
Architectures for
soft-decision decoding of

non-binary codes

Esta tesis doctoral está sometida a procesos de protección o transferencia de tecnoloǵıa
o de conocimiento, por lo que los siguientes contenidos están inhibidos en la publicación

en los repositorios institucionales. Autorizado por la Comisión de Doctorado de la
Universitat Politècnica de València con fecha 10 de septiembre de 2013.

First version: 31rst of January 2013
Reviewed version: 20th of August 2013

Francisco Miguel Garćıa Herrero

Relación de contenidos inhibidos

La siguiente relación de contenidos debe protegerse para asegurar el éxito del
proceso de patente de parte de este trabajo:

• La sección “2.3 Multiple-vote algorithm and architecture”, que incluye las
subsecciones: “2.3.1 Multiple-Vote Symbol Flipping Decoding Algorithm”,
“2.3.2 Parameters of MV-SFA and FER performance comparisons”, “2.3.3
Partial parallel architecture for MV-SFA” y “2.3.4 Conclusions of the multiple-
vote symbol flipping algorithm”.

• La sección “2.5 Conclusions” de la Parte 2 de la tesis.

• Las referencias directas a resultados o procedimientos relacionados con los al-
goritmos GMV-SFA o MV-SFA en la Parte 3 “Conclusion and future works”.

• Las siguientes figuras: “2.20 FER performance of ES-GBFDA and MV-SFA
for a (1536,1344) NB-LDPC code over GF(32) with a BPSK modulation in
an AWGN channel”, “2.21 FER performance of Min-Max algorithm, ES-
GBFDA and MV-SFA for a (837,723) NB-LDPC code over GF(32) with a
BPSK modulation in an AWGN channel”, “2.22 Complete partial parallel
architecture for MV-SFA”, “2.23 CNU units for MV-SFA” y “2.24 VNU unit
for MV-SFA”.

• El algoritmo: Multiple-Vote Symbol Flipping Decoding Algorithm.

I

II

Abstract

This thesis studies the design of non-binary error-correction decoders for high-
speed modern communication systems. The objective is to propose low complex-
ity decoding algorithms for non-binary low-density parity-check (NB-LDPC) and
Reed-Solomon codes, to implement efficient hardware architectures.

In the first part of the thesis, we analyze the bottlenecks of the existing algo-
rithms and architectures for NB-LDPC decoders and we propose low-complexity
high-speed solutions based on symbol-flipping algorithms. First, flooding schedule
solutions are designed with the aim of obtaining the highest-throughput possi-
ble without considering coding gain. Two different decoders based on clipping
and blocking techniques are proposed; however, the maximum frequency is lim-
ited due to an excessive wiring. For this reason, we explore some methods to
reduce the routing problems in NB-LDPC. A half-broadcasting architecture for
symbol-flipping algorithms that mitigates the routing congestion is proposed. As
the flooding schedule solutions with higher throughput are sub-optimal from a
frame error rate performance point of view, we decide to design solutions for the
serial schedule, with the objective of reaching higher throughput but keeping the
coding gain of the original symbol flipping algorithms. Two serial schedule algo-
rithms and architectures are introduced, reducing the required area resources of
the decoders and increasing the maximum speed achievable. Finally, we general-
ize symbol-flipping algorithms and we show that some particular cases can achieve
a coding gain close to Extended Min-sum and Min-max algorithms with lower
complexity. An efficient architecture is proposed, showing that area resources are
reduced to half compared to a direct mapping solution.

In the second part of the thesis, soft-decision decoding Reed-Solomon algorithms
are compared, concluding that low complexity Chase (LCC) algorithm is the most
efficient solution if high-speed is the main objective. However, LCC schemes are
based on interpolation, which introduces some hardware limitations due to its
complexity. In order to reduce complexity without modifying performance, we
propose a soft-decision LCC scheme based on hard-decision algorithms. An effi-
cient architecture is designed for this new scheme.

III

IV

Resumen

En esta tesis se estudia el diseño de decodificadores no-binarios para la corrección
de errores en sistemas de comunicación modernos de alta velocidad. El objetivo
es proponer soluciones de baja complejidad para los algoritmos de decodificación
basados en los códigos de comprobación de paridad de baja densidad no-binarios
(NB-LDPC) y en los códigos Reed-Solomon, con la finalidad de implementar ar-
quitecturas hardware eficientes.

En la primera parte de la tesis se analizan los cuellos de botella existentes en los
algoritmos y en las arquitecturas de decodificadores NB-LDPC y se proponen solu-
ciones de baja complejidad y de alta velocidad basadas en el volteo de śımbolos.
En primer lugar, se estudian las soluciones basadas en actualización por inun-
dación con el objetivo de obtener la mayor velocidad posible sin tener en cuenta la
ganancia de codificación. Se proponen dos decodificadores diferentes basados en
clipping y técnicas de bloqueo, sin embargo, la frecuencia máxima está limitada
debido a un exceso de cableado. Por este motivo, se exploran algunos métodos
para reducir los problemas de rutado en códigos NB-LDPC. Como solución se
propone una arquitectura basada en difusión parcial para algoritmos de volteo
de śımbolos que mitiga la congestión por rutado. Como las soluciones de actu-
alización por inundación de mayor velocidad son sub-óptimas desde el punto de
vista de capacidad de correción, decidimos diseñar soluciones para la actualización
serie, con el objetivo de alcanzar una mayor velocidad manteniendo la ganancia
de codificación de los algoritmos originales de volteo de śımbolo. Se presentan dos
algoritmos y arquitecturas de actualización serie, reduciendo el área y aumentando
de la velocidad máxima alcanzable. Por último, se generalizan los algoritmos de
volteo de śımbolo y se muestra como algunos casos particulares puede lograr una
ganancia de codificación cercana a los algoritmos Min-sum y Min-max con una
menor complejidad. También se propone una arquitectura eficiente, que muestra
que el área se reduce a la mitad en comparación con una solución de mapeo directo.

En la segunda parte de la tesis, se comparan algoritmos de decodificación Reed-
Solomon basados en decisión blanda, concluyendo que el algoritmo de baja com-
plejidad Chase (LCC) es la solución más eficiente si la alta velocidad es el objetivo

V

principal. Sin embargo, los esquemas LCC se basan en la interpolación, que intro-
duce algunas limitaciones hardware debido a su complejidad. Con el fin de reducir
la complejidad sin modificar la capacidad de corrección, se propone un esquema
de decisión blanda para LCC basado en algoritmos de decisión dura. Por último
se diseña una arquitectura eficiente para este nuevo esquema.

VI

Resum

En aquesta tesi s’estudia el disseny de descodificadors no-binaris per a la correcció
d’errors en sistemes de comunicació moderns d’alta velocitat. L’objectiu és pro-
posar solucions de baixa complexitat per als algoritmes de decodificació basats en
els codis de comprobació de paritat de baixa densitat no-binàris (NB-LDPC) i en
els codis Reed-Solomon, amb la finalitat d’implementar arquitectures hardware
eficients.

A la primera part de la tesi s’analitzen els colls d’ampolla existents en els algo-
ritmes i en les arquitectures de descodificadors NB-LDPC i es proposen solucions
de baixa complexitat i d’alta velocitat basades en el volteig de śımbols. En primer
lloc, s’estudien les solucions basades en actualizació per inundació amb l’objectiu
d’obtenir la major velocitat possible sense tenir en compte el guany de codificació.
Es proposen dos decodificadors diferents basats en clipping i técniques de blo-
queig, però, la freqüència màxima és limitada a causa d’un excés de cablejat. Per
aquest motiu, s’exploren alguns mètodes per reduir els problemes de rutat als codis
NB-LDPC. Com a solució es proposa una arquitectura basada en difusió parcial
per algoritmes de volteig de śımbols que mitiga la congestió per rutat. Com les
solucions de actualització per inundació de major velocitat són sub-òptimes des
del punt de vista de capacitat de correció, dissenyarem solucions per a la actu-
alizació sèrie, amb l’objectiu d’assolir una major velocitat mantenint el guany de
codificació dels algoritmes originals de volteig de śımbol. Es presenten dos algo-
ritmes i arquitectures d’actualizació sèrie, reduint l’àrea i augmentar la velocitat
màxima assolible. Per últim, es generalitzen els algoritmes de volteig de śımbol i
es mostra com en alguns casos particulars pot aconseguir un guany de codificació
proper als algoritmes Min-sum i Min-max amb una menor complexitat. També es
proposa una arquitectura eficient, que mostra que l ’àrea es redueix a la meitat en
comparació amb una solució de mapeig directe.

En la segona part de la tesi, es comparen algoritmes de decodificació Reed-Solomon
basats en decisió tova, concloent que l’algoritme de baixa complexitat Chase (LCC)
és la solució més eficient si l’alta velocitat és l’objectiu principal. No obstant això,
els esquemes LCC es basen en interpolació, que introdueix algunes limitacions

VII

hardware a causa de la seua complexitat. Per tal de reduir la complexitat sense
modificar la capacitat de correcció, es proposa un esquema de decisió tova per LCC
basat en algoritmes de decisió dura. Per últim es va dissenyar una arquitectura
eficient per aquest nou esquema.

VIII

Acknowledgments

First, I would like to thank my supervisor Prof. Javier Valls for the guidance and
support provided not just during the development of the Ph.D. degree, but also
during the Master’s thesis and the Bachelor degree project.

Besides, I am also grateful to the faculty members, students and staff of GISED
and Department of Electronic Engineering in EPSG, specially with Prof. Maŕıa
José Canet.

For their technical advice, suggestions and collaboration in different projects, I
would like to thank Prof. Pramod Kumar Meher, Prof. Mark Flanagan and Dr.
Kiran Gunnam.

Furthermore, I would like to thank Prof. David Declercq for making possible my
visit at ENSEA and giving me the chance of working in some of his projects and
starting new ones. I would also like to express my gratitude to Prof. Declercq and
Dr. Erbao Li for the valuable time spent on many fruitful discussions.

This research was supported by VALi+d grant (Grant No. ACIF/2011/023), spon-
sored by Generalitat Valenciana (Conselleria d’Educació), and a FPU grant (Grant
No. AP2010-5178) sponsored by the Spanish Government. I would like to thank
the sponsors.

For the feedback offered during the review of this manuscript, I would like to ex-
press my sincere gratitude to Professor Antonio Garćıa, Professor Alexandre Graell
and Professor Camille Leroux. With their comments the final version provides a
wider outlook of the work.

Finally, my deepest gratitude goes to my parents for their love, infinite patience
and continuous encouragement. I don’t have enough words to thank them for all
the efforts that they have done to help me throughout my life. Also, I would like
to show my greatest appreciation to Empar, for her understanding and her good
sense of humor, cheering me up and supporting me in difficult times. Without
them, it would have been impossible to develop this work.

IX

Contents

Relación de contenidos inhibidos I

Abstract I

Resumen III

Resum VI

Acknowledgments VIII

Contents XI

List of Acronyms XXI

Preface 1

I Non-binary low-density parity-check decoding 7

1 State of the art of non-binary low-density parity-check decod-
ing algorithms 9

1.1 Background concepts of non-binary low-density parity-check codes 9

1.2 Basics of parity check matrix construction . 12

1.3 Qary-Sum-Product derived algorithms: Check node update function com-
plexity and routing problems . 15

XI

Contents

1.4 Forward-backward and T-EMS algorithms . 19

1.4.1 Forward-backward algorithm . 19

1.4.2 T-EMS algorithm. 25

1.5 Symbol-flipping algorithms. 33

1.6 Advantages of non-binary low-density parity-check decoding 39

1.7 Conclusions . 41

2 Contributions to non-binary low-density parity-check decoding 43

2.1 Parallel schedule algorithms and architectures . 43

2.1.1 Modified GBFDA. 44

2.1.2 Finite precision analysis for M-GBFDA: control of the data growth 45

2.1.3 Blocking technique . 48

2.1.4 Frame error rate performance comparison between NB-LDPC decoders. . . 50

2.1.5 Partial parallel architectures for the flooding schedule 51

2.1.6 Conclusions of the architectures for the parallel schedule of M-GBFDA. . . 70

2.2 Serial schedule algorithms and architectures . 72

2.2.1 Enhanced Serial GBFDA . 72

2.2.2 Alternative voting process for serial schedule of GBFDA. 74

2.2.3 Alternative initialization for serial schedule of GBFDA. 76

2.2.4 Simplified ES-GBFDA. 78

2.2.5 Frame error rate performance comparison between NB-LDPC decoders. . . 81

2.2.6 Partial parallel architectures for the serial schedule 81

2.2.7 Conclusions of the architectures for the serial schedule of GBFDA. 88

2.3 Multiple-vote algorithm and architecture . 90

2.3.1 Multiple-Vote Symbol Flipping Decoding Algorithm 91

2.3.2 Parameters of MV-SFA and FER performance comparisons 95

2.3.3 Partial parallel architecture for MV-SFA . 97

2.3.4 Conclusions of the multiple-vote symbol flipping algorithm 111

2.4 Comparisons with other works . 112

2.5 Conclusions . 116

XII

Contents

II Algebraic soft-decision Reed-Solomon decoding 119

3 State of the art of algebraic soft-decision Reed-Solomon decod-
ing algorithms 121

3.1 Background concepts of Reed-Solomon codes . 121

3.2 Complexity of soft-decision algorithms for Reed-Solomon codes 123

3.3 Low complexity Chase algorithm for Reed-Solomon soft-decision 125

3.4 Conclusions . 128

4 Contributions to algebraic soft-decision decoding algorithms 129

4.1 Low complexity Chase decoding algorithm based on HDD. 129

4.1.1 Multiplicity assignment . 130

4.1.2 Syndrome computation . 131

4.1.3 Key equation solver . 133

4.1.4 Chien search, Forney and test-vector selection 133

4.1.5 Frame error rate performance for LCC based on HDD 134

4.2 Architecture for LCC decoder based on HDD . 136

4.2.1 Multiplicity-assignment unit . 136

4.2.2 Syndromes computation unit . 137

4.2.3 Key equation solver unit . 145

4.2.4 Chien search, Forney and test-vector selection units. 146

4.2.5 Area and timing complexity analysis . 148

4.2.6 FPGA and ASIC results . 149

4.3 Comparisons with other works . 150

4.4 Conclusions . 152

III Conclusion and future works 153

5 Conclusion and future works 155

5.1 Conclusions . 155

5.2 Future research lines . 158

Bibliography 161

XIII

Contents

XIV

List of Figures

1.1 Different representations for NB-LDPC codes: a) Tanner graph, b)
Parity matrix and c) Parity check equations 10

1.2 Tanner graph representation for one iteration with flooding or par-
allel scheduling . 11

1.3 Tanner graph representation for one iteration with serial layered
scheduling . 11

1.4 FER performance of log-QSPA algorithm, T-EMS algorithm, Min-
max algorithm and GBFDA for a (837,723) NB-LDPC code over
GF(32) with a binary phase-shift keying (BPSK) modulation in an
additive white Gaussian noise (AWGN) channel. 34

2.1 Effect of the modified tentative decoding with the number of iterations 46

2.2 FER and BER performance of Min-max algorithm, GBFDA, M-
GBFDA and MD algorithm for a (837,723) NB-LDPC code over
GF(32) with a BPSK modulation in an AWGN channel. 52

2.3 CNU unit for M-GBFDA message passing architecture. 53

2.4 VNU basic cell for M-GBFDA message passing architecture with
clipping. 55

2.5 VNU unit for M-GBFDA message passing architecture with clipping. 55

2.6 VNU basic cell for M-GBFDA message passing architecture with
blocking. 57

2.7 VNU unit for M-GBFDA message passing architecture with blocking. 57

XV

List of Figures

2.8 Extra hardware to compute blocking technique with r = Qb for
M-GBFDA. 58

2.9 Complete message passing architecture for M-GBFDA. 61

2.10 Partial CNU unit for M-GBFDA half-broadcasting architecture. . . 68

2.11 CNU-VNU unit for M-GBFDA half-broadcasting architecture. . . 69

2.12 Complete half-broadcasting architecture for M-GBFDA. 69

2.13 FER performance of Min-max, symbol flipping and SSRB algo-
rithms, for a (403,255) NB-LDPC code over GF(32) and a (255,175)
NB-LDPC code over GF(256) with a BPSKmodulation in an AWGN
channel. 75

2.14 FER performance of Min-max algorithm, GBFDA, ES-GBFDA and
SES-GBFDA for a (837,723) NB-LDPC code over GF(32) with a
BPSK modulation in an AWGN channel. 82

2.15 Complete partial parallel architecture for ES-GBFDA and SES-
GBFDA. 83

2.16 CNU basic cell for ES-GBFDA and SES-GBFDA. 84

2.17 VNU unit for ES-GBFDA and SES-GBFDA. VNU unit for SES-
GBFDA does not include the interconnections marked with *. . . . 85

2.18 Basic cell for ES-GBFDA (dv = 4). 85

2.19 Basic cell for SES-GBFDA (dv = 4). 87

2.20 FER performance of ES-GBFDA and MV-SFA for a (1536,1344)
NB-LDPC code over GF(32) with a BPSK modulation in an AWGN
channel. 98

2.21 FER performance of Min-Max algorithm, ES-GBFDA and MV-SFA
for a (837,723) NB-LDPC code over GF(32) with a BPSK modula-
tion in an AWGN channel. 99

2.22 Complete partial parallel architecture for MV-SFA. 100

2.23 CNU units for MV-SFA: a) CNU unit for hard decision symbols. b)
CNU unit for a test vector i. 102

2.24 VNU unit for MV-SFA. 103

2.25 General architecture for a 4-minimum finder in a 27-element list. . 105

XVI

List of Figures

2.26 Architecture for the first stage (l = 0) of a 4-minimum finder in a
27-element list. 106

2.27 Architecture for stages which are different from the first one (l > 0)
of a 4-minimum finder in a 27-element list. The index 0 of the inputs
is for the 4th minimums and the index 3 is for the 1rst minimums. 108

3.1 Block diagram of a generic Hard-Decision RS decoder 122

3.2 Test vectors mapped in a hypercube for a decoder with η = 3. . . . 126

3.3 Test vectors mapped in a binary tree for a decoder with η = 3. . . 127

4.1 Block diagram of the LCC soft-decoder based on decoding failure . 130

4.2 FER performance for a (255,239) RS code applying HDD and an
LCC decoder based on HDD for η = 3 and η = 4 over an AWGN
channel with a BPSK modulation 135

4.3 Architecture for the partial syndrome computation with the com-
mon symbols . 137

4.4 Architecture for the contribution to the syndrome of the uncommon
symbols . 139

4.5 Storage of the 2t syndromes of the 2η test-vectors 144

4.6 KES unit for computing two test-vectors 146

4.7 (a) Basic cj block. (b) Chien search block diagram 147

4.8 Forney’s algorithm classical architecture 147

XVII

List of Figures

XVIII

List of Tables

2.1 Operations and complexity of the techniques for control of data
growth in one iteration of M-GBFDA (worst case) 48

2.2 Theoretical estimation of area-complexity for M-GBFDA message
passing architecture with clipping and Qb = 5 bits, r = 5 bits
(639246 XOR gates) . 65

2.3 Theoretical estimation of area-complexity for M-GBFDA message
passing architecture with blocking and Qb = 5 bits, r = 5 bits
(633162 XOR gates) . 65

2.4 Theoretical estimation of area-complexity for M-GBFDA message
passing architecture with blocking and Qb = 5 bits, r = 4 bits
(699618 XOR gates) . 66

2.5 Theoretical estimation of area-complexity for M-GBFDA message
passing architecture with saturation and Qb = 6 bits, r = 5 bits
(803722 XOR gates) . 66

2.6 Theoretical estimation of area-complexity for M-GBFDA message
passing architecture with saturation and Qb = 7 bits, r = 5 bits
(920618 XOR gates) . 67

2.7 Implementation results for Virtex VI FPGA device and 90nm pro-
cess ASIC of the decoder architecture for M-GBFDA with clipping
and blocking . 67

2.8 Implementation results for Virtex VI FPGA device and 90nm pro-
cess ASIC of the decoder half-broadcasting architecture for M-GBFDA
with blocking . 71

2.9 Complexity of simplified Min-max, SSRB and two symbol-flipping
algorithms . 76

XIX

List of Tables

2.10 Percentage of symbols that received β votes in ES-GBFDA for
Eb/N0 = 4.6dB . 79

2.11 Percentage of symbols that received β votes in ES-GBFDA for
Eb/N0 = 5dB . 79

2.12 Percentage of symbols that were voted at the previous iteration and
are also voted at the current one in ES-GBFDA 80

2.13 ASIC results for a 90nm CMOS process of ES-GBFDA, SES-GBFDA
and M-GBFDA partial parallel architectures 89

2.14 Theoretical estimation of area-complexity for MV-SFAmessage pass-
ing architecture with clipping and Qb = 7 bits and Q′

b = 5 bits,
(1527228 XOR gates) . 110

2.15 Theoretical estimation of area-complexity for R minimum finder in
a dc list (radix R, R = L = 4) and Qb = 7 bits 110

2.16 Estimated results of ES-GBFDA and MV-SFA partial parallel ar-
chitectures . 111

2.17 Efficient architectures for high-rate NB-LDPC codes 114

2.18 Upper and lower bounds for binary and non-binary LDPC architec-
tures . 116

4.1 Timing diagram of the syndrome processing for eight test-vectors . 145

4.2 Theoretical estimation of the area-complexity of the proposed LCC
decoder . 150

4.3 Equivalence in XOR gates of hardware resources 151

4.4 XOR-gate complexity of LCC decoders for (255,239) RS code . . . 152

4.5 XOR-gate complexity of a hard-decision decoder for (255,239) RS
code . 152

XX

List of Algorithms

1 Qary-Sum-Product algorithm . 16
2 Extended Min-Sum algorithm . 16
3 Min-max algorithm . 17
4 Forward-backward algorithm . 20
5 Improved Min-max algorithm . 24
6 Trellis EMS algorithm . 25
7 Generalized Bit-Flipping algorithm 35
8 Modified tentative decoding algorithm 44
9 M-GBFDA with blocking technique 49
10 Enhanced Serial GBFDA . 73
11 Simplified ES-GBFDA . 80
12 Multiple-Vote Symbol Flipping Decoding algorithm 96
13 Syndrome computation for LCC decoding 132
14 Inversionless Berlekamp-Massey algorithm 134

XXI

List of Acronyms

ASD Algebraic Soft-Decision

ASIC Application-Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BGMD Bit-level Generalized Minimum Distance

BM Berlekamp-Massey

BPSK Binary Phase-Shift Keying

CMOS Complementary Metal-Oxide-Semiconductor

CNU Check Node Update

DF Decoding Failure

EMS Extended Min-Sum

ES-GBFDA Enhanced Serial Generalized Bit Flipping Decoding Algorithm

FEC Forward Error Correction

FER Frame Error Rate

FPGA Field Programmable Gate Array

GBFDA Generalized Bit Flipping Decoding Algorithm

GF Galois Field

GMV-SFA Generalized Multiple-Vote Symbol Flipping Algorithm

HDD Hard-Decision Decoder

HDL Hardware Description Language
XXIII

List of Acronyms

iBM Inversionless Berlekamp-Massey

KES Key-Equation Solver

KV Koetter-Vardy

LCC Low Complexity Chase

LDPC Low-Density Parity-Check

LLR Log-Likelihood Ratio

LUT Lookup Table

MD Majority-logic Decodable

M-GBFDA Modified-Generalized Bit Flipping Decoding Algorithm

MV-SFA Multiple-Vote Symbol Flipping Decoding Algorithm

NCG Net Coding Gain

NB-LDPC Non-Binary Low-Density Parity-Check

OIF Optical Internetworking Forum

PDM-QPSK Polarization-Division-Multiplexed Quadrature Phase-Shift Keying

QAM Quadrature Amplitude Modulation

QSPA Qary-Sum Product Algorithm

RAM Random-Access Memory

ROM Read-Only Memory

RS Reed-Solomon

SES-GBFDA Simplified Enhanced Serial Generalized Bit Flipping Decoding Al-
gorithm

SNR Signal-to-Noise Ratio

SSRB Serial Symbol-Reliability Based

T-EMS Trellis Extended Min-Sum

TV Test Vector

UiBM Ultra-Ultra Folded inversionless Berlekamp-Massey

VLSI Very Large Scale Integration

VNU Variable Node Update

XXIV

Preface

Since analog-to-digital converters allow high speed, hardware implementation of
error correction decoders based on soft information for 100Gbps communication
systems are closer to become possible. Before high-speed analog-to-digital con-
verters, only error correction decoders based on hard-decision were able to reach
high throughput, because adding channel information required long processing
time. This fact limited the maximum coding gain achievable by the decoders
as they did not take into account the degree of reliability of each received sym-
bol considering all of them as equally reliable. Nowadays, this problem is solved
and the processing of the log-likelyhood ratio of the received symbols can be per-
formed at high speed. This fact has initiated an interest in soft-decision decoding
for communication systems such as optical ones. Because of that, Optical Inter-
networking Forum (OIF) proposed a white paper about forward error correction
(FEC) solutions to be applied to a 100Gbps optical transport system. The main
constraint of this document is that the net coding gain (NCG) performance has
to be greater than 10dB. As the solution for this requirement is not standardized,
coding theory and very large scale integration (VLSI) researchers have focused all
their efforts on finding the most suitable solution. To accomplish both coding gain
and speed constraints, non-binary low-density parity-check (NB-LDPC) codes are
the strongest FEC candidates, because they have some advantages compared to
their binary counterparts. However, hardware implementation of these codes are
far from accomplish the constraints efficiently. With the actual state of the art
1515 NB-LDPC decoders running in parallel are required to get a throughput of
100Gbps, in other case, the decoder will be a bottle neck. More realistic schemes
talk about using 4 parallel NB-LDPC decoders of 25Gbps, unfortunately, the ex-
isting proposals are far from this speed. On the other hand, NB-LDPC suffer a
degradation called error floor which reduces coding gain at high frame error rates.
To suppress the unwanted error floor very long codewords are required; however,
the larger the codeword is, the lower the throughput is. To avoid long codewords
and error floor, the concatenation of a hard-decision Reed-Solomon (RS) decoder
with the NB-LDPC is the most efficient solution. In this way, RS cleans up the
residual errors after the NB-LDPC decoder. In addition, OIF’s white paper limits
the codes to high-rate ones, with a rate bigger than 79.5% for NB-LDPC codes.

1

Preface

With regard to RS, the (255,239)RS code has been adopted as it was the com-
monest in past optical communication standards.

In this manuscript, several proposals for a low-complexity high-speed NB-LDPC
decoder are included. Even if they do not reach 25Gbps, they increase consider-
able throughput of these kind of decoders at the cost of some performance loss.
Moreover, a low-complexity high-speed soft-decision decoder for RS codes is pro-
posed. Although only hard-decision RS decoders have been considered in optical
communication schemes, a soft-decision RS decoder with similar complexity can
be useful. It can be released that no final solution for optical communications has
been reached, however, some interesting conclusions have been obtained from this
work that will be profitable in future works.

Objectives

The main objective of this thesis is to propose NB-LDPC and RS decoding al-
gorithms with low complexity and the minimum performance loss degradation to
reach high-throughput architectures. To reach this main target it is necessary to
accomplish other intermediate objectives:

1. Make a deep review of the state of the art in NB-LDPC and RS decoding.

2. Study the different existing algorithms and conclude what makes them com-
plex.

3. Study the architectures proposed by other authors and detect the bottlenecks
that produce inefficient solutions.

4. Propose new low complexity algorithms or schemes for decoding NB-LDPC
and RS codes.

5. Design new architectures for the existing algorithms and for the new pro-
posals.

6. Implement the designed decoders and make the necessary modifications to
reach the highest possible throughput.

Methodology

Next, we describe the methodology followed to achieve the previously described
objectives.

First, a study of the contributions of the coding theory community is done evaluat-
ing the possible interest of different decoding algorithms from a hardware perspec-
tive. For the algorithmic solutions classified as hardware friendly, software models

2

Preface

are developed. These models describe a complete communication system which
includes encoder, modulator channel, demodulator and decoder. The decision of
the programming language (Matlab, Mex, C or C++) is taken depending on the
complexity and time required by simulations. Monte Carlo simulations are applied
to the software models to compute the Frame Error Rate (FER) performance and
the Bit Error Rate (BER) performance. These results are compared with the ones
already published to validate them. To compute the Frame Error Rate and the
Bit Error Rate for each value of Eb/N0 a random message is transmitted each
time and 50 error packages are detected. After the reference is validated, a finite
precision analysis is performed.

Before starting the design of a new architecture, we analyze the ones already
existing and we study their bottlenecks. After this, we design new architectures
trying to solve these problems. To compare its efficiency in a fair way we apply
analytic methods which do not depend on technology. These analytic methods
consist in the computation of memory, control and arithmetic hardware resources
of an architecture in terms of XOR gates as well as their critical path.

To validate the results of this analysis we make an HDL model of the proposed
architectures and extract synthesis and post place and route reports for FPGA
and ASIC technologies. Xilinx and Cadence tools were used for FPGA and ASIC
implementations respectively; Modelsim is the software used to verify the hardware
models.

Finally, we compare the implementation results of the proposed solution with the
ones found in literature. This methodology is iterative, so after one design is
finished we try to modify or propose a new algorithm with lower complexity and
we start all the process again from the software model to the HDL description.
In the same way, different versions of the same architectures are evaluated as well
as reviews of the state of the art of the algorithms proposed by the coding theory
community are constantly performed.

Contributions

In this thesis several algorithms, methods and hardware architectures for imple-
menting NB-LDPC and soft-decision RS decoders have been proposed and im-
proved. Below the main contributions of this thesis are enumerated.

1. A modified tentative decoding algorithm for decoders based on Generalized
Bit Flipping Algorithm that reduces both arithmetic and memory resources
and its derived partial parallel architecture based on the message passing
scheme.

3

Preface

2. A simplified data growth control method for Generalized Bit Flipping Al-
gorithm that reduces the number of clock cycles required by the Variable
Node Update processor and allows higher throughput and its derived partial
parallel architecture based on half-broadcasting.

