Índice general

Resumen	Ι
Resum	III
Abstract	V
ndice general	VII
indice de figuras	XV
indice de tablas	XXIII
Nomenclatura	XXV
I Generalidades	1
1 Preliminares	3
1.1 Aproximación a la Biomecánica	3
1.1.1 Trasfondo histórico	4
1.1.2 La Biomecánica en la actualidad	9 10
1.2.1 Contribuciones a la Ortopedia	
	VII

1.2.2 El método de los elementos finitos en Biomecánica	12
1.3 Motivación	15
1.3.1 Simulación de mamografías	15
1.3.2 Simulación de mamoplastias de aumento	16
1.4 Descripción, objetivos y alcance de la tesis	19
2 Aspectos médicos	23
2.1 Sistemas de referencia del cuerpo humano	23
2.1.1 Ejes, direcciones y planos anatómicos	23
2.2 Anatomía fisiológica de la mama	26
2.3 Histología de la mama	27
2.3.1 Glándula mamaria	27
2.3.2 Tejido conectivo	30
2.3.3 Tejido adiposo	31
2.3.4 Piel	33
2.4 Biomecánica de la mama	36
2.5 Enfermedades de la mama	37
2.5.1 Cáncer de mama	38
2.6 Técnicas de diagnóstico mamario	39
2.6.1 Resonancia magnética	39
2.6.2 Ecografía	41
2.6.3 Biopsia mamaria	42
2.6.4 Tomografía axial computerizada	42
2.6.5 Mamografía	42
2.6.6 Técnicas multimodales de diagnóstico	44
2.7 Mamoplastia de aumento	45
2.7.1 El implante mamario	46
2.7.2 Procedimiento quirúrgico	49
2.7.3 Complicaciones clínicas	51
3 Estado del arte	55
3.1 Perspectiva histórica	55
3.1.1 Desarrollo de las mamografías	55
3.1.2 Orígenes y evolución de las mamoplastias de aumento	57
3.2 Revisión bibliográfica	63
3.2.1 Propiedades mecánicas de los tejidos de la mama	63

	3.2.2 Simulación de mamografías	68
	3.2.3 Registro de imágenes	75
	3.2.4 Simulación de mamoplastias	84
	3.2.5 Otras técnicas	87
4	Planteamiento numérico	89
	4.1 Caracterización del medio mamario	89
	4.1.1 Generalidades	90
	4.1.2 Homogeneidad	91
	4.1.3 Continuidad	91
	4.1.4 Incompresibilidad	92
	4.1.5 Isotropía	92
	4.1.6 Régimen	93
	4.2 Teoría de la Elasticidad en Grandes Deformaciones	93
	4.2.1 Cinemática	94
	4.2.2 Cinética	99
	4.2.3 Leyes de conservación	101
	4.2.4 Condiciones de contorno	110
	4.3 Modelos constitutivos hiperelásticos	111
	4.3.1 Principios fundamentales de los modelos constitutivos	111
	4.3.2 Función densidad de energía de deformación	112
	4.3.3 Ecuaciones constitutivas	116
	4.3.4 Tensor elástico	117
	4.3.5 Expresiones funcionales en hiperelasticidad	118
	4.4Implementación en el Método de los Elementos Finitos	122
	4.4.1 Principios variacionales	122
	4.4.2 Implementación de la incompresibilidad	125
	4.4.3 Linealización	127
	4.4.4 Discretización y formulación matricial	128
	4.5 Enfoques de la simulación mamaria	133

II	Simulación de mamografías	135
5	Modelo de cálculo para la simulación de mamografías	137
	5.1 Descripción del caso clínico	. 137
	5.2 Obtención de la geometría base	. 139
	5.2.1 Tratamiento de las tomografías	. 139
	5.2.2 Reconstrucción tridimensional	. 143
	5.3 Generación del modelo de elementos finitos	. 143
	5.3.1 Aspectos previos	. 143
	5.3.2 Mallado de la geometría base	. 144
	5.4 Discretización de los mamogramas	. 147
6	Rastreo de tumores en mamogramas	151
	6.1 Planteamiento metodológico de las simulaciones	. 151
	6.1.1 Mamografía en fase clínica	. 151
	6.1.2 Metodología de simulación	. 152
	6.2 Cinética de carga	. 154
	6.2.1 Compresión CC	. 154
	6.2.2 Compresión MLO	. 156
	6.3 Características del modelo	. 159
	6.3.1 El problema de contacto	. 159
	6.3.2 Condiciones de contorno	. 162
	6.3.3 Parámetros de materiales	. 163
	6.4 Análisis de sensibilidad de parámetros	. 167
	6.4.1 Metodología de comparación	. 167
	6.4.2 Indicadores	. 168
	6.4.3 Variaciones en el modelo	
	6.4.4 Test de convergencia de malla	. 176
	6.5 Validación	
	6.5.1 Validación cualitativa	
	6.5.2 Validación cuantitativa	-
	6.5.3 Factores sin validar	
	6.6 Rastreo de la posición del tumor	. 187

