
Multichannel Audio Processing 
for Speaker Localization, Separation 

and Enhancement

by 
Amparo Martí Guerola

Supervisors: 
Dr. Máximo Cobos Serrano

Dr. José Javier López Monfort

DOCTORAL THESIS

Valencia, Spain
July 2013





To Dad





Abstract

This thesis is related to the field of acoustic signal processing and its ap-
plications to emerging communication environments. Acoustic signal pro-
cessing is a very wide research area covering the design of signal processing
algorithms involving one or several acoustic signals to perform a given task,
such as locating the sound source that originated the acquired signals, im-
proving their signal to noise ratio, separating signals of interest from a set
of interfering sources or recognizing the type of source and the content of
the message. Among the above tasks, Sound Source localization (SSL) and
Automatic Speech Recognition (ASR) have been specially addressed in this
thesis. In fact, the localization of sound sources in a room has received
a lot of attention in the last decades. Most real-word microphone array
applications require the localization of one or more active sound sources
in adverse environments (low signal-to-noise ratio and high reverberation).
Some of these applications are teleconferencing systems, video-gaming, au-
tonomous robots, remote surveillance, hands-free speech acquisition, etc.
Indeed, performing robust sound source localization under high noise and
reverberation is a very challenging task. One of the most well-known algo-
rithms for source localization in noisy and reverberant environments is the
Steered Response Power - Phase Transform (SRP-PHAT) algorithm, which
constitutes the baseline framework for the contributions proposed in this
thesis. Another challenge in the design of SSL algorithms is to achieve real-
time performance and high localization accuracy with a reasonable number
of microphones and limited computational resources. Although the SRP-
PHAT algorithm has been shown to be an effective localization algorithm
for real-world environments, its practical implementation is usually based
on a costly fine grid-search procedure, making the computational cost of
the method a real issue. In this context, several modifications and opti-
mizations have been proposed to improve its performance and applicability.
An effective strategy that extends the conventional SRP-PHAT functional
is presented in this thesis. This approach performs a full exploration of the
sampled space rather than computing the SRP at discrete spatial positions,
increasing its robustness and allowing for a coarser spatial grid that reduces
the computational cost required in a practical implementation with a small
hardware cost (reduced number of microphones). This strategy allows to
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implement real-time applications based on location information, such as au-
tomatic camera steering or the detection of speech/non-speech fragments
in advanced videoconferencing systems.

As stated before, besides the contributions related to SSL, this the-
sis is also related to the field of ASR. This technology allows a computer
or electronic device to identify the words spoken by a person so that the
message can be stored or processed in a useful way. ASR is used on a
day-to-day basis in a number of applications and services such as natu-
ral human-machine interfaces, dictation systems, electronic translators and
automatic information desks. However, there are still some challenges to
be solved. A major problem in ASR is to recognize people speaking in
a room by using distant microphones. In distant-speech recognition, the
microphone does not only receive the direct path signal, but also delayed
replicas as a result of multi-path propagation. Moreover, there are mul-
tiple situations in teleconferencing meetings when multiple speakers talk
simultaneously. In this context, when multiple speaker signals are present,
Sound Source Separation (SSS) methods can be successfully employed to
improve ASR performance in multi-source scenarios. This is the motiva-
tion behind the training method for multiple talk situations proposed in
this thesis. This training, which is based on a robust transformed model
constructed from separated speech in diverse acoustic environments, makes
use of a SSS method as a speech enhancement stage that suppresses the
unwanted interferences. The combination of source separation and this
specific training has been explored and evaluated under different acoustical
conditions, leading to improvements of up to a 35% in ASR performance.

Keywords: Sound source localization, sound source separation, SRP-
PHAT, microphone array, speaker detection, automatic speech recognition.



Resumen

Esta tesis se enmarca en el campo del procesado de señales acústicas y
sus aplicaciones para entornos de comunicación emergentes. El procesado
de señales acústicas es un área de investigación muy amplia que abarca el
diseño de algoritmos para el tratamiento de una o varias señales acústicas
con el fin de realizar una tarea determinada, como puede ser: la localización
de la fuente de sonido que originó las señales acústicas adquiridas, la mejora
de la relación señal a ruido de las mismas, la separación de señales de in-
terés a partir de un conjunto de fuentes interferentes o el reconocimiento
del tipo de fuente y/o el contenido del mensaje. Entre las tareas anteriores,
la localización de fuente de sonidos (SSL, Sound Source Localization) y el
reconocimiento automático de voz (ASR, Automatic Speech Recognition)
han sido especialmente tratados en esta tesis. De hecho, la localización
de fuentes de sonido en una habitación ha recibido mucha atención por
parte de la comunidad cient́ıfica en las últimas décadas. La mayoŕıa de las
aplicaciones reales de arrays de micrófonos necesitan localizar una o más
fuentes de sonido activas en condiciones adversas (baja relación señal-ruido
y una alta reverberación). Algunas de estas aplicaciones son los sistemas
de teleconferencia, videojuegos, robots autónomos, sistemas remotos de vi-
gilancia, la adquisición de señal en modo manos libres, etc. De hecho, la
localización robusta de fuentes de sonido bajo condiciones de alto nivel de
ruido y reverberación sigue siendo un reto. Uno de los algoritmos más
conocidos para la localización de fuentes en entornos ruidosos y reverbe-
rantes es el Steered Response Power - Phase Transform (SRP-PHAT), que
constituye el marco de referencia para las contribuciones que se proponen
en esta tesis. Otro desaf́ıo en el diseño de algoritmos de SSL es lograr su
funcionamiento en tiempo real con una alta precisión en la localización y
con un número razonable de micrófonos a un coste computacional reducido.
Aunque el algoritmo SRP-PHAT ha demostrado ser un algoritmo de local-
ización efectivo en entornos reales, su aplicación práctica se basa por lo
general en un procedimiento costoso de búsqueda por mallado, por lo que
el coste computacional de este método supone un problema a considerar. Es
por ello que diversas modificaciones y optimizaciones se han propuesto en
la literatura para mejorar su rendimiento y aplicabilidad. En esta tesis se
propone una nueva estrategia que extiende eficazmente el comportamiento
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del algoritmo SRP-PHAT convencional. Este nuevo método realiza una ex-
ploración completa del espacio muestreado en lugar de calcular el SRP en
posiciones espaciales discretas, aumentando aśı su robustez y permitiendo
un mallado espacial más ancho que reduce el coste computacional requerido
en una aplicación práctica, reduciendo también el coste en hardware (menor
número de micrófonos). Esta estrategia permite implementar aplicaciones
en tiempo real basándose en la información de las posiciones estimadas,
como por ejemplo redirigir de forma automática la posición de una cámara
o la detección de fragmentos de habla / no habla en sistemas avanzados de
videoconferencia.

Como se ha comentado anteriormente, además de las contribuciones
relacionadas con SSL, esta tesis está también relacionada con el campo del
reconocimiento automático de voz (ASR). Esta tecnoloǵıa permite a un or-
denador o dispositivo electrónico identificar las palabras pronunciadas por
una persona para que el mensaje se pueda almacenar y procesar de una
forma útil. ASR es utilizado en el d́ıa a d́ıa en una serie de aplicaciones
y servicios, como interfaces hombre-máquina naturales, sistemas de dic-
tado, traductores electrónicos y mostradores de información automática.
Sin embargo, aún existen algunos desaf́ıos que hay que resolver. Un pro-
blema importante en ASR es reconocer a las personas que están hablando
en una habitación mediante el uso de micrófonos a distancia. En el recono-
cimiento de voz distante, los micrófonos no sólo reciben la señal v́ıa directa
de las fuentes de sonido, sino que también reciben réplicas retardadas como
resultado de la propagación multitrayecto. Por otra parte, también exis-
ten múltiples situaciones en las teleconferencias en las que varios oradores
hablan simultáneamente. En este contexto, cuando múltiples señales de
voz están presentes simultáneamente, los métodos de separación de fuentes
de sonido (SSS, Sound Source Separation) pueden emplearse con éxito para
mejorar el rendimiento del reconocimiento automático de voz en escenarios
con múltiples fuentes. Con el objetivo de mejorar este tipo de situaciones,
en esta tesis se ha propuesto un método de entrenamiento diferente. Este
entrenamiento, el cual se basa en un modelo robusto construido a partir
de voces previamente separadas en diversos entornos acústicos, utiliza las
técnicas de separación como una etapa de mejora del habla que suprime
las interferencias no deseadas. Se ha estudiado la combinación de la sepa-
ración de fuentes y el uso de este entrenamiento espećıfico para la mejora
del reconocimiento de voz en diferentes condiciones acústicas, dando lugar
a mejoras de hasta un 35% en la tasa final de reconocimiento.
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Resum

Aquesta tesi s’emmarca en el camp del processament de senyals acústics i
les seves aplicacions per a entorns de comunicació emergents. El processat
de senyals acústics és una àrea de recerca molt àmplia que abasta el disseny
d’algorismes per al tractament d’un o diversos senyals acústics per tal de
realitzar una tasca determinada, com pot ser: la localització de la font de
so que va originar els senyals acústics aconseguits, la millora de la relació
senyal a soroll de les mateixes, la separació de senyals d’interès a partir
d’un conjunt de fonts interferents o el reconeixement del tipus de font i / o
el contingut del missatge. Entre les tasques anteriors, la localització de font
de sons (SSL, Sound Source Localization) i el reconeixement automàtic de
veu (ASR, Automatic Speech Recognition) han estat especialment tractades
en aquesta tesi. De fet, la localització de fonts de so en una habitació ha re-
but molta atenció per part de la comunitat cient́ıfica en les últimes dècades.
La majoria de les aplicacions reals d’arrays de micròfons necessiten loca-
litzar una o més fonts de so actives en condicions adverses (baixa relació
senyal-soroll i una alta reverberació). Algunes d’aquestes aplicacions són
els sistemes de teleconferència, videojocs, robots autònoms, sistemes remots
de vigilància, l’adquisició de senyal en mode mans lliures, etc. De fet, la
localització robusta de fonts de so sota condicions d’alt nivell de soroll i
reverberació segueix sent un repte. Un dels algorismes més coneguts per
a la localització de fonts en entorns sorollosos i reverberants és el Steered
Response Power - Phase Transform (SRP-PHAT), que constitueix el marc
de referència per a les contribucions que es proposen en aquesta tesi. Un
altre desafiament en el disseny d’algorismes de SSL és aconseguir el seu
funcionament en temps real amb una alta precisió en la localització i amb
un nombre raonable de micròfons a un cost computacional redüıt. Encara
que el algoritme SRP-PHAT ha demostrat ser un algorisme de localització
efectiu en entorns reals, la seva aplicació pràctica es basa en general en un
procediment costós de recerca per mallat, pel que el cost computacional
d’aquest mètode suposa un problema a considerar. És per això que di-
verses modificacions i optimitzacions s’han proposat en la literatura per
millorar el seu rendiment i aplicabilitat. En aquesta tesi es proposa una
nova estratègia que estén eficaçment el comportament de l’algorisme SRP-
PHAT convencional. Aquest nou mètode realitza una exploració completa
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de l’espai mostrejat en lloc de calcular el SRP en posicions espacials dis-
cretes, augmentant aix́ı la seva robustesa i permetent un mallat espacial
més ample que el cost computacional requerit en una aplicació pràctica,
reduint també el cost en hardware (menor nombre de micròfons). Aquesta
estratègia permet implementar aplicacions en temps real basant-se en la in-
formació de les posicions estimades, com ara redirigir de forma automàtica
la posició d’una càmera o la detecció de fragments de parla / no parla per
a sistemes avançats de videoconferència.

Com s’ha comentat anteriorment, a més de les contribucions relacionades
amb SSL, aquesta tesi està també relacionada amb el camp del reconeixe-
ment automàtic de veu (ASR). Aquesta tecnologia permet a un ordinador
o dispositiu electrònic identificar les paraules pronunciades per una persona
perquè el missatge es pugui emmagatzemar i processar d’una forma útil.
ASR és utilitzat en el dia a dia en una sèrie d’aplicacions i serveis, com a in-
terfaces home-màquina naturals, sistemes de dictat, traductors electrònics
i taulells d’informació automàtica. No obstant això, encara hi ha alguns
reptes que cal resoldre. Un problema important en ASR és reconèixer a les
persones que estan parlant en una habitació mitjançant l’ús de micròfons
a distància. En el reconeixement de veu distant, els micròfons no només
reben el senyal via directa de les fonts de so, sinó que també reben rèpliques
retardades com a resultat de la propagació multitrajecte. D’altra banda,
també hi ha múltiples situacions en les teleconferències en què diversos
oradors parlen simultàniament. En aquest context, quan múltiples senyals
de veu són presents simultàniament, els mètodes de separació de fonts de so
(SSS, Sound Source Separation) es poden utilitzar amb èxit per millorar el
rendiment del reconeixement automàtic de veu en escenaris amb múltiples
fonts. Amb l’objectiu de millorar aquest tipus de situacions, en aquesta
tesi s’ha proposat un mètode d’entrenament diferent. Aquest entrenament,
el qual es basa en un model robust constrüıt a partir de veus prèviament
separades en diversos entorns acústics, utilitza les tècniques de separació
com una etapa de millora de la parla que suprimeix les interferències no de-
sitjades. S’ha estudiat la combinació de la separació de fonts i l’ús d’aquest
entrenament espećıfic per a la millora del reconeixement de veu en diferents
condicions acústiques, donant lloc a millores de fins a un 35% en la taxa
final de reconeixement.

Paraules Clau : Localització de fonts de so, separació de fonts de so, SRP-
PHAT, array de micròfons, detecció de parla, reconeixement automàtic de
veu.
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Introduction 1
1.1 Background and Motivation

The human ability to distinguish when a sounding object is close or far
from us is completely developed when we are just a few months old [1]. In
fact, the development of the localization mechanisms used by the human
auditory system takes place before being one year old [2]. The localization
of sound sources is possible because the human brain analyzes all the signals
arriving through our ears, using subtle differences in intensity and other
spectral and timing cues to recognize the direction of one or even several
sound sources [3; 4].

While localizing sound sources does not require any special effort for
a human subject, for machines, sound source localization in a room is a
complicated process since not all the sound objects have the same spectral
properties, they occur at different time instants and at different spatial
positions, and the process is strongly affected by reflections. Acoustic re-
flections dominate the perception of sound in a room modifying the spatial
characteristics of the perceived sources.

Over the last decades, the scientific community has dedicated many
efforts to localize sound sources in space by means of microphone array
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systems and, today, achieving high localization performance is still a chal-
lenge. Microphone arrays have been used in many applications, such as
speech recognition [5], teleconferencing systems [6; 7], hands-free speech ac-
quisition [8], digital hearing aids [9], video-gaming [10], autonomous robots
[11] and remote surveillance [12]. All these applications require the local-
ization of one or more acoustic sources. In fact many audio processing
applications can be improved when the spatial location of the source of
interest is known. For this reason, the volume of research works in this
area has increased considerably over the last years.

Many current SSL systems assume that the sound sources are dis-
tributed on a horizontal plane [13; 14]. This assumption simplifies the
problem of SSL in almost all methods. For example, in teleconference ap-
plications all talkers are assumed to speak at the same height which is
somewhat true, but the talker or other attendees can act as sound block-
ades between the main talker and the array. Moreover, in most dominant
SSL methods, the required computational cost is usually very high, even
when the sources are assumed to be on the same plane [15]. Some of these
SSL methods have been modified to cover a three dimensional space at
a very high computational cost. Thus, the development of 3D localization
methods having low complexity is still a very challenging task. There is also
another problem to take into account, that is the reflections of the sound
signal in the different walls, floor and objects around. These reflections
interfere in the system making more difficult the localization. As a result,
SSL systems must perform robustly and work in noisy and reverberant
environments.

Algorithms for SSL can be broadly divided into indirect and direct
approaches [16]. Indirect approaches usually follow a two-step procedure:
they first estimate the Time Difference Of Arrival (TDOA) [17] between
microphone pairs and, afterwards, they estimate the source position based
on the geometry of the array and the estimated delays. On the other hand,
direct approaches perform TDOA estimation and source localization in one
single step by scanning a set of candidate source locations and selecting the
most likely position as an estimate of the source location. In addition, in-
formation theoretic approaches have also shown to be significantly powerful
in source localization tasks [18].

The SRP-PHAT algorithm is a direct approach that has been shown
to be very robust under difficult acoustic conditions [19; 20; 13]. The al-
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gorithm is commonly interpreted as a beamforming-based approach that
searches for the candidate source position that maximizes the output of a
steered delay-and-sum beamformer. However, despite its robustness, com-
putational cost is a real issue because the SRP space to be searched has
many local extrema [21]. Very interesting modifications and optimizations
have already been proposed to deal with this problem, such as those based
on Stochastic Region Contraction (SRC) [22] and Coarse-to-Fine Region
Contraction (CFRC) [23], achieving a reduction in computational cost of
more than three orders of magnitude.

SSL methods can be a very useful tool for human-machine interaction
systems, since the spatial information provided by localization algorithms
is essential for mimicking the natural human ability to discriminate the
position of a talker. This can be used for setting up a spatial audio re-
production system, detecting active speakers or as a speech enhancement
stage aimed at suppressing noise or reverberation from the signal of in-
terest. In this context, another of the contributions of this thesis is the
development of a speech/non-speech discrimination technique based on the
statistical distribution of location estimates. The automatic detection of
speech frames can be very useful to manage audio levels, suppressing noise
and improving ASR systems. In fact, human-machine interaction is also
closely related, from an acoustic point of view, to ASR, which is another
topic covered in this thesis. One major problem in ASR is to recognize
people speaking in a room by using a distant microphone [24]. In distant-
speech recognition, the microphone does not only receive the direct path
signal, but also delayed replicas as a result of multi-path propagation [25].
The existing mismatch between the training and testing conditions lim-
its the performance of ASR systems, thus, robust recognition methods are
aimed at reducing this mismatch. In this context, several approaches have
been proposed to cope with room reverberation in speech recognition appli-
cations. Some methods are based on a speech enhancement stage prior to
recognition [26]. In other methods, the recognizer itself is made robust to
reverberation by using model compensation or by performing an improved
feature extraction process [27]. All these approaches have shown to be use-
ful to improve ASR. In any case, reducing the acoustic mismatch training
and testing conditions seems to be a relevant issue for the development of
robust ASR systems. Despite the fact that speech recognizers are usually
trained on anechoic (or almost anechoic) conditions, the environment where
they are usually employed can be rarely considered anechoic. To this end,
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the use of different training data matching several acoustic environments
has already been suggested [28; 29], yielding a noticeable improvement.

One of the most challenging problems nowadays is to provide a com-
fortable conversation with a remote partner where one of them or both are
in adverse environments. By adverse environment we mean noisy offices,
railway stations, airports, shop floors, etc. Similar problems have to be
solved when a speech recognition system is used. Under comfortable envi-
ronment we understand that a speaker does not have to be wired, i.e. to
carry or to hold a microphone very close to the mouth. The talker should
be able just to talk without caring where the microphone(s) is(are) located.
The partner at the remote location or a speech recognition system should
just receive the speech signal as clearly as possible.

Many efforts have been made to develop robust ASR systems working
in reverberant and noisy conditions, most of them focused on recognizing
a single speech source. However, besides noise and reverberation, cocktail-
party situations where different speakers are talking at the same time pose
a real problem for ASR systems [30; 31]. Source separation algorithms have
been described in the literature as a solution for simultaneous speech recog-
nition. However, separated speech signal present an additional mismatch
with respect to the training signals used in a conventional ASR system.

1.2 Objectives of the Thesis

Taking into account the above context, the main scope of this thesis is as
follows:

To deepen into signal processing algorithms for sound source local-
ization, separation and enhancement with microphone arrays, providing a
robust and low-complexity front-end for automatic speech recognition sys-
tems.

Some particular aims emerge from the main scope, which are presented
as follows:

• To develop robust and high-accuracy SSL algorithms working in ad-
verse acoustic environments.

• To develop low-complexity SSL methods, avoiding the need for high
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hardware and computational resources.

• To evaluate the performance of SSL methods in real application en-
vironments.

• To integrate other acoustic processing tasks into the proposed SSL
frameworks, such as speech/non-speech classification or audio-based
camera-steering.

• To apply multichannel source separation techniques to ASR systems,
improving the percentage of recognized words in simultaneous speech
cases.

• To study the advantages and disadvantages of using source separation
methods in the context of ASR.

1.3 Organization of Thesis

This thesis work is carried out in 3 different stages. The advantages of
this new algorithm are demonstrated in different acoustic environments,
including its application to real videoconferencing systems.

Secondly, a post-processing technique using the information provided
by the SSL algorithms is proposed, which is aimed at increasing the signal-
to-noise ratio of the captured speech. In this method, the location infor-
mation is processed to generate a binary time-frequency mask using the
advantages provided by SRP-PHAT localization.

Finally, different ways to train an ASR system are proposed to deal
with simultaneous speech cases, studying the performance and influence of
different kinds of source separation methods.

This thesis work is organized as follows:

• Chapter 2: This chapter is intended to give a comprehensive overview
of different acoustical signal processing. The chapter is focused specif-
ically in three different aspects:

– Sound source localization methods and applications.

– Automatic speech recognition.
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– Source separation separation.

• Chapter 3: This chapter summarizes the findings of this research
work, revisiting each scientific paper associated to this thesis by means
of a sort description of the paper and its main contributions.

• Chapter 4-9: These chapters correspond to the scientific papers pub-
lished throughout this thesis, reformatted to this book style.