3. An enhanced serial description of Generalized Bit Flipping Algorithm that
improves the Frame Error Rate performance and reduces the storage re-
sources compared to the previous contributions. Also an efficient partial
parallel architecture is proposed.

4. A simplified version of the enhanced serial description of Generalized Bit
Flipping Algorithm that allows the quantization of intrinsic information with
one bit with negligible performance loss.

5. An alternative initialization that avoids clipping techniques to control the
data growth and hence reduces area and critical path.

6. An efficient partial parallel architecture combining both alternative initializa-
tion and simplified version of the enhanced serial description for Generalized
Bit Flipping Algorithm.

7. A generalization of symbol-flipping algorithms based on a multiple voting
procedure that reaches a similar performance to the algorithms derived from
Qary-Sum Product but with less complexity.

8. An efficient architecture for a particular case of the generalized symbol-
flipping algorithm that reduces to half hardware resources compared with
a direct mapping and outperforms in terms of area over throughput the
solutions found in literature.

9. A Low Complexity Chase decoder for Reed-Solomon codes that avoids the
interpolation and reduces complexity by applying hard-decision techniques.
An architecture is also proposed.

Some contributions of this thesis have been already published in the next journal
and conference papers:

• International Journals

1. F. Garcia-Herrero, J. Valls, P.K. Meher, “High speed RS(255,239) de-
coder based on LCC decoding,” Circuits, Systems, and Signal Process-
ing, Vol.30, No.6, pp.1643-1669, May.2011

2. F. Garcia-Herrero, M.J. Canet, J.Valls, M.Flanagan, “Serial Symbol-
Reliability Based Algorithm For Decoding Non-Binary LDPC Codes,”
IEEE Communications Letters, Vol.16 No.6, pp.909-912, Jun.2012

4

Preface

3. F. Garcia-Herrero, M.J. Canet, J. Valls, “Architecture of Generalized
Bit-Flipping Decoding for High-Rate Non-binary LDPC Codes,” Cir-
cuits, Systems, and Signal Processing, Vol.32 No.2, pp.727-741, April
2013

4. F. Garcia-Herrero, M.J. Canet, J. Valls, “Non-Binary LDPC Decoder
Based on Simplified Enhanced Generalized Bit Flipping Algorithm,”
IEEE Transactions on Very Large Scale Integration, to be published
2013

• International Conferences

1. F. Garcia-Herrero, M.J. Canet, J. Valls, “Decoder for an Enhanced
Serial Generalized Bit Flipping Algorithm,” IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS), Sevilla, Spain,
Dec. 2012

2. F. Garcia-Herrero, M.J. Canet, J. Valls, “High-Speed NB-LDPC De-
coder For Wireless Applications,” International Symposium on Intel-
ligent Signal Processing and Communication Systems (ISPACS), Oki-
nawa, Japan, Nov. 2013

Other contributions which have been submitted for publication are:

• International Journals

1. F. Garcia-Herrero, E. Li, D. Declercq and J. Valls, “Multiple-Vote Sym-
bol Flipping Decoder for Non-Binary LDPC Codes,” IEEE Transactions
on Very Large Scale Integration, submitted on May 2013

Also a patent has been written: F. Garcia-Herrero, D. Declercq, E. Li, and J.
Valls, “Generalized Symbol Flipping Decoder for Non-Binary LDPC Codes”.

A previous work related with Reed-Solomon soft-decision was developed during the
Master’s thesis and it was published in an international journal. The conclusions
of this paper are useful for understanding some of the choices that were done in
the Reed-Solomon soft-decision topic during the development of this thesis. Part
of the Master’s thesis is included in:

• International Journal

1. F. Garcia-Herrero, M.J. Canet, J. Valls, P.K. Meher, “High-Throughput
Interpolator Architecture for Low-Complexity Chase Decoding of RS
Codes,” IEEE Transactions on Very Large Scale Integration, Vol.20,
No.3, pp.568-573, Mar.2012

5

Preface

Finally, estimation of hardware complexity of Trellis Extended Min Sum algorithm
over high order Galois Field was performed and included in an international con-
ference. This work helped to see the benefits and drawbacks of working with a Min
Sum derived algorithms with high degree of parallelism. Part of the conclusions
obtained from this work laid the foundation of the multiple voting algorithm for
symbol flipping developed in this thesis.

• International Conference

1. E. Li, D. Declercq, K. Gunnam, F. Garcia-Herrero, J. Omar and J.
Valls, “Low Latency T-EMS decoder for NB-LDPC codes,” Asilomar
Conference on Signals, Systems and Computers 2013

Thesis structure

The rest of the manuscript has three blocks. The first one deals with NB-LDPC
decoders. The second block is focused on low-complexity algebraic soft-decision RS
decoding. Each block is divided in two chapters. The first makes a brief summarize
of the basic concepts of the codes under study, and reviews the state of the art
concluding which are the bottlenecks to improve and the requirements and more
interesting topics of research from the author’s perspective. The second chapter of
each block includes the most relevant contributions of the thesis, first explaining
the algorithmic novelties and its impact in coding gain and then detailing the
derived architectures. Each chapter includes its own conclusions and at the end
of each block comparisons with the most efficient results found in literature are
performed. The last block summarizes the most important contributions and
conclusions and also a describes future research topics with some definite possible
ideas.

6

Part I

Non-binary low-density
parity-check decoding

Chapter 1

State of the art of non-binary
low-density parity-check decoding
algorithms

In this chapter the reader will find: i) a brief summary of the basic concepts of
non-binary low-density parity-check codes; ii) a detailed description of the main
algorithms derived from Qary Sum-Product; iii) a discussion, under a VLSI per-
spective, of the state of the art of efficient algorithms to solve the check node
update of extended Min-Sum and Min-max algorithms; iv) a review of symbol-
flipping algorithms for high-rate codes; and finally, v) a comparison between binary
low-density parity-check codes and the non-binary ones, highlighting the reasons
that make implementation of non-binary low-density parity-check decoders an in-
teresting topic of research.

1.1 Background concepts of non-binary low-density
parity-check codes

Let us consider a (N,K) NB-LDPC code over GF(q) (q = 2p) with codeword
length N , information length K and code rate R = K/N , lengths are expressed in
terms of GF(q) symbols. This NB-LDPC code is defined by a very sparse parity
check matrix H, which has N columns and M rows. The relation between the
matrix and the code parameters is K = N − rank(H). The non-zero coefficients
of H are hm,n, where m is the row index and n the column index. Each row
represents a parity check equation, named as check node. The number of non-
zero elements in a row is known as check node degree and is denoted as dc. The

9

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

columns represent the variable nodes. The number of non-zero elements of the
column is known as variable node degree and is denoted as dv. N (m) defines the
set of variable nodes connected to the m-th check node, and M(n) the set of check
nodes connected to the n-th variable node. This matrix can be represented by a
Tanner graph, Fig. 1.1. The nodes of this graph can be separated into variable
and check nodes, where the edges may only connect two nodes not residing in the
same class. The squares represent the M parity check nodes of the code and the
circles are the N variable nodes. Each check node m has dc incoming connections
with the variable nodes that belong to N (m). In the same way, each variable
node n has dv incoming connections with the check nodes that belong to M(n).
This representation will be useful in the following sections to easily analyze the
complexity of the different decoding algorithms for these codes.

c1 c2 c3

v1 v2 v3

α 0 α2

0 1 α2

α 1 0
()H=dc

dv

Check nodes

Variable nodes

c1=α v1 + α2 v3

c2= v2 + α2 v3

c3=α v1 + v2

a) b) c)

Figure 1.1: Different representations for NB-LDPC codes: a) Tanner graph, b) Parity
matrix and c) Parity check equations

Considering a K-length vector message to be encoded, m, the codeword generated
by the NB-LDPC encoder is c = mG. Where G is a K × n generator matrix,
which should accomplish that cHT = 0. The generator matrix can be computed
applying Gaussian elimination over GF(q). There are different efficient methods
to perform and implement the encoder step, however, this is not the aim of this
manuscript.

The transmitted codeword symbols are c = (c0, c1, ..., cN−1) and the received
symbol sequence is defined as y = (y0, y1, ..., yN−1), where y = c+ e and e is the
error vector introduced by the channel. The log-likelihood ratio (LLR) reliability
is computed as Ln[x] = log

[
P (cn = αb | yn)/P (cn = x | yn)

]
, for each x ∈ GF (q).

The LLR vector of the n-th symbol is Ln = (Ln[0], Ln[1], ..., Ln[q − 1]). The hard-
decision based on Ln is called zn ∈ GF (q), which is the symbol with the most
reliable value in Ln. All the decoding NB-LDPC algorithms work using the channel
information (LLRs) as initialization and then applying iteratively the check node
update (CNU) and variable node update (VNU) functions following one of the
two main schedules: parallel (flooding) schedule Fig. 1.2 or serial schedule Fig.
1.3. In each iteration, a decoder with parallel schedule first updates all the CNUs
and after that using the new CNU information updates all the VNUs. The serial
schedule can be classified as layered or shuffled. One iteration of a decoder based
on a layered scheduling is completed updating one CNU and after that updating

10

1.1 Background concepts of non-binary low-density parity-check codes

all the VNUs connected to this check node, repeating this process until all the
CNUs are updated. A decoder based on shuffled schedule updates one VNU and
then uses this new information to update all the CNUs connected to this variable
node. To complete one iteration all the VNUs and CNUs are updated following the
same process. The serial schedule, compared to flooding one, reduces the number
of iterations required by the decoding algorithm to get a certain performance.

c1 c2 c3

v1 v2 v3

c1 c2 c3

v1 v2 v3

Update all the check nodes Update all the variable nodes

Figure 1.2: Tanner graph representation for one iteration with flooding or parallel
scheduling

c1 c2 c3

v1 v2 v3

c1 c2 c3

v1 v2 v3

Update one check node Update all the variable

nodes connected to the

updated check node

c1 c2 c3

v1 v2 v3

c1 c2 c3

v1 v2 v3

c1 c2 c3

v1 v2 v3

c1 c2 c3

v1 v2 v3

1
rs

t
S

te
p

2
n

d
 S

te
p

3
rd

 S
te

p

Figure 1.3: Tanner graph representation for one iteration with serial layered scheduling

11

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

1.2 Basics of parity check matrix construction

There is a wide variety of methods to construct parity check matrices for NB-
LDPC codes. However, from a hardware point of view, the most convenient are
the ones that leads to structured parity check matrices. This means that the
matrix can be divided in different parts which can be associated to independent
processors. Inside the structured matrices we find quasi-cyclic codes, which have
special properties that can be taken into account to reduce the complexity of the
derived architectures. Several classes and methods to obtain quasi-cyclic codes
are described at [1]. In this section we do not detail any particular class of non-
binary quasi-cyclic LDPC, but we just include some of the main concepts about
its construction.1

First, the length of the codeword in terms of symbols, N , has to be chosen. Ac-
cording to this we can select a field that accomplishes (q− 1)× (q− 1) ≥ N . After
this, a (q− 1)× (q− 1) matrix composed of different GF(q) symbols is built. The
selection of the symbols of each row depends on the class of the code which is
selected. Usually there is some kind of relation between two consecutive rows, for
example the second row is equal to the first row after being multiplied by a symbol
and subtracted one (multiplicative group class) or the second row is equal to the
first plus a random symbol (additive subgroups class). These methods leads to a
matrix, U, which usually has zero elements in the main diagonal.

U =


0 αx αy ... αz

αz 0 αx αy ...
... αy αz 0 αx

αx αy ... αz 0


Each nonzero element of U is associated to a (q− 1)× (q− 1) quasi-cyclic matrix.
The matrix that represents α0 = 1 has the symbol α0 = 1 in the first location of
the first row, α2 in the location element of the second row, α3 in the third location
of the third row and so on. If the quasi-cyclic matrix is associated to the symbol
αx the first row has αx in the location x of the first row, α(x+1) in the location
x+1 of the second row, etc. When α(q−2) is reached, the next row starts with α0

again, that is the reason why is called quasi-cyclic. The matrix associated to the
zero element is a (q − 1)× (q − 1) all-zero matrix. Next, the quasi-cyclic matrices
for the zero element, α0 and α2 over GF(4) are included as an example:

1Random-like LDPC codes have also been deeply analyzed in the literature due to its good
performance [2], [3], [4]. However, the derived architectures based on binary random-like LDPC
codes leads to high power consumption, dense wiring and low area-speed ratios [5], [6], [7]. All
these disadvantages are even more highlighted in the non-binary case where the size of the Galois
field is q > 2, making its implementation impractical.

12

1.2 Basics of parity check matrix construction

Q0 =


0 0 0
0 0 0
0 0 0
0 0 0



Qα0 =

 α0 0 0
0 α1 0
0 0 α2



Qα2 =

 0 0 α2

α0 0 0
0 α1 0


Once we know Q for each element of the field, we replace each element in U by its
associated Q. This procedure is called matrix expansion as it is done as follows:

U′ =


Q0 Qαx Qαy ... Qαz

Qαz Q0 Qαx Qαy ...
... Qαy Qαz Q0 Qαx

Qαx Qαy ... Qαz Q0


Depending on the length of the codeword, dc consecutive columns ofU are selected,
accomplishing that N = dc × (q− 1) 2. To select the number of rows of the parity
check, two different methods can be applied depending on the constraints. If the
constraint is dv we just select dv consecutive rows. However, if the rate of the code
is the constraint, we have to look for the N − K linearly independent rows that
accomplish the rate constraint. In this case, dv depends on the rate requirements.
The resulting parity check matrix is H. Next we include an example for a GF(4)
matrix.

Example 1.2.1 Let us assume that the class of the matrix that we applied gives
as result:

U =

 0 α2 α1

α1 0 α2

α2 α1 0


The required codeword length is N = 9 in terms of GF(4) symbols, so dc = N/(q−
1) = 3. dv = 2 due to a design constraint. However, as we will consider the main
zero diagonal, dc = 2.

2Note that if the main zero diagonal is included, the codeword length is equal to N = (dc +
1)× (q − 1).

13

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

After computing U, we replace the nonzero elements by its associated Q matrices
(we expand the matrix).

U′ =

 Q0 Qα2 Qα1

Qα1 Q0 Qα2

Qα2 Qα1 Q0


Then, dc + 1 = 2 columns and dv = 2 rows are selected. We select the first and
the third row and all the columns because in this case dc = (q − 1). So, H as a
function of the quasi-cyclic matrices is:

H =

[
Q0 Qα2 Qα1

Qα2 Qα1 Q0

]

Including all the coefficients H is :

H =


0 0 0 0 0 α2 0 α1 0
0 0 0 α0 0 0 0 0 α2

0 0 0 0 α1 0 α0 0 0
0 0 α2 0 α1 0 0 0 0
α0 0 0 0 0 α2 0 0 0
0 α1 0 α0 0 0 0 0 0


As it is shown, each sub-matrix has at most one nonzero element per column
and row, due to the use of the quasi-cyclic expansion. This fact allows hardware
designers to increase the degree of parallelism compared to other code structures.
As there is no dependency between the nonzero elements of each sub-matrix, an
entire sub-matrix can be computed in parallel each time. In addition, all the sub-
matrices involved in the same row can also be computed in parallel, as each one
is working with a different symbol from the codeword and it does not cause any
memory conflict.

The previous principles can be combined with other techniques to have a higher
degree of freedom in the code design. For example, the masking technique proposed
also in [1] reduces the number of nonzero elements of H by introducing more zeros
in some locations according to the definition of a mask. Other example is the
random distribution of elements of a different field in the locations defined by
the original H. This method replaces the nonzero elements of H by a random
nonzero element of another field, in order to accomplish with constraints of the
Galois Field or the codeword length in terms of bits. However, even applying
these transformations, the parity check matrix H keeps its structure and hence
the properties that makes this methods interesting from a hardware point of view.

14

1.3 Qary-Sum-Product derived algorithms: Check node update function complexity and routing problems

To sum up, the quasi-cyclic matrices proposed at [1] have special properties that
allow hardware designers to implement more efficient decoders. For this reason
they are the most extended in the VLSI community. During this manuscript codes
based on these matrices are applied unless stated other wise.

1.3 Qary-Sum-Product derived algorithms: Check node
update function complexity and routing problems

The complexity of the first proposed NB-LDPC decoding algorithm, Qary Sum-
Product Algorithm (QSPA) [8], was too high to be applied in hardware imple-
mentations, so new versions of the algorithm in the frequency domain [9], the
logarithmic domain [10] and mixed domain [11] were proposed, improving the ef-
ficiency of the CNU and VNU processing and reducing the number of required
bits by the quantize version of the algorithm without introducing a degradation in
the frame error rate (FER) coding gain. However, the low throughput and large
amount of area required by the derived architectures [11] forced researchers to
propose simplified algorithms derived from QSPA. The most important contribu-
tions are Extended Min-Sum (EMS) algorithm [12] and Min-max algorithm [13].
These algorithms reduce complexity of the decoding process introducing a small
performance loss for some codes compared to QSPA, however, they were far from
allowing high-speed (tens of Gbps) hardware implementations. So the effort of
most of the researchers in this area has been the reduction of the CNU function
which involves the real complexity of the decoding process. Next, the parallel
schedules of QSPA (Algorithm 1), EMS (Algorithm 2) and Min-max (Algorithm
3) algorithms are detailed.

All QSPA, EMS and Min-max have three main steps: initialization, CNU/VNU
process and tentative decoding. Ln(a), Rm,n(a) and Wm,n(a) are defined as the
channel information, the messages exchanged from check node to variable node and
the messages exchanged from variable node to check node of an element a ∈ GF (q),
respectively.

The difference in initialization between QSPA/EMS and Min-max is that in the
first ones the LLRs are normalized to a random symbol (for example the symbol
0 ∈ GF (q)) and in the second one the LLRs are normalized to the most reliable
symbol (hard-decision zn). This different initialization introduces changes in the
iterative process, in particular at step A2 of the check node, which can be simplified
in Min-max algorithm with a negligible performance loss compared to QSPA/EMS
algorithm (less than 0.1dB of difference between EMS and Min-max).

In the CNU/VNU process, step A1 calculates symbols an′ that satisfy the parity
check equation when an = a, a ∈ GF (q). In [12] and [14], a reduction of the
configuration sets (combinations of symbols) that are included in Am,n(a) at step

15

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

Algorithm 1 Qary-Sum-Product algorithm

Input: Ln(a) = log [P (cn = 0 | yn)/P (cn = a | yn)], Wm,n(a) = Ln(a)
Iterative process
for j = 1 → Itmax do
Check node processing
A1 : Am,n(a) := {an′ ∈ conf(nm, nc) | hm,nan +

∑
n′∈N (m)\n hm,n′an′ = 0}

A2 : Rm,n(a) = log(
∑

an′∈Am,n(a),n′∈N (m)\n e
∑

n′∈N(m)\n Wm,n′ (an′))
Variable node processing
A3 : W ′

m,n(a) = Ln(a) +
∑

m′∈M(n)\m Rm′,n(a)

A4 : W ′
m,n(a) = Wm′,n(0)

A5 : Wm,n(a) = W ′
m,n(a)−W ′

m,n

Tentatively decoding
A6 : Wn(a) = Ln(a) +

∑
m′∈M(n) Rm,n(a)

A7 : c̃n = GFmin(Wn(a))
if c̃×HT = 0 then
SKIP

end if
end for

Output: c̃

Algorithm 2 Extended Min-Sum algorithm

Input: Ln(a) = log [P (cn = 0 | yn)/P (cn = a | yn)], Wm,n(a) = Ln(a)
Iterative process
for j = 1 → Itmax do
Check node processing
A1 : Am,n(a) := {an′ ∈ conf(nm, nc) | hm,nan +

∑
n′∈N (m)\n hm,n′an′ = 0}

A2 : Rm,n(a) = minan′∈Am,n(a),n′∈N (m)\n(
∑

n′∈N (m)\n(Wm,n′(an′)))
Variable node processing
A3 : W ′

m,n(a) = Ln(a) +
∑

m′∈M(n)\m Rm′,n(a)

A4 : W ′
m,n(a) = Wm′,n(0)

A5 : Wm,n(a) = W ′
m,n(a)−W ′

m,n

Tentatively decoding
A6 : Wn(a) = Ln(a) +

∑
m′∈M(n) Rm,n(a)

A7 : c̃n = GFmin(Wn(a))
if c̃×HT = 0 then
SKIP

end if
end for

Output: c̃

16

1.3 Qary-Sum-Product derived algorithms: Check node update function complexity and routing problems

Algorithm 3 Min-max algorithm

Input: Ln(a) = log [P (cn = zn | yn)/P (cn = a | yn)], Wm,n(a) = Ln(a)
Iterative process
for j = 1 → Itmax do
Check node processing
A1 : Am,n(a) := {an′ | hm,nan +

∑
n′∈N (m)\n hm,n′an′ = 0}

A2 : Rm,n(a) = minan′∈Am,n(a),n′∈N (m)\n(maxn′∈N (m)\n(Wm,n′(an′)))
Variable node processing
A3 : W ′

m,n(a) = Ln(a) +
∑

m′∈M(n)\m Rm′,n(a)

A4 : W ′
m,n = mina∈GF (q)Wm′,n(a)

A5 : Wm,n(a) = W ′
m,n(a)−W ′

m,n

Tentatively decoding
A6 : Wn(a) = Ln(a) +

∑
m′∈M(n) Rm,n(a)

A7 : c̃n = GFmin(Wn(a))
if c̃×HT = 0 then

SKIP
end if

end for
Output: c̃

A1 is performed. Just the nm < q more reliable symbols are taken into account
and only combinations (configurations) with nc symbols different from the hard
decision zn are analyzed. The alternative to the method based on reduction of
the number of configurations is described at step A2 of Min-max algorithm. This
requires calculating all the possible combinations of GF(q) symbols at a CNU of
degree dc.

Regardless of the method applied at step A1, step A2 of EMS algorithm computes
the sum of Wm,n′(an′), approximated by the maximum at Min-max algorithm.
This sum can be understood as the computation of the reliability of the selected
symbols an′ , when an = a. Approximating the sum of the dc reliability values
by the maximum of the dc values, leads to a small performance loss but avoids
the data growing in the CNU. From all the possible paths (or configurations) that
satisfy the parity check equations, the minimum (more reliable path), Rm,n(a), is
selected for each value of a. Hence, if EMS method is applied Rm,n is a nm-length
vector else, if the full number of comparisons are performed it is a q-length vector.
It is important to remark that step A2 of EMS algorithm is in turn a simplifica-
tion derived from the logarithmic formulation of QSPA (Algorithm 1), where the
logarithm of a sum of exponentials is replaced by the sum of the logarithm of each
exponential (the sum of exponents). This simplification introduces differences in
the values of the exchanged messages that must be corrected applying offset or scal-
ing. Even after this correction, EMS introduces some performance loss compared
to QSPA. However, complexity of QSPA check node does not justify the difference

17

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

of coding gain. Comparing QSPA and EMS, both require the computation of the
additions involved in

∑
n′∈N (m)\n(Wm,n′(an′), but the first one needs to process:

i) the exponential operation, which is memory hungry (and hence area and power
consuming); ii) the addition of the exponential values, which increases the number
of bits required by the finite precision analysis (increasing storage resources and
routing), unlike the minimum operation performed in EMS; and iii) the logarithm
of the sum, which has similar problems to the exponential operation, due to the
use of look up tables for implementation. The previous differences make QSPA
implementations very inefficient. Compared to EMS or Min-Sum architectures,
the best QSPA design is about seven times less efficient, with an improvement of
less than 0.2dB in coding gain [15]. Although the rest of the steps are similar
for both QSPA and EMS algorithms, QSPA processing is 40% costlier because
messages exchanged between check node and variable node and vice versa, require
40% more bits in the finite precision analysis. Even if some of the simplification
and optimization methods that will be described in the following pages can be
applied also to QSPA, we will just focus on EMS and Min-max because the check
node is too complex for efficient and high-throughput implementations.

Step A3 in QSPA, EMS and Min-max algorithms adds to the channel information
(Ln(a)) the extrinsic information computed with the updated check nodes con-
nected to this variable node (

∑
m′∈M(n)\m Rm′,n(a)). Step A4 and A5 normalizes

Wm,n(a) to the symbol 0 or zn, depending on the initialization of the algorithm,
to ensure the computational stability. As it has been discussed before, in step
A5 of EMS and Min-max algorithm, offset or scaling can be applied to improve
the performance and compensate the differences of processing with QSPA. The
offset or scaling values can be obtained applying density evolution or via simula-
tion [12]. Note that Wm,n is also a nm-element or q-element vector (depending
on the number of configuration sets), for each pair of m and n.

The iterative process ends when reaches the maximum number of iterations or
when all the parity check equations are satisfied, if an early stopping criterion is
set. Step A6 of the tentative decoding performs a similar equation to step A3 but
it takes into account all the check nodes M(n) connected to the variable node n.
Step A7 looks for the GF symbol associated to the minimum value of Wn(a) (most
reliable symbol).

From the description of QSPA, EMS and Min-max algorithms two main bottle-
necks can be observed: i) the computational complexity of the check node (steps
A1 and A2); and ii) the exchange of vectors (of nm or q elements) between CNU
and VNU (Rm,n and Wm,n).

To avoid an inefficient way of solving steps A1 and A2 several algorithms were
proposed, such as the forward-backward algorithm (included at [13]), the bubble
check algorithm [16] and some trellis based algorithms: [17] (which introduces an
early error floor degradation according to [18]), [19] and [20]. These solutions

18

1.4 Forward-backward and T-EMS algorithms

have made possible to apply NB-LDPC decoders to a wide range of scenarios
such as wireless communications [21], which was not possible with the complexity
of the original QSPA. In the following section, we will explain with detail two of
these proposals to solve the CNU: forward-backward from [13] and trellis-EMS (T-
EMS) [19]. However, we can advance that even with the reduction of complexity
of these techniques, the derived latency and throughput are far from high-speed
constraints of some communication systems.

On the other hand, the simplification proposed at [12] and [14] selecting just nm

most reliable symbols is efficient for high order fields GF(64) and above. For high
order fields, nm can be very small compared to q (nm << q) without performance
degradation and with a real saving of area. However, for fields under GF(64), if
nm << q, there is a performance degradation; and if nm < q is chosen there is no
area saving due to the need of storing Rm,n and Wm,n with their associated GF
symbols. Even in cases with area saving, the exchange of vectors between CNU
and VNU has associated a routing congestion problem. This problem was already
reported in binary LDPC [22], where the number of connections required to share
information between the CNU and the VNU units was higher enough to reduce
the maximum frequency achievable of the derived architectures, due to the density
of the required wiring. In the binary case the output of CNU and VNU is a scalar,
so we can expect that the problem in NB-LDPC decoding will be multiplied at
least by nm. For this reason different algorithms need to be introduced, even if
they include some performance degradation. These algorithms will be explained
at Section 1.5 of the manuscript.

1.4 Forward-backward and T-EMS algorithms

1.4.1 Forward-backward algorithm

Forward-backward is a recursive algorithm that computes in an efficient way the
CNU function when the length of the incoming messages from the VNU is of
q-elements (i.e. step A2 of Algorithm 3). As can be seen at Algorithm 4, two
matrices of size q × (dc − 1), F and B, are needed to store the forward and
backward metric results. The first element of column of F, F0(a) (with a ∈ GF(q))
is initialized with the information associated to the first VNU connected to the
processed CNU Wm,n0(a). For a matrix H with non-zero coefficients different
from one, the values of Wm,n0(a) stored in F0(a) are shifted by h−1

m,n0
(F0(a) =

Wm,n0(h
−1
m,n0

a)) to perform the product of the parity check equation. A similar
reasoning is followed for the initialization of the vector B with the only difference
that in this case the last element, Bdc−1(a), is the one initialized. The recursive
process for the forward metrics of a node i consists in comparing the column
computed in the previous iteration, Fi−1(a

′), with the incoming message from the

19

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

Algorithm 4 Forward-backward algorithm

Input: Wm,n of check node m
Forward-backward metrics
F0(a) = Wm,n0(h

−1
m,n0

a)
Bdc−1(a) = Wm,ndc−1

(h−1
m,ndc−1

a)
for i = 1 → dc − 1 do
Fi(a) = mina′+hm,ni

a′′=a(max(Fi−1(a
′),Wm,ni(a

′′))), a′, a′′ ∈ GF(q)
Bdc−1−i(a) = mina′+hm,ni

a′′=a(max(Bdc−1−i+1(a
′),Wm,ndc−1−i

(a′′))),
a′, a′′ ∈ GF(q)

end for
Merge metrics
M0(a) = B1(a)
Mdc−1(a) = Fdc−2(a)
for d = 1 → dc − 2 do
Md(a) = mina′+a′′=−hm,nd

a(max(Fd−1(a
′), Bd+1(a

′′))), a′, a′′ ∈ GF(q)
end for

Output: Rm,n = M

i VNU, Wm,ni(a
′′)). The relation between a′ and a′′ has to be a′+hm,nia

′′ = a to
ensure that the parity check equation will be satisfied. To process all the possible
combinations of a′ and a′′ that accomplish a′ + hm,nia

′′ = a, q2 comparisons
are required. Note that a′ is not multiplied by hm,ni−1 because the product was
performed in the previous iteration. It is very important to remark that we cannot
process efficiently the i iterations in parallel, because it is a recursive algorithm,
we need to compute first Fi−1(a) to get Fi(a), so at least dc − 1 iterations are
required to compute the forward step. The same schedule, but backwards, is
followed with B. As F and B have independent outputs, they can be calculated
in parallel. The combination of both F and B results with the merge metrics
are stored in a matrix of size q × dc, M. The merge metrics are the same as the
ones followed by the forward-backward metrics, but having as input the matrices
F and B instead of the information from the VNU. Md is processed by means of
combining Fd−1 and Bd+1. Fd and Bd are not involved in the computation of
Md because only the extrinsic information of the node d is required. To compute
the merge metrics dc − 2 iterations are required. Hence, to compute a CNU of
degree dc, 2dc−3 iterations are required, which is equivalent to a latency of 2dc−3
clock cycles if forward and backward metrics are performed in parallel. If merge
metrics are not calculated after the full F and B are available, but starts when the
first pair of Fi−1(a

′) and Bi+1(a
′′) to compute Md(a) are available, the number of

iterations can be reduced to dc − 1. So, to set latency to dc − 1 clock cycles four
parallel processors are required one for each forward and backward metrics and
two processors for the merge metrics. It is not possible to solve a CNU with less
number of iterations than this.

