
Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Arabic Recognition and Translation
System

Proyecto Final de Carrera

Ingeniería Informática

Autor: Ihab Alkhoury

Directores: Prof. Alfons Juan and Prof. Antonio Molina

September 23, 2013



Abstract

To our knowledge, there are only few systems that are able to automati-
cally translate handwritten text images into another language, in particular,
Arabic. Typically, the available systems are based on a concatenation of
two systems: a Handwritten Text Recognition (HTR) system and a Ma-
chine Translation (MT) system. Roughly speaking, in the case of recogni-
tion of Arabic text images, our work has focused on the use of the embedded
Bernoulli (mixture) HMMs (BHMMs), that is, embedded HMMs in which
the emission probabilities are modeled with Bernoulli mixtures. In the case
of Arabic text translation, our work has focused on one of the state-of-the-
art phrase-based log-linear translation models. In this work we evaluate our
system on the LDC corpus introduced in the NIST OpenHaRT 2010 and
2013 evaluations. Very competitive and promising results are shown. Addi-
tionally, we present the idea of a simple mobile application system for image
translation that recognizes the Arabic text in an image and translates the
recognized text into English.

Keywords: Arabic Recognition and Translation, NIST OpenHaRT, Bernoulli HMMs,

Phrase-based models
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Chapter 1

Introduction

To our knowledge, there are only few systems that automatically translate
text images into another language, in particular, Arabic. They are usually
based on statistical models in which Handwritten Text Recognition (HTR)
is coupled with Machine Translation (MT) in order to translate text images.
The whole process can be seen as a black box that takes as input a text image
and returns as output the translation of that text into English. However if we
take a look inside that box we can see two different systems, a Recognition
system that recognizes the input text image and returns a recognized text,
and a Translation system that translates the recognized text into English.

Many examples can be mentioned for applying the text image translation
system in our daily life, for example, translation of text written on street
posters, walls or paper to English that in some sense could help tourists
to communicate with people who use a different language. Another example
could be the transcription and translation of scanned documents which could
have special interest for researchers especially when searching for information
in different languages. This can be seen as a search engine similar to those
currently existing for the web. It is at this point that the benefits of using
HTR and MT systems are appreciated, since they could be used to automat-
ically transcribe and translate documents drastically reducing the required
translation time.

Late researches have shown much interest in the recognition and trans-
lation of printed and handwritten Arabic. It presents unique challenges and
benefits and has been recently approached more than other scripts. Arabic
is spoken by more than 234 million people and important in the cultures of
many more [1]. It is one of the six United Nations official languages [2, 3, 4, 5].
The characters of Arabic script and similar characters are used by a high per-
centage of the world’s population to write languages such as Arabic, Farsi
(Persian), and Urdu. Arabic script differs from Latin scripts in several ways.
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Chapter 1. Introduction

Unlike English handwriting, Arabic is written from right-to-left and does not
distinct between upper or lowercase characters [6].

Although there are a few existing systems to translate common languages
like German and Spanish text images into English, there are less systems
to translate Arabic text images into English. In 2009, Yi Chang et al [7]
reported an image-based automatic Arabic translation system that applies
text detection based on GBT, SVM, and location-based prior knowledge.
For the OCR module they use commercial software, the models of which
are trained in a specified domain, to recognize the Arabic text. For the
translation module they use the CMU PanDoRA translation system.

The most recent application that has reported acceptable results in this
area is Google Googles for Mobile devices. The application captures an image
containing text, detects the text automatically, and recognizes and translated
the text to the desired language. However this application does not support
Arabic recognition.

The main objective of this work is to develop a system that is able to
recognize the Arabic language text in document images and translate the
recognized text into accurate and fluent English. That is, computer systems
that are able to emulate the human ability to read Arabic and translate it into
English. In the case of handwritten recognition of text images, our work has
focused on the use of the embedded Bernoulli (mixture) HMMs (BHMMs),
that is, embedded HMMs in which the emission probabilities are modeled
with Bernoulli mixtures [8]. These models have shown improvements among
other systems in different corpus for Arabic Text [9, 10] In the case of Arabic
text translation, we discuss three different state-of-the-art translation models:
the Standard phrase-based model, the Hierarchical phrase-based model, and
the Bilingual N-gram models. However our work has only focused on the
phrase-based log-linear translation models, In particular, we used Moses [11]
toolkit to carry out our experiments. The objective of this work can be
divided into three major steps:

• Developing a Handwritten Arabic recognition system based on embed-
ded Bernoulli (mixture) HMMs (BHMMs).

• Developing a Statistical Machine Translation System (SMT) based on
the state-of-the-art log-linear models, in particular, using the Moses
toolkit.

• Merging both system mentioned above in only one system that takes a
new text image containing Arabic text as an input and generates the
translation of that text into English as an output.

4



Chapter 1. Introduction

All results obtained in this work have been submitted to the NIST Open-
HaRT 2013 evaluation [12] and very competitive results were achieved. Fi-
nally, the idea of an Arabic Transcription and Translation system for mobile
applications is presented and discussed.

In what follows, we review the transcription (Chapter. 2), and translation
systems (Chapter. 3). After that, we outline experiments and their results,
as well as the employed tools in Chapter 4. Finally, we discuss the idea of
implementing a mobile application in Chapter. 5
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Chapter 2

Transcription System

In this work, we have applied the Windowed Bernoulli Hidden Markov mod-
els (BHMMs) with the use of vertical repositioning in order to recognize a
new text image. We first apply a feature extraction process on that image
which is converted into a sequence of feature vectors which are feed into the
recognizer module. Finally, the recognition module obtains the most suitable
transcription for the image. This recognition module is usually implemented
as an statistical recognizer which has been automatically trained from labeled
data. Below we describe the Bernoulli HMM with details.