• Chapter 10: Finally, conclusions obtained in this dissertation are pre-
sented, including some guidelines for future research related to the
presented contributions.
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Although the papers included within this thesis contain a brief review of
the state of the art related to each specific contribution, we have considered
appropriate to present an extended overview of the state of the art in this
chapter. This will make clearer the novelty of the approaches proposed in
the rest of the thesis.

The chapter is structured to cover three fundamental topics:

• Sound source localization (SSL) methods and applications.

• Automatic speech recognition (ASR).

• Sound source separation (SSS).

2.1 Sound Source Localization

As commented in the introductory chapter, the localization of sound sources
by humans is based on the analysis that the brain performs on the signals
arriving to the ears, using subtle differences in intensity and other spectral
and timing cues to recognize the direction of the source that emitted the
signal [3; 4]. Automatic SSL methods make use of microphone arrays and
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complex signal processing techniques to perform the same task, however,
undesired effects such as acoustic reflections and noise make this process
difficult, being currently a hot research topic in acoustic signal process-
ing. In the next subsections, some well-known localization approaches are
explained, which establish the framework for the contributions developed
throughout this thesis.

2.1.1 Signal Model

The location of a source can be determined from signals received at several
sensors. One of the most effective methods is to use estimates of the TDOA
and/or the frequency-difference-of-arrival (FDOA) between pairs of signals
received at the sensors [32].

The assumed (anechoic) signal model for the time-delay between re-
ceiving signals at sensors, m1(t),m2(t), ...,mM (t), is given by

m1(t) = a1s(t − t1) + w1(t)
m2(t) = a2s(t − t2) + w2(t)

...
mM (t) = aMs(t − tM ) + wM (t)

(2.1)

where am are the amplitude attenuation factors, tm are the signal arrival
time delays and wm(t) are additive noise signals. We assume that the
noise is stationary white Gaussian noise and uncorrelated with the signal
of interest s(t). Given Equation 2.1, τ = t1 − t2, would be the TDOA
between microphones 1 and 2.

In the frequency domain, the signal model is given by

M1(w) = A1S(w)e−jwt1 + W1(w)
M2(w) = A2S(w)e−jwt2 + W2(w)

...
MM (w) = AMS(w)e−jwtM + WM (w),

(2.2)

where the signal, noise, and received signal have spectral densities Gs,s(w) =
E[S(w)S∗(w)], Gw1,w1(w) = E[W1(w)W ∗

1 (w)], and Gm1,m1(w) = E[M1(w)M∗
1 (w)],
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respectively. The amplitudes Am are dependent on the distance from the
source to the microphones, the directivity of the source and the microphone,
the properties of the reflective surfaces, and the air absorption. Here the
amplitudes are assumed to be equal to unity, i.e., Am = 1,∀m. This model
is assumed for simplicity in the cases studied in this thesis.

2.1.2 Time Difference Of Arrival (TDOA)

Most practical acoustic source localization schemes are based on TDOA
estimation because these systems are conceptually simple. They are rea-
sonably effective in moderately reverberant environments and, moreover,
their low computational complexity makes them well-suited to real-time
implementation with several sensors [33].

In general, an array is composed of M microphones, and each micro-
phone is positioned at a unique spatial location. Hence, the direct-path
sound waves propagate along M bearing lines, from the source to each mi-
crophone, simultaneously. The orientations of these lines in the global coor-
dinate system define the propagation directions of the wave fronts at each
microphone. The propagation vectors for a four-element (m = 1, . . . , 4),
linear array are illustrated in Figure 2.1, denoted as �dm.

Source

Mic 1 Mic 1 Mic 3 Mic 4

d2d1
d3 d4

Figure 2.1. Propagation vectors.

Time Delay Estimation (TDE) is concerned with the computation of
the relative TDOA between different microphone sensors. It is a funda-
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mental technique in microphone array signal processing and the first step
in passive TDOA-based acoustic source localization systems. With this
kind of localization, a two-step strategy is adopted as shown in Figure 2.2.

The first stage involves the estimation of the TDOA between receivers
through the use of TDE techniques [17]. The estimated TDOAs are then
transformed into range difference measurements between sensors, resulting
in a set of nonlinear hyperbolic range difference equations. The second stage
utilizes efficient algorithms to produce an unambiguous solution to these
nonlinear hyperbolic equations. The solution produced by these algorithms
results in the estimated position location of the source [34]. This data
along with knowledge of the microphone positions are then used to generate
hyperbolic curves, which are then intersected in some optimal sense to
arrive at a source location estimate as shown in Figure 2.3.

S

M1

M2

M3

TDE 1

TDE 2

Location

Estimation

Figure 2.2. A two stage algorithm for sound source localiza-

tion.

Several variations of this principle have been developed [35]. They differ
considerably in the method of derivation, the extent of their applicability
(2D versus 3D, near field source versus far field source), and their means
of solution.
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Sensors

Location Estimate

1 2

3

Hyperbola from (1,2)

Hyperbola from (1,3)

Hyperbola from (2,3)

Figure 2.3. Source estimation with three microphones.

2.1.3 Generalized Cross Correlation

The existing strategies of SSL may broadly be divided into two main classes:
indirect and direct approaches [16]. Indirect approaches to source localiza-
tion are usually two-step methods: first, the relative time delays for the
various microphone pairs are evaluated and then the source location is
found as the intersection of a pair of a set of half-hyperboloids centered
around the different microphone pairs. Each half-hyperboloid determines
the possible location of a sound source based on the measure of the time
difference of arrival between the two microphones. On the other hand, di-
rect approaches generally scan a set of candidate source positions and pick
the most likely candidate as an estimate of the sound source location, thus
performing the localization in a single step.

For both approaches, techniques such as the Generalized Cross Corre-
lation (GCC) method, proposed by Knapp and Carter in 1976, are widely
used [36].

Consider the output from microphone l, ml(t), in an M microphone
system. The GCC for a microphone pair (k, l) is computed as

Rmkml
(τ) =

∫ ∞

−∞
Φkl(ω)Mk(ω)M∗

l (ω)e−jωτdω, (2.3)

where τ is the time lag, ∗ denotes complex conjugation, Ml(ω) is the Fourier
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transform of the microphone signal ml(t), and Φkl(ω) = Wk(ω)W ∗
l (ω) is

a combined weighting function in the frequency domain.

The TDE between signals from any pair of microphones can be per-
formed by computing the cross-correlation function of the two signals after
applying a suitable weighting step. The lag at which the cross-correlation
function has its maximum is taken as the time delay between them.

The type of weighting used with GCC is crucial to localization perfor-
mance. Among several types of weighting, the phase transform (PHAT) is
the most commonly used pre-filter for the GCC because it is more robust
against reverberation. The GCC with the phase transform (GCC-PHAT)
approach has been shown to perform well in a mild reverberant environ-
ment:

Φkl(ω) ≡ 1
|Mk(ω)M∗

l (ω)| . (2.4)

Unfortunately, in the presence of even moderate reverberation levels,
the algorithm is seriously hampered, due to the presence of spurious peaks.
Also reflections of the signal on the walls produce different peaks in the
impulse response of the room which can generate peaks in the GCC function
that may be strongest than the peak corresponding to the direct path. An
example room impulse response is shown in Figure 2.4.

2.1.4 Steered Response Power

Another class of important SSL algorithms is that based on a steered beam-
former. When the source location is not known, a beamformer can be used
to scan over a predefined spatial region by adjusting its steering parame-
ters. The output of a beamformer is known as the steered response. When
the point or direction of scan matches the source location, the SRP will
be maximized. However, the localization performance of the conventional
steered-beamformer techniques which apply filters to the array signals have
been derived to improve its performance. When the phase transform filter is
incorporated with the steered-beamformer method, the resulting algorithm
(SRP-PHAT) is superior in combating the adverse effects of background
noise and reverberation compared to the conventional steered-beamformer
method and the pairwise method, GCC-PHAT [36].

Today, the SRP-PHAT algorithm has become a well-known localization
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Figure 2.4. Room impulse response from source to one mi-

crophone.

method for its robust performance in real environments. However, the
computational requirements of the method are large and this makes real-
time implementation difficult. Since the SRP-PHAT method was proposed,
there have been several attempts to reduce the computational requirements
of the intrinsic SRP search process [37; 38].

Array signal processing techniques rely on the ability to focus on signals
originating from a particular location or direction in space. Most of these
techniques employ some type of beamforming, which generally includes any
algorithm that exploits an array’s sound-capture ability [39]. Beamforming,
in the conventional sense, can be defined by a filter-and-sum process, which
applies some temporal filters to the microphone signals before summing
them to produce a single, focused signal. These filters are often adapted
during the beamforming process to enhance the desired source signal while
attenuating others. The simplest filters execute time shifts that have been
matched to the source signals propagation delays. This method is referred
to as delay-and-sum beamforming; it delays the microphone signals so that
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all versions of the source signal are time-aligned before they are summed.
The filters of more sophisticated filter-and-sum techniques usually apply
this time alignment as well as other signal-enhancing processes.

Beamforming techniques have been applied to both source-signal cap-
ture and source localization. If the location of the source is known (and
perhaps something about the nature of the source signal is known as well),
then a beamformer can be focused on the source, and its output becomes
an enhanced version (in some sense) of the inputs from the microphones.
If the location of the source is not known, then a beamformer can be used
to scan, or steer, over a predefined spatial region by adjusting its steering
delays (and possibly its filters). As previously commented, the output of
a beamformer, when used in this way, is known as the steered response.
The SRP may peak under a variety of circumstances, but with favorable
conditions, it is maximized when the steering delays match the propaga-
tion delays. By predicting the properties of the propagating waves, these
steering delays can be mapped to a location, which should coincide with
the location of the source.

For voice capture application, the filters applied by the filter-and-sum
technique must not only suppress the background noise and contributions
from unwanted sources, they must also do this in way that does not signif-
icantly distort the desired signal. The most common of these filters is the
phase transform (PHAT), which applies a magnitude-normalizing weighting
function to the cross-spectrum of two microphone signals.

We now describe the measurement principle of SRP-PHAT algorithm
which is closely related to GCC-PHAT, and then introduce its implemen-
tation.

SRP-PHAT algorithm

Consider the output from microphone l, ml(t), in an M microphone system.
Then, the SRP at the spatial point x = [x, y, z] for a time frame n of length
T is defined as

Pn(x) ≡
∫ (n+1)T

nT

∣∣∣∣∣
M∑
l=1

wlml (t − τ(x, l))

∣∣∣∣∣
2

dt, (2.5)
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where wl is a weight and τ(x, l) is the direct time of travel from location
x to microphone l.

Taking into account the symmetries involved in the computation of
Eq.(2.5) and removing some fixed energy terms [21], the part of Pn(x) that
changes with x is isolated as

P ′
n(x) =

M∑
k=1

M∑
l=k+1

Rmkml
(τkl(x)) , (2.6)

where τkl(x) is the Inter-Microphone Time-Delay Function (IMTDF).
This function is very important, since it represents the theoretical direct
path delay for the microphone pair (k, l) resulting from a point source
located at x. The IMTDF is mathematically expressed as

τkl(x) =
‖x − xk‖ − ‖x − xl‖

c
, (2.7)

where c is the speed of sound, and xk and xl are the microphone loca-
tions.

The SRP-PHAT algorithm consists in evaluating the functional P ′
n(x)

on a fine grid G with the aim of finding the point-source location xs that
provides the maximum value:

xs = arg max
x∈G

P ′
n(x). (2.8)

Implementation

Basically, the SRP-PHAT algorithm is implemented as follows:

1. Define a spatial grid G with a given spatial resolution r. The theo-
retical delays from each point of the grid to each microphone pair are
pre-computed using Eq.(2.7).

2. For each analysis frame, the GCC of each microphone pair is com-
puted as expressed in Eq.(2.3).

3. For each position of the grid x ∈ G, the contribution of the different
cross-correlations are accumulated (using delays pre-computed in 1),
as in Eq.(2.6).
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4. Finally, the position with the maximum score is selected.

2.1.5 SRP-PHAT Variants

The accuracy of the SRP-PHAT algorithm is limited by the time resolution
of the PHAT weighted cross correlation functions [40]. However, despite
its robustness, computational cost is a real issue because the SRP space
to be searched has many local extrema [13]. Very interesting modifications
have already been proposed to improve the SRP-PHAT algorithm. Some
of these only affect to the weighting factor [41].

Figure 2.5. 2D example of SRC: j is the iteration index. The

rectangular regions show the contracting search regions.

Other modifications of the SRP-PHAT algorithm are focused on re-
ducing the computational cost of that technique, such as those based on
Stochastic Region Contraction (SRC) [21] and Coarse-to-Fine Region Con-
traction (CFRC) [22]. In SRC, the algorithm starts by considering an
initial rectangular search volume containing the desired global optimum
and, perhaps, many local maxima or minima. Then, gradually, an iterative
process is followed to contract the original volume until a sufficiently small
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subvolume is reached, in which the global optimum is trapped (see Figure
2.5 extracted from [22]). A basic stochastic exploration usually controls
the contraction operation. In CFRC, which is very similar to SRC, the
contraction operation is guided by a sub grid search procedure, reducing
also the computational cost of the algorithm in more than three orders of
magnitude.

2.2 Automatic Speech Recognition

2.2.1 The Speech Recognition Problem

Communication can be visual, verbal and/or nonverbal. Speech is a verbal
method to interact with other people and, for humans, speech is the quickest
and most natural form of communication. However, sometimes we need to
interact with other people or machines through computers, mobile phones
and other interfaces. In this context, ASR systems can be used to identify
spoken words received by a microphone and convert them into written text.
Although ASR technology is not yet at the point where machines robustly
understand speech in any acoustic environment, or by any person, it is
used on a day-to-day basis in a number of applications and services such as
natural human-machine interfaces, dictation systems, electronic translators
and automatic information desks [5].

Speech recognition systems generally assume that the speech signal is a
realization of some message encoded as a sequence of one or more symbols
[42]. To perform the reverse operation of recognizing the underlying sym-
bol sequence given a spoken utterance, the continuous speech waveform is
first converted into a sequence of equally spaced discrete parameter vectors.
This sequence of parameter vectors is assumed to be an appropriate repre-
sentation of the speech waveform for the duration covered by a single vector
(typically 10 ms), where speech is approximately stationary. Although not
strictly true, it is a reasonable approximation.

The role of the recognizer is to get a mapping between sequences of
speech vectors and the wanted underlying symbol sequences. There are
three problems which make this task very difficult. Firstly, the mapping
from symbols to speech is not one-to-one since different underlying symbols
can give rise to similar speech sounds. Furthermore, there are large vari-
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ations in the realized speech waveform due to speaker variability, mood,
environment, etc. Secondly, the boundaries between symbols cannot be
identified explicitly from the speech waveform. Hence, it is not possible to
treat the speech waveform as a sequence of concatenated static patterns.
Thirdly, a major problem in ASR systems is to recognize people speaking
in a room by using a distant microphone [24]. In distant-speech recogni-
tion, the microphone does not only receive the direct path signal, but also
delayed replicas resulting from multi-path propagation [25]. Consequently,
much of the current research in speech processing is directed toward im-
proving robustness to acoustical variability of all types. Two of the major
forms of environmental degradation are produced by additive noise of var-
ious forms and the effects of linear convolution. There are three different
types of distortion [24]:

• Noise, also known as background noise, which is any sound different
to the desired speech, such as that from machines in a factory, air con-
ditioners, or speech from other speakers. As the SNR decreases, it is
to be expected that speech recognition will become more difficult. In
addition, the impact of noise on speech recognition accuracy depends
as much on the type of noise source as on the SNR. Interference by
sources such as background music or background speech is especially
difficult to handle, as it is both highly transient in nature and easily
confused with the desired speech signal.

• Echo and reverberation, which are reflections of the sound source ar-
riving some time after the signal on the direct path. The temporal
structure of speech waveforms is destroyed by the presence of even
a small amount of reverberation. This has a very adverse impact
on the recognition accuracy that is obtained from distant-speech sys-
tems. Today, ASR is more difficult when the effects of common room
reverberation are presented than the effects of additive noise, even at
fairly low SNRs.

• Other types of distortions are introduced by environmental factors
such as room modes, the orientation of the speakers head, or the Lom-
bard effect.
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Mathematical Formulation

The speech recognition problem can be described as a function that defines
a mapping from the acoustic evidence to a single or a sequence of words [43].
Let X = (x1, x2, x3, ..., xt) represent the acoustic evidence that is generated
in time (indicated by the index t) from a given speech signal and belong
to the complete set of acoustic sequences, χ. Let W = (w1, w2, w3, ..., wn)
denote a sequence of n words, each belonging to a fixed and known set of
possible words, w.

In the statistical framework, the recognizer selects the sequence of
words that is more likely to be produced given the observed acoustic evi-
dence. Let P (W |X) denote the probability that the words W were spoken
given that the acoustic evidence X was observed. The recognizer should
select the sequence of words W̃ satisfying

W̃ = arg max
W∈w

P (W |X). (2.9)

However, since P (W |X) is difficult to model directly, Bayes‘ rule allows
us to rewrite such probability as

P (W |X) =
P (W )P (X|W )

P (X)
(2.10)

where P (W ) is the probability that the sequence of words W will be uttered,
P (X|W ) is the probability of observing the acoustic evidence X when the
speaker utters W , and P (X) is the probability that the acoustic evidence X
will be observed. The term P (X) can be dropped because it is a constant
under the max operation. Then, the recognizer should select the sequence
of words W̃ that maximizes the product P (W )P (X|W ), i.e.,

W̃ = arg max
W∈w

P (X)P (X|W ). (2.11)

This framework has dominated the development of speech recognition
systems since the 1980s.

Evaluating the Performance of ASR

To evaluate the performance of ASR systems, the most common metric
is the word error rate (WER). There are different recognition systems. A
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simple recognition system consists in recognizing isolated words, so the per-
formance is simply the percentage of misrecognized words. More complex
systems consist in continuous speech recognition where such measure is not
efficient because of recognized words can contain three types of errors. The
first error, known as word substitution, happens when an incorrect word is
recognized in place of the correctly spoken word. The second error, known
as word deletion, happens when a spoken word is not recognized (i.e., the
recognized sentence does not have the spoken word). Finally, the third
error, known as word insertion, happens when extra words are estimated
by the recognizer (i.e., the recognized sentence contains more words than
what actually was spoken). In the following example, the substitutions are
bold, insertions are underlined, and deletions are denoted as ∗.

Correct sentence: ”Can you bring me a glass of water, please?”

Recognized sentence: ”Can you bring ∗ a glass of cold water, police?”

To estimate the WER, the correct and the recognized sentence must
be first aligned. Then the number of substitutions (S ), deletions (D), and
insertions (I ) can be estimated. The WER is defindes as

WER = 100% ×
(

S + D + I
|W |

)
(2.12)

where |W | is the number of words in the sequence of word W.

2.2.2 Hidden Markov Models

Acoustic models, P (X|W ), are used to compute the probability of observing
the acoustic evidence X when the speaker utters W . One of the challenges
in speech recognition is to estimate accurately such model. The variability
in the speech signal due to factors like environment, pronunciation, phonetic
context, physiological characteristics of the speaker make the estimation a
very complex task. The most effective acoustic modeling is based on a
structure referred to as Hidden Markov Models (HMM).

A HMM is a stochastic finite-state automaton, which generates a se-
quence of observable symbols. The sequence of states is a Markov chain,
i.e., the transitions between states has an associated probability called tran-
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sition probability. Each state has an associated probability function to gen-
erate an observable symbol. Only the sequence of observations is visible
and the sequence of states is not observable and therefore hidden; hence
the name hidden Markov model. A HMM, as illustrated in Figure 2.6, can
be defined by

• An output observation alphabet O = o1, o2, ..., oM , where M is the
number of observation symbols. When the observations are continu-
ous, M is infinite.

• A state space Ω = 1, 2, ..., N .

• A probability distribution of transitions between states. Typically, it
is assumed that the next state is dependent only upon the current
state (first-order Markov assumption). This assumption makes the
learning computationally feasible and efficient. Therefore, the tran-
sition probability can be defined as the matrix A = aij , where aij is
the probability of a transition from state i to the state j, i.e.,

aij = P (st = j | st−1 = i), 1 ≤ i, j ≤ N (2.13)

where, st is denoted as the state at time t.

• An output probability distribution B = bi(k) associated with each
state. Also known as emission probability, bi(k) is the probability of
generating symbol ok while in state i, defined as

bi(k) = P (vt = ok | st = i) (2.14)

where vt is the observed symbol at time t. It is assumed that cur-
rent output (observation) is statistically independent of the previous
outputs (output independence assumption).

• A initial state distribution π = πi, where πi is the probability that
state i is the first state in the state sequence (Markov chain),

πi = P (s0 = i), 1 ≤ i ≤ N (2.15)

Since aij, bi(k), and φi are all probabilities, the following constraints
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Figure 2.6. A hidden Markov model with three states.

must be satisfied

aij ≥ 0, ΣN
j=1aij = 1,

bi(k) ≥ 0, ΣM
k=1bi(k) = 1,

πi ≥ 0, ΣN
j=1πi = 1,∀i, j, k.

(2.16)

The compact notation λ = (A,B, π) is used to represent an HMM.
The design of an HMM includes choosing the number of states, N , as well
as the number of discrete symbols, M , and estimate the three probability
densities, A,B, and π.

