more time than was originally estimated. Still, overall the prediction was quite accurate.

Finally, a more realistic time-line would be as follows:

7. Usage Tutorial

This section will present a usage tutorial intended for the user to get familiarized with the user
interface and its functionality. In addition, screen captures of each interface will be displayed with
informative legends to complement them.
Furthermore, the tutorial will follow a natural cycle of actions in the server, that is: turn on the
server, log-in from client as the administrator user, create a new user, log-in with the new user's
credentials, create a new client, create a new product, create a new supplier, create a new discount,
create a new quotation, create a new sale, create a new purchase, log-out and log-in with the
administrator user again, backup and restore the database.

7.1 Starting/Stopping The Server

19

Final Report

Client Agile Dev.

Client GUI

Server Agile Dev.

Server GUI

System Design

Project Plan

23/02/12

08/03/12

22/03/12

05/04/12

19/04/12

03/05/12

TimeTable

Remaining
Completed
Start Date

In the first capture the server is stopped while on the second one is running. In addition, both
the caption of the button and the message over the port field informs whether the server is
running or not.
7.2 Client Log-in

20

The server field accepts both IP numeric format and alternative formats like 'localhost'.

7.3 Main Window

If the login was successful we are presented with the main window. Furthermore, the options
available in the config column depend on the privileges of the user, in this case the user was
the administrator and thus can access both user management and backup/restore
functionalities. In addition, there is a menu bar on the top of the window that links with the
same options as the buttons displayed. Moreover, in the case of the “File” menu bar option,
it has two options: Logout and Quit. Logout will return us to the log-in window while Quit
would terminate the client application completely.

7.4 Users Management

Here the administrator can both search the list of users registered and load one of them,
create a new user, delete a user or edit a user's password. The “Back” button returns us to the
main window.

7.5 Restore/Backup

21

To create a backup of the database we need to specify the path where we want the backup to
be created in the server's machine. Moreover, if the path specified does not exist it will
attempt to create it. The name of the backup by default is “MyDB” and will be created under
the directory we specified. In addition, the status message reflects the current status of the
window starting with “Ready!”, changes to “Creating backup, please wait” while creating
backup and finishes with “Done!” when the operation is completed. The mouse also changes
during the creation of the backup to reflect that the operation is taking place.

The restoration process works in the same way as the backing up one except that this time
we have to specify the name of the backup to be restored in addition to the path where it is
located in the server's machine.

22

7.6 Clients

➢ ID: This is the unique identifier of each client.
➢ Button “?”: Opens a dialog to search through clients. In addition, you can filter the search by

characteristics and load the desired instance by double-clicking over it in the result list.
➢ Button “Prev”: Loads the immediate lower instance. If current instance is 0, doesn't do

anything. If there is no instance loaded yet it will load the instance with the highest
identifier as if the list of instances was circular.

➢ Button “Next”: Loads the immediate higher instance. If current instance is already the
highest, doesn't do anything. If there is no instance loaded yet it will load the instance with
the lowest identifier as if the list of instances was circular.

➢ Button “New”: Empties all fields and writes an “X” on the ID as a placeholder. It is
important to maintain the “X” in the ID field until the instance is saved for first time as that
will mark the instance as new and thus will look for a new ID when saving it.

➢ Button “Del”: Deletes the current instance and loads the immediate lower one if exists.
➢ Button “Save”: Saves the current instance. If ID is equals to “X” consider it a new instance.
➢ Button “Back”: Returns to the main menu.

7.7 Search

23

This is an example of a typical search dialog.
➢ It is opened in modal mode, what means that focus cannot be switch to a different

window until the dialog is closed.
➢ By filling the fields you can filter the search result.
➢ As shown on the second capture MySQL syntax can be used in the search filters.
➢ If filters are left blank it will return the complete list of registered instances.
➢ There are some interesting complex searches available like for example searching

quotations where certain product has been quoted (same applies for sales and
purchases).

➢ There are search dialogs similar to this for each different kind of instance in the
system and they can usually be accesses through buttons with the caption “?”.

➢ By double-clicking on a row of the result table the dialog will close and the selected
instance will be loaded into the field who opened the dialog at start (usually the field
near which the “?” button was).

7.8 Products

➢ Similar to Clients.

24

➢ Price must be zero or higher.
➢ Stock cannot be edited and its automatically updated by the system when purchases

or sales are committed.

7.9 Suppliers

➢ Similar to Clients and Products.

7.10 Discounts

In this window discounts can be specified.
➢ The discounted amount is the net amount of money that will be subtracted when the

discount is applied.
➢ Products can be added by the means of the three buttons on the right panel labeled:

“Add Product”, “Edit Product” and “Delete Product” respectively.
➢ The quotation or sale where the discount will be applied will be required to have at

least the same number of units of the specified product in the discount.
➢ The table of products involved has three columns: P.ID that stands for product id,

Name is the name of the product and Units is the amount of units of the product
required.

25

7.11 Quotations

➢ Client ID: is the client to whom the quotation is being made for. The rest of fields
from the client are loaded from the database as soon as a client id is introduced.