2.1 Bernoulli HMM

Let O = (o1, . . . , oT ) be a sequence of feature vectors. An HMM is a proba-
bility (density) function of the form:

P (O | Θ) =
∑

q0,...,qT +1

T
∏

t=0

aqtqt+1

T
∏

t=1

bqt
(ot) , (2.1)

where the sum is over all possible paths (state sequences) q0, . . . , qT +1, such
that q0 = I (special initial or start state), qT +1 = F (special final or stop
state), and q1, . . . , qT ∈ {1, . . . , M}, being M the number of regular (non-
special) states of the HMM. On the other hand, for any regular states i and j,
aij denotes the transition probability from i to j, while bj is the observation
probability (density) function at j.

A Bernoulli (mixture) HMM (BHMM) is an HMM in which the probabil-
ity of observing ot, when qt = j, is given by a Bernoulli mixture probability
function for the state j:

bj(ot) =
K

∑

k=1

πjk

D
∏

d=1

potd

jkd (1 − pjkd)1−otd , (2.2)
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Chapter 2. Transcription System 2.1. Bernoulli HMM
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Figure 2.1: BHMM example for the number 31, together with binary image
generated from it. Bernoulli prototype probabilities are represented using
the following color scheme: black=1, white=0,gray=0.5 and light gray=0.1.

where πjk and pjk are, respectively, the prior and prototype of the kth mix-
ture component in state j.

Bernoulli HMMs (BHMMs) at global (line or word) level are built from
shared, embedded BHMMs at character level. More precisely, let C be
the number of different characters (symbols) from which global BHMMs
are built, and assume that each character c is modeled with a different
BHMM of parameter vector Θc. Let Θ = {Θ1, . . . , ΘC}, and let O =
(o1, . . . , oT ) be a sequence of feature vectors generated from a sequence of
symbols S = (s1, . . . , sL), with L ≤ T . The probability of O can be calcu-
lated, using embedded HMMs for its symbols, as:

P (O | S, Θ) =
∑

i1,...,iL+1

L
∏

l=1

P (oil
, . . . , oil+1−1 | Θsl

) , (2.3)

where the sum is carried out over all possible segmentations of O into L

segments, that is, all sequences of indices i1, . . . , iL+1 such that

1 = i1 < · · · < iL < iL+1 = T + 1;

and P (oil
, . . . , oil+1−1 | Θsl

) refers to the probability (density) of the lth
segment, as given by (2.1) using the HMM associated with symbol sl.

Now, consider the Figure 2.1. An embedded BHMM for the number 31
is shown, which is the result of concatenating BHMMs for the digit 3, blank
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2.2. BHMM-based Handwriting RecognitionChapter 2. Transcription System

space and digit 1, in that order. Note that the BHMMs for blank space and
digit 1 are simpler than that for digit 3. Also note that the BHMM for digit
3 is shared between the two embedded BHMMs shown in the Figure. The
binary image of the number 31 shown above can only be generated from two
paths, as indicated by the arrows connecting prototypes to image columns,
which only differ in the state generating the second image column (either
state 1 or 2 of the BHMM for the first symbol). It is straightforward to
check that, according to (2.3), the probability of generating this image is
0.0004.

2.2 BHMM-based Handwriting Recognition

Given an observation sequence O = (o1, . . . , oT ), its most probable transcrip-
tion is obtained by application of the conventional Bayes decision rule:

w∗ = argmax
w∈W

p(w | O) (2.4)

= argmax
w∈W

p(w) p(O | w) , (2.5)

where W is the set of possible transcriptions; p(w) is usually approximated
by an n-gram language model [13]; and p(O | w) is a text image model which,
in this work, is modeled as a BHMM (built from shared, embedded BHMMs
at character level), as defined in Eq. (2.3). A particularly interesting case
arises when the set of possible transcriptions reduces to a (small) finite set of
words (class labels). In this case, p(w) is simply the prior probability of word
w, while p(O | w) is the probability of observing O given that it corresponds
to a handwritten version of word w.

2.2.1 The Viterbi algorithm

In order to efficiently compute p(O | w) as a BHMM probability of the
form given in Eq. (2.3), we use a dynamic programming methods known
as forward and backward algorithms [14, 15]. Although these algorithms
efficiently compute the exact value of P (O | S, Θ), it is common practice to
approximate it by the so-called Viterbi or maximum approximation, in which
the sums in Eqs. (2.1) and (2.3) are replaced by the max operator, i.e.

P (O | S, Θ) ≈ max
i1, . . . , iL+1

q1, . . . , qT

L
∏

l=1

P̂ (oil+1−1
il

| Θsl
) , (2.6)
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Figure 2.2: Application example of the forward and Viterbi algorithms to
the the BHMM and observation of Figure 2.1 (bottom). Numbers at the top
of the nodes denote forward probabilities, while those at the bottom refer to
Viterbi scores.
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2.2. BHMM-based Handwriting RecognitionChapter 2. Transcription System

where the P̂ is defined as:

P̂ (oil+1−1
il

| Θsl
) = aslIsl

qil
·
il+1−2

∏

t=il

aslqtqt+1
· aslqil+1−1Fsl

·
il+1−1

∏

t=il

bslqt
(ot) . (2.7)

In contrast to the exact definition, this approximation allows us to identify
a single, best state sequence or path associated with the given observation
sequence. The well-known Viterbi algorithm efficiently computes this ap-
proximation, using dynamic programming recurrences similar to those used
by the forward algorithm. Formally, we need to compute the probability
Q(l, t, j) of the most likely path up to time t that ends with the state j from
the BHMM for symbol sl. For the specials states, it can be computed as:

Q(l, t, Isl
) = Q(l − 1, t, Fsl−1

) 1 < l ≤ L
1 ≤ t ≤ T

. (2.8)

Q(l, t, Fsl
) = max

1≤j≤Msl

Q(l, t, j) asljFsl

1 ≤ l ≤ L
1 ≤ t ≤ T

, (2.9)

while, for the regular states with 1 ≤ l ≤ L and 1 < t ≤ T , we have:

Q(l, t, j) =

[

max
i∈{Isl

,1,...,Msl
}
Q(l, t − 1, i) aslij

]

bslj(ot) , (2.10)

The base case is for t = 1:

Q(l, 1, i) =







as1Is1
i bs1i(o1) l = 1, 1 ≤ i ≤ Ms1

0 otherwise
. (2.11)

The Viterbi algorithm can be seen as a minor modification of the forward
algorithm in which only the most probable is considered in each node com-
putation. Indeed, the application example shown in Figure 2.2 is used both,
for the forward and Viterbi algorithms. Now, however, the relevant numbers
are those included at the bottom of each node, which denote Q(l, t, j); i.e.,
at row 2 and column 3, we have Q(1, 3, 2) = 9

450
. Consider the generation

of the third observation vector at the second state (for the first symbol). It
occurs after the generation of the second observation vector, either at the
first or the second states, but we only take into account the most likely case.
Formally, the corresponding Viterbi score is computed as:

Q(1, 3, 2) = max
{ 1

15
·

3
10

· 1,
1

300
·

2
3

· 1
}

= max
{ 9

450
,

1
450

}

=
9

450

Note that forward probabilities do not differ from Viterbi scores up to Q(1, 3, 2),
since it corresponds to the first (and only) node with two incoming paths.
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Chapter 2. Transcription System2.3. Maximum likelihood parameter estimation

The Viterbi approximation to the exact probability of generating the obser-
vation sequence is obtained at the final node: Q(3, 7, F ) = 0.00036. The
most likely path, drawn with thick lines, is retrieved by starting at this node
and moving backwards in time in accordance with computation of Viterbi
scores. As usual in practice, the final Viterbi score in this example (0.00036)
is a tight lower bound of the exact probability (0.00040).

2.3 Maximum likelihood parameter estima-

tion

Maximum likelihood estimation of the parameters governing an embedded
BHMM does not differ significantly from the conventional Gaussian case, and
it can be carried out using the well-known EM (Baum-Welch) re-estimation
formula [14, 15]. Let (O1, S1), . . . , (ON , SN), be a collection of N training
samples in which the nth observation has length Tn, On = (on1, . . . , onTn

),
and was generated from a sequence of Ln symbols (Ln ≤ Tn), Sn = (sn1, . . . , snLn

).
At iteration r, the E step requires the computation, for each training sample
n, of their corresponding forward and backward probabilities , as well as the
expected value for its tth feature vector to be generated from kth component
of the state j in the HMM for symbol sl,

z
(r)
nltk(j) =

π
(r)
snljk

∏D
d=1 p

(r)
snljkd

ontd

(1 − p
(r)
snljkd)

1−ontd

b
(r)
snlj

(ont)
,

for each t, k, j and l.
In the M step, the Bernoulli prototype corresponding to the kth compo-

nent of the state j in the HMM for character c has to be updated as:

p
(r+1)
cjk =

1
γck(j)

∑

n

∑

l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)ont

P (On | Sn, Θ(r))
, (2.12)

where γck(j) is a normalization factor,

γck(j) =
∑

n

∑

l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn, Θ(r))
, (2.13)

and ξ
(r)
nltk(j) the probability for the tth feature vector of the nth sample, to

be generated from the kth component of the state j in the HMM for symbol
sl,

ξ
(r)
nltk(j) = α

(r)
nlt(j)z(r)

nltk(j)β(r)
nlt(j) . (2.14)
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2.4. Windowed BHMMs Chapter 2. Transcription System

Similarly, the kth component coefficient of the state j in the HMM for char-
acter c has to be updated as:

π
(r+1)
cjk =

1
γc(j)

∑

n

∑

l:snl=c

∑Tn

t=1 ξ
(r)
nltk(j)

P (On | Sn, Θ(r))
, (2.15)

where γc(j) is a normalization factor,

γc(j) =
∑

n

∑

l:snl=c

∑Tn

t=1 α
(r)
nlt(j)β(r)

nlt(j)
P (On | Sn, Θ(r))

. (2.16)

To avoid null probabilities in Bernoulli prototypes, they can be smoothed
by linear interpolation with a flat (uniform) prototype, 0.5,

p̃ = (1 − δ) p + δ 0.5 , (2.17)

where, for instance, δ = 10−6.

2.4 Windowed BHMMs

Given a binary image normalized in height to H pixels, we may think of a
feature vector ot as its column at position t or, more generally, as a concate-
nation of columns in a window of W columns in width, centered at position
t. This generalization has no effect neither on the definition of BHMM nor
on its maximum likelihood estimation, though it might be very helpful to
better capture image context at each horizontal position of the image. As an
example, Figure 2.3 shows a binary image of 4 columns and 5 rows, which
is transformed into a sequence of 4 15-dimensional feature vectors (first row)
by application of a sliding window of width 3. For clarity, feature vectors are
depicted as 3 × 5 subimages instead of 15-dimensional column vectors. Note
that feature vectors at positions 2 and 3 would be indistinguishable if, as in
our previous approach, they were extracted with no context (W = 1).

Although one-dimensional, “horizontal” HMMs for image modeling can
properly capture non-linear horizontal image distortions, they are somewhat
limited when dealing with vertical image distortions, and this limitation
might be particularly strong in the case of feature vectors extracted with
significant context. To overcome this limitation, we have considered three
methods of window repositioning after window extraction: vertical, horizon-
tal, and both. The basic idea is to first compute the compute the center of
mass of the extracted window, which is then repositioned (translated) to align
its center to the center of mass. This is done in accordance with the chosen
method, that is, horizontally, vertically, or in both directions. Obviously, the
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Chapter 2. Transcription System 2.4. Windowed BHMMs

feature vector actually extracted is that obtained after repositioning. An ex-
ample of feature extraction is shown in Figure 2.3 in which the the standard
method (no repositioning) is compared with the three methods repositioning
methods considered.

+
+ + +

o1 o2 o3 o4

Repositioning

None

+
+ + +

Vertical + + + +

Horizontal

+
+ + +

Both + + + +

Figure 2.3: Example of transformation of a 4 × 5 binary image (top) into a
sequence of 4 15-dimensional binary feature vectors O = (o1, o2, o3, o4) using
a window of width 3. After window extraction (illustrated under the original
image), the standard method (no repositioning) is compared with the three
repositioning methods considered: vertical, horizontal, and both directions.
Mass centers of extracted windows are also indicated.