III Simulación de mamoplastias de aumento 189

	Modelo de cálculo para la simulación de mamoplastias de au- nento	191
111		
	7.1 Medidas antropométricas del seno	
	7.2 Descripción del caso clínico	194
	7.3 Obtención de la geometría base	196
	7.3.1 Segmentación	196
	7.3.2 Reconstrucción tridimensional	198
	7.3.3 Localización de la pared torácica	200
	7.4 Generación del modelo de elementos finitos	201
8	Predicción del aspecto final de la mama	205
	8.1 Planteamiento metodológico de la simulación	205
	8.1.1 Parametrización	207
	8.1.2 Datos clínicos relevantes	208
	8.2 Condiciones de contorno	209
	8.2.1 Superficies de carga	209
	8.2.2 Restricciones cinemáticas	214
	8.3 Modelos y parámetros de materiales	215
	8.3.1 Piel	215
	8.3.2 Complejo grasa-parénquima mamario	216
	8.3.3 Silicona	216
	8.4 Cinética de carga	216
	8.4.1 Descomposición del gradiente de deformación	218
	8.4.2 Presión aplicada	220
	8.4.3 Remallado	221
	8.5 Análisis de sensibilidad de parámetros	222
	8.5.1 Metodología de comparación	223
	8.5.2 Variaciones en el modelo	
	8.5.3 Test de convergencia de malla	237
	8.6 Validación	237
	8.6.1 Validación cualitativa	238
	8.6.2 Desviación entre superficies	240
	8.6.3 Marcadores anatómicos	242

	8.6.4 Factores sin validar	244
ΙV	V Revisión de la tesis	247
9	Conclusiones y futuros desarrollos	249
	9.1 Breve resumen del trabajo realizado	249
	9.2 Aportaciones originales	250
	9.3 Conclusiones	
	9.3.1 Relativas a la metodología empleada	251
	9.3.2 Relativas a la aplicación clínica	253
	9.4 Futuras líneas de investigación	254
	9.5 Publicaciones	256
	9.5.1 Artículos	256
	9.5.2 Capítulos de libro	256
	9.5.3 Publicaciones en congresos	256
A	nexos	257
A	Modelos constitutivos y constantes elásticas	259
	A.1 Propiedades físicas	259
	A.2 Piel	
	A.3 Tejidos mamarios internos	
	A.3.1 Parénquima mamario y tejido adiposo	262
	A.3.2 Tumores	-
	A.4 Silicona	265
В	Algoritmo de rastreo del tumor	267
	B.1 Introducción	267
	B.2 Descripción del algoritmo	269
	B.2.1 Datos de entrada	269
	B 2.2 Subrutinas principales	269

B.2.3 Subrutinas secundarias	270
B.2.4 Cálculo de la similitud entre mamogramas	272
B.2.5 Salidas	273
C Cálculo de volúmenes huecos en modelos deformados de ele- mentos finitos	275
mentos mintos	213
C.1 Planteamiento del problema	275
C.2 Formulación	277
C.2.1 Regla de Simpson	278
C.3 Implementación en MATLAB	279
C.4 Conclusiones	280
	000
Bibliografía	283
Índice alfabético	303
indice dilabellee	500