2.2.3 Speech Recognition Evaluations

Since the beginning of the speech research, several speech recognition sys-
tems have been developed for all kinds of purpose. Most of the work was
on tasks and speech data elaborated by the developers themselves. The
problem is that it is almost impossible to replicate results to perform any
type of comparison. Differences in the measurement methodology, task
conditions, or testing data can lead to an erroneous comparison between
systems.
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HTK is a toolkit for building HMMs [42]. HMMs can be used to
model any time series and the core of HTK is similarly general-purpose.
However, HTK is primarily designed for building HMM-based speech pro-
cessing tools, in particular recognizers. Thus, much of the infrastructure
support in HTK is dedicated to this task. As shown in Figure 2.7, there
are two major processing stages involved. Firstly, the HTK training tools
are used to estimate the parameters of a set of HMMs using training utter-
ances and their associated transcriptions. Secondly, unknown utterances
are transcribed using the HTK recognition tools.

For isolated word recognition; firstly, a HMM is trained for each vocab-
ulary word using a number of examples of that word. Secondly, to recognize
some unknown word, the likelihood of each model generating that word is
calculated and the most likely model identifies the word.

Speech recognition has significantly improved in the last decade. These
improvements are the result of many research efforts in three different areas.
Firstly, the use of common speech corpora allows the use of large train-
ing sets and makes able to compare results from different ASR systems.
Secondly, many developments have been observed in the area of acoustic
modeling, such as contributions regarding context-specific HMMs, changes
in feature vectors over time or the presence of cross-word effects. Finally,
improvements in language modeling and search algorithms have allowed for
better recognition of large vocabulary corpora and reduced experimenta-
tion cycles, respectively. Unfortunately, most of the above improvements
have been developed assuming clean speech. When common ASR systems
are used in reverberant and/or noisy environments, the speech signal is
degraded and the extracted data vectors differ significantly from the ones
expected by the recognizer. In fact, not only are the acoustical conditions
responsible for these changes, but also the speaker tends to change his/her
voice as a function of the auditory feedback. As a result, to reduce the
error-rate in the recognition task, a processing should be included to re-
duce the differences between training and test environments. This can be
done in two ways: by producing changes in the speech model parameters
to match the training environment or by transforming the acquired input
data to the environment where the models where trained, both methods
have been studied.

The existing mismatch between the training and testing conditions
limits the performance of ASR systems, thus, robust recognition methods
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are aimed at reducing this mismatch. In this context, several approaches
have been proposed to cope with room reverberation in speech recognition
applications. Increasing the amount of training data generally decreases the
WER. However, it is important that the increased training be representative
of the types of data in the test. Otherwise, the increased training might
not help. Some methods are based on a speech enhancement stage prior
to recognition. In other methods, the recognizer itself is made robust to
reverberation by using model compensation or by performing an improved
feature extraction process. All these approaches have shown to be useful in
improving ASR. However, besides noise and reverberation, cocktail-party
situations where different speakers are talking at the same time pose a real
problem for ASR systems.

Source separation refers to the task of estimating and recovering inde-
pendent source signals (for example, speech signals) from a set of mixtures
in one or several observation channels (microphone signals). Source sep-
aration algorithms have been described in the literature as a solution for
simultaneous speech recognition, proposing ASR performance as an indica-
tor of the quality achieved by a given source separation algorithm. However,
separating speech signals in real acoustic environments is not an easy task
and the extracted speech signals are usually corrupted by audible artifacts.
Then, separated speech signals present an additional mismatch with respect
to the training signals used in a conventional ASR system.

2.3 Source Separation and Enhancement

Source Separation algorithms currently constitute one of the most active
research fields in signal processing. Algorithms for source separation have
been applied to many areas, ranging from image and video processing to
biomedical applications. In the audio context, SSS aims at recovering each
source signal from a set of audio mixtures of the original sources, such as
those obtained by a microphone array, a binaural recording or an audio
CD. Therefore, several applications can emerge from the development of
advanced SSS techniques, including music remixing, speech enhancement,
automatic music transcription or music information retrieval systems. In
the next subsections different scenarios for sound separation techniques,
features of the signals and some approaches are presented.
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Figure 2.7. The fundamentals of HTK.

2.3.1 Mixing Models

Mixing scenarios are very varied and they determine the nature of the
resulting observed mixtures. Generally, the different mixing situations can
be mathematically expressed by means of a model that describes how the
observations are generated. This is the reason why these models are called
generative models. Before introducing these models, it is important to
clarify the notation used in this section for sampled signals. Although an
academic distinction between continuous (t) and discrete [n] time variables
is normally used in signal processing works (s[n] = s(nTs), being Ts the
sampling interval), all the signals considered hereafter are assumed to be
discrete. Therefore, this distinction is not necessary and the notation (t) has
been chosen as the widely adopted in the source separation field, where t =
1, . . . , T denotes discrete time observations and source signals are indexed
by n = 1, . . . , N .

We consider a general setup where M sensors are exposed to N sound
sources. As established by the principle of superposition, the electrical sig-
nal at the m-th channel resulting from this setup can be mathematically
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expressed as the scalar addition of the instantaneous amplitudes corre-
sponding to the different source images:

xm(t) =
N∑

n=1

smn(t), m = 1, . . . ,M, (2.17)

where smn(t) is the image of the n-th source in the m-th microphone at
time sample t. These images of the sources represent how the original
source signals sn(t) are recorded at each sensor after being modified by
the mixing process (which in the general case can be modeled by a filter
hmn(t)). Figure 2.8 shows the relations existent between all these signals
with an example with two microphones (M = 2) and two speakers (N = 2).
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Figure 2.8. Two microphones picking up the signals from

two speakers and the signals involved in the mixing process.

In the following subsections the different models in source separation
are described. The images of the sources vary depending on the type of
mixing considered, which is mathematically represented by a mixing ma-
trix. According to the mixing conditions and the nature of this matrix,
three mathematical formulations of the mixing process can be defined: the
instantaneous (or linear), the anechoic (or delayed) and the convolutive (or
echoic) mixing models.
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Instantaneous Model

The simplest mixing model is the instantaneous or linear model. In this
model, the mixtures are formed by linear combinations of the sources.
Therefore, the mixtures are obtained by summing scaled versions of the
sources:

xm(t) =
N∑

n=1

amnsn(t), m = 1, . . . ,M, (2.18)

where amn are scalar factors. Thus, the images of the sources are then
given by

smn(t) = amnsn(t). (2.19)

Alternatively, the instantaneous model can be expressed as a system of
linear equations in the form

x1(t) = a11s1(t) + a12s2(t) + · · · + a1NsN (t)
x2(t) = a21s1(t) + a22s2(t) + · · · + a2NsN (t)

...
xM (t) = aM1s1(t) + aM2s2(t) + · · · + aMNsN (t).

(2.20)

Taking into account the above system, it is usual to find the mixing
models in a compact matrix formulation:⎡⎢⎢⎢⎣

x1(t)
x2(t)
...
xM (t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aM1 aM2 · · · aMN

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
s1(t)
s2(t)
...
sN (t)

⎤⎥⎥⎥⎦ , (2.21)

or equivalently
x = As, (2.22)

where x = [x1(t), . . . , xM (t)]T is a M×1 vector of mixtures, A is the M×N
mixing matrix and s = [s1(t), . . . , sN (t)]T is a N × 1 vector of sources. If a
collection of individual time samples of the mixture and source signals are
considered, the model can be represented as:

X = AS, (2.23)
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where X is the M × T matrix corresponding to the sensor data at times
t = 1, . . . , T :

X =

⎡⎢⎢⎢⎣
x1(1) x1(2) · · · x1(T )
x2(1) x2(2) · · · x2(T )
...

...
. . .

...
xM (1) xM (2) · · · xM (T )

⎤⎥⎥⎥⎦ , (2.24)

and S is the N × T matrix of source signals:

S =

⎡⎢⎢⎢⎣
s1(1) s1(2) · · · s1(T )
s2(1) s2(2) · · · s2(T )
...

...
. . .

...
sN (1) sN (2) · · · sN (T )

⎤⎥⎥⎥⎦ . (2.25)

Note that under this notation, each row of X and S corresponds to
one of the mixture and source signals, respectively. The notation used in
Eq.(2.22) is often referred as the model in instantaneous notation, as it rep-
resents the generation of the mixtures in a single time sample. On the other
hand, the notation of Eq.(2.23) is referred as the model in explicit notation
and it describes the generation of the mixtures in the whole observation
time.

Anechoic Model

The anechoic or delayed model can be thought as an extension of the in-
stantaneous model where, in addition to different gain factors, different
transmission delays between the sources and the sensors are considered.
This is equivalent to an anechoic mixing scenario, where only the direct
path between each source and sensor has influence on the mixture. The
generative model is

xm(t) =
N∑

n=1

amnsn(t − δmn), m = 1, . . . ,M, (2.26)

where δmn is the arrival delay between source n and sensor m, and amn

stands for the amplitude factor corresponding to the path between source
n and sensor m.

The images of the sources are scaled and delayed versions of the sources:

smn(t) = amnsn(t − δmn). (2.27)
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The mixing matrix has the form

A =

⎡⎢⎢⎢⎣
a11δ(t − δ11) a12δ(t − δ12) · · · a1Nδ(t − δ1N )
a21δ(t − δ21) a22δ(t − δ21) · · · a2Nδ(t − δ2N )

...
...

. . .
...

aM1δ(t − δM1) aM2δ(t − δM2) · · · aMNδ(t − δMN )

⎤⎥⎥⎥⎦ , (2.28)

where δ(t) are Kronecker1 deltas. Note that the operator δ(t− δmn) is used
to denote a delay between source n and sensor m. With this notation, the
model can be compactly expressed by

x = A ∗ s, (2.29)

where ∗ denotes the element-wise convolution operation.

Convolutive Model

In the convolutive or echoic model, reflections occurring in the mixing en-
vironment are considered too. Mathematically, the process can be written
as

xm(t) =
N∑

n=1

Limp∑
τ=1

amnτsn(t − δmnτ ), m = 1, . . . ,M, . (2.30)

where Limp is the number of paths the source signal can take to the sensors.
Therefore, the images of the sources are filtered versions of the original
sources:

smn(t) =
Limp∑
τ=1

amnτsn(t − δmnτ ). (2.31)

The mixing matrix A is given by

A =

⎡⎢⎣
∑Limp

τ=1 a11τδ(t − δ11τ ) · · · ∑Limp

τ=1 a1Nτδ(t − δ1Nτ )
...

. . .
...∑Limp

τ=1 aM1τδ(t − δM1τ ) · · · ∑Limp

τ=1 aMNτδ(t − δMNτ )

⎤⎥⎦ ,

(2.32)

1The Kronecker delta is defined in signal processing as δ(t) =

{
1 if t = 0

0 if t �= 0
. The

alternate notation for Kronecker deltas found in other works, δij , must not be here

confused with the source-sensor delay δmn.
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thus, a convolutive formulation of the form x = A∗s is also used here. Note
that the anechoic and instantaneous models can be thought of as particular
cases of the convolutive model.

Noisy models

In real life, there is always some kind of noise present in the observations.
Noise can come from measuring devices or from any inaccuracies in the
model used. Therefore, a noise term is sometimes included in the above
models:

x = A 
 s + n, (2.33)

where n = [n1(t), n2(t), . . . , nM (t)]T is the M × 1 noise vector and 
 de-
notes the model dependent operator (matrix product in instantaneous mix-
tures and element-wise convolution in the anechoic and convolutive mod-
els). Noise is often assumed to be white, Gaussian and uncorrelated, i.e.
having diagonal covariance matrix in the form σ2I, where σ2 is the variance
of one of its M components.

The separation methods presented in this thesis are based on noise-free
models.

2.3.2 Source Separation Tasks and Approaches

The source separation problem consists in estimating the source spatial
images of the sources smn(t), from the mixture signals xm(t). Note that
the estimation of the single-channel source signals sn(t) involves undoing
the filtering effect of the mixing process (dereverberating), which is an
additional problem that will not be considered in this thesis.

The instantaneous mixing model X = AS, has the form of a conven-
tional system of linear equations. Although it seems that the problem of
extracting the sources S from the mixtures X can be completely solved by
traditional algebraic techniques, this is only possible if the mixing matrix
A is known. However, source separation tries to give solution to this prob-
lem in the case were both S and A are unknown. Moreover, even if the
mixing matrix A can be accurately estimated, the system is only invertible
if A is square and has full rank, thus, the number of equations must be
equal to the number of unknowns (M = N). When the problem is overde-
termined (M > N), dimensionality reduction techniques such as Principal
Component Analysis (PCA) [44] are usually employed. If the problem is
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underdetermined (M < N), there is an infinite number of solutions and
demixing the sources from the mixtures becomes a very challenging task.

In the next subsections several criteria that are commonly used to
classify separation problems are introduced.

Problem Classification

The separation difficulty is mainly related to three different aspects: the
relative number of mixture channels and sources, the length of the mixing
filters and the time variation of the mixing filters [45]. These three criteria
are used to characterize the mixtures in the following way:

• Relative number of mixture channels and sources:

1. M > N Overdetermined mixture.

2. M = N Determined mixture.

3. M < N Underdetermined mixture.

• Mixing filters:

1. Scalars (zero delay): Instantaneous mixture.

2. Scalars and/or Delays (possibly fractional): Anechoic mixture.

3. Otherwise: Convolutive mixture.

• Time variation of the mixing filters:

1. Static sources or fixed filters: Time-invariant mixture.

2. Moving sources or time-varying filters: Time-variant mixture.

Overdetermined and determined situations usually appear in micro-
phone array processing techniques, which are usually used for source local-
ization and tracking [19].

2.3.3 Underdetermined Source Separation

The underdetermined (or degenerate) case in Sound Source Separation
(SSS) is the most challenging one. The challenge resides in the fact that
the mixing matrix is not invertible and the traditional method of demixing
by estimating the inverse mixing matrix can not be applied in this case.
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Unfortunately, most commercial music productions and audio material can
be categorized as underdetermined mixtures and perfect separation of in-
struments or singers from a stereo track is not a solved problem so far.

Sparsity refers to the property by which most of the sample values of
a signal are zero or close to zero. This property is the fundamental piece
supporting most underdetermined separation algorithms.If the sources are
sparse, the mixing directions of a linear instantaneous mixture can be easily
observed in the scatter plot. Moreover, in the underdetermined case, higher
sparsity is a requirement for good separability of the sources, even in the
case when the mixing matrix is known. Thus, an increasingly popular and
powerful assumption that has led to many practical algorithms is to assume
that the sources have a sparse representation under a given basis. These
approaches are motivated by the fact that very often the desired data in
the time domain do not represent the required sparsity. Therefore, they
have come to be known as sparse methods.

The advantage of a sparse signal representation is that the probability
of two or more sources being simultaneously active is low. Thus, sparse
representations are potentially good for achieving high-quality separation
due to the fact that most of the energy in a basis coefficient belongs to a
single source. The sparse representation of an audio signal has an inter-
pretation in information theoretic terms: a signal represented by a small
number of coefficients corresponds to transmission of information using a
code with a small number of bits [46]. Sparse representation of informa-
tion is a phenomenon that also occurs in the natural world. In the brain,
neurons are said to encode data in a sparse way, if their firing pattern is
characterized by long periods of inactivity [47].

Throughout this section the general framework for underdetermined
source separation will be presented. Most approaches rely on signal trans-
formations that enhance the sparse structure of the sources. Therefore,
special attention is paid to the basics of signal decomposition, mainly to
time-frequency representations. Sparse distributions and sparsity measures
are also introduced, followed by a description of the most common ap-
proaches to source estimation.

Sparsity

The reason why high sparsity of source representations is desired in source
separation problems is straightforward: the less coefficients are needed to
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adequately describe a particular source signal, the less degree of overlap-
ping will occur when mixed with other signals. Sparsity is crucial in most
underdetermined situations, specially when very little a prior information is
available and the ratio between number of sources and number of mixtures
is high.

A sparse representation can be obtained by minimizing a cost function
which is the weighted sum of the reconstruction error term ‖X−ACBT‖2

F

and the term which incurs a penalty on non-zero elements of C. The
variance σ2 is used to balance between these two.

Measures of sparsity

The sparsity ξ of a signal is usually measured by means of the �p norm of
its coefficient vector c with the constraint 0 ≤ p ≤ 1:

ξ = ‖c‖p =

(
C∑

i=1

|ci|p
)1/p

, 0 ≤ p ≤ 1. (2.34)

Depending on the value of p, several well-known sparsity measures
appear:

• The �0 norm. This measure gives the number of non-zero coefficients
in c:

‖c‖ = #{i, ci 	= 0}, (2.35)

where #{·} denotes the counter operator. This norm is rarely used
since it is highly sensible to noise: a slight addition of noise will make
a representation completely nonsparse.

• The �ε norm. A thresholded version of the �0 norm in order to be
more robust against noise:

‖c‖ε = #{i, |ci| ≥ ε}. (2.36)

However, determining a reasonable noise threshold ε for unknown
signals is a difficult task [48].

• The �1 norm. This measure gives the summation of the modulus of
the coefficients:

‖c‖1 =
C∑

i=1

|ci|. (2.37)
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The �1 norm is a popular choice since some algorithms can be imple-
mented with linear programming techniques. The �2 norm ‖ · ‖, for
which the order index is usually omitted, corresponds to the tradi-
tional Euclidean norm, and to the square root of the energy.

These and others measures of sparsity such as the normalized kurtosis
were analyzed by Karvanen and Cichoki [48] showing that very different re-
sults can be obtained by using different sparsity measures if the distribution
does not have a unique mode at zero.

Time-Frequency Masking

Although the sparsity achieved by signal transformations provide a way to
deal with underdetermined SSS, the factor that ultimately determine the
separation performance is the degree of overlapping that occurs during the
mixing process. Sparsity is not the only thing to consider since sparsity
alone is useless if there is high overlap among the sources in the mixture.
Two sources that are closely positioned in the stereo panoramic will be
very hard to separate even if they are sufficiently sparse. Moreover, the
correlation properties of the sources also play a role in the degree of overlap
of the mixture. The disjointness of a mixture can be defined as the degree
of non-overlapping of the mixed signals.

Time-frequency masking is another powerful approach for the separa-
tion of underdetermined mixtures, especially for the separation of single-
channel mixtures. Techniques based on time-frequency masking use a time-
frequency representation of the signal, taking profit from the disjointness
provided by sparse transformations. Their aim is to identify the dominating
source in each time-frequency unit, obtaining a mask that indicates which
are the active points of each source in the time-frequency domain.

Formally, the time-frequency source image Ŝmn(k, r) is produced from
the m-th mixture Xm(k, r) by

Ŝmn(k, r) = Mn(k, r) ◦ Xm(k, r), (2.38)

where 0 ≤ Mn(k, r) ≤ 1, ∀(k, r) and the ◦ operator denotes the Hadamard
(element-wise) product. Note that this corresponds to filtering the mix-
ture with a set of time-varying frequency responses. The solution to the
separation problem consists in deriving the masks from the mixture.
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The Ideal Binary Mask

Consider the sum of all signals that interfere with source n in the Short-
Time Fourier Transform (STFT) domain:

Un(k, r) =
N∑

n′=1,n′ �=n

Sn′(k, r). (2.39)

The ideal binary mask (IBM) for a source Sn(k, r) is defined as the
binary time-frequency mask that is 1 for time-frequency bins where its
energy is higher than all the interfering sources:

IBMn(k, r) =

{
1 if 20 log

( |Sn(k,r)|
|Un(k,r)|

)
≥ 0

0 elsewhere
, ∀(k, r). (2.40)

This mask has been shown to be optimal when applied to the mixture
and this is why the IBM has been suggested as a major computation goal of
sound source separation algorithms, since it has proven to be highly effective
for robust automatic speech recognition and human speech intelligibility in
noise [49]. An example of ideal binary mask for a 4 source mixture is shown
in Figure 2.9.
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W-Disjoint Orthogonality

Binary time-frequency masking is the special case in which Mn(k, r) can
only take the values 0 or 1. It is based on the assumption that every time-
frequency point in the mixture with significant energy is dominated by the
contribution of one source. This assumption is widely known as the W-
Disjoint Orthogonality (WDO) assumption. Mathematically, the sources
are said to be WDO if

Sn(k, r)Sn′(k, r) = 0, ∀n 	= n′,∀(k, r), (2.41)

where Sn(k, r) and Sn′(k, r) are the STFT of any two sources in the mixture.
In matrix notation:

Sn(k, r) ◦ Sn′(k, r) = 0 ∀n 	= n′, (2.42)

where 0 is the zero matrix.

Based on the IBM, a disjointness measure is given by the average ap-
proximate WDO. Burred provided an excellent analysis of the disjoint-
ness properties of speech and music mixtures considering both STFT and
frequency-warped representations, showing the advantages of using a non-
uniform time-frequency resolution [50; 51].

Yilmaz and Rickard [52] applied binary time-frequency masks to mix-
tures of several speech sources in the STFT domain considering a two-sensor
arrangement. They observed that speech sources are sufficiently disjoint
under time-frequency representations and showed that they are approxi-
mately WDO in mixtures of up to 10 signals [53]. Note that this aspect is
very important, since source sparsity alone is useless if the sources overlap
to a high degree.

2.3.4 Time-Frequency Masking Limitations

In practice, perfect separation is very difficult to be achieved and the es-
timated source spatial images may contain different distortions: musical
noise, interference from other sources, timbre distortion and spatial distor-
tion. Musical noise or burbling artifacts appear with time-frequency mask-
ing algorithms, being one of the most common distortions in source separa-
tion. Musical noise can be reduced by using small STFT hop sizes [54] and
non-binary time-frequency masks. To this end, Araki et al. proposed a set
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of smoothed masks in [55], showing the tradeoff between source distortion
and interference. Nevertheless, the performance achieved by time-frequency
masking is sufficient for most practical applications of SSS [56].
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3.1 A Modified SRP-PHAT Functional for Robust Real-

Time Sound Source Localization with Scalable

Spatial Sampling

3.1.1 Abstract

SRP-PHAT algorithm has been shown to be one of the most robust sound
source localization approaches working in noisy and reverberant environ-
ments. However, its practical implementation is usually based on a costly
fine grid-search procedure, making the computational cost of the method
a real issue. In this paper, we introduce an effective strategy that extends
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the conventional SRP-PHAT functional with the aim of considering the
volume surrounding the discrete locations of the spatial grid. As a result,
the modified functional performs a full exploration of the sampled space
rather than computing the SRP at discrete spatial positions, increasing its
robustness and allowing for a coarser spatial grid. To this end, the GCC
function corresponding to each microphone pair must be properly accu-
mulated according to the defined microphone setup. Experiments carried
out under different acoustic conditions confirm the validity of the proposed
approach.

