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Universitat Politècnica de València
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Abstract

Program analysis techniques have many uses in the real world. However, there
are aspects that can help improving its widespread adoption. This thesis
deals with techniques aimed at improving two limiting aspects: the lack of
customizability and the burdensome learning process.

The lack of customizability of program analysis comes from the high com-
plexity of program analysis algorithms that prevents untrained developers from
creating specific analysis that help to improve the quality of their software.
Declarative program analysis aims at reducing the effort for implementing
analyses by incrementing the level of abstraction of the specification language,
and by offering an efficient execution of the analysis specification comparable
with traditional implementations.

In this thesis, we improve declarative program analysis of Java programs
based on the logic specification language Datalog in two aspects. On one hand,
we translate Datalog specifications into Boolean Equation Systems for easing
the distribution of the analysis computation and speeding it up. Boolean Equa-
tion Systems provide efficient and distributed algorithms for their evaluation
and industrial tools that implement them. On the other hand, we translate
Datalog specifications into Rewriting Logic theories to support the extension of
the specification language Datalog for expressing more sophisticated analysis,
for example, those involving the use of reflection.

Another contribution of this thesis is relative to the automated inference
of specifications to assist techniques for improving software quality (program
analysis, verification, debugging, documentation, . . . ). In particular, speci-
fications are at the core of program analysis, since every program analysis
checks the conformation of the program of interest with respect to a speci-
fication. Untrained developers may not be capable of formulating program
specifications that could be used as input of other tools like static analyzers,
testing or program verifiers, or just for human inspection and documentation.
Automated inference of specifications aims at reducing the effort for creating
software specifications by producing approximated ones without human inter-
vention. We improve automated specification inference for the multiparadigm
language Curry and for object-oriented programs in general by proposing
two new approaches. On one hand, we present a technique to infer algebraic
specifications for Curry programs by classifying expressions built from their



signature according to their abstract semantics. Contrary to other existing
approaches, this technique allows to discriminate between correct and possibly
correct parts of the specification. On the other hand, we present a tech-
nique to infer high-level specifications in the form of pre/post-conditions for
object-oriented languages. This technique is formalized in the Matching Logic
verification setting to allow the verification of the inferred specifications.



Resumen

Las técnicas de análisis de programas tienen una gran cantidad de aplicaciones
en el mundo actual. Sin embargo, existen aún aspectos a mejorar dentro de las
mismas que pueden ayudar a difundir más su uso. Esta tesis está dedicada a
la mejora de dos aspectos del análisis de programas: la rigidez de sus técnicas
y su complejo proceso de aprendizaje.

La rigidez de las técnicas de análisis de programas es debida a la gran
complejidad de los algoritmos de análisis, que provocan que, sin un costo-
so entrenamiento y aprendizaje previos, los desarrolladores no puedan crear
sus propios análisis para mejorar la calidad de sus programas. El análisis de
programas declarativo tiene como objetivo reducir el esfuerzo en el diseño de
implementación de análisis gracias al aumento del nivel de abstracción del len-
guaje de especificación usado, siempre sin renunciar a ofrecer un método de
ejecución del análisis comparable en términos de eficiencia a las implementa-
ciones más tradicionales.

En esta tesis se mejora en dos aspectos la aproximación de análisis de pro-
gramas Java basada en el lenguaje lógico de especificación Datalog. En primer
lugar, se traducen especificaciones Datalog a Sistemas de Ecuaciones Boolea-
nas con el fin de distribuir el cómputo de los análisis mejorando aśı sus tiempos
de ejecución. Los Sistemas de Ecuaciones Booleanas están equipados con al-
goritmos eficientes y distribuidos para su evaluación y existen herramientas
industriales que los implementan. En segundo lugar, se traducen especifica-
ciones Datalog a teoŕıas de Lógica de Reescritura con el fin de soportar la
extensión del lenguaje de especificación Datalog de forma que puedan expre-
sarse análisis más sofisticados, por ejemplo análisis que tengan en cuenta el
uso de reflexión en los programas.

Otra contribución de esta tesis está relacionada con la automatización de
la inferencia de especificaciones como mecanismo de apoyo a las técnicas que
mejoran la calidad de los programas (análisis de programas, verificación, de-
puración, documentación, etc.). Podemos decir que las especificaciones son la
base del análisis de programas en particular (y del resto de técnicas mencio-
nadas en general) ya que cualquier análisis comprueba si el comportamiento
del programa que está siendo analizado se corresponde con el dado por una
especificación. Sin un entrenamiento previo, los desarrolladores pueden no ser
capaces de formular especificaciones adecuadas que puedan ser usadas como



entrada de analizadores estáticos, herramientas de testing o verificadores de
programas, o incluso como documentación o para ser estudiadas y analiza-
das de forma manual. La inferencia automática de especificaciones tiene como
objetivo final reducir el esfuerzo necesario para escribir especificaciones de
programas. Para ello computa especificaciones aproximadas sin necesidad de
intervención del desarrollador. En esta tesis se mejora la inferencia automática
de especificaciones para el lenguaje multiparadigma Curry y para programas
orientados a objetos en general proponiendo dos nuevas aproximaciones. Por
un lado, se presenta una técnica para inferir especificaciones algebraicas pa-
ra programas Curry construyendo expresiones a partir de la signatura del
programa y clasifiándolas en función de la semántica asociada a dichas expre-
siones. En contraste con las aproximaciones existentes en la literatura, esta
técnica permite distinguir entre partes de la especificacion correctas y partes
possiblemente correctas. Por otro lado, se presenta una técnica para inferir
especificaciones de alto nivel presentadas en forma de pre/post-condiciones
para lenguajes orientados a objetos. Esta técnica se formaliza en el contex-
to del marco de verificación de Matching Logic de forma que se habilita la
posibilidad de verificar la especificación inferida.



Resum

Les tècniques d’anàlisi de programes tenen una gran quantitat d’aplicacions
en el món actual. No obstant això, existixen encara aspectes a millorar dins
de les mateixes que poden ajudar a difondre més el seu ús. Esta tesi està
dedicada a la millora de dos aspectes de l’anàlisi de programes: la rigidesa de
les seues tècniques i el seu complex procés d’aprenentatge.

La rigidesa de les tècniques d’anàlisi de programes és deguda a la gran
complexitat dels algoritmes d’anàlisi, que provoquen que, sense un costós en-
trenament i aprenentatge previs, els desenvolupadors no puguen crear els seus
pròpis anàlisis per a millorar la qualitat dels seus programes. L’anàlisi de
programes declaratiu té com a objectiu reduir l’esforç en el disseny d’imple-
mentació d’anàlisis gràcies a l’augment del nivell d’abstracció del llenguatge
d’especificació usat, sempre sense renunciar a oferir un mètode d’execució de
l’anàlisi comparable en termes d’eficiència a les implementacions més tradici-
onals.

En esta tesi es millora en dos aspectes l’aproximació d’anàlisi de programes
Java basada en el llenguatge lògic d’especificació Datalog. En primer lloc,
es tradüıxen especificacions Datalog a Sistemes d’Equacions Booleanes a fi
de distribuir el còmput dels anàlisis millorant aix́ı els seus temps d’execució.
Els Sistemes d’Equacions Booleanes estan equipats amb algoritmes eficients
i distribüıts per a la seua avaluació i hi ha ferramentes industrials que els
implementen. En segon lloc, es tradüıxen especificacions Datalog a teories de
Lògica de Reescriptura a fi de suportar l’extensió del llenguatge d’especificació
Datalog de manera que puguen expressar-se anàlisi més sofisticats, per exemple
anàlisi que tinguen en compte l’ús de reflexió en els programes.”

Una altra contribució d’esta tesi està relacionada amb l’automatització de
la inferència d’especificacions com a mecanisme de suport a les tècniques que
milloren la qualitat dels programes (anàlisi de programes, verificació, depu-
ració, documentació, etc.). Podem dir que les especificacions són la base de
l’anàlisi de programes en particular (i de la resta de tècniques mencionades en
general) ja que qualsevol anàlisi comprova si el comportament del programa
que està sent analitzat es correspon amb el dau per una especificació. Sense
un entrenament previ, els desenvolupadors poden no ser capaços de formular
especificacions adequades que puguen ser usades com a entrada d’analitza-
dors estàtics, ferramentes de testing o verificadors de programes, o inclús com



a documentació o per a ser estudiades i analitzades de forma manual. La
inferència automàtica d’especificacions té com a objectiu final reduir l’esforç
necessari per a escriure especificacions de programes. Per a això computa espe-
cificacions aproximades sense necessitat d’intervenció del desenvolupador. En
esta tesi es millora la inferència automàtica d’especificacions per al llenguat-
ge multiparadigma Curry i per a programes orientats a objectes en general
proposant dos noves aproximacions. D’una banda, es presenta una tècnica
per a inferir especificacions algebraiques per a programes Curry construint
expressions a partir de la signatura del programa i classificant-les en funció
de la semàntica associada a les dites expressions. En contrast amb les aproxi-
macions existents en la literatura, esta tècnica permet distingir entre parts de
l’especificació correctes i parts posiblement correctes. D’altra banda, es pre-
senta una tècnica per a inferir especificacions d’alt nivell presentades en forma
de pre/post- condicions per a llenguatges orientats a objectes. Esta tècnica es
formalitza en el context del marc de verificació de Matching Logic de manera
que s’habilita la possibilitat de verificar l’especificació inferida.
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and dedication to her research group, the ELP, and I thank her for discovering
me and having taken care of all of us. Alicia is an example of silent hard work,
she is always looking after others, and I thank her for becoming the sister I
never had. I also thank my advisors for having accepted me as I am and
having made these years so pleasant.

I want to thank the current and past members of the ELP and MiST groups
that I have had the pleasure to know for being so kind and making so easy to be
willing to go to work everyday. In particular, I would like to thank Christophe
Joubert for his help during the first years of my research career. I also want to
thank Germán Vidal for being himself and being so funny at the same time;
Santiago Escobar, for your humility, advice and sense of humor; Francisco
Frechina, Fran, for your generosity and your friendship; Salvador Tamarit,
Tama, for Utrecht and our endless bike rides; Sonia Santiago, for your kindness
and conversation; Javier Espert, for your insightful discussions about anything;
Javier and David Insa, for being my most reliable merienda companions and
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to the Garćıa Soler family: Pepe, Mari, Laura and Isabel, for having
been like a family to me for many years;
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Introduction

“We sail within a vast sphere, ever drifting in uncertainty, driven
from end to end.”

Blaise Pascal

Today, software is everywhere. You know what I mean. Almost everything
you can imagine may have attached a small device with a program in it that
controls it, identifies it, or whatever. And if it does not have it, probably one
day it will.

Letting aside dogs with remote control, software is everywhere and it affects
us. Today you lose the metro because the automatic ticket vending machine
does not work, tomorrow your cell phone is unexpectedly dying, the day after
somebody steals all the money in your bank account by sending it somewhere
in the Cayman Islands— well, maybe it was a caiman playing with a computer.
Fortunately, reality is not so bad. Normally, the metro arrives late and you can
enjoy yourself rushing to another ticket machine; your phone performs much
better after you reset it; and, who does not want to help animals enjoying
themselves?

Software rules many devices that have different levels of importance with
respect to economy and human lives. The world would be a better place if all
software worked perfectly with respect to their intent, but it does not [oCP13,
Cen13]. Down to earth, we have to content ourselves with trying to assure
the correct behavior of programs with a clear, high impact (in economic terms
or human lives), which are normally called critical systems. This does not
mean that programs in general are not somehow checked for correctness, but
not with the exhaustiveness necessary to assure it. Today, the main impact of
software errors is economical. For example, it is well known that software bugs
cost the U.S. economy around 59.5 billion per year [Tas02]. However, there
are other aspects in which the society is vulnerable to unpredictable software
errors like ecology, medicine or quality of life, and this perspective should not
be underestimated [ZC09].

In order to gain confidence on the correct behavior of programs we have
to analyze them, and program analysis is the discipline of computer science
that deals with that. In program analysis, there are, overall, two different
approaches: dynamic analysis and static analysis. Dynamic analyses execute
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programs to analyze their behavior, while static analyses do not. In any case,
prior to analyze a program we should have an ex-ante idea of what a correct
behavior is. We can express that idea in the form of specific values, formulas
or models that constitute what we call a specification.

Dynamic analyses generally select, more or less appropriately, some inputs
(or contexts) to execute the program while observing its outputs or its inter-
mediate states (i.e., the execution trace). The dynamic analysis then compares
its observations against the specification in order to inform of any discrepancy.
It should be clear that typical programs cannot be exhaustively tested with
all their possible inputs under every possible environment because the quan-
tity of cases to consider is enormous with respect to the computing resources
available nowadays. Therefore, even if dynamic analysis is of great help in
finding software defects, it cannot guarantee their absence.

On the contrary, static analyses do not execute the code. Static analyses
consist of compile-time techniques for predicting safe and computable approx-
imations of the behavior of a program [NNH99]. The key word is approxima-
tion. Any interesting property of programs is undecidable and therefore we
cannot hope to compute it accurately. That is why static analyses compute ap-
proximations. These approximations have to be safe (or correct) with respect
to the semantics of the language. By safe we mean that the approximation
should consider at least (but not necessarily only) all the possible behaviors
of the program as implied by its semantics. With these safe approximations,
static analysis can guarantee the absence of errors but it may also introduce
false positives, i.e., errors that exist in the program approximation, but do
not in the actual program. Either way, static analysis is the most prominent
approach to ensure quality in critical systems.

Program analysis techniques in general have many uses. For instance, they
can automatically catch bugs early in the software development process reduc-
ing the cost of corrections, which increases as development time passes. They
can also aid code reuse by helping documenting code that has no specification
or comments. Static analysis, in particular, can (truly) prove the absence of
particular bugs, and it can even improve other quality assurance techniques
like testing. Moreover, these direct benefits provide some additional indirect
ones: the reduction of the number of bugs induces more productivity as it
speeds up the development; reduces the cost of maintenance; and exchanges
human time for computational power, which is a fair trade-off given the ma-
chines available nowadays.

Research has shown that static analysis can detect up to 87 percent of
common coding errors [Jon09], and that 60 percent of software faults that
were found in released software products could have been detected with static
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analysis tools [PCJL95]. Moreover, it is estimated that more than a third of
the cost of software errors (in the case of the U.S. economy, $22.2 billion) could
be eliminated improving the infrastructure of development [Tas02] to one in
which static analysis plays an important role [Jon09]. In summary, software
quality has an important economic value and so does static analysis [Jon09].

I.1 Challenges in Declarative Static Analysis and
Automated Synthesis of Specifications

Despite the benefits of using static analysis, software reliability has not sub-
stantially improved in the real world [oCP13, Cen13]. Many reasons have
been given as an attempt to explain why the industry has not embraced static
analysis: market pressures, inertia, legacy code, lack of practical tools, impre-
cision, etc. The market pressure can force developers to move to production
an unfinished (or not tested enough) system because of marketing reasons.
Inertia is not a meaningful reason per se, but the lack of economic perspective
regarding software quality seems more than common; it is actually a constant.
The presence of legacy code is wrongly used as an excuse because it should
be a motivation for using static analysis methods, as they can give insight
into the unknown code. The lack of practical tools should not be an excuse,
either; there are not static analysis tools for every programming language or
development environment, but there exist many tools to assist real world de-
velopment for real world languages like Java or C such as Astrée [CCF+05],
FindBugs [CHH+06], Coverity [BBC+10] or the Clang Static Analyzer [Sou13].
Imprecision is an inherent attribute of static analysis that has been used as
an excuse for not using it; however, imprecision of static analysis is constantly
reducing as research and computational power increase. There are two reasons
for not embracing static analysis that are directly related with this thesis: the
lack of fully customizable static analysis frameworks and the lack of trained
developers.

Declarative specifications of program analyses and inference of specifica-
tions, which are the two main topics addressed in this thesis, can help improv-
ing customizability and under-training of programmers, as we shall see in the
following.

I.1.1 Declarative and effective program analysis

Programs contain many application-specific errors. Until recently, program
analysis tools did not allow users to specify their own specific properties to
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check [BPS00]. In any case, the ad-hoc implementation of a custom program
analysis is a complex task that mostly only experts in program analysis and
programming languages can successfully perform. This makes very hard for
program analysis to be widely customized and applied to application-specific
problems.

Nonetheless, the logic language Datalog [Ull85] has been recently proposed
as a mean to declaratively specify, customize and, thus, experiment with static
analyses [WACL05, Ull89].

The key point for the practical application of the declarative specification
of program analyses is their efficient execution with respect to other specifi-
cally tuned standard implementations of the analysis. Efficiency is important
because it affects the precision of the analysis, which is crucial for ensuring its
usefulness. Another aspect that affects precision in the case of declarative pro-
gram analysis is the expressiveness of the specification language. For example,
Datalog is not a Turing complete language so it cannot specify every possible
static analysis that we may conceive in order to increase the precision.

In [WACL05], a translator from Datalog programs to binary decision di-
agrams (Bdds) is proposed for exploiting Bdds’ redundancy summarizing
capabilities. Bdds are a data structure used to represent, in a compressed
way, boolean functions and, at a more abstract level, sets or relations. The
use of Bdds in this context allows for exhaustive and efficient computation
of the analysis by means of highly-optimized Bdd-libraries. By exhaustive
computation we mean that the process is not guided by any goal; thus, it po-
tentially performs unnecessary computation. On the contrary, [BS09] extends
Datalog to include indexing information that increases the efficiency of the
analysis execution on a commercial Datalog engine developed by LogicBlox
Inc. There are two tasks that none of these Datalog engines is suitable for:
the distribution of computations (to make use of different machines for im-
proving the performance) and the extension of the specification language (i.e.,
Datalog) for encoding (more) sophisticated analysis in a natural and uniform
way. We consider these two aspects crucial. Distributed computation is how
the industry is dealing with the technological limits that nature imposes to
the speed of uniprocessor systems, whereas expressiveness is as important as
the complexity of the program analysis to be specified is.

I.1.2 Automated Inference of Specifications

Specifications are intrinsic to program analysis. Every time we apply a certain
static analysis we are checking if the (approximation of the semantics of the)
program satisfies some property encoded in the analysis specification. For
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example, if we develop a static analysis that checks for dereferences of null
pointers, we are implicitly specifying that our program should not dereference
a null pointer.

Given a catalog of generic static analyses, a software engineer does not need
special training, except for the management of false positives. If this software
engineer wanted to write a custom analysis for some property specific to his
application, he should have been trained in order for the analysis to be “as
safe as possible”. However, maybe the application satisfies other properties
he is not considering that are important for the development of that software.
What if a special static analysis for a program could provide all the different
properties that might be successfully verified on it? This is how static inference
of specifications works. Inference of specifications provides the developer with
properties he may not be aware of, and that can be extremely useful for
verification and documentation of the code.

There are many approaches to the inference of specifications. Many as-
pects vary from one proposal to another: the kind of specifications that
are computed (e.g., model-oriented vs. property-oriented specifications), the
kind of programs considered, the correctness or completeness of the method,
etc. [ABL02, CSH10, HRD07, GMM09, TCS06]. When we studied the related
literature, we observed that two techniques were specially simple and intu-
itive. One of these techniques is the one implemented by QuickSpec [CSH10],
which infers, by means of random testing , equations for functional programs
as the ones used by the automatic testing tool QuickCheck [CH00]—which
automatically generates test cases for the functional language Haskell. The
other technique is used by Axiom Meister [TCS06], which obtains high-
level specifications in the form of pre/post-conditions for imperative pro-
grams by means of symbolic execution. Unfortunately, neither QuickSpec
nor Axiom Meister can ensure the correctness of the specifications they
infer. QuickSpec can never guarantee correctness because it is based on
testing , whereas Axiom Meister cannot either because of the fundamental
incompleteness of plain symbolic execution. Moreover, they neither support
the (automatic or manual) verification of the specifications they infer. We
consider the ability of a technique to deal with the correction of inferred spec-
ifications crucial for its practical use, either by guaranteeing correction by
construction or by subsequently allowing its verification.
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I.2 The Proposed Approach

Certainly, the improved opportunities for program analysis derived from this
dissertation can increase the impact of static analysis on the software devel-
opment process. We have detected and addressed several shortages of static
program analysis as we summarize in this section.

Regarding the deficiencies of the Datalog-based program analysis, the prob-
lem was approached by focusing on transforming Datalog into appropriate
formalisms that may support more sophisticated and efficient analyses.

First, we defined a translation of Datalog programs into Boolean Equa-
tion Systems (Bes) [And94a] for easing the distribution of Datalog query
evaluation. Bes are sets of equations defining boolean variables that can be
resolved with linear-time complexity. In particular, parameterised Boolean
Equation Systems (Pbes) provide a more compact representation for Bess by
extending them with typed parameters. Pbess have been successfully used
to encode several hard verification problems [MT08, CPvW07, Mat98]. We
encoded Datalog program analyses into Pbess which are then solved by ex-
panding them into plain Bess. By encoding Datalog into Bess, we are able
to use the verification framework Cadp [GMLS07] to perform the translation
and resolution of Pbes in an on-the-fly and demand-driven way. In addition,
using the Pbes formalism potentially allows the distributed algorithm for Bes
resolution of [JM06] to be applied into our program analysis setting.

We defined a translation of Datalog to Rewriting Logic (Rwl) [Mes92]
to support the extension of the specification language Datalog for express-
ing more sophisticated analysis. Rwl [Mes92] is a very general logical and
semantical framework based on equational logic, in which several logics and
languages can be formally described and mechanized. Due to the reflective
nature of Rwl, in the sense that it can perfectly represent itself, Rwl nat-
urally supports unmatched extensibility because it can execute an extension
of itself within itself. Moreover, Rwl is efficiently implemented in the high-
level executable specification language Maude [CDE+07]. More specifically,
we translated Datalog program analyses into Maude Rewriting Logic theories.
We have taken advantage of many Maude features for the translation, for in-
stance by using its efficient representations for the data, its memoization and
reflection capabilities, and its algebraic properties that lead to more concise
theories. We have also implemented an extension of Datalog program analysis
by means of Rwl’s reflection.

With respect to the lack of assistance for ensuring the correctness of the in-
ferred specifications, we developed and implemented a declarative framework
that allows us to discover and to (some extent) check program specifications.
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We have used abstract interpretation for creating a static analysis method-
ology for the functional-logic language Curry [Han06] that infers equational
properties satisfied by the functions defined in the program. Abstract In-
terpretation is a formalism to develop program abstractions for safe static
analysis [CC77, CC79]. Abstractions are defined with respect to a concrete
program semantics such that they model the interesting aspects for the proper-
ties to be analyzed. To this aim, it defines safe mappings between concrete and
abstract versions of the values and operators in the language of interest. In our
case, we built up our technique by abstracting an existing condensed and goal-
independent semantics for the first order fragment of Curry [BC10, BC11].
Our technique uses abstract versions of the program semantics to infer equa-
tions between terms built from the signature of the program. With this
novel approach, our technique can guarantee, under ascertained conditions,
the correctness of parts of the specification, whereas QuickSpec can only
infer possibly correct approximations. In addition, the specifications inferred
have also been extended in order to represent the functional-logic features
that are intrinsic to Curry and not present in Haskell, like logical variables
and nondeterminism. As a result, our approach makes available the inference
of QuickCheck-like specifications to a wider class of programs, the multi-
paradigm functional-logic programs.

Matching Logic (ML) is a logic for the verification of programs that
brings together operational and axiomatic semantics [Rc12]. We have used
Matching Logic as a formal framework for developing an inference method
such that the inferred specifications can further be verified by means of ML
verification systems. Similarly to Rwl, ML is a rule-based framework. How-
ever, ML extends the standard representation of data used in Rwl and other
formalisms (i.e., the notion of term), and in this regard, ML can be considered
an extension of Rwl. Despite its generality, only small (yet not simple) veri-
fication tasks have been reported to date using a prototype, called MatchC,
that allows reasoning with a subset of the C language [Rc11]. We have formal-
ized a technique for inferring specifications with Matching Logic to leverage the
reasoning capabilities of MatchC. Our technique infers pre/post-condition
specifications of C-like programs that use the functions defined in a C program
to simplify the representation of program states by means of observational ab-
straction. As a result, we automatically obtain concise high-level specifications
of C programs.
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I.3 Contributions of the Thesis

This dissertation makes the following contributions in the two main areas
mentioned above: program analysis and automated synthesis of specifications.

• Program Analysis

– A semantics-preserving transformation from Datalog to
Boolean Equation Systems.
We have developed a transformation from Datalog programs to
Bess that respects the program semantics and is aimed for static
analysis of imperative programs. We introduce a prototype called
Datalog Solve that takes advantage of the algorithms available
for Bes resolutions in the verification framework Cadp and shows
good efficiency. These results have been published in [AFJV09d,
AFJV08, AFJV09b, AFJV09a, AFJV11].

– A semantics-preserving transformation from Datalog to
Rewriting Logic
We have developed a transformation from Datalog to Rewriting
Logic that is proven to be correct and achieves extensibility of
declarative program analysis. We introduce a prototype called
Datalaude that translates Datalog into Rewriting Logic theories
aimed at reducing the size of the transformed program and that in-
creases the speed of the resolution. We show that the efficiency of
Datalaude is comparable with other interpreted Datalog solvers.
Finally, by using Rewriting Logic’s reflective capabilities, we ex-
emplify a particular extension of a Datalog program analysis by
developing a points-to analysis involving reflection. These results
have been originally published in [AFJV09c, AFJV10, AFJV11].

• Synthesis of Specifications

– A technique for inferring Equational Specifications from
Curry programs.
We present a technique for inferring Equational Specifications for
Curry programs. We show its feasibility and the quality of the in-
ferred specifications by introducing the prototype AbsSpec, which
implements the technique and is based on an abstract interpreta-
tion of a precise and compact semantics for Curry. These results
have been published in [BCFV11, BCFV12a, BCFV12b].
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– A technique for inferring Pre/Post Specifications for C-like
programs.
We present a technique for inferring high level Pre/Post Specifi-
cations for C-like programs within the Matching Logic framework.
We demonstrate the practicality of the proposed technique by in-
troducing and evaluating the prototype KindSpec that extends
the Matching Logic verifier MatchC for supporting full symbolic
execution (deduction) of Matching Logic formulas, and infers speci-
fications for programs written in a subset of the C language. These
results have been published in [AFV13].

I.4 Plan of the Thesis

This dissertation is divided in two parts that are organized as follows. Part I
deals with Datalog-based declarative static analysis and Part II is concerned
with the automatic inference of formal specifications from imperative programs
and multiparadigm programs. Chapter 1 provides some preliminaries that are
needed for the two parts of the thesis. Part I begins in Chapter 2 where
some background about Datalog, Bes and Datalog-based program analysis
is provided. Chapter 3 presents the transformation from Datalog to Boolean
Equation Systems and the prototype Datalog Solve that implements this
technique. Chapter 4 presents the transformation from Datalog to Rewriting
Logic, the prototype Datalaude that implements this transformation, and a
declarative extension of the analysis. Part II begins in Chapter 5 by providing
some background on Curry, the K framework and Matching Logic. Chap-
ter 6 presents our technique for inferring formal algebraic specifications from
Curry programs by using abstract interpretation, and describes AbsSpec,
the prototype that implements this methodology. Chapter 7 describes our
method to infer axiomatic specifications for C-like programs developed in the
framework of Matching Logic; it also presents KindSpec, the prototype that
implements the proposed inference technique, concluding Part II. Finally, the
last chapter is devoted to conclusions and summarizes the contributions, con-
cluding this thesis.
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1
Preliminaries

1.1 Rewriting Logic

Rewriting logic is a powerful logical framework that allows us to formally rep-
resent a wide range of systems [Mes92], including models of concurrency, dis-
tributed algorithms, network protocols, semantics of programming languages,
and models of cell biology, just to mention a few. Rewriting logic is also an
expressive universal logic, i.e., a flexible logical framework in which many dif-
ferent logics and inference systems can be represented and mechanized. The
Rewriting Logic framework is efficiently implemented in the high-performance
language Maude [CDE+07].

A rewrite theory is a tuple R = (Σ,E,R), with:

• (Σ,E) an equational theory with function symbols Σ and equations E;
and

• R a set of labeled rewrite rules of the general form

r ∶ t Ð→ t′

with t, t′ Σ-terms which may contain variables in a countable set X of
variables.

Intuitively, R specifies a concurrent system whose states are elements of the
initial algebra TΣ/E specified by (Σ,E), and whose concurrent transitions are
specified by the rules R. The equations E may be decomposed as the union
E = E0 ∪A, where A is a (possibly empty) set of structural axioms (such as
associativity, commutativity, and identity axioms).

Rewriting logic expresses an equivalence between logic and computation
in a particularly simple way. Namely, system states are in bijective corre-
spondence with formulas (modulo whatever structural axioms are satisfied by
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these formulas: for example, modulo the associativity and commutativity of
a certain operator) and concurrent computations in a system are in bijective
correspondence with proofs (modulo appropriate notions of equivalence among
computations and proofs).

Given this equivalence between computation and logic, a rewriting logic
axiom of the form:

t → t′

has two readings. Computationally, it means that a fragment of a system’s
state that is an instance of the pattern t can change to the corresponding
instance of t′ concurrently with any other state change; that is, the computa-
tional reading is that of a local concurrent transition. Logically, it just means
that we can derive the expression t′ from the expression t; that is, the logical
reading is that of an inference rule.

Rewriting logic is entirely neutral about the structure and properties of
the expressions/states t. They are entirely user definable as an algebraic data
type satisfying certain equational axioms, so that rewriting deduction takes
place modulo such axioms. Because of this neutrality, rewriting logic has good
properties: as a logical framework, many other logics can be naturally repre-
sented in it; as a semantic framework, many different system styles, models of
concurrent computation, and languages can be naturally expressed.

1.2 Maude

Maude1 [CDE+07] is a very efficient implementation of Rewriting Logic, as
we mentioned above. As it is presented in this section, Maude is a program-
ming language that uses rewriting rules, similarly to the so-called functional
languages like Haskell, ML, Scheme, or Lisp. In the following, we briefly
present some of the features of this language that have been used in our work.

A Maude program is made up of different modules. Each module can
include:

• sort (or type) declarations;

• variable declarations;

• operator declarations;

• rules and/or equations describing the behavior of the system operators,
i.e., the functions.

1http://maude.cs.uiuc.edu/

http://maude.cs.uiuc.edu/
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Maude mainly distinguishes two kinds of modules depending on the construc-
tions they define and on their expected behavior. Functional modules do not
contain rules and the behavior of their equations is expected to be confluent
and terminating. On the contrary, system modules can contain both equa-
tions and rules and, though the behavior of their equations is also expected to
be confluent and terminating, the behavior of its rules may be non-confluent
and non-terminating. A functional module is limited by the reserved keywords
fmod and endfm, whereas a system module is defined in between mod and endm.

Sorts. A sort declaration looks like

sort T .

where T is the identifier of the newly introduced sort T. Maude identifiers are
sequences of ASCII characters without white spaces, nor the special characters
‘{’’,‘}’,‘(’,‘)’,‘[’, and ‘]’ unless they are escaped with the back-quote character
‘‘’. If we want to introduce many sorts T1 T2 ... Tn at the same time, we
write:

sorts T1 T2 ... Tn .

After having declared the sorts, we can define operators on them.

Operators. Operators are declared as follows:

op C : T1 T2 ... Tn -> T .

where T1 T2 ... Tn are the sorts of the arguments for operator C, and T is
the resulting sort for the operator. We can also declare at the same time many
operators C1 C2 ... Cn with the same signature (i.e., sort of arguments and
resulting sort) at the same time:

op C1 C2 ... Cn : T1 T2 ... Tm -> T .

Operators can represent two kinds of objects: constructors and defined sym-
bols. Constructors constitute the ground terms or data associated to a sort,
whereas defined symbols represent functions whose behavior will be specified
by means of equations or rules. The rewriting engine of Maude does not dis-
tinguish between constructors or defined symbols, so there is no real syntactic
difference between them. However, for documentation (and debugging) pur-
poses, operators that are used as constructors can be labeled with the attribute
ctor.
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Operator attributes. Operator attributes are labels that can be associated
to an operator in order to provide additional information (either syntactic or
semantic) about the operator. All such attributes are declared within a single
pair of enclosing square brackets “[” and “]”:

op C1 C2 ... Cn : T1 T2 ... Tm -> T [A1 ... Ao] .

where the Ai are attribute identifiers. The set of operator attributes includes
among others: ctor, assoc, comm, id, ditto, etc., that are described below.

Mix-fix notation. Another interesting feature of operators in Maude is mix-
fix notation. Every operator defined as above is declared in prefix notation,
that is, its arguments are separated by commas, and enclosed in parenthesis,
following the operator symbol, as in:

C(t1, t2, ... , tn)

where C is an operator symbol, and t1, t2,. . . tn are, respectively, terms of sorts
T1, T2,. . . Tn. Nevertheless, Maude provides a powerful and tunable syntax
analyzer that allows us to declare operators composed of different identifiers
separated by its arguments. Arguments can be set in any position, in any
order, and even separated by white spaces. Mix-fix operators are identified by
the sequence of its component identifiers, with characters ‘ ’ inserted in the
place each argument is expected to be, as in:

op if then else fi : Bool Exp Exp -> Exp .

op : Element List -> List .

The first line above defines an if-then-else operator, while the second one
defines Lists of juxtaposed (i.e., separated by white spaces) Elements. A
term built with the if then else fi operator looks like

if b1 then e1 else e2 fi

where the tokens if, then, else and fi represent the mixfix operator, b1

represents a term of sort Bool, and finally e1 and e2 represent terms of sort
Exp. A term built with the operator looks like

e1 e2

where e1 is a term of sort Element, l1 is a term of sort List, and the space
separating them represents the juxtaposition operator .
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Sort orders. Sorts can be organized into hierarchies with subsort declara-
tions. In

subsort T1 < T2 .

we state that each element in T1 is also in T2. For example, we can define
natural numbers by considering their classification as positives or as the zero
number in this way:

sorts Nat Zero NonZeroNat .

subsort Zero < Nat .

subsort NonZeroNat < Nat .

op 0 : -> Zero [ctor] .

op s : Nat -> NonZeroNat [ctor].

Maude also provides operator overloading. For example, if we add:

sort Binary .

op 0 : -> Binary [ctor] .

op 1 : -> Binary [ctor] .

to the previous declarations, the operator 0 is used to construct values both
for the Nat and for the Binary sorts.

Structural axioms. The language allows the specification of structural ax-
ioms over operators, i.e., certain algebraic properties like Associativity, Com-
mutativity and Identity element that operators may satisfy. In the following,
we write aci to refer to the three previous algebraic properties. Structural
axioms serve to perform the computation on equivalence classes of expres-
sions, instead of on simple expressions. In order to carry out computations
on equivalence classes, Maude chooses a canonical representative of each class
and uses it for the computation. Thanks to the structural information given
as operator attributes, Maude can also choose specific data structures for an
efficient low-level representation of expressions.

For example, let us define a list of natural numbers separated by colons:

sorts NatList EmptyNatList NonEmptyNatList .

subsort EmptyNatList < NatList .

subsort Nat < NonEmptyNatList .

subsort NzNat < NatList .

op nil : -> EmptyNatList [ctor] .

op : : Nat NatList -> NonEmptyNatList [assoc] .
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The operator “ : ” is declared as associative by means of its attribute assoc.
Associativity means that the value of an expression is not dependent on the
subexpression grouping considered, that is, the places where the parenthe-
sis are inserted. Thus, if “ : ” is associative Maude considers the following
expressions as equivalent:

s(0) : s(s(0)) : nil

(s(0) : s(s(0))) : nil

s(0) : (s(s(0)) : nil)

As another example, let us define an associative list with nil as its identity
element:

sort NatList .

subsort Nat < NatList .

op nil : -> NatList [ctor] .

op : : NatList NatList -> NatList [assoc id: nil] .