20

1.4 Forward-backward and T-EMS algorithms

Next we include two examples that illustrate forward-backward algorithm, the
first one shows the schedule of the forward, backward and merge metrics and the
second one details the processing of one forward iteration.

Example 1.4.1 Let us assume a check node m with dc = 7. Next the computation
per iteration is included, considering the higher degree of parallelism: one forward
processor Fx, one backward processor Bx and two merge processors Mx and M ′

x.

Initialization:
F0(a) = Wm,n0(h

−1
m,n0

a)
B6(a) = Wm,n6(h

−1
m,n6

a)
Mx=Idle
M ′

x=Idle
1rst iteration:
F1(a) = mina′+hm,n1a

′′=a(max(F0(a
′),Wm,n1(a

′′)))
B5(a) = mina′+hm,n5a

′′=a(max(B6(a
′),Wm,n5(a

′′)))
Mx=Idle
M ′

x=Idle
2nd iteration:
F2(a) = mina′+hm,n2a

′′=a(max(F1(a
′),Wm,n2(a

′′)))
B4(a) = mina′+hm,n4a

′′=a(max(B5(a
′),Wm,n4(a

′′)))
Mx=Idle
M ′

x=Idle
3rd iteration:
F3(a) = mina′+hm,n3a

′′=a(max(F2(a
′),Wm,n3(a

′′)))
B3(a) = mina′+hm,n3a

′′=a(max(B4(a
′),Wm,n3(a

′′)))
M3(a) = mina′+a′′=−hm,n3a

(max(F2(a
′), B4(a

′′)))
M ′

x=Idle
4th iteration:
F4(a) = mina′+hm,n4a

′′=a(max(F3(a
′),Wm,n4(a

′′)))
B2(a) = mina′+hm,n2a

′′=a(max(B3(a
′),Wm,n2(a

′′)))
M2(a) = mina′+a′′=−hm,n2a

(max(F1(a
′), B3(a

′′)))
M ′

4(a) = mina′+a′′=−hm,n4a
(max(F3(a

′), B5(a
′′)))

5th iteration:
F5(a) = mina′+hm,n5a

′′=a(max(F4(a
′),Wm,n5(a

′′)))
B1(a) = mina′+hm,n1a

′′=a(max(B2(a
′),Wm,n1(a

′′)))
M1(a) = mina′+a′′=−hm,n1a

(max(F0(a
′), B2(a

′′)))
M ′

5(a) = mina′+a′′=−hm,n5a
(max(F4(a

′), B6(a
′′)))

6th iteration:
Fx(a)=Idle
Bx(a)=Idle
M0(a) = B1(a)
M ′

6(a) = F5(a)

21

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

This example shows us that due to the dependency of the data between the forward-
backward metrics and the merge it is not possible to solve the CNU with less than
dc − 1 iterations (clock cycles). Although the merge processors are unused during
the first ⌈dc/2⌉ iterations, these two processors are required to reach the lowest
latency.

Example 1.4.2 For simplicity, let us assume a parity check matrix H with non-
zero coefficients equal to 1 ∈ GF(4). The decoding algorithm is Min-max and
Fi−1 = [18 15 0 6] and Wm,ni

= [0 32 13 19]. The elements of vectors Fi−1

and Wm,ni
are associated to the symbols 0, 1, α and α2, respectively, so the hard-

decision symbol of Fi−1 is α and the hard decision symbol of Wm,ni
is 0 (as the

minimum value correspond to the most reliable symbol). The operation addition
over GF(4) is defined as:

⊕ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α
α α α2 0 1
α2 α2 α 1 0

To compute Fi(a) = mina′+hm,ni
a′′=a(max(Fi−1(a

′),Wm,ni(a
′′)), all the Fi−1 and

Wm,ni
combinations of a′+hm,nia

′′ = a for a = {0, 1, α, α2} should be calculated.
As we assume that hm,ni = 1, the condition is simplified to a′ + a′′ = a. The
maximums are computed as follows:

For a = 0:

• max(Fi−1(a
′ = 0),Wm,ni(a

′′ = 0)) = max(18, 0) = 18

• max(Fi−1(a
′ = 1),Wm,ni(a

′′ = 1)) = max(15, 32) = 32

• max(Fi−1(a
′ = α),Wm,ni(a

′′ = α)) = max(0, 13) = 13

• max(Fi−1(a
′ = α2),Wm,ni(a

′′ = α2)) = max(6, 19) = 19

For a = 1:

• max(Fi−1(a
′ = 0),Wm,ni(a

′′ = 1)) = max(18, 32) = 32

• max(Fi−1(a
′ = 1),Wm,ni

(a′′ = 0)) = max(15, 0) = 15

• max(Fi−1(a
′ = α),Wm,ni(a

′′ = α2)) = max(0, 19) = 19

• max(Fi−1(a
′ = α2),Wm,ni(a

′′ = α)) = max(6, 13) = 13

For a = α:
22

1.4 Forward-backward and T-EMS algorithms

• max(Fi−1(a
′ = 0),Wm,ni(a

′′ = α)) = max(18, 13) = 18

• max(Fi−1(a
′ = 1),Wm,ni

(a′′ = α2)) = max(15, 19) = 19

• max(Fi−1(a
′ = α),Wm,ni(a

′′ = 0)) = max(0, 0) = 0

• max(Fi−1(a
′ = α2),Wm,ni(a

′′ = 1)) = max(6, 32) = 32

For a = α2:

• max(Fi−1(a
′ = 0),Wm,ni(a

′′ = α2)) = max(18, 19) = 19

• max(Fi−1(a
′ = 1),Wm,ni(a

′′ = α)) = max(15, 13) = 15

• max(Fi−1(a
′ = α),Wm,ni(a

′′ = 1)) = max(0, 32) = 32

• max(Fi−1(a
′ = α2),Wm,ni(a

′′ = 0)) = max(6, 0) = 6

To perform the maximum of all the combinations, q2 comparisons are required.
So, if we want to perform each forward (or backward/merge) step in one clock
cycle, q2 comparators per processor are necessary to get the maximums. Finally,
the minimum for each a ∈ GF(4) is calculated:

For a = 0: Fi(a = 0) = min(18, 32, 13, 19) = 13

For a = 1: Fi(a = 1) = min(32, 15, 19, 13) = 13

For a = α: Fi(a = α) = min(18, 19, 0, 32) = 0

For a = α2: Fi(a = α2) = min(19, 15, 32, 6) = 6

The result is coherent, because the addition of the hard decision of both inputs,
α+ 0 = α, and the most reliable symbol at the output of the forward step, Fi(a =
α) = 0, leads to the same symbol value.

To calculate the minimums q× (q− 1) comparisons are needed. Hence, if we want
to achieve the higher degree of parallelism q3 × (q − 1) comparisons are required
to perform one complete iteration of the forward (or backward/merge) metrics in
one clock cycle. According to Example 1.4.1, four processors are necessary to
complete all the algorithm in dc−1 clock cycles, so a complete CNU unit will need
4× q3 × (q − 1) comparators to get the lowest latency (and the highest speed).

As we can see from the previous examples, latency grows with dc and the number
of comparators depends on the size of the field, q. Systems such as optical commu-
nication ones require high-rate codes, which have a large dc value. In consequence
of this, latency will grow and speed will be reduced for this kind of codes, which

23

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

is totally the opposite to what it is looked for in this high-speed systems. In addi-
tion, area resources and routing (wiring between comparators) will grow with the
field if a fully parallel implementation is done. In case that a fully parallel im-
plementation is avoided, serial implementations will make latency also dependent
on q, reducing speed even more. In conclusion, for applications such as optical
communications with high order fields and high-rate, forward-backward algorithm
is not efficient enough to get a throughput as high as is required.

To reduce the complexity of the forward-backward algorithm, a simplified version
where all the coefficients of the matrix H are equal to 1 ∈ GF(q) (as in Example
1.4.2) can be applied if the improved version of the Min-max algorithm in [23]
is used. The improved Min-max algorithm performs the products by the parity
check matrix coefficients outside of the forward-backward algorithm in order to
avoid GF products inside the CNU. This modification of the algorithm does not
degrade its performance, but has a real saving of area in the derived NB-LDPC
decoder architectures. With this proposal GF multipliers are not required because
the products can be implemented changing the writing address of the memories.
Unfortunately, this improvement does not change the previously mentioned bot-
tleneck in latency and speed of NB-LDPC codes. The improved version of the
algorithm is included next.

Algorithm 5 Improved Min-max algorithm

Input: Ln(a) = log [P (cn = zn | yn)/P (cn = a | yn)], Wm,n(a) = Ln(hm,na)
Iterative process
for j = 1 → Itmax do
Check node processing
A1 : Am,n(a) := {an′ | an +

∑
n′∈N (m)\n an′ = 0}

A2 : Rm,n(a) = minan′∈Am,n(a),n′∈N (m)\n(maxn′∈N (m)\n(Wm,n′(an′)))
Variable node processing
A3 : W ′

m,n(hm,na) = Ln(a) +
∑

m′∈M(n)\m Rm′,n(hm,na)

A4 : W ′
m,n = mina∈GF (q)Wm′,n(a)

A5 : Wm,n(a) = W ′
m,n(a)−W ′

m,n

Tentatively decoding
A6 : Wn(a) = Ln(a) +

∑
m′∈M(n) Rm,n(hm,na)

A7 : c̃n = GFmin(Wn(a))
if c̃×HT = 0 then
SKIP

end if
end for

Output: c̃

Min-max and forward-backward algorithms can be also applied when the input
vectors have nm elements, but some trellis based algorithms ([17], [20]) became
more efficient in these cases. However, these algorithms still have a latency bottle-

24

1.4 Forward-backward and T-EMS algorithms

neck of dc − 1 clock cycles, even working with nm-length vectors. For this reason
we do not analyze them with detail in this manuscript. To the best knowledge
of the author, the only algorithm that can achieve a fully parallel computation
for the CNU update of EMS algorithm 3 is the one proposed at [19] and [25]. A
detailed explanation of this algorithm is included in the following subsection.

1.4.2 T-EMS algorithm

In this subsection a trellis based algorithm to solve the CNU for EMS, T-EMS
([19], [25]), is described. The algorithm takes advantage of the GF product elim-
ination at the CNU introduced at [23] and explained in the previous subsection.
Unlike other trellis proposals like [20], this algorithm does not work with the nm

most reliable symbols in Wm,n, but with full q-element vectors. The fact of work-
ing with all the elements in Wm,n does not increase complexity because T-EMS
can reduce the number of configuration sets without searching the nm most reli-
able symbols. In addition, this algorithm allows us a higher degree of parallelism
than other proposals due to its delta-domain based trellis structure which avoids
recursive computations.

Algorithm 6 Trellis EMS algorithm

Input: Wm,n and zn of check node m
Delta-domain
for j = 1 → dc do
A1: ∆W ′

m,nj
(ηj = a+ znj) = Wm,nj (znj)−Wm,nj (a), a ∈ GF(q)

end for
A2: β =

∑dc

j=1 znj ∈ GF(q)
Syndrome reliability values from configuration sets
A3: ∆W (a) = minη′

j(a)∈conf(nr,nc)

∑dc

j=1 ∆W ′
m,nj

(η′j(a)), a ∈ GF(q)

Extrinsic output messages and normal domain
for j = 1 → dc do
A4: ∆Rm,nj (a+ η′j(a)) = ∆W (a)−∆W ′

m,nj
(η′j(a)), a ∈ GF(q)

A5: Rm,nj (a+ β + znj) = −∆Rm,nj (a), a ∈ GF(q)
end for

Output: Rm,n

Algorithm 6 transforms the VNU information into a delta-domain. In step A1,
the difference between the reliability of the hard decision symbol Wm,nj (znj) and
the reliability of each symbol a ∈ GF(q), Wm,nj (a), is computed. This difference
is associated to the symbol ηj = a+ znj , in other words, all the reliability values
inside ∆W ′

m,nj
are shifted by the hard-decision znj . Note that ηj = 0 when

a = znj . Moreover, the syndrome equation of all the hard-decision symbols are
calculated an stored at β, step A2. Steps A1 and A2 conform the delta-domain

3A similar method was proposed for Min-max algorithm, named relaxed Min-max [24].

25

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

transformation. As can be seen there is not dependency between the dc values of
j at step A1, so they can be computed in parallel. In addition, steps A1 and A2
are also independent.

Once ∆W ′
m,nj

(ηj) is calculated for all the j and ηj values, the configuration sets
can be created. For a same value of ηj the nr minimum values of ∆W ′

m,nj
(ηj)

between the dc possible ones are added to the configuration set. The minimum
values are selected because they are the ones with less difference in terms of re-
liability with the hard-decision (remember step A1 of the delta-domain). The
configuration sets include nr × dc symbols. Next all the possible paths (combina-
tion of symbols) with up to nc deviations from η = 0 path (hard-decision path)
are calculated, taken into account that for the same path there cannot be more
than one deviation for the same value of j. These paths form the configuration
sets denoted by conf(nr, nc). The deviated paths represent other possible paths
with high reliability, as its reliability only changes at nc locations compared to
the hard-decision path (η = 0). The addition of all the η′j(a) ∈ conf(nr, nc) sym-
bols has to accomplish the condition of being equal to a. This means that for
the syndrome a, in the delta domain, the most reliable paths will be formed by
η′j(a) ∈ conf(nr, nc) symbols. The search of the nr minimum values are performed
row-wise as they are comparing dc different values of j with the same value of ηj .
The independence between different values of ηj allow us to calculate the nr × dc
symbols in parallel.

Step A3 calculates the reliability of all the paths at conf(nr, nc) by adding the
values ∆W ′

m,nj
(η′j(a)) involved in the path (η′j(a) ∈ conf(nr, nc)). From all the

possible paths, selects the most reliable for each syndrome a (minimum operation).
The result of step A3 is a column of syndrome reliability values, ∆W (a). As there is
no dependence between results of the different paths, all this step can be computed
in parallel.

Step A4 obtains the extrinsic information of each element that conforms the path,
subtracting to the syndrome reliability value ∆W (a) of the path the intrinsic
reliability information ∆W ′

m,nj
(η′j). In a similar way, the associated symbol is

computed, subtracting (which is the same as adding in GF) to the syndrome
symbol, the symbol that conforms the path, a + η′j(a). When one value is not
filled, the first minimum associated to the symbol is taken to fill it. If the first
minimum belongs to one of the selected paths, second maximum of the row is
taken. The last step of the algorithm, A5, makes the conversion to the normal
domain, correcting the shift by zn performed at step A1 and adding the value of
hard-decision syndrome β, because the path of the hard-decision symbols (η = 0)
was the one taken as reference. Steps A4 and A5 can be updated in parallel
because non-recursive functions are applied.

With the next example we will try to illustrate how this algorithm works:

26

1.4 Forward-backward and T-EMS algorithms

Example 1.4.3 Let us assume a check node m with dc = 4, nr = 2 and nc = 2.
The input information is the following: Wm,n1 = [0 45 −25 55], Wm,n2 = [0
−10 30 −45], Wm,n3 = [0 −25 40 −45], Wm,n4 = [0 −60 −5 −85]. Elements
in the vector Wm,nj

are sorted having as associated symbols 0, 1, α and α2. The
associated hard-decision symbols are the ones with the highest value of Wm,nj

, so
zn1 = α2, zn2 = α, zn3 = α and zn4 = 0.

The first step is the delta-domain:

• ∆W ′
m,n1

(a+ zn1 = 0 + α2 = α2) = Wm,n1(α
2)−Wm,n1(0) = 55− 0 = 55

• ∆W ′
m,n1

(1 + α2 = α) = Wm,n1(α
2)−Wm,n1(1) = 55− 45 = 10

• ∆W ′
m,n1

(α+ α2 = 1) = Wm,n1
(α2)−Wm,n1

(α) = 55− (−25) = 80

• ∆W ′
m,n1

(α2 + α2 = 0) = Wm,n1(α
2)−Wm,n1(α

2) = 55− 55 = 0

The sorted vector according to the position of the associated (0, 1, α and α2) is:
∆W ′

m,n1
= [0 80 10 55]

• ∆W ′
m,n2

(a+ zn2
= 0 + α = α) = Wm,n2

(α)−Wm,n2
(0) = 30− 0 = 30

• ∆W ′
m,n2

(1 + α = α2) = Wm,n2(α)−Wm,n2(1) = 30− (−10) = 40

• ∆W ′
m,n2

(α+ α = 0) = Wm,n2(α)−Wm,n2(α) = 30− 30 = 0

• ∆W ′
m,n2

(α2 + α = 1) = Wm,n2(α)−Wm,n2(α
2) = 30− (−45) = 75

Sorted vector: ∆W ′
m,n2

= [0 75 30 40]

• ∆W ′
m,n3

(a+ zn3 = 0 + α = α) = Wm,n3(α)−Wm,n3(0) = 40− 0 = 40

• ∆W ′
m,n3

(1 + α = α2) = Wm,n3(α)−Wm,n3(1) = 40− (−25) = 65

• ∆W ′
m,n3

(α+ α = 0) = Wm,n3(α)−Wm,n3(α) = 40− 40 = 0

• ∆W ′
m,n3

(α2 + α = 1) = Wm,n3(α)−Wm,n3(α
2) = 40− (−45) = 85

Sorted vector: ∆W ′
m,n3

= [0 85 40 65]

• ∆W ′
m,n4

(a+ zn2 = 0 + 0 = 0) = Wm,n4(0)−Wm,n4(0) = 0− 0 = 0

• ∆W ′
m,n4

(1 + 0 = 1) = Wm,n4(0)−Wm,n4(1) = 0− (−60) = 60

• ∆W ′
m,n4

(α+ 0 = α) = Wm,n4(0)−Wm,n4(α) = 0− (−5) = 5

• ∆W ′
m,n4

(α2 + 0 = α2) = Wm,n4(0)−Wm,n4(α
2) = 0− (−85) = 85

27

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

Sorted vector: ∆W ′
m,n4

= [0 60 5 85]

Writing ∆W′
m,n in its trellis representation:

η/j 1 2 3 4
0 0 0 0 0
1 80 75 85 60
α 10 30 40 5
α2 55 40 65 85

Applying step A2 the syndrome of the hard-decision symbols is calculated as:

β =
∑4

j=1 znj = α2 + α+ α+ 0 = α2.

Next the configuration sets are built. The first step is searching nr = 2 minimums
for the same ηj ̸= 0 value. Minimums are indicated in bold type.

η/j 1 2 3 4
0 0 0 0 0
1 80 75 85 60
α 10 30 40 5
α2 55 40 65 85

The following step is computing all the possible paths with nc = 2 deviations, with-
out taking more than one value in the same column (same j value). conf(nr, nc)
for this example is as follows:

Paths for a = 1 with one deviation:

• ∆W ′
m,n2

(1) = 75

• ∆W ′
m,n4

(1) = 60

Paths for a = 1 with two deviations:

• ∆W ′
m,n1

(α) + ∆W ′
m,n2

(α2) = 10 + 40 = 50

• ∆W ′
m,n1

(α) + ∆W ′
m,n3

(α2) = 10 + 65 = 75

• ∆W ′
m,n4

(α) + ∆W ′
m,n2

(α2) = 5 + 40 = 45

• ∆W ′
m,n4

(α) + ∆W ′
m,n3

(α2) = 5 + 65 = 70

Paths for a = α with one deviation:

• ∆W ′
m,n1

(α) = 10
28

1.4 Forward-backward and T-EMS algorithms

• ∆W ′
m,n4

(α) = 5

Paths for a = α with two deviations:

• ∆W ′
m,n2

(1) + ∆W ′
m,n3

(α2) = 75 + 65 = 140

• ∆W ′
m,n4

(1) + ∆W ′
m,n2

(α2) = 60 + 40 = 100

• ∆W ′
m,n4

(1) + ∆W ′
m,n3

(α2) = 60 + 65 = 125

Paths for a = α2 with one deviation:

• ∆W ′
m,n2

(α2) = 40

• ∆W ′
m,n3

(α2) = 65

Paths for a = α2 with two deviations:

• ∆W ′
m,n2

(1) + ∆W ′
m,n1

(α) = 75 + 10 = 85

• ∆W ′
m,n2

(1) + ∆W ′
m,n4

(α) = 75 + 5 = 80

• ∆W ′
m,n4

(1) + ∆W ′
m,n1

(α) = 60 + 10 = 70

From the conf(nr, nc) the paths with the minimum reliability value, the ones with a
closer reliability to the hard-decision, are chosen as indicates step A3. For a = 1:
∆W ′

m,n4
(α) + ∆W ′

m,n2
(α2) = 5 + 40 = 45. For a = α: ∆W ′

m,n4
(α) = 5. For

a = α2: ∆W ′
m,n2

(α2) = 40. Hence, the value of ∆W is:

a ∆W
0 0
1 45
α 5
α2 40

And the associated information for the paths, η′j(a), is:

a/j 1 2 3 4
0 0 0 0 0
1 0 α2 0 α
α 0 0 0 α
α2 0 α2 0 0

To perform step A4, the information of the selected paths is required.

For a = 1
29

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

• ∆Rm,n1(a+ η′1(a) = 1 + 0) = ∆W (1)−∆W ′
m,n1

(0) = 45− 0 = 45

• ∆Rm,n2
(a+ η′2(a) = 1 + α2 = α) = ∆W (1)−∆W ′

m,n2
(α2) = 45− 40 = 5

• ∆Rm,n3(a+ η′3(a) = 1 + 0) = ∆W (1)−∆W ′
m,n3

(0) = 45− 0 = 45

• ∆Rm,n4(a+ η′4(a) = 1 + α = α2) = ∆W (1)−∆W ′
m,n4

(α) = 45− 5 = 40

For a = α

• ∆Rm,n1
(a+ η′1(a) = α+ 0) = ∆W (α)−∆W ′

m,n1
(0) = 5− 0 = 5

• ∆Rm,n2(a+ η′2(a) = α+ 0) = ∆W (α)−∆W ′
m,n2

(0) = 5− 0 = 5

• ∆Rm,n3(a+ η′3(a) = α+ 0) = ∆W (α)−∆W ′
m,n3

(0) = 5− 0 = 5

• ∆Rm,n4(a+ η′4(a) = α+ α) = ∆W (α)−∆W ′
m,n4

(α) = 5− 5 = 0

For a = α2

• ∆Rm,n1(a+ η′1(a) = α2 + 0) = ∆W (α2)−∆W ′
m,n1

(0) = 40− 0 = 40

• ∆Rm,n2(a+ η′2(a) = α2 + α2) = ∆W (α2)−∆W ′
m,n2

(α2) = 40− 40 = 0

• ∆Rm,n3(a+ η′3(a) = α2 + 0) = ∆W (α2)−∆W ′
m,n3

(0) = 40− 0 = 40

• ∆Rm,n4(a+ η′4(a) = α2 + 0) = ∆W (α2)−∆W ′
m,n4

(0) = 40− 0 = 40

So the value of ∆Rm,n after applying A4 is:

a+ η′j(a)/j 1 2 3 4

0 0 0 0 0
1 45 x 45 x
α 5 5 5 x
α2 40 x 40 40

The x indicates the unfilled values of ∆Rm,n. To fill them, the first minimum
of the corresponding row of ∆W′

m,n is selected if it does not belong to one of the
selected paths. Otherwise, the second minimum is applied. According to this the
row of the symbol 1 is filled with the first minimum of W ′

m,n(1) (60), because it
does not belong to the selected paths. To fill the row of α the first minimum cannot
be applied because it belongs to some of the selected paths (path for a = 1 and
a = α), so the second minimum of W ′

m,n(α) (10) is applied. To fill the row of α2

the second minimum of W ′
m,n(α

2) (65) is selected, because the first one is applied
to compute the path for a = α2. The resulting ∆Rm,n is:

30

1.4 Forward-backward and T-EMS algorithms

a+ η′j(a)/j 1 2 3 4

0 0 0 0 0
1 45 60 45 60
α 5 5 5 10
α2 40 65 40 40

The last step of the algorithm shifts the values of ∆Rm,n to compute the output
of the normal domain.

For a = 0

• Rm,n1(a+ β + zn1 = 0 + α2 + α2 = 0) = −∆Rm,n1(0) = 0

• Rm,n2(a+ β + zn2 = 0 + α2 + α = 1) = −∆Rm,n2(0) = 0

• Rm,n3(a+ β + zn3 = 0 + α2 + α = 1) = −∆Rm,n3(0) = 0

• Rm,n4(a+ β + zn4 = 0 + α2 + 0 = α2) = −∆Rm,n4(0) = 0

For a = 1

• Rm,n1(a+ β + zn1 = 1 + α2 + α2 = 1) = −∆Rm,n1(1) = −45

• Rm,n2(a+ β + zn2 = 1 + α2 + α = 0) = −∆Rm,n2(1) = −60

• Rm,n3(a+ β + zn3 = 1 + α2 + α = 0) = −∆Rm,n3(1) = −45

• Rm,n4(a+ β + zn4 = 1 + α2 + 0 = α) = −∆Rm,n4(1) = −60

For a = α

• Rm,n1(a+ β + zn1 = α+ α2 + α2 = α) = −∆Rm,n1(α) = −5

• Rm,n2(a+ β + zn2 = α+ α2 + α = α2) = −∆Rm,n2(α) = −5

• Rm,n3(a+ β + zn3 = α+ α2 + α = α2) = −∆Rm,n3(α) = −5

• Rm,n4(a+ β + zn4 = α+ α2 + 0 = 1) = −∆Rm,n4(α) = −10

For For a = α2

• Rm,n1(a+ β + zn1 = α2 + α2 + α2 = α2) = −∆Rm,n1(α
2) = −40

• Rm,n2(a+ β + zn2 = α2 + α2 + α = α) = −∆Rm,n2(α
2) = −65

• Rm,n3(a+ β + zn3 = α2 + α2 + α = α) = −∆Rm,n3(α
2) = −40

31

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

• Rm,n4(a+ β + zn4 = α2 + α2 + 0 = 0) = −∆Rm,n4(α
2) = −40

The output Rm,n is :

(a+ β + znj)/j 1 2 3 4
0 0 −60 −60 −40
1 −45 0 0 −10
α −5 −65 −40 −60
α2 −40 −5 −5 0

As it is shown in Example 1.4.3 all the steps from T-EMS can be calculated
in parallel. Delta-domain steps are computed column-wise, so dc independent
processors are required for each column. Each processor needs to compute (q− 1)
subtractions and (q − 1) GF additions in parallel to implement A1 in one clock
cycle. On the other hand, the computation of the configuration sets, performed
row wise, requires (q − 1) processors. Each processor needs more than (dc − 1)
comparators to look for the nr minimums of the dc elements in a row when nr > 1.
In addition,

(
q−1
nc

)
× nnc

r sums are necessary in the worst case to compute all the
possible paths [25] and comparators are required to select the (q−1) minimum ones.
The extrinsic output messages can be calculated also in a column-wise manner with
dc processors with q subtractors and 2q GF adders each processor. The previously
mentioned resources allow us to reduce latency to three clock cycles (one for the
delta-domain, one for the syndrome and configurations sets and another for the
extrinsic information) if variables are stored between step A1 and A3 and between
A3 and A5. This latency can be reduced to two clock cycles if the information
is only stored between step A3 and A4 as indicated at [25], however for some
cases this full parallelism introduces some drawbacks. As q and dc increases,
the complexity in terms of number of parallel processors and resources inside each
processor grow. This fact makes not only consuming more area but also increasing
considerably the wiring inside the CNU, up to a point that routing problems could
be found inside the CNU unit for GF(16) and above for high-rate codes (with large
dc). In addition, storage resources are registers, not memories because the fully
parallel processing requires that all the information must be available during all
the processing time. There cannot be idle cycles accessing to memory. The use of
registers instead of memories enlarges area (storing one bit of RAM is three times
smaller than storing one bit in a register). Moreover, the fact that the T-EMS
algorithm exchanges q-length vectors between the CNU and the VNU makes that
routing problems discussed at Section 1.3 appear.

In conclusion, T-EMS can reach a latency similar to binary LDPC, but above
GF(8) it will suffer from routing problems inside the CNU unit and between CNU
and VNU units. This routing problems will prevent T-EMS architectures from
reaching a throughput of Gbps with high-rate codes over fields above GF(8). In
addition, the derived architecture for this codes will consume a large amount of

32

1.5 Symbol-flipping algorithms

area resources. This algorithm is optimum for GF(4) where higher speed than
the ones derived from forward-backward [13] and bubble check [16] algorithms can
be reached. If higher speed is desired for high-rates codes, some coding gain has
to be sacrificed in order to reduce the complexity of the decoder and increase its
efficiency. To do it other family of algorithms will be studied in the next section:
symbol-flipping algorithms.

1.5 Symbol-flipping algorithms

At Section 1.3 and 1.4 algorithms derived from QSPA are analyzed concluding that
EMS and Min-max involve high complexity in their check node update rules. The
CNU algorithms of the different EMS and Min-max versions require the search
of symbols that satisfy the parity check equations, working with vectors of q or
nm length which make use of soft-information from the channel. Techniques like
forward-backward limit latency of the derived architectures due to the recursive
process. Other solutions such as T-EMS, which allow us higher degree of paral-
lelism, are limited by routing and area when the field order grows. So, if higher
throughput and lower area are required, other alternatives must be studied.