3.1.2 Contributions

This paper presented a robust approach to sound source localization based
on a modified version of the well-known SRP-PHAT algorithm. The pro-
posed functional is based on the accumulation of GCC values in a range that
covers the volume surrounding each point (see Figure 4.3) of the defined
spatial grid. The GCC accumulation limits are determined by the gradient
of the inter-microphone time delay function corresponding to each micro-
phone pair, thus, taking into account the spatial distribution of possible
TDOAs resulting from a given array geometry.

Our results showed that the proposed approach provides similar perfor-
mance to the conventional SRP-PHAT algorithm in difficult environments
with a reduction of five orders of magnitude in the required number of
functional evaluations (see Table 4.1). This reduction has been shown to
be sufficient for the development of real-time source localization applica-
tions.

3.2 A Steered Response Power Iterative Method for

High-Accuracy Acoustic Source Localization

3.2.1 Abstract

Source localization using the steered response power (SRP) usually requires
a costly grid-search procedure. To address this issue, a modified SRP algo-
rithm was recently introduced, providing improved robustness when using
coarser spatial grids. In this letter, an iterative method based on the mod-
ified SRP is presented. A coarse spatial grid is initially evaluated with
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the modified SRP, selecting the point with the highest accumulated value.
Then, its corresponding volume is iteratively decomposed by using a finer
spatial grid. Experiments have shown that this method provides almost
the same accuracy as the fine-grid search with a substantial reduction of
functional evaluations.

3.2.2 Contributions

In this letter, an iterative approach for high-accuracy sound source local-
ization using the modified SRP functional discussed in Chapter 4, was pre-
sented. The method starts by performing source localization over a very
coarse spatial grid. Then, the grid region having the highest accumulated
value is subsequently divided into finer regions until achieving a desired
spatial resolution. This iterative process is illustrated in Figure 5.2. A
set of experiments have been carried out to evaluate this new approach,
comparing its localization accuracy with other well-known approaches in
different acoustic conditions, as can be seen in Figure 5.5. The results
show that the proposed method has a performance comparable to that of a
fine-grid SRP with a reduction of approximately five orders of magnitude
in terms of functional evaluations.

The proposed method is aimed at allowing high-accuracy acoustic source
localization over systems with limited computational resources.

3.3 A Real-Time Sound Source Localization and En-

hancement System Using Distributed Microphones

3.3.1 Abstract

SRP-PHAT algorithm has been shown to be one of the most robust sound
source localization approaches operating in noisy and reverberant envi-
ronments. A recently proposed modified SRP-PHAT algorithm has been
shown to provide robust localization performance in indoor environments
without the need for having a very fine spatial grid, thus reducing the
computational cost required in a practical implementation. Sound source
localization methods are commonly employed in many sound processing
applications. In our case, we use the modified SRP-PHAT functional for
improving noisy speech signals. The estimated position of the speaker is
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used to calculate the time-delay for each microphone and then the speech
is enhanced by aligning correctly the microphone signals.

3.3.2 Contributions

This paper presented a microphone array system for speech enhancement
based on the delay-and-sum beamformer and the modified SRP-PHAT
functional developed by the authors. The estimated positions given by the
SRP-PHAT algorithm are used to determine the distance from the talker to
each microphone and apply the delay-and-sum beamformer. Since the lo-
calization step may have a given error due to the limited spatial resolution,
an estimation of the time delay error is needed in order to correct the phase
alignment of all the microphone signals. Figure 6.2 shows an example of
the effect related to the correction of the time-delay error. The estimation
of the error is better when the acoustic conditions of the environment are
not too adverse, leading to numerically and perceptually better separation
results, as proved by the results shown in Figure 6.4.

This paper shows an application of the method developed in Section
3.1. In this case, it is not only used for localizing sound sources, but also
to enhance a signal of interest.

3.4 Real-Time Speaker Localization and Detection

System for Camera Steering in Multiparticipant

Videoconferencing Environments

3.4.1 Abstract

A real time speaker localization and detection system for videoconferenc-
ing environments is presented. In this system, a recently proposed modified
SRP-PHAT algorithm has been used as the core processing scheme. The
new SRP-PHAT functional has been shown to provide robust localization
performance in indoor environments without the need for having a very fine
spatial grid, thus reducing the computational cost required in a practical
implementation. Moreover, it has been demonstrated that the statistical
distribution of location estimates when a speaker is active can be success-
fully used to discriminate between speech and non-speech frames by using
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a criterion of peakedness. As a result, talking participants can be detected
and located with significant accuracy following a common processing frame-
work.

3.4.2 Contributions

This paper presented a microphone array system for camera-steering to
be used in a multiparticipant videoconferencing environment based on the
well-known SRP-PHAT algorithm. The distribution of location estimates
obtained with a modified SRP-PHAT functional was analyzed, showing that
location estimates follow different distributions when speakers are active
and allowing to discriminate between speech and non-speech frames under
a common localization framework. Figure 7.1 shows the different forms that
the histogram of location estimates takes when there is an active speaker
or not. The results of experiments conducted in a real room suggest that,
using a moderately high number of accumulated location estimates, it is
possible to discriminate with significant accuracy between speech and non-
speech frames, which is sufficient to correctly detect an active speaker and
make the camera point at his/her pre-defined location. The real room
where the experiment were carried out is illustrated in Figure 7.2.

This paper shows the great applicability of the method developed in
Chapter 4 when combined with video cameras for advanced teleconferencing
systems.

3.5 Automatic Speech Recognition in Cocktail-Party

Situations: A Specific Training for Separated Speech

3.5.1 Abstract

ASR refers to the task of extracting a transcription of the linguistic content
of an acoustical speech signal automatically. Despite several decades of re-
search in this important area of acoustic signal processing, the accuracy of
ASR systems is still far behind human performance, especially in adverse
acoustic scenarios. In this context, one of the most challenging situations
is the one concerning simultaneous speech in cocktail-party environments.
Although source separation methods have already been investigated to deal
with this problem, the separation process is not perfect and the resulting
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artifacts pose an additional problem to ASR performance. In this paper,
a specific training to improve the percentage of recognized words in real
simultaneous speech cases is proposed. The combination of source sepa-
ration and this specific training is explored and evaluated under different
acoustical conditions, leading to improvements of up to a 35% in ASR per-
formance.

3.5.2 Contributions

Cocktail-party situations where different speakers are talking at the same
time pose a real problem for ASR systems. In this paper, a framework for
robust ASR in cocktail-party situations was presented. This framework is
based on a robust transformed model constructed from separated speech in
diverse acoustic environments. Thus, a source separation method is used
as a speech enhancement stage that suppresses interferences.

The validity of the method was studied over a meaningful set of exper-
iments, evaluating ASR performance for three different training data-sets:
Anechoic training, Reverberant training and Cocktail-party training.

The results showed that both, source separation and specific training,
provide a considerable improvement in word recognition rate (WRR) (up
to a 35% as shown in Figure 8.5), reducing the existing mismatch between
the training and test data.

Moreover, the proposed framework allows to perform both ASR and
source separation in real-time, which is a very important feature for practi-
cal systems. Future work will be focused on developing efficient double-talk
detection methods for real-time ASR model selection.

In this paper, we have combined a working speech recognition system
with state-of-the-art signal processing techniques for source separation.
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3.6 Evaluating the Influence of Source Separation

Methods in Robust Automatic Speech Recogni-

tion with a Specific Cocktail-party Training

3.6.1 Abstract

ASR allows a computer to identify the words that a person speaks into
a microphone and convert it to written text. One of the most challeng-
ing situations for ASR is the cocktail-party environment. Although source
separation methods have already been investigated to deal with this prob-
lem, the separation process is not perfect and the resulting artifacts pose
an additional problem to ASR performance in case of using separation
methods based on time-frequency masks. Recently, the authors proposed
a specific training method to deal with simultaneous speech situations in
practical ASR systems. In this paper, we study how the speech recognition
performance is affected by selecting different combinations of separation
algorithms both at the training and test stages of the ASR system under
different acoustic conditions. The results show that, while different separa-
tion methods produce different types of artifacts, the overall performance
of the method is always increased when using any cocktail-party training.

3.6.2 Contributions

In the paper corresponding to Chapter 8, the authors proposed a framework
for robust ASR in cocktail-party situations. This framework is based on
a robust transformed model constructed from separated speech in diverse
acoustic environments. In this paper two source separation methods were
used as a speech enhancement stage that suppresses interferences, compar-
ing the results obtained by different types of source separation methods
(MuLeTS and Full-Rank Spatial Covariance Model). The results showed
that both specific trainings provide a considerable improvement in WRR
even when the source separation method employed with the test data and
training data sets are different.

Since the artifacts introduced by both separation methods are different,
the WRR is always higher when the mismatch between training and test
data is lower. As expected, the results suggest that the training should be
specifically designed for a given source separation method. Nevertheless,
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it should be emphasized that this work has only considered two separation
methods. Thus, further work is needed to understand better the limita-
tions arising from the mismatch between the separation method used in
the training and test ASR stages.
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Abstract

The Steered Response Power - Phase Transform (SRP-PHAT) algorithm
has been shown to be one of the most robust sound source localization
approaches operating in noisy and reverberant environments. However,
its practical implementation is usually based on a costly fine grid-search
procedure, making the computational cost of the method a real issue. In
this paper, we introduce an effective strategy that extends the conventional
SRP-PHAT functional with the aim of considering the volume surrounding
the discrete locations of the spatial grid. As a result, the modified functional
performs a full exploration of the sampled space rather than computing the
SRP at discrete spatial positions, increasing its robustness and allowing
for a coarser spatial grid. To this end, the Generalized Cross-Correlation
(GCC) function corresponding to each microphone pair must be properly
accumulated according to the defined microphone set-up. Experiments
carried out under different acoustic conditions confirm the validity of the
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proposed approach.

4.1 Introduction

Sound source localization under high noise and reverberation still remains
a very challenging task. To this end, microphone arrays are commonly
employed in many sound processing applications such as videoconferenc-
ing, hands-free speech acquisition, digital hearing aids, video-gaming, au-
tonomous robots and remote surveillance. Algorithms for sound source lo-
calization can be broadly divided into indirect and direct approaches [16].
Indirect approaches usually follow a two-step procedure: they first esti-
mate the Time Difference Of Arrival (TDOA) [17] between microphone
pairs and, afterwards, they estimate the source position based on the ge-
ometry of the array and the estimated delays. On the other hand, direct
approaches perform TDOA estimation and source localization in one single
step by scanning a set of candidate source locations and selecting the most
likely position as an estimate of the source location. In addition, informa-
tion theoretic approaches have also shown to be significantly powerful in
source localization tasks [57].

The Steered Response Power - Phase Transform (SRP-PHAT) algo-
rithm is a direct approach that has been shown to be very robust under
difficult acoustic conditions [19; 20; 13]. The algorithm is commonly in-
terpreted as a beamforming-based approach that searches for the candi-
date source position that maximizes the output of a steered delay-and-sum
beamformer. However, despite its robustness, computational cost is a real
issue because the SRP space to be searched has many local extrema [21].
Very interesting modifications and optimizations have already been pro-
posed to deal with this problem, such as those based on Stochastic Region
Contraction (SRC) [22] and coarse-to-fine region contraction [23], achieving
a reduction in computational cost of more than three orders of magnitude.

In this paper, we propose a different strategy where, instead of eval-
uating the SRP functional at discrete positions of a spatial grid, it is ac-
cumulated over the Generalized Cross Correlation (GCC) lag space corre-
sponding to the volume surrounding each point of the grid. The GCC ac-
cumulation limits are determined by the gradient of the inter-microphone
time delay function corresponding to each microphone pair, thus, taking
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into account the spatial distribution of possible TDOAs resulting from a
given array geometry. The benefits of following this approach are twofold.
On the one hand, it incorporates additional spatial knowledge at each point
for making a better final decision. On the other hand, the proposed modifi-
cation achieves the same performance as SRP-PHAT with fewer functional
evaluations, relaxing the computational demand required for a practical
application.

4.2 The SRP-PHAT Algorithm

Consider the output from microphone l, ml(t), in an M microphone system.
Then, the SRP at the spatial point x = [x, y, z] for a time frame n of length
T is defined as

Pn(x) ≡
∫ (n+1)T

nT

∣∣∣∣∣
M∑
l=1

wlml (t − τ(x, l))

∣∣∣∣∣
2

dt, (4.1)

where wl is a weight and τ(x, l) is the direct time of travel from location
x to microphone l. DiBiase [21] showed that the SRP can be computed by
summing the GCCs for all possible pairs of the set of microphones. The
GCC for a microphone pair (k, l) is computed as

Rmkml
(τ) =

∫ ∞

−∞
Φkl(ω)Mk(ω)M∗

l (ω)ejωτdω, (4.2)

where τ is the time lag, ∗ denotes complex conjugation, Ml(ω) is the Fourier
transform of the microphone signal ml(t), and Φkl(ω) is a combined weight-
ing function in the frequency domain. The phase transform (PHAT) [36]
has been demonstrated to be a very effective GCC weighting for time delay
estimation in reverberant environments:

Φkl(ω) ≡ 1
|Mk(ω)M∗

l (ω)| . (4.3)

Taking into account the symmetries involved in the computation of
Eq.(7.1) and removing some fixed energy terms [21], the part of Pn(x) that
changes with x is isolated as

P ′
n(x) =

M∑
k=1

M∑
l=k+1

Rmkml
(τkl(x)) , (4.4)
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where τkl(x) is the inter-microphone time-delay function (IMTDF). This
function is very important, since it represents the theoretical direct path
delay for the microphone pair (k, l) resulting from a point source located
at x. The IMTDF is mathematically expressed as

τkl(x) =
‖x − xk‖ − ‖x − xl‖

c
, (4.5)

where c is the speed of sound, and xk and xl are the microphone locations.

The SRP-PHAT algorithm consists in evaluating the functional P ′
n(x)

on a fine grid G with the aim of finding the point-source location xs that
provides the maximum value:

xs = arg max
x∈G

P ′
n(x). (4.6)

4.3 The Inter-Microphone Time Delay Function

As commented in the previous section, the IMTDF plays a very important
role in the source localization task. This function can be interpreted as the
spatial distribution of possible TDOAs resulting from a given microphone
pair geometry.

The function τkl(x) is continuous in x and changes rapidly at points
close to the line connecting both microphone locations. Therefore, a pair of
microphones used as a time-delay sensor is maximally sensible to changes
produced over this line [58]. An example function is depicted in Figure
4.1(a) for the plane z = 0, with xk = [−2, 0, 0] and xl = [2, 0, 0]. The
gradient of the function is shown in Figure 4.1(b).

It is useful here to remark that the equation |τkl(x)| = C, with C
being a positive real constant, defines a hyperboloid in space with foci
on the microphone locations xk and xl. Moreover, the set of continu-
ous confocal half-hyperboloids τkl(x) = C with C ∈ [−Cmax, Cmax], being
Cmax = (1/c)‖xk − xl‖, spans the whole three-dimensional space.

Theorem: Given a volume V in space, the IMTDF for points inside V ,
τkl(x ∈ V ), takes only values in the continuous range
[min (τkl(x ∈ ∂V )) , max (τkl(x ∈ ∂V ))], where ∂V is the boundary surface
that encloses V .
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Figure 4.1. Example of IMTDF. (a) Representation for the

plane z = 0 with microphones located at [−2, 0, 0] and [2, 0, 0].

(b) Gradient.

Proof : Let us assume that a point inside V , x0 ∈ V , takes the max-
imum value in the volume, i.e. τkl(x0) = max (τkl(x ∈ V )) = CmaxV .
Since there is a half-hyperboloid that goes through each point of the space,
all the points besides x0 satisfying τkl(x) = CmaxV will also take the max-
imum value. Therefore, all the points on the surface resulting from the
intersection of the volume and the half-hyperboloid will take this maxi-
mum value, including those pertaining to the boundary surface ∂V . The
existence of the minimum in ∂V is similarly deduced.

The above property is very useful to understand the advantages of the
approach presented in this paper. Note that the SRP-PHAT algorithm
is based on accumulating the values of the different GCCs at those time
lags coinciding with the theoretical inter-microphone time delays, which are
only computed at discrete points of a spatial grid. However, as described
before, it is possible to analyze a complete spatial volume by scanning the
time-delays contained in a range defined by the maximum and minimum
values on its boundary surface. In the next section, we describe how this
knowledge can be included in the localization algorithm to increase its
robustness.
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Figure 4.2. Intersecting half-hyperboloids and localization

approaches. (a) Conventional SRP-PHAT. (b) Proposed.

4.4 Proposed Approach

Let us begin the description of the proposed approach by analyzing a sim-
ple case where we want to estimate the location xs of a sound source inside
an anechoic space. In this simple case, the GCCs corresponding to each
microphone pair are delta functions centered at the corresponding inter-
microphone time-delays: Rmkml

(τ) = δ(τ − τkl(xs)). For example and
without loss of generality, let us assume a set-up with M = 3 microphones,
as depicted in Figure 4.2(a). Then, the source position would be that
of the intersection of the three half-hyperboloids τkl(x) = τkl(xs), with
(k, l) ∈ {(1, 2), (1, 3), (2, 3)}. Consider now that, to localize the source, a
spatial grid with resolution r = 1 m is used as shown in Figure 4.2(a).
Unfortunately, the intersection does not match any of the sampled posi-
tions, leading to an error in the localization task. Obviously, this problem
would have been easier to solve with a two step localization approach, but
the above example shows the limitations imposed by the selected spatial
sampling in SRP-PHAT, even in optimal acoustic conditions. This is not
the case of the approach followed to localize the source in Figure 4.2(b)
where, using the same spatial grid, the GCCs have been integrated for each
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sampled position in a range that covers their volume of influence. A darker
gray color indicates a greater accumulated value and, therefore, the dark-
est area is being correctly identified as the one containing the true sound
source location. This new modified functional is expressed as follows

P ′′
n (x) =

M∑
k=1

M∑
l=k+1

Lkl2(x)∑
τ=Lkl1(x)

Rmkml
(τ). (4.7)

The problem is to determine correctly the limits Lkl1(x) and Lkl2(x), which
depend on the specific IMTDF resulting from each microphone pair. The
computation of these limits is explained in the next subsection.

4.4.1 Computation of Accumulation Limits

As explained in Section 4.3, the IMTDF inside a volume can only take
values in the range defined by its boundary surface. Therefore, for each
point of the grid, the problem of finding the GCC accumulation limits
of its volume of influence can be simplified to finding the maximum and
minimum values on the boundary. To this end, it becomes useful to study

θ

φ

Δ
τkl (x)

d
V

x

y

z

r

Figure 4.3. Volume of influence of a point in a rectangular

grid.
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the direction of the greatest rate of increase at each grid point, which is
given by the gradient

∇τkl(x) = [∇xτkl(x),∇yτkl(x),∇zτkl(x)] , (4.8)

where each component of the gradient vector can be calculated with

∇γτkl(x) =
∂τkl(x)

∂γ
=

1
c

(
γ − γk

‖x − xk‖ − γ − γl

‖x − xl‖
)

, (4.9)

where γ denotes either x,y or z. The accumulation limits for a symmetric
volume surrounding a point of the grid can be calculated by taking the
product of the magnitude of the gradient and the distance d that exists
from the point to the boundary following the gradient’s direction:

Lkl1(x) = τkl(x) − ‖∇τkl(x)‖ · d, (4.10)
Lkl2(x) = τkl(x) + ‖∇τkl(x)‖ · d, (4.11)

Figure 4.3 depicts the geometry for a rectangular grid with spatial
resolution r. For this cubic geometry, the distance d can be expressed as

d =
r

2
min

(
1

| sin θ cos φ| ,
1

| sin θ sin φ| ,
1

| cos θ|
)

, (4.12)

where

θ = cos−1

( ∇zτkl(x)
‖∇τkl(x)‖

)
, (4.13)

φ = atan2(∇yτkl(x),∇xτkl(x)), (4.14)

being atan2(y, x) the quadrant-resolving arctangent function.

4.4.2 Computational Cost

Let L be the DFT length of a frame and Q = M(M − 1)/2 the number of
microphone pairs. The computational cost of SRP-PHAT is given by [20]:

SRP-PHATcost ≈ [6.125Q2 + 3.75Q]L log2 L

+15LQ(1.5Q − 1) + (45Q2 − 30Q)ν ′, (4.15)

where ν ′ is the average number of functional evaluations required to find
the maximum of the SRP space. Since the cost added by the modified func-
tional is negligible and the frequency-domain processing of our approach
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remains the same as the conventional SRP-PHAT algorithm, the above for-
mula is valid for both approaches. Moreover, since the accumulation limits
can be pre-computed before running the localization algorithm, the associ-
ated processing does not involve additional computation effort. However,
as it will be shown in the next subsection, the advantage of the proposed
method relies on the reduced number of required functional evaluations ν ′

for detecting the true source location, which results in an improved com-
putational efficiency.