The operator “ : ” is declared as having nil as its identity element by means of
its attribute id: nil. Having an identity element e means that the value of an
expression is not dependent on the presence of e’s as subexpressions, that is, it
is possible to insert e’s without changing the meaning of the expression. Thus,
in our example Maude considers the following expressions (and an infinite
number of similar ones) as equivalent:

s(0) : s(s(0))

nil : s(0) : s(s(0))

s(0) : nil : s(s(0))

s(0) : s(s(0)) : nil

nil : s(0) : nil : s(s(0)) : nil

⋮

For that reason, Maude omits nil in the canonical representative, unless it ap-
pears alone as an expression. Now, let us introduce how we define a multi-set,
that is, an associative and commutative list with nil as its identity element:

sort NatMultiSet .

subsort Nat < NatMultiSet .

op nil : -> NatMultiSet [ctor] .

op : : NatList NatList -> NatList [assoc comm id: nil] .

In this example, the operator “ : ” is declared to be commutative by means
of the attribute comm. Commutativity means that the value of an expression
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is not dependent on the order of its subexpressions, that is, it is possible
to change the order of subexpressions without changing the meaning of the
expression. Thus, if “ : ” is a commutative and associative operator, Maude
considers the following expressions equivalent:

s(0) : s(s(0)) : s(s(0))

s(s(0)) : s(0) : s(s(0))

s(s(0)) : s(s(0)) : s(0)

The structural properties are efficiently built in Maude. Additional structural
properties can be defined by means of equations, as we discuss below.

Rules and equations. In Maude, rules or equations characterize the be-
havior of the defined symbols. Both language constructions have a similar
structure:

rl l => r .

eq l = r .

l and r are terms, i.e., expressions recursively built by nesting correctly typed
operators and variables. l is called the left-hand side of a rule or equation,
whereas r is its right-hand side. Variables can be declared when they are used
in an expression by using the structure name:sort, or also in a general variable
declaration:

var N1 N2 ... Nm : S .

where N1, N2, . . . , and Nm are variable names, and S is a sort. Terms form
patterns which may represent many ground terms (terms without variables).
The pattern nature of terms allows them to be matched with other terms. The
pattern-matching between a (pattern) term p and another term t consists in
finding the substitution θ from variables in p to terms such that pθ = t, i.e.,
substitution θ applied to p makes the instantiated term equal to t.

Definition 1 (Rewriting semantics) Let P be a Maude program. Given a
term t, rewriting t into a new term t′ with respect to P , written t →P t′,
consists in

1. finding a rule or equation of the form rl l => r . or eq l = r .

whose left-hand side l matches some subterm tsub of t with substitution
θ (i.e., lθ = tsub)

2. obtaining t′ by replacing in t the subterm tsub by rθ
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If t does not match the left-hand side of any rule or equation, then it is a
canonical form.

In Maude, it can be specified that an equation should only be used for
rewriting if none of the rest can. To do that, we label (with the same syntax
of operators) the equation of interest with the reserved keyword owise.



I
Datalog-based Declarative

Program Analysis
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Data-flow Analysis

Data-flow analysis is a set of techniques that derive information about the
flow of data during the execution of a program. The program execution can
be viewed as a series of transformations of the program state, which consists of
all the variables in the program, active stack frames, heap, etc. An execution
path consists of the sequence of program states that results from executing a
valid sequence of instructions of a program from a certain initial state.

In order to correctly analyze the behavior of a program, all possible execu-
tion paths must be considered. Then, we extract from all the program states
forming an execution path the information needed for the particular analysis
problem we want to solve. Unfortunately, in the general case, there is an in-
finite number of possible execution paths for a given program and the length
of each path can be unbounded. This is why data-flow analyses summarize or
abstract all the program states with different finite representations. However,
in general, no possible abstraction made by an analysis describes perfectly the
original state space.

Pointer analysis. The family of static analyses that is focused on answer-
ing the question “which elements can point to which elements?” is called
pointer analysis. In object-oriented programming languages like Java, the
“elements” that are able to point to something are variables and fields inside
objects, whereas the “elements” that can be pointed to are objects located
in the heap. In this case, pointer analysis approximates all possible flows of
object references through variables and object fields.

Now, we introduce as a leading example a version of Andersen’s flow-
insensitive points-to analysis [And94b]. This analysis computes an approxi-
mation of all the possible objects a variable of the program can refer to during
the execution of the program. For instance, given the following piece of code

q = new SomeClass(); /* o1 */

s = p;

p = q;

we can analyze its pointer information prior to its execution. Let us assume
that all variables initially point to null, and that the execution runs naturally
from the instruction at the top to the one at the bottom, i.e., the analysis is
flow-sensitive. First, the initial instruction consists of creating the object o1

by means of the expression new SomeClass() and assigning it to variable q;
thus, after its execution, q points to o1. Then, the second instruction assigns
the reference contained in p to the variable s; hence, since p points to null, s
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points to null after this instruction is executed. Finally, after the execution
of the last instruction, p points to whatever q points to, in this case o1.

The notion of a flow-sensitive analysis is inherently related with the notion
of program-point specific versus summary analysis. An analysis is program-
point specific if it computes information (in this case, points-to information)
for each program point; in contrast, an analysis that computes a summary of
information (in this case, all the objects that a variable can point to) that
is valid for all program points is called a summary analysis. A flow-sensitive
analysis like the previous one is straightforward and precise but, in general,
computationally very expensive. On the contrary, flow-insensitive analysis are
less precise but much more efficient.

In our example, we can conceive a flow-insensitive pointer analysis as one
that does not take control-flow into account, i.e., one in which the instructions
can be shuffled as in:

q = new SomeClass(); /* o1 */

p = q;

s = p;

where we have exchanged the position of the second and third instructions.
For this new sequence of instructions, if we apply a flow-sensitive points-to
analysis, we obtain that p, q and s point to o1. Flow-insensitive analyses
perform the equivalent to a flow-sensitive analysis for every possible shuffle of
instructions, but they do it efficiently. They extract the relevant information
from every instruction ignoring its location, and they calculate with these data
the points-to information. For instance, in the original example:

q = new SomeClass(); /* o1 */

s = p;

p = q;

a flow-insensitive analysis would compute that p, q and s could all point to
null or o1 during execution. The results of flow-insensitive analyses clearly
overapproximate the flow-sensitive ones, and that is why they must be con-
sidered safe.

Recent proposals for data-flow analysis specify the analyses of interest by
using declarative formalisms, such as the declarative language Datalog. This
approach partially overcomes the problem of the high complexity of static anal-
ysis implementations. However, in order for the approach to be competitive,
highly efficient solvers for the formalism must exist. Hence the optimization
for Datalog solvers is a hot topic of research [AFJV11].
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In this first part of the thesis, we investigate new techniques for evaluating
Datalog programs in the context of declarative program analysis.
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2
Datalog and Boolean Equations

Systems

This chapter introduces the background knowledge that is necessary to un-
derstand the work presented in this Part I of the thesis. We present concepts
related to the Datalog logic language and Boolean Equation Systems (Bess),
as well as how to encode static analyses as Datalog programs.

2.1 Datalog

Datalog [Ull85] is a relational language that uses declarative clauses to both
describe and query a deductive database. It is a language that uses a Prolog-
like notation, but whose semantics is far simpler than that of Prolog.

Predicates, atoms and literals. Let P be a set of predicate symbols, V
be a finite set of variable symbols, and C a set of constant symbols. The basic
elements of Datalog are atoms of the form p(a1, a2, . . . , an) where p ∈ P and
ai ∈ V ∪ C. Predicate symbols represent assertions concerning the arguments
given between parenthesis at its right. The elements of V ∪ C (i.e., variables
or constants) are called terms a1, a2, . . . , an.

A ground atom is an atom with only constants as arguments. Every ground
atom asserts a particular fact, and its value is either true or false. A predicate
is a relation that can be represented, for example, as a table of its true ground
atoms. Each ground atom is represented by a single row, or tuple, of the
relation. The columns of the relation are its attributes, and each tuple has a
value for each attribute. The attributes correspond to the argument positions
of the predicate represented by the considered relation. Any ground atom
in the relation is true and we call it a fact, whereas ground atoms not in
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the relation are false. From now on, we use the terminology ‘relation p’ and
‘predicate p’ interchangeably.

A literal is either an atom or a negated atom. We indicate negation with
the word NOT in front of the atom. Thus, NOT p(a1, a2, . . . , an) is an assertion
stating that p(a1, a2, . . . , an) is false, i.e., a1, a2, . . . , an is not a row of the
relation p.

Rules. Rules (also called clauses) are a way of expressing logical inferences,
and suggest how the computation of the true facts should be carried out. Let
P be a set of predicate symbols, V be a finite set of variable symbols, and C a
set of constant symbols. A Datalog rule r defined over a finite alphabet P ⊆ P
and arguments from V ∪C, V ⊆ V, C ⊆ C, has the following syntax:

p0(a0,1, . . . , a0,n0) : - p1(a1,1, . . . , a1,n1), . . . , pm(am,1, . . . , am,nm).

where each pi is a predicate symbol of arity ni with arguments ai,j ∈ V ∪ C
(j ∈ [1..ni]).

We call p0(a0,1, . . . , a0,n0) the head of a clause, and p1(a1,1, . . . , a1,n1),. . . ,
pm(am,1, . . . , am,nm) the body of the clause. Each of the elements in the body
is called a subgoal or hypothesis of the rule. We should read the : - symbol as
“if”; the “,” operators separating each subgoal of the body is a logical and
operator. Thus, the meaning of a rule is “the head is true if the body is true”.
More precisely, a rule is applied to a given set of ground atoms as follows.
Consider all possible substitutions of constants for the variables of the rule. If
a certain substitution makes every subgoal of the body true, i.e., each subgoal
is in the given set of ground atoms, then we can infer that the instantiated
head is a true fact.

Programs. A Datalog program is a collection of rules together with the start-
ing “data”, in the form of an initial set of facts for some of the predicates.
The semantics of the program is the set of ground atoms inferred by using
the facts and applying the rules until no more inferences can be made. The
initial set of facts of a Datalog program is called the extensional database,
whereas the set of facts inferred by means of clauses with non-empty bodies is
called the intensional database. In this way, a predicate defined in the exten-
sional or intensional databases is called extensional or intensional predicate,
respectively.

Fixpoint semantics of programs. Now, let us formalize the semantics of
Datalog in an appropriate way for our purposes. The Herbrand Universe of a
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Datalog program R defined over P , V and C, denoted UR, is the finite set of
all ground arguments, i.e., constants of C. The Herbrand Base of R, denoted
BR, is the finite set of all ground atoms that can be built by assigning elements
of UR to the predicate symbols in P . A Herbrand Interpretation of R, denoted
I (from a set I of Herbrand interpretations, I ⊆ BR), is a set of ground atoms.

Definition 2 (Fixpoint semantics) Let R be a Datalog program. The least
Herbrand model of R is a Herbrand interpretation I of R defined as the least
fixpoint of a monotonic, continuous operator TR ∶ I → I known as the imme-
diate consequences operator and defined by:

TR(I) = {h ∈ BR ∣ h : - b1, ..., bm is a ground instance of a rule in R,
with bi ∈ I, i = 1..m,m ≥ 0}

The number of Herbrand models being finite for a Datalog program R,
there always exists a least fixpoint for TR, denoted µTR, which is the least
Herbrand model of R. In practice, one is generally interested in the computa-
tion of some specific atoms, called queries, and not in the whole database of
atoms. Hence, queries may be used to prevent the computation of facts that
are irrelevant for the atoms of interest, i.e., facts that are not derived from the
query.

There are many approaches for the evaluation of Datalog queries. The
two basic ones are the top-down and the bottom-up strategies. The top-down
approach solves queries by reasoning backwards, whereas the bottom-up ap-
proach blindly infers all the program facts and then checks if the query has
been previously inferred. In this thesis, we use the top-down approach.

Queries. In a demand-driven context, that is, under the assumption that we
are not interested in everything that can be inferred from a Datalog program,
queries allow us to restrict the information to be computed. This restriction
improves the execution in terms of (execution) time and (memory) space.

A Datalog goal has this form:

: - p1(a1,1, . . . , a1,n1), . . . , pm(am,1, . . . , am,nm). (2.1)

The structure of a goal is analogous to the one of a rule body. We can read
a query as a question “there exists a substitution of the variables used in the
goal that makes true all the subgoals?”.

Definition 3 (Query Evaluation) A Datalog query q is defined as a pair
⟨G,R⟩ such that
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● R is a Datalog program defined over P , V and C,

● G is a set of goals.

Given a query q, its evaluation consists in computing µTQ, Q being the exten-
sion of the Datalog program R with the Datalog rules in G.

The evaluation of a Datalog program augmented with a set of goals deduces
all the different constant combinations that, when assigned to the variables in
the goals, can make one of the goal clauses true, i.e., all atoms bi in its body
are satisfied.

2.2 Datalog-based analysis

In [WACL05, Ull89], the authors propose Datalog as a more natural language
for specifying program analysis. In this approach, a program analysis is en-
coded as the evaluation of a query over a Datalog program. On one hand, the
extensional database represents the information extracted from the program
that is relevant for the analysis, and it can be extracted by means of a com-
piler. On the other hand, the intensional database encodes the analysis logic,
i.e., the algorithm that computes the analysis. Finally, the queries represent
a part of the analysis results that we are interested in, supporting the com-
putation of only the necessary parts to satisfy them, which is the idea behind
demand-driven techniques.

In order to adapt a program analysis to this setting, each program state-
ment is decomposed into basic operations (e.g., assigning one variable to an-
other, storing some value in an object, . . . ) performed over basic program
elements which are grouped in their respective domains (e.g., variables, types,
code locations, . . . ). Each kind of basic operation is described by a predicate
relating program elements conforming the extensional database. The informa-
tion of interest resulting from the execution of the analysis is also represented
by predicates relating program elements. However, these predicates are defined
by clauses, i.e., they constitute the intensional database, and its computation
represents the execution of the analysis. By considering only finite program
elements domains, and applying standard loop-checking techniques, Datalog
program execution is ensured to terminate.

Next, we present an example of Datalog-based program analysis.

Example 4
Figure 2.1 presents a version of Andersen’s [And94b] points-to analysis bor-
rowed from [WACL05]. Technically, it is a Datalog-based flow-insensitive,
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public A foo {
...

p = new SomeClass(); /* o1 */ vP0(p,o1).

q = new SomeClass(); /* o2 */ vP0(q,o2).

r = q; assign(r,q).

w = r; assign(w,r).

w = q.f; load(q,f,w).

q.f = p; store(q,f,p).

...

}

vP(V1,H1) :- vP0(V1,H1).

vP(V1,H1) :- assign(V1,V2), vP(V2,H1).

hP(H1,F,H2):- store(V1,F,V2), vP(V1,H1), vP(V2,H2).

vP(V1,H1) :- load(V2,F,V1), vP(V2,H2), hP(H2,F,H1).

Figure 2.1: Datalog specification of a flow-insensitive, context-insensitive
points-to analysis with a precomputed call-graph.

context-insensitive pointer analysis that uses a precomputed call-graph. The
reason for not considering calling contexts at method invocation sites and us-
ing a precomputed call-graph falls outside the scope of this thesis but it allows
a very simple analysis specification.

The upper left side of the figure shows a simple Java program where o1 and
o2 are the addresses of the heap allocation instructions (extracted by a Java
compiler from the corresponding bytecode). The upper right side contains the
facts that can be extracted from each line of code, which represent the relevant
information needed for this analysis. These are the predicates that form the
extensional database for this particular analysis:

vP0(V,H): A new object H is created and is assigned to the variable V. Here,
H is an allocation site, i.e., the position in the code where a constructor
for some class of objects is called; the allocation site is used as a heap
abstraction that represents all the possible objects allocated at that po-
sition.

assign(V1,V2): The contents of the variable V2 are assigned to the variable
V1 .

load(V1,F,V2): The value of the field F of an object referenced by variable
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V1 is assigned to variable V2.

store(V1,F,V2): The value of variable V2 is assigned to the field F of an
object referenced by variable V1.

Using these extracted facts, the analysis deduces further pointer-related in-
formation, like points-to relations from local variables to heap objects (e.g.,
vP(V1,H1) in Figure 2.1) as well as points-to relations between heap objects
through field identifiers (e.g., hP(H0,F,H2) in Figure 2.1).

A Datalog query triggers the computation of the analysis. For instance, the
query :- vP(X,Y) computes the complete set of program variables (instanti-
ating X) that may point to any heap object (instantiating Y) during program
execution. In the example above, the query computes the following answers:
{X/p,Y/o1}, {X/q,Y/o2}, {X/r,Y/o2}, {X/w,Y/o1} and {X/w,Y/o2}. For ex-
ample, the answer {X/p,Y/o1} for the previous query states that vP(p,o1) is
true; for this pointer analysis, vP(p,o1) means that, during the execution of
the program, variable p can contain a reference to an object allocated at o1.
This answer was obtained by applying the first rule in the program to the first
fact.

The Datalog-based approach to program analysis partially overcomes the
problem of the high complexity of static analysis implementations. However,
highly efficient solvers for the formalism must exist in order for the approach
to be competitive, hence the interest in new optimizations for Datalog solvers.

2.3 Parameterised Boolean Equation Systems

Parameterised Boolean Equation Systems (Pbess) are a low-level formalism
that has been largely studied in the context of formal verification. There exist
very efficient tools for solving Pbes in an industrial setting [GMLS07]. In the
following, we present the basic notions for working with Pbes.

Definition 5 (Parameterised Boolean Equation System [Mat98]) Let
X be a set of boolean variables and D a set of data terms, a Parameterised
Boolean Equation System B = (x0,M1, ...,Mn) is a set of n blocks Mi, each
one containing pi ∈N fixpoint equations of the form

xi,j(d⃗i,j ∶ D⃗i,j)
σi= φi,j

with j ∈ [1..pi] and σi ∈ {µ, ν}, also called sign of equation i, the least (µ)
or greatest (ν) fixpoint operator. Each xi,j is a boolean variable from X that
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binds zero or more data terms di,j of type Di,j
1 which may occur in the boolean

formula φi,j (from a set Φ of boolean formulae). x0 ∈ X , defined in block M1, is
a boolean variable whose value is of interest in the context of the local resolution
methodology.

Boolean formulae φi,j are formally defined as follows.

Definition 6 (Boolean Formula [Mat98]) A boolean formula φ, defined
over an alphabet of (parameterised) boolean variables X ⊆ X and data terms
D ⊆ D, has the following syntax given in positive form:

φ ∶∶= true ∣ false ∣ φ ∧ φ ∣ φ ∨ φ ∣ X(e) ∣ ∀d ∈D. φ ∣ ∃d ∈D. φ

where boolean constants and operators have their usual definition, e is a data
term (constant or variable of type D), X(e) denotes the call of a boolean
variable X with parameter e, and d is a term of type D.

A boolean environment δ ∈ ∆ is a partial function X → (D → B) map-
ping each (parameterised) boolean variable x(d ∶ D) to a predicate , with
B = {true, false}. Boolean constants true and false abbreviate the empty con-
junction ∧∅ and the empty disjunction ∨∅ respectively. A data environment
ε ∈ E is a partial function D → D mapping each data term e of type D to
a value , which forms the so-called support of ε, noted supp(ε). Note that
ε(e) = e when e is a constant data term. The overriding of ε1 by ε2 is defined
as (ε1 ⊘ ε2)(x) = if x ∈ supp(ε2) then ε2(x) else ε1(x). The interpretation
function [[φ]]δε, where [[.]] ∶ Φ→∆→ E → B, gives the truth value of boolean
formula φ in the context of δ and ε, where all free boolean variables x are
evaluated by δ(x), and all free data terms d are evaluated by E(d).

Definition 7 (Semantics of Boolean Formula [Mat98]) Let ε be a data
environment and δ be a boolean environment. The semantics of a boolean
formula φ is inductively defined by the following interpretation function:

[[true]]δε = true
[[false]]δε = false

[[φ1 ∧ φ2]]δε = [[φ1]]δε ∧ [[φ2]]δε
[[φ1 ∨ φ2]]δε = [[φ1]]δε ∨ [[φ2]]δε

[[x(e)]]δε = (δ(x))(ε(e))
[[∀d ∈D. φ]]δε = ∀ v ∈D, [[φ]]δ(ε⊘ [v/d])
[[∃d ∈D. φ]]δε = ∃ v ∈D, [[φ]]δ(ε⊘ [v/d])

1To simplify our description, in the rest of this chapter we intentionally restrict to one
the maximum number of data term parameters, i.e., we simply assume d ∶D.
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Definition 8 (Semantics of Equation Block [Mat98]) Given a Pbes of
the form B = (x0,M1, ...,Mn) and a boolean environment δ, the solution
[[Mi]]δ to a block Mi = {xi,j(di,j ∶ Di,j)

σi= φi,j}j∈[1,pi] (i ∈ [1..n]) is defined
as follows:

[[{xi,j(di,j ∶Di,j)
σi= φi,j}j∈[1,pi]]]δ = σiΨiδ

where Ψiδ ∶ (Di,1 → B)× . . . × (Di,pi → B)→ (Di,1 → B)× . . . × (Di,pi → B)
is a vectorial functional defined as

Ψiδ(g1, ..., gpi) = (λvi,j ∶Di,j .[[φi,j]](δ ⊘ [g1/xi,1, ..., gpi/xi,pi])[vi,j/di,j])j∈[1,pi]

where gi ∶Di → B, i ∈ [1..pi].

A Pbes is alternation-free if there are no mutual recursion between boolean
variables defined by least (σi = µ) and greatest (σi = ν) fixpoint boolean
equations. In this case, equation blocks can be sorted topologically such that
the resolution of a block Mi only depends upon variables defined in a block
Mk with i < k. A block Mi is closed when the resolution of all its boolean
formulae φi,j only depends upon boolean variables xi,k from Mi.

Definition 9 (Semantics of alternation-free PBES [Mat98]) Given an
alternation-free Pbes B = (x0,M1, ...,Mn) and a boolean environment δ, the
semantics [[B]]δ of B is the value of its main variable x0 given by the semantics
of M1, i.e., δ1(x0), where the contexts δi are calculated as follows:

δn = [[Mn]][] (the context is empty because Mn is closed)
δi = ([[Mi]]δi+1)⊘ δi+1 for i ∈ [1, n − 1]

where each block Mi is interpreted in the context of all blocks.
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From Datalog to Boolean

Equations Systems

This chapter summarizes how Datalog queries can be solved by means of
Boolean Equation System (Bes) resolution [And94a]. The key idea of this
approach is to translate the Datalog specification that represents a specific
analysis into an implicit Bes, whose resolution corresponds to the execution of
the analysis [AFJV09d]. This technique has been implemented in the Datalog
solver Datalog Solve1 [AFJV09a] that is based on the well-established ver-
ification toolbox Cadp [GMLS07], which provides a generic library for local
Bes resolution.

A Boolean Equation System is a set of equations defining boolean vari-
ables that can be solved with linear-time complexity. Parameterised Boolean
Equation System [Mat98] (Pbes) are defined as Bes with typed parameters.
Since Pbes are a more compact representation than Bess for a system, we first
present an elegant and natural intermediate representation of a Datalog pro-
gram as a Pbes. Then, we establish a precise correspondence between Datalog
query evaluation and Pbes resolution, which is formalized as a linear-time
transformation from Datalog to Pbes, and vice-versa.

In the rest of the chapter, we first informally illustrate in Section 3.1 how
a Pbes can be obtained from a Datalog program in an automatic way. Sec-
tion 3.2 describes the transformation in depth. Section 3.3 presents the pro-
totype developed to evaluate Datalog queries by means of our transformation.
Section 3.4 evaluates the efficiency of our prototype by performing some analy-
ses on real programs. Finally, Section 3.5 discusses related work and concludes.

1http://www.dsic.upv.es/users/elp/datalog_solve

http://www.dsic.upv.es/users/elp/datalog_solve
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3.1 From Datalog to Bes.

In Figure 3.1 we introduce a simplified version of the Andersen points-to anal-
ysis, previously given in Figure 2.1, that contains four facts and the first two
clauses that define the predicate vP. Given the query :- vP(V,o2). and the

vP0(p,o1).

vP0(q,o2).

assign(r,q).

assign(w,r).

vP(V,H) :- vP0(V,H).

vP(V,H) :- assign(V,V2), vP(V2,H).

Figure 3.1: Simplified Datalog points-to analysis.

Datalog program shown in Figure 3.1, our transformation constructs the Pbes
shown in Figure 3.2, in which the boolean variable x0 and three parameterised
boolean variables (xvP0, xassign and xvP) are defined. Parameters of these
boolean variables are defined on a specific domain and may be either variables
or constants. The domains in the example are the heap domain (DH = {o1,o2})
and the source program variable domain (DV = {p,q,r,w}). Pbes are evalu-
ated by a least fixpoint computation (µ) that sets the variable x0 to true if
there exists a value for V that makes the parameterised variable xvP(V,o2)
true. Logical connectives are interpreted as usual.

x0
µ= ∃V ∈DV . xvP(V,o2)

xvP0(p,o1)
µ= true

xvP0(q,o2)
µ= true

xassign(r,q)
µ= true

xassign(w,r)
µ= true

xvP(V ∶DV,H ∶DH)
µ= xvP0(V,H) ∨

∃V2 ∈DV.(xassign(V,V2) ∧ xvP(V2,H))

Figure 3.2: Pbes representing the points-to analysis in Figure 3.1.

Intuitively, the Datalog query is transformed into the relevant variable
x0, i.e., the variable that guides the Pbes resolution. Each Datalog fact is
transformed into an instantiated parameterised boolean variable (no variables
appear in the parameters), whereas each predicate symbol defined by Datalog
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clauses (different from facts) is transformed into a parameterised boolean vari-
able (in the example xvP(V ∶DV,H ∶DH)). This parameterised boolean variable
is defined as the disjunction of the boolean variables that represent the bodies
of the corresponding Datalog clauses. Variables that do not appear in the
parameters of the boolean variables are existentially quantified on the specific
domain. In the example, ∃V ∈ DV quantifies the free variable V occurring in
the equation defining x0, and ∃V2 ∈DV quantifies the variable V2 occurring in
the equation defining xvP(V ∶DV,H ∶DH).

Among the different known techniques for solving a Pbes (see [vDPW08]
and the references therein), we consider the resolution method based on trans-
forming the Pbes into an alternation-free parameterless boolean equation sys-
tem (Bes) that can be solved by linear time and memory algorithms when data
domains are finite [Mat98]. Actually, we do not explicitly construct neither
the Pbes nor the Bes. Instead, an implicit representation of the transformed
parameterless Bes is defined. This implicit representation is then used by
the Cadp toolbox to generate the explicit parameterless Bes on-the-fly. In-
tuitively, the construction of the Bes can be seen as the resolution of the
analysis. Nonetheless, the direct Pbes to Bes transformation is not efficient
enough for our purposes. Hence, in Section 3.2.2, we also present an optimized
variation of the transformation to improve the efficiency of the Bes resolution.

3.2 A complete Datalog to Bes transformation

We propose a transformation of the Datalog query into a related logical query,
naturally expressed as a parameterised boolean variable of interest and a Pbes,
which is subsequently evaluated using traditional Pbes evaluation techniques.
To simplify our description, in the rest of this chapter we intentionally restrict
to one both the arity of predicate symbols and the maximum number of data
term parameters that a boolean variable x ∈ X can have.

Proposition 10 Let q = ⟨G,R⟩ be a Datalog query, defined over alphabet
P , variables set V and constants set C, and let Bq = (x0,M1), with σ1 =
µ, be a Pbes defined over a set X of boolean variables xp (in one-to-one
correspondence with predicate symbols p of P plus a special variable x0), a
set D of data terms (in one-to-one correspondence with variable and constant
symbols of V ∪C), and M1 the block containing exactly the following equations,
where fresh variables are existentially quantified after the transformation:

x0
µ= ⋁

∶− q1(d1), ..., qm(dm). ∈G

m

⋀
i∶=1

xqi(di) (3.1)
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{xp(d ∶D) µ= ⋁
p(d) ∶− p1(d1),... pm(dm). ∈R

m

⋀
i∶=1

xpi(di) ∣ p ∈ P} (3.2)

Then, q is satisfiable if and only if [[Bq]]δ(x0) = true.

The result follows immediately by construction since satisfaction of the
predicates is preserved in the transformation: each predicate is transformed
into a disjunction of the conjunction of the boolean variables that represent
the literals in the body of each clause.

Roughly speaking, the boolean variable x0 encodes the set of Datalog goals
G, whereas the (parameterized) boolean variables xp(d ∶ D) represent the set
of Datalog rules R modulo renaming.

In our framework, the reverse direction of reducibility consists in the trans-
formation of a parameterised boolean variable of interest, defined in a Pbes,
into a related relation of interest expressed as a Datalog query, which could
be evaluated using traditional Datalog evaluation techniques.

Proposition 11 Let B = (x0,M1), with σ1 = µ, be a Pbes defined over a
set X of boolean variables and a set D of data terms, and qB = ⟨G,R⟩ be
a Datalog query defined over a set P of predicate symbols p (in one-to-one
correspondence with boolean variables xp of X ∖ {x0}), a set V ∪C of variable
and constant symbols (in one-to-one correspondence with data terms of D),
and ⟨G,R⟩ containing exactly the following Datalog rules:

G =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∶ − q1,1(d1,1), . . . , q1,n1(d1,n1).,
⋮

∶ − qm0,1(dm0,1), . . . , qm0,nm0
(dm0,nm0

).

RRRRRRRRRRRRRR
x0

µ=
m0

⋁
i=1

ni

⋀
j=1

xqi,j(di,j) ∈M1

⎫⎪⎪⎬⎪⎪⎭

R =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p(d) ∶ − p1,1(d1,1), . . . , p1,n1(d1,n1).,
⋮

p(d) ∶ − pmp,1(dmp,1), . . . , pmp,nmp (dmp,nmp ).

RRRRRRRRRRRRRR

xp(d)
µ=
mp

⋁
i=1

ni

⋀
j=1

xpi,j(di,j) ∈M1

⎫⎪⎪⎬⎪⎪⎭
Then [[B]]δ(x0) = true if and only if qB = ⟨G,R⟩ is satisfiable.

Symmetrically, the result follows immediately by construction since sat-
isfaction of the boolean variables is preserved in the transformation: each
boolean variable which is defined as a disjunction of conjunctions is trans-
formed into a predicate defined by a set of clauses with the same head and
whose bodies consist of the predicates that represent the boolean variables in
the each conjunctions.
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Example 12

This example illustrates the reduction method from Datalog to Pbes by means
of the pointer analysis introduced previously in the Example 4 of Chapter 2.
Let q = ⟨G,R⟩ be the following Datalog query with domains DH = {o1, o2})
and DV = {p, q, r,w}:

:- vP (V, o2).

vP0(p,o1).

vP0(q,o2).

assign(r,q).

assign(w,r).

load(q,f,w).

store(q,f,p).

vP(V,H) :- vP0(V,H).

vP(V,H) :- assign(V,V2), vP(V2,H).

vP(V,H) :- load(V2,F,V), vP(V2,H2), hP(H2,F,H).

hP(H1,F,H2) :- store(V1,F,V2), vP(V1,H1), vP(V2,H2).

By using Proposition 10, we obtain the following Pbes:

x0
µ= ∃V ∈DV . xvP(V,o2)

xvP0(p,o1)
µ= true

xvP0(q,o2)
µ= true

xassign(r,q)
µ= true

xassign(w,r)
µ= true

xload(q,f,w)
µ= true

xstore(q,f,p)
µ= true

xvP(V ∶DV,H ∶DH)
µ= xvP0(V,H) ∨

∃V2 ∈DV. (
xassign(V,V2) ∧
xvP(V2,H)

) ∨
∃F ∈DF. ∃H2 ∈DH. ∃V2 ∈DV. (
xload(V2, F, V ) ∧
xvP(V2,H2) ∧
xhP(H2, F,H)

)
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xhP(H1 ∶DH, F ∶DF,H2 ∶DH)
µ= ∃V1 ∈DV.∃V2 ∈DV. (

xstore(V1, F, V2) ∧
xvP(V2,H2) ∧
xvP(V1,H1)

)

In the rest of this section, we further develop our methodology for solving
Datalog queries by using Pbess. Given that Bes solvers usually work at
the plain Bes level, as opposed to the Pbes level, we have to transform our
generated Pbes into a plain Bes for our approach to effectively take advantage
of the existing Bes technology.

3.2.1 Instantiation to parameterless BES

Among the different known techniques for solving a Pbes [vDPW08], such
as Gauss elimination with symbolic approximation, and the use of patterns,
under/over approximations, or invariants, we consider the resolution method
that is based on transforming the Pbes into an alternation-free parameterless
boolean equation system (Bes) that can be solved by linear time and memory
algorithms [Mat98, vDPW08] when data domains are finite.

Definition 13 (Boolean Equation System) A Boolean Equation System
(Bes) B = (x0,M1, ...,Mn) is a Pbes where data domains are removed and
boolean variables, being independent from data parameters, are considered to
be propositional.

To obtain a direct transformation into a parameterless Bes, we first de-
scribe the Pbes in a simpler format. This simplification step consists in in-
troducing new variables, such that each formula at the right-hand side of a
boolean equation only contains at most one operator. Hence, boolean formulae
are restricted to pure disjunctive or conjunctive formulae.

Given a Datalog query q = ⟨G,R⟩, by applying this simplification to the
Pbes of Proposition 10, we obtain the following Pbes:

x0
µ= ⋁

∶− q1(d1),...,qm(dm). ∈G
gq1(d1),...,qm(dm)

gq1(d1),...,qm(dm)
µ=

m

⋀
i∶=1

xqi(di)

xp(d ∶D) µ= ⋁
p(d) ∶−p1(d1),...,pm(dm). ∈R

rp(d) ∶−p1(d1),...,pm(dm)
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rp(d) ∶−p1(d1),...,pm(dm)
µ=

m

⋀
i∶=1

xpi(di)

Each g... and r... boolean variables respectively represents a Datalog goal and
rule. Consequently, they are both defined as the conjunction of the boolean
variables x... representing their respective subgoals. Notice that facts are con-
sidered to be rules with an empty body, which is equivalent to a body consisting
of just the formula true. By encoding a predicate symbol p as a corresponding
parameterised boolean variable xp, a fact p(d) is represented by means of a
(parameterless) boolean variable rp(d), which represents a rule with an empty
body and the fact p(d) as its head. Since the conjunction of an empty set is
true, this boolean variable is defined as:

rp(d)
µ= true

By applying the instantiation algorithm of Mateescu [Mat98], we eventu-
ally obtain a parameterless Bes, where all possible values of each typed data
terms have been enumerated over their corresponding finite data domains.

The resulting implicit parameterless Bes is defined as follows, where ⪯ is
the standard preorder of relative generality (instantiation ordering).

x0
µ= ⋁

∶− q1(d1),...,qm(dm). ∈G
gq1(d1),...,qm(dm) (3.3)

gq1(d1),...,qm(dm)
µ= ⋁

1≤i≤m,ei∈Di∧di⪯ei
giq1(e1),...,qm(em) (3.4)

giq1(e1),...,qm(em)
µ=

m

⋀
i∶=1

xqi(ei) (3.5)

xp(d)
µ= ⋁

p(d) ∶−p1(d1),...,pm(dm). ∈R
rp(d) ∶−p1(d1),...,pm(dm) (3.6)

rp0(d0) ∶−p1(d1),...,pm(dm)
µ= ⋁

0≤i≤m,ei∈Di∧di⪯ei
rip0(e0) ∶−p1(e1),...,pm(em) (3.7)

rip0(e0) ∶−p1(e1),...,pm(em)
µ=

m

⋀
i∶=1

xpi(ei) (3.8)

Observe that Equation 3.1 is transformed into a set of parameterless equa-
tions (3.3, 3.4, 3.5). First, Equation 3.3 describes the set of parameterised
goals gq1(d1),...,qm(dm) of the query. Then, Equation 3.4 represents the instanti-
ation of each variable parameter di to the possible values ei from the domain.
Finally, Equation 3.5 states that each instantiated goal giq1(e1),...,qm(em) is sat-
isfied whenever the values ei make all predicates qi of the goal true. Similarly,
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Equation 3.2 (describing Datalog rules) is encoded into a set of parameterless
equations (3.6, 3.7, 3.8).