➢ Sale: equals to null if no sale has been made out of present quotation. Otherwise the
identifier from the sale will be displayed and the quotation could not be deleted
unless the sale made out of it is deleted in first place.

➢ Discounts: each row in this table represents a discount being applied to the quotation.
The unit column is the number of times the discount is applied as they can stack as
long as there are enough units involved. In this example the quotation has 3 products
with id “1” and the discount with id “1” requires at least 1 unit of product “1” to be
applicable. Thus up until 3 discounts with id “1” can be applied in this case.

➢ Products: each row in this table represents a product being quoted. Products can be
added, edited or deleted by the means of the three buttons in the right panel labeled
“Add Product”, “Edit Product” and “Delete Product” respectively.

➢ Button “Create Sale”: creates a new sale out of this quotation and links them both.
➢ Button “Find Discounts”: look for discounts which requirements are meet by present

quotation and apply them as efficiently as possible.
➢ Button “Clear Discounts”: empty the list of discounts being applied.
➢ If the base price minus the total discount is negative, the total price will be zero, not

negative.
➢ The table of products has 6 columns: P.ID stands for product id, Name is the name of

the mentioned product, PPU stands for price per unit and is the cost of a single unit
of the product, Units is the number of products being quoted, %Disc is an optional
percentage of discounted that can be specified for the product, Price is the final price
obtained from multiplying the PPU per the number of units and applying the %Disc.

7.12 Add/Edit Product

26

This is an example of a typical add/edit product dialog opened by a “Add Product” or “Edit
Product” button. If the dialog is loaded by a “Edit Product” the fields will be filled with the
information of the row selected in the products table it from the window that launched the
dialog.

➢ Units must be a positive number.
➢ Discount is a net amount of money discounted from this product specifically and has

nothing to do with the discounts object instances.
➢ When Accept is clicked, if everything is correct it will add a new row on the products

table with the information we chose (or update the existing one if we opened the
dialog by a “Edit Product” button).

7.13 Sales

➢ Similar to quotations but in this case the budget field represents the budget from
which the sale was created. Otherwise its equal to null.

➢ When creating, deleting or updating a sale the products involved will have their
respective stocks adjusted appropriately.

➢ Products can only be sold up to their existing stock quantity.

27

7.14 Purchases

➢ Represents products the owner of the system buys to its suppliers.
➢ Similar to quotations and sales.
➢ No discounts are available in this case.

8. Critical Appraisal

Overall I consider the project a success, however there are a number of aspects that presents room
for improvement as well as others which have been decisive for the success of the project.

Regarding the research context, from the beginning the project was conditioned by a late start which
cause we can find in an administrative delay. From my point of view there is nothing I could change
in this aspect as the matter was out of my hands and I could merely wait for it to get resolved in
order to get started. This incident greatly conditioned the amount of time available to develop the
project and specially the amount of time available to choose the topic of the project and to design
it. Had I had more time to choose the project topic and to research I could have developed the idea
further in order to differentiate it more from other enterprise resource planning solutions. Moreover,
I think that the project definition is excessively generic, specially regarding the operations available
(add clients, products, create quotations, sales and such) and would have been more interesting if I

28

had chosen and more specific product, more customized to solve a less generic situation. Perhaps
that would have differentiated even more this products from others available in the market.

Regarding the aims and objectives I am satisfied, I believe they were realistic and the final outcome
has been accurate and approximate to them.

As for the requirements and specifications, I reckon more information in the form of diagrams
would have been useful to speed up the design and coding but still I think that the present work in
this chapter has been sufficient to accomplish the objectives without much trouble.

Concerning the development methodology I think it was a great decision to adopt an agile strategy,
specially after the problems I encountered at various stages during the development where I had to
change critical internal mechanisms because of my inexperience with the tools and language I was
using. I believe if I had adopted a more formal developing cycle this changes would have had a
much bigger and negative impact plus they would have noticeably increased the time required to
accomplish the tasks and would have delayed the whole project.

Furthermore, regarding the system design I think it worked and covered the requirements with
guarantees. Moreover, I reckon a more abstract and reusable design would have been inappropriate
as a first attempt because it would have increased the complexity of a system that had yet to be
tested to verify its viability. However, I think that once the first version was released and met all
requirements the code could have been improved by refactoring it to make it more reusable, more
abstract, to avoid code repetition and in general make it more clear and improve the quality of the
code. The problem again was the time constraint imposed by the submission deadline and for this
reason the code is not as clear as I would have liked it to be. This I believe is an endemic problem in
software engineering, not unique to this project, because of the restrictions in time and budget
imposed by the market and clients who only care about immediate results in expense of long term
outcomes. From my point of view that is a mistake as I believe quality is more important than
quantity in terms of engineering solutions.

With regards of the programming language I believe Java was the best option and I have no regrets
in this matter. Perhaps some interpreted language like python could have also worked and I believe
its code is easier to understand, generate and also makes working with data structures easier but
then again, given the time constraint I think Java was the safest option and also minimized the
requirements as the Java Runtime Environment is way more popular and common than python's
one.