4.5 Experiments

Different experiments with real and synthetic recordings were conducted
to compare the performances of the conventional SRP-PHAT algorithm,
the SRC algorithm and our proposed method. First, the Roomsim Matlab
package [59] was used to simulate an array of 6 microphones placed on the
walls of a shoe-box-shaped room with dimensions 4 m × 6 m × 2 m (Fig.
4.4(a)). The simulations were repeated with two different reverberation
times (T60 = 0.2 s and T60 = 0.7 s), considering 30 random source loca-
tions and different Signal-to-Noise Ratio (SNR) conditions. The resultant
recordings were processed with 3 different spatial grid resolutions in the
case of SRP-PHAT and the proposed method (r1 = 0.01 m, r2 = 0.1 m and
r3 = 0.5 m). Note that the number of functional evaluations ν ′ depends on
the selected value of r, having ν ′

1 = 480×105, ν ′
2 = 480×102 and ν ′

3 = 384.
The implementation of SRC was the one made available by Brown Uni-
versity’s LEMS at http://www.lems.brown.edu/array/download.html, using
3000 initial random points. The processing was carried out using a sam-
pling rate of 44.1 kHz, with time windows of 4096 samples of length and
50% overlap. The simulated sources were male and female speech signals
of length 5 s with no pauses. The averaged results in terms of Root Mean
Squared Error (RMSE) are shown in Figure 4.4(b-d). Since SRC does not
depend on the grid size, the SRC curves are the same in all these graphs.
As expected, all the tested systems perform considerably better in the case
of low reverberation and high SNR. For the finest grid, it can be clearly
observed that the performance of SRP-PHAT and the proposed method
is almost the same. However, for coarser grids, our proposed method is
only slightly degraded, while the performance of SRP-PHAT becomes sub-
stantially worse, specially for low SNRs and high reverberation. SRC has
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similar performance to SRP-PHAT with r = 0.01 m. Therefore, our pro-
posed approach performs robustly with higher grid sizes, which results in a
great computational saving in terms of functional evaluations, as depicted
in Figure 4.4(e).

Table 4.1. RMSE for the real-data experiment.

r 0.01 0.1 0.5

ν′ 802 · 105 802 · 102 641

SRP-PHAT RMSE = 0.29 RMSE = 0.74 RMSE = 1.82

Proposed RMSE = 0.21 RMSE = 0.29 RMSE = 0.31

SRC RMSE = 0.34 (ν′ = 58307)

On the other hand, a real set-up quite similar to the simulated one
was considered to study the performance of the method in a real scenario.
Six omnidirectional microphones were placed at the 4 corners and at the
middle of the longest walls of a videoconferencing room with dimensions
5.7 m × 6.7 m × 2.1 m and 12 seats. The measured reverberation time was
T60 = 0.28 s. The processing was the same as with the synthetic recordings,
using continuous speech fragments obtained from the 12 seat locations.
The results are shown in Table 4.1 and confirm that our proposed method
performs robustly using a very coarse grid. Although similar accuracy
to SRC is obtained, the number of functional evaluations is significantly
reduced.

4.6 Conclusion

This paper presented a robust approach to sound source localization based
on a modified version of the well-known SRP-PHAT algorithm. The pro-
posed functional is based on the accumulation of GCC values in a range
that covers the volume surrounding each point of the defined spatial grid.
The GCC accumulation limits are determined by the gradient of the inter-
microphone time delay function corresponding to each microphone pair,
thus, taking into account the spatial distribution of possible TDOAs re-
sulting from a given array geometry. Our results showed that the proposed
approach provides similar performance to the conventional SRP-PHAT al-
gorithm in difficult environments with a reduction of five orders of magni-
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tude in the required number of functional evaluations, with further compu-
tational saving than SRC. This reduction has been shown to be sufficient
for the development of real-time source localization applications.

4.7 References

The references of this paper have been consolidated in the general bibliog-
raphy at the end of the book.
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Abstract

Source localization using the steered response power (SRP) usually requires
a costly grid-search procedure. To address this issue, a modified SRP algo-
rithm was recently introduced, providing improved robustness when using
coarser spatial grids. In this letter, an iterative method based on the mod-
ified SRP is presented. A coarse spatial grid is initially evaluated with
the modified SRP, selecting the point with the highest accumulated value.
Then, its corresponding volume is iteratively decomposed by using a finer
spatial grid. Experiments have shown that this method provides almost
the same accuracy as the fine-grid search with a substantial reduction of
functional evaluations.
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5.1 Introduction

The localization of sound sources has received a lot of attention in the last
decades. Microphone arrays are known for their multiple applications like
audio surveillance, teleconferencing, speech enhancement for hearing-aids
or camera pointing systems[60]. Most of these applications require loca-
tion estimators having both high-accuracy and a reasonable computational
cost, especially when real-time performance is a real issue[61]. The steered-
response power with phase transform (SRP) algorithm has been considered
one of the most robust localization algorithms in reverberant environments
[21]. However, besides its advantages, the computational cost is consider-
ably high. In this context, several modifications and optimizations have
been proposed to improve its performance and applicability. Recently, the
authors proposed a modified version of the algorithm to improve the lo-
calization performance by accommodating SRP functional evaluations to
scalable grid sizes [62]. However, although the computational cost is sig-
nificantly reduced, the final accuracy is lastly determined by the chosen
spatial resolution. In this letter, we propose an extended strategy based
on an iterative grid decomposition procedure to improve the modified SRP
algorithm. The method is evaluated under different acoustic conditions and
compared to other SRP-based algorithms.

5.2 Modified SRP Algorithm

Consider the output from microphone l, ml(t), in an M -microphone system.
The SRP algorithm is based on the calculation of the generalized cross-
correlation (GCC) [36] (with phase transform) between microphone pairs
(k, l), given by

Rmkml
(τ) =

∫ ∞

−∞

Mk(ω)M∗
l (ω)

|Mk(ω)M∗
l (ω)|e

−jωτdω, (5.1)

where τ is the time lag, ∗ denotes complex conjugation and Ml(ω) is the
Fourier transform of the microphone signal ml(t). The SRP at spatial point
x = [x, y, z]T for a time frame n of length T can be expressed as

Pn(x) =
M∑

k=1

M∑
l=k+1

Rmkml
(τkl(x)) , (5.2)
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where τkl(x) is the inter-microphone time-delay function. This function
represents the theoretical time delay of arrival for the microphone pair
(k, l) resulting from a point source located at x. It is given by

τkl(x) =
‖x − mk‖ − ‖x − ml‖

c
, (5.3)

where c is the speed of sound (340 m/s was used in this work), and mk

and ml are the corresponding microphone locations. To implement the
algorithm, the space is usually discretized by taking a spatial grid G with
spatial resolution r, so that Eq.(5.2) takes only into account the GCC
value on a discrete space location x ∈ G. Note that there are a total of
Q = M(M − 1)/2 microphone pairs that should be processed. The source
location at time frame n is assumed to be that maximizing Pn(x). It
becomes apparent that, when using a coarse spatial grid, it is more likely
to miss the global maximum of the SRP space. To address this issue, the
modified SRP is based on accumulating the GCC lag space corresponding
to the volume surrounding each point of the spatial grid, resulting in:

P ′
n(x) =

M∑
k=1

M∑
l=k+1

L
(2)
kl (x)∑

τ=L
(1)
kl (x)

Rmkml
(τ). (5.4)

The GCC accumulation limits L
(1)
kl (x) and L

(2)
kl (x) are determined by

the gradient of the inter-microphone time-delay function corresponding to
each microphone pair, thus, taking into account the spatial distribution
of possible time-differences resulting from a given array geometry. The
gradient components ∇τkl(x) = [∇xτkl(x),∇yτkl(x),∇zτkl(x)]T are given
by [62]:

∇xiτkl(x) =
1

c

(
xi − (xi)k

‖x − mk‖ − xi − (xi)l

‖x − ml‖
)

, xi ∈ {x, y, z}. (5.5)

The accumulation limits as a function of the gradient components are:

L
(1)
kl (x) = τkl(x) − ‖∇τkl(x)‖ · d, (5.6)

L
(2)
kl (x) = τkl(x) + ‖∇τkl(x)‖ · d, (5.7)

where, for a cubic spatial grid,

d =
r

2
min

(
1

| sin θ cos φ| ,
1

| sin θ sin φ| ,
1

| cos θ|
)

, (5.8)
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being θ = cos−1
( ∇zτkl(x)
‖∇τkl(x)‖

)
the gradient elevation angle and

φ = atan2(∇yτkl(x),∇xτkl(x)) the azimuth angle. Finally, the estimated
source location xs is that maximizing the modified functional over the de-
fined spatial grid, i.e:

xs = arg max
x∈G

{
P ′

n(x)
}

. (5.9)

5.3 Proposed Approach

5.3.1 Mean-Based Functional

The approach proposed in this paper uses the modified SRP functional
with an additional variation. Instead of summing up all the GCC values
between the computed limits, we calculate the mean over this interval as
follows:

P̄ ′
n(x) =

M∑
k=1

M∑
l=k+1

L
(2)
kl (x)∑

τ=L
(1)
kl (x)

Rmkml
(τ)

L
(2)
kl (x) − L

(1)
kl (x)

. (5.10)

The mean-based functional in Eq.(5.10) is designed to compensate the
accumulated GCC, penalizing those values resulting from very large inter-
vals while avoiding large functional values due to accumulated noise. To
illustrate this idea, consider the example in Fig.5.1(a), which shows the
delay function gradient for a two-microphone set-up over a coarse spatial
grid. The lines represent constant-delay half-hyperbolas. Note that the
shaded regions A and B span a different number of constant-delay lines,
thus, resulting in different accumulation intervals. Figure 5.1(b) shows a
noisy GCC obtained from the same setup and the corresponding summa-
tion ranges for A and B with a sampling frequency of 44.1 kHz. Note
that, while interval A contains the GCC direct-sound peak, the accumu-
lated value in B might be greater due to noise accumulation over a larger
interval. The proposed mean-based functional mitigates this undesired ef-
fect. It must be emphasized that, unlike narrow-band methods, the effects
of spatial aliasing in SRP-based broadband microphone arrays are not so
relevant[63] In our case, while no special treatment is applied to avoid spa-
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Figure 5.1. A and B span different accumulation intervals

in a coarse grid. (a) Delay function gradient. (b) Noisy GCC.

tial aliasing, the microphone signals are filtered in order to keep only signal
components within the speech frequency range.

5.3.2 Iterative Sub-Volume Decomposition

The steps of the algorithm performed at each time frame n are as follows:

1. Compute the GCCs by using the input microphone signals at time
frame n. Start with iteration i = 0 and initial localization space
V−1 = Vtotal.

2. Define a spatial resolution ri and construct a spatial grid Gi covering
the desired localization space Vi−1.

3. Apply Eq.(5.10) to all the points in the grid x ∈ Gi and select the
point with the greatest value xi = arg maxx∈Gi

{
P̄ ′

n

}
.

4. The new localization space is that covering all spatial locations closer
to xi than any other point in the grid, i.e.
Vi = {x | ‖x − xi‖ ≤ ‖x − x∈Gi‖, ∀x∈Gi 	= xi}.
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Figure 5.2. Sub-volume division procedure.

5. Go again to Step 2 with iteration i = i + 1 and increased spatial
resolution ri < ri−1, until reaching a desired final resolution rf or
number of iterations NT .

Figure 5.2 shows schematically the above process.

5.3.3 Computational Cost

Assuming that the accumulation limits L
(1,2)
kl are pre-computed in an ini-

tialization process, the computational cost of the proposed method only
differs from the conventional SRP in terms of the total number of required
functional evaluations νm. If the resolution at each iteration is defined as
a constant scaling of the previous resolution, ri = αri−1, with α < 1, then

νm =
Vtotal

r3
0

+ (NT − 1)(1/α)3, (5.11)

resulting in a final resolution rf = r0 · αNT−1. Therefore, the relationship
between the number of operations of the conventional SRP having final
resolution rf (denoted as νf ) and the proposed one is:

νm

νf
=

r3
f

r3
0

+
NT − 1
Vtotal

·
(
r
(NT−2)
f r0

) 3
NT −1

. (5.12)
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.

If NT ≥ 3, then Eq.(5.12) can be approximated by (rf/r0)
3. Figure

5.3(a) shows the above relationship for a three-dimensional grid with dif-
ferent initial resolutions r0 and rf = 0.01 m. In Fig. 5.3(b), possible com-
binations of α and NT are shown for the same initial resolutions considered
in (a).

5.4 Experiments

In Figure 5.3(a), it is shown that the computational reduction is highly
dependent on the chosen initial resolution r0. The following subsections
evaluate the performance of the proposed approach with different initial
resolutions and compare it with other SRP-based approaches. To carry
out this evaluation, image-source-based acoustic simulations [64] have been
performed by considering a rectangular room with dimensions 4 m × 6 m
× 3 m, with varying wall reflection coefficient ρ and Signal-to-Noise Ratio
(SNR). To this end, the Roomsim Matlab package [59] was employed. A
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Figure 5.4. (a) RMSE vs. SNR for ρ = 0.5. (b) RMSE vs.

ρ for SNR = 25 dB.

5 s long speech signal was used as sound source and the results are always
presented by averaging 56 different source locations uniformly distributed
on a plane. The search volume is restricted to a two-dimensional grid on the
same plane. To avoid non-speech frames, the sound source was manually
segmented to include only speech frames in the computed results. The
localization system consists of M = 6 microphones located at the corners
of the room and in the middle of the longest wall. The processing was
carried out using a sampling rate of 44.1 kHz, with time windows of 4096
samples of length and 50% overlap. The α parameter is always chosen to
provide a final resolution rf = 0.01 m after NT = 3 iterations.

5.4.1 Influence of Initial Resolution

Figs.5.4(a) and (b) show the root mean square error (RMSE) for different
initial resolutions r0 as a function of the SNR and the wall reflection coeffi-
cient ρ, respectively. The corresponding reverberation time T60 (in s) is also
provided. In Fig. 5.4(a), ρ is fixed to 0.5, while in Fig. 5.4(b), the SNR is
fixed to 25 dB. The initial resolutions tested are the same as the ones shown
in Fig. 5.3. Note that, under adequate acoustic conditions (SNR≥ 20 dB
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and ρ ≤ 0.5), the RMSE is always smaller than rf (RMSE ≈ 0.0035 m),
independently of r0. The differences among the different initial resolutions
are greater when the SNR decreases and/or reverberation increases (higher
ρ). This is due to the fact that coarser grids tend to integrate more noise
and spurious GCC peaks in adverse conditions, leading to errors in the first
iteration. However, the relative performance among the different initial res-
olutions is not significantly different in moderate acoustic conditions. As a
result, a coarse initial spatial grid (r0 = 0.5 m) allows for high-accuracy lo-
calization while providing a reduction in functional evaluations of 105 when
using a three-dimensional search grid.

5.4.2 Algorithm Comparison

This section compares the performance of the proposed method with two
other localization algorithms: Coarse-to-Fine Region Contraction (CFRC)
[23] and the conventional SRP algorithm (Conv). The proposed method
is evaluated for NT = 3, rf = 0.01 m and r0 = 0.5 m. The conventional
SRP is evaluated for a grid having a resolution r = 0.35 m, while CFRC
is evaluated using the suggested parameters [23] (J = 300 grid points and
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N = 100 selected points). Additionally, the performance of the fine-grid
SRP algorithm with resolution r = 0.01 m (Conv. fine) is also provided
as a reference. The experiments were performed in Matlab, using a laptop
computer with a 1.7 GHz dual-core processor and 4 GB of RAM. The
number of functional evaluations and mean computational time tc for each
case are: 196 for the conventional SRP and the proposed algorithm (tc =
44 ms), 900 for CFRC (tc = 46 ms) and 240.000 for the fine-grid SRP
(tc = 920 ms). Figure 5.5(a) and (b) show the results for varying SNR
and reflection coefficient, respectively. Note that the proposed method
clearly outperforms the rest when using a comparable number of functional
evaluations. In fact, the performance of the conventional SRP with r =
0.01 m and the proposed method are very similar, having an RMSE that
tends to approximate the final resolution when the acoustical conditions
are favorable.

5.4.3 Real Setup

A real room, with dimensions 5.7 × 6.7 × 2.1 m and T60 = 0.28 s, was
considered to test the applicability of the method in real-world scenarios.
The microphone arrangement was very similar to the one used in the sim-
ulations and the algorithm parameters were as in Section 5.4.2. Table 5.1
contains the obtained RMSE for the compared algorithms, showing that
the proposed method achieves similar performance to that of the fine-grid
SRP.

Table 5.1. RMSE for Real Set-Up

Conv. CFRC Proposed Conv. fine
RMSE (m) 1.31 0.74 0.30 0.29

5.4.4 Discussion

Note that both the proposed method and CFRC are based on an iterative
contraction of the original search volume until a sufficiently small subvol-
ume is reached. However, in CFRC, the functional evaluated over each
spatial point corresponds to that of the conventional SRP. As a result, the
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volume surrounding each point of the initial grid is not conveniently con-
sidered by the algorithm, which makes it more likely to fail in the first
step when the number of initial points J is not big enough. Moreover,
the contraction operation in CFRC is performed by defining a new region
(subvolume) containing the best N points (those with a higher functional
value). In our method, it is sufficient to select only the best one, which
simplifies considerably the contraction operation and makes the algorithm
to converge faster to a desired final resolution.

5.5 Conclusion

In this letter, an iterative approach for high-accuracy sound source localiza-
tion using the modified SRP functional has been presented. The method
starts by performing source localization over a very coarse spatial grid.
Then, the grid region having the highest accumulated value is subsequently
divided into finer regions until achieving a desired spatial resolution. A set
of experiments have been carried out to evaluate this new approach, com-
paring its localization accuracy with other well-known approaches in dif-
ferent acoustic conditions. The results show that the proposed method has
a performance comparable to that of a fine-grid SRP with a reduction of
approximately five orders of magnitude in terms of functional evaluations.

5.6 References

The references of this paper have been consolidated in the general bibliog-
raphy at the end of the book.





A Real-Time Sound Source Localization

and Enhancement System Using

Distributed Microphones 6
A. Marti, M. Cobos and J. J. Lopez
Proceedings of the 130th AES Convention, London, UK, 2011.

Abstract

The Steered Response Power - Phase Transform (SRP-PHAT) algorithm
has been shown to be one of the most robust sound source localization
approaches operating in noisy and reverberant environments. A recently
proposed modified SRP-PHAT algorithm has been shown to provide robust
localization performance in indoor environments without the need for hav-
ing a very fine spatial grid, thus reducing the computational cost required
in a practical implementation. Sound source localization methods are com-
monly employed in many sound processing applications. In our case, we
use the modified SRP-PHAT functional for improving noisy speech signals.
The estimated position of the speaker is used to calculate the time-delay
for each microphone and then the speech is enhanced by aligning correctly
the microphone signals.
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6.1 Introduction

Sound Source Localization (SSL) under high noise and reverberation has
many applications such as videoconferencing, hands-free speech acquisition,
digital hearing aids, video-gaming, autonomous robots and remote surveil-
lance. In this work, we present a microphone array system for speech
enhancement based on the well known SRP-PHAT algorithm [19]. The
SRP-PHAT method has been shown to be one of the most robust sound
source localization approaches operating in noisy and reverberant environ-
ments. It is commonly interpreted as a beamforming-based approach that
searches for the candidate source positions that maximizes the output of a
steered delay-and-sum beamformer. However, the computational require-
ments of the method are large, making its real-time implementation con-
siderably difficult. Recently, the authors proposed a new strategy based on
a modified SRP-PHAT functional that, instead of evaluating the SRP at
discrete positions of a spatial grid, it is accumulated over the Generalized
Cross Correlation (GCC) lag space corresponding to the volume surround-
ing each point of the grid [62].

We propose a new application for the SSL systems: speech enhance-
ment. Speech enhancement means the improvement in intelligibility and/or
quality of a degraded speech signal by using signal processing tools. Speech
enhancement is a very difficult problem for two reasons [65]. First, the na-
ture and characteristics of the noise signals can change dramatically in time
and application to application. It is therefore laborious to find versatile al-
gorithms that really work in different practical environments. Second, the
performance measure can also be defined differently for each application.

Speech enhancement in the past decades has focused on the suppres-
sion of additive background noise. From a signal processing point of view
additive noise is easier to deal with than convolutive noise or nonlinear
disturbances. Moreover, due to the bursty nature of speech, it is possible
to observe the noise by itself during speech pauses, which can be of great
value. The experimental setup of the application we propose consist in a
limited area (a room) where a set of microphones are located to estimate
the position of the speaker. The modified SRP-PHAT functional gives us
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the position of the speech source with relatively high accuracy, mostly de-
pending on the selected spatial resolution. Microphone arrays exploit the
fact that a speech source is quite stationary and more effectively than any
single sensor system. The simplest of all approaches is the delay and sum
beamformer that phase aligns incoming wavefronts of the desired source
before adding them together. The combination of both systems: SSL and
beamforming techniques allow speech improvement in real time processing.
This is very useful, since a speech source does not have to be always in the
same position for each application and also different sources may exist, for
example in a videoconference.

The combination of beamforming-based speech enhancement and SRP-
PHAT sound source localization has been recently studied by Levi and
Silverman [66]. They proposed a binary masking approach based on a
SRP-PHAT discriminator. However, very accurate localization is needed
to assign correctly the time-frequency points corresponding to the different
sources. In this paper, we propose a method to apply a similar separation
framework that takes into account possible errors in the estimation of the
sound source locations. Thus, the modified SRP-PHAT using a coarse
spatial grid is sufficient to estimate the source separation masks.