Example 14

Let us instantiate the Pbes we obtained in Example 12. By applying Mateescu
instantiation algorithm, we obtain the following Bes:

x0
µ= gvP(V,o2)

gvP(V,o2)
µ= givP(p,o2) ∨ givP(q,o2) (3.9)

∨ givP(r,o2) ∨ givP(w,o2)

givP(p,o2)
µ= xvP(p,o2) (3.10)

xvP(p,o2)
µ= rvP(p,o2) :- vP0(p,o2) (3.11)

∨ rvP(p,o2) :- assign(p,V2),vP(V2,o2)
∨ r

vP(p,o2) :- load(V2,F,p),vP(V2,H2),

hP(H2,F,o2)

rvP(p,o2) :- vP0(p,o2)
µ= rivP(p,o2) :- vP0(p,o2) (3.12)

rivP(p,o2) :- vP0(p,o2)
µ= xvP0(p,o2)

xvP0(p,o2)
µ= false

rvP(p,o2):-assign(p,V2),vP(V2,o2)
µ= rivP(p,o2) :- assign(p,p),vP(p,o2) (3.13)

∨ rivP(p,o2) :- assign(p,q),vP(q,o2)
∨ rivP(p,o2) :- assign(p,r),vP(r,o2)
∨ rivP(p,o2) :- assign(p,w),vP(w,o2)

rivP(p,o2) :- assign(p,p),vP(p,o2)
µ= xassign(p,p) ∧ xvP(p,o2)

xassign(p,p)
µ= false

rivP(p,o2) :- assign(p,q),vP(q,o2)
µ= xassign(p,q) ∧ xvP(q,o2)

xassign(p,q)
µ= false

rivP(p,o2) :- assign(p,r),vP(r,o2)
µ= xassign(p,r) ∧ xvP(r,o2)

xassign(p,r)
µ= false

rivP(p,o2) :- assign(p,w),vP(w,o2)
µ= xassign(p,w) ∧ xvP(w,o2)

xassign(p,w)
µ= false
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rvP(p,o2) :- load(V2,F,p)...
µ= ri

vP(p,o2) :- load(p,f,p),vP(p,o1),

hP(o1,f,o2)

(3.14)

∨ ri
vP(p,o2) :- load(p,f,p),vP(p,o2),

hP(o2,f,o2)

∨ ri
vP(p,o2) :- load(q,f,p),vP(q,o1),

hP(o1,f,o2)⋮
givP(q,o2)

µ= xvP(q,o2) (3.15)

xvP(q,o2)
µ= rvP(q,o2) :- vP0(q,o2)

∨ rvP(q,o2) :- assign(q,V2),vP(V2,o2)
∨ r

vP(q,o2) :- load(V2,F,q),vP(V2,H2),

hP(H2,F,o2)

rvP(q,o2) :- vP0(q,o2)
µ= rivP(q,o2) :- vP0(q,o2)

rivP(q,o2) :- vP0(q,o2)
µ= xvP0(q,o2)

xvP0(q,o2)
µ= rvP0(q,o2)

rvP0(q,o2)
µ= true

givP(r,o2)
µ= xvP(r,o2) (3.16)

xvP(r,o2)
µ= rvP(r,o2) :- vP0(r,o2)

∨ rvP(r,o2) :- assign(r,V2),vP(V2,o2)
∨ r

vP(r,o2) :- load(V2,F,r),vP(V2,H2),

hP(H2,F,o2)

rvP(r,o2) :- vP0(r,o2)
µ= rivP(r,o2) :- vP0(r,o2)

rivP(r,o2) :- vP0(r,o2)
µ= xvP0(r,o2)

xvP0(r,o2)
µ= false

rvP(r,o2) :- assign(r,V2),vP(V2,o2)
µ= rivP(r,o2) :- assign(r,p),vP(p,o2)

∨ rivP(r,o2) :- assign(r,q),vP(q,o2)
∨ rivP(r,o2) :- assign(r,r),vP(r,o2)
∨ rivP(r,o2) :- assign(r,w),vP(w,o2)

rivP(r,o2) :- assign(r,p),vP(p,o2)
µ= xassign(r,p) ∧ xvP(p,o2)

xassign(r,p)
µ= false
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rivP(r,o2) :- assign(r,q),vP(q,o2)
µ= xassign(r,q) ∧ xvP(q,o2)

xassign(r,q)
µ= rassign(r,q)

rassign(r,q)
µ= true

⋮

givP(w,o2)
µ= xvP(w,o2) (3.17)

⋮

We have omitted some parts of the transformation since they do not con-
tribute further to its understanding. In order to improve readability, we have
also shortened the names of some boolean variables.

The boolean variable gvP(V,o2), which represents the query :- vP(V,o2),
is instantiated in Equation 3.9, producing the new boolean variables defined
in Equations 3.10, 3.15, 3.16 and 3.17. The boolean variables that represent a
predicate (e.g., xvP(p,o2)) are defined by means of other boolean variables rep-
resenting partial instances of rules that have the represented predicate at its
head (e.g., rvP(p,o2) :- vP0(p,o2)) as in Equation 3.11. These boolean variables
representing partial instances of rules are further instantiated producing vari-
ables that represent fully instantiated rules (e.g., rivP(p,o2) :- assign(p,p),vP(p,o2))
as in Equations 3.12, 3.13 and 3.14.

3.2.2 Optimizations to the basic Bes resolution technique

The parameterless Bes described above is rather inefficient since it adopts a
brute-force approach that, at the very first steps of the computation (Equa-
tion 3.4), enumerates all possible tuples of the query (see Equation 3.9 in
Example 14). It is well-known that a general Datalog program runs in O(nk)
time, where k is the largest number of variables in any single rule, and n is the
number of constants in the facts and rules [TL10]. Similarly, for a simple query
like :- vP(V,H)., with V and H respectively being elements of domains Dv and
Dh, each one of size 10 000, Equation 3.4 generates D2, i.e., 108, boolean vari-
ables representing all possible combinations of values V and H in the relation
vP. Usually, for each atom in a Datalog program, the number of facts that are
given or inferred by the Datalog rules is much lower than the product of the
domain′s sizes of its corresponding arguments. Ideally, the Datalog query
evaluation should enumerate (given or inferred) facts only on-demand.

Among the existing optimizations for top-down evaluation of queries in
Datalog, the so-called Query-Sub-Query [Vie86] technique consists in mini-
mizing the number of tuples derived by a rewriting of the program based
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on the propagation of bindings. Basically, the method aims at keeping the
bindings of variables between atoms p(a) in a rule.

In our Datalog evaluation technique based on Bes, we adopt a similar
approach: two boolean Equations 3.19 and 3.25, which are modified versions
of Equations 3.4 and 3.7 of the basic Bes instantiation, only enumerate the
values of variable arguments that appear more than once in the body of the
corresponding Datalog rule; otherwise, arguments are kept unchanged. More-
over, if the atom p(a) is part of the extensional database, the only possible
values of its variable arguments are values that reproduce a given fact of the
Datalog program. We denote as Dp

i the subdomain of D that contains all
possible values of the ith variable argument of p if p is in the extensional
database, otherwise Dp

i = D. Hence, the resulting Bes resolution is likely to
process fewer facts and be more efficient than the brute-force approach.

Following this optimization technique, a parameterless Bes can directly
be derived from the previous Bes representation as follows:

x0
µ= ⋁

∶− q1(d1),...,qm(dm). ∈G
gq1(d1),...,qm(dm) (3.18)

gq1(d1),...,qm(dm)
µ= ⋁ gpi

q1(a1),...,qm(am)
{a1, . . . , am} ∈ {V ∪Dq11 } × ⋅ ⋅ ⋅ × {V ∪Dqm1 }
if (∃ j ∈ [1..m], j ≠ i ∣ di = dj ∧ di ∈ V )

then ai ∈ Dqi1 ∧ (∀ j ∈ [1..m], di = dj ∣ aj ∶= ai)
else ai ∶= di (3.19)

gpi
q1(a1),...,qm(am)

µ=
m

⋀
i∶=1

xqi(ai) (3.20)

xq(a)
µ= xf

q(a) ∨ x
c
q(a) (3.21)

xf
q(a)

µ= ⋁
(e∶=a ∧ a∈C) ∨ (e∈Dq1 ∧ a∈V ) ∣ q(e).∈R

xiq(e) (3.22)

xiq(e)
µ= true (3.23)

xcp(a)
µ= ⋁

p(a) ∶−p1(d1),...,pm(dm). ∈R
rp(a) ∶−p1(d1),...,pm(dm)(3.24)

rp0(d0) ∶−p1(d1),...,pm(dm)
µ= ⋁ rpi

p0(d0) ∶−p1(a1),...,pm(am)
{a0, . . . , am} ∈ {V ∪Dp01 } × ⋅ ⋅ ⋅ × {V ∪Dpm1 }
s.t. if (∃ j ∈ [1..m], j ≠ i ∣ di = dj ∧ di ∈ V )

then ai ∈ Dpi1 ∧ (∀ j ∈ [1..m], di = dj ∣ aj ∶= ai)
else ai ∶= di (3.25)

rpi
p0(d0) ∶−p1(a1),...,pm(am)

µ=
m

⋀
i∶=1

xpi(ai) (3.26)
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Boolean variables whose name starts with x are those that correspond to
the goal and subgoals of the original program and we call them original vari-
ables, whereas boolean variables starting with r or g are auxiliary variables
that are defined during unfolding and instantiation of (sub)goals. Observe
that Equations 3.18, 3.20, 3.24 and 3.26 respectively correspond to Equa-
tions 3.3, 3.5, 3.6 and 3.8 of the previous Bes definition with only a slight
renaming of the generated boolean variables. The important novelty here is
that, instead of enumerating all possible values of the domain, as it is done
in Equation 3.4, the corresponding new Equation 3.19 only enumerates the
values of variable arguments that are repeated in the body of a rule; oth-
erwise, variable arguments are kept unchanged i.e., ai ∶= di. Actually, the
generated boolean variables gpi

q1(a1),...,qm(am), where pi stands for partially in-

stantiated , may still refer to atoms containing variable arguments. Thus, the
combinatorial explosion of possible tuples is avoided at this point and delayed
to future steps. Equation 3.21 generates two boolean successors for variable
xq(a): x

f
q(a) and xcq(a). When q is part of the extensional database, xf

q(a) rep-

resents the possible solutions to xf
q(a) whereas xcq(a) is false. On the contrary,

if q is part of the intensional database, xcq(a) computes solutions to xq(a) while

xf
q(a) is false. In Equation 3.22, each value of a variable or constant that leads

to a given fact q(e) of the program generates a new boolean variable xiq(e),

where i stands for (fully) instantiated , that is true by definition of a fact. Equa-
tion 3.24 mimics the evaluation of Datalog rules whose head is p(a). Note that
Equations 3.19, 3.22, and 3.25 enumerate only possible values of the subdo-
mains Dpi

1 instead of the full domain D. For the Datalog program described
in Figure 3.1, this restriction would consist in using four new subdomains
Dv

vP0
1 = {p, q}, Dh

vP0
2 = {o1 ,o2}, Dv

assign
1 = {r ,w}, and Dv

assign
2 = {q , r},

instead of full domains Dh and Dv for the values of each variable argument in
relations vP0 and assign.

Example 15

To illustrate the idea behind this optimized version of the generated Bes, we
show (a part of) the Bes that results from applying the preceding optimization
to our running example.



3.2. A complete Datalog to Bes transformation 35

x0
µ= gvP(V,o2)

gvP(V,o2)
µ= gpi

vP(V,o2)

gpi
vP(V,o2)

µ= xvP(V,o2)

xvP(V,o2)
µ= xf

vP(V,o2)
∨ xcvP(V,o2)

xf
vP(V,o2)

µ= false

xcvP(V,o2)
µ= ⋁ rvP(V,o2) :- vP0(V,o2)

∨ rvP(V,o2) :- assign(V,V2),vP(V2,o2)
rvP(V,o2) :- vP0(V,o2)

µ= rpi
vP(V,o2) :- vP0(V,o2)

rpi
vP0(V,o2)

µ= xvP0(V,o2)

xvP0(V,o2)
µ= xf

vP0(V,o2)
∨ xcvP0(V,o2)

xf
vP0(V,o2)

µ= xivP0(q,o2)
xivP0(q,o2)

µ= true

rvP(V,o2) :- assign(V,V2),vP(V2,o2)
µ= ⋁ rpi

vP(V,o2) :- assign(V,q),vP(q,o2)

∨ rpi
vP(V,o2) :- assign(V,r),vP(r,o2)

rpi
vP(V,o2) :- assign(V,q),vP(q,o2)

µ= xassign(V,q) ∧ xvP(q,o2)
xassign(V,q)

µ= xf
assign(V,q)

∨ xcassign(V,q)
xf
assign(V,q)

µ= xiassign(r,q)
xiassign(r,q)

µ= true

⋮

Each original variable is defined as the disjunction of r (or g) boolean variables
that represent the body of one of the clauses that define the corresponding
predicate (see equation for variable xcvP(V,o2)). Then, each r (or g) variable is
defined as the disjunction of the different possible instantiations of the query on
the shared variables (see equation for variable rvP(V,o2) :- assign(V,V2),vP(V2,o2)).
These partial instantiations are represented by rpi (or gpi) boolean variables.
The rpi variables are defined as the conjunction of the subgoals, which are
represented by (original) x variables. Finally, the original variables x are
defined as the disjunction of the boolean variables that correspond to querying
the facts xf and querying the clauses xc (see equation for xassign(V,q)).

As stated above, when the rpi variables are generated, only variables that
are shared by two or more subgoals in the body of the Datalog program are
instantiated, and only values that appear in the corresponding parameters
of the program facts are used. In other words, we do not generate spurious
variables, such as rpi

vP(V,H) :- assign(V,w),vP(w,H)
, which can never be true.
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3.2.3 Solution extraction

Considering the optimized parameterless Bes defined above, the query satisfi-
ability problem is reduced to the local resolution of boolean variable x0. The
value (true or false) computed for x0 indicates whether there exists at least one
satisfiable goal in G. We can remark that the Bes representing the evaluation
of a Datalog query is only composed of one equation block that contains alter-
nating dependencies between disjunctive and conjunctive variables. Hence, it
can be solved by optimized depth-first search (DFS) for such a type of equation
block. However, since the DFS strategy can only conclude the existence of a
solution to the query by computing a minimal number of boolean variables,
it is necessary to use a breadth-first search (BFS) strategy to compute all the
different solutions to a Datalog query. Such a strategy will “force” the resolu-
tion of all boolean variables that have been put in the BFS queue, even if the
satisfiability of the query has been computed in the meantime. Consequently,
the solver will compute all possible boolean variables xiq(e), which represent

potential solutions for the query. Upon termination of the Bes resolution (en-
sured by finite data domains and table-based exploration), query solutions,
i.e., combinations of variable values {e1, . . . , em}, one for each atom of the
query that lead to a satisfied query, are extracted from all boolean variables
xiq(e) that are reachable from the boolean variable x0 through a path of true
boolean variables.

3.3 The prototype Datalog Solve

We implemented the Datalog query transformation to Bes in a powerful, fully
automated Datalog solver tool, called Datalog Solve, that we developed
within the Cadp verification toolbox. Without loss of generality, in this sec-
tion, we describe the Datalog Solve tool focusing on Java program analysis.
Other source languages and classes of problems can be specified in Datalog
and solved by our tool as well.

Datalog Solve takes three different inputs (see Figure 3.3): the (op-
tional) domain definitions (.map), the Datalog constraints or facts (.tuples),
and a Datalog query q = ⟨G,R⟩ (.datalog, e.g. pa.datalog in Figure 3.4).
The domain definitions state the possible values for each predicate’s argu-
ment of the query. These are meaningful names for the numerical values that
are used to efficiently described the Datalog constraints. For example, in
the context of pointer analyses, variable names (var.map) and heap locations
(heap.map) are two domains of interest. Each line of a .map file represents a
different domain element. For efficiency reasons, a domain element is identi-
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Figure 3.3: Java program analysis using the Datalog Solve tool.

fied by its line number, thus its human-readable description is provided by the
content of its .map file’s associated line. The Datalog constraints represent in-
formation relevant for the analysis. For instance, vP0.tuples gives all direct
references from variables to heap objects in a given program. These combi-
nations are described by numerical values in the range 0..(domain size − 1),
which represents domain elements identifiers accordingly to the .map files.

Both, domain definitions and facts are specified in the .datalog input file
(see Figure 3.4 for an example) and they are automatically extracted from
program source code by using the Joeq compiler framework [Wha05] that we
slightly modified to generate tuple-based instead of Bdd-based input relations
(extensional database). The .datalog input file has three sections separated
by its corresponding headers:

Domains Declares a domain on each line by means of three consecutive fields:
the domain identifier, the domain size, and the domain .map file.

Relations Declares the predicate symbols that are used in the program by
means of their identifiers, the association of their arguments to previously
declared domains, and stating whether they are part of the extensional
(inputtuples) or the intensional (outputtuples) databases. If a pred-
icate p is declared as extensional, a file named p.tuples will be used to
load the facts associated with p.



38 3. From Datalog to Boolean Equations Systems

### Domains

V 262144 variable.map

H 65536 heap.map

F 16384 field.map

### Relations

vP 0 (variable : V, heap : H) inputtuples

store (base : V, field : F, source : V) inputtuples

load (base : V, field : F, dest : V) inputtuples

assign (dest : V, source : V) inputtuples

vP (variable : V, heap : H) outputtuples

hP (base : H, field : F, target : H) outputtuples

### Rules

vP (V1, H1) :- vP 0(V1, H1).

vP (V1, H1) :- assign(V1, V2), vP(V2, H2).

hP (H1, F1, H2) :- store(V1, F1, V2), vP(V1, H1), vP(V2, H2).

vP (V2, H2) :- load (V1, F1, V2), vP(V1, H1), hP(H1, F1, H2).

Figure 3.4: Datalog Solve input file specifying Andersen’s points-to analy-
sis.

Rules Contains the rules which specify the analysis to be performed.

The core of the tool is Datalog Solve 1.0 (120 lines of Lex, 380 lines of
Bison and 3 500 lines of C code) which proceeds in two steps:

1. The front-end of Datalog Solve constructs the optimized implicit Bes
representation given by Equations 3.18-3.26 from the inputs.

2. The back-end of our tool carries out the demand-driven generation, res-
olution and interpretation of the Bes by means of a generic library of
Cadp called Cæsar Solve, which is devised for local Bes resolution
and diagnostic generation.

This architecture clearly separates the implementation of Datalog-based static
analyses from the resolution engine, which can be extended and optimized
independently. We further discuss some optimizations in Section 3.4.

Datalog Solve returns both the query’s satisfiability and the computed
answers represented numerically in various output files (.tuples files) upon
termination, which is ensured by safe input Datalog programs. The tool takes
as a default query the computation of the least set of facts that contains all
the facts that can be inferred using the given rules. This represents the worst
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case of a demand-driven evaluation and computes all the information derivable
from the considered Datalog program.

3.4 Experimental results

We have applied the Datalog Solve tool to a number of Java programs by
computing the context-insensitive pointer analysis described in Figure 3.4.

In order to test the scalability and applicability of the transformation, we
applied our technique to four of the most popular 100% Java projects on
Sourceforge that could compile directly as standalone applications and were
previously used as benchmarks for the Bddbddb tool [WACL05]. They are
all real applications with tens of thousands of users each. Projects vary in the
number of classes, methods, variables, and heap allocations. The information
details, shown on Table 3.1, are calculated on the basis of a context-insensitive
callgraph precomputed by the Joeq2 compiler. All experiments were con-
ducted using Java JRE 1.5, Joeq version 20030812, on a Intel Core 2 T5500
1.66GHz with 3 Gigabytes of RAM, running Linux Kubuntu 8.04.

Table 3.1: Description of the Java projects used as benchmarks.

freetts (1.2.1): speech synthesis system

Classes: 215 Variables: 8K
Methods: 723 Allocations: 3K

nfcchat (1.1.0): scalable, distributed chat client

Classes: 283 Variables: 11K
Methods: 993 Allocations: 3K

jetty (6.1.10): server and servlet container

Classes: 309 Variables: 12K
Methods: 1160 Allocations: 3K

joone (2.0.0): Java neural net framework

Classes: 375 Variables: 17K
Methods: 1531 Allocations: 4K

2http://joeq.sourceforge.net/

http://joeq.sourceforge.net/
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Table 3.2: Time (in seconds) and peak memory usage (in megabytes) for the
context-insensitive pointer analysis of each benchmark.

Name time (sec.) memory (Mb.)

freetts (1.2.1) 10 61
nfcchat (1.1.0) 8 59
jetty (6.1.10) 73 70
joone (2.0.0) 4 58

The analysis time and memory usage of our context-insensitive pointer
analysis, shown in Table 3.2, illustrate the scalability of our Bes resolution
and validate our theoretical results on real examples. Datalog Solve solves
the (default) query for all benchmarks in a few seconds. The computed results
were additionally verified by comparing them with the solutions computed by
the Bddbddb tool on the same benchmark of Java programs and analysis.

3.4.1 Further Improvements

A new Bes-based approach for the resolution of Datalog programs was de-
veloped by the author, in joint work with Christophe Joubert and Fernando
Taŕın [FJT10b, FJT10a]. Our contribution is a novel bottom-up evaluation
strategy specially tailored for Datalog-based program analysis. Our work is
based on the evaluation strategy presented by Liu and Stoller in [LS03], and
further detailed in an extended version of the work [LS09]. Their strategy is
a generalization of the systematic algorithm development method of Paige et
al. [PK82], which transforms extensive set computations like set union, inter-
section, and difference into incremental operations. Incremental operations are
supported by sophisticated data structures with constant access time. They
derive an imperative resolution algorithm, which computes a fixpoint over all
(preformatted) rules from an input Datalog program by first considering in-
put predicates, then considering rules with one subgoal, and finally considering
rules with two subgoals.

Our novel proposal is to enhance this evaluation strategy by means of the
following:

1. A declarative description of the bottom-up resolution strategy that is
separate from the fixpoint computation. This is achieved by transform-
ing Datalog programs into Boolean Equation Systems (Bess) and evalu-
ating the resulting Bess by standard solvers.
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2. A predicate order that is employed to simplify the Bes by removing
various set operations. This order is determined by the dependency
between predicate symbols and the number of times that rules are fired.

3. A sophisticated data-structure with quicker access time and lower mem-
ory consumption. This efficient data-structure is based on a complex
representation of a trie. Tries, also called prefix trees, are ordered tree
data structures where each node position in the tree is the key that is
associated to this node. This structure has faster look-up times than
binary search trees and imperfect hash tables.
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Figure 3.5: Java program analysis using the Datalog Solve 2.0 tool.

We endowed the Datalog Solve prototype with the new evaluation strat-
egy applied to the evaluation of Andersen’s points-to analysis encoded as a
Bes. Datalog Solve 2.0 (see Figure 3.5) does not depend on Cadp, and
uses a simple and fast specific Bes solver. Facts are extracted by an extended
version of Soot 3 from the Java programs of the Dacapo 4 benchmark with
JDK 1.6. We tested the efficiency and feasibility of our implementation by
comparing it to two state-of-the-art Datalog solvers Xsb 3.25 and the proto-

3http://www.sable.mcgill.ca/soot
4http://voxel.dl.sourceforge.net/sourceforge/dacapobench/

dacapo-2006-10-MR2-xdeps.zip
5http://xsb.sourceforge.net

http://www.sable.mcgill.ca/soot
http://voxel.dl.sourceforge.net/sourceforge/dacapobench/dacapo-2006-10-MR2-xdeps.zip
http://voxel.dl.sourceforge.net/sourceforge/dacapobench/dacapo-2006-10-MR2-xdeps.zip
http://xsb.sourceforge.net
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type of Liu and Stoller6, which in the rest of the chapter we call Ls.

In Figures 3.6 and 3.7, performance results are presented in terms of user
time and peak memory consumption evaluation. All experiments were per-
formed on an Intel Core 2 duo E4500 2.2 GHz, with 2048 KB cache, 4 GB
of RAM, and running Linux Ubuntu 10.04. Datalog Solve and Xsb solver
were compiled using gcc 4.4.1. Python 2.6.4 was used for the Ls solver. The
measures do not include the time needed by Xsb and Ls to precompile the
facts. The analysis results were verified by comparing the outputs of all solvers.
Datalog Solve 2.0 evaluates the whole benchmark in only 3 seconds with a
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Figure 3.6: Dacapo analysis times (sec.) for various Datalog implementa-
tions.

mean-time of 0.3 seconds per program. This explains why the time measures
for Datalog Solve are hardly visible in Figure 3.6. Our experiments demon-
strate that Xsb is much slower than Ls, which is in turn an order of magnitude
slower than Datalog Solve. For example, for the benchmark program pmd,
which is a multi-language source code analyzer, Xsb evaluated the points-
to analysis in 501 seconds, Ls solved it in 15 seconds, and Datalog Solve
took 0.391 seconds to solve it. With respect to memory consumption, Ls
consumes significantly more than Xsb and Datalog Solve. For the pmd ex-

6Provided by the authors of [LS09]
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Figure 3.7: Dacapo memory usage (MB.) for various Datalog implementa-
tions.

ample, Ls required 1.1 GB of memory, while Xsb consumed 70 MB, and
Datalog Solve consumed 15 MB. These performance results show that
the Bes-based evaluation strategy together with an optimized data-structure
scales really well for very large programs regarding Andersen’s points-to anal-
ysis.

3.5 Conclusions and Related Work

We have presented a transformation from Datalog to Bes that preserves the
program semantics and is aimed at Datalog-based static analysis. The trans-
formation carries Datalog programs to the powerful framework of Bess, which
have been widely used for verification of industrial critical systems, and for
which many efficient resolution algorithms exist. We have also presented some
experimental results which show that the presented transformation pays off in
practice. Additionally, we have briefly discussed how we have improved this
transformation, showing the progress reached by our approximation.

Recently, Bess with typed parameters [Mat98], called Pbes, have been
successfully used to encode several hard verification problems such as the first-



44 3. From Datalog to Boolean Equations Systems

order value-based modal µ-calculus model-checking problem [MT08], and the
equivalence checking of various bisimulations [CPvW07] on (possibly infinite)
labeled transition systems. However, until our work in [AFJV09d], Pbess
had not been previously used to compute complex interprocedural program
analyses involving dynamically created objects. The work that is most closely
related to our Bes-based analysis approach is [LS98], where Dependency
Graphs (DGs) are used to represent satisfaction problems, including proposi-
tional Horn Clause satisfaction and Bes resolution. A linear time algorithm
for propositional Horn Clause satisfiability is described in terms of the least so-
lution of a DG equation system. This corresponds to an alternation-free Bes,
which can only deal with propositional logic problems. The extension of Liu
and Smolka’s work [LS98] to Datalog query evaluation is not straightforward.
This is testified by the encoding of data-based temporal logics in equation
systems with parameters in [MT08], where each boolean variable may depend
on multiple data terms. Dgs are not sufficiently expressive to represent such
data dependencies on each vertex. Hence, it is necessary to work at a higher
level, on the Pbes representation.

A very efficient Datalog program analysis technique based on binary deci-
sion diagrams (Bdds) is available in the Bddbddb system [WACL05], which
scales to large programs and is competitive w.r.t. the traditional (imperative)
approach. The computation is achieved by a fixpoint computation starting
from the everywhere false predicate (or some initial approximation based on
Datalog facts). Datalog rules are then applied in a bottom-up manner un-
til saturation is reached so that all the solutions that satisfy each relation of
a Datalog program are exhaustively computed. These sets of solutions are
then used to answer complex formulas. In contrast, our approach focuses on
demand-driven techniques to solve the considered query with no a priori com-
putation of the derivable atoms. In the context of program analysis, note that
all program updates, like pointer updates, might potentially be inter-related,
leading to an exhaustive computation of all results. Therefore, improvements
to top-down evaluation are particularly important for program analysis ap-
plications. Recently, Zheng and Rugina [ZR08] showed that demand-driven
Cfl-reachability with worklist algorithm compares favorably with an exhaus-
tive solution. Our technique to solve Datalog programs based on local Bes
resolution goes in the same direction and provides a novel approach to demand-
driven program analyses almost for free.



4
From Datalog to Rewriting

Logic

With the aim to achieve higher expressiveness for static-analysis specification,
in this chapter we present a translation of Datalog into a powerful and highly
extensible framework, namely, the Rewriting Logic (Rwl), which is efficiently
implemented in the high-performance language Maude [CDE+07]. The expres-
siveness of a specification language is important in order to naturally model
analyses involving advanced features of programming languages that would
otherwise need complex encodings or ad-hoc extensions. One example of a
feature that complicates the specification of analyses is reflection, i.e., the
ability to manipulate running program code at execution time. We benefit
from the fact that Rewriting Logic is a reflective logic to express analyses with
reflective features in a natural way.

Since the operational principles of logic programming (Datalog) and func-
tional programming (Rewriting Logic), namely, resolution and term rewriting ,
share some similarities [Han94], many proposals exist for transforming logic
programs into term rewriting systems [Mar94, Red84, SKGST07]. However,
no transformation in the literature tackles the problem of efficiently encoding
logic (Datalog) programs containing a huge amount of facts in a rewriting-
based infrastructure such as Maude. As a result, we developed a new transfor-
mation suited to our needs. Because efficiency does matter in the context of
Datalog-based program analysis, our proposed transformation is the result of
an iterative process that is aimed at optimizing the running time of the trans-
formed program. The basic idea of the translation is to automatically compile
Datalog clauses into deterministic equations, having queries and answers con-
sistently represented as terms so that the query is evaluated by reducing its
term representation into a constraint set that represents the answers.

This chapter summarizes how Datalog queries can be solved with Rewriting
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Logic by means of a non-moded transformation that preserves the computed
answers behavior and supports reflective features. In Section 4.1, we first in-
formally illustrate how a Rwl term rewriting system can be obtained from a
Datalog program in an automatic way. Section 4.2 describes the transforma-
tion in depth. Section 4.3 illustrates how our transformation can implement
an analysis involving reflection in a declarative way. Section 4.4 presents the
prototype developed to evaluate Datalog queries by means of our transforma-
tion, called Datalaude. Section 4.5 evaluates the efficiency of our prototype
by comparing it to other Datalog solvers. Finally, Section 4.6 discusses the
related work and concludes the chapter.

4.1 From Datalog to Rwl.

Let us recall the simplified version of the Andersen points-to analysis that we
introduced in Figure 3.1 (Chapter 3):

vP0(p,o1).

vP0(q,o2).

assign(r,q).

assign(w,r).

vP(V,H) :- vP0(V,H).

vP(V,H) :- assign(V,V2), vP(V2,H).

We use this example to illustrate the transformation. We first show how values,
variables and answers are represented in Maude. Then, the resulting Maude
program is presented by showing how each Datalog clause in the example
program is transformed into Rwl rules.

Datalog answers are expressed as equational constraints that relate the
variables of the queries to values of the problem domain. Values are rep-
resented as ground terms of sort Constant that are constructed by means of
Maude Quoted Identifiers (Qids). Since logical variables cannot be represented
with rewriting rule variables because of their dual input-output nature, we give
a representation for them as ground terms of sort Variable by means of the
overloaded vrbl constructor. A Term is either a Constant or a Variable.
These elements are represented in Maude as follows:

sorts Variable Constant Term .

subsort Variable Constant < Term .

subsort Qid < Constant .

op vrbl : Term -> Variable [ctor] .

In our formulation, answers are recorded within the term that represents the
ongoing partial computation of the Maude program. Thus, we represent a
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(partial) answer for the original Datalog query as a conjunction of equational
constraints (called answer constraints) that represent the substitution of (log-
ical) variables by (logical) constants that are incrementally computed during
the program execution. We define the sort Constraint whose values represent
single answers for a Datalog query as follows:

sort Constraint .

op = : Term Constant -> Constraint .

op T : -> Constraint .

op F : -> Constraint .

op , : Constraint Constraint -> Constraint [assoc comm id: T] .

eq F, C:Constraint = F . --- Zero element

Constraints are constructed by the conjunction ( , ) of solved equations of
the form T:Term = C:Constant, the false constraint F, or the true constraint
T.1 Note that the conjunction operator , obeys the laws of associativity
and commutativity. T is defined as the identity of , , and F is used as the
zero element. Unification of expressions is performed by combining the corre-
sponding answer constraints and checking the satisfiability of the compound.
Simplification equations are introduced in order to simplify trivial constraints
by reducing them to T, or to detect inconsistencies (unification failure) so
that the whole conjunction can be drastically replaced by F, as shown in the
following code excerpt:

var Cst Cst1 Cst2 : Constant .

var V : Variable .

eq (V = Cst) , (V = Cst) = (V = Cst) , T . --- Idempotence

eq (V = Cst1) , (V = Cst2) = F [owise] . --- Unsatisfiability

In our setting, a failing computation occurs when a query is reduced to F.
If a query is reduced to T, then the original (ground) query is proved to be
satisfiable. On the contrary, if the query is reduced to a set of solved equations,
then the computed answer is given by a substitution {x1/t1, . . . , xn/tn} that
is expressed as an equation set in solved form by the computed normal form
x1 = t1 , ... , xn = tn.

Since equations in Maude are run deterministically, all the non-determinism
of the original Datalog program has to be embedded into the term under
reduction. This means that we need to carry all the possible (partial) answers
at a given execution point. To this end, we introduce the notion of set of
answer constraints, and we define a new sort called ConstraintSet as follows:

1The actual transformation defines a more complex hierarchy of sorts in order to obtain
simpler equations and improve performance which we discuss in Section 4.2.
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sorts ConstraintSet .

subsort Constraint < ConstraintSet .

op ; : ConstraintSet ConstraintSet -> ConstraintSet [assoc comm id: F] .

The set of constraints is constructed as the (possibly empty) disjunction ;

of accumulated constraints. The disjunction operator ; obeys the laws of
associativity and commutativity and is also given the identity element F.

Now we are ready to show how the predicates are transformed. Predicates
are naturally expressed as functions (with the same arity) whose codomain is
the ConstraintSet sort. They will be reduced to the set of constraints that
represent the satisfiable instantiations of the original query. The functions that
represent the three predicate of our running example are declared in Maude
by providing the following signature:

ops vP vP0 assign : Term Term -> ConstraintSet .

In order to incrementally add new constraints throughout the program execu-
tion, we define the composition operator x for constraint sets as follows:

op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

The composition operator x allows us to combine (partial) solutions of the
subgoals in a clause body.

Let us now exemplify the transformation by evaluating different types of
queries in our running example. Example 16 illustrates how extensional predi-
cates are transformed, while Example 17 does so for the case of the intensional
ones.