13



Chapter 3

Translation System

In this chapter we review the state-of-art applications and approaches that
we used to carry out our experiments in the field of Statistical Machine
Translation (SMT). We might think of a SMT as a task to automatically
translate a source sentence x into a target sentence y. The system is to
select the sentence with the higher probability among all possible y.

x =x1... xj , xj ∈ X, j = 1, ..., J (3.1)

y =y1... yi, xi ∈ Y, i = 1, ..., I (3.2)

where xj and yi denote source and target words; and X and Y , the source
and target vocabularies respectively.

Nowadays, SMT systems follow the Bayes decision rule approach [16, 17]
in which the optimal target sentence y is found by maximizing the posterior
probability,

y∗ = argmax
y

p(y | x) (3.3)

= argmax
y

p(y) p(x | y) , (3.4)

Applying Bayes’ theorem we can re-write the first equation as shown above
in (eq 3.4), where p(y | x) is the translation model, and p(y) is the language
model. The language model describes the correctness of the target language
sentence which helps to avoid syntactically incorrect sentences. The transla-
tion model is decomposed into lexicon model and alignment model.

Nevertheless, most of the current statistical MT systems present an al-
ternative modeling of the translation process different from that presented
in Eq. 3.4. The posterior probability is modeled as a log-linear combination
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Chapter 3. Translation System 3.1. Word Alignment Model

of feature functions [18] as follow

y∗ = argmax
y

M
∑

m=1

λmhm(x, y), (3.5)

with λm being the log-linear interpolation weight and hm(x, y) is a feature
function, such as the logarithm of a language model, or the logarithm of a
phrased-based model.

3.1 Word Alignment Model

In this section, we will describe how to obtain some of the model parameters.
The most important one is the phrase probability translation table that maps
foreign phrases (Arabic) to English phrases. One of the most common tool
to establish a word alignment is to use the toolkit GIZA++. This toolkit
is an implementation of the IBM Models. IBM Model 1 uses only lexical
translation probabilities, Model 2 adds an absolute alignment model, Model
3 adds a fertility model, Model 4 replaces the absolute alignment model with
a relative alignment model, and Model 5 fixes a problem with deficiency in
the model.

These models have some serious draw-backs. Most importantly, they
only allow at most one English word to be aligned with each foreign word.
To resolve this, some transformations are applied: First, the parallel corpus
is aligned bidirectionally, Arabic to English and English to Arabic. This
generates two word alignments that have to be reconciled. If we intersect
the two alignments, we get a high-precision alignment of high-confidence
alignment points. If we take the union of the two alignments, we get a
high-recall alignment with additional alignment points. See figure 3.1 for an
illustration.

3.2 Phrase-based Models

Phrase-based statistical machine translation models are based on the trans-
lation of phrases instead of words as atomic units. A phrase can be defined
as a continuous multiword sequence. Phrases are mapped one-to-one based
on a phrase translation table, and may be reordered. A Phrase translation
table can be learned based on a word alignment. Below we explain three
different phrase-based models:
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3.2. Phrase-based Models Chapter 3. Translation System

Figure 3.1: Merging alignments by taking the intersection (black) or
union(gray) of sets of alignment points
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Chapter 3. Translation System 3.2. Phrase-based Models

3.2.1 Standard phrase-based models

The heuristic estimation of phrase-based models is grounded on the Viterbi
alignments computed as a byproduct of word-based alignment models. The
Viterbi alignment is defined as the most probable alignment given the source
and target sentences and an estimation of the model parameters. An good
example of this type is the Moses toolkit [11]. Moses is a complete out-
of-the-box translation system for academic research. It consists of all the
components needed to preprocess data, train the language models and the
translation models. It also contains tools for tuning these models using min-
imum error rate training and evaluating the resulting translations using the
BLEU score. Moses uses GIZA++ for word alignments and SRILM for lan-
guage modeling which are standard external tools.

3.2.2 Hierarchical phrase-based models

They are one of the current promising approaches to SMT. They take into ac-
count a weighted synchronous context-free grammar is induced from parallel
text. In addition to contiguous lexical phrases, hierarchical phrases with usu-
ally up to two gaps are extracted. Hierarchical decoding is carried out with a
search procedure which is based on CYK+ parsing (Chappelier and Rajman,
1998). A good example on these models is Jane toolkit [19]. Jane is an
open source translation toolkit which has been developed at RWTH Aachen
University and is freely available for non-commercial use. Jane provides effi-
cient C++ implementations for hierarchical phrase extraction, optimization
of log-linear feature weights, and parsing-based search algorithms.

3.2.3 Bilingual Ngram models approach

This approach can be seen as an alternative to the standard phrase-based ap-
proach [20, 21]. A good example on this approach is the Ncode toolkit [22].
Ncode is an open source statistical machine translation decoder and its com-
panion tools. Ncode main features include the use of multiple n-gram lan-
guage models estimated over bilingual units, source words and/or target
words or any factor decomposition, lexicalized reordering, several tuple (un-
igram) models, etc.. As for nearly all current statistical approaches to ma-
chine translation, these models are embedded in a linear model combination.
Ncode splits the reordering and decoding problems of SMT in two separate
modules, aiming at better tackling each of the problems. However, hard
reordering decisions are avoided by means of using permutation lattices.
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Chapter 4

Experiments

Experiments in this work were carried out on the Arabic-English parallel cor-
pus provided by the Linguistic Data Consortium (LDC) on the NIST Open
Handwriting Recognition and Translation evaluation (OpenHaRT). The data
reported here is collected from both 2010 and 2013 evaluations. Both eval-
uations focus on core recognition and translation technologies for document
images containing primary Arabic handwritten scripts [23, 12]. The focus of
the first evaluation was not only centered on the recognition and translation
of Arabic text but also on word and line segmentation which was represented
as a series of polygon coordinates indicating the locations of the text seg-
ments within the image. In the last evaluation, the main focus is centered
on recognition and translation of Arabic text so as our main approach.