The paper is structured as follows. Section 6.2 describes the conven-
tional SRP-PHAT algorithm and our modified functional. Section 6.3 ex-
plains how to enhance speech signal using a simple delay-and-sum beam-
former and applying a SRP-PHAT based mask to separate different sources
in time-frequency domain. Experiments are discussed in Section 6.4. Fi-
nally, the conclusions of this work are summarized in Section 6.5.

6.2 SRP-PHAT Sound Source Localization

Consider the output from microphone l, ml(t), in an M microphone system.
Then, the SRP at the spatial point x = [x, y, z] for a time frame n of length
T is defined as

Pn(x) ≡
∫ (n+1)T

nT

∣∣∣∣∣
M∑
l=1

wlml (t − τ(x, l))

∣∣∣∣∣
2

dt, (6.1)
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where wl is a weight and τ(x, l) is the direct time of travel from location
x to microphone l. DiBiase [21] showed that the SRP can be computed by
summing the GCCs for all possible pairs of the set of microphones. The
GCC-PHAT (GCC using Phase Transform [36]) for a microphone pair (k, l)
is computed as

Rmkml
(τ) =

∫ ∞

−∞
Ψkl(ω)ejωτdω, (6.2)

where τ is the time lag and

Ψkl(ω) ≡ Mk(ω)
|Mk(ω)|

M∗
l (ω)

|Ml(ω)| , (6.3)

being M∗
l (ω) the complex conjugated Fourier transform of the microphone

signal ml(t). The term Ψkl(ω) is the PHAT filtered cross-spectral power of
the kl microphone pair signals.

Taking into account the symmetries involved in the computation of
Eq.(7.1) and removing some fixed energy terms [21], the part of Pn(x) that
changes with x is isolated as

P ′
n(x) =

M∑
k=1

M∑
l=k+1

Rmkml
(τkl(x)) , (6.4)

where τkl(x) is the inter-microphone time-delay function (IMTDF). This
function is very important, since it represents the theoretical direct path
delay for the microphone pair (k, l) resulting from a point source located
at x. The IMTDF is mathematically expressed as

τkl(x) =
‖x − xk‖ − ‖x − xl‖

c
, (6.5)

where c is the speed of sound, and xk and xl are the microphone locations.

The SRP-PHAT algorithm consists in evaluating the functional P ′
n(x)

on a fine grid G with the aim of finding the point-source location xs that
provides the maximum value:

x̂s = arg max
x∈G

P ′
n(x). (6.6)
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6.2.1 Modified SRP-PHAT

Recently, the authors proposed a new strategy where, instead of evaluating
the SRP functional at discrete positions of a spatial grid, it is accumulated
over the GCC lag space corresponding to the volume surrounding each
point of the grid as follows:

P ′′
n (x) =

M∑
k=1

M∑
l=k+1

Lkl2(x)∑
τ=Lkl1(x)

Rmkml
(τ). (6.7)

The GCC accumulation limits Lkl1(x) and Lkl2(x) are determined by
the gradient of the IMTDF corresponding to each microphone pair, thus,
taking into account the spatial distribution of possible TDOAs resulting
from a given array geometry, as explained in [62].

6.3 Enhancement

In this section a speech enhancement method is presented. This method,
inspired by [66], is based on a simple delay-and-sum beamformer using
talkers position estimates given by the modified SRP-PHAT functional to
align each microphone signal according to each source position. When more
than one talker is active, a SRP-PHAT based mask is applied in order to
classify each time-frequency point as belonging to the most probably source.

6.3.1 Delay and Sum Beamformer

One of the simplest approaches for speech enhancement is the delay-and-
sum beamformer that phase aligns incoming wavefronts of the desired
source before adding them together.

In a M microphone system a talker is situated in a room and his/her
position is estimated by the modified SRP-PHAT method introduced in
Section 6.2.

Using the information of the microphone positions and the estimated
talker location, if we choose the microphone m1 as reference, then the time
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delay between all the microphones and microphone m1 is expressed by the
particularized IMTDF function:

τ1l(x̂s) =
‖x̂s − x1‖ − ‖x̂s − xl‖

c
l = 2 . . .M. (6.8)

We steer each microphone to the source location by appropriately de-
laying the data using the information obtained in Equation (6.8):

md
l (t) = ml(t − τ1l(x̂s)), (6.9)

where md
l (t) is the signal of microphone l delayed accordingly to the esti-

mated talker position x̂s.

The steered delay-and-sum beamformer is given by

md(t) =
1
M

M∑
l=1

md
l (t). (6.10)

In the frequency domain, Equation (6.10) becomes

Md(ω) =
1
M

M∑
l=1

Md
l (ω). (6.11)

Note that errors in the estimated x̂s will lead to an alignment error.
This error will be later discussed in Section 6.3.3.

6.3.2 SRP-PHAT Binary Masking

As previously commented, Equation (6.3) denotes the PHAT filtered cross-
spectral power of the microphone signals mk(t) and ml(t). After aligning
the microphone signals according to the estimated talker location, the de-
layed cross-spectral density can be expressed as

Ψd
kl(ω) ≡ Md

k (ω)
|Md

k (ω)|
Md∗

l (ω)
|Md

l (ω)| . (6.12)
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The SRP-PHAT for each frequency will be given by the addition of the
normalized cross-spectral densities corresponding to all possible microphone
pairs:

Υd(ω) =

∣∣∣∣∣ 1Q
M∑

k=1

M∑
l=k+1

Ψd
kl(ω)

∣∣∣∣∣ , (6.13)

where Q = M(M − 1)/2 is the number of possible microphone pairs.

In the case we have more than one talker, we get the estimated po-
sitions with the modified SRP-PHAT functional and apply the delay-and-
sum beamformer explained in Section 6.3.1. To separate the signals cor-
responding to different simultaneous sources, a binary masking approach
is followed using SRP-PHAT discrimination. Therefore, for each analysis
frame, a time-frequency point is assigned to talker i if

Υd
i (ω) > Υd

j (ω), ∀j 	= i. (6.14)

Source separation based on binary masking has already been used by
many sound source separation algorithms, such as DUET [52], ADRess
[67] or MuLeTS [68]. However, while these approaches are mainly based on
inter-channel level and phase differences, the method here proposed uses
SRP-PHAT discrimination.

6.3.3 Estimation of Localization Error

The modified SRP-PHAT functional gives us the estimated position of the
talker, however, this position has a margin of tolerance defined by the
spatial grid resolution used in the algorithm. If the estimated position was
perfect and considering only direct-path signals, the angle of Ψd

kl(ω) for any
microphone pair (k, l) would be equal to zero since the microphone signals
are also perfectly aligned. The magnitude of the position error is limited by
the spatial grid resolution. This error needs to be estimated and corrected
before estimating the separation masks.

Consider that a location estimation error results in erroneous signal
alignment, since

τkl(x̂s) = τkl(xs) + εkl. (6.15)
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Thus, the delayed cross-power spectral density is

Ψd
kl(ω) ≡ Md

k (ω)
|Md

k (ω)|
Md∗

l (ω)
|Md

l (ω)| expjωεkl . (6.16)

Observing the phase between microphone signals once they have been
delayed, we get an estimate of the time delay error for each microphone
pair by

ε̂kl =
1
ω

∠
(

Md
k (ω)

Md
l (ω)

)
, (6.17)

where ∠() denotes the phase of a complex number.

A better estimation of this error can be obtained by means of an energy-
weighted histogram of the different ε̂kl observed at every time-frequency
point. Figure 6.1 shows two example histograms obtained from a mixture of
two sources in an anechoic scenario and in a room with short reverberation
time. The theoretical error values for a microphone pair are −0.297 ms
considering the position of the first source and −0.1109 ms for the second
source. The real estimated error values when ρ = 0 are −0.3006 ms for the
position of the first source and −0.1403 ms for the second source and, when
ρ = 0.5, estimated error value for source 1 is −0.3106 ms and −0.09018 ms
for source 2.

Therefore, once the different errors have been estimated, the corrected
cross-spectral densities for each microphone pair are

Ψdc
kl (ω) = Ψd

kl(ω) expjωε̂kl . (6.18)

Finally, the masks for each talker can be applied using the Equation
(6.14) with the SRP-PHAT values calculated using the corrected Ψdc

kl (ω).

Figure 6.2 shows the angle of the cross-spectral density for the pair
of microphones of the example mixture in the anechoic case. Figure 6.2(a)
shows the phase when the error is present and Figure 6.2(b) shows the phase
after correction. Finally, Figure 6.2(c) shows the source 1 mask obtained
by comparing the SRP-PHAT for the two sources at every time-frequency
point.
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Figure 6.1. Energy-weighted histogram of the different ε̂kl

observed at every time-frequency point. (a) Source 1 with

ρ = 0. (b) Source with 2 ρ = 0. (c) Source 1 with ρ = 0.5. (d)

Source 2 with ρ = 0.5.

6.4 Experiments

To evaluate the performance of the proposed correction method, several
simulated recordings have been generated using the Roomsim Matlab pack-
age [59]. The simulation set-up consisted of six microphones placed on the
walls of a shoe-box-shaped room with dimensions 4 m × 6 m × 2 m (Fig.
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(a) (b)
(c)

Figure 6.2. Angle of Ψd
kl(ω). (a) Before error correction. (b)

After error correction. (c) Time-frequency mask for isolating

source 1

6.3). The simulations were repeated with three different reverberation con-
ditions (using wall reflection factors of ρ = 0, ρ = 0.2 and ρ = 0.5), con-
sidering different Signal-to-Noise Ratio (SNR) conditions. The two sources
were located at (3,2,0.5) and (1,3,0.5). The modified SRP-PHAT algorithm
using a spatial grid resolution of r = 0.2 m was used to locate the sources
even in the case when both are simultaneously active [69].

The processing was carried out using a sampling rate of 16 kHz, with
time windows of 1024 samples of length and 50% overlap. The simulated
sources were two male speech signals of length 10 s with no pauses.

6 m

4
 m

Height = 2 m

Figure 6.3. Microphone set-up used in the experiments.
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6.4.1 Results

Figure 6.4 shows the percentage of time-frequency points which have been
correctly assigned in the estimated masks. This percentage has been cal-
culated respect to the ideal binary masks [70].

The results show that, after error correction and in the anechoic case
and high SNR, 93% of the time-frequency points (considering only the
speech bandwidth from 0 to 5kHz) have been assigned correctly to its real
source. This is an indication of very good separation quality. Obviously,
with lower SNR and higher reverberation time, the percentage of correctly
assigned points decreases. This results in a worse separation quality. Nev-
ertheless, note that in every case the performance after error correction is
significantly better.

6.5 Conclusion

This paper presented a microphone array system for speech enhancement
based on the delay-and-sum beamformer and the modified SRP-PHAT
functional developed by the authors. The estimated positions given by the
SRP-PHAT algorithm are used to determine the distance from the talker
to each microphone and apply the delay-and-sum beamformer. Since the
localization step may have a given error due to the limited spatial reso-
lution, an estimation of the time delay error is needed in order to correct
the phase alignment of all the microphone signals. The estimation of the
error is better when the acoustic conditions of the environment are not too
adverse, leading to numerically and perceptually better separation results.

6.6 References

The references of this paper have been consolidated in the general bibliog-
raphy at the end of the book.
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Abstract

A real time speaker localization and detection system for videoconferencing
environments is presented. In this system, a recently proposed modified
Steered Response Power - Phase Transform (SRP-PHAT) algorithm has
been used as the core processing scheme. The new SRP-PHAT functional
has been shown to provide robust localization performance in indoor envi-
ronments without the need for having a very fine spatial grid, thus reducing
the computational cost required in a practical implementation. Moreover,
it has been demonstrated that the statistical distribution of location es-
timates when a speaker is active can be successfully used to discriminate
between speech and non-speech frames by using a criterion of peakedness.
As a result, talking participants can be detected and located with signifi-
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cant accuracy following a common processing framework.

7.1 Introduction

Many applications, ranging from teleconferencing systems to artificial per-
ception, hands-free speech acquisition, digital hearing aids, video-gaming,
autonomous robots and remote surveillance require the localization of one
or more acoustic sources. Since the boost of new generation videoconfer-
encing environments, there has been growing interest in the development
of automatic camera-steering systems using microphone arrays [6; 7]. In
this work, we present a microphone array system for camera-steering to
be used in a multiparticipant videoconferencing environment based on the
well-known SRP-PHAT algorithm [19]. The SRP-PHAT method has been
shown to be one of the most robust sound source localization approaches op-
erating in noisy and reverberant environments. It is commonly interpreted
as a beamforming-based approach that searches for the candidate source
position that maximizes the output of a steered delay-and-sum beamformer.
However, the computational requirements of the method are large, making
its real-time implementation considerably difficult. Since the SRP-PHAT
method was proposed, there have been several attempts to reduce the com-
putational cost of the method, such as those presented in [22; 23]. Recently,
the authors proposed a new strategy based on a modified SRP-PHAT func-
tional that, instead of evaluating the SRP at discrete positions of a spatial
grid, it is accumulated over the Generalized Cross Correlation (GCC) lag
space corresponding to the volume surrounding each point of the grid [71].
The benefits of following this approach are twofold. On the one hand, it
incorporates additional spatial knowledge at each point for making a bet-
ter final decision. On the other hand, the proposed modification achieves
the same performance as SRP-PHAT with fewer functional evaluations,
relaxing the computational demand required for a practical application.

In this paper, we analyze the distribution of location estimates ob-
tained with the modified SRP-PHAT functional with the aim of establish-
ing a speaker detection rule to be used in a videoconferencing environment
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involving multiple participants. The analysis shows that location estimates
follow different distributions when speakers are active, allowing to discrim-
inate between speech and non-speech frames under a common localization
framework. Moreover, the distribution of an active speaker remains almost
the same for different positions inside the room, which makes easier to se-
lect a candidate location following a maximum-likelihood criterion, thus
simplifying the camera-steering task.

The paper is structured as follows. Section 7.2 describes the conven-
tional SRP-PHAT algorithm and our modified functional. Section 7.3 ex-
plains the proposed localization-based approach to speech/non-speech dis-
crimination and speaker detection. Experiments with real-data are dis-
cussed in Section 7.4. Finally, the conclusions of this work are summarized
in Section 7.5.

7.2 SRP-Based Source Localization

Consider the output from microphone l, ml(t), in an M microphone system.
Then, the SRP at the spatial point x = [x, y, z] for a time frame n of length
T is defined as

Pn(x) ≡
∫ (n+1)T

nT

∣∣∣∣∣
M∑
l=1

wlml (t − τ(x, l))

∣∣∣∣∣
2

dt, (7.1)

where wl is a weight and τ(x, l) is the direct time of travel from location
x to microphone l. DiBiase [21] showed that the SRP can be computed by
summing the GCCs for all possible pairs of the set of microphones. The
GCC for a microphone pair (k, l) is computed as

Rmkml
(τ) =

∫ ∞

−∞
Φkl(ω)Mk(ω)M∗

l (ω)ejωτdω, (7.2)

where τ is the time lag, ∗ denotes complex conjugation, Ml(ω) is the Fourier
transform of the microphone signal ml(t), and Φkl(ω) = Wk(ω)W ∗

l (ω) is a
combined weighting function in the frequency domain. The phase transform
(PHAT) [36] has been demonstrated to be a very effective GCC weighting
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for time delay estimation in reverberant environments:

Φkl(ω) ≡ 1
|Mk(ω)M∗

l (ω)| . (7.3)

Taking into account the symmetries involved in the computation of
Eq.(7.1) and removing some fixed energy terms [21], the part of Pn(x) that
changes with x is isolated as

P ′
n(x) =

M∑
k=1

M∑
l=k+1

Rmkml
(τkl(x)) , (7.4)

where τkl(x) is the inter-microphone time-delay function (IMTDF). This
function is very important, since it represents the theoretical direct path
delay for the microphone pair (k, l) resulting from a point source located
at x. The IMTDF is mathematically expressed as

τkl(x) =
‖x − xk‖ − ‖x − xl‖

c
, (7.5)

where c is the speed of sound, and xk and xl are the microphone locations.

The SRP-PHAT algorithm consists in evaluating the functional P ′
n(x)

on a fine grid G with the aim of finding the point-source location xs that
provides the maximum value:

x̂s = arg max
x∈G

P ′
n(x). (7.6)

7.2.1 Modified SRP-PHAT Functional

Recently, the authors proposed a new strategy where, instead of evaluating
the SRP functional at discrete positions of a spatial grid, it is accumulated
over the GCC lag space corresponding to the volume surrounding each
point of the grid as follows:

P ′′
n (x) =

M∑
k=1

M∑
l=k+1

Lkl2(x)∑
τ=Lkl1(x)

Rmkml
(τ). (7.7)

The GCC accumulation limits Lkl1(x) and Lkl2(x) are determined by
the gradient of the IMTDF corresponding to each microphone pair, thus,
taking into account the spatial distribution of possible TDOAs resulting
from a given array geometry, as explained in [71].
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Figure 7.1. Two-dimensional histograms showing the dis-

tribution of location estimates. (a) Distribution obtained for

three different speaker locations. (b) Distribution for non-

speech frames.

7.3 Speaker Detection

In the next subsections, we describe how active speakers are detected in
our system, which requires a previous discrimination between speech and
non-speech frames based on the distribution of location estimates.

7.3.1 Distribution of Location Estimates

Our first step to speaker detection is to analyze the distribution of the lo-
cation estimates x̂s when there is an active speaker talking inside the room
from a static position. In this context, six microphones were placed on
the walls of the videoconferencing room and a set of 12 recordings from
different speaker positions were analyzed to obtain the resulting location
estimates. Figure 7.1(a) shows an example of three two-dimensional his-
tograms obtained from different speaker locations. It can be observed that,
since the localization algorithm is very robust, the resulting distributions
when speakers are active are significantly peaky. Also, notice that the
shape of the distribution is very similar in all cases but centered in the
actual speaker location. As a result, we model the distribution of estimates
as a bivariate Laplacian as follows:

p(x̂s|Hs(xs)) =
1

2σxσy
exp−√

2
( |x−xs|

σx
+

|y−ys|
σy

)
, (7.8)
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where p(x̂s|Hs(xs)) is the conditional probability density function (pdf)
of the location estimates under the hypothesis Hs(xs) that there is an
active speaker located at xs = [xs, ys]. Note that the variances σ2

x and σ2
y

may depend on the specific microphone set-up and the selected processing
parameters. This dependence will be addressed in future works. On the
other hand, a similar analysis was performed to study how the distribution
changes when there are not active speakers, i.e. only noise frames are
being processed. The resulting histogram can be observed in Figure 7.1(b),
where it becomes apparent that the peakedness of this distribution is not
as significant as the one obtained when there is an active source. Taking
this into account, the distribution of non-speech frames is modeled as a
bivariate Gaussian:

p(x̂s|Hn) =
1

2πσxnσyn

exp
−
(

x2

2σ2
xn

+ y2

2σ2
yn

)
, (7.9)

where p(x̂s|Hn) is the conditional pdf of the location estimates under the
hypothesis Hn that there are not active speakers, and the variances σ2

xn

and σ2
yn

are those obtained with noise-only frames.

The suitability of the proposed models has been tested by a fitting
procedure based on trust region optimization, having a R-square parameter
above 0.95 in both cases.

7.3.2 Speech/Non-Speech Discrimination

In the last subsection, it has been shown that speech frames are charac-
terized by a bivariate Laplacian probability density function. A similar
analysis of location estimates when there are not active speakers results in
a more Gaussian-like distribution, which is characterized by a shape less
peaky than a Laplacian distribution. This property is used in our system
to discriminate between speech and non-speech frames by observing the
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peakedness of a set of accumulated estimates:

C =

⎡⎢⎢⎢⎢⎣
x̂s(n) ŷs(n)

x̂s(n − 1) ŷs(n − 1)
...

...
x̂s(n − L − 1) ŷs(n − L − 1)

⎤⎥⎥⎥⎥⎦ = [cx cy], (7.10)

where L is the number of the accumulated estimates in matrix C. A
peakedness criterion based on high-order statistics was evaluated. Since
the kurtosis of a normal distribution equals 3, we propose the following
discrimination rules for active speech frames:

Kurt(cx)

{
≥ 3 speech
< 3 non − speech

, (7.11)

Kurt(cy)

{
≥ 3 speech
< 3 non − speech

, (7.12)

where a frame is selected as speech if any of the above conditions is fulfilled.

7.3.3 Camera Steering

To provide a suitable camera stability, a set of target positions were pre-
defined coinciding with the actual seats in the videoconferencing room. The
localization system will be responsible for communicating the camera which
of the target positions is currently active. This process involves two main
steps. First, it is necessary to discriminate between speech and non-speech
frames as explained in Section 7.3.2. If a burst of speech frames is detected,
then the estimated target position is forwarded to the camera when it
does not match the current target seat. Since all the target positions are
assumed to have the same prior probability, a maximum-likelihood criterion
is followed:

x̂t = arg max
xt

p (x̂s|H(xt)) , t = 1 . . . Nt, (7.13)

where xt is one of the Nt pre-defined target positions. Given that the
likelihoods have the same distribution centered at different locations, the
estimated target position x̂t is the one which is closest to the estimated
location x̂s.
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Figure 7.2. Videoconferencing test room and microphones

location.

7.4 Experiments

To evaluate the performance of our proposed approach a set of recordings
was carried out in a videoconferencing test room with dimensions 6.67 m
x 5.76 m x 2.10 m. A set of 6 omnidirectional microphones were placed on
the walls of the room. To be precise, 4 of the microphones were situated at
the 4 corners of the ceiling of the room and the other two microphones were
placed at the same height but in the middle of the longest walls. Figure 9.1
shows the microphone set-up, the camera location and the different seats
occupied by the participants. Black dots represent the 12 pre-defined target
locations used to select the active speaker seat.