Índice de figuras

1.1.	La Biomecanica desde la perspectiva de una ciencia	Э
1.2.	Leonardo da Vinci y su hombre de Vitrubio. Galileo Galilei	6
1.3.	Giovani Alfonso Borelli y su obra $De\ Motu\ Animalium\ .\ .\ .\ .$	6
1.4.	Hermann von Helmholtz, considerado el padre de la Bioingeniería.	8
1.5.	A. V. Hill. M. Mooney. R. Rivlin	8
1.6.	Líneas de investigación en Biomecánica en la actualidad	9
1.7.	Ejemplos de modelos de elementos finitos en Biomecánica	14
1.8.	Tasas de incidencia, supervivencia y mortalidad del cáncer de mama en algunos países de la Unión Europea en 2006	16
1.9.	Caso clínico de una paciente antes y después de someterse a una mamoplastia de aumento	18
1.10.	Número de intervenciones mamarias realizadas en Estados Unidos en el año 2000 y en el periodo 2005-2011	18
2.1.	Sistema de referencia y direcciones anatómicas del cuerpo humano.	24
2.2.	Planos anatómicos	25
2.3.	Sir Astley Paston Cooper. Aspecto externo de la mama femenina	26
2.4.	Disección anterolateral y sección sagital de la mama	28
2.5.	La mama y su relación con el sistema de vasos linfáticos	29
2.6.	Histología de la glándula mamaria	29

2.7.	Disección $post\ mortem$ de conductos galactóforos mamarios inyectados con cera coloreada	30
2.8.	Sección de la glándula mamaria a través del pezón e imagen histológica del tejido conectivo	31
2.9.	Imagen obtenida por microscopía electrónica de barrido que muestra la disposición celular del tejido adiposo.	32
2.10.	Sección esquemática de la piel	34
2.11.	Relación de la mama con el músculo pectoral mayor	37
2.12.	Distribución de los tipos histológicos de cáncer de mama (1997-1998).	38
2.13.	Cuadrantes de la mama y porcentajes de frecuencia de aparición del cáncer	39
2.14.	Técnicas radiológicas de diagnóstico mamario	40
2.15.	Compresiones y mamogramas durante una mamografía	43
2.16.	Estructura de un implante mamario tipo	46
2.17.	Prótesis rellenas de suero salino.	47
2.18.	Prótesis rellenas de gel de silicona	48
2.19.	Tablas de especificaciones de prótesis de silicona de la compañía EUROSILICONE	48
2.20.	Posiciones de la prótesis	50
2.21.	Tipos de incisiones en mamoplastias de aumento	51
2.22.	Inserción de la prótesis	51
2.23.	Contractura capsular adversa	52
3.1.	Primeros dispositivos mamográficos	57
3.2.	Idealización de una amazona. Pin-ups	58
3.3.	Primeras prótesis de silicona inventadas por Cronin y Gerow	61
3.4.	Elastogramas obtenidos mediante ERM	66
3.5.	Una de las primeras simulaciones de mamografías mediante el MEF.	69

3.6.	Tomografía RM y modelo de elementos finitos para la simulación de mamografías	71
3.7.	Modelo de un <i>phantom</i> de gel de silicona para la simulación de compresiones mamográficas	72
3.8.	Obtención de la configuración indeformada y libre de tensiones de las mamas	74
3.9.	Obtención de un modelo de elementos finitos de la mama específico para una paciente	74
3.10.	Correspondencia multimodal entre imágenes	78
3.11.	Estrategia de registro de imágenes con apoyo del MEF	79
3.12.	Mamogramas virtuales obtenidos por simulación mediante el MEF. 8	30
3.13.	Superposición de mamogramas CC reales y simulados en función de la caracterización del medio	32
3.14.	Simulación de una compresión mamográfica mediante un problema de contacto	33
3.15.	Modelo de elementos finitos de una mamoplastia de aumento 8	35
3.16.	Resultados de la simulación de una mamoplastia de aumento 8	35
3.17.	Diagrama de flujo que ilustra la generación de un modelo basado en Tensores de Masas para simular una mamoplastia de aumento	36
3.18.	Imágenes y modelo de elementos finitos de una paciente antes de someterse a una mamoplastia de reducción	37
4.1.	Respuesta tensión-deformación no lineal de un tejido blando genérico S	90
4.2.	Caracterización del movimiento en un sólido deformable 9	95
4.3.	Vectores tensión actuando sobre una partícula	0
4.4.	Relación entre la constante neo-Hookeana y la compresibilidad 12	20
4.5.	Correspondencia isoparamétrica de la deformación de un elemento finito	30
5.1.	Mamogramas de la paciente, en los que se aprecia el nódulo maligno.13	38