4.1 NIST OpenHaRT corpus

The National Institute of Standards and Technology (NIST) Open Handwrit-
ing Recognition and Translation (OpenHaRT) evaluation is a public eval-
uation of image-to-text transcription and translation, similar to the tasks
evaluated by NIST for the DARPA Multilingual Automatic Document Clas-
sification Analysis and Translation (MADCAT) Program, see [23, 12]. The
2010 and 2013 evaluations focus on recognition and translation of images
containing primary Arabic handwritten script.

Data for this evaluation was created by the Linguistic Data Consortium
(LDC) and has been used in previous MADCAT evaluations. This data
was created in a controlled environment where known scribes copied Arabic
source texts that were previously used in the DARPA GALE program. The
source text was originally in electronic format. A corresponding document
image was created by instructing literate native Arabic writers to produce
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handwritten copies of chosen passages using various writing conditions. Each
passage was copied by at least two scribes. The handwritten copies were then
scanned at 600 dpi to create the document images in TIFF format. A writing
factor is considered, the writing instrument, surface and speed. Please refer
to the NIST evaluation plan for details [23, 12].

In this work, we will only focus on the 2013 NIST OpenHaRT evalua-
tion [12]. Thus, we will take into account only the segmentation conditions
and training conditions considered in this evaluation. The OpenHaRT 2013
database consists of 43590 Arabic documents for training, 1004 Arabic docu-
ments for development, and 633 Arabic documents for testing. More details
about this corpus is shown in Table 4.1 for unique writer.

Dataset All Documents Segments Words
Training 43590 41584 900121

Development 1004 916 20099
Testing 633 3144 69393

Table 4.1: NIST OpenHaRT 2013 database statistics extracting words and
segments for a unique writer

The 2010 evaluation process was paired with two segmentation condi-
tions to explore the relationship between system performance and the sys-
tem’s ability to segment the data. Segmentation is represented as a series
of polygon coordinates indicating the locations of the text segments within
the image. The two segmentation conditions are referred to as word seg-
mentation and line segmentation. On the other hand, the 2013 evaluation
process was only paired with line segmentation condition. Below is a brief
description about each condition.

• Word segmentation is created manually. Human annotators mark
the word boundaries using the GEDI tool. The input to GEDI is a
document image.

• Line segmentation is the primary segmentation condition. It is de-
fined as a bounding box that surrounds a line of text and is derived
algorithmically from the word segmentations by creating polygons that
minimize the amount of text overlap between the lines.
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4.2 Preprocessing and Training

4.2.1 Transcription System

In this work, we have applied the windowed BHMMs (Bernoulli HMMs) [24,
8, 25]. Each transcription hypothesis is built from an HMM in which emis-
sion probabilities are modelled as Bernoulli mixture distributions. To keep
the number of independent parameters low, the BHMM at sentence level
(transcription hypothesis) is built from BHMMs at character level which de-
pend on their surrounding characters, the so-called tri-character modelling
approach. Given a text image of an unknown word, each windowed BHMM
computes the probability of the given image to be a handwritten version of
its corresponding word. To compute these probabilities, text images are first
transformed into a sequence of binary feature vectors by applying a slid-
ing window at each horizontal position. The width of the sliding window
is known to have a strong effect on the system ability to capture local im-
age distortions, and thus this parameter has to be tuned. Moreover, we have
recently observed that local image distortions, and vertical distortions in par-
ticular, might not be properly modeled when the sliding window is applied
at a constant vertical position of the image. To overcome this limitation,
we applied repositioning on the sliding window before its actual application.
That is, the sliding window was repositioned so as to align its center with
its mass center. In this work, we applied only a vertical repositioning due
to its better performance over another two methods (horizontal and in both
directions) discussed in [9, 26, 27].

Keeping the tri-character approach in mind, a list of tri-characters was
obtained by taking the first N ∈ {50, 100, 200, 500} frequent ones, that is,
if a tri-character T appears more than N time, it will be selected. Selected
ones were replaced with those of uni-characters to avoid duplication. This
approach improved our results since we model for the character and it’s
surrounding two characters. We used N = 500 to do our experiments since
it was the best in results, number of characters, and time consuming.

The transcription system was trained from input images scaled in height
to 30 pixels (while keeping the aspect ratio), and then binarized with the Otsu
algorithm [28]. A sliding window of width 9 using the vertical repositioning
was applied, and thus the resulting input (binary) feature vectors for the
BHMMs had 270 bits. Since in Arabic, the shape of a letter written at the
beginning of the word is different from a letter written at the middle or at the
end; all Arabic transcriptions were encoded by adding this shape information.

Finally, the number of states per character was adjusted to 6 states for
all BHMMs. Similarly, the number of mixture components per state was
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empirically adjusted to 128. Parameter estimation and recognition were car-
ried out using the EM algorithm. Also, we used a 5-gram language model
at character level instead of the conventional class priors. The language
model was smoothed by linear interpolated estimates with absolute modified
Kneser-Ney discounting. In addition, the grammar scale factor was adjusted
to 30.

4.2.2 Translation System

As mentioned in the introduction, the translation system for the translation
task is based on one of the state-of-the-art machine translation systems.
Each systems use a different techniques to perform a good translation. In
this work we discussed only three of them: Standard phrase-based models,
Hierarchical phrase-based models, Bilingual Ngram models approach (Sec.
3.2). In this work, we had have to choose only one of them to perform the
translations of our system. After comparing between them on the Arabic-
English corpus introduced by NIST OpenHaRT 2013 [12], we found that the
log-linear translation system, Moses [11], has performed the best translations.

Specifically, in our system, we used the standard Moses features: a phrased-
based model that includes both direct and inverse phrase translation prob-
abilities and both direct and inverse lexical weights, a language model, a
distance-based reordering model, a word penalty, and a lexicalized reorder-
ing model. In the case of the language model, we used a 5-gram model
trained with SRILM [29]. This model was smoothed by linear interpolated
estimates with absolute modified Kneser-Ney discounting.