Mainly, there are two solutions: reduce the number of iterations of the previously
mentioned algorithms or reduce the complexity of the CNU. Both solutions lead to
a performance loss. In order to reduce complexity of the CNU, hard-decision solu-
tions can be applied. This means that instead of working with reliability vectors
of q (or nm) length at the check node, only the hard-decision symbols are consid-
ered. This approach has been followed by symbol-flipping based algorithms such as
majority-logic decodable (MD) algorithm [26] and generalized bit-flipping decod-
ing algorithm (GBFDA) [27]. MD algorithm works efficiently under parity check
codes based on Euclidean geometry [28] (with dc = dv) and low rate; and GBFDA
works better with high-rate codes and wider range of quasi-cyclic matrices [1] (such
as the ones based on the multiplicative group of a finite field). The simplification
of these algorithms at the CNU introduces some performance loss (between 0.7 and
1dB depending on the algorithm and the code, see Fig. 1.4), because of the lack of
soft-information at the check node. This gap between the coding gain of EMS (or
Min-max)4 and symbol-flipping algorithms cannot be reduced by increasing the
number of iterations of symbol-flipping algorithms. However, as we will discuss in
next chapters, under the same performance, symbol-flipping architectures are more
efficient than EMS or Min-max ones. Hence, if we can assume some performance
loss, it is better in terms of hardware to apply symbol-flipping algorithms than to
reduce the number of iterations of EMS or Min-max algorithms. For this reason,
we include a detailed explanation of GBFDA, which is, to the best of the author’s

4Note that comparisons with QSPA have been deliberately omitted because there is more
than one order of magnitude in terms of complexity compared to EMS or Min-max and it just
has a coding gain smaller than 0.16dB.

33

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

knowledge, the most efficient symbol-flipping algorithm for high-rate codes. Other
symbol-flipping algorithms based on energy computation [29], [30] have not been
taken into account due to the high performance loss introduced, compared to MD
and GBFDA.

3 3.5 4 4.5 5 5.5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

F
E

R

log QSPA, It
max

=15

T−EMS algorithm, It
max

=15

Min−max algorithm, It
max

=15

GBFDA, It
max

=20

Figure 1.4: FER performance of log-QSPA algorithm, T-EMS algorithm, Min-max
algorithm and GBFDA for a (837,723) NB-LDPC code over GF(32) with a binary phase-
shift keying (BPSK) modulation in an additive white Gaussian noise (AWGN) channel.

In Algorithm 7 the GBFDA from [27] is described. This algorithm is based on a
voting process.

The CNU is composed of steps A1 and A2, and computes all the operations over
GF(q). Step A1 calculates the syndrome, sm, for each check node m. If the
syndrome is equal to zero, it means that the symbols Qm,n involved in the com-
putation, satisfy the parity check node equation m, so there is no need of flipping

34

1.5 Symbol-flipping algorithms

Algorithm 7 Generalized Bit-Flipping algorithm

Input: Q
(0)
m,n = zn, Wn

(0) = Wm,n
(0) = F(Ln)

Iterative process
for j = 1 → Itmax do
Check node processing

A1 : sm =
∑

n∈N(m) hm,nQ
(j−1)
m,n

A2 : R
(j)
m,n = h−1

m,nsm −Q
(j−1)
m,n

Variable node processing

A3 : Wm,n
(j) = Wm,n

(j−1) +
∑

m′∈M(n)\m δ(R
(j)
m′,n, 1)

A4 : Q
(j)
m,n = GFmax(Wm,n

(j))

A5 : Wn
(j) = Wn

(j−1) +
∑

m′∈M(n) δ(R
(j)
m′,n, v)

Tentatively decoding

A6 : c̃
(j)
n = GFmax(Wn

(j))
if c̃×HT = 0 then

SKIP
end if

end for
Output: c̃

the symbol values Qm,n. However, if the result of step A1, sm, is different from
zero, new ‘candidates’ are proposed to flip Qm,n values. Step A2 calculates the
values of the new ‘candidates’ (Rm,n) according to the syndrome information. In
addition, step A2 ensures that the proposed ‘candidates’ (Rm,n) satisfy the check
node equations. This step calculates dc ‘candidates’ for each check node m.

For the VNU a ‘voting process’ is carried out. Step A3 modifies Wm,n, increasing
in one vote the LLR information of the ‘candidates’ (Rm,n). This is performed with
the operation δ(x, v) of A3 in which we ‘vote’ to the symbol x with an amplitude v.
After the voting process of A3, Wm,n values are sorted in step A4. The symbols
with higher reliability (higher LLR and number of votes5) will be taken as the
new hard-decision, Qm,n. The iterative process will be repeated until the check
nodes equations of all the rows are satisfied or the maximum number of iterations,
Itmax, is reached.

Steps A5 and A6 form the tentative decoding process. Step A5 accumulates in
Wn) all the ‘votes’ for each symbol of the codeword. In step A6, the most reliable
symbols of Wn will be taken as the decoded codeword cn.

Note that as the LLR and the voting domains are mixed at GBFDA, two parame-
ters are required to transform the information: the function F and the amplitude

5For GBFDA Ln is defined as Ln[x] = log [P (cn = x | yn)/P (cn = 0 | yn)] so the maximum
value of Ln[x] is the most reliable.

35

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

value v. Function F adapts the LLR values Ln to the voting process, usually
scaling the vector and performing a quantification. The amplitude v can be tuned
to depending on Wm,n. The common value for v is one for simplicity and F is
optimized via simulation to get the best performance.

Next, an example of how GBFDA works is included.

Example 1.5.1 In this example we will detail one iteration of GBFDA with

parallel flooding schedule. Let us assume a parity matrix: H =

α 0 α2

0 1 α2

α 1 0


over GF(4). The received LLR sequence is: L1 =

[
0 −4.7 −23.2 −3

]
, L2 =[

0 3.2 −7 24
]
and L3 =

[
0 50 14 −5

]
. F multiplies Ln by 0.5 and per-

forms the round operation. The amplitude of the votes is v = 1. So Wm,n is
initialized to: W1,1 = W3,1 = W1 =

[
0 −2 −12 −2

]
, W2,2 = W3,2 =

W2 =
[
0 2 −4 12

]
and W1,3 = W2,3 = W3 =

[
0 25 7 −3

]
.

The hard-decision symbols are: z1 = 0, z2 = α2 and z3 = 1; and Q1,1 = Q3,1 = z1,
Q2,2 = Q3,2 = z2, Q1,3 = Q2,3 = z3.

Remember that the product operation over GF(4) is defined as:

⊗ 0 1 α α2

0 0 0 0 0
1 0 1 α α2

α 0 α α2 1
α2 0 α2 1 α

First syndrome equations are computed:

• s1 = h1,1Q1,1 + h1,3Q1,3 = α · 0 + α2 · 1 = α2

• s2 = h2,2Q2,2 + h2,3Q2,3 = 1 · α2 + α2 · 1 = 0

• s3 = h3,1Q3,1 + h3,2Q3,2 = α · 0 + 1 · α2 = α2

With this results we can know before computing step A2 that R2,2 and R2,3 candi-
dates will be the same as Q2,2 and Q2,3, because the second parity check equation is
already satisfied. Using the syndrome information the ‘candidates’ for the voting
process are calculated as follows:

For m = 1:

• R1,1 = h−1
1,1 · s1 −Q1,1 = α2 · α2 − 0 = α

• R1,3 = h−1
1,3 · s1 −Q1,3 = α · α2 − 1 = 0

36

1.5 Symbol-flipping algorithms

For m = 2:

• R2,2 = h−1
2,2 · s2 −Q2,2 = α2

• R2,3 = h−1
2,3 · s2 −Q2,3 = 1

For m = 3:

• R3,1 = h−1
3,1 · s3 −Q3,1 = α2 · α2 − 0 = α

• R3,2 = h−1
3,2 · s3 −Q3,2 = 1 · α2 − α2 = 0

At step A3 the voting process with the extrinsic information is performed. As the
matrix in the example has dv = 2 it receives just one vote, because dv − 1 = 1. In
bold are indicated the elements of Wm,n that receive votes.

For n = 1

• W1,1 = W1,1 + δ(R3,1 = α, v = 1) =
[
0 −2 -12+1 −2

]
• W3,1 = W3,1 + δ(R1,1 = α, v = 1) =

[
0 −2 -12+1 −2

]
For n = 2

• W2,2 = W2,2 + δ(R3,2 = 0, v = 1) =
[
0+1 2 −4 12

]
• W3,2 = W3,2 + δ(R2,2 = α2, v = 1) =

[
0 2 −4 12+1

]
For n = 3

• W1,3 = W1,3 + δ(R2,3 = 1, v = 1) =
[
0 25+1 7 −3

]
• W2,3 = W2,3 + δ(R1,3 = 0, v = 1) =

[
0+1 25 7 −3

]
After the voting process step A4 looks for the most reliable symbol with the updated
information:

For n = 1

• Q1,1 = GFmax(W1,1) = GFmax(
[
0 −2 −11 −2

]
) = 0

• Q3,1 = GFmax(W3,1) = GFmax(
[
0 −2 −11 −2

]
) = 0

37

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

For n = 2

• Q2,2 = GFmax(W2,2) = GFmax(
[
1 2 −4 12

]
) = α2

• Q3,2 = GFmax(W3,2) = GFmax(
[
0 2 −4 13

]
) = α2

For n = 3

• Q1,3 = GFmax(W1,3) = GFmax(
[
0 26 7 −3

]
) = 1

• Q2,3 = GFmax(W2,3) = GFmax(
[
1 25 7 −3

]
) = 1

As we can see, there is no flipping in the values (Qm,n symbols at the beginning
of the iteration are the same as Qm,n symbols at the end), because the new ‘can-
didates’ have not receive enough votes to be ‘elected’, so more iterations will be
required to produce a flipping. That is the reason why GBFDA and in general all
the algorithms based on symbol flipping work better (converge faster) when codes
with dv ≥ 3 are used. As large dv is, greater is the amount of information available
at the VNU to chose the right candidate and faster the flipping of the symbols are
produced.

Finally, step A5 accumulates all the votes performed at the location n of the code-
word in the matrix Wn:

For n = 1 : W1 = W1 + δ(R3,1 = α, v = 1) + δ(R1,1 = α, v = 1) =[
0 −2 -12+2 −2

]
For n = 2 : W2 = W2 + δ(R3,2 = 0, v = 1) + δ(R2,2 = α2, v = 1) =[
0+1 2 −4 12+1

]
For n = 3 : W3 = W1,3 + δ(R2,3 = 1, v = 1) + +δ(R1,3 = 0, v = 1) =[
0+1 25+1 7 −3

]
Step A6 performs the tentative decoding:

For n = 1 : c̃1 = GF (W1) = GFmax(
[
0 −2 10 −2

]
) = 0

For n = 2 : c̃2 = GF (W2) = GFmax(
[
1 2 −4 13

]
) = α2

For n = 3 : c̃3 = GF (W1,3) = GFmax(
[
1 26 7 −3

]
) = 1

As it can be seen in Example 1.5.1, GBFDA allows us the highest degree of par-
allelism with only one CNU processor, due to the use of just the hard-decision
symbols. With this algorithm the complexity is moved from CNU to VNU, being
one of the main problems the way of controlling the number of bits required for

38

1.6 Advantages of non-binary low-density parity-check decoding

Wm,n and Wn (see next chapters). Moreover, the information exchanged be-
tween CNU and VNU, Qm,n and Rm,n are not vectors as in EMS or Min-max, but
scalar values. This fact reduces the complexity of the wiring between CNU and
VNU units getting a similar routing congestion to the one reported at [22] for the
binary case. Hence, for high-speed communication systems, algorithms derived
from GBFDA will allow us to implement hardware architectures with a higher
efficiency. The main drawback is that a performance in terms of error correction
as high as EMS and Min-max cannot be reach with the actual state of the art,
so one of the main points in the research of this field has to be focused on how
to improve the coding gain of symbol-flipping algorithms without increasing the
complexity.

1.6 Advantages of non-binary low-density parity-check
decoding

After making a detailed revision of the existing NB-LDPC decoding algorithms
and see that their main disadvantages for hardware implementation come from the
fact of using Galois fields with q > 2, some logic questions arise: Do NB-LDPC
codes have any advantage compared to binary LDPC? For the same complexity,
can NB-LDPC outperform binary codes? Is the search of more efficient NB-LDPC
decoder implementations justified?

As it has been reported several times in literature, a completely fair comparison
between binary and non-binary LDPC codes is not realistic [31], [32]. The number
of parameters that has to be taken into account is too large and usually the degree
distribution, the girth and other variables from the code construction have differ-
ent effects on binary and non-binary codes. Despite this fact, both coding theory
and VLSI communities have attempted to compare these codes. Coding theory
papers usually have tried to obtain codes with the same length in terms of bits,
the same rate and the same degree distribution [31], [32], [8]. Simulations show
that NB-LDPC codes with short and medium lengths obtain better performance,
in terms of coding gain, than the binary ones. These simulations, performed
over AWGN channel with BPSK modulation, show a difference of 0.2dB-0.5dB
between binary and non-binary codes with GF(16) depending on different param-
eters. VLSI community comparisons of area, throughput and coding gain were
usually done implementing codes of the same length in terms of bits but with
different degree distributions. Differences in terms of coding gain over AWGN
channel and BPSK modulation show that non-binary codes have a coding gain
of 0.2dB-0.3dB with GF(32) compared to binary codes. Differences in terms of
area and throughput show that NB-LDPC decoders are about q times less effi-
cient than binary ones [24], [33]. This means that even reducing the number of
iterations of the NB-LDPC decoders to get the same performance of binary ones,
NB-LDPC decoders are less efficient than binary ones. However, comparisons of

39

Chapter 1. State of the art of non-binary low-density parity-check decoding algorithms

these codes just take into account length and rate of the code, but not degree
distribution or girth were considered. It is reasonable to think that maybe with a
more fair comparison non-binary codes with GF(32) should obtain larger coding
gain, as suggested in [32]. According to the previous mentioned conclusions we
could summarize that NB-LDPC codes obtain some extra coding gain, compared
to binary LDPC codes, but when the decoder is implemented, complexity is too
high. Generally speaking, this last statement can be considered true when AWGN
channel is considered and BPSK is the applied.

Recently some interesting studies have been done in the fields of optical com-
munications and magnetic storage systems. These studies demonstrate that in
certain scenarios, NB-LDPC are not just an efficient solution but maybe the only
useful alternative to reach certain goals of next generation communication sys-
tems. These works analyze the effect of combining different modulations with
NB-LDPC codes, such as: polarization-division-multiplexed quadrature phaseshift
keying (PDM-QPSK) modulation [34], 8-PSK [35], QAM [36], 8-QAM, differen-
tial QPSK [37], etc. These researches show that NB-LDPC codes provide higher
coding gain than the NCG 6 desired for next-generation optical communication
systems, and some of them also prove that as higher the order the modulation
is, higher the coding gain of NB-LDPC codes, compared to their binary coun-
terparts. One very illustrative example is included at [38], where authors report
coding gain between 0.29dB and 2.17dB for order of modulations between 16 and
64 compared to binary LDPC codes. Some of the previously reported experiments
were performed over AWGN channel, but other use real optical channel. The ones
based on real optical channels convert information of the optical fiber, after the
demodulation, to the digital domain and then decode offline. On the other hand,
the research in magnetic recording channels show that binary LDPC codes are not
as efficient as NB-LDPC when burst errors are analyzed. In [39] an improvement
of NB-LDPC compared to binary LDPC concatenated with Reed-Solomon codes
is reported. This work concludes that NB-LDPC over GF(16) will be integrated in
future hard disk drive systems, replacing binary LDPC and Reed-Solomon codes,
as NB-LDPC have a good performance with both AWGN and burst errors.

For the previously mentioned reasons, we can conclude that the reduction of the
complexity and the design of efficient implementations for NB-LDPC codes are
justified even if they cannot be equal to the binary ones. Non negligible improve-
ments in coding gain of more than 1dB with high order modulations and good
behavior against burst errors make NB-LDPC codes great candidates for some
scenarios in future optical communications and magnetic storage systems.

At this point, it can be advanced that BPSK modulation and AWGN channel are
applied in the simulations included in this manuscript, in order to make fair com-

6The difference of Eb/N0 (or SNR) between the input of the system bit error rate and the
output of the decoder is the defined as the NCG.

40

1.7 Conclusions

parisons with the existing hardware implementations. Simulations with magnetic
recording channels, optical fiber and different modulations schemes will constitute
future work. In either case, hardware improvements included in this document are
independent of the selected channel and modulation.

1.7 Conclusions

In this chapter we have studied the main NB-LDPC algorithms, looking from a
hardware point of view the ones which allow us to derive architectures with high
speed for high-rate codes. The obtained conclusions are the following:

1. Algorithms derived from QSPA as EMS and Min-max require high complex-
ity processing at the CNU due to the use of soft-decision information.

2. GF products can be avoided with methods such as the one proposed in the
improved Min-max algorithm.

3. Forward-backward, bubble check or trellis based algorithms apply recursive
methods that increase latency of the architectures, which is useful for wire-
less communication but not for other high-speed systems such as optical
communication ones.

4. T-EMS is an special trellis algorithm that can support a higher degree of
parallelism, however, its complexity is still high for codes over GF(16) and
above if high throughput is the target.

5. Symbol flipping algorithms have a low complexity CNU based on computing
just hard-decision information from the VNU.

6. The use of soft-decision allows EMS and Min-max to reach higher coding gain
than symbol-flipping algorithms which lose channel information because they
only compute hard-decision information at the CNU.

7. Symbol flipping algorithms reduce the wiring problems because exchange
scalar messages between CNU and VNU, not vectors of length q or nm as
EMS and Min-max algorithms.

41

Chapter 2

Contributions to non-binary
low-density parity-check decoding

In this chapter the reader will find the algorithmic and architectural contributions
of the thesis to the field of non-binary low-density parity-check decoding. There
are five main sections. The first one studies flooding schedule architectures for
modified versions of GBFDA as well as the effects of routing and quantification
for this schedule and proposes two architectures. The second section is focused
on serial schedule in particular the layered one. This section includes two differ-
ent high-speed architectures based on two enhanced versions of the serial GBFDA
schedule. The third section takes advantage of the conclusions derived from the
study of the state of the art and previous sections to propose a new multiple-
vote algorithm which outperforms the coding gain of symbol-flipping algorithms,
obtaining a performance close to EMS and Min-max with lower complexity. A de-
rived architecture for the multiple-vote algorithm is proposed in the same section.
The fourth section includes comparisons with the existing architectures found in
literature and the fifth section outlines the conclusions of the chapter.

2.1 Parallel schedule algorithms and architectures

In this section several algorithmic simplifications, studies of quantification and
finite precision techniques are proposed and analyzed with the aim of designing
an efficient partial-parallel architecture for a NB-LDPC decoder with flooding
(or parallel) schedule. Two are the main objectives: i) the reduction of storage
resources; and ii) the reduction of latency and routing congestion.

43

Chapter 2. Contributions to non-binary low-density parity-check decoding

2.1.1 Modified GBFDA

In GBFDA (Algorithm 7) tentative decoding requires storing, computing and sort-
ing the values of Wn, which is a matrix of size q×N . The implementation of these
tasks has a negative influence in the hardware architecture. In order to simplify
hardware implementations of the algorithm we propose a new tentative decoding,
maintaining the same CNU and VNU equations.

Algorithm 8 Modified tentative decoding algorithm

Input: Q
(j)
m,n

for n = 1 → N do
for m = 1 → M do
if hm,n ̸= 0 then

c̃
(j)
n = Q

(j)
m,n

SKIP
end if

end for
end for

Output: c̃

In Algorithm 8 the new tentative decoding is defined. It consists in the selection
of one hard decision Qm,n as decoded codeword symbol c̃n, instead of using Wn

information. This allows us to eliminate Wn and in consequence step A5 from
GBFDA, as it does not participate at the check node or variable node processing.
With this change in the tentative decoding, we approximate the hard-decision of
the extrinsic information, Wm,n, by the hard-decision of Wn. Not considering
the intrinsic information at Wm,n for the tentative decoding introduces some
differences in the performance for low number of iterations. These differences
among Wn and Wm,n are reduced with the number of iterations, due to the fact
that Wm,n converges to Wn. It is important to note that when the algorithm
converges, symbols calculated asGFmax(Wm,n) satisfy the parity check equations
and give a zero syndrome, which makes Qm,n not to flip. So, if Qm,n for all m
and n values satisfy the parity check equations it means that c̃n also satisfies the
equations and Qm,n = c̃n for any m ∈ M(n). We call GBFDA with the modified
tentative decoding Modified-GBFDA (M-GBFDA).

Fig. 2.1 shows FER performance of GBFDA and M-GBFDA with 10, 15, 20,
25 and 30 iterations, for a (837,723) NB-LDPC code 1 based on the quasi-cyclic

1Most of the examples, analysis and demonstrations of this manuscript will be performed
with this code, because it is the most extended in the VLSI community and hence it is necessary
to provide information according to it for fair comparisons with other authors. (837,723) and
(837,726) NB-LDPC codes are chosen for comparisons in hardware implementation because they
have large dc (dc = 26 and dc = 27 respectively), large dv (dv = 4) and a high Galois field order
(GF(32)). Taking into account that it is not desirable to use codes with dv bigger than 4 and dc

44

2.1 Parallel schedule algorithms and architectures

construction method proposed at [1]. This code has a parity check matrix H with
M = 124, N = 837, dc = 26, dv = 4 and hm,n ∈ GF(32). We can see in the
figure that M-GBFDA requires more iterations to achieve the same performance
as GBFDA when the algorithms have not reached the convergence 2. However, for
more than 30 iterations the FER performance is approximately the same for both
algorithms, because they have already converged. We can see how the difference
in coding gain is reduce from 0.07dB with 10 iterations to 0.007dB at 30 itera-
tions, which illustrates our previous comments about the influence of the modified
tentative decoding in the number of iterations.

To sum up, we can affirm that simplified tentative decoding increases the average
number of iterations if an early stopping criterion is included in the decoder.
However, it does not affect to the convergence, so in the worst case, the maximum
number of iterations for both GBFDA and M-GBFDA will be the same. As the
throughput of the decoder is limited by the maximum number of iterations in the
worst case, not the average number, this technique is interesting because: i) saves
storage resources of Wn; ii) reduces arithmetic resources required to compute
step A5; and ii) eliminates clock cycles for sorting Wn at step A6 of GBFDA. The
only drawback is that if an stopping criterion is implemented the average number
of iterations is increased. For implementations in next subsections, 20 iterations
without early stopping are considered as the performance degradation is negligible,
lower than 0.05dB.

2.1.2 Finite precision analysis for M-GBFDA: control of the
data growth

M-GBFDA and GBFDA require a method to avoid the data growth, because
storage resources involve between 73 and 81% of the total area in the derived
architectures as we will see in hardware sections of this manuscript. In addition,
if the number of bits increases, the critical path and the routing problems will
increase too. So, a method to avoid a significant increase of the number of bits,
without losing coding gain, is needed to make an efficient implementation. Next,
we include the data growth analysis for GBFDA, which was not included in the
original paper [27] and the one for the M-GBFDA.

CNU (steps A1 and A2 of Algorithm 7) involve GF operations, so there are no
problems of finite precision and data growth. However, the VNU (steps A3, A4
and A5) involve regular operations, and require a finite precision analysis. We

larger than 32, we can take the results for these codes as an upper bound. In other words, if one
architecture is efficient for these codes, it will be efficient for other high-rate codes with lower
dc and dv . In addition, it is not common to work with q > 64, due to the increase of channel
information required.

2We can consider that GBFDA has converged with 20 iterations for this code, because in-
creasing the number of iterations does not provide an important coding gain

45

Chapter 2. Contributions to non-binary low-density parity-check decoding

3.8 4 4.2 4.4 4.6 4.8 5
10

−4

10
−3

10
−2

10
−1

10
0

E
B
/N

0
 (dB)

F
E

R

GBFA 10 iterations
GBFA 15 iterations
GBFA 20 iterations
GBFA 25 iterations
GBFA 30 iterations
M−GBFA 10 iterations
M−GBFA 15 iterations
M−GBFA 20 iterations
M−GBFA 25 iterations

Figure 2.1: Effect of the modified tentative decoding with the number of iterations

define two values for the quantification model: r, which is the number of bits to
quantize F(Ln) in the initialization; and Qb, which is the number of bits needed
by Wn and Wm,n to grow in the execution of the iterative process. Note that the
quantification of Wn (steps A5 and A6) is not required for the M-GBFDA as Wn

is not involved.

First of all, we obtained by simulation the number of bits of F(Ln), r, for the
initialization. For example, the chosen value for a (837,723) NB-LDPC code was
r = 5, because with r higher than 5 there is no increase in coding gain and
with r = 4 there is a performance loss of 0.2dB. F(Ln) was initialized between a
maximum of 2r−1−1 and a minimum −2r−1, but we checked that all the negative
values can be fixed to zero without performance loss, being the negative values
the less reliable ones and the maximum positive value the hard-decision reliability.
This reduction of information is similar to the selection of the nm most reliable
symbols at EMS algorithm [12]. In this way, the number of bits required for the
quantification is reduced in one, because the bit of sign is not needed.

Once r was chosen, we fixed the number of bits Qb for Wn and Wm,n. Unless
stated otherwise, we consider the amplitude of the vote v = 1 for the rest of
the chapter. In that case, one value can be increased in each iteration at most in
dv−1 for Wm,n and in dv for Wn, as we explained at Example 1.5.1. So, for Itmax

iterations, the maximum value that we can find in Wn is 2r − 1+ dv × Itmax and
2r−1+(dv−1)×Itmax for Wm,n; thus the value Qb must be chosen consequently.

46

2.1 Parallel schedule algorithms and architectures

Following with the previous example for the (837,723) code, with Itmax = 20,
dv = 4 and r = 5, the maximum possible value is 111 for Wn and 91 for Wm,n,
so Qb = 7 bits are required to quantize Wn and Wm,n in the worst case if we
allow data to grow. With the objective of reducing Qb without introducing a
performance degradation, a technique to control the data growth must be applied.
The most common techniques are detailed below.

• Saturation: Saturation is a common solution to avoid the growth of the
data in signal processing. When saturation is applied to the GBFDA or the
M-GBFDA, the initialization is done with r bits, and we only let data grow
up to 2Qb − 1, being r < Qb < r + log2(dr × Itmax). If Qb ≤ r the distances
between the reliability values of Wm,n are modified at the first iteration
because no data growth is allowed. This causes a performance degradation.
In fact, what is really happening when no data growth is allowed is that
the most reliable value, which is saturated, is approaching to the rest of the
voted values and, in some cases, unreliable symbols can even replace it and
make the algorithm diverge. For this reason, saturation with Qb = r causes
an early floor degradation, which makes impractical the algorithm. On the
other hand, the growth of one bit (Qb = r + 1) has a great impact in the
architecture: it increases the area in 15% and reduces the throughput at
least 14%, as explained in next sections.

• Clipping technique: A method called clipping was proposed in [40] to
control the data growth. With this technique, r bits are used for the initial-
ization and Qb = r bits are applied in the iterative process. The clipping
technique is applied as follows to GBFDA (or M-GBFDA): when the biggest
reliability of Wm,n or Wn is equal to 2Qb − 1 and receives a vote, the voted
value is kept as 2Qb −1 and the rest of the reliability values in Wm,n or Wn

are subtracted by a vote. After the subtraction, negative values of Wm,n or
Wn are fixed to zero. With this method, distances between Wm,n or Wn

values of the most reliable symbols are kept in the same way as we let data
grow, ensuring the convergence of the algorithm. Applying this technique
Wm,n and Wn have a minimum value of zero and a maximum of 2Qb − 1.
The main disadvantage of this method is that extra complexity is required.
Supposing that only one overflow is detected in Wm,n, q − 1 subtractions
to apply the clipping technique and q − 1 comparisons with zero to fix the
negative values to zero must be applied. These extra operations increase
complexity and have a great impact on the hardware designs because de-
pending on the degree of parallelism more area or clock cycles are needed to
implement clipping. Table 2.1 shows the operations needed to apply clipping
to M-GBFDA in the worst case. The worst case is considered as the one in
which all the nonzero elements of the matrix overflow their Wm,n values
and, hence, the clipping technique must be applied for all of them.

47

Chapter 2. Contributions to non-binary low-density parity-check decoding

Table 2.1: Operations and complexity of the techniques for control of data growth in
one iteration of M-GBFDA (worst case)

Method Comparisons
with the

local
maximum

Comparisons
with 2Qb

Comparisons
with zero

Subtractions

Clipping 0 dc ×M (q−1)×dc×M (q − 1)× dc ×M
Blocking
(r = Qb)

0 dc ×M 0 0

Blocking
(r = Qb − 1)

dc ×M dc ×M 0 0

In the next subsection, a sub-optimal solution to data growth problem is proposed,
trying to reduce the complexity of the control techniques to derive more efficient
architectures. This technique is called blocking.

2.1.3 Blocking technique

Blocking technique applied to M-GBFDA is included at Algorithm 9. This algo-
rithm initializes F(Ln) with r bits, setting its maximum value to 2r − 1 and its
minimum value to 0. Wm,n is quantized with Qb bits, so we let the data grow
from 2r − 1 to 2Qb − 1. The set B contains n and m indexes. In the initialization,
the set is empty and, after that, it saves the indexes of the values in Wm,n that
are blocked at the current iteration and also the indexes of the ones blocked at
the previous iterations. To perform or not step A3 of Algorithm 9, the blocking
technique makes comparisons with the elements at Wm,n that receive a vote. An
overflow is detected in Wm,n if the result of adding the votes to a reliability value
of Wm,n is bigger than 2Qb − 1. In this case, the proposed technique blocks all
the q reliability values in Wm,n. Blocking Wm,n means that until the iterative
process finishes no more updates are allowed for this node. Note that distances
in Wm,n are kept when an overflow is detected because the corresponding q relia-
bility values are blocked. The rest of nodes different from Wm,n follow the same
steps as usual if no overflows are detected.