The experiment consisted in recording speakers talking from the differ-
ent target positions (only one speaker at each time) with the corresponding
space of silence between two talking interventions. The recordings were
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processed with the aim of evaluating the performance of our system in
discriminating speech from non-speech frames and determining the active
speaker so that the camera can point at the correct seat. With this aim, the
original recordings were manually labeled as speech and non-speech frag-
ments. The processing used a sampling rate of 44.1 kHz, with time windows
of 2048 samples and 50% overlap. The location estimates were calculated
using the modified SRP-PHAT functional, as explained in Section 7.2. The
discrimination between speech and non-speech frames was carried out by
calculating the kurtosis of the last L estimated positions, as explained in
Section 7.3.2.

7.4.1 Results

Table 1 shows the percentage of correctly detected speech (% SP) and non-
speech (% N-SP) frames with different number of accumulated positions
L = 5, 10, 15, 20. Moreover, the processing was performed considering two
different spatial grid sizes (0.3 m and 0.5 m). The percentage of speech
frames with correct target positions (% T) is also shown in the table. It
can be observed that, generally, the performance increases with a finer grid
and with the number of accumulated estimates L. These results were ex-
pectable, since the involved statistics are better estimated with a higher
number of location samples. Although it may seem that there are a sig-
nificant number of speech frames that are not correctly discriminated, it
should be noticed that this is not a problem for the correct driving of the
camera, since most of them are isolated frames inside speech fragments that
do not make the camera change its pointing target.

Grid res. 0.5 m 0.3 m

L 5 10 15 20 5 10 15 20

% SP 52.5 60.4 70.0 74.0 68.9 70.7 83.1 85.4

% N-SP 75.9 64.8 70.9 72.7 81.4 70.9 81.5 82.3

% T 98.2 99.6

Table 7.1. Performance in Terms of Percentage of Correct

Frames
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7.5 Conclusion

This paper presented a microphone array system for camera-steering to
be used in a multiparticipant videoconferencing environment based on the
well-known SRP-PHAT algorithm. The distribution of location estimates
obtained with a modified SRP-PHAT functional was analyzed, showing
that location estimates follow different distributions when speakers are ac-
tive and allowing to discriminate between speech and non-speech frames
under a common localization framework. The results of experiments con-
ducted in a real room suggest that, using a moderately high number of
accumulated location estimates, it is possible to discriminate with signifi-
cant accuracy between speech and non-speech frames, which is sufficient to
correctly detect an active speaker and make the camera point at his/her
pre-defined location.

7.6 References

The references of this paper have been consolidated in the general bibliog-
raphy at the end of the book.
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Abstract

Automatic Speech Recognition (ASR) refers to the task of extracting a
transcription of the linguistic content of an acoustical speech signal au-
tomatically. Despite several decades of research in this important area
of acoustic signal processing, the accuracy of ASR systems is still far be-
hind human performance, especially in adverse acoustic scenarios. In this
context, one of the most challenging situations is the one concerning simul-
taneous speech in cocktail-party environments. Although source separation
methods have already been investigated to deal with this problem, the sep-
aration process is not perfect and the resulting artifacts pose an additional
problem to ASR performance. In this paper, a specific training to improve
the percentage of recognized words in real simultaneous speech cases is
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proposed. The combination of source separation and this specific training
is explored and evaluated under different acoustical conditions, leading to
improvements of up to a 35% in ASR performance.

8.1 Introduction

Automatic Speech Recognition (ASR) can be defined as the independent,
computer-driven transcription of spoken language into readable text in real-
time [72]. This technology allows a computer or electronic device to identify
the words spoken by a person so that the message can be stored or pro-
cessed in a useful way [73]. ASR is used on a day-to-day basis in a number
of applications and services such as natural human-machine interfaces, dic-
tation systems, electronic translators and automatic information desks [5].
However, there are still some challenges to be solved [74]. A major prob-
lem in ASR is to recognize people speaking in a room by using a distant
microphone [24]. In distant-speech recognition, the microphone does not
only receive the direct path signal, but also delayed replicas as a result of
multi-path propagation [25]. The existing mismatch between the training
and testing conditions limits the performance of ASR systems, thus, robust
recognition methods are aimed at reducing this mismatch. In this context,
several approaches have been proposed to cope with room reverberation
in speech recognition applications. Some methods are based on a speech
enhancement stage prior to recognition [26]. In other methods, the recog-
nizer itself is made robust to reverberation by using model compensation
or by performing an improved feature extraction process [27]. All these
approaches have shown to be useful to improve ASR. In any case, reducing
the acoustic mismatch between training and testing conditions seems to be
a relevant issue for the development of robust ASR systems. Despite the
fact that speech recognizers are usually trained on anechoic (or almost ane-
choic) conditions, the environment where they are usually employed can
be rarely considered anechoic. To this end, the use of different training
data matching several acoustic environments has already been suggested
[29; 28], yielding a noticeable improvement.
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Many efforts have been made to develop robust ASR systems working
in reverberant and noisy conditions, most of them focused on recognizing
a single speech source. However, besides noise and reverberation, cocktail-
party situations where different speakers are talking at the same time pose
a real problem for ASR systems [30; 31]. Source separation refers to the
task of estimating and recovering independent source signals (for example,
speech signals) from a set of mixtures in one or several observation chan-
nels (microphone signals) [45]. Source separation algorithms have been de-
scribed in the literature as a solution for simultaneous speech recognition
[56], proposing ASR performance as an indicator of the quality achieved by
a given source separation algorithm [75; 76]. However, separating speech
signals in real acoustic environments is not an easy task and the extracted
speech signals are usually degraded by audible artifacts [77]. As a result,
separated speech signals present an additional mismatch with respect to
the training signals used in a conventional ASR system.

In this paper, we propose and evaluate the use of a specific training
method for ASR in multiple-talk situations. This training includes both
the room effects and the particular artifacts resulting from the separation
process. The aim is to increase the robustness of ASR systems when a
source separation stage is performed before word recognition. Different
experiments are conducted by using simulated data in diverse acoustic en-
vironments, showing that the proposed training significantly improves ASR
performance in multiple simultaneous speech cases.

The paper is structured as follows. Section 8.2 and Section 8.3 present
some fundamentals of robust ASR and source separation, respectively. Sec-
tion 8.4 describes some training approaches to achieve robust ASR in ad-
verse conditions, including cocktail-party situations. Experiments to eval-
uate ASR performance in multiple acoustic environments are presented in
Section 8.5, providing a general discussion in Section 8.6. Finally, the con-
clusions of this work are summarized in Section 8.7.
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8.2 Robust Speech Recognition

Speech recognition has significantly improved in the last decade. Its im-
provements are the result of many research efforts in four different areas
[78]. Firstly, the use of common speech corpora allows the use of large
training sets and makes it possible to compare results from different ASR
systems. Secondly, many developments have been observed in the area
of acoustic modeling, such as contributions regarding context-specific Hid-
den Markov Models (HMMs), changes in feature vectors over time or the
presence of cross-word effects. Finally, improvements in language modeling
and search algorithms allow for the better recognition of large vocabulary
corpora and reduced experimentation cycles, respectively.

Unfortunately, most of the above improvements have been developed
assuming clean speech. When common ASR systems are used in rever-
berant and/or noisy environments, the speech signal is degraded and the
extracted data vectors differ significantly from the ones expected by the
recognizer. In fact, not only the acoustical conditions are responsible for
these changes, but also the speaker tends to change his/her voice as a
function of the auditory feedback [79]. As a result, to reduce the error-
rate in the recognition task, a processing should be included to reduce the
differences between training and test environments. This can be done in
two ways: either by producing changes in the speech model parameters to
match the training environment or by transforming the acquired input data
to the environment where the models were trained. Three basic approaches
summarize the different alternatives [78]:

1. Use of Robust Features and Similarity Measurements: the ASR sys-
tem is assumed to be noise-independent, with the same configuration
used for both clean and distorted speech. Thus, these methods are
focused on deriving speech features and similarity measures that are
robust to environment changes.

2. Speech Enhancement : These methods are based on pre-processing
the input speech signal by applying a denoising or a dereverberation
algorithm. These techniques are not usually designed to improve ASR
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performance specifically, but speech quality or intelligibility instead.

3. Speech Model Compensation: In these methods, a transformation
of the reference speech model is performed to account for specific
environment conditions. The usual statistical modeling techniques
(HMMs, Neural Networks, etc.) are trained with the model parame-
ters adapted to accommodate distorted speech.

The above techniques usually consider a single speech source scenario.
However, as described in the next subsection, cocktail-party scenarios might
render an additional challenge to robust ASR.

8.2.1 Speech Recognition in Cocktail-Party Situations

Besides noise and reverberation, ASR systems might deal with multi-talk
situations. Humans have the ability to distinguish individual sound sources
from complex mixtures of sound. This human ability is usually related to
the well-known cocktail-party effect discussed by Cherry in 1953 [80], which
describes the ability to focus one’s listening attention on a single talker
among a mixture of conversations and background noises, ignoring other
conversations and enabling humans to talk in a noisy place.

Two different situations can be considered regarding ASR with simul-
taneous speech. In this context, an ASR system might be designed to rec-
ognize words or commands from only one source, thus, ignoring the signals
coming from other talkers. On the other hand, there might be ASR sys-
tems intended to recognize all the words or commands emitted by different
simultaneous sources so that different actions are performed consequently.
In the first case, there is only one target speech, while the other speech sig-
nals are considered to be interferences. In the second case, all the speech
signals are target signals and interference signals at the same time.

In both of the above situations, source separation is needed before ASR.
However, while in the first case a good separation quality should be achieved
only for the target speech signal, in the second case all the extracted speech
signals should have sufficient quality for a successful recognition. This
fact makes one think of the difficulty to perform ASR in cocktail-party
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environments. Moreover, source separation should be performed in real
time for a practical ASR system, which makes the problem even harder.

In the next section, we describe the source separation problem in real
acoustic environments and some useful approaches aimed at separating
speech by means of microphone array processing.

8.3 Source Separation in Real Environments

The solution to the problem of sound separation in real environments is
essential for many applications besides ASR, such as hearing-aid systems
or hands-free devices. Most of the existing separation algorithms are based
on statistical assumptions, mainly, sources statistically independent and
non-Gaussian. These assumptions often lead to the independent component
analysis approach [81]. These algorithms have shown to be successful in the
linear complete case, when as many observations as sources are available. In
a real situation (mixtures recorded in a room with a set of microphones),
the mixing process is said to be convolutive, since each sensor observes
the original source signals convolved with the impulse response between
each source and sensor [82; 83]. This makes the estimation of the sources
even more difficult. Methods based on independent component analysis
for convolutive mixtures often apply the separation algorithm separately in
each frequency bin using a time-frequency transformation of the observed
mixtures. This approach introduces the well-known permutation problem:
the different frequency components of the signals are swapped and require
an alignment process [84]. Moreover, when there are more sources than
observation channels, the problem is underdetermined and other properties
of the sources such as sparsity are exploited. When dealing with speech
mixtures, it has been shown that they are sparser in the time-frequency
domain than in the time domain [53]. Yilmaz et al. [85] assumed that the
sources are disjoint in the time-frequency domain, i.e., there exists only
one source in a given time-frequency point. This assumption leads to the
time-frequency masking approach.

Algorithms based on time-frequency masking have shown to provide
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Figure 8.1. Block diagram of the source separation algo-

rithm.

significant results in the separation of realistic mixtures of speech [49].
Recently, the authors developed the multi-level thresholding separation
method, which is a time-frequency masking approach based on interclass
variance maximization [86]. This method provides good separation quality
using only two microphones and can be easily implemented in real-time,
which makes it very useful for practical ASR systems. The method, which
is next briefly described, is used in this work as a pre-processing stage for
cocktail-party ASR.

8.3.1 Speech Separation Based on Interclass Variance Maximization

An overview of the different stages of the multi-level thresholding separation
algorithm is depicted in Figure 8.1. Two microphone signals, xi(t), i ∈
{1, 2}, are sufficient to separate N sources, even if the number of sources
exceeds the number of microphones. The method can be summarized in
the following steps:

1. Direction-Of-Arrival (DOA) map calculation. The input microphone
signals, xi(t), are transformed into the Short-Time Fourier Transform
(STFT) domain, obtaining Xi(k, m). The phase information in each
time-frequency point is used to estimate the DOA of a given frequency
bin k in the current analysis window m. A DOA map matrix, D(k, m),
is formed with the estimations obtained from the analyzed signal.

2. Coherence test and weighted histogram. A coherence test is performed
with the aim of identifying reliable DOA estimates and increasing the
robustness against reverberation. In addition, robustness is further
improved by using the STFT magnitude of both input channels to
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construct an amplitude-weighted histogram Q(n). This histogram is
the input for the multi-level thresholding algorithm.

3. Multi-level thresholding. The histogram obtained in the previous step
is processed to calculate a set of thresholds, Thε, that maximizes
the interclass variance of the time-frequency points according to their
estimated DOA. These thresholds are used to segment the DOA map
into the final separation masks, Mj(k, m), with j = 1, . . . , N . The
separation masks are directly applied to the input signals Xi(k, m) to
estimate the different sources.

Note that a complete description of the separation method is out of the
scope of this paper. The interested reader is referred to Cobos, et. al.[86]
for a detailed description of each processing stage.

8.4 ASR Training for Reverberant and Simultaneous

Speech

The dominant technology in ASR is the HMM [87]. HMMs are based
upon a statistical state-sequence known as a Markov chain, consisting of a
set of states with transitions between the states characterized by a given
probability. HMMs are composed of a non-observable “hidden” Markov
chain, and an observation process which links acoustic vectors extracted
from the speech signal to the states of the hidden chain. These acoustic
vectors are usually based on the calculation of Mel-Frequency Cepstral Co-
efficients (MFCCs) [88]. In this work, several models are constructed by
using different training data. Speech signals considering different acoustic
environments are artificially simulated to build specific training sets that
improve ASR robustness with reverberant speech and simultaneous talking.
The use of synthetic data reduces the enormous effort involved in collecting
a complete set of training and test data for each environment and has been
shown to be very useful in ASR design [29; 28].
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8.4.1 Recognizer Specifications and Baseline System

All the models used in this paper are created using a carefully selected
subset of the widely used TIDigits database [89]. This subset, provided by
the Institute for Signal and Information Processing (ISIP) [90], consists of
941 files used for training and 336 files used for evaluating the system. All
the speech signals are normalized so that the average power of each digit
is equal across all digit strings. Each sentence has between one and seven
digits. Feature vectors are calculated from the speech signal sampled at
8 kHz. The signal is decomposed into frames of length 25 ms with a frame
shift of 10 ms. The frames are transformed to the frequency domain using a
Hamming window after performing a first order pre-emphasis filtering with
a coefficient of 0.97. The analysis filter-bank has 26 channels, from which 12
MFCC coefficients are computed as an output. A 3-state left-to-right HMM
has been trained for each of the 11 digits (’0’-’9’ and ’oh’) and two silence
models (short pause and long pause) with one and three states, respectively.
The output densities are single Gaussians with diagonal covariance matrix.

8.4.2 Training Data-sets

The baseline system above is modified to take into account different acoustic
conditions, resulting in three different training data-sets. Room effects and
separation artifacts are both considered to reduce the mismatch between
the training and test conditions.

Anechoic training

This training data set is the one corresponding to the baseline system with-
out alterations. Thus, the original TIDigits files are used to build the HMM
recognizer. These files were originally collected in an acoustically treated
room in a close-talking situation. As opposed to distant-talking ASR, room
effects are negligible and the environment can be considered as anechoic
[91].

Reverberant training

In this case, the anechoic training data-set is modified to incorporate room
reverberation effects. It has been shown that training data-sets using speech
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convolved with artificial reverberation helps to improve ASR robustness
[92]. Obviously, the optimal training set would be the one matching the
test acoustic conditions. However, real-world ASR systems might work un-
der many different environments and having a different training data-set
for every possible situation is not very practical. Therefore, a general re-
verberant training-set is here proposed, where random room conditions are
simulated via the image-source model [64]. A shoe-box-shaped room (x = 5
m, y = 4 m, z = 3 m) was considered. The random simulation parameters
were the wall reflection coefficient (ρ ∈ [0, 1)) and the source-to-microphone
distance (d ∈ [0.05, 3] m). These parameters affect room reverberation and
direct-to-reverberant ratio, which are two important factors affecting ASR
performance. The use of the wall reflection factor has been here selected
for simulation convenience, however, this factor can be easily related to
the room reverberation time by means of Sabine’s empirical equation [25].
Figure 8.2(a) shows the simulation set-up to build the reverberant training
data-set.
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Cocktail-party training

Similarly to the reverberant training previously described, a modified data-
set that accounts for source separation artifacts is considered. Although
only one separation algorithm is used in this work, time-frequency mask-
ing algorithms produce very similar artifacts, which makes the selected
approach significantly representative. For this training data-set, pairs of si-
multaneous speakers are simulated within random acoustic environments.
Two-sources were only considered since double-talk situations are the most
usual in real application environments. Source separation is applied as ex-
plained in Section 8.3.1, performing the STFT analysis with a frame length
of 64 ms and 50% overlap. A small two-microphone array is used to separate
the two speech signals generated by the sources, which are randomly posi-
tioned in the simulation, covering different source-to-microphone distances
and DOAs. The inter-microphone distance is 2 cm, which is sufficient to
avoid spatial aliasing in the separation process [86]. Figure 8.2(b) shows
the simulation set-up for this case. The shaded area reflects possible source
positions in the simulated data. The simulated source positions are uni-
formly distributed within this area. Note that two usual approaches for
robust ASR are jointly used here: source separation as an speech enhance-
ment method that suppresses interference and a robust transformed model
constructed from separated speech in real environments.

8.5 Experiments

In this section, a set of experiments are carried out to compare the train-
ing data-sets previously described in terms of ASR Word Recognition Rate
(WRR). To this end, the well-known HTK toolkit is employed [42]. Dif-
ferent environments are simulated by means of the image-source model,
as already explained in Section 8.4.2. In all cases, a distant talking set-
up is considered (d = 2 m) to ensure an adverse working condition, while
the room reflection coefficient ρ is successively increased to test different
degrees of reverberation. The following experiments evaluate ASR per-
formance in three different situations: single speech recognition with and
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without interfering speech signals and simultaneous speech recognition.

8.5.1 Experiment 1: Single Speech Recognition

This experiment evaluates the proposed training data-sets in terms of WRR
with different conditions of reverberation. Only one speaker is considered
for the test, thus, source separation is not applied here. Figure 8.3 shows
the percentage of recognized words for all the training cases exposed in
Section 8.4.2 as a function of the room wall reflection factor ρ. As ex-
pected, the anechoic training outperforms the other two systems in case
of ρ = 0, since no reflections occur inside the room. However, as soon as
reflections appear (ρ 	= 0) the performance is severely degraded, exhibit-
ing a linear decay. On the other hand, the reverberant training data-set
performs quite robustly under different reverberation degrees, showing a
highly stable performance for all ρ values. A similar behavior is observed
for the cocktail-party training, but having a negative offset that reflects the
fact that separation artifacts are not present in the test data-set.
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8.5.2 Experiment 2: Speech Recognition With Interfering Speech
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In this case, ASR performance is evaluated when there are two simultaneous
speakers but we are only interested in recognizing the words correspond-
ing to one of them. Source separation is applied to segregate the target
speech source from the mixture, performing ASR with different training
data afterwards. Figure 8.4(a) shows the WRR for the three training data-
sets. Obviously, the WRR is lower than in the previous experiment, since
the cocktail-party scenario is a more challenging environment. Despite the
performance is lower than in the case of Experiment 1 (Figure 8.3), source
separation allows for a high ASR improvement. To illustrate this fact, Fig-
ure 8.4(b) presents the results over the same test data without using any
source separation stage. Note that, for all the training data-sets, the per-
formance is significantly better when using source separation than when
source separation is not considered (see Figures 8.4(a)-(b)). If source sep-
aration is applied, the best performance is achieved by the cocktail-party
training. This is due to the reduced mismatch between the training data
and the separated data used in the test. Note also that the difference be-
tween the reverberant and cocktail-party training in Figure 8.4(a) becomes
greater for higher wall reflection coefficients. This can be explained by the
greater amount of artifacts that appear after source separation when the
environment is highly reverberant.

Figure 8.5 shows the performance gain in terms of WRR obtained by
the proposed training methods in a simultaneous talking situation. The
gain is computed with respect to the performance of the conventional base-
line system without separation. Thus, it is computed as the difference
between Figure 8.4(a) and the anechoic training line in Figure 8.4(b). Note
that the proposed cocktail-party training outperforms the other methods,
providing a nearly constant gain of 35%.

8.5.3 Experiment 3: Simultaneous Speech Recognition

In this last experiment, the test data is the same as in Experiment 2, but
the WRR accounts for errors in both speech signals. This case is interesting
to recognize commands from different sources simultaneously. Both signals
are targets and interferences at the same time, although the recognition
tasks are independently performed for each target. Figure 8.6 shows the
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ASR performance for this experiment. The curves are very similar to those
obtained in Experiment 2, but having a negative offset due to the errors
corresponding to both sources. Nevertheless, the proposed cocktail-party
training still performs better than the others.