Each source and target sentence was pre-processed. English text was
tokenized with Moses tokenization tools [11], and Arabic text was tokenized
using the MADA+TOKAN tool [30]. Additionally, long sentences (longer
than 150 words) were then removed. Finally, standard Moses training was
performed on the training data, which includes: alignment extraction, phrase
extraction and MERT [11].

4.3 Experiments and Submissions

Transcription and Translation systems are typically based on the concate-
nation of two systems: a Handwritten Text Recognition (HTR) system and
a Machine Translation (MT) system. In this section, we describe and test
each system alone and in conjunction, which can be classified into three dif-
ferent tasks: Document Image Recognition (DIR) task, the Document Text
Translation (DTT) task, and the Document Image Translation (DIT) task.
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The name of these tasks was used in the NIST OpenHaRT 2010 and 2013
evaluations. All experiments of this section, was submitted to the NIST 2013
evaluation. Below, our participation is discussed in details.

For the 2013 NIST OpenHaRT 2013 evaluation, many systems were sub-
mitted for three different tasks, the Document Image Recognition (DIR)
task, the Document Text Translation (DTT) task, and the Document Image
Translation (DIT) task. Systems were trained following two training con-
ditions: a constrained condition that required participants to develop their
systems using only the provided LDC data resources, and an unconstrained
condition in which participants are free to use any additional publicly avail-
able non-LDC resources for the system development (For more information,
please refer to [12]).

For the DIR task, the UPV submitted two systems (DIR1, the primary
system, and DIR2, the contrastive system) that followed the constrained
training condition. They used the BHMMs described in Sec. 2. The only
difference between the systems is that the DIR2 system was trained using
the complete data set, whereas the DIR1 system was trained using less data.
Statistics about the data used to train both systems (DIR1 and DIR2) are
reported in Table 4.2.

For the DTT, two primary systems were submitted. The first one followed
the constrained training condition (DTT constrained), while the other one
followed the unconstrained training condition (DTT unconstrained). Both
systems were trained using the system described in Section. 3. However, for
the unconstrained task, we used some of the freely available data that was
used in IWSLT 2011 challenge: MultiUN [31] and TED [32]. Since MultiUN
corpus is not aligned at sentence level, we used the Champollion [33] tool
for aligning the sentences. Finally, we selected sentences for the training set
according to the infrequent n-grams score [34], in order to gather a specific
training set to translate our source test sentences. It is worth noting that
the number of sentences used for training was 20K from MultiUN and 2K

from TED. Further statistics about each corpus used to train our transla-
tion systems in both conditions (DTT constrained and DTT unconstrained)
are shown in Table 4.3. We used around 40K of data segments to train
our system following the constrained condition. However, we used about
62K of data segments to train the DTT system following the unconstrained
condition.

Given a handwritten image f , the DIT task, can be expressed as follows,

y⋆ = argmax
y∈Y

p(y|f) = argmax
y∈Y

∑

x

p(x|f) p(y|x) (4.1)

where x stands for a candidate recognized source (Arabic) text and y for a
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candidate translated sentence (in English) corresponding to the input image
f .

Since the summation over all possible transcriptions in Eq. (4.1) can-
not be computed in practice, for the Document Image Translation (DIT)
task, we submitted three different systems. In all of them, the probability
p(x | f) in Eq. (4.1) was approximated by the primary DIR transcription
system. Therefore, the key difference among systems lay in the translation
subsystems.

In the primary DIT system (DIT1), Eq. (4.1) was approximated as fol-
lows,

y∗ ≈ argmax
y∈Y

[max
x

{p(x|f) p(y|x)}]

≈ argmax
y∈Y

[p(y| max
x

{p(x|f)})]
(4.2)

and p(y|x⋆) was approximated by the primary DTT translation system. In
other words, the input image was recognized by the primary DIR transcrip-
tion system, and the recognized text was fed into the primary DTT transla-
tion system.

The second DIT system (DIT2) followed a similar approach to that of
the first DIT system, approximating Eq. (4.1) by Eq. (4.2). However, the
translation probability was approximated by a translation system analogous
to the primary DTT system but trained differently. In this case, the source
part of each bilingual training pair was substituted by the transcription ob-
tained by the primary DIR system. The new training data set produced in
this way was used to train the translation system. This second translation
system was expected to better handle the noisy output of the DIR system.
Accordingly, this system showed a better performance than the standard
(primary) system in the development set. However, in the test set it showed
a worse performance. For further details, please refer to Table 4.5.

Finally, in the third system (DIT3), a different approximation of Eq. (4.1)
was used

y⋆ = argmax
x∈NBest(f)

{

argmax
y∈NBest(f |x)

{p(x|f) [p(y|x)]θ}

}

(4.3)

where we introduced a scaling factor θ, and the search space was approx-
imated by N -best lists. Specifically, each input image was first recognized
using the primary DIR system into 100-Best transcriptions, and then each
transcription was translated using the primary DTT system into 100-Best
translations. Finally, the optimal scaling factor θ was found using a grid
search in a development set so as to maximize the BLEU.

23



4.4. Results Chapter 4. Experiments

In Tables 4.2 and 4.3 (last row), we report the data used to train each
part of our Recognition and Translation System in the constrained condition.
For the recognition part, we used about 779K of data lines for training, and
for the translation part we used around 40K of data segments for training.

Table 4.2: Data (lines) used for training each system and its training condi-
tions.

System/Condition Constrained Unconstrained

DIR1 779, 100 -

DIR2 789, 874 -

DIT (recognition part) 779, 100 -

Table 4.3: Data (segments) used for training each system and its training
conditions.