Example 16
The execution of the Datalog query :- vP0(p,Y) on the program in Figure 3.1,
yields the solution {Y/o1}. Here, vP0 is a predicate defined only by facts, so
the answers to the query represent the variable instantiations as given by the
existing facts. Thus, we would expect the query’s Rwl representation vP0(’p,

vrbl(’Y)) to be reduced to the ConstraintSet (with just one constraint)
vrbl(’Y) = ’o1. This is accomplished by representing facts according to the
following equation pattern:

var T0 T1 : Term .

eq vP0(T0,T1) = (T0 = ’p , T1 = ’o1) ; (T0 = ’q , T1 = ’o2) .

eq assign(T0,T1) = (T0 = ’r , T1 = ’q) ; (T0 = ’w , T1 = ’r) .

The right-hand side of the Rwl equation that is used to represent the facts
that define a given predicate (in the example vP0 and assign) consists of
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the set of constraints that express the satisfiable instantiations of the original
predicate. As it can be observed, arguments are propagated to the constraints,
thus allowing the already mentioned equational unification and simplification
process on the constraints to happen.

For the considered goal, the reduction of the transformed Datalog query
vP0(’p, vrbl(’Y)) proceeds as follows:

vP0(’p,vrbl(’Y))

→ (’p = ’p , vrbl(’Y) = ’o1) ; (’p = ’q , vrbl(’Y) = ’o2)
∗→ (T , vrbl(’Y) = ’o1) ; (F , vrbl(’Y) = ’o2)
∗→ vrbl(’Y) = ’o1 ; F

→ vrbl(’Y) = ’o1

Let us proceed with the case of transforming intensional predicates.

Example 17

Let us consider the Datalog query :- vP(V,o2), whose execution in the Ander-
sen program delivers the solutions {V/q,V/r,V/w}. Thus, we expect the term
vP(vrbl(’V),’o2) to be reduced to the set of constraints (vrbl(’V) = ’q) ;

(vrbl(’V) = ’r) ; (vrbl(’V) = ’w). In this case, vP is a predicate defined
by clauses, so the answers to the query are the disjunction of the answers
provided by all the clauses that define it. This is represented in Rwl by intro-
ducing auxiliary functions to separately compute the answers for each clause,
and the equation to join them, which can be expressed as follows:

op vP-clause-1 vP-clause-2 : Term Term -> ConstraintSet .

var V H : Term .

eq vP(V,H) = vP-clause-1(V , H) ; vP-clause-2(V , H) .

In order to compute the answers delivered by a clause, we look for the satis-
fiable instantiations of its body’s subgoals. In our translation, we explore the
possible instantiations from the leftmost subgoal to the rightmost one. For
example, in:

vP(V,H) :- vP0(V,H).

we would explore the instantiations of the only subgoal vP0. This can directly
be done by reducing the term representing the head of the clause vP(V,H) to
the term representing the subgoal vP0(V,H). On the contrary, in:

vP(V,H) :- assign(V,V2), vP(V2,H).
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we would first explore the instantiations for assign and then those for vP. In
order to do that, we create a different (auxiliary) unraveling function for each
subgoal to impose this left-to-right exploration.

As shown in the following code excerpt, the first Datalog clause of the lead-
ing program example can be transformed without using unraveling functions.
For the second Datalog clause (with two subgoals in its body) one unraveling
function unrav is needed in order to force the reduction of the first subgoal.

op vrbl-V2 : Term Term -> Variable .

op unrav : ConstraintSet TermList -> ConstraintSet .

eq vP-clause-1(V,H) = vP0(V,H) .

eq vP-clause-2(V,H) = unrav( assign(V, vrbl-V2(V,H)) , V H ) .

Each unravelling function computes the partial answer derived from the sub-
goal it represents and the previous ones, and propagates that partial answer to
the subsequent unraveling function. Additionally, existentially quantified vari-
ables that occur only in the body of original Datalog clauses, e.g., V2, are intro-
duced by using a ground representation that is parameterised with the corre-
sponding call pattern in order to generate fresh variables, e.g., vrbl-V2(V,H)
in the example.

The unrav function has two arguments: a ConstraintSet, which is the
first (reduced) subgoal (the original subgoal assign(V,V2) in this case); and
the V H call pattern. This function is defined as follows:

var Cnt : Constant .

var TS : TermList .

var C : Constraint .

var CS : ConstraintSet .

eq unrav( ( (vrbl-V2(V,H) = Cnt , C) ; CS ) , V H ) =

( vP(Cnt,H) x (vrbl-V2(V,H) = Cnt , C) ) ; unrav( CS , V H ) .

eq unrav( F , TS ) = F .

This unrav function takes a set of partial answers as its first argument. It
requires the partial answers to be in equational solved form, which is enforced
by the (default) innermost reduction strategy used by Maude, thus ensur-
ing the left-to-right execution of the goals. The second argument is the call
pattern of the translated clause and serves to reference the introduced exis-
tentially quantified variables. The propagated call pattern is represented as
a TermList, that is, a juxtaposition ( operator) of Terms. The two unrav

equations (recursively) combine each (partial) answer obtained from the first
subgoal with every (partial) answer computed from the (instantiated) subse-
quent subgoal.
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As an example, consider again the Datalog query :- vP(V,o2). We un-
dertake each possible query reduction by using the equations above. Given
the size of the execution trace, we use the following abbreviations: V stands
for vrbl(’V), vPci for vP-clause-i, and V2-V-H for vrbl-V2(V,H).

vP(V,’o2 )

→ vPc1(V,’o2) ; vPc2(V,’o2)
∗→ vP0(V,’o2) ; unrav( assign(V,V2-V-o2) , V ’o2 )
∗→ ( (V = ’p , ’o2 = ’o1) ; (V = ’q , ’o2 = ’o2) )

; unrav( ((V = ’r , V2-V-o2 = ’q) ; (V = ’w , V2-V-o2 = ’r)) ,

V ’o2 )
∗→ (F ; (V = ’q , T))

; ( vP(’q,’o2) x (V = ’r , V2-V-o2 = ’q) )

; unrav( (V = ’w , V2-V-o2 = ’r) , V ’o2 )
∗→ (V = ’q)

; ( (vPc1(’q,’o2) ; vPc2(’q,’o2)) x (V = ’r , V2-V-o2 = ’q) )

; ( vP(’r,’o2) x (V = ’w , V2-V-o2 = ’r) ) ; unrav( F , V ’o2 )

⋮
∗→ (V = ’q) ; (V = ’r) ; (V = ’w)

As it can be seen, the evaluation of a Datalog query is naturally transformed
to the process of reducing the equational version of the query into its normal
form solutions.

4.2 A complete Datalog to Rwl transformation

As explained above, we are interested in computing all answers for a given
query by means of term rewriting. A näıve approach is to translate the Datalog
clauses into Maude rules, and then use the search2 order to mimic all possible
executions of the original Datalog program. However, in the context of pro-
gram analysis with a huge number of facts, this approach results in poor per-
formance [AFJV09c]. This is because rules are handled non-deterministically
in Maude whereas equations are applied deterministically [CDE+07].

In the following, given a Datalog program R and a query q, we assume a
top-down approach and use SLD-resolution to compute the set of answers of
q in R. Given the successful derivation D ≡ q⇒θ1

SLD q1 ⇒θ2
SLD . . .⇒θn

SLD ◻, the
answer computed by D is the composed substitution θ1θ2 . . . θn restricted to
the variables occurring in q.

2Intuitively, search t → t′ explores the whole rewriting space from the term t to any other
terms that match t′ [CDE+07].
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In this section, we formulate a complete representation in Maude of the
Datalog computed answers, and then, we give a formal description of our
equation-based transformation together with proofs of its correctness and com-
pleteness.

Answer representation. Let us first introduce our representation of vari-
ables and constants of a Datalog program as ground terms of a given sort in
Maude. We define the sorts Variable and Constant to specifically represent
the variables and constants of the original Datalog program in Maude, whereas
the sort Term (resp. TermList) represents Datalog terms (resp. lists of terms
that are built by simple juxtaposition):

sorts Variable Constant Term TermList .

subsort Variable Constant < Term .

subsort Term < TermList .

op : TermList TermList -> TermList [assoc] .

op nil : -> TermList .

For instance, T1 T2 represents the list of terms T1 and T2. In order to construct
the elements of the Variable and Constant sorts, we introduce two construc-
tor symbols: Datalog constants are represented as Maude Quoted Identifiers
(Qids), whereas logical variables are encoded in Maude by means of the con-
structor symbol vrbl. These constructor symbols are specified in Maude as
follows:

subsort Qid < Constant . --- Every Qid is a Constant

op vrbl : Qid -> Variable [ctor] .

op vrbl : Term Term -> Variable [ctor] .

The last line of the above code excerpt allows us to build variable terms of the
form vrbl(T1,T2) where both T1 and T2 are Terms. This is used to ensure
that the ground representation in Maude for existentially quantified variables
that appear in the body of Datalog clauses is unique to the whole Maude
program.

By using ground terms to represent variables, we still lack a way to collect
the answers for an output variable. In our formulation, answers are stored
within the term that represents the ongoing partial computation of the Maude
program. Thus, we represent a (partial) answer for the original Datalog query
as a sequence of equations (called answer constraint) that expresses the sub-
stitution of (logical) variables by (logical) constants that is performed during
the program execution. We define the sort Constraint to represent a single
answer for a Datalog query, but we also define a hierarchy of subsorts (e.g.,
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the sort FConstraint at the bottom of the hierarchy represents inconsistent
solutions) that allows us to identify the inconsistent as well as the trivial
constraints (e.g., Cte = Cte) whenever possible. This hierarchy allows us to
simplify constraints as soon as possible and to improve performance. The
Maude code that implements this constraint-based infrastructure is as follows:

sorts Constraint EmptyConstraint NonEmptyConstraint .

subsort EmptyConstraint NonEmptyConstraint < Constraint .

sorts TConstraint FConstraint .

subsort TConstraint FConstraint < EmptyConstraint .

op T : -> TConstraint .

op F : -> FConstraint .

op = : Term Constant -> NonEmptyConstraint .

op , : Constraint Constraint -> Constraint [assoc comm id: T] .

op , : FConstraint Constraint

-> FConstraint [ditto] .

op , : TConstraint TConstraint

-> TConstraint [ditto] .

op , : NonEmptyConstraint TConstraint

-> NonEmptyConstraint [ditto] .

op , : NonEmptyConstraint FConstraint

-> FConstraint [ditto] .

op , : NonEmptyConstraint NonEmptyConstraint

-> NonEmptyConstraint [ditto] .

As we have said before, a query reduced to T represents a successful computa-
tion, whereas a failing computation is represented by a final F term. Note that
the conjunction operator , has identity element T and obeys the laws of as-
sociativity and commutativity. The properties of associativity, commutativity
and identity element can be easily expressed by using ACU attributes in Maude,
thus simplifying the equational specification and achieving better efficiency.
Other properties of the constraint-builder operators must be expressed with
equations: for example, we express the idempotency property of the operator
, by a specific equation on variables from the NonEmptyConstraint subsort
NEC. Moreover, in order to keep information consistent and without redun-
dancy, additional simplification equations are automatically applied. These
equations make every inconsistent constraint collapse into an F value, and
simplify every redundant or trivial constraint. The Maude code that imple-
ments these reductions is:
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var Cte Cte1 Cte2 : Constant .

var NEC : NonEmptyConstraint .

var V : Variable .

eq (Cte = Cte) = T . --- Simplification

eq (Cte1 = Cte2) = F [owise] . --- Unsatisfiability

eq NEC,NEC = NEC . --- Idempotence

eq F,NEC = F . --- Zero element

eq F,F = F . --- Simplification

eq (V = Cte1),(V = Cte2) = F [owise] .--- Unsatisfiability

In order to embed the non-determinism of the original Datalog program into
the deterministic execution of equations in Maude, we introduce the notion
of set of answer constraints. This construction allows us to carry on all the
possible (partial) answers at a given execution point. The sort ConstraintSet
represents sets of answer constraints and is implemented as follows:

sorts ConstraintSet EmptyConstraintSet NonEmptyConstraintSet .

subsort EmptyConstraintSet NonEmptyConstraintSet < ConstraintSet .

subsort NonEmptyConstraint TConstraint < NonEmptyConstraintSet .

subsort FConstraint < EmptyConstraintSet .

op ; : ConstraintSet ConstraintSet

-> ConstraintSet [assoc comm id: F] .

op ; : NonEmptyConstraintSet ConstraintSet

-> NonEmptyConstraintSet [ditto] .

var NECS : NonEmptyConstraintSet .

eq NECS ; NECS = NECS . --- Idempotence

It is easy to grasp the intuition behind the different sorts and the subsort hier-
archies in the above fragment of Maude code. The operator ; represents the
disjunction of constraints. It is an associative and commutative operator that
has F as its identity element. We express the idempotency property of the oper-
ator ; by a specific equation on variables from the NonEmptyConstraintSet

subsort.

In order to incrementally add new constraints throughout the program
execution, we define the composition operator x as follows:
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op x : ConstraintSet ConstraintSet -> ConstraintSet [assoc] .

var CS : ConstraintSet .

var NECS1 NECS2 : NonEmptyConstraintSet .

var NEC NEC1 NEC2 : NonEmptyConstraint .

eq F x CS = F . --- L-Zero element

eq CS x F = F . --- R-Zero element

eq F x F = F . --- Double-Zero

eq NEC1 x (NEC2 ; CS)

= (NEC1 , NEC2) ; (NEC1 x CS) . --- L-Distributive

eq (NEC ; NECS1) x NECS2

= (NEC x NECS2) ; (NECS1 x NECS2) .--- R-Distributive

The transformation of clauses. Let P be a Datalog program defining
predicate symbols p1 . . .pn where we denote by ari the arity of pi. Before
describing the transformation process, we introduce some auxiliary notations.
∣p∣ is the number of facts or clauses defining the predicate symbol p. Following
the Datalog standard, without loss of generality we assume that a predicate p
is defined only by facts, or only by clauses [vL90].

Let us start by describing the case when predicates are defined by facts.
We transform the whole set of facts that define a given predicate symbol p into
a single equation by means of a disjunction of answer constraints. Formally,
for each pi with 1 ≤ i ≤ n that is defined in the Datalog program only by facts,
we write the following snippet of Maude code, where the symbol ci,j,k is the
k-th argument of the j-th fact defining the predicate symbol pi:

var Ti,1 ... Ti,ar i : Term .

eq pi(Ti,1, ... ,Ti,ar i) = (Ti,1 = ci,1,1, ... , Ti,ar i = ci,1,ar i) ; ...

; (Ti,1 = ci,∣pi∣,1, ... , Ti,ar i = ci,∣pi∣,ar i) .

Let us now consider the transformation for Datalog clauses with non-empty
body. Similarly to the previous case, the proposed transformation combines
in a single equation the disjunction of the calls to all functions representing
the different clauses for the considered predicate symbol p. For each pi with
1≤ i≤n defined only by clauses with non empty body, we have the following
piece of code:

var Ti,1 ... Ti,ar i : Term .

eq pi(Ti,1, ... ,Ti,ar i) = pi,1(Ti,1, ... ,Ti,ar i) ; ...

; pi,∣pi∣(Ti,1,...,Ti,ar i) .

Each call to a function pi,j with 1 ≤ j ≤ ∣pi∣ produces the answers that are
computed by the j-th clause of the considered predicate symbol. Now we
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proceed to define how each of these clauses is transformed. Notation τai,j,s,k
denotes the name of the variable or constant symbol that appears in the k-th
argument of the s-th subgoal in the j-th clause defining the i-th predicate of
the original Datalog program. When s = 0, then the function refers to the
arguments in the head of the clause.

Let us start by considering the case when we just have one subgoal in the
body of the clause. We define the function τpi,j,s, which returns the predicate
symbol that appears in the s-th subgoal of the j-th clause that defines the i-th
predicate in the Datalog program. For each clause having just one subgoal,
we formulate the following transformation:

eq pi,j(τ
a
i,j,0,1,...,τ

a
i,j,0,ar i

) = τpi,j,1(τ
a
i,j,1,1, . . . , τ

a
i,j,1,r) .

In our formalization, r is a shorthand that denotes an arity. When r is used
to index the arguments of a certain predicate p it denotes the arity of p, e.g.,
in the example above, r is the arity of τpi,j,1.

In the case when more than one subgoal appears in the body of the clause,
we want to impose a left-to-right evaluation strategy. We use auxiliary func-
tions that are defined with specific patterns to force such an execution order3.
Specifically, we impose that a subgoal cannot be invoked until the subgoal
variables that also occur in previous subgoals have been instantiated. We call
these variables linked variables. Let us first formalize the auxiliary notions
that we need for expressing our transformation.

Definition 18 (linked variable) A variable is called linked variable if and
only if it occurs in two or more subgoals of the clause’s body.

Definition 19 (function linked) Let C be a Datalog clause. Then the func-
tion linked(C) is the function that returns the list of pairs containing a linked
variable in the first component, and the list of positions where such a variable
occurs in the body of the clause in the second component4.

Example 20
For example, given the Datalog clause

C = p(X1,X2) :- p1(X1,X3), p2(X1,X3,X4), p3(X4,X2).

we have that

linked(C) = [(X1,[1.1,2.1]),(X3,[1.2,2.2]),(X4,[2.3,3.1])]

3Conditional equations could also be used to impose left-to-right evaluation, but in prac-
tice they suffer from poor performance as revealed by our experiments.

4Positions extend to goals in the natural way.
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Given a goal g, we define the notion of relevant linked variables for a
given subgoal of g as the linked variables of the subgoal that also appear in a
preceding subgoal in g.

Definition 21 (Relevant linked variables) Given a clause C and an in-
teger number n, we define the function relevant that returns the variables that
are shared by the n-th subgoal and some preceding subgoal:

relevant(n,C)={X ∣(X,LX)∈ linked(C),∃i, j,m /n.i∈LX,m.j ∈LX,m<n}

Similarly to [SKGST07], note that we are not marking the input/output
positions of the predicates, as opposed to more traditional transformations.
We are just identifying the variables whose values must be propagated in
order to evaluate the subsequent subgoals following the evaluation strategy.

Now we are ready to address the problem of transforming a clause with
more than one subgoal (and maybe existentially quantified variables) into a
set of equations. Intuitively, the main function initially calls to an auxiliary
function that undertakes the execution of the first subgoal. We have as many
auxiliary functions as subgoals in the original clause minus one. Also, in the
right-hand side (rhss) of the auxiliary function definitions, the execution order
of the successive subgoals is implicitly controlled by passing the results of each
subgoal as a parameter to the subsequent function call.

Let the function pi,j generate the solutions calculated by the j-th clause of
the predicate symbol pi. We state that psi,j,s represents the auxiliary function
that corresponds to the s-th subgoal of the j-th clause defining the predicate pi.
Then, for each clause, we have the following translation, where the variables
X1. . . XN of each equation are calculated by the function relevant(s,clause(i,j))5

and transformed into the corresponding Maude terms.
The equation for pi,j below calls the first auxiliary function (psi,j,2) that

computes the (partial) answers for the second subgoal. This is done by first
computing the answers for the first subgoal τpi,j,1 in its first argument. The
second argument of the call to psi,j,2 represents the list of terms in the initial
predicate call that, together with the information retrieved from Definitions
19 and 21, allow us to correctly build the patterns and function calls during
the transformation.

eq pi,j(τ
a
i,j,0,1,...,τ

a
i,j,0,ari

) = psi,j,2(

τpi,j,1(τ
a
i,j,1,1,...,τ

a
i,j,1,r),

τai,j,0,1 ... τai,j,0,ari

) .

5The notation clause(i,j) represents the j-th Datalog clause defining the predicate symbol
pi.
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Then, for each auxiliary (unraveling) function, we declare as many con-
stants as relevant variables are in the corresponding subgoal.

var C1 ... CN : Constant .

var NECS : NonEmptyConstraintSet .

eq psi,j,s(NECS, T1...Tari) = (4.1)

psi,j,s+1(ps’i,j,s(NECS, T1...Tari), T1...Tari) .

eq psi,j,s(F, LL) = F . (4.2)

eq ps’i,j,s(((X1=C1,...,XN=CN, C) ; CS), T1 . . . Tari) = (4.3)

( (τpi,j,s(τ
v
i,j,s,1,..., τvi,j,s,r)[X1\C1,...,XN\CN]) x

(X1=C1,...,XN=CN, C)

) ; ps’i,j,s(CS, T1...Tari) .

eq ps’i,j,s((T ; CS), T1...Tari) = (4.4)

τpi,j,s(τ
v
i,j,s,1,...,τ

v
i,j,s,r) ; ps’i,j,s(CS, T1...Tari) .

eq ps’i,j,s(F , LL) = F . (4.5)

The left hand side of the Equation (4.3) for this auxiliary function is defined
by using patterns that adjust the relevant variables to the values already com-
puted by the execution of a preceding subgoal. Note that we may have more
assignments in the constraint, which is represented by C, and that we may
have more possible solutions in CS. The Equations (4.3), (4.4) and (4.5) for
ps’i,j,s take each possible (partial) solution and combine it with the solutions
given by the s-th subgoal in the clause (whose predicate symbol is τpi,j,s). Note
that we propagate the instantiation of the relevant variables by means of a
suitable substitution.

The equation for the last subgoal in the clause is slightly different, since
we do not need to recursively invoke the auxiliary equation ps’i,j,s. Assuming
that g denotes the number of subgoals in a clause, we define

eq psi,j,g(((X1=C1,...,XN=CN, C) ; CS) , T1...Tari) =

((τpi,j,g(τ
v
i,j,g,1,...,τ

v
i,j,g,r)[X1\C1,...,XN\CN]) x (X1=C1,...,XN=CN, C))

; psi,j,g(CS , T1...Tari) .

eq psi,j,g((T ; CS) , T1...Tari) =

τpi,j,g(τ
v
i,j,g,1,...,τ

v
i,j,g,r) ; psi,j,g(CS , T1...Tari) .

eq psi,j,g(F , LL) = F .

Query representation. Finally, we define the transformation for a Datalog
query q(X1, . . . ,Xn) (where Xi, 1≤i≤n are Datalog variables or constants) as
the Maude function q(τ q1,...,τ

q
n), where τ qi , 1≤i≤n is the result of applying

the proposed transformation to the corresponding Xi.
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Correctness of the transformation.

The transformation from Datalog programs into Maude programs defined so
far satisfies that the normal form computed for the term that stands for a
Datalog query represents the set of computed answers for a query of the origi-
nal Datalog program. Below we demonstrate that the transformation is sound
and complete w.r.t. the observable of computed answers.

We first introduce some auxiliary notation. Let CS be a ConstraintSet of
the form C1 ; C2 ; ...; Cn where each Ci, i ≥ 1 is a Constraint in normal
form (C1 = Cte1,...,Cm = Ctem), and let V be a list of variables. We write
Ci∣V to the restriction of the constraint Ci to the variables in V . We extend the
notion to sets of constraints in the natural way, and denote it as CS∣V . Given
two terms t and t′, we write t →∗

S t
′ when there exists a rewriting sequence

from t to t′ in the Maude program S. Also, var(t) is the set of variables
occurring in t.

Now we define a suitable notion of (rewriting) answer constraint :

Definition 22 (Answer Constraint Set) Given a Maude program S that
is the result of our transformation and an input term t, we say that the answer
constraint set computed by t→∗

S CS is CS∣var(t).
There is a natural isomorphism between the equational constraint C and

an idempotent substitution θ = {X1/C1,X2/C2, . . . ,Xn/Cn}, which is given
by the following: C is equivalent to θ iff (C ⇔ θ̂), where θ̂ is the equational
representation of θ. By abuse, given a disjunction CS of equational constraints
and a set of idempotent substitutions (Θ = ∪ni=1θi), we define Θ ≡ CS iff
CS⇔ ⋁ni=1 θ̂i.

Next, we prove that, for a given query in a Datalog program P , each answer
constraint set computed for the corresponding input term in the transformed
Maude program is equivalent to the set of computed answers for P .

Theorem 23 (Correctness and completeness) Consider a Datalog pro-
gram P together with a query q. Let T (P ) be the corresponding transformed
Maude program, and let Tg(q) be the corresponding transformed input term.
Let Θ be the set of computed answers of P for the query q, and let CS∣var(Tg(q))
be the answer constraint set computed by Tg(q)→∗

T (P ) CS. Then,

Θ ≡ CS∣var(Tg(q)).

Proof of Theorem 23

(⇐) We proceed by induction on both the structure of the clauses and the
length of the computations.
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In order to demonstrate the claim, we must prove that, if Tg(q)→!
T (P ) CS,

then for every C in the answer constraint set CS, there exists a computed
answer θ for q and P such that C∣var(Tg(q)) ≡ θ.

Let us first consider the case when q is defined only by facts.
By the definition of our transformation, when the predicate symbol (of

arity m) of the query q is defined by facts6 , there exists an equation in T (P ),
whose left hand side has the form q(T1, . . . , Tm), that rewrites to an answer
constraint set which contains as many answer constraints as the number of
facts that define the predicate in the Datalog program. Also by definition, each
answer constraint corresponds to one (ground) fact in the Datalog program
that instantiates each argument of the predicate to the appropriate constant.

In this case, the rewriting sequence for the initial term Tg(q) is

Tg(q)→T (P ) C1 ; . . . ; Cn →!
T (P ) Cv ; . . . ; Cw

where n is the number of facts defining the Datalog predicate and v, . . . ,w ∈
{1, . . . , n}. Each answer constraint occurring in C1 ; . . . ; Cn comes up from
one Datalog fact. The second part of the sequence is the simplification for
the union operator ; and for the constraint constructors. The simplification
consists in removing duplicate elements and collapsing inconsistent constraints
to F. The inconsistent constraints appear when a single variable is equaled to
two different values or when two different constants are equaled. This case
may occur when a query is partially (or totally) instantiated and/or when
it has a variable that appears multiple times. In this case, all the answer
constraints that are incompatible with the passed value are collapsed into F.
In the Datalog setting, this corresponds with failing of the attempt to unify
the query with the facts that generate these answers. It is easy to observe that
the Datalog resolution is able to compute each of these consistent solutions.

Now we consider the case when q is defined by n clauses with non-empty
bodies. By definition of our transformation, the initial term rewrites as follows:

Tg(q)→T (P ) q1(T1, . . . , Tm) ; . . . ; qn(T1, . . . , Tm).

Also by definition, each function qi can be defined in our transformation in two
different ways, depending on the number of subgoals in the clause represented
by qi.

Let us consider the case of a clause having a single subgoal. Let the
equation defining the function symbol qi be

eq qi(U1, . . . ,Um) = p(V1, . . . ,Vz)
6Remember that, in Datalog, predicates are defined by facts or by clauses but not by

facts and clauses altogether.
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where U1, . . . ,Um and V1, . . . ,Vz are the terms in the Datalog clause. Therefore,
many of them may coincide, and the set of variables in V1, . . . ,Vz subsumes the
set of variables in U1, . . . ,Um (remember that we are considering safe Datalog
programs).

Hence, the rewriting sequence given by the equation shown above is as
follows:

qi(T1, . . . ,Tm)→T (P ) p(W1, . . . ,Wz)

Notice that p is a predicate symbol in the Datalog program that is also trans-
formed. By inductive hypothesis, p(W1, . . . ,Wz) rewrites to the set of its
correct answer constraints C′1 ; . . . ; C′w∣var(p(W1,...,Wz)). Since we are con-
sidering safe Datalog programs, we know that all the variables T1, . . . , Tm
occur in the arguments of the body subgoals and are thus in the set of vari-
ables {W1, . . . ,Wz}. Therefore, the correct answer constraint for the query is
C′1 ; . . . ; C′w∣var(q(T1,...,Tm)).

Let us now proceed with the general case when the clause body contains
more than one subgoal. In this case, the rewriting sequence starts by rewrit-
ing to an auxiliary function s2 which represents the execution of the second
subgoal, after having reduced the first one (on the first argument of s2). This
is ensured by the operational semantics of Maude and the patterns in the
definition of the auxiliary functions.

The second part of the sequence below corresponds to the computation of
the first subgoal:

qi(T1, . . . ,Tm) →T (P ) s2( p(W1, . . . ,Wz), T1. . .Tm )
→∗
T (P ) s2( C1 ; . . . ; Cw, T1. . .Tm )

By inductive hypothesis, the set C1 ; . . . ; Cw contains correct answer con-
straints for p(W1, . . . ,Wz). At this execution point, following the definition of
our transformation, there are two possibilities depending on whether or not
there are more subgoals. In the following, (Case 1) will refer to the case in
which there are more subgoals, and (Case 2) to the case in which there are
not. Let us assume without loss of generality that we are dealing with the i-th
subgoal (function symbol si).

Case 1 In this case, the computation may proceed in two different ways:

1. There is no solution for p(W1, . . . ,Wz); thus, the answer constraint
set is F. In this case, the rewriting sequence is:

si( C1 ; . . . ; Cw, T1. . .Tm )→T (P ) F
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Therefore, there exists no solution for the first subgoal and the
computation of the query trivially fails, which corresponds with
the Datalog resolution of p(W1, . . . ,Wz).

2. Consider the case when there are w different answer constraints for
p(W1, . . . ,Wz). Following the definition of our transformation, the
rewriting sequence is:

si( C1 ; . . . ; Cw, T1. . .Tm )
→T (P ) si+1( s′i( C1 ; . . . ; Cw, T1. . .Tm ), T1. . .Tm )

Note that, in order to compute the answer constraints for the third
subgoal (si+1), we first need to rewrite the second subgoal by re-
ducing the redex s′i that contains the partially accumulated answer
constraint set. Depending on the form of this constraint set, we
have three possible rewritings:

(a) The first answer constraint (C1) is T (which is a term of the
EmptyConstraint sort); thus, the execution of the preceding
subgoal (which is ground) computed no variable substitution:

si+1( s′i( T ; . . . ; Cw, T1. . .Tm ), T1. . .Tm )
→T (P ) si+1( q(Q1, . . . ,Qz) ; s′i( C2 ; . . . ; Cw, T1. . .Tm ),

T1. . .Tm )
→∗
T (P ) si+1( C′1 ; . . . ; C′w′ ; s′i( C2 ; . . . ; Cw, T1. . .Tm ), T1. . .Tm )

By inductive hypothesis, C′1, . . . ,C
′
w′ are correct answer con-

straints for the i-th subgoal (whose function symbol is q, given
by the function τp of our transformation). Intuitively, this
rewriting step represents the propagation of variable assign-
ments to the subsequent subgoals. The recursive call in s′i
propagates not only the information from the set of answer
constraints for the first subgoal, but also the call pattern. We
will come back to this point of the proof after discussing the
remaining cases.

(b) The first answer constraint is not T, generating the following
rewriting sequence:

si+1( s′i( C1 ; . . . ; Cw, T1. . .Tm ), T1. . .Tm )
→T (P ) si+1( q(Q1, . . . ,Qz)[Qj/Xj , . . . ,Qk/Xk]) x C1 ;

s′i( C2 ; . . . ; Cw, T1. . .Tm ),
T1. . .Tm )

→∗
T (P ) si+1( (C′1 ; . . . ; C′w′) x C1 ;

s′i( C2 ; . . . ; Cw, T1. . .Tm ),
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T1. . .Tm )
Note that, the substitution q(Q1, . . . ,Qz)[Qj/Xj , . . . ,Qk/Xk]
is defined to replace each relevant variable Xj of q by its com-
puted value, captured in the pattern of the lhs of the corre-
sponding transformation equation. The constraints for these
values are also in the computed answer C1. By inductive hy-
pothesis, C′1, . . . ,C

′
w′ are correct answer constraints for the

term q(Q1, . . . ,Qz)[Qj/Xj , . . . ,Qk/Xk]. The operator x com-
bines each solution of the second subgoal with the information
in C1. Since we have propagated the shared information with
the applied substitution before the subsequent reduction step,
we know that the shared variables have the same value; thus,
the new combined solutions are consistent for the conjunction
of the two (or more) subgoals. Note that the only case when
inconsistencies may arise (and be simplified) by the x operator
is when both sets of answers contain an output variable and
each one computes a different value for it. This inconsistent
case is reduced to false, so no inconsistent answer constraint is
carried on.

(c) There are no answer constraints to proceed with; thus, the first
argument is F and the rewriting sequence is:

si+1( s′i(F, T1. . .Tm )), T1. . .Tm )→T (P ) si+1( F, T1. . .Tm )

This last case is the base case for the recursion appearing in the
two previous ones. By induction on the number of elements in the
answer constraint set C1 ; . . . ; Cw, we can see that the subterm
s′i( C2 ; . . . ; Cw, T1. . .Tm ) in the cases (a) and (b) is a smaller
recursive call.

Hence, we are at the point in which we have computed all the
accumulated answer constraints up to the i-th subgoal:

si+1( C1 ; . . . ; Cn, T1. . .Tm )

Case 2 In this case, si is the last subgoal, so no propagation of information
is performed. Let us recall the term that had to be reduced:

si( C1 ; . . . ; Cw, T1. . .Tm )

Also in this case, there are three possible paths:
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1. The first answer constraint C1 is T (which is an EmptyConstraint),
thus the computation of the previous subgoal (which is ground)
performed no substitution of variables:

si( T ; . . . ; Cw, T1. . .Tm )
→T (P ) q(Q1, . . . ,Qn) ; si( C2 ; . . . ; Cw, T1. . .Tm )
→∗
T (P ) C

′
1 ; . . . ; C′w′ ; si( C2 ; . . . ; Cw, T1. . .Tm )

By inductive hypothesis, C′1 ; . . . ; C′w′ are the correct answer
constraints of q(Q1, . . . ,Qn). For the recursive call, the proof is
perfectly analogous to the corresponding one for the other cases
discussed above.

2. The first answer constraint is not T, generating the following rewrit-
ing sequence:

si( C1 ; . . . ; Cw, T1. . .Tm )
→T (P ) q(Q1, . . . ,Qz)[Qj/Xj , . . . ,Qk/Xk]) x C1 ;

si( C2 ; . . . ; Cw, T1. . .Tm )
→∗
T (P ) (C′1 ; . . . ; C′w′) x C1 ; si( C2 ; . . . ; Cw, T1. . .Tm )

Similarly to Case (1.2.b) above, the Xj are the linked variables that
have already been instantiated, and their value is propagated to the
corresponding Qj . The Xj variables are computed in C1. By in-
ductive hypothesis, C′1, . . . ,C

′
w′ are correct answer constraints for

the term q(Q1, . . . ,Qz)[Qj/Xj , . . . ,Qk/Xk]. Then, the x operator
combines each solution of the second subgoal with the information
in C1. Since we have passed the shared information with the substi-
tution before reduction, we know that the shared variables have the
same value; thus, no inconsistency comes up due to these variables.
The only case when inconsistencies may arise (and be simplified)
by the x operator is when both sets of answers contain an output
variable and each one computes a different value for it. This incon-
sistent case is reduced to false, so no inconsistent answer constraint
is carried on.

As in the previous case, we will consider the recursive call after
having presented the three cases.

3. There are no answer constraints to proceed with; thus, the first
argument is F and the rewriting sequence is:

si( F, T1. . .Tm )→T (P ) F
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This last case is the base case for the recursion appearing in the two
previous ones. By induction on the cardinality of the set of answer
constraints C1 ; . . . ; Cw, we can see that the subterm

si( C2 ; . . . ; Cw, T1. . .Tm )

is a smaller recursive call, thus at some point the base case will be
reached.

Hence, we are at the point in which we have computed all the accumu-
lated answer constraints up to the last i-th subgoal:

C1 ; . . . ; Cn

(⇒) We proceed by induction on both the structure of the clauses and the
length of the computations.

We must prove that, for each computed answer θ for q and P , after the
reduction Tg(q)→!

T (P ) CS, there exists a C in the answer constraint set CS such

that C∣var(Tg(q)) ≡ θ.
Let us first consider the case when q is just defined by facts. For each

fact defining the predicate of the query in the Datalog program, there are two
cases:

1. It is possible to unify the query with the fact, getting a computed answer
given by the substitution θ.

2. The query does not unify with the fact, so there is no computed answer
for this execution branch.

The second case may occur (1) when a query is partially (or totally) instan-
tiated and the given values do not coincide with those in the corresponding
facts; or (2) when a query has a variable that appears multiple times in its
arguments and a single fact assigns two different values to such variable at the
same time.