Next we explain how the complete M-GBFDA with blocking works. Steps A1 and
A2 are exactly the same as the ones in Algorithm 7. Step A3 detects the overflows
produced by adding the votes to the reliability values Wm,n. Comparisons with
2Qb are made to decide if the blocking is applied. When an overflow is detected
for a node with indexes n and m, Wm,n is not updated anymore, it is blocked,
and Qm,n is updated to Rm,n (step A4), as its maximum reliability value in Wm,n

is the one that caused the overflow. For the iteration j, the indexes n and m of
each Wm,n blocked during this iteration are included in B(j), and also the indexes
of the nodes blocked at the previous iterations, named as B(j−1) (step A3). If no
overflow is detected at the jth iteration or at the previous iterations, for a given

48

2.1 Parallel schedule algorithms and architectures

Algorithm 9 M-GBFDA with blocking technique

Input: Q
(0)
m,n = zn, Wm,n

(0) = F(Ln), B(0) = ⊘
Iterative process
for j = 1 → Itmax do
Check node processing

A1 : sm =
∑

n∈N(m) hm,nQ
(j−1)
m,n

A2 : R
(j)
m,n = h−1

m,nsm −Q
(j−1)
m,n

Variable node processing

if W
(j−1)
m,n +

∑
m′∈M(n)\m δ(R

(j)
m′n, v) = 2Qb then

A3 : B(j) ∈ {B(j−1), (m,n)}
A4 : Q

(j)
m,n = R

(j)
m,n

end if
A5 : Wm,n

(j) = Wm,n
(j−1) +

∑
m′∈M(n)\m δ(R

(j)
m′,n, v), m,n /∈ B(j)

A6 : Q
(j)
m,n = GFmax(Wm,n

(j)), m,n /∈ B(j)

Tentatively decoding
A7 : Algorithm 8
if c̃×HT = 0 then

SKIP
end if

end for
Output: c̃

49

Chapter 2. Contributions to non-binary low-density parity-check decoding

n and a given m, Wm,n is updated applying step A5. As Wm,n can grow from
2r − 1 to 2Qb − 1, Qm,n is also updated for the non-blocked indexes in step A6.
Note that step A6 is not necessary when r = Qb because the data growth is not
allowed in Wm,n. Step A7 implements the modified tentative decoding included
in Algorithm 8.

In Table 2.1 the complexity of M-GBFDA with the blocking technique for two
cases can be seen. With r = Qb the blocking technique avoids (q − 1) × dc ×M
comparisons with zero and (q − 1)× dc ×M subtractions however, the limitation
of no letting most reliable information grow causes an early error floor that makes
this case impractical for some applications. On the other hand, blocking technique
with r = Qb − 1 also saves (q − 1)× dc ×M comparisons with zero and (q − 1)×
dc × M subtractions, but requires dc × M comparisons with the local maximum
to perform step A6. This case has lower complexity than the clipping technique,
however, in some cases the blocking technique prevents the updating of nodes
that, even reaching the maximum value of quantization, have not converged yet.
In other words, the blocking technique does not allow some symbols to flip if their
reliability values have reached the maximum, this makes the algorithm be trapped
due to erroneous decisions which cannot be corrected by flipping. This behavior
is less common when r = Qb − 1 than with r = Qb, because in the first case the
algorithm has run more iterations unblocked, so blocking decisions are taken in
most of the cases near the convergence region. This is why for r = Qb − 1 the
blocking algorithm becomes trapped with less frequency than with r = Qb, and as
consequence error floor appears for the first case in a lower region. As the blocking
technique introduces this degradation in the error correction, we consider it a sub-
optimal solution to the data growth problem. Despite this problems, blocking
technique can be applied in different scenarios and achieve high speed in hardware
implementation architectures.

2.1.4 Frame error rate performance comparison between
NB-LDPC decoders

Fig. 2.2 compares the FER and BER performance of Min-max [13], MD [26],
GBFDA with clipping [27] and M-GBFDA with clipping and blocking for the
(837,723) NB-LDPC code. We used a BPSK modulation in an AWGN channel
and encoded a different random message m with each transmitted package. A
complete finite precision analysis was made to fix the values of Qb and r. Our
simulations showed that Qb must be set to 5 in GBFDA and M-GBFDA to avoid
performance loss in the waterfall region with respect to the non-quantized algo-
rithms. In addition, for r < 4 there is an early error floor (above a FER of 10−3)
that makes the algorithm impractical for most communication systems. The spe-
cial case of Qb = r = 5, which reduces the complexity of the algorithm and the
decoder architecture, generates an error floor at a FER of 2×10−4 (BER=6×10−7).
To shift this error floor to a FER of 2 × 10−5 (BER=7 × 10−8), Qb must be set

50

2.1 Parallel schedule algorithms and architectures

to 5 and r to 4. As we explained in the previous section, this error floor is due to
the fact that we cannot modify the symbols in later iterations after being blocked,
unlike the original GBFDA, which is able to replace Qm,n symbols in every it-
eration. Anyway, there are many applications where our decoder can be used as
an standalone FEC decoder, such as wireless communications, where the BER
constraint is achieved. Additionally, the error floor of our proposal and the wa-
terfall coding gain accomplish the constraints for future optical communications
systems. In [41], authors limit the error floor introduced by the NB-LDPC decoder
in a optical communication system to BER 10−7, because this degradation can be
corrected by means of a hard decision FEC (such as a Reed-Solomon decoder),
which is placed after the NB-LDPC decoder. Our proposal has a lower error floor
than the constraint (error floor at BER=7 × 10−8). On the other hand, extrap-
olating the slope of the BER curve as in [41], our LDPC decoder meets the net
coding gain (NCG) requirement of 10.8dB at BER 10−15.

Other important issue to remark, which was mentioned in previous section, is that
GBFDA cannot achieve the same performance as Min-max when both algorithms
have converged (15 iterations for Min-max and 20 for GBFDA), because GBFDA
works only with hard-decision information and Min-max uses soft-information (all
the channel information available). Min-max achieves a coding gain of 0.6dB
compared to GBFDA after the convergence. However, the complexity of GBFDA
is much lower, so to do a fair comparison we consider Min-max with 4 iterations,
which gets a coding gain similar to GBFDA. M-GBFDA with clipping and Qb = 5
obtains a coding gain of 0.15 dB compared to Min-max with 4 iterations and 5
bits. M-GBFDA with blocking technique and Qb = 5 and r = 4 has only 0.07 dB
of performance loss, compared to Min-max with 4 iterations and the previously
mentioned error floor (BER 7× 10−8).

The MD algorithm has lower complexity than M-GBFDA and provides good re-
sults for low-rate codes with high dv, usually dc = dv. However, for high-rate
codes, such as the (837,723) NB-LDPC code, it has an early error floor (FER of
7 × 10−2) as it is said in [42] and shown in Fig. 2.2. This turns the algorithm
impractical for the applications that require such codes.

2.1.5 Partial parallel architectures for the flooding schedule

In this subsection two different kinds of partial parallel architectures 3 for M-
GBFDA with flooding (or parallel) schedule are presented. First, message passing
architectures are described. These designs separate hardware units into CNU and
VNU processors following the equations of the algorithms. However, we will show
that this division of hardware leads to routing congestion, limiting the maximum

3Fully parallel and serial architectures have not been considered because the first ones require
an amount of area that is not affordable with the existing technology and the second ones have
an extremely large latency.

51

Chapter 2. Contributions to non-binary low-density parity-check decoding

3 3.5 4 4.5 5 5.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

F
E

R
/B

E
R

FER Min−max algorithm, Q
b
=5, It

max
=15

FER Min−max algorithm, Q
b
=5, It

max
=4

FER M−GBFDA with saturation, Q
b
=6, r=5, It

max
=20

FER M−GBFDA with clipping, Q
b
=5, It

max
=20

FER GBFDA with clipping, Q
b
=5, It

max
=20

FER M−GBFDA with blocking, Q
b
=5, r=4, It

max
=20

FER MD, Q
b
=5, It

max
=20

BER Min−max algorithm, Q
b
=5, It

max
=4

BER M−GBFDA with clipping, Q
b
=5, It

max
=20

BER GBFDA with clipping, Q
b
=5, It

max
=20

BER M−GBFDA with blocking, Q
b
=5, r=4, It

max
=20

Figure 2.2: FER and BER performance of Min-max algorithm, GBFDA, M-GBFDA
and MD algorithm for a (837,723) NB-LDPC code over GF(32) with a BPSK modulation
in an AWGN channel.

52

2.1 Parallel schedule algorithms and architectures

frequency achievable because of the excess of wiring between processors (or hard-
ware units). The second approach is a broadcasting architecture in which different
processors separate the implemented equation not in CNU or VNU, but in an ef-
ficient way that reduces the amount of information exchanged between hardware
units, reducing the routing problems.

Message passing architecture for M-GBFDA with and without clipping

This architecture is divided into two main parts: the CNU unit and the VNU units.
There are dc × dv VNU units and one CNU unit. Three different architectures for
the VNU units are exposed: one based on clipping technique, one to implement the
blocking technique with r = Qb and another to implement the blocking technique
with r = Qb− 1. With the exception of the VNU unit, the rest of the architecture
is exactly the same for all data growth control techniques.

ROM

Hm,n0

x
Qm,n0

x x
Qm,n(dc-2)

x
Qm,n(dc-1)

+ +

+

x x x x

+

sm

Rm,n0

ROM

Hm,n1

ROM

Hm,n(dc-2)

ROM

Hm,n(dc-1)

Qm,n1

ROM

H-1m,n0

ROM

H-1m,n1

ROM

H-1m,n(dc-2)

ROM

H-1m,n(dc-1)

Rm,n1 Rm,n(dc-2) Rm,n(dc-1)

Qm,n0 Qm,n1 Qm,n(dc-2)
Qm,n(dc-1)

+ + +

Figure 2.3: CNU unit for M-GBFDA message passing architecture.

1. CNU unit: As commented in previous sections CNU only requires opera-
tions over GF(q), so all the operators included at the CNU unit, Fig. 2.3,
are over GF. The proposed implementation for equation A1, which calculates
the syndrome sm for each check node, requires dc GF multipliers and a tree
of dc − 1 GF adders, so all the M syndromes can be computed in M clock
cycles. The inputs of the dc GF multipliers are the dc nonzero coefficients
of the matrix H for a check node m, and the Qm,n hard decision values. So,
dc different ROMs of length M × p are needed for storing the coefficients of

53

Chapter 2. Contributions to non-binary low-density parity-check decoding

H. The results of the dc multipliers are added with the tree of GF adders,
giving as a result the syndrome sm, which is stored in a register. For step
A2, dc GF multipliers make the product of sm by the H−1 coefficients. The
outputs of these multipliers are added to the Qm,n using dc GF adders. As a
result, dc Rm,n values for a check node m are obtained in parallel. These dc
Rm,n values are connected to the inputs of the VNU units. In addition, 2dc
pipeline registers of p bits are needed at the output of the GF multipliers
to reduce the critical path of the architecture. These registers are drawn as
dashed lines in Fig. 2.3.

2. VNU unit:

• Common aspects for clipping and blocking: The VNU unit does
not involve GF(q) operations, it works with regular arithmetic. The
architecture of this block is introduced in Fig.2.4 for clipping and in
Fig.2.6 for blocking. There are dc × dv VNU units, and each VNU
unit computes Qm,n for M/dv different indexes (m,n). For initializing
the algorithm, the input F(Ln) is selected with the multiplexor M1
and, then, the RAM is filled with the corresponding reliability values.
The RAM stores the quantized elements (Qb bits) of Wm,n

4 for M/dv
check nodes connected, that is, M/dv × q reliability values of Qb bits.
The M/dv ×⌈log2(M/dv)⌉ ROM output indicates which check node we
are working with (one of the M/dv check nodes that are computed in
a VNU cell). During the initialization the multiplexor M0 selects the
input Add-low, which is connected to a p-bit counter, to initialize the
elements of Wm,n stored in the RAM. So, the most significant bits of
the address word select the check node which we work with and the less
significant bits select the GF element whose reliability is processed.

• Clipping technique (Fig. 2.4 and 2.5): To implement step A3 of
M-GBFDA the input Rm,n is selected with M0. The Rm,n signal, con-
catenated with the output of the ROM, is used as address of the RAM
to select the reliability value in Wm,n that is going to be increased by
‘1’ (remember that the amplitude of the vote is v = 1). Once the addi-
tion is calculated (selecting ‘1’ as an input of the adder/subtractor by
using M2 and M3), the new Wm,n(Rm,n) is stored again in the RAM.
The AND gate compares the output of the adder with the maximum
value, 2Qb − 1, to generate a clipping signal, which indicates whether
clipping has to be applied or not. This signal is stored in a (M/dv)-bit
register, where each bit corresponds to one of the M/dv check nodes
that are stored and computed in a single VNU cell. So, if one of the
q reliability values of Wm,n exceeds the maximum value 2Qb − 1, the
bit corresponding to the m check node will be set to ‘1’ in the (M/dv)-

4Remember that Wm,n is a matrix of size M × dc which elements are vectors of length q (q
different reliability values)

54

2.1 Parallel schedule algorithms and architectures

R
A

M
(M

/d
v

 x
 q

)x
Q

b

QbDATA

ADDRESS

Qb

F(Ln)

Start

+-

M1

M
3M

2

D0

D1

-

Qb

M/dv
clipping register

1

D2

Rm,n add_low

M0

Concat

p

ROM

M/dvx

log2(M/dv)

c
lip

p
in

g

c
lip

p
in

g

log2(M/dv)+p

'0'
'1'

dv-1

p

Qm,n

Wm,n

Figure 2.4: VNU basic cell for M-GBFDA message passing architecture with clipping.

VNU

CELL

Rm,n
Qm,n

F(Ln)

add_low

D

D

D

D

.......

Qm,n

cn
~

D2

M/dv registers

Figure 2.5: VNU unit for M-GBFDA message passing architecture with clipping.

55

Chapter 2. Contributions to non-binary low-density parity-check decoding

bit register, indicating that clipping must be applied to the rest of the
q − 1 reliability values. It was shown by simulation that when clip-
ping is applied the effect of subtracting the votes that has received the
maximum or subtracting the constant value dv − 1 5 leads to a similar
performance, as the q− 1 symbols different from the most reliable keep
their distances. The subtraction is carried during the next step A4.
In order to compute equation A4 and apply the clipping technique, a
sorting process is followed. To process all the reliability values stored
in the RAM, a counter is used as address (Add-low in Fig. 2.4). If the
clipping signal of the corresponding check node is set to ‘1’ (clipping
activated), the output of the RAM is subtracted by dv − 1 votes (the
value dv − 1 is selected as input of the adder/subtracter using M2 and
M3). In addition, the value with or without clipping is stored in D0
to be compared with the value of D1. The comparison is performed
with a subtracter. If the value in D0 is bigger than D1, the enable of
D1 is activated to store D0 in D1, otherwise, the value of D1 remains
the same. At the same time, the value of the address (which is the
hard-decision symbol of Wm,n) is stored in D2. So, in parallel, Qm,n

is found (step A4) and the clipping technique is applied.

The VNU cell computes M/dv rows, so we need M/dv registers of p
bits to store the Qm,n elements of each row. In Fig.2.5, we include the
registers and the multiplexors required to store the GF symbols of step
A4 for M/dv check nodes. Note that with the registers of Fig.2.5 we
do not need the register D2 of Fig.2.4, so the enable signal and Qm,n

can directly pass to the registers of Fig.2.5. The outputs Qm,n will be
stored in the shift register following the order of check nodes from the
matrix H. Each cycle after completing the step A4, the shift register
will shift and provide a different Qm,n to the CNU unit to make the
computation of A1 and A2. According to Algorithm 8, the output of
some registers of the shift register D2 can be taken as c̃n. We only
have to hard-wire N registers D2 as outputs of the decoder, among the
dc × dv VNU units.

• Blocking technique (Fig.2.6, 2.7 and 2.8): To implement condition
of step A3 and step A5 of Algorithm 9, the input Rm,n is selected with
the multiplexor M0. The Rm,n signal, concatenated with the output of
the ROM, is used as address of the RAM to select the reliability value
of Wm,n which is going to be increased by ‘1’. Additionally, the AND
gate checks if the selected Wm,n associated to the Rm,n is equal to
the maximum, 2Qb − 1. In this case, the output of the gate is ‘1’, the
write enable of the RAM memory is disabled and the blocking register
is updated. The blocking register is a M/dv-length register, where each

5This value is chosen because it is the maximum number of votes that Wm,n can receive in
one iteration. See Example 1.5.1

56

2.1 Parallel schedule algorithms and architectures

R
A

M
(M

/d
v

 x
 q

)x
Q

b

QbDATA

ADDRESS

Qb

F(Ln)

Start

 +

M1

Qb

Extra

Hardware

Rm,nadd_low

M0

Concat

p

ROM

M/dvx

log2(M/dv)

log2(M/dv)+p

Wm,n

M/dv

blocking register

Rm,n

Max 1

Max 2A

B

1

M
2

p

w
irte

 e
n
a

b
le

check node index

check node index

M/dv1

Figure 2.6: VNU basic cell for M-GBFDA message passing architecture with blocking.

VNU

CELL

Rm,n

Rm,n

F(Ln)

add_low

D

D

D

D

.......

Qm,n

cn
~

zn

Max 1

Max 2

M/dv registers

Figure 2.7: VNU unit for M-GBFDA message passing architecture with blocking.

57

Chapter 2. Contributions to non-binary low-density parity-check decoding

=

D

D

D

D

.......
M/dv registers

with max(Wm,n)

A

B

c
h
e

c
k
 n

o
d

e
 in

d
e

x

Qb

Max 2

Figure 2.8: Extra hardware to compute blocking technique with r = Qb for M-GBFDA.

58

2.1 Parallel schedule algorithms and architectures

bit represents a different check node of the ones processed by this VNU
cell. If the bit of a given m is activated, the q reliability values of the
corresponding Wm,n must be blocked, so the write enable of the RAM
memory for the addresses of these elements is disabled until the last
iteration. This is done by means of the M/dv to 1 multiplexor, which
selects the bit of the blocking register corresponding to the check node
we are working with. If this bit is equal to ‘1’, it means that the current
row was blocked in previous iterations, so the write enable of the RAM
is disabled. As it has been mentioned above, the write enable is disabled
when Wm,n is blocked in the current iteration, this is done with the OR
gate. To ensure that Wm,n only contains the extrinsic information for
a given m (condition of step A3 and step A5), the write enable is also
disabled when we detect that the intrinsic information is at the output
of the RAM. On the other hand, if the output of the multiplexor is equal
to ‘0’, and the output of the AND gate is ‘0’, it means that the current
row has not been blocked yet, so the voted value of Wm,n (increased
by ‘1’) is saved again in the RAM. In this way, step A5 is completed.
Note that the implementation of the clipping technique needs at least
M/dv × q more clock cycles per iteration, because all the elements in
the RAM have to be subtracted, so at the end, M/dv × q× Itmax extra
clock cycles will be needed compared to the blocking technique.

On the other hand, the difference between blocking with r = Qb and
r = Qb−1 is how Qm,n is updated. With r = Qb, Qm,n is only updated
with Rm,n if Wm,n(Rm,n) read from the RAM is equal to the maximum
2Qb − 1. When this happens, the output of the AND gate (Max signal
1 in Fig.2.6) is equal to ‘1’. So, Max signal 1 enables the update of the
registers that store Qm,n (Fig.2.7). With r = Qb − 1, Qm,n is updated
with Rm,n if Wm,n(Rm,n) read from the RAM is equal to the maximum
2Qb − 1, step A4 of Algorithm 9. Additionally, if the current Wm,n is
not blocked, Qm,n is updated with the GF symbol corresponding to the
maximum value of Wm,n. To implement this, some extra hardware is
added: the box Extra Hardware in Fig.2.6, is detailed in Fig.2.8. There
are M/dv registers which store the maximum values of Wm,n obtained
at the previous iterations. The register corresponding to the current
check node is selected with the M/dv to 1 multiplexer of Qb bits. The
output of the RAM (signal B in Fig.2.6 and 2.8) for the current check
node is compared to the local maximum stored in the corresponding
register. If the output of the RAM (signal B) is equal to the output of
the multiplexor, the output of the adder (signal A in Fig.2.6 and 2.8) is
stored as the new maximum in the corresponding register and a signal
(Max signal 2) is activated to indicate that Qm,n must be updated
with Rm,n. So, Max signal 1 and Max signal 2 are used as control of
the update of the registers that store Qm,n (Fig.2.8).

59

Chapter 2. Contributions to non-binary low-density parity-check decoding

Fig.2.7 shows the VNU unit, which includes the VNU cell of Fig.2.6
and the M/dv registers of p bits required to store the Qm,n elements
corresponding to the M/dv check nodes computed by a VNU unit. Ad-
ditionally, a multiplexer is required. As said before, Max signal 1 and
Max signal 2 control the update of Qm,n for both blocking with r = Qb

and r = Qb − 1. During the initialization process, the multiplexor of
Fig.2.7 selects the zn input. After the initialization, if the maximum
condition (Max signal 1 and Max signal 2) is detected, Rm,n is selected.
In other cases, the shift register configuration is chosen with the multi-
plexor, ensuring that the values of the registers are not updated. As for
clipping, the outputs Qm,n will be stored in the shift register following
the order of the matrix H and N outputs will be hard wired as c̃n.

3. Complete architecture: For both clipping and blocking techniques, the
complete architecture is included in Fig.2.9. It requires one CNU unit and
dc × dv VNU units. With dc multiplexors the correct Qm,n from the VNU
units are selected as inputs of the CNU unit.

For M-GBFDA with clipping technique the architecture first initializes the
RAMs and computes Qm,n values of the initialization applying the sorting
process, so q × (M/dv) + 3 clock cycles are spent in this task. After initial-
ization, steps A1 and A2 of the CNU are computed, that takes M + 1 clock
cycles. During these clock cycles, step A3 can be also computed by the VNU
units adding one extra clock cycle. After computing steps A1, A2 and A3,
step A4 and the clipping are applied. As dc × dv VNU units are working at
the same time, only q × (M/dv) + 3 clock cycles are needed. So, the total
latency of the decoder is (M +2+ q× (M/dv)+3)× Itmax+ q× (M/dv)+3)
clock cycles.

For M-GBFDA with blocking technique the architecture first initializes the
RAMs with the Wm,n = F(Ln) values and the registers with the Qm,n = zn
values, so q× (M/dv) clock cycles are spent in this task. After initialization
and 4 clock cycles of latency, all the VNU units and the CNU unit compute
all the steps of Algorithm 9 simultaneously. Completing one iteration takes
M clock cycles. So, the total latency of the decoder is (M × Itmax + q ×
(M/dv) + 4) clock cycles.

Architecture for M-GBFDA with blocking can also be used with saturation.
Only the blocking register, the M/dv to 1 multiplexor and the AND gate
from Fig.2.6 must be eliminated. The extra hardware in Fig.2.8 is required
to look for the maximum, which can vary from 2r − 1 to 2Qb − 1.

60

2.1 Parallel schedule algorithms and architectures

VNU

UNIT

CNU

UNIT

VNU

UNIT

VNU

UNIT

VNU

UNIT

VNU

UNIT

VNU

UNIT

VNU

UNIT

VNU

UNIT

VNU

UNIT

VNU

UNIT

VNU

UNIT

VNU

UNIT

....

D D D

dc

dv

Rm,n Qm,n

....

....

....

Figure 2.9: Complete message passing architecture for M-GBFDA.

Area and timing complexity for the (837,723) NB-LDPC code

Next, hardware results of the previous architectures for a (837,723) NB-LDPC
code are detailed. First, analytic methods of area for M-GBFDA with saturation,
clipping, blocking with r = Qb = 5 and r = Qb − 1 = 4 are included. Next,
comparisons between synthesis and post place and route results are performed.

• Analytic methods: A theoretical analysis to compute area-complexity of
the decoders in terms of XOR gates is applied. This method was proposed
at [17] and gives a quite accurate approximation of the area required by the
architectures. To apply the method first the number of storage, arithmetic
and control resources must be estimated, next the amount of XOR gates
per resource is required. This theoretical method emulates the behavior of
ASIC synthesis tools. Applying this method we study: i) the advantage of
using M-GBFDA instead of GBFDA, ii) the efficiency of the clipping and
the blocking technique with a hardware perspective, and iii) a comparison
between the blocking technique and saturation.

If GBFDA is implemented with our proposed architecture and no alternative
tentative decoding, such as the one for M-GBFDA is used, the area require-
ments increase considerably. As was said in Section 2.1.1, we need to store
Wn if GBFDA is applied, so N × q × Qb = 837 × 31 × 5 = 129735 bits of

61

Chapter 2. Contributions to non-binary low-density parity-check decoding

RAM are required, which is equivalent to an area of 129735 XOR gates. In
addition, for step A5 and the sorting process of A6 at least dc adders are
required too, which is equivalent to 26×15 = 390 XOR gates and 5N = 4185
registers are needed for storing the results of the sorting process c̃n, so an
increase of 4185 × 3 = 12555 XOR gates is produced by this fact. To sum
up, at least an increase of equivalent area of 129735+ 390+ 12555 = 142680
XOR gates, which is a 142680/639246× 100 = 22%6 of the total area of the
decoder, is avoided if M-GBFDA is implemented instead GBFDA. So, it can
be affirmed that the modified tentative decoding proposed at Algorithm 9,
with a cost of less than 0.05dB of performance loss and without penalization
in throughput, is an efficient method to reduce area.

In Table 2.2 resources for the M-GBFDA decoder with clipping are included.
Its total area in terms of XOR gates is 639246 XOR gates. In addition,
latency for the decoder with clipping is (M +2+ q× (M/dv)+ 3)× Itmax +
q×(M/dv)+3) = (126+32×31+3)20+32×31+3 = 23415 clock cycles. With
regard to the architectures with blocking, for the decoder with r = Qb (Table
2.3) an equivalent area of 633162 XOR gates is necessary; for the decoder
with r = Qb − 1 (Table 2.4) the area is 699618 XOR gates. Latency in both
blocking cases is (M × Itmax + q× (M/dv)+ 4) = (124× 20+32× 31+4) =
3476 clock cycles. If we compare the three architectures we can see that
between the one based on clipping and the one with blocking and r = Qb

area is almost the same while the number of clock cycles is 23415/3476 = 6.7
times smaller for the blocking architectures. This fact, makes the blocking
architecture 6.7 times faster and hence, 6.7 times more efficient. However,
the reader should remember that M-GBFDA with r = Qb introduces an
early error floor, which is not useful for all kind of communication systems.
On the other hand, if we compare the architecture with clipping with the
one based on blocking and r = Qb − 1, we can see that there is an increase
of (699618− 639246)/639246× 100 = 9% in area. Nevertheless, in this case
blocking is still more efficient because the reduction of latency is bigger than
the increase of area. In this case the error floor is lower enough to consider the
decoder with blocking and r = Qb − 1 as an interesting high-speed solution.

Previously, we explained that the architecture for M-GBFDA with the block-
ing technique can be applied for the saturation method if we just eliminate
the resources needed to implement blocking. However, at least Qb = 6
and r = 5 bits are needed for a sub-optimal implementation (with error
floor), and Qb = 7 and r = 5 for full precision. In such cases, although the
latency remains the same, (803722 − 699618)/699618 × 100 = 14.8% and
(920618 − 699618)/699618 × 100 = 31.6% more area than the one of the
blocking architecture with r = Qb decoder is required. The main advantage

6Compared to the clipping architecture. For details see Table 2.2.

62

2.1 Parallel schedule algorithms and architectures

of saturation is that has coding gain in the waterfall region of 0.1dB and
0.18dB, with Qb = 6 and Qb = 87, respectively.

• Synthesis and place and route results: The decoders proposed in this
manuscript were coded in VHDL. Synthesis and place and route of the cores
were completed using the standard Cadence tools with a 90nm CMOS tech-
nology with nine layers and with a 40nm Virtex VI FPGA device. Table 2.7
shows the implementation results for M-GBFDA message passing architec-
tures with clipping and blocking (r = Qb and r = Qb − 1).

First, the implementation results for the 90nm CMOS technology are ana-
lyzed. Synthesis results show that the message passing architecture for the
clipping technique has a minimum clock period of 2ns, so the throughput
is (500MHz × 837 × 5bits)/23415 = 89Mbps and a core area of 12.7mm2.
However, after place and route the core area is 13mm2 with a logic density
of 79% and a frequency of 255MHz, providing a throughput of (255MHz ×
837 × 5bits)/3476 = 45Mbps, which is 51% less throughput than the one
given by the synthesis process. The same happens to the message passing
architecture for blocking with r = Q and r = Qb − 1, the throughput ob-
tained after synthesis (859Mbps and 633Mbps, respectively) doubles the one
obtained after place and route (414Mbps and 316Mbps). So, it is important
to remark that synthesis results are not valid for this kind of decoders in
which around the 52% of the delay is due to the routing, not to the logic.
On the other hand, according to the gate-account reports, the total amount
of memory resources (507330 memory bits) and the ratio logic/memory (ar-
round 29%) are close to the analytic results, which validates this kind of
approximations for area estimations.

Next, the implementation results for a 40nm Virtex VI FPGA device are
analyzed. The proposed message passing architecture for M-GBFDA with
blocking and r = Qb requires 2904 slices and achieves a frequency of 227MHz,
which is equivalent to a throughput of (227MHz × 837 × 5bits)/ (3476)=
273Mbps. On the other hand, the proposed message passing architecture
for M-GBFDA with blocking and r = Qb − 1 has a cost of 7694 slices and
achieves a frequency of 200MHz, so a throughput of (200MHz× 837× 5bits)/
(3475)=240Mbps is reached. The difference in terms of slices between the
decoder with blocking and r = Qb and r = Qb − 1 is about 62%. This
could seem incoherent compared to the estimated and ASIC results in which
the difference of area is 4%. However, if we look carefully at Table 2.7
(slices, RAM components, registers and shift registers) we can check that
the results for FPGA satisfy the estimations. As said in Table 2.3 and 2.4,
the memory resources for both decoders must be the same, and this is what
happens in the FPGA implementations, where the required RAMB18E1 and

7Remember that saturation with full precision, Qb = 8, has the same performance as clipping,
Qb = 5.