8.6 Discussion

The experiments conducted have shown that both source separation and
specific training provide a considerable improvement in ASR performance.
The reduced mismatch between training and test data allows the design of
ASR systems with increased robustness. The anechoic training data-set,
which represents the conventional approach to ASR design, has shown to
be optimum only for an ideal scenario. In real situations with reverber-
ant rooms and a single speaker, a reverberant training seems to be more
appropriate, especially under highly adverse conditions. An approximate
improvement of 10% in WRR is achieved with respect to the baseline (ane-
choic) system for ρ = 0.8 (see in Figure 8.3). On the other hand, when
multiple speech sources are present, source separation has been shown to
be strictly necessary, both for simultaneous speech recognition and/or inter-
ference rejection. The proposed cocktail-party training accounts for multi-
ple degradations: reverberation, artifacts and residual noise. This training
data-set has been shown to achieve a higher recognition rate whenever mul-
tiple speech sources are present and ASR follows a source separation stage.
As shown in Figure 8.5, the major improvement occurs at higher reverber-
ant conditions, providing a 35% higher WRR with respect to the baseline
system without separation. It is interesting here to remark that source
separation and ASR must be both performed in real-time during the test
stage, which makes our proposed system a practical solution for adverse
ASR.
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8.7 Conclusion

Cocktail-party situations where different speakers are talking at the same
time pose a real problem for ASR systems. In this paper, a framework for
robust ASR in cocktail-party situations has been presented. This frame-
work is based on a robust transformed model constructed from separated
speech in diverse acoustic environments. Thus, a source separation method
has been used as a speech enhancement stage that suppresses interferences.
The validity of the method has been studied over a meaningful set of exper-
iments, evaluating ASR performance for three different training data-sets.
The results have shown that both source separation and specific training
provide a considerable improvement in WRR (up to a 35%), reducing the
existing mismatch between the training and test data. Moreover, the pro-
posed framework allows to perform both ASR and source separation in
real-time, which is a very important feature for practical systems. Future
work will be focused on developing efficient double-talk detection methods
for real-time ASR model selection.
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8.8 References

The references of this paper have been consolidated in the general bibliog-
raphy at the end of the book.





Evaluating the Influence of Source

Separation Methods in Robust

Automatic Speech Recognition

with a Specific Cocktail-Party Training 9
A. Marti, M. Cobos and J. J. Lopez
Proceedings of the 132th AES Convention, London, UK, 2012.

Abstract

Automatic Speech Recognition (ASR) allows a computer to identify the
words that a person speaks into a microphone and convert it to written
text. One of the most challenging situations for ASR is the cocktail-party
environment. Although source separation methods have already been in-
vestigated to deal with this problem, the separation process is not perfect
and the resulting artifacts pose an additional problem to ASR performance
in case of using separation methods based on time-frequency masks. Re-
cently, the authors proposed a specific training method to deal with si-
multaneous speech situations in practical ASR systems. In this paper, we
study how the speech recognition performance is affected by selecting dif-
ferent combinations of separation algorithms both at the training and test
stages of the ASR system under different acoustic conditions. The results
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show that, while different separation methods produce different types of
artifacts, the overall performance of the method is always increased when
using any cocktail-party training.

9.1 Introduction

Automatic Speech Recognition (ASR) allows a computer or electronic de-
vice to identify the words spoken by a person so that the message can be
stored or processed in a useful way [73]. Although ASR technology is not
yet at the point where machines robustly understand speech in any acoustic
environment, or by any person, it is used on a day-to-day basis in a num-
ber of applications and services such as natural human-machine interfaces,
dictation systems, electronic translators and automatic information desks
[5]. A major problem in ASR systems is to recognize people speaking in a
room by using a distant microphone [24]. In distant-speech recognition, the
microphone does not only receive the direct path signal, but also delayed
replicas resulting from multi-path propagation [25]. The existing mismatch
between the training and testing conditions limits the performance of ASR
systems, thus, robust recognition methods are aimed at reducing this mis-
match. In this context, several approaches have been proposed to cope
with room reverberation in speech recognition applications. Some meth-
ods are based on a speech enhancement stage prior to recognition [26]. In
other methods, the recognizer itself is made robust to reverberation by us-
ing model compensation or by performing an improved feature extraction
process [27]. All these approaches have shown to be useful in improving
ASR. In any case, reducing the acoustic mismatch between training and
testing conditions seems to be a relevant issue for developing robust ASR
systems.

Many efforts have been made to develop robust ASR systems working
in reverberant and noisy conditions, most of them focused on recognizing
a single speech source. However, besides noise and reverberation, cocktail-
party situations where different speakers are talking at the same time pose
a real problem for ASR systems [30; 31]. Source separation refers to the
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task of estimating and recovering independent source signals (for example,
speech signals) from a set of mixtures in one or several observation chan-
nels (microphone signals) [45]. Source separation algorithms have been de-
scribed in the literature as a solution for simultaneous speech recognition
[56], proposing ASR performance as an indicator of the quality achieved by
a given source separation algorithm [75; 76]. However, separating speech
signals in real acoustic environments is not an easy task and the extracted
speech signals are usually corrupted by audible artifacts [77].

Recently, the authors proposed a specific training for ASR in multiple-
talk situations [93]. This training includes both room effects and the partic-
ular artifacts resulting from the separation process. The aim of this specific
training was to increase the robustness of ASR systems when a source sep-
aration stage is performed prior to word recognition. In that work only a
time-frequency masking based separation method was used.

In this paper, we evaluate how the recognition performance is affected
by considering the combination of different separation approaches both at
the training and test stages of the ASR system. While masking-based
source separation methods provide a high isolation of the target source
from simultaneous interfering sources, i.e. they have a high Signal to Inter-
ference Ratio (SIR), other separation methods present less artifacts, having
a higher Signal to Artifact Ratio (SAR) than masking-based approaches.
Thus, the aim of this work is to compare two types of separation methods
in different acoustic conditions to examine how the speech recognition per-
formance achieved with the proposed training is affected by the choice of
the separation method.

The paper is structured as follows. Section 9.2 presents the problems of
ASR in cocktail-party situations and describes different proposed training
data-sets. Section 9.3 presents some fundamentals of source separation.
Experiments are discussed in Section 9.4. Finally, the conclusions of this
work are summarized in Section 9.5.
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9.2 Speech Recognition in Cocktail-Party Situations

Humans have the ability to focus their listening attention on a single talker
among a mixture of conversations and background noises, ignoring other
conversations and recognizing a specific voice. This situation is usually
referred to as the “cocktail party effect” [80]. Speech recognition technol-
ogy has significantly improved in the last decade, however cocktail-party
situations are still a challenge.

Recently, the authors proposed a specific training which improves con-
siderably the percentage of word recognition rate when different people are
talking simultaneously. This cocktail-party training, incorporates room re-
verberation effects and source separation artifacts. In [92], it was shown
that training data-sets using speech convolved with artificial reverberation
helps to improve ASR robustness. Obviously, the optimal training set would
be the one matching the test acoustic conditions. However, real-world ASR
systems might work under many different environments and having a dif-
ferent training data-set for every possible situation is not very practical.
Therefore, in the proposed training, random room conditions are simulated
via the image-source model and source separation artifacts are considered.
Moreover, since the training data consists of blindly separated sources in
these simulated environments, source separation artifacts are additionally
considered in the training stage. For that specific training only one sep-
aration algorithm was used. Thus in this paper, we compare the results
of applying a different source separation method, both in the training and
test data-sets.

The different training data sets used are [93]:

• Anechoic training: This training data-set is composed of clear
speech data from the TIDigits database [89] without alterations. These
files were originally collected in an acoustically treated room in a
close-talking situation. As opposed to distant-talking ASR, room
effects are negligible and the environment can be considered as ane-
choic.

• Reverberant training: In this case, the anechoic training data-set
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is modified to incorporate room reverberation effects. A shoe-box-
shaped room (x = 5 m, y = 4 m, z = 3 m) was considered. The
random simulation parameters were the wall reflection coefficient (ρ ∈
[0, 1]) and the source-to-microphone distance (d ∈ [0.05, 3] m). These
parameters affect room reverberation and direct-to-reverberant ratio,
which are two important factors affecting ASR performance.

• Cocktail-party training: Similarly to the reverberant training, a
modified data-set that accounts for source separation artifacts is con-
sidered. For this training data-set, pairs of simultaneous speakers are
simulated within random acoustic environments. Two sources were
only considered since double-talk situations are the most usual in real
application environments. In this work two separation algorithms are
used and compared. Figure 9.1 shows the simulation set-up for this
case. The shaded area reflects possible source positions in the simu-
lated room. The simulated source positions are uniformly distributed
within this area.

As we compare two different source separation algorithms for the cocktail-
party training we consider two different test data sets: the TIDigits files
modified with random reverberation and separation artifacts from both
separation techniques, which are briefly described in the next section.

9.3 Sound Source Separation

Speech source separation algorithms are aimed at estimating source speech
signals from a set of observed mixtures. Single channel speech separation
methods are not able to exploit spatial information about the sources, thus,
other features such as harmonicity and spectral modulation are employed
[94]. On the other hand, multi-channel methods are usually based on spa-
tial localization cues, which provide very useful information within many
separation frameworks [52].

According to the number of sources and the number of available mix-
ture channels, the source separation problem can be classified as overdeter-
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mined (more sensors than sources), determined (equal number of sensors
and sources) or underdetermined (more sources than sensors). Indepen-
dent Component Analysis (ICA) [81] methods have been widely used for
the separation of determined problems, both with time-domain [95] and
frequency-domain approaches [96]. However, ICA methods can not be em-
ployed for the separation of underdetermined mixtures, and other methods
based on sparsity assumptions are used [45]. Time-frequency (T-F) mask-
ing methods [49] make use of this sparseness property by assuming that
the energies of the independent source signals rarely overlap in the T-F
domain. Moreover, the source separation problem becomes even more diffi-
cult in reverberant environments, leading to convolutive source separation
approaches [49].

In our previous work [93], the authors studied the effect of source sep-
aration in ASR training by using a T-F masking separation method based
on the maximization of the inter-class variance found in the distribution of
Direction-Of-Arrival (DOA) estimates. This method was shown to provide
a good separation performance in real-time, thus, showing that it could
be easily integrated within an advanced ASR system. In this paper, we
also consider another recent method for source separation in reverberant
environments which is based on a full-rank spatial convariance model. In
the next subsections, we briefly described both separation algorithms.

9.3.1 Multi-Level Thresholding Separation

The method is able to separate N source signals by using only two micro-
phones, thus it can be applied to underdetermined mixtures. It basically
consists of three stages. First, the input signals are transformed to the
T-F domain by means of Short-Ti me Fourier Transform (STFT) process-
ing, and a DOA estimate is obtained at each T-F point by analyzing the
phase difference existing between the two microphone signals. Second, a
coherence test is performed to discard unreliable DOA estimates and the
distribution of the selected ones is analyzed by means of an amplitude-
weighted histogram. Finally, a number of different classes (sources) is as-
sumed and the histogram is divided by a set of thresholds that are calcu-
lated by maximizing the interclass variance. These thresholds define the
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binary masks that are used to separate the mixture spectrograms into the
separated speech sources.

9.3.2 Separation with Full-Rank Spatial Convariance Models

Duong et. al presented in [82] a separation algorithm for underdetermined
reverberant mixtures based on a full-rank spatial covariance model. The
STFT coefficients of the source images are modeled as a zero-mean Gaus-
sian random variable with a factored covariance matrix depending on a
spatial covariance matrix that encodes their spatial position and spread.
Under this model, source separation is performed in two steps. first, the
parameters of the model are estimated in the Maximum Likelihood (ML)
sense and then, the source images are obtained by means of multichannel
Wiener filtering.

The reader is referred to [86] and [82] for further details on both sepa-
ration methods.

9.4 Experiments

In this section, a set of experiments are carried out to compare different
source separation methods in terms of ASR Word Recognition Rate (WRR).
To this end, the well-known HTK toolkit is employed [42].

The training and test data sets are obtained using a carefully selected
subset of the widely used TIDigits database. This subset, provided by the
Institute for Signal and Information Processing (ISIP) [90], consists of 941
files used for training and 336 files used for evaluating the system. All the
speech signals are normalized so that the average power of each digit is
equal across all digit strings. Each sentence has between one and seven
digits. Feature vectors are calculated from the speech signal sampled at 8
kHz. The signal is decomposed into frames of length 25 ms with a frame
shift of 10 ms. The frames are transformed to the frequency domain using
a Hamming window after performing a first order pre-emphasis filtering
with a coefficient of 0.97. The analysis filter-bank has 26 channels, from
which 12 Mel-Frequency Cepstral Coefficients (MFCC) [88] are computed
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as an output. A 3-state left-to-right HMM [87] has been trained for each
of the 11 digits (0-9 and oh) and two silence models (short pause and long
pause) with one and three states, respectively. The output densities are
single Gaussians with diagonal covariance matrix.

In this work we proposed two experiments. In each experiment a differ-
ent sound source separation method has been employed for the test data-set.
The experiments evaluate ASR performance when there are simultaneous
speakers and the WRR accounts for errors in all speech signals (simulta-
neous speech recognition). This case is interesting to recognize commands
from different sources simultaneously. Therefore, all signals are targets and
interferences at the same time, although the recognition tasks are indepen-
dently performed for each target.

9.4.1 Experiment 1: Test Data-Set Using Multi-Level Thresholding

Separation

In this experiment the Multi-Level Thresholding Separation method (MuLeTS),
explained in the Subsection 9.3.1, has been used to obtain the test data-set.
Figure 9.2 shows the ASR performance for this experiment.

As observed in the case of the MuLeTS test data-set, the WRR for all
the training data-sets, the performance is significantly better when using
source separation than when source separation is not considered. If source
separation is applied, the best performance is achieved by the cocktail-
party training. The cocktail-party training which is using MuLeTS as the
separation method has a WRR percentage a little bit higher than the other
cocktail-party training. This is due to the reduced mismatch between the
training data and the separated data used in the test.

9.4.2 Experiment 2: Test Data-Set Using Separation with Full-Rank

Spatial Covariance Models

In this experiment the test data-set has been constructed by means of
separated sources using the Full-Rank Spatial Covariance Model (FRSCM)
separation method described in Subsection 9.3.2. Figure 9.3 shows the
result of simultaneous speech recognition using this test data-set.
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The curves are very similar to those obtained in Experiment 1. The
performance is significantly better when using FRSCM separation which is
the same sound source separation method as the test data-set.
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9.5 Conclusion

Cocktail-party situations where different speakers are talking at the same
time pose a real problem for ASR systems. Recently, the authors proposed
a framework for robust ASR in cocktail-party situations. That framework is
based on a robust transformed model constructed from separated speech in
diverse acoustic environments. In this paper two source separation methods
have been used as a speech enhancement stage that suppresses interferences.

In this work it has been studied the effect of two different sound source
separation methods in the specific training for ASR. The results have shown
that both specific trainings provide a considerable improvement in WRR
even when the source separation method employed at the test data and
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training data sets are different. As the artifacts introduced by one type
of separation method (Subsection 9.3.1) are different from the artifacts in-
troduced by the other sound source separation method (Subsection 9.3.2)
studied at this work, the percentage of WRR is always higher when the
mismatch between training and test data is lower. So, as expected, each
training has a best performance when the mixtures of the test data-set has
been separated with the same method as in the training data-set. How-
ever, the results (in terms of WRR) for both trainings with both types
of test data are very similar between them. As a result, we can conclude
that having a specific training for simultaneous speech ASR improves sig-
nificantly recognition performance, even if the separation method is not
exactly the same. Nevertheless, it should be emphasized that this work has
only considered two separation methods. Thus, further work is needed to
understand better the limitations arising from the mismatch between the
separation method used in the training and test ASR stages.

9.6 References

The references of this paper have been consolidated in the general bibliog-
raphy at the end of the book.
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This chapter summarizes the findings of this research work, revisiting the
research objectives given in the introductory chapter and proposing guide-
lines for future research lines.

10.1 Summary and Conclusions

This thesis focused on the field of acoustic signal processing and its appli-
cations to emerging communication environments. In this context, Sound
Source Localization (SSL) and Automatic Speech Recognition (ASR) have
been specially addressed in this thesis. Most real-world microphone array
applications require the localization of one or more active sound sources in
adverse environments. Indeed, performing robust SSL under high noise and
reverberation is a very challenging task. To solve this problem, one of the
most well-known algorithms for source localization in noisy and reverberant
environments is the SRP-PHAT algorithm, which constitutes the baseline
framework for many of the contributions developed throughout this thesis.

One of the objectives of this research work was to design accurate SSL
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algorithms working in real-time time using a reasonable number of micro-
phones. To address this issue, several modifications have been proposed
to the SRP-PHAT algorithm, improving its performance and applicability.
Specifically, Chapter 4 presented an effective strategy that extends the con-
ventional SRP-PHAT functional. This approach performs a full exploration
of the sampled space rather than computing the SRP at discrete spatial po-
sitions, increasing its robustness and allowing for a coarser spatial grid that
reduces the computational cost required in a practical implementation with
a reduced number of microphones and consequently with an important re-
duction in hardware cost. The modified SRP-PHAT was further improved
in Chapter 5 by proposing an iterative method. To this end, the volume
having the highest functional value over an initial coarse spatial grid is iter-
atively decomposed into smaller sub-volumes. The experiments simulating
diverse acoustic conditions have shown that this iterative method provides
almost the same accuracy as the fine-grid search with a substantial reduc-
tion in the number of required functional evaluations. Additionally, it has
been demonstrated that, by using the modified SRP-PHAT, it is possible
to implement real-time applications based on location information, such as
the presented automatic camera steering or the detection of speech/non-
speech fragments in advanced videoconferencing systems (Chapter 6 and
Chapter 7). This application has been successfully presented in different
conferences. Moreover, a videoconferencing system using this technology
has been installed in a demonstration room located in the headquarters of
the Telefonica company.

As commented before, besides the contributions related to SSL, this
thesis is also related to the field of ASR. ASR is used on a day-to-day basis
in a number of application and services such as natural human-machine in-
terfaces, dictation systems, electronic translators and mobile phones. How-
ever, there are still some challenges to be solved. A major problem in ASR
is to recognize people speaking in a room by using distant microphones.
Echoes and reverberation of the room and multiple speakers talking si-
multaneously are very well know problems. In this context, when multiple
speaker signals are present, Sound Source Separation (SSS) methods can be
successfully employed to improve ASR performance in multi-source scenar-
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ios. In Chapter 8 of this thesis, we developed a successful training method
for multiple talk situations. This training, which is based on a robust
transformed model constructed from separated speech in diverse acoustic
environments, makes use of a SSS method as a speech enhancement stage
that suppresses the unwanted interferences. The combination of source
separation and this specific training has been explored and evaluated un-
der different acoustical conditions, leading to improvements of up to a 35%
in ASR performance. In addition, the effect of using different SSS meth-
ods in the proposed training was also explored in Chapter 9, showing that
the training should match the separation algorithm to account for possible
distortion artifacts.

The main contributions of this thesis can be highlighted as follows:

• Based on the well known SRP-PHAT SSL method, a modified ver-
sion that uses a new functional has been developed. The results
showed that the proposed approach provides similar performance to
the conventional SRP-PHAT algorithm in difficult environments with
a reduction of five orders of magnitude in the required number of
functional evaluations. Also, an iterative method based on the mod-
ified SRP-PHAT algorithm has been developed, achieving the same
accuracy as the conventional SRP-PHAT using a fine-grid search.

• All the approaches proposed in this thesis have been evaluated with
a 6 microphone array, reducing considerably the computational and
economical cost of the experiments. Using only 6 microphones has
been shown to be sufficient to develop real-time source localization
applications. This is an advantage compared to other approaches
found in the literature.

• The SSL methods presented in this thesis have been evaluated in dif-
ferent environments, demonstrating its robustness in real and adverse
acoustic situations.

• SSL has been used as a stage prior to speech enhancement, suppress-
ing the time delay between microphones and improving the signal-to-
noise ratio. Also, the position estimates give a valuable information
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to discriminate between speech and non-speech frames. As a result,
it has been possible to develop a videoconferencing system with au-
tomatic camera steering. When non-speech frames are detected, the
camera pointed to all the audience while, in case of speech detection,
the camera pointed to the active source.

• In the field for ASR, a specific training has been introduced which has
been demonstrated to achieve better results in terms of WRR. For this
specific training, a source separation technique has been employed to
let the recognizer perform better in case of double-talk conditions,
adding cocktail-party functionality to current ASR systems.

• The specific training developed for ASR has been evaluated with dif-
ferent SSS algorithms, demonstrating that the performance in case of
using different SSS algorithms for training and testing, are still better
than a baseline ASR system.

10.2 Further Work

From the conclusions of this work, some new and challenging research lines
could be proposed, being some of them already open. Future work may
follow the lines listed here:

• To evaluate SSL in much bigger rooms as large meeting rooms, confer-
ence halls and even concert halls. During the work we have detected
that the larger the room the greater the number of microphones are
needed to produce accurate and stable results. However, there are not
published works related to the estimation of the appropriate number
of microphones as a function of the room volume for a good behavior.
It is our intention to continue this interesting line.

• To apply the developed SSL algorithms outdoors with the necessary
modifications and to design new algorithms for this scenario. Nowa-
days, outdoor SSL is a hot research topic with many applications,
which are mainly related to surveillance, but also to environment
protection in cities and high-level acoustic monitoring.
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• To combine sound-based localization systems with image-based sys-
tems into a multimodal localization system. In some situations, au-
dio information is not sufficient to provide accurate and stable results
(very high levels of noise and reverberation with multiple simultane-
ous sources). In these cases, visual information can be used to im-
prove and complement the information provided by the microphone
array, leading to better results. Some applications for ASR apply
these techniques by means of lip reading. In the case of localization,
the task should be easier, since just detecting lip movement (without
reading it) would be enough.

• To try specific ASR training in the context of the new findings related
to Deep Neural Networks (DNN) and to develop efficient double-talk
detection methods for real-time ASR model selection.
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