System/Condition Constrained Unconstrained

Corpus LDC MultiUN TED

DTT 40, 580 19, 956 2, 205

DIT (translation part) 40, 580 - -

4.4 Results

In this section, we summarize the results obtained in the OpenHaRT 2013
evaluation for all presented systems. For recognition systems, results are
shown in terms of Word Error Rate (WER%), whereas for translation sys-
tems, results are shown in terms of BLEU score. In Table 4.4, results for
the two DIR systems (DIR1 and DIR2) are reported on the EVAL set [12]
(Eval’13 column). Also, these systems, in particular DIR1, was compared
with the OpenHaRT 2010 system (UPV PRHLT) for DIR and line segmen-
tation condition. This comparison was performed by evaluating both systems
on the DRYRUN set [12] (Eval’10 column). It is worth noting that the eval-
uation set in the OpenHaRT 2010 is the development set in the OpenHaRT
2013 (Eval’10 column). Having this in mind, we can easily compare our
previous results obtained in OpenHaRT 2010 with results obtained in the
DRYRUN set of the OpenHaRT 2013. On the other hand, Table 4.5 reports
results of the DTT system for both training conditions (constrained DTT
and unconstrained DTT) together with the three DIT systems (DIT1, DIT2,
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and DIT3). These systems were evaluated on both sets EVAL and DRYRUN
(Eval’10 and Eval’13 columns respectively). The evaluation on EVAL set was
performed by NIST. However, the evaluation on DRYRUN set was performed
by UPV. The UPV evaluation procedure might has slightly differed from the
NIST procedure.

Table 4.4: Submitted systems for DIR and line segmentation condition to-
gether with their Word Error Rate (WER%)

System Reference WER [%]

Eval’10 Eval’13

DIR1 p-1_1_20130425 29.08 29.32

DIR2 c-1_2_20130425 - 29.20

UPV PRHLT OpenHaRT’10 47.45 -

As shown in Table 4.4, the DIR2 system slightly outperforms the DIR1
system. This conclusion was obviously expected for us since DIR2 system
was trained with more data. Additionally, both DIR1 and DIR2 systems
outperform our system (UPV PRHLT) from the OpenHaRT 2010 evaluation.
This was also expected because in this evaluation we trained our models with
more mixture components (128) per state, and also we used a bigger language
model for recognition.

Table 4.5: Submitted systems for (DTT and DIT) and line segmentation
condition together with their BLEU score

System Reference BLEU [%]

Eval’10 Eval’13

DTT Constrained p-1_1_20130425 22.53 21.93

DTT Unconstrained p-1_1_20130425 25.18 24.10

DIT1 p-1_1_20130425 16.51 16.95

DIT2 c-1_2_20130425 16.58 16.52

DIT3 c-1_3_20130425 18.13 17.49

As shown in Table 4.5, the usage of an additional small set of data (around
20K) significantly improved the translation accuracy in the DTT system.
More precisely, the Unconstrained DTT system significantly outperforms the
Constrained DTT system. Here, we remind the reader that this additional
data was selected according to the infrequent n-grams score [34], in order
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to gather a specific training set that relates to the source test sentences. In
the same Table (4.5), the DIT3 shows better performance than DIT1 and
DIT2. Specifically, in the DIT3 system, the search space was approximated
by means of 100-best list. This approach helped in finding better transcrip-
tions and translations which resulted in improving the results.

4.5 Tools and Means

In this section we describe the tools used in this work. For text pre-processing,
we used the Moses tokenization tools [11] for English text tokenization. On
the other hand, we used the MADA+TOKAN [30] toolkit for Arabic tok-
enization, diacritization, morphological disambiguation, POS tagging, stem-
ming and lemmatization. In addition, we used the Champollion Toolkit
(CTK) [33] to align the MultiUN [31] parallel corpus on sentence level.

For the handwritten text recognition system, we used the TLK [35] toolkit
which among other features implements Bernoulli Hidden Markov models
(BHMMs). This toolkit was developed by the UPV.

For the machine translation system, we used one of the state-of-the-art,
phrase-based statistical machine translation systems, Moses [11]. To estab-
lish the word alignments of a parallel corpus, we used MGIZA++ [36].

For both handwritten text recognition and machine translation systems
we used the SRI Language Modeling Toolkit (SRILM) [29] to generate the
corresponding language models.
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System Design

5.1 Introduction

In this chapter, we introduce the idea of an Arabic Transcription and Transla-
tion service for mobile hand-held devices, including mobile telephones, Pocket
PCs, and PDAs. This service, which is referred to Image Translation, is usu-
ally an additional service provided by mobile translation applications where
the user can take a photo of some printed text (menu list, road sign, document
etc.), apply optical character recognition (OCR) technology to it to extract
any text contained in the image, and then have this text translated into a
language of their choice. In this work, we show the process of translating
Arabic image text to English only.

In order to support the machine transcription and translation service (Im-
age Translation service), a mobile device needs to be able to communicate
with external computers (servers) that receive the user-input image, recog-
nize it into text, translate the recognized text and send the translated text
back to the user. This is usually done via an Internet connection (WAP,
GPRS, EDGE, UMTS, Wi-Fi) but some earlier applications used SMS to
communicate with the translation server.

Some image translation applications also offer additional services that
further facilitate the translated communication process, one example is the
speech generation (speech synthesis), where the (translated) text may be
transformed into human speech (by a computer that renders the voice of a
native speaker of the target language)

Below we will discuss the possibility of implementing a live Arabic image
translation service for Android mobiles. First of all, we will create a discuss
a basic UML design and a database scheme. The database is used to store all
images and texts from users (with their permission) for further investigation
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which can be used later to improve the quality of recognition and translation.
It is worth noting that the more data we use to train our models (transcription
and translation models), the more quality the output text will be. After that,
we will discuss how the server would deal with the received data. Finally, we
will show some photos of how this application works.

5.2 System Design and Mobile Application

The basic idea behind this kind of systems is to have a client-side application
that communicates with a server-side application via sockets. That is, when
a user pushes the camera button to capture an Arabic text image, the client-
side application automatically sends the image via sockets to the server-side
application which will process the image, recognize it, translate it, and finally
send the results (translated text) back to the client-side application to be
shown for the user. This complete process may vary in the speed depending
on the Internet speed to send and receive the data. Also it depends on the
time of processing in the server.

