
Abstract

Program analysis techniques have many uses in the real world. However, there
are aspects that can help improving its widespread adoption. This thesis
deals with techniques aimed at improving two limiting aspects: the lack of
customizability and the burdensome learning process.

The lack of customizability of program analysis comes from the high com-
plexity of program analysis algorithms that prevents untrained developers from
creating specific analysis that help to improve the quality of their software.
Declarative program analysis aims at reducing the e↵ort for implementing
analyses by incrementing the level of abstraction of the specification language,
and by o↵ering an e�cient execution of the analysis specification comparable
with traditional implementations.

In this thesis, we improve declarative program analysis of Java programs
based on the logic specification language Datalog in two aspects. On one hand,
we translate Datalog specifications into Boolean Equation Systems for easing
the distribution of the analysis computation and speeding it up. Boolean Equa-
tion Systems provide e�cient and distributed algorithms for their evaluation
and industrial tools that implement them. On the other hand, we translate
Datalog specifications into Rewriting Logic theories to support the extension of
the specification language Datalog for expressing more sophisticated analysis,
for example, those involving the use of reflection.

Another contribution of this thesis is relative to the automated inference
of specifications to assist techniques for improving software quality (program
analysis, verification, debugging, documentation, . . . ). In particular, speci-
fications are at the core of program analysis, since every program analysis
checks the conformation of the program of interest with respect to a speci-
fication. Untrained developers may not be capable of formulating program
specifications that could be used as input of other tools like static analyzers,
testing or program verifiers, or just for human inspection and documentation.
Automated inference of specifications aims at reducing the e↵ort for creating
software specifications by producing approximated ones without human inter-
vention. We improve automated specification inference for the multiparadigm
language Curry and for object-oriented programs in general by proposing
two new approaches. On one hand, we present a technique to infer algebraic
specifications for Curry programs by classifying expressions built from their



signature according to their abstract semantics. Contrary to other existing
approaches, this technique allows to discriminate between correct and possibly
correct parts of the specification. On the other hand, we present a tech-
nique to infer high-level specifications in the form of pre/post-conditions for
object-oriented languages. This technique is formalized in the Matching Logic
verification setting to allow the verification of the inferred specifications.