63

Chapter 2. Contributions to non-binary low-density parity-check decoding

RAMB36E1 components are the same. In Table 2.3 and 2.4 the number of
GF adders, multipliers and 4 to 1 multiplexors is the same, however, the
number of adders is 3 times higher for the decoder with r = Qb−1 and there
are 16 times more 2 to 1 multiplexors, so the increase of 3.4 times more
LUTs in the FPGA decoder implementation with blocking and r = Qb − 1
is justified. Moreover, if we compute the number of registers of the FPGA
implementations taking into account the shift registers, with 31 registers each
one, we obtain 4758 + (520 × 31) = 20858 registers for the decoder based
on blocking with r = Qb and 22121 + (520 × 31) = 38241 registers for the
decoder with r = Qb−1, what satisfies the estimation of 19739 registers and
35859 registers, respectively. This reasoning can be extended to the clipping
architecture. To sum up, the FPGA implementation results are coherent
with the estimated results, because do not only the number of slices has to
be taken into account but also the number of memories and registers, which
is a high percentage of the total area. Finally, it is important to remark that
the limited frequency in FPGA devices is not only due to the routing but
mainly to the limitations of this king of devices which have predefined wiring
between cell and do not allow as much flexibility as ASIC.

We can conclude that throughput of message passing architectures for M-GBFDA
with clipping or blocking is limited by routing congestion. This problem cannot
be appreciate with synthesis tools for ASIC, as they do not include wiring models.
On the other hand, blocking technique achieves at least 5.4 times higher speed
on an FPGA device than the clipping one and at least 7 times on ASIC, with a
similar area. The reasonably good performance of the blocking technique makes
this solution more efficient than the clipping one, if high-speed architecture is
looked for.

Half-broadcasting architecture for M-GBFDA with blocking

A broadcasting technique was proposed in [22] for binary LDPC architectures to
reduce routing problems. These problems are due to the excessive wiring between
CNU units and VNU units, specially in fully-parallel and partial parallel archi-
tectures. As algorithms based on GBFDA just exchange scalar messages between
CNU units and VNU units, such as in the binary case, we propose to apply the
same methods to try to mitigate the problem in NB-LDPC architectures. As it
was briefly discussed in the previous chapter, other algorithms such as EMS and
Min-max can aggravate this routing problem due to the exchange of vectors with
q (or nm) reliability values between CNU unit and VNU units.

Two types of broadcasting can be distinguished: full-broadcasting and half- broad-
casting. On the first hand, full-broadcasting consists in sending only one message
from the CNU units to the VNU units and also one message from the VNU units
to the CNU units. This broadcasting method can be only applied to full parallel

64

2.1 Parallel schedule algorithms and architectures

Table 2.2: Theoretical estimation of area-complexity for M-GBFDA message passing
architecture with clipping and Qb = 5 bits, r = 5 bits (639246 XOR gates)

Processor RAM (1bit) Reg (1bit) GF GF Add/Sub ROM Mux 2-1
Mult Adder (5 bits) (1 bit) (5 bits)

1 VNU cell M
dv

×q×Qb= 2Qb= 0 0 2 q(M
dv

)= 3

Fig.2.4 4960 10 155

1 VNU unit 0 (M
dv

×p)= 0 0 0 0 M
dv

−1=

Fig.2.5 155 30
VNU (dc×dv)4960=(dc×dv)165= 0 0 (dc×dv)2= (dc×dv)155= (dc×dv)33=
Total 515840 17160 208 16120 3432
CNU 0 (dc+1)p= 2dc=2dc−1= 0 2dc×Qb×M= 0
Total 135 52 51 32240
Total 515840 17295 52 51 208 48360 3432
XOR/ 1 3 43 5 15 1 5
item
Total 515840 51885 2236 255 3120 48360 17160+390

(XORs)

Table 2.3: Theoretical estimation of area-complexity for M-GBFDA message passing
architecture with blocking and Qb = 5 bits, r = 5 bits (633162 XOR gates)

Processor RAM(1 bit) Reg (1bit) GF GF Add +1 ROM Mux 2/4-1
Mult. Adder (5 bits) (1 bit) (5 bits)

1 VNU cell M
dv

×p×Qb=
M
dv

=31 0 0 1 ⌈log2(M
dv

)⌉M
dv

= 2/0

(Fig.2.6) 4960 155

1 VNU unit 0 M
dv

×p= 0 0 0 0 0/1

(Fig.2.7) 155
VNU (dc×dv)4960=(dc×dv)186= 0 0 (dc×dv)= (dc×dv)155= (dc×dv)2/
total 515840 19344 104 16120 (dc+1)×dv
CNU 0 (3×dc+1)q= 2dc= 2dc−1= 0 2(dc×p×M)= 0
total 395 52 51 32240
Total 515840 19739 52 51 104 48360 208/130

XOR/item 1 3 43 5 11 1 5/15
Total (XORs) 515840 59217 2236 255 1144 48360 1040/1950

65

Chapter 2. Contributions to non-binary low-density parity-check decoding

Table 2.4: Theoretical estimation of area-complexity for M-GBFDA message passing
architecture with blocking and Qb = 5 bits, r = 4 bits (699618 XOR gates)

Processor RAM(1 bit) Reg (1bit) GF GF Adder ROM Mux 2/4-1
Mult. Adder (5 bits) (1 bit) (5 bits)

1 VNU cell M
dv

×q×Qb=
M
dv
+ 0 0 2 ⌈log2(Mdv)⌉

M
dv

= 33/0

(Fig.2.6 4960 +M
dv

×Qb= 155

and 2.8) 186

1 VNU unit 0 M
dv

×p= 0 0 0 0 0/1

(Fig.2.7) 155
VNU (dc×dv)4960=(dc×dv)341= 0 0 2dc+2dv= (dc×dv)155= (dc×dv)33/
total 515840 35464 208 16120 (dc+1)×dv
CNU 0 (3dc+1)p= 2dc= 2dc−1= 0 2(dc×p×M)= 0
total 395 52 51 32240
Total 515840 35859 52 51 208 48360 3432/130

XOR/item 1 3 43 5 15 1 5/15
Total (XORs) 515840 107577 2236 255 3120 48360 17160/1950

Table 2.5: Theoretical estimation of area-complexity for M-GBFDA message passing
architecture with saturation and Qb = 6 bits, r = 5 bits (803722 XOR gates)

Processor RAM(1 bit) Reg (1bit) GF GF Adder ROM Mux 2/4-1
Mult. Adder (6 bits) (1 bit) (5 bits)

1 VNU M
dv

×q×Qb=
M
dv

×Qb= 0 0 2 ⌈log2(M
dv

)⌉M
dv

= 33/0

cell 5952 186 155

1 VNU 0 (M
dv

×p)= 0 0 0 0 0/1

unit 155

VNU (dc×dv)5952=(dc×dv)341= 0 0 2dc×2dv= (dc×dv)155= (dc×dv)33/

total 619008 35464 208 16120 (dc×dv)+dc

CNU 0 (3dc+1)p= 2dc= 2dc−1= 0 2(dc×p×M)= 0

total 395 52 51 32240

Total 619008 35859 52 51 208 48360 3432/130

XOR/item 1 3 43 5 18 1 6/15

Total (XORs) 619008 107577 2236 255 3744 48360 20592/1950

66

2.1 Parallel schedule algorithms and architectures

Table 2.6: Theoretical estimation of area-complexity for M-GBFDA message passing
architecture with saturation and Qb = 7 bits, r = 5 bits (920618 XOR gates)

Processor RAM(1 bit) Reg (1bit) GF GF Adder ROM Mux 2/4-1
Mult. Adder (7 bits) (1 bit) (5 bits)

1 VNU M
dv

×q×Qb=
M
dv

×Qb= 0 0 2 ⌈log2(Mdv)⌉
M
dv

= 33/0

cell 6944 217 155

1 VNU 0 (M
dv

×p)= 0 0 0 0 0/1

unit 155

VNU (dc×dv)6944=(dc×dv)372= 0 0 2dc×2dv= (dc×dv)155= (dc×dv)33

total 722176 38688 208 16120 (dc×dv)+dc

CNU 0 (3dc + 1)p = 2dc =2dc−1= 0 2(dc×p×M)= 0

total 395 52 51 0 32240

Total 722176 39083 52 51 208 48360 3432/130

XOR/item 1 3 43 5 21 1 7/15

Total (XORs) 722176 117249 2236 255 4368 48360 24024/1950

Table 2.7: Implementation results for Virtex VI FPGA device and 90nm process ASIC
of the decoder architecture for M-GBFDA with clipping and blocking

FPGA FPGA ASIC ASIC ASIC ASIC

Algorithm Area Thr./Freq. Area Thr./Freq. Area Throughput /

Synthesis Synthesis Synthesis Synthesis Place & Route Place & Route

Clipping 16884 reg.

11288 LUTs 44.6Mbps / 12.7mm2 89Mbps / 13mm2 45Mbps /

105 RAMB18E1 250MHz 500MHz 255MHz

7 RAMB36E1

4070 slices

Blocking 4758 reg.

(r=Qb) 7148 LUTs

520 shift reg. 273Mbps / 12.5mm2 859Mbps / 12.7mm2 414Mbps /

105 RAMB18E1 227MHz 714MHz 344MHz

7 RAMB36E1

2904 slices

Blocking 22121 reg.

(r=Qb−1) 24673 LUTs

520 shift reg. 240Mbps / 13mm2 633Mbps / 13.28mm2 316Mbps /

105 RAMB18E1 200MHz 526MHz 263MHz

7 RAMB36E1

7694 slices

67

Chapter 2. Contributions to non-binary low-density parity-check decoding

architectures, which is not our case. On the second hand, half-broadcasting con-
sists in sending only one message from the CNU unit to the VNU units, but more
messages are sent from the VNU units to the CNU unit. This method can be ap-
plied to partial parallel message passing architectures as the ones that we propose
in the previous subsections, as shown in Fig. 2.10, Fig. 2.11 and Fig.2.12. How-
ever, with this half-broadcasting technique, the CNU and VNU equation are not
implemented in separated processors, so now we cannot talk about CNU unit and
VNU unit, but about Partial CNU unit and CNU-VNU unit. The message sent by
the Partial CNU unit to the CNU-VNU units is the syndrome (Fig. 2.10), because
this processor just computes step A1 from the check node. Each CNU-VNU unit
includes a message passing VNU unit, which implements all the VNU steps, and
the necessary hardware resources to compute Rm,n (step A2 from the CNU): a
GF multiplier, a GF adder and a ROM with the h−1

m,n coefficients (Fig. 2.11). In
this way, the routing congestion is reduced because message passing architectures’
wiring from the CNU unit to all the VNU units is saved. With this proposal it is
not necessary to exchange dc different Rm,n values of p bits to dc × dv processors,
just one syndrome value, sm, needs to be broadcast. In addition, part of the wiring
from Qm,n signals is shorted because Qm,n is used for obtaining Rm,n inside the
CNU-VNU unit, where it is calculated. The disadvantage of this technique is that
introduces an area overhead, as GF multipliers, GF adders and ROM memories
are now in each CNU-VNU unit. These resources are increased dv − 1 times.

ROM

Hm,n0

x
Qm,n0

x x
Qm,n(dc-2)

x
Qm,n(dc-1)

+ +

+

sm

ROM

Hm,n1

ROM

Hm,n(dc-2)

ROM

Hm,n(dc-1)

Qm,n1

Figure 2.10: Partial CNU unit for M-GBFDA half-broadcasting architecture.

68

2.1 Parallel schedule algorithms and architectures

VNU

CELL

Rm,n

Rm,n

F(Ln)

add_low

D

D

D

D

.......

Qm,n

cn
~

zn

Max 1

Max 2

M/dv registers

+x
ROM

H-1
m,n0

sm

Figure 2.11: CNU-VNU unit for M-GBFDA half-broadcasting architecture.

Partial CNU

UNIT

.......

.......

.......

.......

D D D

dc

dv

Rm,n Qm,n

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

CNU-VNU

UNIT

sm

Figure 2.12: Complete half-broadcasting architecture for M-GBFDA.

69

Chapter 2. Contributions to non-binary low-density parity-check decoding

Area and timing complexity for the (837,723) NB-LDPC code

Next, hardware results of the half-broadcasting architectures based on the blocking
technique for a (837,723) NB-LDPC code are included.

• Analytic methods: Applying the analytic methods from [17], we can es-
timate an overhead in area of 52104 XOR gates for both half-broadcasting
blocking architectures with r = Qb and r = Qb − 1. This is due to the in-
crease of (dv−1)×dc GF multipliers, (dv−1)×dc GF adders and (dv−1)×dc
M×p ROM memories. Although the latency and the number of gates of the
critical path is the same as the message passing architectures, frequency is
higher because routing congestion is reduced, as it will be shown next with
place and route results.

• Synthesis and place and route results: Under the same FPGA and
ASIC technologies applied to the message passing architectures previously
reported, we obtain the results for half-broadcasting architecture included
in Table 2.8. The architecture for blocking with r = Qb reaches a frequency
of 500 MHz with a core area of 12.8mm2. So, it provides a throughput of
601Mbps, which is 45% higher than the one achieved with the message pass-
ing architecture, at some extra area expense. The second one, blocking with
r = Qb − 1, reaches a frequency of 476 MHz with a core area of 13.4mm2.
So, it provides a throughput of 573Mbps, which is 81% higher than the
one achieved with the message passing architecture. We can affirm that,
although there are some routing effects remaining, half-broadcasting tech-
nique mitigates considerably the effect for ASIC implementation increasing
throughput. As an example the total wire length is reduced from 52163452
µm for the conventional message passing architecture of the blocking algo-
rithm to 44348801 µm for the half-broadcasting one. Unfortunately, the
effect of half-broadcasting on FPGA devices is reduced, throughput just in-
creases 10% and 11% for blocking with r = Qb and r = Qb − 1 respectively,
at the cost of a similar increase of area.

2.1.6 Conclusions of the architectures for the parallel schedule
of M-GBFDA

In this subsection of the chapter we have proposed two different methods to reduce
complexity of GBFDA with flooding schedule. In addition, some architectures have
been proposed with the objective of reaching high speed with high-rate NB-LDPC
codes. The conclusions of this part of the chapter are:

1. A simplified tentative decoding is proposed for GBFDA. The algorithm with
this new tentative decoding is named M-GBFDA.

70

2.1 Parallel schedule algorithms and architectures

Table 2.8: Implementation results for Virtex VI FPGA device and 90nm process ASIC
of the decoder half-broadcasting architecture for M-GBFDA with blocking

FPGA FPGA ASIC ASIC ASIC ASIC

Algorithm Area Thr./Freq. Area Thr./Freq. Area Throughput /

Synthesis Synthesis Synthesis Synthesis Place & Route Place & Route

Blocking 4888 reg.

(r=Qb) 7918 LUTs

520 shift reg. 300Mbps / 12.8mm2 859Mbps / 12.8mm2 601Mbps /

105 RAMB18E1 250MHz 714MHz 500MHz

7 RAMB36E1

3078 slices

Blocking 21632 reg.

(r=Qb−1) 29965 LUTs

520 shift reg. 267Mbps / 13.2mm2 633Mbps / 13.4mm2 573Mbps /

105 RAMB18E1 222MHz 526MHz 476MHz

7 RAMB36E1

9592 slices

2. M-GBFDA has a negligible performance loss compared to GBFDA with 20
iterations. With less than 10 iterations, the difference in coding gain is
considerable because the algorithm has not converged yet in most of the
cases. Both GBFDA and M-GBFDA have less coding gain than EMS and
Min-max algorithms.

3. Architectures derived from M-GBFDA have an important reduction in hard-
ware resources compared to GBFDA, so this algorithm saves area.

4. To limit data growth, techniques such as saturation, clipping or the one
proposed here, blocking, must be applied.

5. Saturation has an important increase of area if no early error floor is desired.

6. Clipping requires a large latency in partial parallel architectures for flooding
schedule, that makes the decoder very slow. Clipping is the only technique
to control data growth that does not introduce performance degradation.

7. Blocking allows decoders to have both small area and low latency, at a cost
of an error floor. Error floor with r = Qb − 1 is lower enough to be suitable
for several communication systems. Throughput of the architectures with
blocking are at least 7 times faster than the ones based on clipping.

8. Partial parallel message passing architectures for M-GBFDA suffer the same
routing problems as binary LDPC decoders.

9. Techniques to reduce routing congestion can increase speed up to 81% miti-
gating the wiring. The fastest partial parallel architecture for the (837,726)

71

Chapter 2. Contributions to non-binary low-density parity-check decoding

NB-LDPC code, introduced in this subsection, with a FER performance ap-
plicable to most communications systems, is the one based on blocking with
r = Qb − 1 and half-broadcasting, which reaches 575Mbps.

2.2 Serial schedule algorithms and architectures

Serial schedule reduces the number of iterations required by LDPC decoders to
reach a certain performance, compared to flooding schedule. This makes serial
schedule interesting if throughput is the priority. In addition, the fact of updating
progressively check nodes and variable nodes, allow us to derive architectures
with higher degree of efficiency, without including simplifications that introduce
performance degradation, just taking advantage of some special conditions.

In this section, we propose two algorithms based on the serial schedule of GBFDA.
The first one does a more efficient division of variable node information and adds
some extra complexity that improves performance compared to the flooding sched-
ule of GBFDA. The second proposal simplifies the first one making use of some
statistical information. Additionally, a different initialization of the algorithm
avoids using techniques to control data growth without any performance degrada-
tion. Both algorithms give as result two efficient partial parallel message passing
architectures with high-throughput and lower area than the solutions of the pre-
vious section.

2.2.1 Enhanced Serial GBFDA

In Algorithm 10, the proposed Enhanced Serial GBFDA (ES-GBFDA) is de-
scribed. In the same way as in the original GBFDA, we can distinguish two
main steps in the iterative process: CNU, which computes steps A2 and A3, and
VNU, which calculates steps A1, A4 and A5. CNU steps calculate the symbols
with higher probability to satisfy the check node equations (Rn) according to the
deviation of the syndrome, s. VNU steps increase the reliability values (stored
in Wn) associated to the candidates (Rn) of the CNU step by means of a voting
process.

As the description of the algorithm is serial, each check node is updated sequen-
tially. So, after updating one check node, m, all the variable nodes connected to m
are updated. For this reason a loop m is included. One iteration is ended when all
check nodes have been updated (and hence all the variable nodes). This sequential
update avoids storing syndromes for each one of the check nodes, because after the
update of one check node the information is not necessary for the following one.
Note that with this schedule we do not update first all the CNU and after that all
the VNU, unlike flooding schedule algorithms such as M-GBFDA in the previous

72

2.2 Serial schedule algorithms and architectures

section. Moreover, we do not need to store Qm,n symbols as we can compute them
performing the subtraction in step A1 and just storing Qn.

Other advantages of the algorithm, which are not due to the serial schedule, are
that votes are stored separately in Wm,n, which will allow us to quantize the
extrinsic information with lower number of bits. In addition, ES-GBFDA accu-
mulates in step A4 the votes given to the symbols at previous iterations (from

1 to j − 1), so, Wn
(j−1) − Wmn

(j−1) in A1 represents the extrinsic information
obtained with the information from all the previous iterations. This last modifi-
cation of the GBFDA not only reduces the number of iterations due to the serial
description, but also improves the performance in the waterfall region because of
using the intrinsic information from all the iterations to compute the extrinsic
messages. Next, we give a more detailed explanation of the algorithm.

Algorithm 10 Enhanced Serial GBFDA

Input: Wn
(0) = F(Ln), Wm,n

(0) = 0
Iterative process
for j = 1 → Itmax do
for m = 1 → M do

Variable node processing:

A1 : Q
(j)
n = GFmax(Wn

(j−1) −Wm,n
(j−1))

Check node processing

A2 : s =
∑

n∈N(m) hm,nQ
(j)
n

A3 : R
(j)
n = h−1

m,ns−Q
(j)
n

Variable node processing
A4 : Wm,n

(j)(Rn) = Wm,n
(j−1)(Rn) + 1

A5 : Wn
(j)(Rn) = Wn

(j−1)(Rn) + 1
Tentatively decoding

A6 : c̃
(j)
n = GFmax(Wn

(j))
if c̃×HT = 0 then
SKIP

end if
end for

end for
Output: c̃

During the initialization, Wn is equal to the reliability values (F(Ln)) and Wm,n

is an all-zero matrix. Step A1 sorts the extrinsic information to find the symbol
with the maximum reliability, which will be taken as the new hard decision, Qn.
This extrinsic information is the result of subtracting to the Wn the intrinsic
information of a check node m, Wm,n. Wn contains the channel information
(reliability values of the initialization) plus the vote information (all received votes)
of each symbol n in the codeword. Step A2 computes the syndrome s, which is

73

Chapter 2. Contributions to non-binary low-density parity-check decoding

required in step A3 to calculate the candidates of the voting process, Rn. In step
A4, Wm,n counts the votes (intrinsic information) that receive each symbol Rn

during all the iterations. When the m loop ends, Wn is updated in step A5.
The votes modify the values of Wn and Wm,n, changing the result of the sorting
process in step A1 and, hence, flipping Qn symbols. Once the iterative process
ends, step A6 performs the tentative decoding by finding the symbols associated
to the maximum values of Wn. It is important to remark that ES-GBFDA does
not include any modification in the tentative decoding, but requires a method to
control the data growth of Wn and Wm,n or an alternative to avoid it. In the
following subsection a discussion of an alternative initialization to avoid clipping
is exposed.

2.2.2 Alternative voting process for serial schedule of GBFDA

With the aim of increasing the coding gain of ES-GBFDA, a version of the algo-
rithm in which the amplitude of the vote depends on the channel information was
also proposed. This algorithm, called serial symbol-reliability based (SSRB) algo-

rithm, modifies steps A4 and A5 by Wm,n
(j)(Rn) = Wm,n

(j−1)(Rn)+Ln(Rn)×ξ

and Wn
(j)(Rn) = Wn

(j−1)(Rn) + Ln(Rn)× ξ, respectively.

The constant ξ is computed via simulation. This constant speeds up the con-
vergence of the algorithm and improves its error-correction performance because
adjusts the importance of each vote. Its optimum value depends on dv and q, and
it is selected as a power of two to avoid products. A basic guideline for the choice
of ξ is as follows: in general, for a given Galois field, a code with high dv will
require a lower value of ξ than a code with low dv. If ξ is too large with a high dv,
an erroneous symbol flip becomes more probable, because information from the
channel is ignored somehow, as we give a higher weight to the votes than to the
LLRs. On the other hand, if dv is low and ξ is low, more iterations are required to
make a symbol flip because the votes do not have enough amplitude to modify the
decisions of the channel information and this would slow down the convergence of
the algorithm. For codes over different Galois field (different values of q), ξ must
be increased as we increase q. This is due to the fact that the average distance be-
tween LLRs gets larger as the field size grows. The factor ξ must correspondingly
be increased in order to facilitate the flipping of the symbols.

As the vote amplitude in this case is the scaled value of the LLR, more soft
information is processed and, hence, higher coding gain is obtained, with lower
complexity than Min-max algorithm and the symbol-flipping from [26] and [40].

Table 2.9 compares the number of operations per iteration required by SSRB
algorithm and the symbol flipping algorithms from [26] and [40]. It includes the
number of GF additions, GF multiplications, regular comparisons and regular
additions. In addition, we include the number of iterations required to achieve

74

2.2 Serial schedule algorithms and architectures

similar FER performance (shown in Fig.2.13). The simplified version of Min-max
algorithm in [23], which avoids using GF multiplications and performs the pre-
processing of the GF additions, is also included in Table 2.9. As the parameter
ξ is a power of 2, multiplications are not required. For comparison purposes, we
measure the complexity as the total number of operations: (operations/iteration)
× (iterations).

As can be seen, for the (403, 255) NB-LDPC code [1] the proposed algorithm is
(428792× 20)/(125736× 10) = 6.8 times less complex than the algorithm from [26],
and (468999 × 20)/(125736 × 10) = 7.4 times less complex than the one in [40].
Both algorithms from [26] and [40] have the same coding gain. Compared to
Min-max algorithm, SSRB algorithm is (167608320 × 7)/(125736 × 10) = 93
times less complex with a performance loss of 0.2dB. For the (255, 175) NB-LDPC
code, based on Euclidean geometry, there is a reduction of complexity of a factor
of (2935280 × 20)/(736400 × 10) = 7.9, (4389445 × 20)/(736400 × 10) = 11.9
and (963379200 × 10)/(736400 × 10) = 1308 times, compared to the algorithms
from [26], [40] and [23], respectively, with almost the same coding gain.

3.5 4 4.5 5
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

F
E

R

Min−max algorithm, (403,255) code, d
c
=13, d

v
=8

SSRB algorithm, (403,255) code, d
c
=13, d

v
=8, β=2

Symbol flipping algorithm, (403,255) code, d
c
=13, d

v
=8

Min−max algorithm, (255,175) code, d
c
=d

v
=16

SSRB algorithm, (255,175) code, d
c
=d

v
=16, β=8

Symbol flipping algorithm, (255,175) code, d
c
=d

v
=16

Figure 2.13: FER performance of Min-max, symbol flipping and SSRB algorithms, for
a (403,255) NB-LDPC code over GF(32) and a (255,175) NB-LDPC code over GF(256)
with a BPSK modulation in an AWGN channel.

75

Chapter 2. Contributions to non-binary low-density parity-check decoding

Table 2.9: Complexity of simplified Min-max, SSRB and two symbol-flipping algorithms

Algorithm GF Add. GF Mult.Regular Addition Regular comparisons Operat./It. It. Max.

SSRB 2dc ×M 3dc ×M 2dc ×M q × dc ×M

(255,175) 5600 8400 5600 716800 736400 10

(403,225) 6448 9672 6448 103168 125736 10

[26] q × dc × 4M 0 dc ×M q ×N

(255,175) 2867200 0 2800 65280 2935280 20

(403,225) 412672 0 3324 12896 428792 20

[40] (3dc − 2)×M 3dc ×M dv×N×(2+2q)+ 2(q−1)(dv+1)×N

(q − 1)×N

(255,175) 8050 8400 2162145 22108050 4389445 20

(403,225) 9176 9672 225277 224874 468999 20

Min-max [23] Pre-processed 0 0 (dc − 2)× (4q2)×M

(255,175) - 0 0 963379200 963379200 10

(403,225) - 0 0 16760832 16760832 7

As can be seen in Fig.2.13, for some codes SSRB algorithm has similar coding gain
to Min-max. Unfortunately, this proposal has some drawbacks: i) it only works
with dv > 5 codes and ii) a large number of bits is required to quantize the vote
amplitude in order to get a performance similar to Min-max algorithm. For these
reasons, this contribution is interesting for floating point digital signal processors
(DSP) but not for ASIC or FPGA implementations, which is the perspective of
this manuscript. For more results and extra details we refer to [43].

2.2.3 Alternative initialization for serial schedule of GBFDA

As we showed in the previous section, implementation of clipping technique re-
quires a large number of clock cycles which reduces the throughput of the decoder,
turning it useless for high speed applications. On the other hand, we can advance
that implementations of clipping with higher degree of parallelism reduce the crit-
ical path and increase area. Moreover, other techniques as blocking, introduce
error degradation in the performance, such as error floor, which requires from
other concatenated decoder to correct it [41]. This last issue makes the solution
sub-optimal and it can be a problem if we look for an standalone FEC decoder.
In this subsection we propose to modify the way in which we represent channel
information for the GBFDA serial schedule, instead of modifying the technique to
control data growth.

First, let us define r as the number of bits that are required to compute the F(Ln)

with Ln(x) = log
[
P (cn=x | yn)
P (cn=0 | yn)

]
. The value of F(Ln) for the most reliable symbol

can vary between 2r−1 − 1 and 0 (when the symbol zero is the most reliable). An
offset γn = 2r−1 − 1 − max(F(Ln)) is added in order to fix the value in F(Ln)

76

2.2 Serial schedule algorithms and architectures

for the most reliable symbol to the maximum amplitude 2r−1 − 1 for each n, as
proposed for the MD algorithm at [42]. The absolute minimum of F(Ln) is −2r−1

(for the less reliable symbol).

On the other hand, [12] proposes to keep just nm values in Ln (with nm < q) to
save memory in EMS. For GBFDA, a similar procedure is applied, as commented
in Section 2.1.2, with a negligible performance loss: the values of F(Ln) between
0 and −2r−1, which corresponds to the less reliable symbols, are fixed to 0. In
this way, nm is taken as the number of values between 2r−1 − 1 and 0 (so nm is
dynamical), and q− nm unreliable values are forced to 0. So, the values in F(Ln)
are positive (between 2r−1−1 and 0), and the number of bits required to quantize
them is reduced by one (from r to r − 1) due to the fact that the sign bit is not
used.

Additionally, the data saved in Wn, which is initialized to F(Ln), increase with
each vote (step A5). Being Qb the number of bits used to quantizeWn. Remember
that Qb would be bigger than r − 1 if a technique to control the data growth was
not applied as happened with the flooding schedule. In Section 2.1.5 was shown
that a big percentage of hardware resources are memories whose size depends on
Qb, so the increase of Qb has a great impact on the total area.

One possible solution to data growth problem was the clipping technique. This
technique detects when a vote causes that max(Wn) > 2r−1 − 1. In this case, it
subtracts one vote to all the reliability values saved in Wn. After this subtraction:
i) the maximum value in Wn cannot be bigger than 2r−1 − 1; and ii) some values
are -1 (those whose value was 0 before the subtraction). To avoid the need of a
bit of sign, values lower than zero are fixed to zero. This fact makes that we lose
information of some unreliable symbols each time clipping is applied, because we
take as zero both negative and zero Wn values. In this way, clipping is ignoring a
certain number of unreliable symbols, without introducing any error degradation.
Although this technique keeps the number of bits required for Wn in Qb = r − 1,
it has several hardware drawbacks.