By definition, our transformation generates an answer constraint for each
fact. Assume that the query has the form q(A1,...,Am) where each Ai,
1 ≤ i ≤m is a variable or a constant. Given a fact q(t1,...,tm), by definition
of our transformation, there exists a C in CS of the form, ⋀1≤i≤mAi = ti.
For the first case above, clearly θ is equal to C in normal form (i.e., after
having simplified the constraints of the form Cte = Cte when some argument
in the query is instantiated). Now consider the second case above; then there
exists an equality constraint Cte = Cte’ for two different constants, or two
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equality constraints V = Cte , V = Cte’ with Cte ≠ Cte’; therefore, after
normalization, the answer constraint reduces to F (correctness).

The rewriting sequence for the initial term Tg(q) is

Tg(q)→T (P ) C1 ; . . . ; Cn →!
T (P ) Cv ; . . . ; Cw

where n is the number of facts defining the Datalog predicate and v, . . . ,w ∈
{1, . . . , n}. Each answer constraint in C1 ; . . . ; Cn comes up from one Datalog
fact. The second part of the sequence is the simplification for the union oper-
ator and constraint constructors.

Now we consider the case when q is defined by n clauses with non-empty
bodies. We must ensure that each of these solutions is included in the set of
answer constraints CS. By definition of our transformation, the set of answer
constraints for q is the disjunction of the sets of answer constraints gener-
ated for each clause. Let us consider the solutions computed by each clause
independently.

We recall the first step of the initial Maude term rewriting sequence:

Tg(q)→T (P ) q1(T1, . . . , Tm) ; . . . ; qn(T1, . . . , Tm).

Next we prove that the solutions computed from the i-th clause are in-
cluded in the set of answer constraints computed by reducing qi(T1, . . . , Tm).
By definition, each function qi can be defined in our transformation in two
different ways, depending on the number of subgoals in the clause represented
by qi.

Let us consider the case of a clause having a single subgoal. Assume that
the term at the rhs of that clause is a predicate call with predicate symbol
p and z arguments: p(V1, . . . , Vz). By definition of our transformation, the
equation for this clause is the following one, where p is now a defined function
symbol:

eq qi(U1, . . . ,Um) = p(V1, . . . ,Vz)
where U1, . . . ,Um and V1, . . . ,Vz are the terms in the Datalog clause. Therefore,
many of them may coincide, and the set of variables in V1, . . . ,Vz subsumes the
set of variables in U1, . . . ,Um (recall we are considering safe Datalog programs).

The rewriting sequence given by the equation shown above is as follows:

qi(T1, . . . ,Tm)→T (P ) p(W1, . . . ,Wz)→!
T (P ) C

′
1 ; . . . ; C′w

By inductive hypothesis, for every computed answer θ of the Datalog query
p(W1, . . . ,Wz), there exists an answer constraint C′i, 1 ≤ i ≤ w such that θ ≡ C′i.
Since the names of arguments in the Datalog program are preserved in the



4.2. A complete Datalog to Rwl transformation 67

Maude code, the computed answers restricted to the variables of the initial
query form the answers for the Maude query. It is clear that, if the same
restriction is applied to the answer constraint, the Datalog answers are still
equivalent to the restricted answer constraint.

Let us now proceed with the general case when the clause body contains
more than one subgoal. In this case, the chosen top-down left-to-right Datalog
strategy states that, in order to compute the answers for the query, the answers
for the first subgoal must be computed first. Then, the rest of the body
with the corresponding substitutions (from the resolution of the first subgoal)
must be resolved. As in the above case, we prove that each computed answer
for this specific clause has an equivalent answer constraint computed by the
corresponding qi function.

Following our transformation, the rewriting sequence starts by rewriting
to an auxiliary function s2. This function represents the execution of the
second subgoal after having reduced the first subgoal (on the first argument of
s2). This is ensured by the operational semantics of Maude, the definition of
linked and relevant variables, and the patterns in the definition of the auxiliary
functions.

The second part of the sequence below corresponds to the computation of
that first subgoal:

qi(T1, . . . ,Tm)
→T (P ) s2( p(W1, . . . ,Wz), T1. . .Tm )
→∗
T (P ) s2( C1 ; . . . ; Cw, T1. . .Tm )

By inductive hypothesis, for each computed answer θ of the Datalog query
p(W1, . . . ,Wz), there exists an answer constraint Ci in the set C1 ; . . . ; Cw
such that θ ≡ Ci. At this execution point, following the definition of our
transformation, there are two possibilities depending on whether or not there
are more subgoals. In the following, (Case 1) will refer to the case in which
there are more subgoals, and (Case 2) to the case in which there are not.

Let us assume that we are dealing with the i-th subgoal, which has the
function symbol si.

Case 1 In this case, the computation may proceed in two different ways:

1. There is no solution for p(W1, . . . ,Wz). Therefore, the answer con-
straint set is of the form F. The rewriting sequence in this case
is:

si( C1 ; . . . ; Cw, T1. . .Tm )→T (P ) F

This means that there is no solution for the first subgoal, so this
case is trivially proved.
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2. Consider the case when there are w different answer constraints
for p(W1, . . . ,Wz) (that by induction hypothesis include the equiv-
alent answer constraints for each Datalog computed answer). The
rewriting sequence following the definition of our transformation is:

si( C1 ; . . . ; Cw, T1. . .Tm )→T (P ) si+1( s′i( C1 ; . . . ; Cw, T1. . .Tm ),
T1. . .Tm )

Note that, in order to compute the answer constraints for the sub-
goal si+1, we first have to rewrite the previous one by reducing the
redex s′i that contains the partially accumulated answer constraint
set. Depending on the form of this constraint set, we have three
possible rewritings:

(a) The first answer constraint for the previous subgoal (C1) is T

(which is an EmptyConstraint). Therefore, the computation
of the previous subgoal (which is ground) performed no substi-
tution of variables:

si+1( s′i( T ; . . . ; Cw, T1. . .Tm )), T1. . .Tm )
→T (P ) si+1( q(Q1, . . . ,Qz) ; s′i( C2 ; . . . ; Cw, T1. . .Tm ),

T1. . .Tm )
→∗
T (P ) si+1( C′1 ; . . . ; C′w′ ; s′i( C2 ; . . . ; Cw, T1. . .Tm),

T1. . .Tm )
By inductive hypothesis, for each computed answer θ for the
call q(Q1, . . . ,Qz), there exists an answer constraint Ci in the
set C′1 ; . . . ; C′w′ such that θ ≡ Ci. These are all answers
for the i-th subgoal (whose function symbol is q, given by the
function τp of our transformation). Intuitively, this rewriting
step represents the propagation of variable assignments to the
subsequent subgoals. It can be seen that, since no substitution
needed to be propagated, all the answer constraints are also
answer constraints for the query consisting of the conjunction
of the previous subgoal(s) and the present one. Therefore, no
solution is lost.
The recursive call of s′i propagates not only the information
from the first answer constraint, but also the information that
is needed to proceed with the computation of the rest of the
solutions. We will come back to this point of the proof after
introducing the rest of the cases in order to prove that answers
are also preserved for them.
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(b) The first answer constraint is not T but a set C1 ; . . . ; Cw,
which by hypothesis includes the equivalent answer constraints
for the computed answers of the i-th subgoal. The rewriting
sequence is:

si+1( s′i( C1 ; . . . ; Cw, T1. . .Tm), T1. . .Tm )
→T (P ) si+1( q(Q1, . . . ,Qz)[Qj/Xj , . . . ,Qk/Xk]) x C1 ;

s′i( C2 ; . . . ; Cw, T1. . .Tm ),
T1. . .Tm )

→∗
T (P ) si+1( (C′1 ; . . . ; C′w′) x C1 ;

s′i( C2 ; . . . ; Cw, T1. . .Tm ),
T1. . .Tm )

where the Xj are the linked variables that have already been
instantiated, and their value is propagated to the correspond-
ing Qj . The Xj variables are computed in C1. By induc-
tive hypothesis, for each computed answer θ produced by the
query q(Q1, . . . ,Qz)[Qj/Xj , . . . ,Qk/Xk], there exists a C′i in
C′1 ; . . . ; C′w′ such that θ ≡ C′i. Then, the x operator com-
bines each solution of the second subgoal with the information
in C1. Since we have passed the shared information with the
applied substitution before the subsequent reduction step, we
know that the shared variables have the same value. Therefore,
the new combined solutions are consistent for the conjunction
of the two (or more) subgoals. Note that the only case when
inconsistencies may arise (and be simplified) by the x operator
is when both sets of answers contain an output variable and
each one computes a different value for it. This inconsistent
case is reduced to false, so no consistent answer constraint is
deleted.

(c) There are no answer constraints to proceed with, so the first
argument is F and the rewriting sequence is:

si+1( s′i( F, T1. . .Tm ), T1. . .Tm )→T (P ) si+1( F, T1. . .Tm )

This last case is the base case for the recursion of the two previ-
ous ones. By induction on the number of elements in the answer
constraint set C1 ; . . . ; Cw, it can be observed that the subterm
s′i( C2 ; . . . ; Cw, T1. . .Tm ) in the cases (a) and (b) is a smaller
recursive call. Therefore, at some point the sequence will reach the
base case.

Hence, we are at the point in which we have computed all the
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accumulated answer constraints up to the i-th subgoal and they
include the equivalent answer constraints to the computed answers
of the Datalog query si+1( C1 ; . . . ; Cn, T1. . .Tm ).

Case 2 In this case, si is the last subgoal, so no propagation of information
must be performed. We now also prove that, in this case, for each com-
puted answer to the query, there exists an equivalent answer constraint
as the result of the rewriting until normalization of the corresponding
transformed query.

Recall that the term that had to be reduced at this point and that should
generate the answer constraints for the considered Datalog clause is

si( C1 ; . . . ; Cw, T1. . .Tm )

where C1 ; . . . ; Cw include the equivalent answer constraints for the
computed answers of p(W1, . . . ,Wz). Similarly to Case 1 above, in this
case there are also three possible rewriting sequences:

1. The first answer constraint for the previous subgoal C1 is T (which
is an EmptyConstraint); thus, the computation of the previous
subgoal (which is ground) performed no substitution of variables:

si( T ; . . . ; Cw, T1. . .Tm )
→T (P ) q(Q1, . . . ,Qn) ; si( C2 ; . . . ; Cw, T1. . .Tm )
→∗
T (P ) C

′
1 ; . . . ; C′w′ ; si( C2 ; . . . ; Cw, T1. . .Tm )

By inductive hypothesis, for each computed answer θ for the call
q(Q1, . . . ,Qz), there exists in the set C′1 ; . . . ; C′w′ an answer con-
straint Ci such that θ ≡ Ci. These are all answers for the i-th subgoal
(whose function symbol is q, given by the function τp of our trans-
formation).

For the recursive call, we come back to this point of the proof after
introducing the rest of the cases to prove that answers are also
preserved for them.

2. The first answer constraint is not T but a set C1 ; . . . ; Cw that
by hypothesis includes the equivalent answer constraints for the
computed answers of the i-th subgoal. The rewriting sequence is:

si( C1 ; . . . ; Cw, T1. . .Tm )
→T (P ) q(Q1, . . . ,Qz)[Qj/Xj , . . . ,Qk/Xk] x C1 ;

si( C2 ; . . . ; Cw, T1. . .Tm )
→∗
T (P ) (C′1 ; . . . ; C′w′) x C1 ; si( C2 ; . . . ; Cw, T1. . .Tm )
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Similarly to Case (1.2.b) above, the Xj are the linked variables
that have already been instantiated, and their value is propagated
to the corresponding Qj . The Xj variables are computed in C1.
By inductive hypothesis, for each computed answer θ produced by
the query q(Q1, . . . ,Qz)[Qj/Xj , . . . ,Qk/Xk]), there exists a C′i in
C′1 ; . . . ; C′w′ such that θ ≡ C′i. Then, the x operator combines each
solution of the second subgoal with the information in C1. Since
we have passed the shared information with the applied substitu-
tion before the subsequent reduction step, we know that the shared
variables have the same value, thus the new combined solutions
are consistent for the conjunction of the two (or more) subgoals.
We note that the only case when inconsistencies may arise (and be
simplified) by the x operator is when both sets of answers contain
an output variable and each one computes a different value for it.
This inconsistent case is reduced to false, so no consistent answer
constraint is deleted.

As in the previous case, we consider the recursive call after having
presented the three cases.

3. There are no answer constraints to proceed with, thus the first
argument is F and the rewriting sequence is:

si( F, T1. . .Tm )→T (P ) F

This last case is the base case for the recursion of the two previous ones.
By induction on the cardinality of the answer constraint set C1 ; . . . ; Cw,
it can be observed that the subterm s′i( C2 ; . . . ; Cw, T1. . .Tm ) in the
cases (a) and (b) is a smaller recursive call. Therefore, at some point of
the sequence the base case will be reached.

Finally, we are at the point in which we have computed all the accumu-
lated answer constraints up to the (last) i-th subgoal and they include the
equivalent answer constraints to the computed answers of the Datalog
query: C1 ; . . . ; Cn.

This concludes the proof.

4.3 Dealing with Java reflection

Addressing reflection is considered a difficult problem in the static analysis of
Java programs, which is generally handled in an unsound or ad-hoc manner
[LWL05]. Reflection in Java is a powerful technique that is used when a
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program needs to examine or modify the runtime behavior of applications
running in the Java virtual machine. For example, by using reflection, it is
possible to write to object fields and invoke methods that are not known at
compile time. Java provides a set of methods to handle reflection. These
methods are found in the package java.lang.reflect.

In Figure 4.1 we show a simple example of reflection in Java. We define a
class PO with two fields: c1 and c2. In the Main class, an object u of class PO is
created by using the constructor method new, which assigns the empty string
to the two fields of u. Then, r is defined as a field of a class, specifically, as the
field c1 of an object of class PO since v stores the value "c1". The sentence
r.set(u, w) states that r is the field object c1 of u, and its value is that of
w, i.e., "c2". Finally, the last instruction sets the new value of v to the value
of u.c1, i.e., "c2".

class PO {
PO (String c1, String c2) {

this.c1 = c1;

this.c2 = c2;

}
public String c1;

public String c2;

}

public class Main {
public static void main(String[] args) {
PO u = new PO("","");

String v = "c1";

String w = "c2";

java.lang.reflect.Field r = PO.class.getField(v);

r.set(u, w);

v = u.c1;

} }

Figure 4.1: Java reflection example.

A pointer flow-insensitive analysis of this program would tell us that r

may point not only to the field object u.c1, but also u.c2 since the variable v

appearing in the argument of the reflective method getField may be assigned
both strings, "c1" and "c2".

The key point for the reflective analysis is the fact that we do not have all
the basic information for the points-to analysis at the beginning of the com-
putation. In fact, the variables that occur in the methods handling reflection
may generate new basic information. A sound proposal for handling Java
reflection is proposed in [LWL05], which is essentially achieved by first anno-
tating the Datalog program so that it is subsequently transformed by means
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of an external (to Datalog) engine. As in [LWL05], we assume we know the
name of the methods and objects that may be used in the invocations. In our
approach, we use the Maude reflection capability to automatically generate the
rules that represent new deduced information without resorting to any ad-hoc
notation or external artifact.

Let us start by showing which pointer-analysis information Joeq would
extract from our example. We enforce the fact that we work at the bytecode
level, so some Java instructions are converted into more than one bytecode
instructions and some new auxiliary variables —in the example $0— are in-
troduced.

Java Code Extracted Information

PO u = new PO("",""); vP0(u,0).

vT(u,PO).

String v = "c1"; vP0(v,12).

vT(v,string).

String w = "c2"; vP0(w,15).

vT(w,string).

java.lang.reflect.Field r vP0($0,18).
= PO.class.getField(v); vT($0,ClassPO).

vT(r,field).

mI(main,21,getField).

iRet(21,r).

actual(21,0,$0).
actual(21,1,v).

r.set(u, w); mI(main,30,set).

actual(30,0,r).

actual(30,1,u).

actual(30,2,w).

v = u.c1; l(u,c1,v).

The following predicates state properties or actions performed to references
and heap objects.

vP0(V,H): A new object H is created —where H is the position of the call to
the object’s constructor in the code— and is referenced by the variable
V.

vT(V,T): The declared type of variable V is T.

hT(H,T): The object H has type T.
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actual(I,N,V): The variable V is used as the actual parameter number N at
the invocation point7 I.

mI(M,I,N): At invocation point I of method M there is a method call to be
resolved with the name N.

iRet(I,V): The variable V will receive the return value of the invocation at
point I.

l(V1,F,V2): The value of the field F of variable V1 is assigned to variable V2.

s(V1,F,V2): The value of variable V2 is assigned to the field F of variable V1.

With this kind of information, it is easy to specify a non-reflective pointer
analysis by means of Datalog clauses as in [WACL05]. The analysis would
then mimic any possible flow of pointers in the code. Nevertheless, the analysis
would be missing some hidden flow of pointers related to the use of reflection.
Following the code execution with the semantics of the reflection API of Java
in mind, v is the name of the field represented by the reflective object r. Then,
the instruction r.set(u,w) stores the value of w in the field c1 (represented
by r) of the object pointed by u, and this would be resumed in the Datalog
fact s(u,c1,w). However, this behavior is dynamic because it depends on the
runtime values of the variable v, and so we have no way to know what objects
v can point to at compile time. For example, if v points to the string "c1", as
it does in the example, a new reflective object which represents a "c1" field of
objects of class PO would be created and assigned to the variable r. Any call
to the method set on the previous object would store within the field "c1"

of the first parameter the content of the second parameter. Because v could
potentially point to many other strings representing fields, r could point to
many reflective objects representing the correspondent fields, and so calls to
method set on r could mean many different kinds of stores s(V1,F,V2).

The reflective analysis proposed by [LWL05] uses additional information
(extracted by the Joeq compiler) regarding which calls are done to the reflec-
tive API. This enriches the analysis allowing us to deduce new “on-the-fly” (at
analysis time) facts that in the basic, non-reflective analysis were considered
static information. For example, store facts s(V1,F,V2) can also be deduced
by the clause:

s(V1,F,V2) :- iE(I,’Field.set’) , actual(I,0,V) , vP(V,H) ,

fieldObject(H,F) , actual(I,1,V1), actual(I,2,V2) .

7An invocation point is either a method call, a static call or a special call at the bytecode
level.
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Let us present the new predicates that appear in this rule:

iE(I,M): There is a call to the resolved method8 M at the invocation point I.
This predicate represents an approximation to the program’s call-graph.

fieldObject(H,F): The object H is a reflective object representing the field
F.

These predicates are also derived from other facts. The meaning of the clause
is straightforward: we state that V2 is stored in the field F of V1 if there is call
to Field.set over a reflective object representing field F (fieldObject(H,F))
and the first and second parameters of that call are V1 and V2, respectively.

In our reflective setting, we have followed the direct approach of translating
Datalog clauses into Maude rules as in [AFJV09c] in order to ease the manip-
ulation of modules at the metalevel. In this approach, each Datalog clause is
translated into a Maude conditional rule. Therefore, checking that the clause
body is satisfiable essentially boils down to checking if the condition of that
rule holds. Following this idea, facts are translated into non-conditional rules
in one-to-one correspondence. Consequently, deducing information amounts
to rewriting queries into assignments to its arguments. The rule above is
translated into the following Maude rule:

crl s(V1,F,V2) => V1 -> CteV1, F -> CteF, V2 -> CteV2

if iE(I,’Field.set) => I -> CteI, ’Field.set -> ’Field.set

/\ isConsistent I -> CteI

/\ actual(CteI,’0,V) => CteI -> CteI, ’0 -> ’0 ,V -> CteV

/\ isConsistent V -> CteV

/\ vP(CteV,H) => CteV -> CteV , H -> CteH

/\ isConsistent H -> CteH

/\ fieldObject(CteH,F) => CteH -> CteH, F -> CteF

/\ isConsistent F -> CteF

/\ actual(CteI,’1,V1) => CteI -> CteI, ’1 -> ’1, V1 -> CteV1

/\ isConsistent V1 -> CteV1

/\ actual(CteI,’2,V2) => CteI -> CteI, ’2 -> ’2, V2 -> CteV2

/\ isConsistent V2 -> CteV2 .

With this transformation, it can be seen that the structure of the resulting
Maude code is very close to the original Datalog program. The novelty in the
reflective analysis is in the need for new information to support the analy-
sis, such as identifiers of reflective methods and string constants representing

8A resolved method refers to specific code from a certain class.
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names of reflective objects. In our proof-of-concept prototype, we have con-
sidered field-reflection analysis. This implies that Joeq must recover facts for
the following two predicates:

stringToField(H,F): The object H is a string representation of field F.

getField(M): The method M is a reflective method which returns a reflective
object representing a field.

The following field-reflection information would be extracted from our ex-
ample:

stringToField(12,c1).

stringToField(15,c2).

getField(Class.getField).

Adding these extra information to the basic, non-reflective analysis we can
deduce new reflective information which enriches the basic analysis. Then, the
enriched basic analysis allows us to deduce new reflective information starting
an iterative process until a fixpoint is reached.

Rewriting logic is reflective in a precise mathematical way: there is a
finitely presented rewrite theory U that is universal in the sense that we can
represent (as data) any finitely presented rewrite theory R in U (including
U itself), and then mimic the behavior of R in U . The fact that rewriting
logic is a reflective logic and the fact that Maude effectively supports reflective
rewriting logic computation make reflective design (in which theories become
data at the metalevel) ideally suited for manipulation tasks in Maude.

Maude’s reflection is systematically exploited in our tool. On one hand, we
can easily define new rules to be included in the specification by manipulating
term meta-representations of rules and modules. On the other hand, by virtue
of our reflective design, our metatheory of program analysis (which includes a
common fixpoint infrastructure) is made accessible to the user who writes a
particular analysis in a clear and principled way.

We have endowed our prototype implementation with the capability to
carrying on reflection analysis for Java. The extension essentially consists of
a module at the Maude meta–level that implements a generic infrastructure
to deal with reflection. Figure 4.2 shows the structure of a typical reflection
analysis running in our tool.

The static analysis is specified in two object-level modules, a basic module
and a reflective module, that can be written in either Datalog or Maude, since
Datalog analyses are automatically compiled into Maude code. The basic pro-
gram analysis (PA) module contains the rules for the classical analysis (that
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Figure 4.2: The structure of the reflective analysis.

neglects reflection) whereas the reflective program analysis module contains
the part of the analysis dealing with the reflective components of the consid-
ered Java program. For example, the rule representing the reflective clause
s(V1,F,V2) would be included in the reflective program analysis module.

The module called solver deals with the program analysis modules at the
meta-level. It consists of a generic fixpoint algorithm that feds the reflective
module with the information that can be inferred by the basic analysis and
vice versa. Our implementation of the fixpoint is the following:

op fixpoint : Module Module -> Module .

var M1 M2 M3 : Module .

ceq fixpoint(M1,M2) = fixpoint(M3,M1)

if M3 := closure(M1,M2)

/\ M3 =/= M2 .

eq fixpoint(M1,M2) = closure(M1,M2) [owise] .

The closure function infers all the information from the module given as
its first parameter and adds it to the module given as its second parameter,
returning the resulting updated module. In order to do that, closure queries
the first module, translates the solutions into rules, and finally adds them to
the second module.

For the points-to analysis with field reflection, the reflective and basic
modules contain 11 rules each, whereas the generic solver is written in just
50 rules (including those that generate rules from the new computed infor-
mation). The fact of separating the specification of the analysis into several
modules enhances its comprehension and allows us to easily compose analysis
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on demand.

4.4 The prototype Datalaude

Datalaude is a Haskell program that implements the Datalog transformation
to Rwl we have presented in this chapter. Datalaude is accessible via a web
interface in http://www.dsic.upv.es/users/elp/datalaude.

As can be seen in Figure 4.3, Datalaude takes the same input files as
Datalog Solve (as explained in Section 3.3), but its output is a Maude
program. This program can subsequently be used by the Maude interpreter to
reduce Datalog queries into sets of constraints representing the corresponding
solutions to the original Datalog query. To do so, first the user should load
the .maude file obtained from Datalaude into the interpreter, and then ask
Maude to reduce the necessary queries.

Example 24
If Datalaude is fed with the classical Andersen points-to analysis, we obtain
a file called andersen.maude. From the Maude interpreter we should load the
transformation with the command:

load andersen.maude .

To execute the query :- vP(V,o2)., which is naturally written in Maude
as vP(vrbl(’V),’o2), we would write the following:

reduce vP(vrbl(’V),’o2) .

The output of Maude is shown below. The first part specifies the term that
has been reduced (first line). The second part shows the number of rewrites
and the execution time that Maude invested to perform the reduction (second
line). The last part, which is written in several lines for the sake of readability,
shows the result of the reduction (i.e., the set of answer constraints) together
with its sort.

reduce in ANALYSIS : vP(vrbl(’v), ’o2) .

rewrites: 39 in 0ms cpu5 (0ms real) ( rewrites/second)

result NonEmptyConstraintSet:

vrbl(’v) = ’q ;

vrbl(’v) = ’r , vrbl(vrbl(’v) , ’o2) = ’q ;

vrbl(’v) = ’v1, vrbl(vrbl(’v) , ’o2) = ’q , vrbl(’q , ’o2) = ’r)

Note that the constraints obtained reference not only the variables occur-
ring in the query, but also the existentially quantified variables used to infer
the solutions.
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Figure 4.3: Java program analysis using Datalaude.
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4.5 Experimental results

This section reports on the performance of our prototype, Datalaude, im-
plementing the proposed transformation. First, we compare the efficiency
of our implementation with respect to a näıve transformation to rewriting
logic documented in [AFJV09c] and shown in Section 4.3; then, we evaluate
the performance of our prototype by comparing it to three public Datalog
solvers. All the experiments were conducted using Java JRE 1.6.0, Joeq
version 20030812, on a Mobile AMD Athlon XP2000+ (1.66GHz) with 700
Megabytes of RAM, running Ubuntu Linux 8.04.

4.5.1 Comparison w.r.t. a previous rewriting-based implemen-
tation

We implemented several transformations from Datalog programs to Maude
programs before developing the transformation procedure presented in this
thesis [AFJV09c]. The first attempt consisted of a one-to-one mapping from
Datalog rules into Maude conditional rules. Then, in order to get rid of all
the non-determinism caused by conditional equations and rules in Maude,
we restricted our transformation to produce only unconditional equations as
defined in the previous section.

In the following, we present the results obtained by using the rule-based
approach, the equational-based approach, and the equational-based approach
improved by using the memoization capability of Maude [CDE+07]. Maude is
able to store each call to a given function (in the running example vP(V,H))
together with its normal form. Thus, when Maude finds a memoized call it
does not reduce it but it just replaces it with its normal form, saving a great
number of rewrites.

Table 4.1 shows the resolution times of the three selected versions. The sets
of initial Datalog facts (a/2 and vP0/2) are extracted by the Joeq compiler
from a Java program (with 374 lines of code) implementing a tree visitor.
The Datalog clauses are those of our running example: the Andersen points-to
analysis. The evaluated query is ?- vP(Var,Heap)., i.e., all possible answers
that satisfy the predicate vP/2.

The results obtained with the equational implementation are an order of
magnitude better than those obtained by the näıve transformation based on
rules. These results are due to the fact that the backtracking associated to
the non-deterministic evaluation penalizes the näıve version. It can also be
observed that using memoization allows us to gain another order of magnitude
in execution time with respect to the basic equational implementation.
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Table 4.1: Number of initial facts (a/2 and vP0/2) and computed answers
(vP/2), and resolution time (in seconds) for the three implementations.

a/2 vP0/2 VP/2 rule-based equational eq.+memozation

100 100 144 6.00 0.67 0.02
150 150 222 20.59 2.23 0.04
200 200 297 48.48 6.11 0.10
403 399 602 382.16 77.33 0.47
807 1669 2042 4715.77 1098.64 3.52

4.5.2 Comparison w.r.t. other Datalog solvers

We have used the same sets of initial facts to compare our prototype (the
equational-based version with memoization) with three Datalog solvers: Xsb
3.2 9, Datalog 1.4 10, and Iris 0.58 11. Average resolution times of three runs
for each solver are shown in Figure 4.4.

Figure 4.4: Average resolution times of four Datalog solvers (logarithmic time).

In order to evaluate the performance of our implementation with respect
to the other Datalog solvers, only resolution times are presented in Figure 4.4
since the compared implementations are quite different in nature. This means
that initialization operations, like loading and compilation, are not taken into
account in the results. Our experiments conclude that Datalaude performs

9http://xsb.sourceforge.net
10http://datalog.sourceforge.net
11http://iris-reasoner.sourceforge.net
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similarly to optimized deductive database systems like Datalog 1.4, which
is implemented in C, although it is slower than Xsb or Iris. These results
confirm that the equational implementation fits our program analysis purposes
better, and provides a versatile and competitive Datalog solver as compared
to other implementations of Datalog.

4.6 Conclusions and Related Work

We have presented a sound transformation from Datalog to Rwl that is aimed
towards Datalog-based static analysis. The transformation carries Datalog
programs to the empowered framework of Rwl while preserving its declara-
tive nature. Reflection is a key capability of Rwl that is specially suited to
implement the evolution of systems. We have applied reflection to formalize
static analyses that deal with Java reflection in a declarative way.

We have also presented some experimental results which show that, under
a suitable transformation scheme (such as the proposed equation-based trans-
formation extended with memoization), Maude can process a large number of
equations extracted from statically analyzed, real Java programs. Our pur-
pose has not been to produce the faster Datalog solver ever, but to provide
a tool that supports sophisticated analyses with reasonable performance in a
purely declarative way.

In the literature, many approaches have been proposed for transforming
logic programs into term rewriting systems [Mar94, Red84, SKGST07]. These
transformations aim at reusing the term rewriting infrastructure to run the
(transformed) logic program while preserving the intended observable behav-
ior (e.g., termination, success set, computed answers, etc.). Traditionally,
translations of logic programs into functional programs are based on impos-
ing an input/output relation (mode) on the parameters of the original pro-
gram [Red84]. However, one distinguished feature of Datalog programs that
burdens the transformation is that predicate arguments are not moded, mean-
ing that they can be used both as input or output parameters. In particular,
a novel transformation that does not impose modes on parameters was pre-
sented in [SKGST07]. The authors defined a transformation from definite logic
programs into (infinitary) term rewriting for the termination analysis of logic
programs. Contrary to our approach, the transformation of [SKGST07] is not
concerned with preserving the computed answers, but only the termination
behavior. Moreover, [SKGST07] does not tackle the problem of efficiently
encoding logic (Datalog) programs containing a huge amount of facts in a
rewriting-based infrastructure such as Maude
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Specification Inference

In the context of computer programs, a specification defines what a computer
program is expected to do. Specifications have been widely used for several
purposes: they can be used to aid (formal) verification, validation or testing,
to instrument software development, as summaries in program understanding,
as documentation of programs, and to discover components in libraries or ser-
vices in a network context, just to mention a few [ABL02, RMY+09, CSH10,
HRD07, GM10, YKZZ08, NLV09, GMM09]. Depending on the context and
the use of specifications, they can be defined before coding (e.g. for valida-
tion purposes), during the program coding (e.g. for testing or understanding
purposes), or after the code has been written (for verification or documenta-
tion). Unfortunately, formal specifications are notoriously hard to write and
debug, causing many programs to lack appropriate documentation. Specifica-
tion inference can help to mitigate these problems and is also useful for legacy
program understanding and malware deobfuscation, where the challenge is to
understand what the malicious code is doing [CJK07]. We can find several pro-
posals for (automatic) inference of high-level specifications (from an executable
or from the source code) of a system, like [ABL02, CSH10, HRD07, GMM09],
which have been proved to be very helpful.

In the literature, specification formalisms have been classified through some
common characteristics [KU10]. It is frequent to distinguish between property-
oriented specifications and model-oriented or functional specifications. It can
be said that property-oriented specifications are at a higher description level
than other kinds of specifications: they consist in an indirect definition of
the system’s behavior by means of stating a set of properties, usually in the
form of axioms, that the system must satisfy [Win90, vV93]. In other words,
a property-oriented specification does not represent the functionality of the
program (the output of the system) but its properties in terms of relations
among the operations that can be invoked in the program (i.e., it identifies
different calls that have the same behavior when executed). This kind of
specifications is particularly well suited for program understanding: the user
can realize non-evident information about the behavior of a given function by
observing its relation to other functions. Moreover, the inferred properties can
manifest potential symptoms of program errors which can be used as input
for (formal) validation and verification purposes.

Clearly, the task of automatically inferring program specifications is in
general undecidable and, given the complexity of the problem, there exists a
large number of different proposals which impose several restrictions. Many
aspects vary from one solution to another: the kind of specifications that are
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computed (e.g., model-oriented vs. property-oriented specifications), the kind
of programs considered, the correctness or completeness of the method, etc.

We can also identify two mainstream approaches to perform the inference
of specifications: glass-box and black-box. The glass-box approach [ABL02,
CSH10] assumes that the source code of the program is available. In this
context, the goal of inferring a specification is mainly applied to document
the code, or to understand it [CSH10]. Therefore, the specification must be
more succinct and comprehensible than the source code itself. The inferred
specification can also be used to automatize the testing process of the program
[CSH10] or to verify that a given property holds [ABL02]. The black-box ap-
proach [HRD07, GMM09] works only by running the executable. This means
that the only information that is used during the inference process is the
input-output behavior of the program. In this setting, the inferred specifi-
cation is often used to discover the functionality of the system (or services
in a network) [GMM09]. Although black-box approaches work without any
restriction on the considered language –which is rarely the case in a glass-
box approach– in general, they cannot guarantee the correctness of the results
(whereas indeed semantics-based glass-box approaches can).

In this second part of the thesis, we investigate white-box techniques for
synthesizing property-based specifications in two programming paradigms:
functional-logic programming —as exemplified in the multiparadigm declar-
ative language Curry— and object-oriented programming —exemplified in
C.



5
Curry, the K Framework and

Matching Logic

This chapter introduces the background knowledge that is necessary to un-
derstand the work presented in this Part II of the thesis. We introduce some
fundamentals related to the multi-paradigm programming language Curry,
the rule-based executable semantic framework K, and Matching Logic, which
is a logic for the verification of systems.

5.1 Curry

Curry is a universal programming language aiming at the amalgamation
of the most important declarative programming paradigms; namely, func-
tional programming and logic programming. Curry combines features like
nested expressions, lazy evaluation and higher-order functions from functional
programming; and logical variables, nondeterministic operations and built-in
search from logic programming.

A Curry program consists of data declarations and function definitions.
For instance, the following data declaration:

data List a = Empty | Cons a (List a)

recursively defines a new polymorphic datatype List a whose values can be
either Empty or have the form Cons x xs, where x and xs stand for values
of types a and List a, respectively. A function definition is composed of
(possibly conditional) oriented equations l = r that define a transformation of
an expression e matching the pattern expression on its left-hand side l, to the
expression on its right-hand side r. For example:

append :: List a -> List a -> List a

append Empty ys = ys
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append (Cons x xs) ys = Cons x (append xs ys)

recursively defines a function append that concatenates the two lists passed
as arguments. The first line declares the type of append, which is a function
that takes two arguments of type List a (the first two List a separated
by a ->) and returns a value of type List a. The next lines specify how
an append expression is transformed. There are two equations, one for each
possible form of the first argument. If the first argument is Empty, the first
equation states that the result of the expression is the second argument; if the
argument has the form Cons x xs (where x and xs can be any expression of
type List a), the second equation specifies that the result is the expression
Cons x (append xs ys).