5.2.	Tomografías RM de la paciente, en las que se aprecia por contraste el nódulo maligno	138
5.3.	Esquema de alineación y apilado de las tomografías	140
5.4.	Segmentación y generación de la geometría base de la mama a partir de tomografías RM	142
5.5.	Reconstrucción tridimensional de la geometría base	143
5.6.	Remallado de la geometría base y generación de la malla sólida	145
5.7.	Generación del mamograma real discretizado CC	148
5.8.	Generación del mamograma real discretizado MLO	149
5.9.	Mamograma discretizado MLO	150
6.1.	Mamógrafo (modelo de SIEMENS)	152
6.2.	Esquema de la metodología propuesta para la simulación de una mamografía	153
6.3.	Modelo para la simulación de la compresión CC	154
6.4.	Esquema de la cinética de carga para la simulación de la mamografía en la dirección de compresión CC	155
6.5.	Modelo para la simulación de la compresión MLO	157
6.6.	Esquema de la cinética de carga para la simulación de la mamografía en la dirección de compresión MLO	158
6.7.	Condiciones de contorno aplicadas a la mama para la simulación de las compresiones mamográficas	162
6.8.	Influencia de las constantes elásticas en CSM y CST	171
6.9.	Influencia de la compresibilidad del medio en CSM y CST. $$	172
6.10.	Influencia de las constantes elásticas en GC	172
6.11.	Influencia del coeficiente de fricción en CSM y CST	175
6.12.	Influencia del coeficiente de fricción en GC	175
6.13.	Validación cualitativa del modelo numérico en la compresión CC: comparación del aspecto de los mamogramas.	178

6.14.	Validación cualitativa del modelo numérico en la compresión MLO: comparación del aspecto de los mamogramas	179
6.15.	Mamogramas reales discretizados	180
6.16.	Superposición del mamograma real discretizado con el mamograma virtual para cada dirección de compresión	182
6.17.	Medidas para la obtención del porcentaje medio de reducción del espesor de la mama en la simulación de la compresión CC	185
6.18.	Distribuciones de tensiones principales en el modelo de la mama durante las simulaciones de las compresiones mamográficas	186
6.19.	Distancias entre los centroides de los contornos de la mama y del tumor	187
7.1.	Propuestas de marcadores de la anatomía de la mama	192
7.2.	Reconstrucción de la superficie mamaria mediante estereografía	193
7.3.	Cálculo del volumen mamario a partir de distintas técnicas	194
7.4.	Imágenes TAC de la región mamaria de la paciente. $\ \ldots \ \ldots \ \ldots$	195
7.5.	Segmentación automática y reconstrucción VRML de los tejidos de la región torácica	196
7.6.	Segmentación manual de tomografías TAC	197
7.7.	Reconstrucción inicial de la geometría base antes y después de la mamoplastia de aumento	197
7.8.	Generación y refinado de la geometría base	199
7.9.	Generación de la superficie de la pared torácica	200
7.10.	Mallado de la geometría base	202
7.11.	Malla recortada del modelo	202
8.1.	Simulación de una mamoplastia de aumento.	205
8.2.	Esquema para el proceso de simulación propuesto	206
8.3.	Prótesis de gel silicona y sus características	208
8.4.	Condiciones de contorno de las entidades del modelo numérico	209

8.5.	Ubicación de las superficies de carga $\ \ldots \ \ldots \ \ldots \ \ldots$	210
8.6.	Superposición de los contornos de las superficies de carga en el modelo numérico	211
8.7.	Generación de los elementos cuadriláteros de las superficies de carga	211
8.8.	Separación entre la superficie de carga y la pared torácica	212
8.9.	Duplicado de las superficies de carga (vistas 2D y 3D)	213
8.10.	Superficie de carga con los hexaedros adyacentes	214
8.11.	Restricciones cinemáticas aplicadas a grupos de nodos	215
8.12.	Esquema de la cinética de carga del modelo numérico $\ \ \ldots \ \ \ldots$	217
8.13.	Descomposición del gradiente de deformación	219
8.14.	Compilación de la subrutina UMAT entre dos configuraciones i e $i+1$	220
8.15.	Introducción de la presión como una entrada en rampa	221
8.16.	Malla de la prótesis de silicona \dots	222
8.17.	Modelo de la paciente real para comparaciones $\dots \dots$	223
8.18.	Diversas localizaciones de las superficies de carga	225
8.19.	Curvas de resultados P-V y V- \overline{RSS} para distintos valores de c_1 . Superficies de carga en posición -3 y nodos restringidos posteriores en posición $Espalda$	227
8.20.	Curvas de resultados P-V y V- \overline{RSS} para distintos valores de c_1 . Superficies de carga en posición -3 y nodos restringidos posteriores en posición -4	228
8.21.	Superposición de las curvas P-V de las Figuras 8.19 y 8.20	229
8.22.	Superposición de curvas P-V para $c_1=1$ kPa y diversas condiciones de contorno	231
8.23.	Presiones necesarias para alcanzar el volumen correspondiente al valor mínimo de \overline{RSS} para cada valor de c_1	232
8.24.	Curvas de resultados P-V y V- \overline{RSS} ($\mathbf{c_1}=1$ kPa, superficies de carga en posición -3 y nodos restringidos posteriores en posición -4) para evaluar la influencia del tamaño de las superficies de carga.	234