To avoid this kind of techniques and not increase the number of bits, we define

F(Ln) normalized to the most reliable symbol, Ln(x) = log
[

P (cn=x | yn)
P (cn=zn | yn)

]
. Now

the reliability values of F(Ln) are between 0, for the most reliable symbol, and
−2r, for the less reliable symbol. Applying the idea of the existence of just nm < q
useful reliability values, we fix the values between −2r and −2r−1 to −2r−1, which
is the same as fixing values between 0 and −2r−1 to 0 in the previous initializa-
tion. Moreover, as said before, clipping modifies (sets to 0) the information saved
in Wn for some unreliable symbols (those whose values are zero before the sub-
traction). Taking this into account, we studied the effect of modifying (setting to
the unreliable value) the values saved in F(Ln) for some unreliable symbols. Our
simulations showed that the F(Ln) values which are between −2r−1 and −2r−2

77

Chapter 2. Contributions to non-binary low-density parity-check decoding

can be fixed to −2r−2 without any degradation in the performance with respect to
applying clipping (see Subsection 2.2.5). In this way, F(Ln) values are between 0
for the most reliable symbol and −2r−2 for the less reliable symbol. Additionally,
Wn is quantized to Qb = r − 1 bits, so its minimum reliability value is −2r−2

and its maximum reliability value is 2r−2 − 1. As Wn is initialized to F(Ln), the
most reliable symbol in Wn can grow from 0 to 2r−2 − 1, that is, it can receive
2r−2 − 1 votes in step A5. If it receives more votes (the maximum value 2r−2 − 1
is reached), saturation is applied not performing step A5.

2.2.4 Simplified ES-GBFDA

In this subsection a modification of the ES-GBFDA is presented. Its purpose is
to reduce the amount of information that we need to store. This is achieved by
simplifying the information related with the number of votes. In ES-GBFDA, we
accumulate the votes from all the previous iterations in Wm,n. With the proposed
simplification, we reduce the information of all the number of votes stored in ES-
GBFDA to a constant value obtained by simulation to avoid a big increase of the
maximum value of Wm,n and Wn.

The proposed modification is based on the analysis of the values of the votes
through the iterations and the number of symbols that are voted in two con-
secutive iterations in Algorithm 10. Next, we include one example of analysis,
particularized for the (837,723) NB-LDPC code. We used a BPSK modulation
over an AWGN channel with 10000 test frames.

First, we studied Wm,n in ES-GBFDA, for several Eb/N0, to obtain the percent-
age of symbols that received from 2 to 8 votes during the different iterations up
to the algorithm converges. Note that symbols which only received one vote were
omitted because this unique vote can be considered as noise, they were voted er-
roneously if they are not voted again in the following iterations. Table 2.10 and
2.11 show the results of the analysis of Wm,n for Eb/N0=4.6dB and Eb/N0=5dB,
respectively. As can be seen in Table 2.10 and 2.11, a big percentage of voted
symbols, which increases with Eb/N0, received two votes (around 50% and 60%
for Eb/N0=4.6dB and Eb/N0=5dB, respectively, for more than 4 iterations). So,
if instead of accumulating the votes as in step A4 of ES-GBFDA we suppose that
all the voted symbols always receive 2 votes during the previous iterations, we are
approximating the behaviour of Algorithm 10. For example, using this approxi-
mation for 5 iterations and Eb/N0=4.6dB, 52.2% of symbols will be unmodified
and 27.18% will lose the information of just one vote when step A1 is computed
(79.38% of the symbols suffer negligible changes). For higher Eb/N0, the percent-
age of symbols that suffers negligible changes is even higher, 91.5% for Eb/N0=5dB
and 5 iterations. The same reasoning can be followed for other number of itera-
tions, reaching similar results. Hence, we can conclude that there is a number of
received votes, β, which is more common in Wm,n for the symbols that are voted

78

2.2 Serial schedule algorithms and architectures

more than once and we can approximate the accumulation of votes (step A4 in
ES-GBFDA) by β.

Second, we studied the values of the candidates Rn during the voting process in
ES-GBFDA, for several Eb/N0. With this analysis we obtain the percentage of
symbols that were voted at the iteration j − 1 and are also voted at the current
iteration j. Table 2.12 shows the obtained results for several Eb/N0. The per-
centage of repeated votes is higher than 70% even for low Eb/N0, being higher
than 90% for Eb/N0=5dB and more than 8 iterations. So, we can approximate
the behavior of ES-GBFDA by taking into account only the voting information of
iteration j − 1, especially for high Eb/N0.

Table 2.10: Percentage of symbols that received β votes in ES-GBFDA for Eb/N0 =
4.6dB

β / iter. 2 3 4 5 6 7 8 9 10

2 100% 65.4% 56% 52.2% 52.2% 50.2% 47% 47.9% 47%

3 0% 34.6% 27% 27.18% 27.18% 26.7% 23% 24.8% 24.9%

4 0% 0% 13% 12.8% 12.7% 13.3% 14% 13.7% 13.1%

5 0% 0% 4% 7.81% 6.98% 6.5% 9% 7.5% 7.6%

6 0% 0% 0% 0% 0.8% 3.2% 4% 3.4% 3.6%

7 0% 0% 0% 0% 0% 0% 2% 1.7% 1.8%

8 0% 0% 0% 0% 0% 0% 1% 1% 2%

Table 2.11: Percentage of symbols that received β votes in ES-GBFDA for Eb/N0 =
5dB

β / iter. 2 3 4 5 6 7 8 9 10

2 100% 68.2% 62.8% 62.2% 62.2% 62.3% 62.09% 62.03% 62.1%

3 0% 31.78% 29.7% 29.3% 29.3% 29.13% 29.17% 29.11% 28.94%

4 0% 0% 7.37% 6.8% 6.5% 6.5% 6.69% 6.68% 6.6%

5 0% 0% 0% 1.5% 1.5% 1.6% 1.5% 1.5% 1.5%

6 0% 0% 0% 0% 0.4% 0.34% 0.36% 0.4% 0.4%

7 0% 0% 0% 0% 0% 0.024% 0.14% 0.16% 0.18%

8 0% 0% 0% 0% 0% 0% 0% 0% 0%

Based on these ideas, we propose a simplified version of the ES-GBFDA, SES-
GBFDA, which is included in Algorithm 11. In this algorithmWm,n only indicates
which symbols are voted at the current iteration j (step A4), supposing that they
were the same at the previous ones. On the other hand, we introduce the parameter
β, which is used in step A1 to indicate the number of votes that we suppose the
symbols received at the previous iterations. So, Wm,n is just a matrix of flags
that indicates if β must be subtracted in step A1 or not. This parameter β can be
obtained by analyzing the votes (Table 2.10 and 2.11) or with FER simulations,
as shown in the next subsection. The complexity of SES-GBFDA is lower than

79

Chapter 2. Contributions to non-binary low-density parity-check decoding

Table 2.12: Percentage of symbols that were voted at the previous iteration and are
also voted at the current one in ES-GBFDA

Eb/N0 / iter. 2 3 4 5 6 7 8 9 10

4.2 dB 73% 73% 73% 73% 73% 73% 73% 73% 73%

4.4 dB 73.9% 73.9% 73.9% 73.9% 73.9% 73.9% 73.9% 73.9% 73.9%

4.6 dB 74% 74.5% 74.7% 74.8% 74.7% 74.6% 74.5% 74.4% 74.3%

4.8 dB 72% 73% 75% 76% 77.4% 77.6% 77.6% 77.5% 77%

5 dB 74.2% 74.8% 77.2% 81.2% 86.9% 89.8% 90.9% 91.3% 91.4%

ES-GBFDA because additions are avoided in step A4. Additionally, the number
of subtractions in A1 is also reduced: ES-GBFDA needs to compute a maximum
of dc×M×q subtractions by iteration (if all the possible symbols received at least
one vote at the previous iterations), in contrast, GBFDA only computes dc ×M
subtractions because it only has into account the votes received at iteration j− 1.

Algorithm 11 Simplified ES-GBFDA

Input: Wn
(0) = F(Ln), Wm,n

(0) = 0
Iterative process
for j = 1 → Itmax do
for m = 1 → M do
Variable node processing:

A1 : Q
(j)
n = GFmax(Wn

(j−1) −Wm,n
(j−1) × β)

Check node processing

A2 : s =
∑

n∈N(m) hm,nQ
(j)
n

A3 : R
(j)
n = h−1

m,ns−Q
(j)
n

Variable node processing
A4 : Wm,n

(j)(Rn) = 1;Wm,n
(j)(x ̸= Rn) = 0

A5 : Wn
(j)(Rn) = Wn

(j−1)(Rn) + 1
Tentatively decoding

A6 : c̃
(j)
n = GFmax(Wn

(j))
if c̃×HT = 0 then

SKIP
end if

end for
end for

Output: c̃

80

2.2 Serial schedule algorithms and architectures

2.2.5 Frame error rate performance comparison between
NB-LDPC decoders

Fig. 2.14 compares the FER performance of the algorithms Min-max, GBFDA,
ES-GBFDA and SES-GBFDA for the (837,723) NB-LDPC code. The initializa-
tion for ES-GBFDA and SES-GBFDA algorithms is the alternative one proposed
on Section 2.2.3, so they do not implement clipping. GBFDA with parallel flood-
ing includes the clipping technique. Q′

b is defined as the number of bits required
to quantize Wm,n in ES-GBFDA and SES-GBFDA. We used a BPSK modula-
tion in an AWGN channel and encoded a different random message m with each
transmitted package.

First, a comparison among GBFDA algorithms is made. The serial descriptions of
GBFDA, ES-GBFDA and SES-GBFDA, reduce by half the number of iterations
required to converge, from 20 iterations for the flooding schedule to 10 iterations
for the serial one. Moreover, ES-GBFDA has a coding gain of 0.05dB with respect
to SES-GBFDA with the optimum β (β = 2) and both improve the performance in
the waterfall region compared to GBFDA with flooding schedule. In addition, note
the importance of the selection of the optimum β for the SES-GBFDA. As Fig.2.14
shows, a wrong β can cause a non-negligible performance loss (there is a difference
of 0.2dB between β = 2 and β = 4). These performance curves corroborate the
statistical analysis showed in the previous subsection, where it was found that the
most probable value for β is 2.

On the other hand, ES-GBFDA and SES-GBFDA (β = 2) with 10 iterations
have a performance loss of 0.65dB and 0.7dB with respect to Min-max with 15
iterations. However, for future hardware comparisons in Section 2.4, ES-GBFDA,
SES-GBFDA and Min-max architectures must be compared under similar FER
performance conditions to be fair. As reported in Section 2.1.4, the performance
of Min-max with 4 iterations is similar to GBFDA with parallel flooding and 20
iterations and ES-GBFDA with 10 iterations, for the code under analysis.

2.2.6 Partial parallel architectures for the serial schedule

The following subsection is composed by two parts. In the first one, an archi-
tecture for ES-GBFDA and parallel implementation of the clipping technique is
detailed. The second subsection shows how the ES-GBFDA architecture is modi-
fied to implement SES-GBFDA and include the new initialization method. Both
architectures are based on message passing solutions, because unlike the imple-
mentation of flooding schedule where dc × dv VNU units were required to reduce
latency, the implementation of the serial schedule just needs dc VNU units for high
speed, so routing is already reduced without using broadcasting techniques.

81

Chapter 2. Contributions to non-binary low-density parity-check decoding

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
 (dB)

F
E

R

Min−max algorithm, Q
b
=5bits, It

max
=15

Min−max, Q
b
=5bits, It

max
=4

SES−GBFDA, Q
b
=5bits, Q

b
=1bit, β=4, It

max
=10

SES−GBFDA, Q
b
=5btis, Q’

b
=1bit, β=3, It

max
=10

SES−GBFDA, Q
b
=5bits, Q’

b
=1bit, β=2, It

max
=10

ES−GBFDA, Q
b
=5bits, Q’

b
=3bits, It

max
=10

GBFDA, Q
b
=5bits, It

max
=20

Figure 2.14: FER performance of Min-max algorithm, GBFDA, ES-GBFDA and SES-
GBFDA for a (837,723) NB-LDPC code over GF(32) with a BPSK modulation in an
AWGN channel.

82

2.2 Serial schedule algorithms and architectures

Partial parallel architecture for ES-GBFDA

The complete partial parallel architecture for the ES-GBFDA is included in Fig.2.15.
The degree of parallelism of the architecture is dc, so there are dc CNU and VNU
units working at the same time.

VNU0 VNU1 VNUdc-1

Rn0

CNU0 CNU1 CNUdc-1

Qn0

Rn1

Qn1
Qn dc-1

Rn dc-1

+
s

hm,n0xQn0 hm,n1xQn1 hm,ndc-1xQndc-1

F(Ln0) F(Ln1) F(Ln dc-1)

Figure 2.15: Complete partial parallel architecture for ES-GBFDA and SES-GBFDA.

1. CNU unit: The CNU unit shown in Fig.2.16 is implemented taking advan-
tage of the quasi-cyclic structure of the codes proposed in [1]. The Hm,n

block in Fig.2.16 generates the hm,n coefficients required in step A2. The
dv × p ROM stores the dv exponents of the coefficients for the same column
of the circulant permutation matrix before the dispersion or expansion (see
the generation of the matrix in [1]). The (q− 1)× p ROM stores the powers
of alpha (α0, α1,...αq−2). To compute the expansion, one of the exponents
of the dv × p ROM is read and loaded in the cyclic counter. This counter,
which begins in the read exponent and finishes after q−1 cycles, is used as an
address of the (q−1)×p ROM, getting at the output the corresponding hm,n

of the expanded matrix. In the same way, the H−1
m,n block generates the h−1

m,n

coefficients required in step A3. First, the hm,n coefficient is multiplied by
the output of the corresponding VNU unit using a GF multiplier, giving as
a result hm,n×Qn. As can be seen in Fig.2.16, the dc hm,n×Qn values (one
for each CNU unit) are added to obtain the syndrome, s (step A2). Then,
in each VNU s is multiplied by the corresponding h−1

m,n coefficient using a
GF multiplier and the output is added to Qn, getting Rn (step A3).

2. VNU unit: The VNU unit is included in Fig.2.17. Each RAM stores q − 1
values of Rn, which correspond to one of the dc × dv sub-matrices of size
(q − 1) × (q − 1) obtained after the expansion. Data are saved in each
RAM in a ping-pong manner to ensure a continuous processing (without
idle times). Each VNU unit has q cells that compute: Wn(0) − Wm,n(0),
Wn(α

0)−Wm,n(α
0), Wn(α

1)−Wm,n(α
1), ... , Wn(α

q−2)−Wm,n(α
q−2). So,

each cell processes the value of Wn−Wm,n associated to a different element
of the field GF(q). The decoder converts the p bits of Rn into a word of q

83

Chapter 2. Contributions to non-binary low-density parity-check decoding

Hm,ni

H-1m,ni X

+

X

s

Qni
Rni

hm,nixQni

CNUi

ROM

dvxp

 ROM

(q-1)xp

dv_sel

Counter

load

hm,ni

Hm,ni

Figure 2.16: CNU basic cell for ES-GBFDA and SES-GBFDA.

bits (sym sel). Only one bit of sym sel is set to one, activating the cell
whose power of α is equal to Rn. This indicates that the CNU votes that
symbol. The output of all the cells are compared to look for the maximum
value of Wn −Wm,n and its associated GF symbol (Qn in step A1). These
comparisons are carried out with a tree of comparators and multiplexors,
named as GF max network.

The architecture of each cell processor is included in Fig.2.18. The RAM
stores the Wn and Wm,n values for the α element of the field that processes
that cell. Each data word is split as follows: the Qb most significant bits are
the Wn(α

x) value and the remaining dv × Q′
b bits store dv different values

of Wm,n(α
x) quantized with Q′

b bits. There are q − 1 different data words
because of the size of the sub-matrix. The VNU processor works as follows.
First, the RAM is filled with the reliability values concatenated with dv×Q′

b

zeros during the initialization. After that, the RAM stores the updated infor-
mation for Wn(α

x) and the dv different values of Wm,n(α
x). The update of

Wn(α
x) depends on: the value of the decoder output (sym sel), the detection

of clipping in other cells of the same VNU unit and the detection of clipping
in the own cell. If the cell is selected and no clipping is detected in the own
cell, Wn(α

x) = Wn(α
x)+1. If the cell is not selected and clipping is detected

in other cells, Wn(α
x) = Wn(α

x) − 1. In other cases, Wn(α
x) remains the

same. The signal dv sel selects the corresponding Wm,n(α
x) from the dv

possible values. Wm,n(α
x) represents the votes obtained by αx at the previ-

ous iterations and it is required for the computation of Wn(α
x)−Wm,n(α

x).
In addition, Wm,n(α

x) is increased by one if sym sel=1, to take into account
the vote made in the current iteration. Both Wn(α

x) and the dv Wm,n(α
x)

updated values are concatenated and stored again in the RAM. Note that
the clipping processing of one cell requires the clipping information of the
other q − 1 cells. This is done by broadcasting the clipping result of each

84

2.2 Serial schedule algorithms and architectures

Wn(αq-2)-W m,n(αq-2)

CELL

CELL

CELL

CELL

sym_sel

0

sym_sel

1

sym_sel

q-2

sym_sel

q-1

lo
g
2

(N
)-to

-N
 d

e
c
o

d
e

r

1

1

1

1

RAM

(q-1)xp

RAM

(q-1)xp

R
n

G
F

_
m

a
x
 n

e
tw

o
rk

max(Wn-Wm,n)

Qn
Wn(αq-3)-W m,n(αq-3)

Wn(α0)-Wm,n(α0)

Wn(0)-Wm,n(0)

*

*

*

p

Figure 2.17: VNU unit for ES-GBFDA and SES-GBFDA. VNU unit for SES-GBFDA
does not include the interconnections marked with *.

R
A

M
(Q

b
 +

 Q
'b

 x
 d

v
) x

 (q
-1

)

-

Q'b

Qb

Q
b

Q
'b

d
v

DATA

ADDRESS

sym_sel

+1

C
o

n
c
a

te
n
a

tio
n

Q'b

C
o

n
c
a

t

Q
'b

 x
 d

v

Qb+ Q'b x dvC
o

n
c
a

t

Qb
F(Ln)

0

Q'bx dv

Wm,n(αx)

address_sel

Start
other_clipping

clipping

+-

Wn(αx)

Wn(αx)-Wm,n(αx)

v

clipping

+1

+1

+1

q
-1

dv_sel

Q
'b

Q
'b Q'b

Q'b

Q'b

Figure 2.18: Basic cell for ES-GBFDA (dv = 4).

85

Chapter 2. Contributions to non-binary low-density parity-check decoding

cell to the others. In Fig.2.17 this bus is represented by bidirectional rows
between cells. This interconnection between cells increases routing in the
VNU unit, reducing the maximum operating frequency of the decoder.

Some pipeline registers included to reduce the critical path of the decoder has been
omitted to simplify the figures. The latency of the decoder is (q− 1 + pipeline)×
dv×(Itmax+1)+(q−1+pipeline) clock cycles. Computing each sub-matrix takes
(q − 1) clock cycles but the pipeline delay has to be added, so each sub-matrix
needs (q − 1 + pipeline) clock cycles. As there are dv sub-matrices, each iteration
needs (q − 1 + pipeline) × dv clock cycles. One extra iteration is added for the
initialization. Finally, (q − 1 + pipeline) clock cycles are needed to get the values
of the decoded codeword after the iterative process.

Partial parallel architecture for SES-GBFDA

In this part of the subsection, the architecture proposed for the ES-GBFDA is
modified to implement a SES-GBFDA architecture and the alternative initializa-
tion which does not require clipping. In this case, just the VNU unit changes,
while the rest of the architecture remains the same. So, the new architecture has
exactly the same latency than the one proposed for ES-GBFDA. However, the
maximum frequency achievable is increased due to the elimination of the clipping,
and this allows us to increment considerably the throughput.

Thanks to the new initialization, the different cells that compose the VNU unit
are totally independent. As shown in Fig.2.17 the wires between cells (marked
with *) disappear in the architecture without clipping. This avoids q × (q − 1)
wires in each VNU unit reducing the routing congestion.

On the other hand, Fig.2.19 includes the basic cell of the VNU unit for SES-
GBFDA. The new initialization makes the update of Wn simpler than in ES-
GBFDA: if the value of Wn(α

x) read from the RAM is lower than the maximum
value (2Qb−1 − 1), this value is incremented by one (Wn(α

x) = Wn(α
x) + 1);

if not, the maximum is reached and saturation is applied (Wn(α
x) = Wn(α

x)),
which means that step A5 is not performed. Additionally, there is no need of
sharing information with other cells because there is no clipping. Moreover, in
SES-GBFDA Wm,n(α

x) is just a flag that indicates if the corresponding symbol
is voted or not at the current iteration (step A4). The Wm,n(α

x) values are
stored in the RAM because this information is needed to compute step A1 in the
next iteration. This is done by means of a log2(dv)-to-dv decoder. This decoder
generates a dv-bit output that indicates which symbol is voted at the current
iteration (only one bit is set to one if the cell is active, sym sel = 1, otherwise
all the bits are set to zero because there is no vote). Finally, the parameter β of
step A1 is introduced as follows: the flag Wm,n(α

x) read from the RAM, which

86

2.2 Serial schedule algorithms and architectures

R
A

M
(Q

b
 +

 d
v

) x
(q

-1
)

-

1

Qb

Q
b

d
v

DATA

ADDRESS

C
o

n
c
a

t

 d
v

Qb +dv

C
o

n
c
a

t

Qb
F(Ln)

0

dv

Wm,n(αx)

address_sel

Start

+

Wn(αx)

Wn(αx)-Wm,n(αx)β

1

2Qb-1-1

Qb

sym_sel

β
dv_sel

2
-to

-4

d
e

c
o
d

e
r

0

dv_sel

0

=

Figure 2.19: Basic cell for SES-GBFDA (dv = 4).

indicates if the symbol was voted in the previous iteration, controls a multiplexor
to decide if β is subtracted or not from Wn(α

x).

In conclusion, RAM memory resources are reduced from (Qb + dv ×Q′
b)× (q − 1)

bits in ES-GBFDA to (Qb+dv)× (q−1) bits in SES-GBFDA. Also, the data path
related to the votes is reduced from Q′

b bits to just one bit, and the dv Q′
b-adders

needed to accumulate the votes in ES-GBFDA are eliminated.

Area and timing complexity for the (837,723) NB-LDPC code

The architectures described in the previous section for ES-GBFDA and SES-
GBFDA were implemented using a 90nm CMOS standard cell library for a (837,723)
NB-LDPC code.

Table 2.13 includes post place and route ASIC results of the proposed architecture
for ES-GBFDA and for SES-GBFDA. In addition, we include again the ASIC
results from the M-GBFDA architecture with the parallel schedule from Section
2.1.5 to make easier the comparisons.

First, ES-GBFDA and SES-GBFDA architectures are compared. On the one hand,
the effect of not requiring clipping is analyzed by comparing the throughput of ES-
GBFDA with the one of SES-GBFDA. The maximum frequency of the decoder is
improved, increasing throughput by 16%. This increase of speed is achieved due
to the reduction of the critical path and the independence between basic cells,

87

Chapter 2. Contributions to non-binary low-density parity-check decoding

which implies a reduction of the wiring interconnection (from a total wire length
of 39105917µm to 19686639µm). On the other hand, the impact of simplifying
ES-GBFDA is studied comparing area. With SES-GBFDA area is reduced by
44.6% compared to ES-GBFDA. This is mainly due to the reduction of memory
resources achieved using one bit instead of Q′

b = 3 bits to quantize the votes and
the elimination of dv adders in each basic cell. In terms of efficiency, SES-GBFDA
decoder is 2.1 times more efficient than ES-GBFDA decoder.

Compared to half-broadcasting M-GBFDA architectures, ES-GBFDA and SES-
GBFDA reach a lower maximum frequency, due to the length of the critical path.
This bigger length is caused by a bigger degree of parallelism. Note that ES-
GBFDA and SES-GBFDA increase the degree of parallelism in the VNU, process-
ing q symbols at the same time, while M-GBFDA computes serially each one of
the q symbols. This higher degree of parallelism was not possible for the flooding
schedule of M-GBFDA because: i) the number of VNU units was higher, dc × dv;
and ii) Wm,n required more bits to be quantized. So trying to work with the
same degree of parallelism with M-GBFDA would increase at least q times area,
and the longer critical path and routing, even with half-broadcasting, would make
speed decrease dramatically. However, even with lower frequency, ES-GBFDA and
SES-GBFDA achieve a slightly higher throughput, thanks to the two times reduc-
tion of latency. It is also important to remark that ES-GBFDA has a similar area
to half-broadcasting M-GBFDA architectures, because the extra area required by
the parallel VNU processor is compensated by just requiring dc VNU units and
Q′

b = 3 bits to quantize Wm,n. Although, M-GBFDA with blocking architectures
have similar efficiency in terms of hardware to ES-GBFDA architecture, the last
one is more interesting because it does not introduce any performance degrada-
tion, such as error floor. SES-GBFDA has approximately half area compared to
architectures based on blocking, so more than two times efficiency is achieved.

Compared to the architecture of M-GBFDA with clipping, both ES-GBFDA and
SES-GBFDA reduce more than 14 times latency which makes them more efficient
in terms of speed over area ratio. The performance is also slightly different, both
ES-GBFDA and SES-GBFDA have a better slope at the waterfall region than the
M-GBFDA with clipping.

2.2.7 Conclusions of the architectures for the serial schedule of
GBFDA

In this subsection of the chapter we have proposed two algorithms to improve
efficiency and reduce storage resources of GBFDA with the serial schedule. In
addition, an alternative initialization is applied in order to reduce complexity.
Moreover, some architectures have been derived with the objective of reaching
high speed decoders for high-rate NB-LDPC codes. Conclusions of this part of the
chapter are:

88

2.2 Serial schedule algorithms and architectures

Table 2.13: ASIC results for a 90nm CMOS process of ES-GBFDA, SES-GBFDA and
M-GBFDA partial parallel architectures

Algorithm M-GBFDA M-GBFDA M-GBFDA ES-GBFDA SES-GBFDA

Data growth Clipping Blocking Blocking Clipping None

control technique r = Qb r = Qb − 1

Architecture Message Half- Half- Message Message

Passing broadcasting broadcasting Passing Passing

Code (837,723) (837,723) (837,723) (837,723) (837,723)

Code Rate 0.86 0.86 0.86 0.86 0.86

GF 32 32 32 32 32

(dc, dv) (26,4) (26,4) (26,4) (26,4) (26,4)

Process 90nm 90nm 90nm 90nm 90nm

Report post-layout post-layout post-layout post-layout post-layout

Qb (Q′
b) 5 bits 5 bits 5 bits 5 bits (3 bits) 5 bits (1 bit)

Area (mm2) 13 12.8 13.4 12.2 6.6

Frequency (MHz) 255 500 476 238 277

Iterations 20 20 20 10 10

Latency (clock cycles) 23415 3476 3476 1620 1620

Throughput (Mbps) 45 601 573 615 717

Early Error NO YES YES NO NO

Floor Degradation

Efficiency (Mbps/mm2) 3.46 46.9 42.7 50.4 108.6

1. A serial schedule algorithm which stores intrinsic information from all iter-
ations is proposed. The algorithm is named ES-GBFDA. ES-GBFDA also
makes an efficient storage of the information, separating the intrinsic vote
information from the channel information. The algorithm does not introduce
any performance degradation.

2. A simplified version of ES-GBFDA is proposed, SES-GBFDA. Based on sta-
tistical analysis and simulation a value β is obtained to approximate voting
information from previous iterations. This simplification leads to a negligi-
ble performance loss and allows as to quantize the voting information with
1 bit.

3. An alternative initialization based on normalizing the channel information
to the hard-decision reliability and eliminating some unreliable information
is proposed. This initialization avoids using data growth control techniques
such as saturation, clipping or blocking.

4. Partial parallel message passing architectures for ES-GBFDA and SES-GBFDA
have been proposed. ES-GBFDA architecture implements a parallel version
of clipping, showing that frequency is reduced compared to the alternative

89

Chapter 2. Contributions to non-binary low-density parity-check decoding

initialization, implemented for the SES-GBFDA architecture. In addition,
SES-GBFDA reduces to almost half the required area.

5. Both ES-GBFDA and SES-GBFDA have a similar throughput compared to
M-GBFDA based on blocking architectures, however, their FER performance
does not introduce any early error floor degradation. For the case of SES-
GBFDA area is reduced to half. We conclude that ES-GBFDA and SES-
GBFDA architectures are more efficient than the ones based on M-GBFDA.

6. All GBFDA derived algorithms, ES-GBFDA and SES-GBFDA, have less
coding gain than EMS and Min-max algorithms, because only hard decision
information is computed in their check nodes.