Executing a Curry program means to simplify an expression until a value
(or a solution) is computed. For example, assume that we want to compute
the concatenation of two lists, one of them consisting of just the element 1,
and the other one with just the element 2. Then, we write the expression to
evaluate:

append (Cons 1 Empty) (Cons 2 Empty)

The Curry interpreter, then, yields the following output:

Result: Cons 1 (Cons 2 Empty)

No more solutions.

where the first line states that a result Cons 1 (Cons 2 Empty) was found.
This is the expected result, because it represents a list of two elements, being
the first 1 and the second 2. The second line is more enigmatic. Since Curry
is nondeterministic, as we mentioned earlier, it tries to reduce expressions in
all possible ways, and each possible reduction way together with its respective
final value constitute a solution. In this example, Curry failed to reduce
the goal/input expression in more than one way; this is why it outputs the
message “No more solutions.”.

One way of introducing nondeterminism in Curry programs is by defin-
ing equations whose left-hand sides overlap. When Curry has to evaluate an
expression that matches the left-hand side of two or more equations, it nonde-
terministically chooses one of them to perform the reduction; that is, it tries
both separately. Nondeterminism in Curry is implemented with backtrack-
ing , as in logic programming . In the presence of a nondeterministic selection
to make, backtracking takes one decision and tracks the rest of options to-
gether with the evaluation context. In this way, the evaluation context allows
to recreate the state of the execution in which the decision was made for later
exploration of the remaining alternatives.
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In other words, when Curry finds nondeterminism during evaluation, it
makes decisions that determine a possible reduction path. After that reduc-
tion, if another solution is required, Curry recovers the evaluation context
and the alternatives of the last nondeterministic situation and takes a different
decision, thus, exploring a different reduction path. For example, the following
definition of a nondeterministic constant (0-ary function):

coin = 0

coin = 1

nondeterministically models the fact that the evaluation of an expression coin

can have as a result both values 0 and 1. If we feed the expression coin to
the Curry interpreter we obtain:

Result: 0

Result: 1

No more solutions.

In this case, since there are only two equations defining coin, there exist only
two ways in which coin can be reduced.

Curry equations can also be conditional, having the form l ∣ c = r, where
c is an expression of the predefined type Success and represents a condition
or constraint . In Curry, expressions with return type Success represent
the logic programming concept of goal ; thus, a function with return type
Success can be considered as the counterpart of a logic programming pred-
icate. Success expressions are special because Curry only checks them for
satisfiability, which is related to the fact that Success type has only one
possible value: “success”. Success expressions are normally used in the con-
ditions of equations to check if the respective equation can be applied, but
they can also be used standalone in order to ask Curry if an expression is
satisfiable (i.e., if it is reducible to success). For example, suppose we have
the counterpart of a logic programming database:

data Person = Mike | Hanna | George | John

parent :: Person -> Person -> Success

parent Mike Hanna = success

parent Hanna George = success

parent Hanna John = success

The first line defines a new datatype Person which has four possible values:
Mike, Hanna, George and John. The next program statement declares that
parent is a function with two arguments that returns a value of type Success,
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that is, a predicate. The following lines are equations that specify for which
values the function parent is defined, that is, for which values that predicate
holds. If we execute the following expression in the previous program:

parent Mike John

the execution yields “No more solutions.” stating that Curry cannot find
a way to solve the goal expression. This behavior is consistent with the fact
that the function parent is not defined for the provided arguments Mike and
John. On the other hand, the execution of this similar expression:

parent Hanna John

yields the following output

Result: success.

No more solutions.

This output states that Curry succeeded once in reducing the expression to
success. This is the expected behavior because of the third program equation.

Curry also allows logical variables in expressions by declaring them with
the keyword free. Logical variables are another way of producing nondeter-
minism in Curry. When Curry needs to reduce an expression containing
variables, it tries to unify it with the left-hand sides of the equations in the
program. In this way, each successful unification creates a possible reduction,
thus producing nondeterminism. Furthermore, every successful unification
yields a unifier which contains the (partial) instantiation made to the logical
variable in order to reduce the initial expression with the unifying equation.
The unifiers produced along a reduction sequence are accumulated and their
composition is returned by the interpreter together with the final value. For
example, if we want Curry to find the children of Hanna, we can evaluate the
expression:

parent Hanna x

where x free

in which the keyword where introduces local declarations (in this case, the dec-
laration of x as a logical variable). The evaluation of this expression produces
the following output:

Result: success

Bindings:

x=George

Result: success
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Bindings:

x=John

No more solutions.

stating that Curry found two solutions with the same final value success,
but with different instantiations for the free variable x: George in the first
case, and John in the second.

The combination of these features make Curry a very powerful program-
ming language. Moreover, the academic interest in Curry is bringing new
practical features for the language and new compilers to support them in real
software.

5.2 The K Framework

K is an executable semantic framework in which programming languages,
calculi, as well as type systems and formal analysis tools can be defined making
use of configurations, computations, and rules. The most complete formal
program semantics in the literature for Scheme, Java 1.4, Verilog, and C are
currently available in K. K semantics are compiled into Maude [CDE+07] for
execution, debugging, and model checking.

Program configurations are represented in K as potentially nested struc-
tures of labeled cells that represent the state of the program. K cells are
containers that can act as lists, maps, (multi)sets of computations, or as a
multiset of other cells. We represent K cells by surrounding their contents
with square brackets and a subindex with the name of the cell. For example,
the cell heap that represents a heap in which only the memory position 1 is
initialized with the value 0 is represented by

[ 1↦ 0 ]
heap

,

where the symbol ↦ represents a mapping between the objects at its sides.
K computations carry “computational meaning” and they are represented as
special nested list structures that sequentialize computational tasks, such as
fragments of a program. Rules in K state how configurations (terms) can
evolve during computation.

In Chapter 7, we use the K semantics for a C-like imperative language
called KernelC. The part of the K configuration structure for the KernelC
semantics that is relevant for understanding the techniques we discuss later is
shown below.

[ [ K ]
k
[ Map ]

env
[ List ]

stack
[ Map ]

heap ]
cfg
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Containers (or cells) in a configuration represent pieces of the program state,
including a computation stack or continuation (named k), environments (env,
heap), and a call stack (stack), among others.

Rules in K are graphically represented in two levels and state how config-
urations change. Changes in the current configuration (which is shown in the
upper level) are explicitly represented by underlying the part of the configu-
ration that changes. The new value that substitutes the one that changes is
written below the underlined part.

As an example, we show the KernelC rule for assigning a value V of type
T to the variable X. This rule uses two cells, k and env. The env cell is a
mapping of variables to their values, whereas the k cell represents a stack of
computations waiting to be run, with the left-most (i.e., top) element of the
stack being the next computation to be undertaken.

[X = tv(T,V ) ⋅⋅⋅ ]k [ ⋅⋅⋅ X ↦ ⋅⋅⋅ ]env

tv(T,V ) V

The rule states that, if the next pending computation (which may be a part of
the evaluation of a bigger expression) consists of an assignment X = tv(T,V ),
then we look for X in the environment (X ↦ ) and we update the associated
mapping with the new value V . The typed value tv(T,V ) is kept at the top
of the stack (it might be used in the evaluation of the bigger expression). The
rest of the cell’s content in the rule does not undergo any modification (this is
represented by the ⋅⋅⋅ symbol).

This example rule reveals a feature of K: ≪rules only need to mention the
minimum part of the configuration that is relevant for their operation≫. That
is, only the cells read or changed by the rule have to be specified, and, within
a cell, it is possible to omit parts of it by simply writing “⋅⋅⋅ ”. For example,
the rule above emphasizes the interest in: the instruction X = tv(T,V ) only
at the beginning of the k cell, and the mapping from variable X to any value
“ ” at any position in the env cell.

5.3 Matching Logic

Matching Logic is a logic for the verification of programs. We use the ML for-
malization given in [RES11, RS09]. Formulas in ML are called patterns and
they represent sets of concrete program configurations. Patterns can be for-
malized as first-order logic (FOL) formulas whose atomic propositions include
the constructs for representing program configurations. Intuitively, patterns
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introduce logical variables into program configurations and also introduce for-
mulas that constrain those logical variables. Pattern variables are typed.

Starting from the operational semantics of KernelC specified in K that
we mentioned above, a handy axiomatic semantics that is based on ML pat-
terns has been systematically defined for verification purposes within the ML
framework [RES11]. The ML patterns of the KernelC axiomatic semantics
consist of K configuration cells that are additionally constrained with FOL
formulas. We use the sugared notation of [RES11, RS09] that embeds the
FOL formula within a special cell called φ and substitutes explicit existential
logical quantifiers with a special mark ? at the beginning of the existentially
quantified variable’s name. For example, the set of KernelC configurations
where the specific program variable x holds a value that is greater than 5 can
be represented with the following ML pattern, where free variable E matches
any other information in the env cell, and C matches the rest of the cells in
the configuration:

[ [x↦ ?x,E]env[?x > 5]φ C ]
cfg

(5.1)

Program variables1 in ML formulas such as x are written in teletype font and
logical variables such as x are written in sans font. Metavariables in ML such
as C are written in capital letters.

The ML axiomatic semantics uses inference rules to derive sequents like
P1 ⇚P2, called correctness pairs, which relate patterns before and after the

execution of a program fragment. The meaning of a sequent P1 ⇚P2 is that
the execution of a concrete configuration matching P1 yields a configuration
matching P2. The basic axiom for final symbolic configurations that indicate
the end of a successful (axiomatic semantics) derivation is as follows:

[Γ]cfg ⇚[Γ]cfg

with Γ being a final pattern, i.e., a pattern whose k cell is empty or consists
of just a value. As an example of ML inference rule, let us describe the rule
that corresponds to the assignment of a program variable.

[[K]kC]cfg ⇚[[I]k[ρ]envC′]cfg

[[X = K;]kC]cfg ⇚[[]k[ρ[X↦ I]]envC′]cfg

In the rule above, K matches a computation expression, I an integer value,
X a program variable, ρ a map, and C and C′ a bag of configuration cells

1Note that program variables are constants in ML formulas.



94 5. Curry, the K Framework and Matching Logic

(including the φ cell). The rule hypothesis can be read as: ≪starting from any
configuration with K as the only remaining computation in the k cell, assume
that a configuration that matches [[I]k[ρ]envC′]cfg is obtained, with I being
the result of evaluating the expression K≫. Then, the conclusion can be read
as: ≪starting from a configuration that consists of C plus the assignment of
expression K to the variable identified by X as the only remaining computation,
its execution yields a configuration consisting of C′, an empty k cell (i.e., no
pending computations remain), and an updated environment ρ[X↦ I] in which
I is assigned to the variable X ≫.

The following example illustrates the application of the assignment infer-
ence rule.

Example 25
Let us consider the following (axiomatic semantics) symbolic configuration,
which is an instance of the ML pattern of Equation (5.1) and contains the
assignment instruction x=3 in the k cell:

[ [x = 3;]k[x↦ ?x,E]env[?x > 5]φC′′ ]
cfg

This symbolic configuration is also a pattern that matches the left-hand pat-
tern of the correctness pair in the consequent of the inference rule. Moreover,
the antecedent of the rule holds since

[[3]kC]cfg ⇚[[3]k[x↦ ?x,E]envC′]cfg

with C = [x↦ ?x,E]env C′ and C′ = [?x > 5]φC′′. This is because, according
to the K type system, 3 is both an integer value and a program expression,
thus it respectively matches the I and the K variables in the rule hypothesis.
Therefore, the derivation computed by the application of the rule is

[[x = 3;]kC]
cfg ⇚[[]k[x↦ 3,E]envC′]

cfg

Note that ML does not need logical “separation” (meaning that the heap
can be split into two disjoint parts where the separate formulas hold [Rey02])
because it achieves it at the structural level. That is, any pair of subterms
in a pattern configuration that are not related by the containment order are
considered to be distinct and disjoint; and, if a pattern matches two terms in
a multiset, the two terms have to be distinct. For example, in the pattern of
Equation (5.1), the binding x ↦ ?x is matched with the current configuration
separately from the rest of the environment E, and, thus, no overlapping of
bindings can occur.



6
Inference of Specifications from

Curry Programs

This chapter investigates how equational program specifications can be auto-
matically inferred from programs that are written in the multiparadigm declar-
ative language Curry. To do this work, we took inspiration from QuickSpec
[CSH10], which is an (almost) black-box inference approach for Haskell pro-
grams [PJ03] based on testing. QuickSpec automatically infers program
specifications as sets of equations of the form e1 = e2, where e1, e2 are generic
program expressions that appear to have the same computational behavior.
This approach has two key properties:

it is completely automatic as it needs only the program to run, plus some
indications regarding target functions and generic values to be employed
in the synthesized equations, and

the outcomes are very intuitive since they are expressed only in terms of
the program components, so the user does not need any kind of extra
knowledge to interpret the results.

However, our proposal ended up being radically different from QuickSpec:

• First, we aim to infer correct (algebraic) property-oriented specifications.
To this end, instead of a testing-based approach, we propose a glass-box
semantic-based approach.

• Second, we consider the functional logic language Curry defined in
[Han97, Han06]. Curry is a multi-paradigm programming language
that combines in a seamless way features from functional programming
(nested expressions, lazy evaluation, higher-order functions) and logic
programming (logic variables, partial data structures, built-in search).
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Due to lazy evaluation in presence of (free) logical variables, the problem
of inferring specifications for this kind of language poses several addi-
tional problems w.r.t. other programming paradigms. We discuss these
issues in Section 6.1.

In the rest of the chapter, we first introduce the problem of generating
useful specifications for the functional logic paradigm by discussing a simple,
illustrative example. In Section 6.2, we define our notion of specification,
which is composed of equations of different kinds. Thereafter, in Section 6.3,
we explain in detail how the specifications are computed. In Section 6.4 we
discuss some examples of specifications computed by the prototype AbsSpec
that implements the technique. Finally, Section 6.5 discusses the main related
work and concludes.

6.1 Specifications in the functional-logic paradigm

Curry is a lazy functional logic language that admits free (logical) variables
in expressions and whose program rules are evaluated non-deterministically.
Differently from the functional case, i.e., languages without logic variables that
may be instantiated during the program execution, an equation e1 = e2 can
be interpreted in many different ways. Let us discuss the key points of the
interpretation problem by means of a (very simple) illustrative example.

Example 26 (Boolean logic example)
Consider the standard definition of the boolean data type with values True

and False and operations defining the logic connectives and, or, not and imp:

and True x = x

and False _ = False

or True _ = True

or False x = x

not True = False

not False = True

imp False x = True

imp True x = x

This is a pretty standard “short-cut” definition of boolean connectives. For
example, the definition of and states that whenever the first argument is equal
to False, the function returns the value False, regardless of the value of the
second argument. Since the language is lazy, in this case the second argument
will not be evaluated.
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For this example, one could expect a (property-oriented) specification with
equations like1

imp x y = or (not x) y (6.1)

not (or x y) = and (not x) (not y) (6.2)

not (and x y) = or (not x) (not y) (6.3)

not (not x) = x (6.4)

and x (and y z) = and (and x y) z (6.5)

and x y = and y x (6.6)

which are well-known laws among the (theoretical) boolean operators. This
comprehensible specification aids the user to learn the properties of the pro-
gram. In addition, the specification can be useful to detect bugs in the program
by observing both, properties (equations) that occur in the specification but
were not expected, and expected equations that are eventually missing. These
equations, of the form e2 = e2, can be read as

all possible results for e1are also results for e2,

and vice versa. (6.7)

In the following, we call this notion of equivalence computed result equivalence
and we denote it by =CR.

Actually, Equations (6.1), (6.2), (6.3) and (6.5) are literally valid in this
sense since, in Curry, free variables are admitted in expressions, and the
mentioned equations are valid as they are. Note that this is not true for
Equations (6.4) and (6.6) since the expressions “not (not x)” and “and x y”
do not compute the same results as “x” and “and y x”, respectively, in the
considered program. This interpretation of equations is quite different from
the pure functional case where equations have to be interpreted as properties
that hold for any ground instance of the variables occurring in the equation.

Let us first introduce the notation for evaluations by means of an example.
The expression {x/True} ⋅ True denotes that the normal form True (at the
right of the ⋅ symbol) has been reached with computed answer substitution
{x/True} (at the left of the ⋅ symbol). Now, the goal on the left hand side of
the equation not (not x) evaluates to two normal forms: {x/True} ⋅ True and
{x/False} ⋅ False, whereas the right hand side of the equation x evaluates just
to {} ⋅ x. Note however that any ground instance of the two goals evaluates to

1 In this section, our main goal is to give the intuition of the specification computed by
our approach, thus we show just a subset of the equations satisfied by the program.
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the same results, namely both True and not (not True) evaluate to {} ⋅ True,
and both False and not (not False) evaluate to {} ⋅ False.

This fact motivates the use of an additional notion of equivalence, called
ground equivalence, which can be helpful for the user since the equations that
hold under this equivalence represent, in general, interesting properties of the
program. We denote it by =G . This notion coincides with the (only possible)
equivalence notion used in the pure functional paradigm: two terms are ground
equivalent if, for all ground instances, the computed results for both terms
coincide.

Because of the presence of logic variables, there is another very relevant
difference w.r.t. the pure functional case that is concerned with contextual
equivalence: given a valid equation e1 = e2, is it true that, for any context
C, the equation C[e1] = C[e2] still holds? Due to the use of narrowing ,
Curry is not referentially transparent2 w.r.t. its operational behavior, i.e., an
expression can produce different computed values when it is embedded in a
context that promotes different bindings for its free variables (as shown in the
following example), which makes the answer to the question posed above not
straightforward.

Example 27

Given a program with the following rules

g x = C (h x)

g’ A = C A

h A = A

f (C x) B = B

the expressions g x and g’ x compute the same result, namely {x/A} ⋅ C A.
However, the expression f (g x) x computes one result, namely {x/B} ⋅ B,
while expression f (g’ x) x computes none.

Thus, in the Curry case, it can be of interest a stronger equivalence
notion that requires the computed results of two terms to be equal even when
the two terms are embedded within any context. We call this equivalence
contextual equivalence and we denote it by =C . As we show later, Equations
(6.1), (6.2), (6.3) and (6.5) are valid w.r.t. this equivalence notion.

2The concept of referential transparency of a language can be stated in terms of a
formal semantics as: the semantics equivalence of two expressions e, e′ implies the se-
mantics equivalence of e and e′ when used within any context C[⋅]. Namely, ∀e, e′,C.
[[e]] = [[e′]] ⇒ [[C[e]]] = [[C[e′]]].
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We can see that =C is (obviously) stronger than =CR, which is in turn
stronger than =G (in symbols, =C ⊆ =CR ⊆ =G). As a conclusion, for our
example we would get the following (partial) specification.3

imp x y =C or (not x) y

not (or x y) =C and (not x) (not y)

not (and x y) =C or (not x) (not y)

not (not x) =G x

and x (and y z) =C and (and x y) z

and x y =G and y x

This example has shown, first, the kind of property-oriented specifications
that we want to compute from the given program, and second, the need to
consider different kinds of equalities between terms in order to get a useful
specification. It is worth noticing that adopting only a notion of equivalence
based on the referentially transparent semantics (the =C equivalence) can be
too restrictive: we may lose important properties. However, by using the
weaker notions we cannot know if two equivalent expression are also equivalent
within any context.

The need for determining =C equalities is the reason why we believe that,
in the case of Curry, the use of a semantics-based approach can be more
suited than testing-based approaches. In a test-based approach expressions
should have to be nested within some outer context in order to establish their
=C equivalence. Since the number of needed terms to be evaluated grows
exponentially w.r.t. the depth of nestings, the addition of a further outer
context would dramatically worsen the performance. Moreover, if we try to
mitigate this problem by reducing the number of terms/tests to be checked,
the quality of the produced equations degrades sensibly. On the contrary, a
semantics-based approach can achieve the =C equivalence by construction as
shown below.

6.2 Formalization of equivalence notions

In this section, we formally present all the kinds of term equivalence notions
that are used to compute equations of the inferred specification. We need first
to introduce some basic formal notions that are used in the rest of the chapter.

3As discussed later, our technique computes a complete specification for a specific size of
terms in equations.
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We say that a first order Curry program is a set of rules P built over a
signature Σ which is partitioned in C, the constructor symbols, and D, the
defined symbols, being C ∩D = ∅. V denotes a (fixed) countably infinite set of
variables and T (Σ,V) denotes the terms built over signature Σ and variables
V. A fresh variable is a variable that appears nowhere else.

In order to state formally the equivalences =C and =CR described in the pre-
vious section, we need two semantic evaluation functions SC[[⋅]] and SCR[[⋅]]
which enjoy some specific properties.

Definition 28 (Computed Results Semantics) Given a program P , we
say that a semantic evaluation function S [[⋅]] is fully abstract w.r.t. to the
behavior of computed results if, given two terms t1 and t2, the semantics of
both terms are identical (S [[t1]] = S [[t2]]) if and only if the evaluations of t1
and t2 compute the same results.

We refer to a semantic evaluation function which satisfies this property as
a computed results semantics and we represent it as SCR[[⋅]]P .

Definition 29 (Contextual Semantics) Given a program P , we say that
a semantic evaluation function S [[⋅]] is fully abstract w.r.t. to the behavior
of computed results under any context if, given two terms t1 and t2, the
semantics of both terms are identical (S [[t1]] = S [[t2]]) if and only if, for any
context C[⋅], the evaluations of C[t1] and C[t2] compute the same results. We
say that such a semantics fulfills referential transparency.

We refer to a semantic evaluation function which satisfies this property as
a contextual semantics and we represent it as SC[[⋅]]P .

Now we are ready to introduce our notion of specification.

The specification. Formally, an algebraic specification is a set of sequences
of equations of the form t1 =K t2 =K . . . =K tn, with K ∈ {C,CR,G} and
t1, t2, . . . , tn ∈ T (Σ,V). Actually, we call sequence of equations to the set of
equations that can be build by taking any two terms ti and tj from the sequence
t1 =K . . . =K tn. K distinguishes the kinds of computational equalities that we
previously informally discussed, and which we now present formally.

Contextual Equivalence =C . This equivalence states that two terms t1 and
t2 are equivalent if C[t1] and C[t2] have the same behavior for any
context C[⋅]. Given that SC[[⋅]] is fully abstract w.r.t. the behavior of
computed results under any context, two terms t1 and t2 are related by
the contextual relation =C if and only if their semantics coincide; namely,

t1 =C t2 ⇐⇒ SC[[t1]]P = SC[[t2]]P
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This is the more restrictive notion and the most difficult equivalence to
be established by testing approaches.

Computed-result equivalence =CR. This equivalence states that two terms
are equivalent when the computed results of their evaluation are the
same; namely,

t1 =CR t2 ⇐⇒ SCR[[t1]]P = SCR[[t2]]P .

Therefore, the computed-result equivalence abstracts from the way in
which the results are produced during computation. The =CR equivalence
is coarser than =C (=C ⊆ =CR) as shown by Example 27.

Theoretically, it is possible to use just a correct semantics as SCR, but
clearly in such case we will not have all equivalences which are valid
w.r.t. a fully abstract semantics.

Ground Equivalence =G. This equivalence states that two terms are equiv-
alent if all their possible ground instances have the same computed re-
sults; namely

t1 =G t2 ⇐⇒ ∀θ grounding. SCR[[t1θ]]P = SCR[[t2θ]]P .

By definition, the =G equivalence is coarser than =CR (=CR ⊆ =G).

User Defined Equivalence =Ueq. This equivalence depends upon a notion
of equality defined by the user. When dealing with a user-defined data
type, the user may have defined a specific notion of equivalence by means
of an “equality” function. Let us call equal(t1, t2) such user-defined
function. Then, we state that

t1 =Ueq t2 ⇐⇒ SCR[[equal(t1, t2)]]P = SCR[[True]]P
⇐⇒ equal(t1, t2) =CR True

Clearly, we do not have necessarily any relation between =Ueq and the
others, as the user function equal may have nothing to do with equality.
However, in typical situations such a function is defined to preserve at
least =G , meaning that t1 =G t2 implies t1 =Ueq t2.

These equations can provide the user significant information about the
structure and behavior of the program and a pragmatical tool should
reasonably present a sequence

True =CR equal(t1, t2) =CR . . . =CR equal(tn−1, tn)
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as

t1 =Ueq . . . =Ueq tn

for readability purposes.

In any case, it is clear from the definition that this is technically just a
particular instance of =CR, so it does not need to be considered by itself
and in the following we do not consider it explicitly.

To summarize, we have =C ⊆ =CR ⊆ =G and only =C is referentially trans-
parent (i.e., a congruence w.r.t. contextual embedding).

We have to instantiate now the generic semantics notions SC[[⋅]]P and
SCR[[⋅]]P with specific semantics. In the following we briefly introduce the
WERS-semantics of [Bac12, BC12] that we use in order to generate this kind
of specifications.

The semantics. We evaluate first order Curry programs on the WERS se-
mantics, which is a condensed, goal-independent semantics recently defined in
[Bac12, BC12] for functional logic programs, and we represent it by E [[⋅]]F [[P ]] .
We preferred this semantics instead of the well-established (small-step) opera-
tional [Han06] and I/O semantics [AHH+05] because these previous semantics
do not fulfill referential transparency, whereas the WERS semantics does.
This fact makes the (more elaborated) semantics of [Bac12, BC12] an ap-
propriate contextual semantics (SC[[⋅]]P ) for computing equations w.r.t. =C .
Intuitively, due to the definition of the WERS semantics, t1 =C t2 means that
all the different ways in which these two terms reach their computed results
coincide. We could have used the operational and I/O semantics as computed
results semantics but, as we show later, we can easily obtain SCR[[⋅]] from
E [[⋅]]F [[P ]] . Moreover, the semantics that we use has another property which
is very important from a pragmatical point of view: it is condensed, meaning
that denotations are the smallest possible (between all those semantics which
are fully abstract). This is an almost essential feature in order to develop a
semantic-based tool which has to compute (an approximation of) the seman-
tics. In particular, with this semantics it is reasonable to compute a finite
number of iterations of the program’s denotation itself, while for the other
mentioned semantics it is not the case.

The denotation F [[P ]] of a program P is the least fixpoint of an immediate
consequence operator P [[P ]]. This operator is based on a term evaluation
function E [[t]] which, for any term t ∈ T (Σ,V) and any interpretation I, gives
the semantics of t as E [[t]]I . Intuitively, the evaluation E [[t]]F [[P ]] computes,
w.r.t. program P , a tree-like structure collecting the “relevant history” of the



6.2. Formalization of equivalence notions 103

computation of all (partially) computed results of t, abstracting from function
calls and focusing only on the way in which the result is built. In particular,
every leaf of the tree represents a normal form of the initial term. Nodes
are pairs of the form σ ⋅ s, where σ is a substitution (binding variables of the
initial expression with linear constructor terms), and s is a partially computed
value, that is, a term in T (C,V ∪V%) that may contain special variables %0, %1,
. . . ∈ V% (a set disjoint from V) indicating an unevaluated subterm. Leaves with
no occurrences of special variables represent computed results. We denote by
cr(T ) the set of computed results of the semantic tree T .

Full-abstraction w.r.t. the computed-result behavior and referential trans-
parency of the semantics are proven in [Bac12].

Theorem 30 ([Bac12]) Let P be a first-order Curry program, e, e′ terms
in T (Σ,V), and C[⋅] be a context. If E [[e]]F [[P ]] = E [[e′]]F [[P ]], then it holds
E [[C[e]]]F [[P ]] = E [[C[e′]]]F [[P ]].

Thus, E [[t]]F [[P ]] is an appropriate instantiation for SC[[t]]. Moreover, the

following theorem shows that E [[t]]F [[P ]] can be used to obtain SCR[[t]], thus
avoiding an unnecessary recomputation of the semantics.

Theorem 31 ([Bac12]) Let P be a first-order Curry program and t be a
term in T (Σ,V). Then, cr(E [[t]]F [[P ]]) corresponds to the set of computed
results of t using P .

Thus, cr(E [[t]]F [[P ]]) is a suitable instantiation for SCR[[t]].
Let us show some examples of programs’ semantics, which are represented

by families of semantic trees indexed by most general calls (a function symbol
applied to distinct variables). Edges in the semantic tree are labeled with
the special variable that is instantiated with an expression (that may contain
another special variable).

Example 32 (Example 27 continued)
The fixpoint semantics for the program P in Example 27 is the following:

F [[P ]] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g x↦ ε ⋅ % %Ð→ ε ⋅ C%1
%1Ð→ {x/A} ⋅ C A

g’ x↦ ε ⋅ % %Ð→ {x/A} ⋅ C A

h x↦ ε ⋅ % %Ð→ {x/A} ⋅ A
f x y↦ ε ⋅ % %Ð→ {x/C x’,y/B} ⋅ B

In this case all the semantic trees have only one path. The symbol ε denotes
the empty substitution. Since F [[P ]](g x) ≠ F [[P ]](g’ x) we know that it
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exists a context which manifests different computed results. Indeed, within
context f [⋅] x the two expressions have different computed results. Namely,

E [[f (g x) x]]F [[P ]] = ε ⋅ %
%Ð→ {x/B} ⋅ B

E [[f (g’ x) x]]F [[P ]] = ε ⋅ %

Note that ε ⋅% is not a computed result due to the occurrence of the % variable.

Even if this semantics is condensed (i.e., it does not contain redundant infor-
mation), the trees in denotations can be infinite both in depth and in width.
The following example shows a program whose semantics is infinite in depth.

Example 33
Consider the classical append function:

append [] y = y

append (x:xs) y = x:( append xs y)

The semantics of the function append in F [[P ]] is as follows

append x y

{} ⋅ %0
{x/[]} ⋅ y

{x/x1:xs1} ⋅ (x1:%1)
{x/[x1]} ⋅ (x1:y)

{x/x1:x2:xs2} ⋅ (x1:x2:%2)

%0

%0
%1

%1

The dotted triangle in the figure denotes that the semantics has not been
completely computed.

In order to define an effective method, we need to use an approximated
(abstract) semantics (obtained by abstract interpretation [CC77, CC79]) for
the computation of our inference method (in Section 6.3). A discussion about
effectiveness and precision regarding the inference of specifications is given in
Section 6.3.1.

6.3 Deriving Specifications from Programs

Now we are ready to describe the process of inferring specifications. The in-
put of the process consists of the Curry program to be analyzed and two
additional parameters: a relevant API, denoted Σr, and a maximum term
size, max size. The relevant API allows the user to choose the operations
in the program that will be present in the inferred specification, whereas the
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Figure 6.1: A general view of the inference process.

maximum term size limits the size of the terms in the specification. As a con-
sequence, these two parameters tune the granularity of the specification, both
making the process terminating and allowing the user to keep the specifica-
tion concise and easy to understand. The output consists of a set of equations
represented by equivalence classes of terms. Note that inferred equations may
differ for the same program depending on the considered API and on the max-
imum term size. Similarly to other property-oriented approaches like [CSH10],
the computed specification is complete up to terms of size max size, i.e., it
includes all the properties (relations) that hold between the operations in the
relevant API and that are expressible by terms of size less than or equal to
max size.

The inference process consists of three phases, as depicted in Figure 6.1.
First, (an approximation of) the semantics of the input program is computed.
Second, a partition of terms, formed with functions from the relevant API of
size less than or equal to the provided maximum size is computed. In our
implementation, the size of a term is determined by its depth; however, the
inference process is parametric w.r.t. the size function, thus other notions
for term size are allowed (e.g., number of parameters, length, etc.). Each
equivalence class of the partition contains terms that are equivalent w.r.t. the
contextual equivalence =C defined in Section 6.2. Finally, the equations of
the specification are generated: first, the equations of the contextual parti-
tion are computed, and then, by transforming the semantics, the equations
corresponding to the other two notions of equivalence are computed as well.

In the following, we explain in detail the phases of the computation pro-
cess by referring to the pseudo-code given in Algorithm 1. For the sake of
comprehension, we present an untyped version of the algorithm. The actual
one is a straightforward modification conformant w.r.t. types.

Let us start by presenting the data structure that represents the classifi-
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cation of terms. A partition of terms consists of a set of equivalence classes
(ec) formed by

• sem(ec): the semantics of (all) the terms in that class

• rep(ec): the representative term of the class, which is defined as the
smallest term in the class (w.r.t. the function size), and

• terms(ec): the set of terms belonging to that equivalence class.

We represent each equivalence class by a triple ⟨sem(ec), rep(ec), terms(ec)⟩.
The representative term is used in order to avoid much redundancy in the
generation of equations. As we will see, the generation process is iterative,
thus we generate first equations of smaller size, and then we increment the size
until the size limit is reached. Instead of using every term of an equivalence
class to build new terms of greater size, we just use the representative term.
Now we are ready to describe the process.

Computation of the abstract semantics (and initial classification).
The first phase of the algorithm, Lines 1 to 2 (in Algorithm 1), is the compu-
tation of the initial classification that is needed to compute the classification
w.r.t. =C . In order to make the method effective, it is based on the compu-
tation of an approximation of the semantics of the program P (the abstract
semantics Fα[[P ]]). More details about the use of an abstract semantics can
be found in Section 6.3.1.

More specifically, the initial part function (Line 2) builds the initial clas-
sification which contains:

• one class for a free (logic) variable ⟨Eα[[x]]Fα[[P ]] , x, {x}⟩;4

• the classes for any built-in or user-defined constructor.

During the definition of the initial classification, it might occur that two
terms, for instance t1 ∶= f(x1, . . . , xn) and t2 ∶= g(y1, . . . , yn), have the same
semantics. If this happens, we do not generate two different classes, one for
each term, but the second generated term is added to the class of the first one.
For this particular example, we would have ⟨Eα[[t1]]Fα[[P ]] , t1, {t1, t2}⟩.

4The typed version of the inference method uses one variable for each type.
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Algorithm 1 Inference of an algebraic specification

Require: Program P ;
Program’s relevant API Σr;
Maximum term size max size

1. Compute Fα[[P ]] : the (abstract) semantics of P
2. part ← initial part(Fα[[P ]])
3. repeat
4. part ′ ← part
5. for all f/n ∈ Σr do
6. for all ec1, . . . , ecn ∈ part such that at least one eci has been intro-

duced in the previous iteration do
7. t← f(rep(ec1), . . . , rep(ecn)) where the rep(eci) are renamed apart

8. if t ∉ part and size(t) ≤ max size then
9. s← Eα[[t]]Fα[[P ]] : Compute the (abstract) semantics of term t

10. add to partition(t, s,part ′)
11. end if
12. end for
13. end for
14. until part ′ = part
15. specification ← ∅
16. add equations(specification,part)
17. for all kind ∈ [CR,G] do
18. part ← transform semantics(kind ,part)
19. add equations(specification,part)
20. end for
21. return specification

Generation of =C classification. The second phase of the algorithm, Lines
3 to 14, is the (iterative) computation of the classification of terms w.r.t. =C .
As mentioned before, this classification is also the basis for the generation of
the other categories of equivalence classes.

We iteratively select all symbols f/n of the relevant API Σr (Line 5) 5

and n equivalence classes ec1, . . . , ecn from the current partition (Line 6) such
that at least one eci was newly produced in the previous iteration. We build
the term t ∶= f(t1, . . . , tn), where each ti is the representative term of eci, i.e.,
ti = rep(eci). In this way, by construction, the term t has surely not been

5Following the standard notation f/n denotes a function f of arity n.
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considered yet; Then, we compute the semantics s = Eα[[t]]Fα[[P ]] and update
the current partition part ′ by using the method add to partition(t, s,part ′)
(Lines 7 to 11). Here, the compositionality of the semantics makes possible
to compute the semantics of terms (Line 9) efficaciously: since the semantics
si = sem(eci) for each term ti is already stored in eci, then the computation of
the semantics of t can be done in an efficient way just by nesting the semantics
si into the semantics of f(x1, . . . , xn). This semantics nesting operation is the
core of the E operation.6

The add to partition(t, s,part) function looks for an equivalence class ec
in the current classification part whose semantics coincides with s. If it is
found, then the term t is added to the set of terms in ec. Otherwise, a new
equivalence class ⟨s, t, {t}⟩ is created.