8.25.	Curvas de resultados P-V y V- \overline{RSS} ($\mathbf{c_1} = 1$ kPa, superficies de carga en posición -3 y nodos restringidos posteriores en posición -4) para evaluar la influencia de la posición de las superficies de carga.	236
8.26.	Superposición de la configuración inicial del modelo numérico con el modelo real tras la mamoplastia de aumento	239
8.27.	Superposición de la deformada de la configuración deformada del modelo numérico con el modelo real tras la mamoplastia de aumento	.240
8.28.	Desviaciones nodales en X y en Y de la configuración deformada del modelo numérico con el modelo real	241
8.29.	Desviaciones nodales en Z de la configuración deformada del modelo numérico con el modelo real.	242
8.30.	Marcadores anatómicos propuestos por Catherwood et al	243
8.31.	Marcadores en la paciente en posición decúbito supino	244
8.32.	Distribuciones de tensiones principales en el modelo durante la generación del hueco	245
8.33.	Configuración deformada del modelo numérico bajo la acción de la gravedad	246
A.1.	Curva tensión-deformación de la piel, linealizada en tres tramos	262
B.1.	Esquema de las rutinas MATLAB para el rastreo del tumor	268
B.2.	Aplicación del método del ratio de oro al cálculo de CSM y CST	273
C.1.	Mallas de las superficies de carga de una de las mamas	276
C.2.	Generación de elementos hexaédricos en el volumen comprendido entre dos mallas topológicamente equivalentes	276
C.3.	Descomposición de un $hexaedro\ virtual\ $ para calcular su volumen	278
C.4.	Esquema del código implementado en MATLAB	280

Índice de tablas

1.1.	Modelos de análisis en Biomecánica	. 10
1.2.	Variables que caracterizan un biomaterial	. 12
2.1.	Espesores de las capas de la piel	. 35
2.2.	Escala de Baker para medir el grado de contractura capsular advers	sa. 53
3.1.	Propiedades mecánicas de algunos biomateriales	. 60
5.1.	Resumen del modelo numérico para la simulación de la mamografía	a. 146
5.2.	Resumen de los mamogramas discretizados	. 150
3.1.	Entidades de las placas compresoras del modelo	. 159
3.2.	Propiedades de los materiales de las placas compresoras	. 160
3.3.	Rangos de valores de la constante c_1 para tejidos mamarios	. 166
3.4.	Valores definitivos de los parámetros del modelo	. 181
5.5.	Valores de los indicadores para los resultados de las simulaciones.	. 181
6.6.	Valores de compresiones mamográficas reales reportadas en trabajos previos.	
3.7.	Valores de compresiones mamográficas alcanzados en simulaciones, según diversos autores	
3.8.	Distancias entre los centroides de los contornos de los mamogramas real y virtual para cada dirección de compresión	
		XXIII

7.1.	Resumen del modelo de elementos finitos de la paciente antes de la mamoplastia de aumento	203
8.1.	Características de las superficies de carga en el modelo numérico	212
8.2.	Casos considerados para estudiar la influencia en el modelo del tamaño de las superficies de carga	233
8.3.	Casos considerados para estudiar la influencia en el modelo del desplazamiento de las superficies de carga	235
A.1.	Densidades de diversos tejidos del cuerpo humano	259
A.2.	Valores del módulo de elasticidad de la piel obtenidos mediante ensayos in vivo o in vitro	261
A.3.	Caracterización de la piel en las simulaciones numéricas sobre la mama (diversos autores)	261
A.4.	Valores del módulo de elasticidad longitudinal de los tejidos mamarios en régimen elástico y lineal, obtenidos mediante elastografía. $$.	262
A.5.	Modelos constitutivos y constantes elásticas empleadas para simular la grasa y el parénquima mamario (diversos autores)	263
A.6.	Modelos constitutivos y constantes elásticas empleadas para simular la grasa y el parénquima mamario (diversos autores, continuación).	264
A.7.	Valores de constantes elásticas de tumores	265
A.8.	Valores constantes hiperelásticas consideradas para la silicona	266