The client-side application is simple and easy to use. As soon as the
user runs the application, the camera turns on. A shortcut to the capture
button appears on the top right corner to permit a quick and accurate image
capturing. Finally, in the middle of the screen, a dynamic box appears to
place the required Arabic text to be translated inside it. Figure 5.1 shows the
design of the Image translation mobile application. In the first image (top),
the first screen of the application is shown. The dynamic box is bounding
the text to be translated. When the user pushes the capture button on the
top right corner of the screen, the application sends the data to the server
to be translated. while this process is happening, a loading circle appears
to let the user know that the request is being processed. When it is done,
the results is shown as in Figure 5.1 second image (bottom). First the user
should see the recognized text (Arabic OCR), then the translated text into
English.

The server-side application is more complicated and it has more steps
to do. First of all, we will define all components needed to do the server-
side work with their memory usage, time consuming and model size on disk.
Table 5.1 shows a list of components for each module (Feature Extraction,
Recognition, and Translation) together with the memory usage, time con-
suming, and size on disk.

From Table 5.1, the feature extraction module is the module that con-
sumes less time and memory among others (0.1 G of memory, and 1 second).
On the other hand, the recognition module with its three models (Acoustic,
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Figure 5.1: Image Translation system for Android Devices. First figure (top)
shows the initial screen of the application with the Arabic text to be trans-
lated. Second figure (bottom) shows the results of translation
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Component Size(Mb) Memory(Gb) Time(s)

Feature Extraction 0.1 1

Recognition 3.0 125

-Language Model 300

-Acoustic Model 1800

-Lexicon Model 5

Tokenizing 0.5 47

Translation 0.7 10

-Language Model 119

-Phrase-based table 28

-Reordering table 25

Detokenizing 0.5 10

Content Storing 0.1 1

Total: 2277 4.8 193

Table 5.1: Server-side components with their memory usage and time con-
suming, and the models used with their size on disk

Language, and Lexicon models) consumes the most (3 Gb of memory and
around 2 minutes). The Translation module has a pre-step to tokenize the
data and a post-step to detokenize the results and to put them in the correct
format. This module contains three models that takes around 10 seconds
and consumes around 0.7 Gb of memory. The last module in this step is the
Content Storing module. This module is responsible of storing some data
about the request made by the user in the server. This module is disabled
by default and it needs the permission of the user in order to work. In next
section we explain how this module works, also we show the UML design of
the database used to store the data.

5.3 Content Storing

After translation the data in the server, and before it is sent back to the
client-side application, it passes by the final module, the Content Storing
module, which is responsible of storing some data about the user request,
image, recognized and translated text into a SQL database. This information
will be taken into account for further investigation and to study the errors
made by the system in order to find a way to improve the quality of the
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system.
For this module to work, it needs the user’s permission. It is important

to ask the users if they would like to participate in the process of improving
the quality of our system by giving us the permission to store some data
from their request. This permission can be gained by enabling the “Help in
improving our system” check box in the client-side application.

First of all, this module stores data about the user request, such as the IP
address, Application version, and the date of the request. This information
is stored in the DeviceClient table which is represented in the UML design
in Figure 5.2. Then, for each client/device, the data (the image) is stored
in the server. Besides from that, this module also stores the recognized text
which is the output of the recognition module, as well as the translated text
which is the output of the translation module. Additionally, the complete
processing time is also stored. This information is shown in the Content
table 5.2. Finally, the client can send a feedback about the usage of the
system or any suggestions or improvements. This information is stored in
the Feedback table.

In the Application table we store the version of the mobile application
and some description about it. This tables is filled by us every time a new
version of the application is implemented. The user and roles tables are used
to store credentials of the user who add ore modify the application version.
These tables are completely controlled by us. However, when a client make
a request, the ID of the version of the application that he is using is stored
in the DeviceClient table.

The Status table is used to indicate the status of the process. Depending
on each request, a content record might have failed, succeeded, or interrupted
by the user or because of a bad Internet connection. It is important to know
the reason when investigating the errors.
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Figure 5.2: Database design for the Image Translation mobile application
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Concluding Remarks

In this work we have discussed an Image Translation system, that takes an
Arabic text image as an input and returns the translation of the recognized
text in English. This kind of systems, is typically based on a concatena-
tion of two systems: a Handwritten Text Recognition (HTR) system and a
Machine Translation (MT) system. In the case of handwritten recognition
of text images, our work has focused on the use of the embedded Bernoulli
(mixture) HMMs (BHMMs), that is, embedded HMMs in which the emission
probabilities are modeled with Bernoulli mixtures. These models have shown
improvements among other systems in different corpus for Arabic Text. In
the case of Arabic text translation, we discuss three different state-of-the-
art translation models: the Standard phrase-based model, the Hierarchical
phrase-based model, and the Bilingual N-gram models. However our work
has only focused on the phrase-based log-linear translation models, In par-
ticular, we used Moses toolkit to carry out our experiments.

Experiments in this work were carried out on the Arabic-English parallel
corpus provided by the Linguistic Data Consortium (LDC) on the NIST Open
Handwriting Recognition and Translation evaluation (OpenHaRT). The data
is collected from both 2010 and 2013 evaluations. Both evaluations focus on
core recognition and translation technologies for document images containing
primary Arabic handwritten scripts.

All results obtained in this work have been submitted to the NIST Open-
HaRT 2013 evaluation. Our submissions included systems for both transcrip-
tion and translation. Specifically, two systems were submitted for the DIR
task, one system for the DTT task, which followed both constrained and
unconstrained training conditions, and three systems for the DIT task. Very
competitive results were achieved.

Finally, the idea of an Arabic Transcription and Translation system for
mobile applications is presented and discussed. We explored a client-side
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application for Android mobiles, and also a server-side application. The
client-side application is responsible of sending an Arabic text image taken
by a user to the server-side application by sockets. The image then processed,
recognized, translated, and finally, the translated text is return back to the
client.
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