If the partition suffers any modification during the current iteration (i.e.,
any term is added to the partition), then the algorithm iterates. This phase
terminates eventually because at each iteration we consider, by construction,
terms which are different from those already existing in the partition and
whose size is strictly greater than the size of its subterms (but the size is
bounded by max size).

The following example illustrates how the iterative process works:

Example 34
Consider again the program of Example 26 and choose as relevant API the

functions and, or and not. The following are the terms considered during the
first iteration:

t1.1 ∶= not x

t1.2 ∶= and x y

t1.3 ∶= or x y

Since the semantics of all these terms are different, three new classes are added
to the initial partition. Thus, the partition at the end of the first iteration
consists of four equivalence classes: the three ones corresponding to terms t1.1,
t1.2 and t1.3 and the equivalence class for the boolean free variable.

Then, during the second iteration, the following two terms (among others)
are built

t2.1 ∶= and (not x) (not x’)

t2.2 ∶= not (or x y)

6The interested reader can see [Bac12] for the technical details about the semantic oper-
ators.
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More specifically, the term t2.1 is built as the instantiation of t1.2 with t1.1 (in
both arguments), and the term t2.2 is the instantiation of t1.1 with t1.3. The
semantics of these two terms is the same, but it is different from the semantics
of the existing equivalence classes. Therefore, during this iteration (at least)
a new class ec1 for this new semantics is added, having as representative the
term t2.2 (i.e., rep(ec1) = t2.2).

From this point on, only the representative of the class will be used for con-
structing new terms. This means that terms like not (and (not x) (not x’)),
which is the instantiation of t1.1 with t2.1, are never built since only t2.1 can
be used.

We recall here that, thanks to the closedness w.r.t. context of the semantics,
this strategy for generating terms is safe. In other words, when we avoid to
build a term, it is because it is not able to produce a behavior different from the
behaviors associated to the existing terms, thus we are not losing completeness.

Generation of the specification. The third phase of the algorithm (Lines
15 to 20) constructs the specification for the provided Curry program. First,
Line 16 computes the =C equations from the current partition. Since we have
avoided much redundancy thanks to the strategy used to generate the equiva-
lence classes, the add equations function needs only to take each equivalence
class with more than one term and generate equations for these terms.

This function generates also a side effect on the equivalence classes that
is needed in the successive steps. Namely, it modifies the third component of
the classes so that it replaces the (non-singleton) set of terms with a singleton
set containing just the representative term.

Then, Lines 17 to 20 compute the equations that correspond to the remain-
ing equivalence notions defined in Section 6.2. Let us explain in detail the case
for the computed result equations (kind CR). As already noted, from the (tree)
semantics T in the equivalence classes computed during the second phase of the
algorithm, it is possible to construct (by losing the tree internal structure and
collecting just the computed result leaves cr(T )) the semantics that models
the computed result behavior. Therefore, we apply this transformation to the
semantic values of each equivalence class. After the transformation, some of
the equivalence classes which had different semantic values may now collapse
into the same class. This transformation and reclassification is performed by
the transform semantics function. The resulting (coarser) partition is then
used to produce the =CR equations by an application of add equations.

Thanks to the fact that add equations ends with a partition made of just
singleton term sets, we cannot generate (again) equations t1 =CR t2 when an
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equation t1 =C t2 had been already issued.

Let us clarify this third phase by an example.

Example 35

Assume we have a partition consisting of three equivalence classes with
semantics s1, s2 and s3 and representative terms t11, t22 and t31:

ec1 = ⟨s1, t11,{t11, t12, t13}⟩
ec2 = ⟨s2, t22,{t21, t22}⟩
ec3 = ⟨s3, t31,{t31}⟩

The add equations procedure generates the equations

{ t11 =C t12 =C t13,

t21 =C t22 }

and, as a side effect, the partition becomes

ec1 = ⟨s1, t11,{t11}⟩
ec2 = ⟨s2, t22,{t22}⟩
ec3 = ⟨s3, t31,{t31}⟩

Now, assume that cr(s1) = x0 and cr(s2) = cr(s3) = x1. Then, after applying
transform semantics, we obtain the new partition

ec4 = ⟨x0, t11, {t11}⟩
ec5 = ⟨x1, t22, {t22, t31}⟩

Hence, the only new equation is t22 =CR t31. Indeed, equation t11 =CR t12 is
uninteresting, since we already know t11 =C t12 and equation t21 =CR t31 is
redundant (because t21 =C t22 and t22 =CR t31).

In summary, if t1 =C t2 holds, then t1 ={CR,G} t2 are not included in the
computed specification.

The same strategy can be used to generate also the =G equations. Con-
ceptually, this could be done with a semantic transformation which replaces
each free variable in every computed result with all its ground instances. In
practice, we can use a completely dual approach, where we use a variable to
represent all its possible ground instances. The transformation which corre-
sponds to this representation is as follows:
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• it retains only the most general instances of the original semantics (re-
moving computed results which are instances of others) and,

• it replaces a set of computed results R with its least general anti-instance
r when appropriate. This happens when the set of all ground instances
of r is the same as that of the union of all ground instances of all elements
in R. This can be implemented by checking if we have a set with all the
constructors of a given type (applied to free variables), then, we replace
the set of constructors by a free variable and then we repeat the process
until we reach a fix point.

In this way the semantics is transformed by removing further internal structure
and again classes may collapse and new equations (w.r.t. =G) are generated.

6.3.1 Pragmatical considerations

In a semantic-based approach, one of the main problems to be tackled is
effectiveness. The semantics of a program is in general infinite and thus we use
abstract interpretation [CC77] in order to have a terminating method. More
specifically, in this work we use a correct abstraction of the semantics of [Bac12,
BC11] over the depth(k) abstract domain (also introduced in [Bac12]). In the
depth(k) abstraction, terms (occurring in the nodes of the semantic trees) are
“cut” at depth k by replacing them with cut variables, distinct from program
variables. Hence, for a given signature Σ, the universe of abstract semantic
trees is finite (although it increases exponentially w.r.t. k). Therefore, the
finite convergence of the computation of the abstract semantics is guaranteed.

The presence of cut variables in the nodes of the abstract semantics denotes
that the (partial) computed result has been abstracted. However, if no cut
variable occurs in a node, we know that it coincides with a node in the concrete
semantics. Thanks to this structure, depth(k) semantics is technically an over
approximation of the semantics, but simultaneously it can be very precise
(concrete) when computed results show up without “cuts”.

Therefore, equations coming from equivalence classes whose depth(k) se-
mantics does not contain cut variables are correct equations, while for the
others we do not know (yet). If we use a bigger k, the latter can definitively
become valid or not. Thus, equations involving approximation are equations
that have not been falsified up to that point , analogously to what happens
in the testing-based approach. We call these equations unfalsified equations.
When showing the specification, we mark unfalsified equations with a special
equivalence symbol =αC . Unfalsified equations are the only kind of equations
that testing-based approaches can compute in general.
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The main advantage of our proposal w.r.t. the testing-based approaches is
the fact that we are able to distinguish when an equation certainly holds, and
when it just can hold. Moreover, we can deal with non terminating programs.

Since the overall construction is (almost) independent of the actual struc-
ture of the abstract semantics, it would be possible in the future to use other
abstract domains to reach a better trade-off between efficiency of the compu-
tation and accuracy of the specifications.

6.4 Case Studies

Let us illustrate our methodology with a more elaborated example. The fol-
lowing Curry program implements a two-sided queue where it is possible to
insert or delete elements on both left and right sides:

data Queue a = Q [a] [a]

new = Q [] []

inl x (Q xs ys) = Q (x:xs) ys

inr x (Q xs ys) = Q xs (x:ys)

outl (Q [] ys) = Q (tail (reverse ys)) []

outl (Q (_:xs) ys) = Q xs ys

outr (Q xs []) = Q [] (tail (reverse xs))

outr (Q xs (_:ys)) = Q xs ys

null (Q [] []) = True

null (Q (_:_) _) = False

null (Q [] (_:_)) = False

eqQ (Q xs ys) (Q xs ’ ys ’) =

(xs++ reverse ys) =:= (xs ’++ reverse ys ’)

The queue is implemented by means of two lists where the first list corresponds
to the first part of the queue and the second list is the second part of the queue
reversed. The inl function adds the new element to the head of the first list,
whereas the inr function adds the new element to the head of the second list
(the last element of the queue). The outl (outr) function drops one element
from the left (right) list, unless the list is empty, in which case it reverses the
other list and then swaps the two lists before removal. If we include all the
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functions in the API and by assuming k ≥ 3 for the abstraction, an excerpt of
the inferred specification for this program is the following one:

null new =C True (6.8)

new =C outl (inl x new) =C outr (inr x new) (6.9)

outl (inl x q) =C outr (inr x q) (6.10)

outr (inl x new) =C outl (inr x new) (6.11)

inr x (inl y q) =C inl y (inr x q) (6.12)

inl x (outl (inl y q)) =αG outr (inl x (inr y q)) (6.13)

outl (inl x (outl q)) =αG outl (outl (inl x q)) (6.14)

outr (outl (inl x q)) =C outl (inl x (outr q)) (6.15)

null (inl x new) =C null (inr x new) =C False (6.16)

eqQ (inr x new) y =C eqQ (inl x new) y (6.17)

We can see different kinds of equations in the specifications. The asym-
metry in the definition of the queue makes that Equation (6.13) holds only
for ground instances. Moreover, the semantics for terms in Equations (6.13)
and (6.14) is abstracted (in fact, the semantic tree is infinite for these cases).
Equations (6.9), (6.10) and (6.11) state that adding and removing one ele-
ment produces always the same result independently from the side in which
we add and remove it. Equations (6.12), (6.13), (6.14) and (6.15) show a sort
of restricted commutativity between functions. Finally, Equation (6.17) shows
that, w.r.t. the user defined predicate eqQ, that identifies queues which con-
tain the same elements, inr x new is equivalent to inl x new, although the
internal structure of the queue differs.

It is worth noticing that the unfalsified equations for the Queue example
(Equations (6.13) and (6.14) above), represent properties that actually hold for
the program. However, it might occur that unfalsified equations correspond
to false properties of the program, as the following example shows.

Consider the following program that computes the double of natural num-
bers in Peano notation:

data Nat = Z | S Nat

double , double ’ :: Nat -> Nat

double Z = Z

double (S x) = S (S (double x))
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double ’ x = plus x x

plus :: Nat -> Nat -> Nat

plus Z y = y

plus (S x) y = S (plus x y)

Some of the inferred equations for the program are:

double’ (double’ (double x))

=αCR double’ (double (double’ x)) (6.18)

double x =αCR double’ x (6.19)

double’ (double’ x)

=αCR double’ (double x)

=αCR double (double’ x)

=αCR double (double x) (6.20)

(S (double x)) =αCR double (S x) (6.21)

plus (double x) y =αCR plus (double’ x) y (6.22)

We can observe that, in this case, all the equations are unfalsified due to the
nature of the example. Moreover, all equations hold with the =CR relation.
This is due to the asymmetry in the definition of the two versions of double:
although the computed results of both versions are the same, there exist con-
texts in which the terms behave differently. This characteristic of the program
is not easy to realize by just looking at the code, thus this is an example of
the usefulness of having different notions of equivalence.

Finally, Equation (6.21) is an unfalsified equation that states a property
which is false in the program. This is due to the approximation of the ab-
straction. It is worth noting that we would need to completely compute the
(infinite) concrete semantics in order to discard the equation from the speci-
fication.

We do not remove unfalsified equations from the specifications since they
have their own interest. Although it might be unfeasible to guarantee cor-
rectness of some equations (as in the example above), unfalsified equations
may nevertheless show behaviors of the program which are actually correct.
As mentioned on page 111, this is the only possibility in testing-based ap-
proaches, where all the equations must be considered unfalsified since it is
impossible to distinguish them from correct equations. In any case, we can
try to prove correctness of these equations by using a complementary verifica-
tion or validation technique.
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6.4.1 AbsSpec: The prototype

We have implemented the basic functionality of this methodology in the proto-
type AbsSpec that is written in Haskell. The core of the AbsSpec prototype7

consists of about 800 lines of code implementing the tasks of generating and
classifying terms. The inference core of AbsSpec is generic w.r.t. the abstract
domain, i.e., the operations implementing the abstract domain are passed to
the generic inference process. Note that the AbsSpec prototype invokes the
semantics’ prototype implementation, which consists of about 7500 additional
lines of code. On top of the core part of the prototype, the interface module
implements some functions that allow the user both to check if a specific set
of equations hold, or to get the whole specification. It is worth noting that,
although in this chapter we consider as input Curry programs, the prototype
also accepts programs written in (the first order fragment of) Haskell (which
are automatically converted by orthogonalization into Curry equivalent pro-
grams).

Unfortunately, we do not know of sets of benchmarks in the literature to be
used to evaluate the prototype. Hence, we wrote some examples as a proof of
concept in order to get some impressions on the efficacy of our proposal. Since
the prototype does not handle built-in arithmetic operators yet, we tested it on
both Curry and Haskell programs which do not involve arithmetics (mainly
implementation of abstract data structures like queues, binary trees, arrays,
heaps, etc.).

The experiments were conducted on an machine with an Intel Core2 Quad
CPU Q9300 (2.50GHz) and 6 Gigabytes of RAM. AbsSpec was compiled
with version 6.12.3 of the Glorious Glasgow HASKELL Compilation System
(GHC). Table 7.1 shows the number of computed equivalence classes together
with the execution times for the inference of each program example with some
additional information.

Column Program shows the name of the example program. The first three
cases correspond to the examples shown in this chapter. The fourth example is
a more elaborated logic example where a data structure representing formulas
is defined; column Rules shows the number of rules defining the program;
column API size shows the number of operations included in the relevant API
for the experiment. For the Boolean example, the experiment includes the
operator for the logic implication defined explicitly (not in terms of the other
boolean operators); column Terms shows the number of terms generated (thus,
whose semantics is computed) during the inference process; columns #=C ,
and #=CR show, respectively, the number of =C , and =CR equivalence classes

7Available at http://safe-tools.dsic.upv.es/absspec.

http://safe-tools.dsic.upv.es/absspec
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Program Rules
API Term

Terms #=C #=CR Time
size size

Boolean 9 5
2 121 65 1 0.13s
3 2549 410 1 6.55s
4 6399 1378 1 42.32s

Queue 11 6
2 34 1 0 0.08s
3 132 12 1 0.18s
4 473 56 8 0.58s

Double 5 3
2 25 0 5 0.11s
3 676 55 157 19.86s
4 2638 410 344 43.71s

Formula 8 4
2 42 0 0 m 53.98s
3 1648 2 0 9m 0.14s
4 - - - -

Table 6.1: Inference process of example programs

with more than one term that have been generated.8

Our preliminary experiments show that many interesting properties hold
over the depth(k) domain with low k values (we run the prototype with depth
7 by default). Also, many interesting properties show up with max size = 3.
For example, we can see that for the Queue example, with max size = 2,
only one equivalence class is defined whereas for max size = 3, 13 (sequences
of) equations belong to the specification. We have used also max size = 4,
but specifications tend to be less comprehensible for the user (64 equivalence
classes for the same Queue example). Hence, increasing this value should
be done only when bigger terms make sense, being at the same time very
careful in choosing a sufficiently small API. The Double example illustrates
the usefulness of the =CR equations: with max size = 2 we have already five of
these equations.

The last example illustrates the fact that, for a data structure with a
complex semantics, the high number of generated terms penalizes the inference
process. Not that the increase of the number of generated terms depends, not
only on the number of elements included in the relevant API (and on the
number of arguments of the functions in the API), but also on the semantics
of the program. Intuitively, if we have a program in which many terms share
the same semantics, then fewer terms will be generated.

8The prototype does not compute the =G equations yet.
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6.5 Conclusions and Related Work

This chapter presents a method to automatically infer high-level, property-
oriented (algebraic) specifications in a functional logic setting. A specification
represents relations that hold between operations (nested calls) in the program.

The method computes a concise and clear specification of program prop-
erties from the source code of the program. These specifications are useful
for the programmer in order to detect possible errors, or to check that the
program corresponds to the intended behavior.

The computed specification is particularly well suited for program under-
standing since it allows to discover non-evident behaviors, and also to be com-
bined with testing. In the context of (formal) verification, the specification
can be used to ease the verification tasks, for example by using the correct
equations as annotations, or unfalsified equations as candidate axioms to be
proved.

Our inference approach relies on computing an approximation of the pro-
gram semantics. Therefore, to achieve effectiveness and good performance
results, we use a suitable abstract semantics instead of the concrete one. This
means that we may not guarantee correctness of all the equations in the spec-
ification, but we can nevertheless effectively infer correct equations thanks to
a good compromise between correctness and efficiency.

We have developed a prototype that implements the basic functionality
of the approach. We are working on the inclusion of all the functionality
described in this chapter.

To the best of our knowledge, our methodology is the first proposal for
specification synthesis in the functional logic setting. There is a testing tool,
called EasyCheck [CF08], in which specifications are used as the input for the
testing process. Given the target properties, EasyCheck executes ground tests
in order to check whether each property holds. This tool could be used as a
companion tool of ours in order to check if the unfalsified =G equations can be
actually falsified. However EasyCheck is not capable of checking the =C and
=CR equations because it is based only on the execution of ground tests.

QuickSpec [CSH10] computes an algebraic specification for Haskell pro-
grams by means of (almost black-box) testing. Like our approach, its inferred
specifications are complete up to a certain depth of the analyzed terms be-
cause of its exhaustiveness. However, all the equations in their specification
are unfalsified, i.e., the specification may be incorrect due to the use of testing
for the equation generation. In contrast, we follow a (glass-box) semantic-
based approach that allows us to compute specifications as complete as those
of QuickSpec, but with correctness guarantees on a part of them (depending
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on the abstraction). The performance of QuickSpec is generally better than
that of our prototype for similar programs. However, we have to recall that
our purpose is more ambitious since, for the case of functional-logic languages,
using just the ground equivalence is not enough: important behaviors regard-
ing the loss of referential transparency would not show up, as shown by the
double example. Moreover, our method is the only one that deals with non
terminating programs.



7
Inference of Specifications from

C Programs

Symbolic execution (SE) is a well-known program analysis technique that al-
lows the program to be executed using symbolic input values instead of actual
(concrete) data so that it executes the program by manipulating program ex-
pressions involving the symbolic values [Kin76, PV09]. Intuitively, symbolic
execution means that each data structure field and program variable initially
hold a symbolic value. Then, each program statement execution can update
the configuration cells (such as env , heap and cfg in the examples of Sec-
tion 5.2) by mapping fields and variables to (symbolic) values represented as
relational expressions. Recently, SE has found renewed interest due in part to
the advances in new algorithmic developments and decision procedures.

The technique presented in this chapter relies on SE to automatically infer
high-level, formal specifications for C-like, heap-manipulating code by using
the notation of Matching Logic (ML), which is a novel program verification
foundation that is built upon operational semantics [Rc11].

The key idea behind our method is as follows. In order to infer the spec-
ification for a given procedure, we use the ML machinery to symbolically
execute it and to collect its pre/post-conditions. These pre/post-conditions
represent the value of each program variable and field of the post-state in terms
of the values of program variables and fields of the pre-state. We apply our
technique to the KernelC language [RSŞ09], which is a non-trivial fragment
of C that includes functions, structures, pointers and I/O primitives. The
symbolic execution of KernelC programs is supported in ML by using the
MatchC verifier, which has several applications including the verification of
functional correctness and static detection of runtime errors [Rc11]. MatchC
is implemented using the K semantic framework [RŞ10], which compiles into
the high-performance programming language Maude [CDE+07].
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The proposed inference technique relies on the classification scheme devel-
oped in [LG86] for data abstractions in general, where a function (method)
may be either a constructor, modifier or observer. A constructor returns a
new object of the class from scratch (i.e., without taking the object as an
input parameter). A modifier alters an existing class instance (i.e., it changes
the state of one or more of the data attributes in the instance). An observer
inspects the object and returns a value characterizing one or more of its state
attributes. We do not assume the traditional premise of the original classifi-
cation in [LG86] that states that observer functions do not cause side effects
on the state. This is because we want to apply our technique to any program,
written by third-party software producers that may not follow the observer
purity discipline.

Our symbolic analysis of KernelC programs allows us to explain the ex-
ecution of a modifier function m by using other (observer) routines in the
program. Starting from an initial symbolic state s0, we first evaluate symbol-
ically m on s0 obtaining as a result a set of pairs (s0

i , s
f
i ) of refined initial and

final symbolic states, respectively. In order to compute suitable explanations
for the routine m, we symbolically evaluate the observer methods on each
state s0

i and sfi so that when the observer returns the same value at the end
of each of its branches, then we can conclude that the observer is a (partial)
observational abstraction or explanation of the constraints in the state. For
each pair of refined initial and final states, a pre/post statement is synthesized
where the precondition is expressed in terms of the observers that explain the
initial state s0

i , whereas the postcondition contains the observers that explain

the final state sfi . Then, the synthesized pre/post axioms that abstract from
any implementation details are further simplified (to be given a more compact
representation), and are eventually presented in a more friendly sugared form.

The main contributions of this inference technique are as follows:

• A new lightweight approach to extract high-level specifications from
heap-manipulating code that consists of a symbolic analysis that ex-
plores and summarizes the behavior of a modifier program routine by
using other available routines in the program, called observers.

• Correctness conditions for our specification discovery technique;

• A practical demonstration that the technique is capable of extracting
accurate specifications from nontrivial procedures and functions;

• An implementation of the framework that targets KernelC programs
and uses K as an intermediate language to translate KernelC to ML
constraints.
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Specification inference takes advantage of the unsat core generated by
the SAT solver CVC3 [BT07] that is coupled to ML.

This technique improves existing approaches in the literature in several
ways. On one hand, our technique is the first approach that can automati-
cally ensure delivery of correct specifications, which is done by using the same
MatchC verifier that we use for the specification discovering. On the other
hand, since our approach relies on the K semantics specification of KernelC,
the methodology developed in this work can be easily extended to cope with
any language for which a K semantics is given, like Java 1.4, Scheme and
Verilog [RŞ10]. There is an executable formal semantics for C that describes
the semantics of the whole C99 standard, and it will be possible to use it in
our framework as soon it is coupled into the MatchC verifier.

In the rest of the chapter, we first introduce in Section 7.1 the running
example that we use throughout this chapter to illustrate the technique. The
running example also allows us to outline the major research problems ad-
dressed. Section 7.2 describes how we extended the symbolic machinery of
the MatchC verifier in order to support our inference approach. Section 7.3
introduces two algorithms that mechanize the inference technique and pro-
vides some experimental results. Section 7.4 illustrates the two algorithms
previously introduced by applying them to the inference of a specification
for the running example. Finally, Section 7.5 discusses the related work and
concludes.

7.1 Specification Discovery

A logic specification is a logical relation between inputs and outputs of a pro-
gram. Specification discovery is the task of inferring high-level specifications
that closely describe the program behavior. Obviously, these specifications can
only be correct with respect to user intent if the original program is correct
itself. But even if it is not correct, the ascertained specification can still be
very helpful in several important scenarios such as improving program under-
standing, synthesizing test units, and helping the programmer to debug the
code.

Given a program P, the specification discovery problem for P is typically
described as the problem of inferring a likely specification for every function
m in P that uses I/O primitives and/or modifies the state of encapsulated,
dynamic data structures defined in the program. Following the standard ter-
minology, any such function m is called a modifier . The specification for m is to
be cleanly expressed by using any combination of the non-modifier functions of
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P, i.e., functions, called observers, that inspect the program state and return
values expressing some information about the encapsulated data. However,
because the C language does not enforce data encapsulation, we cannot as-
sume purity of any function: every function in the program can potentially
change the execution state, including the heap component of the state. In
other words, any function can potentially be a modifier . As a consequence, we
simply define an observer as any function whose return type is different from
void, hence, potentially expressing an observed property regarding the value
of the function arguments or the contents in the heap.

The following example introduces the case that we use as a running exam-
ple throughout this chapter.

Example 36
The program in Figure 7.1 implements an abstract datatype for representing
sets. A set is internally represented in KernelC as a data structure (struct
set) that contains a pointer (struct lnode *) to a list of elements (field
elems), together with the number of elements in the set (field size) and the
maximum number of elements that may contain (field capacity).

The new function allocates memory for storing a struct set data struc-
ture with initial size 0, the capacity given by the input value for the capacity

parameter, and the NULL value for the pointer that references the list of el-
ements in the set. Upon completion, it returns the address of the allocated
structure.

A call add(s,x) to the add function proceeds as follows: it first checks that
the pointer s to the set is different from NULL; next, it checks that the size of
s is lower than its capacity; and then, it checks that x is not an element of s
yet. Provided all these conditions hold, it allocates a new list node (struct
lnode) *new node whose first element is x and that is followed by the list
of elements representing the original set; finally, it increases the size of the
set by 1. If the insertion operation add succeeds, the call returns 1 once the
new element has been added to the list; otherwise, it returns 0 (standing for
unsuccessful insertion).

Function isfull returns 1 if the size of the set argument s is greater than
or equal to its capacity; otherwise, it returns 0. Similarly, isnull returns 1 if
the address of the set argument is NULL; it returns 0 otherwise. Finally, the
execution of contains(s,x) returns 1 if the argument element x belongs to s

and returns 0 otherwise.

Technically, the inferred specification for a given function consists of a set
of implication formulas of the form t1 ⇒ t2 where t1 and t2 are conjunctions
of equations of the form l = r. Each left-hand side l can be either
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#include <stdlib.h>

struct lnode {

int value;

struct lnode *next;

};

struct set {

int capacity;

int size;

struct lnode *elems;

};

struct set* new(int capacity)

{

struct set *new_set;

new_set =

(struct set*) malloc(sizeof(

struct set));

if (new_set == NULL)

return NULL; /* no memory

left */

new_set ->capacity = capacity;

new_set ->size = 0;

new_set ->elems = NULL;

return new_set;

}

int add(struct set *s,int x)

{

struct lnode *new_node;

struct lnode *end_node;

struct lnode *n;

if (s == NULL)

return 0; /* NULL set */

if (s->size >= s->capacity)

return 0; /* no space left */

n = end_node = s->elems;

while (n != NULL) {

if (n->value == x)

return 0; /* element already

added */

end_node = n;

n = n->next;

}

/* Initialize new node */

new_node =

(struct lnode*) malloc(sizeof

(struct lnode));

if (new_node == NULL)

return 0; /* no memory left

*/

new_node ->value = x;

new_node ->next = s->elems;

/* Link new node */

s->elems = new_node;

/* Update set info */

s->size += 1;

return 1; /* element added */

}

int isfull(struct set *s)

{

if (s == NULL)

return 0; /* NULL set

provided */

if (s->size >= s->capacity)

return 1; /* is full */

return 0; /* is not full */

}

int isnull(struct set *s)

{

if (s == NULL)

return 1;

return 0;

}

int contains(struct set *s,int

x)

{

struct lnode *n;

if (s == NULL)

return 0; /* NULL set */

n = s->elems;

while (n != NULL) {

if (n->value == x)

return 1; /* element found

*/

n = n->next;

}

return 0; /* element NOT found

*/

}

Figure 7.1: KernelC implementation of a set with linked lists.
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isnull(s) = 1 ⇒ ret = 0 ∧ isnull(s’) = 1

isfull(s) = 1 ⇒ ret = 0 ∧
contains(s,x) = contains(s’,x)

contains(s,x) = 1 ⇒ ret = 0 ∧ contains(s’,x)= 1

isnull(s) = 0 ∧
⇒

ret = 1 ∧
isfull(s) = 0 ∧ isnull(s’) = 0 ∧
contains(s,x) = 0 contains(s’,x) = 1

Figure 7.2: Inferred specification for the add function.

• a call to an observer function and then r represents the return value of
that call;

• the label ret, and then r represents the value returned by the modifier
function being observed.

Informally, the statements at the left-hand and right-hand sides of the sym-
bol ⇒ are respectively satisfied before and after the execution of the function
call. We adopt the standard primed notation for representing variable values
before and after execution. For instance, given a variable s that stands for the
value of the parameter s before the function is executed, the primed version
s’ stands for the value after the execution.

Example 37

Consider again the program of Example 36. The specification for the (mod-
ifier) function add(s,x) (that inserts an element x in the set s) is shown in
Figure 7.2.

The specification consists of four implications stating the conditions that
are satisfied before and after the execution of the considered function. For
instance, the first formula can be read as follows: if the result of running
isnull(s) is equal to 1 before executing add(s,x), then the value returned
by the call add(s,x) is 0, and, after its execution, the outcome of isnull(s’)
is also 1.

Even though the observers isnull and isfull behave as boolean functions
(predicates) in this example, we prefer not to write them in sugared relational
form (i.e., isfull(s) instead of isfull(s)=1 ) since a specific datatype for
Boolean numbers does not exist in C. Hence, even when we can detect that
the observer function only returns two scalar values, say 0 and 1 as in the
example, we cannot give it the semantics of a logical predicate.
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Note that any implication formula in the inferred specification may contain
multiple facts (in the pre or post-condition) that refer to function calls that
are assumed to be run independently under the same initial conditions. This
avoids making assumptions about the function purity or side-effects.

Our technique for inferring specifications relies on the symbolic execution
engine of the Matching Logic verifier MatchC. MatchC works in a forward
manner by symbolically executing an ML pattern that is provided as the
program precondition, and non-deterministically obtaining a set of final pat-
terns that are then used to discharge the postcondition. This is an instance
of a general strategy to calculate the strongest postcondition of a predicate
transformation semantics as explained in [GC10]. However, MatchC is in-
complete for the purpose of general symbolic execution in the sense that its
symbolic machinery does not support incremental assumptions regarding the
initial structure of the program memory; it can only assume the structure
that is implicitly imposed by the initial pattern. For the inference purposes of
this chapter, we cannot assume any ex-ante condition for the initial program
state; on the contrary, we need to incrementally collect all the assumptions
that allow each symbolic execution path to be successfully executed. In the
following section, we explain how we extended MatchC to support collecting
assumptions on-the-fly within the symbolic configurations as needed.

7.2 Extending the ML Symbolic Machine

Symbolic execution typically proceeds like standard execution except that,
when a function or routine is called, symbolic values are assigned to its actual
parameters and computed values become symbolic expressions that record the
operations applied to them. When symbolic execution reaches a conditional
control flow statement, every possible execution path from this statement must
be explored. In order to keep track of the explored execution paths, symbolic
execution also records the assumed (symbolic) conditions on the program in-
puts that determine each execution path in the so-called path constraints (one
per possible branch), which are empty at the beginning of the execution. A
path constraint consists of the set of constraints that the arguments of a given
function must satisfy in order for a concrete execution of the function to fol-
low the considered path. Without loss of generality, we assume that the sym-
bolically executed functions access no global variables; they could be easily
modeled by passing them as additional function arguments.
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Example 38

Consider again the add function of Example 36. Assume that the input values
for the actual parameters s and x are the symbolic values s and x, respectively.
Then, when the symbolic execution reaches the first if statement in the code,
it explores the two paths arising from considering both, the satisfaction and
non satisfaction of the guard in the conditional statement. The path constraint
of the first branch is updated with the constraint s = NULL, whereas s ≠ NULL

is added to the path constraint of the second branch.

To summarize, symbolic execution can be represented as a tree-like struc-
ture where each branch corresponds to a possible execution path and has an
associated path constraint. When the path constraint is satisfiable, the suc-
cessful path ends in a final (symbolic) configuration that typically stores a
(symbolic) computed result.

For the symbolic execution of C programs, we must pay attention to
pointer dereference and initialization. In C, a structured datatype (struct)
is an aggregate type that describes a nonempty set of sequentially allocated
member objects1, called fields, each of which has a name and a type. When
a struct value is created, C uses the address of its first field to refer to the
whole structure. In order to access a specific field f of the given structure
type, C computes f’s address by adding an offset (the sum of the sizes of each
preceding field in the definition) to the address of the whole structure. In our
symbolic setting, all the pointer arithmetic is done by means of symbolic ad-
dress expressions that may appear in (the domain of) heap cells of MatchC
patterns.

Example 39

(Example 38 continued) Consider the second if statement of the add function
given in Example 36. The evaluation of the guard of the conditional statement
requires accessing both p->size and p->capacity. Since capacity is the
first field in the struct set definition, its location coincides with the (base)
address p. However, in order to access p->size, its address must be computed
by adding an offset2 of 1 to the (base) address p (i.e., if we assume that the
symbolic address held by the variable p is p, then the computed address for
the field size is p+1.)

1An object in C is a region of data storage in the execution environment.
2We assume that the memory is indexed by words and that a value of type int has the

size of a word.
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Another critical point is the undefinedness problem that occurs in C pro-
grams when accessing uninitialized memory addresses. The KernelC seman-
tics that we use preserves the concrete well-definedness behavior of pointer-
based program functions of C while still detecting the undefinedness cases
in a way similar to the C operational semantics of [ER12]. However, in the
discovery setting of our approach, we have no a priori information regard-
ing the memory (in particular, information about the (un)initialized memory
addresses). Therefore, when symbolic execution accesses (potentially unini-
tialized) memory positions, two cases must be considered: the case in which
the memory is actually initialized, and the case in which it is not. In the
second case, the symbolic execution gets stuck, thus identifying undefined be-
havior as in [ER12]. For the case in which the memory positions are actually
initialized and execution should proceed, a strategy to reconstruct the original
object in memory is needed. We adapt to our setting the lazy initialization of
fields of [KPV03]: when a symbolic address (or address expression) is accessed
for the first time, SE initializes the memory object that is located at that
address with a new symbolic value. This means that the mapping in the heap
cell is updated by assigning a new free variable to the symbolic address of the
accessed field so that from that point on, accesses to that field can only suc-
ceed. In contrast, in the case of failure, an undefined computation is pushed
onto the k cell, which stops the execution.

Example 40

(Example 39 continued) Before executing the second if statement, assume
that the heap cell is empty, which means that nothing is known about the
structure of the heap cell. After symbolically executing the guard of the if

statement (which refers to the capacity field and size field of the structured
type in s), the heap cell has the form:

[s↦ s.capacity, s + 1↦ s.size]heap

In other words, new symbolic bindings regarding the actual parameters are
added, which represent the assumptions we made over the corresponding data
structures.

In the following, we augment MatchC symbolic configurations (MatchC
patterns) with new cells and naturally extend its symbolic execution machinery
to work with the augmented patterns.
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⟨ load(T, I) ⋅⋅⋅ ⟩k⟨Heap ⟩heap⟨ ⋅⋅⋅ ⋅⋅⋅ ⟩iheap

tv(T,NewFreeVar) I ↦ NewFreeVar I ↦ NewFreeVar

if I ∉ keys(Heap)

Figure 7.3: Symbolic execution rule for accessing a value in the memory.

7.2.1 The MatchC Extension

The heap cell of MatchC patterns cannot be used to keep track of the as-
sumptions made by the lazy initialization described above since the subsequent
assignment statements that may occur during the symbolic execution typically
overwrite the heap cell values. Therefore, we have extended MatchC patterns
by introducing two additional cells: the iheap and ik cells. The iheap cell mono-
tonically stores all the (structural) assumptions that are dynamically made for
the initial heap. In this way, when symbolic execution finishes, the iheap cell
together with the φ cell contain the path constraint for the symbolic param-
eters that point to the dynamic data structures that were accessed along the
branch. The ik cell stores the contents of the k cell when the symbolic execu-
tion starts. In our case, this cell always contains a symbolic (initial) function
call.