In relation with the database, I think Derby was the best option due to its full compatibility and
integration with the Java platform. The dilemma was whether to have it embedded or not and in the
end I think it would not have made a big difference so I'm happy with the decision I took.

As for the integrated development environment, I doubted between Eclipse and NetBeans among
other reasons because NetBeans is supposed to have a better tool for graphical programming in
Swing technology. In the end I went for Eclipse because I had more experience with it and felt more
comfortable using it and although at the beginning had some difficulties to install all the plug-ins I
required, in the end I did not regret my choice as the tools available did the job perfectly.
About the GUI technology Swing I have no regrets nor opinion about the other alternatives as I
never get to use them extensively.

In the chapter of software testing I wish I had developed a better framework to test the application

29

properly using Junit [27] or something similar. However, due to time constraints I did not have time
to do it and had to test the application with black-box tests. This is something I definitely regret and
will make sure to improve it and give this aspect more relevance on my next projects.

Furthermore, on a personal note, although I believe that the amount of work and hours I have put
into this project has been appropriated I reckon that the distribution of them could have been greatly
improved by following a more balanced and constant schedule instead of the more spaced in time
working marathons I have performed. In addition, the activities and the environment that are
implicit to the Erasmus experience did no help me either in this matter.

Finally, regarding the dissertations and reports I think I should have invested more time on
preparing them in order to avoid the pressure I ran into in the end to finish them. Even more
considering I had to write them in a different language than my mother tongue.

All in all, I believe I have probed I can successfully carry out a software project from the idea
design to the final product and for this reason I consider this experience has been positive and
successful. Furthermore, I have gained valuable knowledge in the process of doing it.

9. References

[1] Schildt, Herbert. Java The Complete Reference, 8th Edition, (2011).

[2] http://db.apache.org/derby/ The Apache DB Project. 2012.

[3] http://java.com/en/download/index.jsp Download Java Runtime Environment. 2012.

[4] http://windows.microsoft.com Microsoft Windows. 2012.

[5] http://www.linuxfoundation.org/ The linux Foundation. 2012.

[6] http://www.apple.com/mac/ Apple's Mac. 2012.

30

http://db.apache.org/derby/
http://www.apple.com/mac/
http://www.linuxfoundation.org/
http://windows.microsoft.com/
http://java.com/en/download/index.jsp

[7] Shields, Murrell G., E–Business and ERP: Rapid Implementation and Project Planning, (2001).

[8] Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J., Agile Software Development Methods:
Review and Analysis, (2002).

[9] Royce, Winston, Managing the Development of Large Software System, (1970).

[10] http://www.eclipse.org/downloads/moreinfo/java.php Eclipse IDE for Java Developers. 2012.

[11] http://www.netbeans.org Netbeans IDE. 2012.

[12] http://www.jetbrains.com/idea/ IntelliJ IDEA.2012.

[13] http://www.eclipse.org/datatools/project_enablement/ Eclipse Enablement Project. 2012.

[14] http://www.eclipse.org/windowbuilder/ Eclipse WindowsBuilder. 2012.

[15] http://subclipse.tigris.org/ Subclipse Project. 2012.

[16] http://java.sun.com/products/jdk/awt/ The AWT. 2012.

[17] James Elliott, Robert Eckstein, Marc Loy, David Wood, Brian Cole, Java Swing, O'Reilly,
(2002).

[18] Northover, Steve, SWT: Implementation Strategy for Java Natives, (2001).

[19] http://www.ibm.com IBM. 2012.

[20] www.eclipse.org Eclipse Foundation. 2012.

[21] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato, Version Control with
Subversion, O'Reilly, (2008).

[22] http://docs.oracle.com/javase/6/docs/api/javax/swing/SwingWorker.html SwingWorker (Java
Platform SE 6). 2012.

[23] Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Jeremy Zawodny, Arjen Lentz, Derek J.
Balling, High Performance MySQL: Optimization, Backups, Replication, and More, O'Reilly,
(2008).

[24] http://db.apache.org/derby/docs/10.0/manuals/admin/hubprnt43.html Backing Up a Database,
Apache Derby. 2012.

[25] http://www.ibm.com/developerworks/data/library/techarticle/dm-0502thalamati/index.html An
introduction to backup, restore, and rollforward recovery in IBM Cloudscape/Apache Derby. 2012.

[26] http://www.debian.org/ Debian, The Universal Operating System. 2012.

[27] J. B. Rainsberger, Scott Stirling, JUnit Recipes: Practical Methods for Programmer Testing.
(2004).

31

http://www.debian.org/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0502thalamati/index.html
http://db.apache.org/derby/docs/10.0/manuals/admin/hubprnt43.html
http://docs.oracle.com/javase/6/docs/api/javax/swing/SwingWorker.html
http://www.eclipse.org/
http://www.ibm.com/
http://java.sun.com/products/jdk/awt/
http://subclipse.tigris.org/
http://www.eclipse.org/windowbuilder/
http://www.eclipse.org/datatools/project_enablement/
http://www.jetbrains.com/idea/
http://www.netbeans.org/
http://www.eclipse.org/downloads/moreinfo/java.php

32

