Contents

Introduction vii
I.1 Challenges in Declarative Static Analysis and Automated Synthesis of Specifications ix
 I.1.1 Declarative and effective program analysis ix
 I.1.2 Automated Inference of Specifications x
I.2 The Proposed Approach xii
I.3 Contributions of the Thesis xiv
I.4 Plan of the Thesis xv

1 Preliminaries 1
 1.1 Rewriting Logic 1
 1.2 Maude 2

I Datalog-based Declarative Program Analysis 9

2 Datalog and Boolean Equations Systems 15
 2.1 Datalog 15
 2.2 Datalog-based analysis 18
 2.3 Parameterised Boolean Equation Systems 20

3 From Datalog to Boolean Equations Systems 23
 3.1 From Datalog to BES 24
 3.2 A complete Datalog to BES transformation 25
 3.2.1 Instantiation to parameterless BES 28
 3.2.2 Optimizations to the basic BES resolution technique 32
 3.2.3 Solution extraction 36
 3.3 The prototype DATALOG_SOLVE 36
 3.4 Experimental results 39
 3.4.1 Further Improvements 40
 3.5 Conclusions and Related Work 43
4 From Datalog to *Rewriting Logic* 45
4.1 From Datalog to RWL ... 46
4.2 A complete Datalog to RWL transformation 51
4.3 Dealing with JAVA reflection 71
4.4 The prototype DATALAUDE 78
4.5 Experimental results .. 80
4.5.1 Comparison w.r.t. a previous rewriting-based implementa-
tion ... 80
4.5.2 Comparison w.r.t. other Datalog solvers 81
4.6 Conclusions and Related Work 82

II Automated Inference of Specifications 83

5 *Curry, the K Framework and Matching Logic* 87
5.1 *Curry* .. 87
5.2 The *K Framework* ... 91
5.3 *Matching Logic* ... 92

6 Inference of Specifications from *Curry* Programs 95
6.1 Specifications in the functional-logic paradigm 96
6.2 Formalization of equivalence notions 99
6.3 Deriving Specifications from Programs 104
6.3.1 Pragmatical considerations 111
6.4 Case Studies .. 112
6.4.1 ABSPEC: The prototype 115
6.5 Conclusions and Related Work 117

7 Inference of Specifications from C Programs 119
7.1 Specification Discovery ... 121
7.2 Extending the ML Symbolic Machine 125
7.2.1 The MATCHC Extension 128
7.2.2 The Pattern Extraction 129
7.3 Inference process .. 130
7.3.1 Refining the inference process 134
7.4 A case study of specification inference 136
7.5 Conclusions and Related Work 142

Conclusion and Future Work 145

Bibliography 147