The following example illustrates how the iheap cell is used. It also illus-
trates how the KernelC rules have been conservatively augmented to manip-
ulate extended configurations thanks to the modularity and underlying type
structure of the K framework.

Example 41

The rule in Figure 7.3 states that, whenever the symbolic interpreter accesses
an uninitialized piece of memory (condition I ∉ keys(Heap)3), a new symbolic
variable NewFreeVar is introduced for that position in the heap cell, and also
in the iheap cell, thus making that assumption persistent independently of the
effect of subsequent assignments on the heap.

As already mentioned, the exhaustive symbolic execution of all paths can-
not always be achieved in practice because an unbounded number of paths can
arise in the presence of loops or recursion. We follow the standard approach to
avoid the exponential blowup inherent in path enumeration by exploring loops

3In C, the function keys(M) returns the domain of the mapping M . Thus, function call
keys(Heap) represents the set of initialized memory positions in the heap.
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and recursion up to a specified number of unfoldings. This ensures that SE
ends for all explored paths, thus representing a subset of the program behavior
[DKW08]. Obviously, not all the potential execution paths are feasible. We use
the automatic theorem prover CVC3 [BT07] to check the satisfiability of path
constraints, to simplify path conditions and to eliminate unfeasible symbolic
computations whenever the corresponding path constraint is unsatisfiable.

In order to facilitate the specification inference, in the following section we
define two types of patterns, called observation patterns (the call-pattern and
the return-pattern), that we extract from the symbolic final configurations at
the end of the symbolic execution paths.

7.2.2 The Pattern Extraction

We define a call-pattern as a pattern whose k cell consists of just a function call
with (possibly symbolic) arguments. A return-pattern is a pattern that only
has either a return instruction with the corresponding value or an undefined

computation at the top of its k cell. The call-patterns and return-patterns
(called observation patterns) respectively represent the observable state of a
program before and after a specific function call is executed.

We note that all the information needed to extract the observation patterns
is accumulated in the final MatchC symbolic configurations. In order to reuse
the MatchC verification machinery, we formalize the two extracted patterns
in terms of traditional ML patterns in the following way:

• The call-pattern is defined by filling the heap cell with the content of
the iheap cell, and the k cell with the content of the ik cell, and then
discarding the iheap and ik cells.

• The return-pattern is obtained by simply deleting the iheap and ik cells.

In the following, we call initial extended pattern or initial symbolic configura-
tion to the pattern that starts the symbolic execution of a function.

Example 42

To symbolically execute the int add(struct set *s,int x) function by us-
ing the extended MatchC verifier, we start from the initial symbolic config-
uration4

p = [⋅⋅⋅ [add(s, x)]k[add(s, x)]ik[]heap[]iheap[]φ ⋅⋅⋅]cfg ,

4We only write those cells that we need to consider for the inference.
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and from this extended pattern, we obtain for each branch of the symbolic
execution tree a final extended pattern pi with the form

pi = [⋅⋅⋅[returnValuei]k[add(s, x)]ik[Heapi]heap[IHeapi]iheap[Φi]φ ⋅⋅⋅]cfg

The call patterns and return patterns are extracted from p1 . . . pn:

call pattern(pi) = [⋅⋅⋅ [add(s, x)]k[IHeapi]heap[Φi]φ ⋅⋅⋅]cfg ,

return pattern(pi) = [⋅⋅⋅ [returnValuei]k[Heapi]heap[Φi]φ ⋅⋅⋅]cfg.

Formally, the extracted observation patterns are also ML patterns and
satisfy

call pattern(pi) ⇚return pattern(pi).

This is because, by construction, call pattern(pi) records all the assumptions
needed to ensure that return pattern(pi) holds at the end of the symbolic
execution branch following the ML proof system implemented in MatchC.
This allows us to ascertain the conditions for the completeness of our inference
technique:

If the disjunction of the extracted call patterns is logically equivalent to
the ML pattern that is obtained by removing the iheap and ik cells from the
initial symbolic configuration (the extended pattern p), then the set

{call pattern(pi) ⇚return pattern(pi)}i∈{1...n}

of correctness pairs fully describes the input/output behavior of the considered
program function.

In the following section, we formulate an algorithm that symbolically exe-
cutes the program and automatically extracts and combines the call and return
patterns in order to infer the pursued logical specifications.

7.3 Inference process

Let us introduce the basic notions that we use in our formalization. Given an
input program, let F be the set of functions in the program. We distinguish the
set of observers O and the set of modifiers M. A function can be considered
to be an observer if it explicitly returns a value, whereas any method can be
considered to be a modifier . Thus, the set O ∩M is non empty.

We denote with the symbol ⋅ the universal ML pattern that represents
every possible program state, i.e., it imposes no constraint to the state. Given
a function f ∈ F , we represent the call to f with a list of arguments args as
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f(args). Then, f(args)[p] is the extended pattern built by first adding both
the ik and iheap cells to the pattern p, next inserting the call f(args) into the
ik and k cells, and then copying to the iheap cell the contents of the heap cell of
p. The intuition is that f(args)[p] propagates the information in p to the ex-
ecution of f(args). f(args)[⋅] stands for the extended pattern that represents
the execution of f with arguments args under a state without constraints, i.e.,
with empty information brought in by the universal pattern. Given an initial
extended pattern p, we denote as Se(p) the set of final extended patterns
{pi}i>0 resulting from the symbolic execution of p in our MatchC system,
i.e., the leaves of the symbolic execution tree for p. Each pi has associated a
correctness pair call pattern(pi) ⇚return pattern(pi). Given a return pattern
q, q∣ret is the projection of q to its return value or undefined computation,
which are in the k cell.

Our specification inference technique is formalized in Algorithm 2. First,

Algorithm 2 Inferring specifications.

Require: m ∈M of arity n;
1. S = Se(m(a1, . . . , an)[⋅])
2. axiomSet := ∅;
3. for all pi ∈ S do
4. eqspre := explains(call pattern(pi), [a1, . . . , an]);
5. eqspost := explains(return pattern(pi), [a1, . . . , an]);
6. eqret := ret = return pattern(pi)∣ret;
7. axiomSet := axiomSet ∪ {eqspre ⇒ (eqspost ∪ eqret)};
8. end for
9. spec := simplify(axiomSet)

10. return spec

the modifier method of interest is symbolically executed with fresh symbolic
variables a1, . . . , an as arguments. As a result, the set of final extended patterns
S is computed. Then, by extracting and processing the call and return patterns
of each pi ∈ S, a set of axioms is obtained that defines the behavior of the
program. This is done by means of the function explains(p, as) given in
Algorithm 3. The computed axioms are implications of the form li ⇒ ri. The
function simplify implements a post-processing which consists on (1) disjoin
the preconditions li that have the same postcondition ri and simplify the
resulting precondition, and (2) conjoin the postconditions ri that share the
same precondition and simplify the resulting postcondition.

Let us show an example of the application of the algorithm.
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Example 43
Assume that we want to infer a specification for the add modifier function
of Example 36. Following the algorithm, we first compute SE(add(s, x)[⋅]),
with s and x (free) symbolic variables. Since there are not initial assumptions
for the initial symbolic configuration, the execution covers all possible initial
concrete configurations. The symbolic execution computes five final extended
patterns5. The following extended pattern e represents the path that ends in
the body of the second if statement:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣
⋅⋅⋅

ret ↦ 0,
s↦ s,
x↦ x

⋅⋅⋅
⎤⎥⎥⎥⎥⎦env

[ s↦ s.capacity,
s + 1↦ s.size

]
heap

[ s ≠ 0 ∧
s.capacity ≤ s.size

]
φ

[ s↦ s.capacity,
s + 1↦ s.size

]
iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

The execution of this path returns the value 0; note that the fields s->size

and s->capacity are accessed after checking that s is not NULL (i.e., 0). In the
extended pattern e, the return value 0 is represented by the binding ret ↦ 0
in the env cell. The failed check of s == NULL adds the constraint s ≠ 0 to
the φ cell. Given our assumption that any access to a field through a non-
NULL pointer does succeed, the symbolic fields s.capacity and s.size are generated
in the iheap cell. The successful check of s->size >= s->capacity adds an
analogous constraint to the φ cell. Note that, since during the execution of
this path the heap is not modified, the heap and iheap cells are identical, i.e.,
the initial and the final heaps are the same.

Next, for each final extended pattern the algorithm explains its call- and
return-patterns by using the function explains(p, as), which delivers suitable
sets of equations. For the extended pattern e, the equations isnull(s) =
0 and isfull(s) = 1 are generated for both the call- and return-patterns.
Additionally, the equation ret = 0 is generated with the return value of e.
Finally, by combining these equations we generate the following axiom:

isnull(s) = 0 ∧ isfull(s) = 1⇒
ret = 0 ∧ isnull(s) = 0 ∧ isfull(s) = 1

which is the computed explanation for e.

Let us now describe Algorithm 3 that defines the function explains(p, as).
Given an ML pattern p and a list of symbolic variables as, this function
computes a set of equations as the description of p. These equations are
composed of calls to observer functions and built-in functions that are bound

5For simplicity, we set the number of loop unrollings to one.
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to the (symbolic) values that are returned by the calls. In the algorithm,
args ⊑ as states that the list of elements args is a permutation of some (or all)
elements in as.

Algorithm 3 Computing explanations: explains(p,as)
Require: p : the pattern to be explained
Require: as : a list of symbolic variables

1. C: the universe of observer calls;
2. eqSet := ∅;
3. for all o(args) ∈ C and args ⊑ as do
4. S = SE(o(args)[p])
5. if ∄ p1, p2 ∈ S s.t. return pattern(p1)∣ret ≠ return pattern(p2)∣ret

then
6. eqSet := eqSet ∪ (t = return pattern(p1)∣ret)
7. end if
8. end for
9. return eqSet

Roughly speaking, given a pattern p, explains(p,as) first generates the
universe of observer function calls C, which consists of all the function calls
o(args) that satisfy that:

• o belongs to O or to the set of (predefined) built-in functions,

• args in the call o(args) is a suitable selection of variables from the sym-
bolic variable list as that is received as argument, respecting the type
and arity of o.

Then, for each call o(args) ∈ C, it checks whether all the final symbolic configu-
rations (leaves) resulting from the execution of o(args) on a state that satisfies
the constraints in p have the same return value. For the calls that satisfy this
condition, an equation is generated (line 6 in Algorithm 3). The intuition of
this step is that, if we symbolically execute the observer at a given initial state
and for all its execution branches we get the same value, then the observer
together with the return value (partially) characterize the considered state.
The last step of the algorithm returns the set of all the generated equations.

Example 44 (Example 43 continued)

Let us show how we compute the explanation for the return-pattern of Exam-
ple 43 given the symbolic variables considered in the example.
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Given the observer functions isfull, isnull and contains, and the sym-
bolic variables s and x, the universe of observer calls is isfull(s), isnull(s)

and contains(s,x). Let us show in detail the case for the observer isnull(s).
When we symbolically execute isnull(s) over this return-pattern, we only

obtain the extended pattern:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 0 ⋅⋅⋅]env [ s↦ s.capacity,
s + 1↦ s.size

]
heap

[ s ≠ 0 ∧
s.capacity ≤ s.size

]
φ

[ s↦ s.capacity,
s + 1↦ s.size

]
iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

Since there are no observer paths returning different values because there is
only one path (the one for computed extended pattern) and its associated
return value is 0, the equation isnull(s) = 0 can be used as a (partial) expla-
nation for the pattern under consideration. Then, this equation is added to
the set of equations eqSet that will be returned by Algorithm 3.

Due to bounded loop unrolling, we cannot ensure completeness of the in-
ferred specifications as we do not cover all possible execution paths. Also
due to generalization, we cannot ensure that all inferred axioms are sound.
Nevertheless, when we consider loops that are characterized by a known in-
variant, then we could guarantee both the soundness and completeness of our
technique.

7.3.1 Refining the inference process

There are some cases in which explanations cannot be achieved due to the lack
of sufficiently precise observers. In order to mitigate this problem, we present
a refinement process that allows more accurate specifications to be computed
and that can be applied automatically. The idea is to split the pattern that
could not be explained (because there were different computed results in the
leaves of the symbolic execution of observers) into multiple refined patterns
that the observer functions are then able to explain.

Algorithm 4 describes how to refine a pattern p by using the observer
call c. First, we compute SE(c[p]), which obtains a set S of final extended
patterns. Note that the call-pattern of each of these final patterns pi ∈ S
contains additional constraints that are imposed by the symbolic execution of
the observer call. In other words, the set consisting of the new extracted call
patterns forms a refinement of p.

Running the observer c under the new refined patterns delivers a single
return value for each run, which brings the corresponding explanation using c.
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An interesting open question is to be able to determine when we have enough
observers, that is, to determine which observers are missing.

Algorithm 4 Computation of refined explanations for p given an observer c:
refined explains(p, c)
Require: p : the pattern to be explained
Require: c : the observer call that will explain p by refinement

1. expl := ∅;
2. S = SE(c[p])
3. for all pi ∈ S do
4. expl := expl ∪ {p↦ explains(call pattern(pi))};
5. end for
6. return expl

We have developed a prototype called KindSpec6 that implements the
inference methodology described in this chapter. By using KindSpec, we ap-
plied our methodology onto KernelC implementations of collection libraries
for manipulating linked lists in C such as those provided in the GDSL generic
data structure library [Tea13]. We evaluated the accuracy of the specifications
inferred by our technique by comparing them with the original specifications
written by hand, and we found out that only in a few cases there was a sig-
nificant loss of information. Table 7.1 summarizes the obtained results for
a set of selected benchmark programs. For each program example, the first
three columns show the number of modifiers, observers and lines of code of the
corresponding program, respectively. Column # corresponds to the number
of explored paths as determined by the imposed termination criteria. The
last two columns indicate the number of generated axioms and the number of
inferred axioms that are sound, respectively. This last measurement is also
related to the imposed termination criteria: the greater the depth of unrolling,
the highest number of correct axioms is obtained. With respect to the time
cost of the inference, it ranges from 1s. to 10s., which is quite promising and
comparable to the performance of similar tools, e.g. [TCS06].

Of course, our synthesis system KindSpec inherits the current limitations
of the underlying MatchC verifier. To effectively synthesize highly accurate
specifications for larger programs that involve more complicated reasoning,
more efficient verifiers are needed that are actually forthcoming.

6Available at http://safe-tools.dsic.upv.es/kindspec.

http://safe-tools.dsic.upv.es/kindspec.
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Table 7.1: Experimental results

Module Modifiers Obs. LOC # Axioms Sound

Set List add 4 70 87 4 4
remove 5 90 54 2 2

Double- append 9 180 43 4 3
Linked Lists remove 9 180 66 2 2

Double-ended push head 4 100 106 3 3
Queues push tail 4 100 142 3 3

pop head 4 100 16 2 2
pop tail 4 100 24 2 2

Stack push 3 25 14 2 2
pop 2 25 15 2 2

7.4 A case study of specification inference

Let us illustrate how we can use Algorithm 2 to discover a likely speci-
fication for the add modifier function of Example 36. First, we compute
SE(add(s, x)[⋅]) with s and x (free) symbolic variables. Since there are not ini-
tial assumptions for the initial symbolic configuration, the execution covers all
possible initial concrete configurations. In this case, we get five final extended
patterns (shown in Figure 7.4) that correspond to five symbolic execution
paths.7 Pattern p1 results from the execution of the path that terminates in
the body of the first if statement. Thus, its return value is 0 and the pointer
s is 0, i.e., NULL. Pattern p2 represents the path ending in the body of the
second if statement: its return value is also 0, but the pointer s is assumed
to be different from NULL since the guard in the previous if statement was
not satisfied. Additionally, this path successfully accesses the s->size field
and s->capacity field since the pointer s is not NULL (this can be deduced
from the contents of the iheap cell). The remaining paths jump over the first
two if statements; hence, their associated patterns impose that the pointer
s is not NULL and that there is space enough in the set to add new elements
(s->size < s->capacity). Additionally, pattern p3 jumps over the while

statement (s->elems is NULL), allocates memory address n for adding the new
value, initializes it (represented by the assignments to addresses n and n+ 1 in
the heap cell, but not in the iheap) and links it to the set object (represented

7To simplify the description, in this example we approximate the symbolic loop unrolling
to just one unfolding.
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p1. [ [⋅⋅⋅ ret↦ 0, s↦ s, x↦ x ⋅⋅⋅]
env

[ ⋅ ]
heap

[ ⋅ ]
iheap

[ s = 0 ]
φ ]

cfg
,

p2.

⎡⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 0, s↦ s, x↦ x ⋅⋅⋅]
env

[ s↦ s.capacity, s + 1↦ s.size ]
heap

[ s ≠ 0 ∧ s.capacity ≤ s.size ]
φ

[ s↦ s.capacity, s↦ s.size ]
iheap

⎤⎥⎥⎥⎥⎦cfg

,

p3.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎣
⋅⋅⋅
ret↦ 1,
s↦ s,
x↦ x

⋅⋅⋅
⎤⎥⎥⎥⎥⎥⎦env

⎡⎢⎢⎢⎢⎢⎣

n↦ x, s↦ s.capacity,
n + 1↦ s.elems, s + 1↦ s.size + 1,

s + 2↦ n

⎤⎥⎥⎥⎥⎥⎦heap⎡⎢⎢⎢⎢⎢⎣

s ≠ 0 ∧
s.capacity > s.size ∧

s.elems = 0

⎤⎥⎥⎥⎥⎥⎦φ

⎡⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems

⎤⎥⎥⎥⎥⎥⎦iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

,

p4.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎣
⋅⋅⋅
ret↦ 0,
s↦ s,
x↦ x

⋅⋅⋅
⎤⎥⎥⎥⎥⎥⎦env

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value

⎤⎥⎥⎥⎥⎥⎥⎥⎦heap
⎡⎢⎢⎢⎢⎢⎢⎢⎣

s ≠ 0 ∧
s.capacity > s.size ∧

s.elems ≠ 0 ∧
s.elems.value = x

⎤⎥⎥⎥⎥⎥⎥⎥⎦φ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value

⎤⎥⎥⎥⎥⎥⎥⎥⎦iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

,

p5.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎣
⋅⋅⋅
ret↦ 1,
s↦ s,
x↦ x

⋅⋅⋅
⎤⎥⎥⎥⎥⎥⎦env

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size + 1,
s + 2↦ n,

s.elems↦ s.elems.value,
s.elems + 1↦ s.elems.next,

n↦ x,
n + 1↦ s.elems

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦heap

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s ≠ 0 ∧
s.capacity > s.size ∧

s.elems ≠ 0 ∧
s.elems.value ≠ x

⎤⎥⎥⎥⎥⎥⎥⎥⎦φ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value,
s.elems + 1↦ s.elems.next,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

Figure 7.4: Paths computed by SE(add(s, x)[⋅]).
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by s + 2↦ n in the heap cell). Finally, it returns the value 1, which represents
the successful addition of the value x. Pattern p4 enters the while loop once
and ends after completing the execution of the body of its inner if statement.
In this case, the first element of the list that represents the set coincides with
the value to be inserted (represented by the formula s.elems.value = x), so x is
not added to the set and the value 0 is returned. Finally, pattern p5 executes
the while loop once but it does not enter its inner if statement, which means
that the initial set has just one element that is different from the one to be
inserted (represented by the formula s.elems.value ≠ x). Afterwards, it allocates,
initializes and links a new memory object representing the new value of the
set x. An interesting difference between this path and path p3 is that the new
created object is directly linked by the set s (represented by s + 2 ↦ n in the
heap cell) while, initially, the only element s in s was linked within the iheap
cell, which was represented by s + 2↦ s.elems.

At this point, we have symbolically executed function add which has yield
five symbolic paths (in terms of final symbolic configurations). The next step
of the inference Algorithm 2 is to explain each pair of extracted call- and
return-patterns in terms of the observer functions. According to Algorithm 3,
an observer call is chosen as an explanation of an ML pattern p if, when we
symbolically execute it starting from an initial symbolic configuration that
includes the information in p, all its paths return the same value. In the
following, we show how our approach can explain the call patterns extracted
from p2 by using the observers isnull, isfull and contains.

The first observer to be considered is isnull. The symbolic execution of
this observer over pattern p2, represented by SE(isnull(s)[call pattern(p2)]),
returns the only extended pattern:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 0 ⋅⋅⋅]
env

[ s↦ s.capacity,
s + 1↦ s.size

]
heap

[ s ≠ 0 ∧
s.capacity ≤ s.size

]
φ

[ s↦ s.capacity,
s + 1↦ s.size

]
iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

Since there is only one path and its associated return value is 0, then the
equation isnull(s) = 0 can be used as a (partial) explanation of p2. In par-
ticular, the equation states that, from a concrete configuration satisfying (i.e.,
matching) p2, the execution of isnull(s) always returns 0.

Similarly, we check whether isfull(s) can be part of the explanation of
pattern p2 by computing SE(isfull(s)[call pattern(p2)]), which yields only
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one path whose result is 1:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 1 ⋅⋅⋅]
env

[ s↦ s.capacity,
s + 1↦ s.size

]
heap

[ s ≠ 0 ∧
s.capacity ≤ s.size

]
φ

[ s↦ s.capacity,
s + 1↦ s.size

]
iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

Therefore, equation isfull(s) = 1 is generated.
In contrast, for the observer isfull(s), three different paths are obtained

when executing SE(contains(s, x)[call pattern(p2)]) (see Figure 7.5). The
first and the third extended patterns return 0, i.e., return pattern(p2,1) =
return pattern(p2,3) = 0, whereas the second extended pattern returns 1, i.e.,
return pattern(p2,2) = 1. Therefore, not all the final symbolic configurations
have the same return value. This means that we cannot define an equation
that represents all the paths to (partially) explain the symbolic configuration
p2 but we have basically two options: 1) refine the original pattern p2 with
the added constraints and then describe the refined patterns with the new
observer, or 2) discard this observer call as it does not lead to a plausible
explanation. Algorithm 3 adopts the second solution: it discards the observer
calls that do not always return the same value. Nonetheless, if Algorithm 3
fails to explain the pattern with all the generated observer calls, an explanation
that uses a given specific observer can still be attempted as follows.

If we refine call patern(P2) with respect to the observer contains(s,x),
we obtain three new (refined) patterns:

1.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 0 ⋅⋅⋅]env

⎡⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems

⎤⎥⎥⎥⎥⎥⎦heap⎡⎢⎢⎢⎢⎢⎣

s ≠ 0 ∧
s.capacity ≤ s.size ∧

s.elems = 0

⎤⎥⎥⎥⎥⎥⎦φ

⎡⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems

⎤⎥⎥⎥⎥⎥⎦iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

2.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 1 ⋅⋅⋅]
env

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value

⎤⎥⎥⎥⎥⎥⎥⎥⎦heap
⎡⎢⎢⎢⎢⎢⎢⎢⎣

s ≠ 0 ∧
s.capacity ≤ s.size ∧

s.elems ≠ 0 ∧
s.elems.value = x

⎤⎥⎥⎥⎥⎥⎥⎥⎦φ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value

⎤⎥⎥⎥⎥⎥⎥⎥⎦iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg
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p2,1.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 0 ⋅⋅⋅]
env

⎡⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems

⎤⎥⎥⎥⎥⎥⎦heap⎡⎢⎢⎢⎢⎢⎣

s ≠ 0 ∧
s.capacity ≤ s.size ∧

s.elems = 0

⎤⎥⎥⎥⎥⎥⎦φ

⎡⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems

⎤⎥⎥⎥⎥⎥⎦iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

p2,2.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 1 ⋅⋅⋅]
env

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value

⎤⎥⎥⎥⎥⎥⎥⎥⎦heap
⎡⎢⎢⎢⎢⎢⎢⎢⎣

s ≠ 0 ∧
s.capacity ≤ s.size ∧

s.elems ≠ 0 ∧
s.elems.value = x

⎤⎥⎥⎥⎥⎥⎥⎥⎦φ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value

⎤⎥⎥⎥⎥⎥⎥⎥⎦iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

p2,3.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 0 ⋅⋅⋅]
env

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value,
s.elems + 1↦ s.elems.next

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦heap

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s ≠ 0 ∧
s.capacity ≤ s.size ∧

s.elems ≠ 0 ∧
s.elems.value ≠ x

⎤⎥⎥⎥⎥⎥⎥⎥⎦φ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value,
s.elems + 1↦ s.elems.next

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

Figure 7.5: Paths resulting from SE(contains(s, x)[call pattern(p2)])
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3.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[⋅⋅⋅ ret↦ 0 ⋅⋅⋅]
env

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value,
s.elems + 1↦ s.elems.next

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦heap

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s ≠ 0 ∧
s.capacity ≤ s.size ∧

s.elems ≠ 0 ∧
s.elems.value ≠ x

⎤⎥⎥⎥⎥⎥⎥⎥⎦φ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s↦ s.capacity,
s + 1↦ s.size,
s + 2↦ s.elems,

s.elems↦ s.elems.value,
s.elems + 1↦ s.elems.next

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦iheap

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦cfg

In other words, these three patterns represent three initial symbolic con-
figurations under which the execution of the observer function returns a single
value. Thus, for each of these three patterns, we generate an equation with a
call to the contains observer that explains it. Specifically, the explanations of
the first and the third pattern delivers the equation contains(s, x) = 0, while
for the second pattern we have contains(s, x) = 1. For each of the refined pat-
terns we obtain, respectively, the following pre/post-conditions for the refined
pattern:

1.

isnull(s) = 0 ∧
isfull(s) = 1 ∧
contains(s,x) = 0

⇒
ret = 0 ∧
isnull(s’) = 0 ∧
isfull(s’) = 1 ∧
contains(s’,x) = 0

2.

isnull(s) = 0 ∧
isfull(s) = 1 ∧
contains(s,x) = 1

⇒
ret = 0 ∧
isnull(s’) = 0 ∧
isfull(s’) = 1 ∧
contains(s’,x) = 1

3.

isnull(s) = 0 ∧
isfull(s) = 1 ∧
contains(s,x) = 0

⇒
ret = 0 ∧
isnull(s’) = 0 ∧
isfull(s’) = 1 ∧
contains(s’,x) = 0

Note that the first and third formulas are equivalent and can thus be simplified,
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obtaining the two equivalent formulas:

isnull(s) = 0 ∧
isfull(s) = 1 ∧
contains(s,x) = 0

⇒
ret = 0 ∧
isnull(s’) = 0 ∧
isfull(s’) = 1 ∧
contains(s’,x) = 0

isnull(s) = 0 ∧
isfull(s) = 1 ∧
contains(s,x) = 1

⇒
ret = 0 ∧
isnull(s’) = 0 ∧
isfull(s’) = 1 ∧
contains(s’,x) = 1

7.5 Conclusions and Related Work

We have presented a technique for automatically synthesizing formal specifica-
tions for heap-manipulating programs together with some practical correctness
conditions. The whole approach is formalized in the Matching Logic setting.
We have illustrated the technique by applying it to the KernelC language.
Finally, we have implemented a prototype of the method called KindSpec in
order to demonstrate the practicality of the technique.

Specification extraction is itself not new. The automatic generation of
likely specifications (either in the form of contracts, interfaces, summaries,
assumptions, invariants, properties, component abstractions, process models,
rules, graphs, automatas, etc.) from program code has received increasing
attention. Specifications can be property oriented (i.e., described by pre/post-
conditions or functional code); stateful (i.e., described by some form of state
machines); or intensional (i.e., described by axioms). Here we only try to cover
those lines of research that have influenced our work most.

Unlike our symbolic specification inference method, Daikon [EPG+07] and
DIDUCE [HL02] detect program invariants by extensive test runs. Also,
Henkel and Diwan [HD03] built a tool that dynamically discovers specifica-
tions for interfaces of Java classes by first generating, using the class signature,
many test cases that consist of terms representing sequences of method invo-
cations, and then generalizing the results of these tests to algebraic specifica-
tions. QuickSpec [CSH10] is another inference tool that is based on testing
and can be used to generate laws that a Haskell program satisfies. Whereas
Daikon discovers invariants that hold at existing program points, QuickSpec
discovers equations between arbitrary terms constructed using an API, sim-
ilarly to [HD03]. Also, they use a similar overall approach that is based on
testing: they generate terms and evaluate them, then dynamically identify
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terms that are equal, and finally generate equations, filtering away redundant
ones. AbsSpec [BCFV12a], as presented in Chapter 6, is a semantic-based
inference method that relies on abstract interpretation and generates laws for
Curry programs in the style of QuickSpec. A different abstract interpreta-
tion approach to infer approximate specifications is [TJ07]. A combination of
symbolic execution with dynamic testing is used in Dysy [CTS08]. Ghezzi et al.
[GMM09] infer specifications of container-like classes as finite state automatas
combined with graph transformation rules. All these proposals observe that
conditional equations would be useful, but neither tool generates them nor
include associative or commutative operators, which are naturally supported
in our approach thanks to the handling of Maude’s (hence K’s) equational
attributes [CDE+07]. By supporting the modular combination of associative,
commutative, idempotent and unity equational attributes for function sym-
bols (which makes these combinations transparent to the developer), the K
framework naturally conveys enough expressive power to reason about typed
data structures such as lists (list concatenation is associative with unity el-
ement nil), multisets (insertion is associative-commutative with unity ∅), or
sets (insertion is associative-commutative-idempotent with unity ∅). By using
equational attributes to declare such properties, we can avoid non-termination
problems and achieve much more efficient evaluation of terms containing such
operators. We take advantage of these capabilities at three levels:

• for the definition of the extended language semantics, where the heap
structures and pointer handling are represented as appropriate data
structures and their associated operations,

• for the mechanization of the inference process: we efficiently handle
(eventually huge) sets of axioms, paths and constraints

• most importantly, for computing the sugared version of the specification,
where, by simply imposing an order relation on terms, we get a first
simplification of axioms almost for free, and we infer specifications where
the function symbols can be given equational attributes as well.

An alternative approach to software specification discovery is based on in-
ductive matching learning: rather than using test cases to validate a tentative
specification, they are used to induce the specification. Much of the work on
specification mining is targeted at inferring API protocols dynamically. For
instance, Whaley et al. [WML02] describe a system to extract component in-
terfaces as finite state machines from execution traces. The work in [CTS08] of-
fers a thorough revision of data mining approaches for inferring different kinds
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of specifications, typically from traces or observed program runs (e.g., mod-
els, summaries, regular invocation patterns or state machines). An algorithm
for interface generation of software components using learning techniques is
presented in [GP09] and implemented in the JavaPathfinder model-checking
framework.

Our approach differs from most of the above because we do not infer ab-
stract properties by observations of (concrete) program runs. Our axiomatic
representation of functions and of their effects is inspired by [TCS06]. How-
ever, our approach does not rely on a model checker for symbolic execution,
as opposed to [TCS06]. Also, we do not generate the output as parameterized
unit tests or Spec# specifications; we have simpler and more accurate formu-
las that avoid reasoning with the global heap but rather separate the different
pieces of the heap that are reachable from the function argument addresses.
Moreover, we can refine the observers by means of Algorithm 4 so that we are
able to get more accurate specifications, although more experiments have yet
to be done to compare all these inference methods in larger code.

As a further advantage w.r.t. [TCS06], in our framework, correctness of the
inferred axioms can be checked automatically by using the very same MatchC
verifier. Also, our methodology can be easily applied to any language which
is given a semantics in the K framework.



Conclusion and Future Work

In the Part I of this thesis we have presented two different Datalog query
answering techniques that are specially-tailored to object-oriented program
analysis. These techniques essentially consist in transforming the original
Datalog program into a suitable set of rules which are then executed under an
optimized top-down strategy that caches and reuses “rewrites” in the target
language.

More specifically, we have formalized the transformation of any given set of
definite Datalog clauses into two efficient implementation frameworks, namely
Boolean Equation Systems [And94a] and Rewriting Logic [Mes92].

In the Bes-based program analysis methodology, the Datalog clauses that
encode a particular analysis, together with a set of Datalog facts that are au-
tomatically extracted from the program source code, are dynamically trans-
formed into a Bes whose local resolution corresponds to the demand-driven
evaluation of the program analysis. This approach has allowed existing efficient
general purpose analysis and verification toolboxes such as Cadp to be reused.
We have implemented this technique into a prototype called Datalog Solve
that shows good performance. As future work, we envisage two directions.
First, it would be interesting to optimize the transformation by using more
sophisticated data structures and evaluation strategies, as we have already
done in [FJT10b]. The other direction consists in distributing the resolution
of the Bes between different machines. The distribution of the resolution
could be done at the Bes level [JM06] or at the Datalog level [AU10].

One of our motivations for developing the Rwl-based query answering
technique for Datalog was to provide purely declarative yet efficient program
analyses that overcome the difficulty of handling meta-programming features
such as reflection in traditional analysis frameworks [LWL05]. By transforming
Datalog programs into Maude programs, we take advantage of the flexibility
and versatility of Maude in order to achieve meta-programming capabilities,
and we make significant progress towards scalability without losing the declar-
ative nature of specifying complex program analyses in Datalog. We have
implemented this technique into a prototype called Datalaude, and we have
concluded that it is competitive w.r.t. other optimized deductive database
systems. Actually, the provided tool supports sophisticated analyses with
reasonable performance in a clean way. As future work, we envisage two di-
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rections for this line of research. On one hand, the transformation can be
further refined by investigating on program refactorings for Maude that aim
to improve program efficiency [Cue13]. On the other hand, the use of the
Maude meta-level facilities endows us with a fine-grained control of the Rwl
execution, thus making possible the implementation of resolution strategies
with cost guarantees [LS09], or even compositional reasoning over Datalog
programs [BJ03].

In the Part II of this thesis we have presented two different techniques for
synthesizing specifications for two different programming paradigms. These
techniques infer succint and comprehensible specifications which are specially-
tailored to program understanding and documentation.

For the multiparadigm programming language Curry, different types of
equations are generated by classifying expressions built from (a subset of) the
program signature according to its abstract semantics. Our method achieves
a good compromise between correctness and efficiency by using a suitable
abstract semantics that allows one to discriminate between correct and possibly
correct parts of the specification. We have implemented this technique into a
prototype called AbsSpec and proved its efficacy. As future work, we envisage
two directions. First, we plan to experiment with other abstract domains
and semantics in order to be able to guarantee the inference of a greater
number of correct equations. Second, we think that there is an opportunity
to further simplify the inferred equations in order to obtain even more concise
specifications by using equational resoning.

The second technique for specification inference was designed to obtain
high-level specifications from object-oriented languages and we formulated it
for a subset of C. Our method infers for each function in a program a set
of high-level pre/post-condition pairs, whose low-level details are observation-
ally abstracted by means of other functions in the same program. We have
formalized the technique in the Matching Logic verification setting in order to
be able to verify the correctness of the inferred specifications. We have imple-
mented this technique into a prototype called KindSpec that we applied to
infer specifications for collection libraries. As future work, we are interested
in increasing the conciseness of the generated specifications. In particular, we
think that the application of generalization techniques can further improve
the simplicity of the inferred specifications.

As a conclusion, in this thesis we have presented different techniques aimed
at improving different aspects of the existing approaches for declarative static
analysis and automated synthesis of specifications. Hopefully, our work will
set the grounds for further investigations in these areas.
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[AFJV10] M. Alpuente, M.A. Feliú, C. Joubert, and A. Villanueva. Defin-
ing Datalog in Rewriting Logic. In D. Schreye, editor, Proceed-
ings of the 19th International Conference on Logic-Based Program



148 Bibliography

Synthesis and Transformation (LOPSTR 2009), volume 6037 of
Lecture Notes in Computer Science, pages 188–204, Berlin, Hei-
delberg, 2010. Springer-Verlag.
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