2.3 Multiple-vote algorithm and architecture

90

2.3 Multiple-vote algorithm and architecture

2.3.1 Multiple-Vote Symbol Flipping Decoding Algorithm

′

′

−
′

N
−

′
N −

N N
⊗ ⊕

∈ {
′

N ⊗ ⊕ N ⊗ }

∈ N \ N ′ −

∑
∈N \N ′

∑
−

′

N × N ×

′ ′

′ ′ ′ ′

−
′

−
′

−
′

−
′

−
′

−
′

91

Chapter 2. Contributions to non-binary low-density parity-check decoding

N ′ −
′

N ′ ∈ { } −

• ∈ { ⊗ ⊕ ⊗ ⊗ ⊕ ⊗
⊗ ⊕ ⊗ }

• ∈ { ⊗ ⊕ ⊗ ⊗ ⊕ ⊗
⊗ ⊕ ⊗ }

• ∈ { ⊗ ⊕ ⊗ ⊗ ⊕ ⊗
⊗ ⊕ ⊗ }

• ∈ { ⊗ ⊕ ⊗ ⊗ ⊕ ⊗
⊗ ⊕ ⊗ }

• ∈ { ⊗ ⊕ ⊗ ⊗ ⊕ ⊗
⊗ ⊕ ⊗ }

• ∈ { ⊗ ⊕ ⊗ ⊗ ⊕ ⊗
⊗ ⊕ ⊗ }

• ∈ { ⊗ ⊕ ⊗ ⊗ ⊕ ⊗
⊗ ⊕ ⊗ }

∑
′

−

•
′

× ×
′

× ×
′

×
×

•
′

× ×
′

× ×
′

×
×

•
′

× ×
′

× ×
′

×
×

•
′

× ×
′

× ×
′

×
×

•
′

× ×
′

92

2.3 Multiple-vote algorithm and architecture

•
′

× ×
′

× ×
′

×
×

•
′

× ×
′

× ×
′

×
×

U

U U

′

−
′

−
′

−
′

N ′ ∈ { }
−

−
′

N

′
N

93

Chapter 2. Contributions to non-binary low-density parity-check decoding

∑
∈N \N

′

N ′

N ′

′

N N −
′

N

N
′

N

N

N ′ ∈ { }

• ∈ {
′

}

• ∈ {
′

}

• ∈ {
′

}

•
∑

∈N \
′

•
∑

∈N \
′

•
∑

∈N \
′

∑
∈N

U

94

2.3 Multiple-vote algorithm and architecture

′ ′

−
′

∈ N

N

′

N −

′

−

′

′

2.3.2 Parameters of MV-SFA and FER performance
comparisons

95

Chapter 2. Contributions to non-binary low-density parity-check decoding

Algorithm 12 Multiple-Vote Symbol Flipping Decoding algorithm

F

→
→

− − − − −
−

′ − − − ′

− − −

N ′ −
′

∈∑
∈

→
− N N

′

N

−

→
′

− − ∈ \ N
′

− −
′

N ′

−

→
′

−
− ′

−

−

→
′

−
− ′

−

96

2.3 Multiple-vote algorithm and architecture

2.3.3 Partial parallel architecture for MV-SFA

− −

97

Chapter 2. Contributions to non-binary low-density parity-check decoding

E
b
/N

0
 (dB)

F
E

R

Figure 2.20: FER performance of ES-GBFDA and MV-SFA for a (1536,1344) NB-
LDPC code over GF(32) with a BPSK modulation in an AWGN channel.

98

2.3 Multiple-vote algorithm and architecture

E
b
/N

o
 (dB)

F
E

R

Figure 2.21: FER performance of Min-Max algorithm, ES-GBFDA and MV-SFA for a
(837,723) NB-LDPC code over GF(32) with a BPSK modulation in an AWGN channel.

99

Chapter 2. Contributions to non-binary low-density parity-check decoding

Figure 2.22: Complete partial parallel architecture for MV-SFA.

100

2.3 Multiple-vote algorithm and architecture

N ′

N ′

−

× −
− −

−
−

101

Chapter 2. Contributions to non-binary low-density parity-check decoding

Figure 2.23: CNU units for MV-SFA:

102

2.3 Multiple-vote algorithm and architecture

−
∈

−

−

−
×

-

Figure 2.24: VNU unit for MV-SFA.

103

Chapter 2. Contributions to non-binary low-density parity-check decoding

− −
− − − −

×
×

−

N
−

− × ×
−

−
−
− ×

−

104

2.3 Multiple-vote algorithm and architecture

×

Radix 4 Radix 4 Radix 4 Radix 4 Radix 4 Radix 4

Radix 4 Radix 4

Radix 4

Radix 4

Radix 4

1rst

x0 x1x2 x3 x4 x5x6 x7 x8 x9x10x11 x12x13x14x15 x16x17x18x19x20x21x22x23

Radix 4

x24x25x26

2nd 3rd 4th
Minimum

Radix 4

Figure 2.25: General architecture for a 4-minimum finder in a 27-element list.

− ×
− ×

− ×

105

Chapter 2. Contributions to non-binary low-density parity-check decoding

×

- - - - - -

x0x1x0 x2x0 x3x1x2x1 x3 x2 x3

+
+
c0

+
+
c1

+
+
c2

+
+
c3

x0 x0 x0 x0

c0

0 1 2 3

x1 x1 x1 x1

c1

0 1 2 3

x3 x3 x3 x3

c3

0 1 2 3

..........

1rst-min2nd-min3rd-min4th-min

x2

a)

b)

Figure 2.26: Architecture for the first stage (l = 0) of a 4-minimum finder in a 27-
element list.

×

× × × − ×

106

2.3 Multiple-vote algorithm and architecture

N

N

107

Chapter 2. Contributions to non-binary low-density parity-check decoding

- - -

x0x'0 x0 x'1 x0

+

x'2

-

x0 x'3

- - -

x1x'0 x1 x'1 x1 x'2

-

x1 x'3

- - -

x1x'0 x1 x'1 x1 x'2

-

x1 x'3

.....

+
+

+ +
+

+ +
+

+ +
+

+ +
+

+ +
+

+ +
+

c0 c1 c3
+

c4

c'0
c'1

c'2

c'3

x0 x0 x1

c0

4 4

4th-min

c'0

3

c1

x'1

3

c'1

2

c2

x'2

2

c'2

x2

1

c3

x'3

1

c'3

x3

x2

1rst-min

4 4

c3

x'3

c'3

x3

x2

a)

b)

Figure 2.27: Architecture for stages which are different from the first one (l > 0) of a
4-minimum finder in a 27-element list. The index 0 of the inputs is for the 4th minimums
and the index 3 is for the 1rst minimums.

108

2.3 Multiple-vote algorithm and architecture

109

Chapter 2. Contributions to non-binary low-density parity-check decoding
T
a
b
le

2
.1
4
:
T
h
eo
re
ti
ca
l
es
ti
m
a
ti
o
n
o
f
a
re
a
-c
o
m
p
le
x
it
y
fo
r
M
V
-S
F
A

m
es
sa
g
e
p
a
ss
in
g
a
rc
h
it
ec
tu
re

w
it
h
cl
ip
p
in
g
a
n
d
Q

b
=

7
b
it
s

a
n
d
Q

′ b
=

5
b
it
s,

(1
5
2
7
2
2
8
X
O
R

g
a
te
s)

−
×

×
×

×
−

×
×

×
×

×
×

×
×

×
×

−
×

×
−

−
×

×
×

−
×

×
×

×
×

×
×

×

T
a
b
le

2
.1
5
:
T
h
eo
re
ti
ca
l
es
ti
m
a
ti
o
n
o
f
a
re
a
-c
o
m
p
le
x
it
y
fo
r
R

m
in
im

u
m

fi
n
d
er

in
a
d
c
li
st

(r
a
d
ix

R
,
R

=
L
=

4
)
a
n
d
Q

b
=

7
b
it
s

×
−

×
×

×
−

×
×

×
⌈

×
⌉

⌈
×

⌉
⌈

×
⌉

⌈
×

⌈
×

⌈
−

×
⌉

⌈
−

×
⌉

⌈
−

×
⌉

⌈
−

×
⌉

⌈

110

2.3 Multiple-vote algorithm and architecture

Table 2.16: Estimated results of ES-GBFDA and MV-SFA partial parallel architectures

Algorithm ES-GBFDA MV-SFA

Code (837,723) (837,726)

Code Rate 0.86 0.86

GF 32 32

(dc, dv) (26,4) (27,4)

Process 90 nm analytic methods

Qb (Q′
b) 5 bits (3 bits) 7 bits (5 bits)

Iterations 10 10

Frequency (MHz) 238 238

Latency (clock cycles) 1620 1845

Throughput (Mbps) 615 540

Gate count (XORs) 847K 1.5M

Performance loss compared to EMS and Min-max (dB) 0.7 0.26

Efficiency (Mbps/M-XORs) 726 360

2.3.4 Conclusions of the multiple-vote symbol flipping
algorithm

111

Chapter 2. Contributions to non-binary low-density parity-check decoding

2.4 Comparisons with other works

The first architecture for a NB-LDPC code was proposed in 2007, the code had
half-rate and short codeword length and reached 44Mbps [45]. Since then, a large
number of papers about this topic have been published. Most of them were more
focused on providing simplifications and reductions of complexity of EMS and Min-
max decoding algorithms, specially the check node processing, than in hardware
architectures. This was due to the fact that there were some important bottlenecks
in both storage resources and speed, that only could be solved from an algorithmic
perspective.

First, most of the results related with ASIC technology were based on estima-
tions or analytic methods, because the objective of these works was to have an
approximate idea of the area of the derived architectures. These analytic methods
allowed authors to quantize the hardware improvements derived from their algo-
rithmic proposals as fast as new algorithmic improvements were proposed. There
was no a real interest in implementation as decoders were to slow and big, and in a
short period other contributions would come out. So, there was a high probability
that during the implementation of the architecture a different algorithmic proposal
was published and a more efficient architecture would be proposed. Changes in
algorithms were faster than the time required to complete a full design, so there
was no a real motivation to make HDL models. Most of these works were proposed
during 2010 and provided a new method to evaluate in a short period of time the
interest of the NB-LDPC algorithms [46], [47], [48], [49], [17] and [50]. However,
the increase of area due to routing and speed cannot be estimated in an accurate
way with these methods. Moreover, during this time solutions for wireless com-
munications were proposed [21], accomplishing area and speed constraints for this
kind of applications based on real implementation results. This first period was
also interesting because researchers started to give results of decoders for high-rate
codes with medium GF length, highlighting the difficulties of reaching high-speed
and low area with architectures derived from EMS and Min-max algorithms.

Although some synthesis results were published before 2012, [11], [51], [52], they
were all focused on half-rate codes. The first main contribution to high-rate codes
decoding architectures based on synthesis results was published at the beginning
of 2012 in [18]. The architecture was a configurable decoder which reached a
throughput 16Mbps with and area of 1.37M gates for the (837,726) NB-LDPC
code with a 180nm CMOS process. Thanks to the real implementation of this
architecture, accurate results in terms of area and critical path were provided for
the first time. During 2012, more architectures have been published including now
synthesis results, being the most efficient ones [53], [54] and [55]. Unfortunately,
even the fastest architecture, proposed in [55], has a limited throughput of 64Mbps
with an area of 1.29M gates for the (837,726) NB-LDPC code with a 180nm CMOS
process. This limitations in throughput are produced because VLSI designers base

112

2.4 Comparisons with other works

their architectures on EMS and Min-max algorithms and they do not want to
introduce any performance loss. However, it seems that if higher throughput wants
to be achieved some coding gain needs to be sacrificed. Following this reasoning, a
low complexity algorithm similar to T-EMS, named as relaxed Min-max [24], has
been proposed. Despite its low complexity throughput is still low, 66Mbps. Other
architectures derived from T-EMS algorithm with higher degree of parallelism are
estimated to reach a throughput of 337Mbps [25]. These estimations have to be
corroborated by place and route results, because it is easy that for codes over field
above GF(16), routing congestion may reduce the maximum frequency achievable.
Despite that, T-EMS algorithm is an interesting option for codes over low field
order and, in addition, more simplifications, a part from the ones proposed in [24]
must be developed if higher throughput wants to be reached with GF(16) and
above. This simplifications will introduce also some performance degradation, but
this will be future work.

Before making comparison with other works, it is important to remark two more
ideas: i) to the best knowledge of the author, only the work published in [53]
provides post place and route results; and ii) none previous work on architectures
for symbol-flipping algorithm with high-rate codes has been proposed a part from
the ones included in this manuscript, even when at [42] was shown that these
algorithms can reach 193Mbps with half-rate codes. With regard to the first is-
sue, we think that it is very important to provide in the future post place and
route results, because wiring problems and routing congestion are very likely to be
suffered by LDPC decoders [22] and specially in the non-binary ones (long discus-
sions about this topic have been included along this manuscript). With synthesis
results we can have an idea of complexity in terms of area and throughput, but
only after place and route we can certainly know what is the real speed and size
of the decoder. About symbol-flipping for high-rate codes, we think that they can
be an interesting alternative to EMS and Min-max algorithms, as their CNU is
less complex and allows us to derive more simple architectures with higher degree
of parallelism. More work has to be done related with this topic, which has been
abandoned mainly for the performance loss that introduces. However, as we will
see next, decoders with similar performance to EMS and Min-max algorithms and
higher hardware efficiency can be derived from GMV-SFA, in particular MV-SFA.

In Table 2.17, the most efficient architectures found in literature are included 8. In
addition, from all our proposals detailed in this chapter we have just selected the
most efficient in terms of hardware derived from GBFDA, SES-GBFDA architec-
ture, and the architecture for MV-SFA. As there is a different FER performance
in both contributions, we have included results from other works for FER perfor-
mance close to GBFDA and with the original FER performance detailed in each
publication. To include results for a FER performance close to GBFDA we have

8Note that the fully parallel T-EMS architecture is not included because only estimation of
the CNU unit is done for a (837,726) NB-LDPC code

113

Chapter 2. Contributions to non-binary low-density parity-check decoding

Table 2.17: Efficient architectures for high-rate NB-LDPC codes

Algorithm Min-Max [53] Min-
Max [54]

Simplify
MS [55]

Relaxed
Min-

Max [24]

SES-GBFDA MV-SFA

Code (837,726) (837,726) (837,726) (837,726) (837,723) (837,726)

Code Rate 0.86 0.86 0.86 0.86 0.86 0.86

GF 32 32 32 32 32 32

(dc, dv) (27,4) (27,4) (27,4) (27,4) (26,4) (27,4)

Process 90 nm 130 nm 180 nm 180nm 90 nm analytic methods

Report post-layout synthesis synthesis synthesis post-layout analytic methods

Qb (Q′
b) 7 bits 5 bits 5 bits 5 bits 5 bits (1 bit) 7 bits (5 bits)

Frequency
(MHz)

260 500 200 200 277 238

Iterations 15/4 15/4 15/4 15/4 10 10

Latency (clock
cycles)

N/A 28215 /
7524

12995 /
3454

12675 /
3380

1620 1845

Throughput
(Mbps)

29/108.75 64/240 64/240 66/247 717 540

Throughput-
90nm
(Mbps)

29/108.75 107/400 149.3/560 154/576.3 717 540

Gate count
(XORs)

1.32M 1.06M 806K 544K 468K 1.5M

Area (mm2) N/A N/A N/A N/A 6.6 N/A

Performance
loss compared
to EMS (dB)

0.05/0.8 0.05/0.8 0/0.75 0.07/0.82 0.7 0.26

Efficiency-
90nm

(Mbps/M-
XORs)

21.96/82.4 101/377 185/695 283/1059 1532 360

calculated throughput and latency with four iterations, because we have shown in
Section 2.1.4, 2.2.5 and 2.3.2 that Min-max algorithm with four iterations reaches
a FER performance close to GBFDA for the (837,726) NB-LDPC code. So SES-
GBFDA is compared to other architectures with four iterations and MV-SFA is
compared with the original number of iterations, because FER performance can-
not be included in the efficiency parameter and we want to perform comparisons
as fair as possible. We want to remark once again that SES-GBFDA cannot reach
higher coding gain with higher number of iterations because it is limited by the
lack of soft information in the check node. Finally, for comparisons between the
proposals of this manuscript, we refer the reader to the end of each subsection.

First, SES-GBFDA is compared to [53] , [54], [55] and [24] with 4 iterations.
In terms of hardware resources, SES-GBFDA requires 2.26, 2.8, 2.97 and 1.2

114

2.4 Comparisons with other works

times less area than [53] , [54], [55] and [24], respectively. In terms of speed, the
throughput achieved by SES-GBFDA is 6.5, 1.8, 1.3 and 1.2 times higher com-
pared to [53], [54], [55] and [24] respectively. Under a similar FER performance,
SES-GBFDA proposal is at least 30.8% more efficient than EMS and Min-max
architectures.

With regard to MV-SFA 9, the comparisons are performed with [55] and [24] with
15 iterations. MV-SFA has a performance loss of 0.19dB compared to the most
efficient Min-max proposal. In terms of area requires 2.7 times more area than
the architecture in [24]. However, MV-SFA reaches a throughput 3.5 times faster.
Hence, MV-SFA is 27% more efficient than the decoder in [24] at a cost of 0.19dB
of performance loss. Compared to the most efficient MS architecture, our decoder
requires 1.86 times more area, but reaches a throughput 3.6 times higher. The
decoder for MV-SFA is 1.95 times more efficient compared to the one in [55] based
on EMS, but a difference of 0.26dB in coding gain should be taken into account.

To complete this section of comparisons we include upper and lower bounds of
complexity and efficiency in terms of Mbps/M-XORs. As an upper bound (high-
est complexity), the most efficient architecture for log-QSPA is considered [15]. As
lower bound, the binary decoder from [56] is selected, following the most recent
non-binary VLSI works [24]. Note that Table 2.18, which includes these architec-
tures, is separated from the rest of designs found in literature because comparisons
in this case are just a reference of the order of complexity, not fair comparisons,
as QSPA is too inefficient from a hardware point of view and the binary code
only has the same length in terms of bits and the same rate but not the same
degree distribution. In addition, the reader should also remember that NB-LDPC
codes can gain advantage over binary codes when high order modulations are ap-
plied or burst errors should be corrected (see Section 1.6). For this reasons a fair
and generalizable comparison between the binary and NB-LDPC is not possible,
and the next results shown are just useful to understand the magnitude of the
problem of designing architectures for NB-LDPC codes. As can be seen in Table
2.18 the QSPA decoder from [15] requires 3.5 times more area than the MV-SFA
one. Moreover, QSPA latency is about 2.4 times higher than MV-SFA, providing
a throughput 2.4 times lower than our proposal. For the same 90nm technology
we can conclude that QSPA is 8.5 times less efficient than MV-SFA decoder. The
binary decoder from [56] has a latency 3.7 times lower and a throughput 3.8 times
higher than our proposal . The binary decoder with the same length and rate as
the non-binary one requires 3 times less area than the MV-SFA architecture. In
terms of efficiency measured as Mbps/M-XORs, the binary decoder is about 12
times more efficient than the MV-SFA decoder for the same code length and rate.

9Remember that area results are overestimated to compensate some possible deviations of the
analytic method. Throughput results are computed using the post place and route frequency
of ES-GBFDA, because both MV-SFA and ES-GBFDA have the same critical path. Latency is
estimated duplicating the number of pipeline stages.

115

Chapter 2. Contributions to non-binary low-density parity-check decoding

Table 2.18: Upper and lower bounds for binary and non-binary LDPC architectures

Algorithm log-QSPA [15] Binary Min-sum [56]

Code (837,726) (4191,3602)

Code Rate 0.86 0.86

GF 32 2

(dc, dv) (27,4) (36,4)

Process 90 nm 65 nm

Qb 7 bits 5 bits

Frequency (MHz) 250 300

Iterations 5 15

Latency (clock cycles) 4460 495

Throughput (Mbps) 223 2100

Gate count (XORs) 5.3M 495K

Efficiency-90nm (Mbps/M-XORs) 42 4242

2.5 Conclusions

116

2.5 Conclusions

U F

117

Part II

Algebraic soft-decision
Reed-Solomon decoding

Chapter 3

State of the art of algebraic
soft-decision Reed-Solomon
decoding algorithms

In this chapter the reader will find: i) a brief summary of the basic concepts
of Reed-Solomon (RS) codes; ii) comparisons between algebraic soft-decision algo-
rithms for high-rate codes with the aim of concluding which is the most interesting
from a hardware perspective suitable for high speed; and iii) the principles of low
complexity Chase decoding algorithm.

3.1 Background concepts of Reed-Solomon codes

Let us define a (N,K)RS code over GF(q) (q = 2p). The total number of symbols
that constitutes the codeword c(x) is given by N = q−1. If systematic encoding is
performed, c(x) includes K information symbols and N −K = 2t parity symbols
incorporated by the encoder. The received polynomial at the decoder is r(x) =
c(x) + e(x), where e(x) is the error of the channel, and c(x) is the transmitted
codeword.

A hard-decision RS decoder is composed of four blocks (Fig.3.1). Those are (i)
syndrome-computation, (ii) key-equation solver (KES), (iii) Chien search, and (iv)
Forney’s algorithm.

In the syndrome-computation step, 2t syndromes of the message polynomial r(x)
are computed as

121

Chapter 3. State of the art of algebraic soft-decision Reed-Solomon decoding algorithms

Syndrome

computation
KES Chien

search

Forney's

algorithm

r(x)

+

FIFO

S(x) λ(x)

ω(x)

e(x) c(x)

Figure 3.1: Block diagram of a generic Hard-Decision RS decoder

Si =
n−1∑
j=0

rjα
i, for i=1 to 2t (3.1)

where, α is an element of the field GF(q) and rj is each one of the coefficients from
r(x). r(x) has erroneous symbols if at least one of the 2t syndromes is different
from zero. In the next step, an error locator polynomial λ(x), and a magnitude
polynomial ω(x), are computed by a KES algorithm, solving Equation 3.2.

λ(x) · S(x) = ω(x) mod xn−k (3.2)

The solution of Equation 3.2 is obtained by the KES, which can be implemented
applying either Euclid’s algorithm or Berlekamp-Massey algorithm. S(x) is a
polynomial composed of Si syndrome coefficients computed in Equation 3.1.

After the KES block, the Chien search is performed to extract the positions of the
errors in the polynomial e(x) applying Equation 3.3.

λ(α−i) = 0, for i =0 to n (3.3)

During this step a decoding failure (DF) can be detected. The KES process pro-
vides an error locator polynomial λ(x), with the same degree as the number of
detected errors [57]. This happens only if there are no more than t error symbols
on the message. Therefore, for a received message with h errors, λ(x) is a poly-
nomial of degree h, where h < t + 1. In other words, t is the maximum degree
of the locator polynomial λ(x). The zeros of Equation 3.3 are the roots of λ(x)
and indicate the error position. A decoding failure happens if a received message
generates an error locator polynomial λ(x) of degree higher than the number of
roots obtained during the Chien search. In that case the number of errors is higher
than t, and therefore, the decoder cannot recover the message correctly.

The last step of the hard-decision decoder is the implementation of Forney’s algo-
rithm to compute the magnitude of the errors, e(x), at the error locations extracted
by the Chien Search. The magnitudes are calculated evaluating the power of α

122

3.2 Complexity of soft-decision algorithms for Reed-Solomon codes

that represents an error position, where λ′(x) is the formal derivative of λ(x),
Equation 3.4.

ei =
ω(αi) · λ(αi)

λ′(αi)
,if λ(αi) = 0 and ei = 0,if λ(αi) ̸= 0 (3.4)

Once the error locations and their magnitudes are determined, e(x) is subtracted
from r(x) to recover the transmitted message.

3.2 Complexity of soft-decision algorithms for
Reed-Solomon codes

Hard decision decoders (HDD) involve low complexity, but they do not use the
soft information from the channel. This fact turns their FER performance not
acceptable in many future and even current communication and storage systems.
To provide some coding gain, different soft-decision methods have been proposed:
algebraic soft-decision (ASD) algorithms [58], maximum likelihood decoding [59],
reliability based ordered statistics decoding [60] and belief propagation decoding
[61]. Maximum likelihood and reliability based ordered statistics decoding for RS
have a complexity that grows exponentially with the codeword length in terms
of bits, N × p, so it is not convenient for high-rate codes, usually with large
code length. Belief propagation for RS is more complex than NB-LDPC decoding
and although belief propagation can get 0.7dB of coding gain compared to other
ASD algorithms for high-rate codes, its complexity is higher enough for not being
considered by the VLSI community. The most efficient algorithms from a hardware
point of view are ASD ones. Some architectures derived from these algorithms can
reach a throughput of Gbps, however, their coding gain is limited, even with the
highest complexity.

The first ASD method was Koetter-Vardy (KV) algorithm [58]. KV algorithm
consists of three main steps: multiplicity assignment, interpolation and factoriza-
tion. The multiplicity assignment step creates a matrix which is proportional to
the reliability information from the channel, this matrix is named as multiplicity.
Depending on the value of the multiplicity, a symbol is considered more or less
reliable. The levels of multiplicity applied in the algorithm depends on the degree
of precision that is required to classify the reliability of the different symbols. As
it is reasonable to assume, with more levels of multiplicity, bigger coding gain can
be obtained. During the interpolation process a bivariate polynomial is computed
taking into account the multiplicities of the symbols. The larger is the maximum
multiplicity, the larger is the complexity of the interpolation. Even with the min-
imum multiplicity value, interpolation is the stage that involves major part of the
decoding complexity. To solve interpolation step, the most commonly used al-

123

Chapter 3. State of the art of algebraic soft-decision Reed-Solomon decoding algorithms

gorithm is Nielsen’s one [62]. In [63] an interpolation technique for reducing the
computational complexity, named Lee-O’Sullivan interpolation, was proposed. Al-
though this algorithm is more efficient than Nielsen’s one, it cannot be described
as a recursive method, which does not allow us to use information from previous
processed points [64]. The bivariate polynomial obtained with the interpolation
contains the locations and magnitudes of the error in their roots. To extract this
information a factorization process is required. To compute factorization Roth-
Ruckenstein algorithm is applied [65].

The main problems of KV are: i) its complexity grows fast with the maximum
multiplicity; and ii) works with all the symbols from the codeword, which requires
the processing of an extremely large number of points at each iteration of the
interpolation. This makes difficult to achieve high throughput with a reasonable
area [66].

A technique called re-encoder was proposed to reduce the number of interpolation
points [67]. Using this method, based on the use of erasure decoders, the com-
plexity of the interpolation step is reduced: for a (N,K)RS code, instead of N
points, just N −K points need to be interpolated. This method improves signifi-
cantly the throughput and reduces the area requirements. But, interpolation and
factorization complexity are still high.

In addition, two decoding methods were proposed to reduce the maximum value
of multiplicity. They are: low complexity Chase (LCC) decoding [68] and the
bit-level generalized minimum distance (BGMD) decoding [69].

LCC decodes different versions of the received sequence, building a list of test-
vectors in which only the unreliable elements are modified. LCC requires a max-
imum multiplicity of one, because it just has to distinguish to different levels of
reliability, reliable symbols and unreliable symbols. For high rate codes, LCC de-
coding with a short number of test-vectors achieves the same FER performance
as KV algorithm with m = 4 [64]. Due to its advantage of a maximum multi-
plicity one, interpolation and factorization complexities are reduced, if these are
combined with re-encoder. LCC proposals in literature are based on Nielsen’s in-
terpolation since it needs to change points during the interpolation process. So,
Lee-O’Sullivan’s interpolation cannot be used for LCC. Several algorithms and ar-
chitectures have been proposed to implement LCC decoders [68], [64], [70] and [71].
The main schedules for solving LCC efficiently are the hypercube and the binary
tree. Solutions based on hypercube apply a low complexity algorithm named back-
ward interpolation [64]. Backward interpolation reduces the size of the storage of
the intermediate interpolation results using Nielsen’s algorithm special properties.
For the binary tree based a modified version of Nielsen’s is proposed in [71]. This
algorithm reduces the number of steps required by the interpolation algorithm to
process the test vectors. Hence, the derived architectures have a more reduced
latency than the ones based on backward interpolation, but at a cost of an slightly

124

3.3 Low complexity Chase algorithm for Reed-Solomon soft-decision

increase of area. Moreover, regardless of the interpolation algorithm, since the
LCC works with a maximum multiplicity of one, an alternative method called
free-factorization, which avoids the Roth-Ruckenstein factorization step, is intro-
duced in [70] for reducing the complexity of LCC decoder. The most efficient
LCC decoder to the knowledge of the author consists of a re-encoder, a Nielson’s
interpolator, a method to extract the roots of the interpolator and one erasure
decoder [70].

BGMD decoder [69] works with a maximum multiplicity two, and for high-rate
codes achieves the same performance as KV algorithm with m = 4. The derived
architectures are more efficient in terms of area and throughput than the ones of
KV algorithm, and can incorporate the re-encoding technique. Architectures for
BGMD decoder were proposed in [72] and [73]. BGMD decoder consists of a re-
encoder along with a Nielsen’s interpolator combined with backward interpolator
[73] or the Lee-O’Sullivan interpolator [72], followed by factorization. Since its
maximum multiplicity is two, no free-factorization methods can be applied to it.
BGMD is found to be less efficient in terms of area and speed than LCC for the
same FER performance, [70], [73], [74]. We detail LCC principles in the next
section.

3.3 Low complexity Chase algorithm for Reed-Solomon
soft-decision

The main steps for LCC decoding are: i) multiplicity assignments, ii) creation of
the test-vectors, iii) decoding and iv) selection of the correct test-vector . To assign
multiplicities a ratio between the probability of the hard-decision symbol, zn, and
the second best decision, z′n, is established, Equation 3.5. This ratio indicates how
reliable the hard-decision is.

Π1×n =

[
P (r0|P (z0)

P (r0|P (z′0)
...

P (rn−1|P (z(n−1))

P (rn−1|P (z′(n−1))

]
(3.5)

For LCC decoding, the maximum multiplicity takes a value of one, and represents
the most reliable symbols, which are the ones with higher ratio in Equation 3.5.
The rest of the symbols have zero-multiplicity. With the multiplicity information
LCC decoding creates 2η different test-vectors. Each test-vector is a different re-
ceived sequence of symbols with a probability similar to the hard decision sequence.
The parameter η represents the number of points with the worst probability ratio
between the hard-decision and second best decision that will be considered. For
these η positions, zero-multiplicity will be assigned. In order to keep the decoder
complexity low to avoid impractical implementations, it must be accomplished
that η < 2t, as indicated in [68]. To build the 2η test-vectors, both zn and z′n will

125

Chapter 3. State of the art of algebraic soft-decision Reed-Solomon decoding algorithms

be considered in the zero-multiplicity locations, as they have similar probabilities
to be correct. So, the decoder needs to process all the possible combinations of
zn and z′n in the η locations, which leads to 2η different vectors to test. As it
would be totally inefficient using 2η decoders or iterate over the same decoder 2η

times, computation can be shared, mapping the common points in a hypercube or
a binary tree, as we can see at Fig. 3.2 and 3.3. As it is very likely that different
test vectors will lead to different decoded codewords, a method to select which
test-vector has provided the correct solution, if it exists, is required.

zn0-zn1-zn2

zn0-z'n1-zn2z'n0-zn1-zn2

z'n0-z'n1-z'n2

zn0-z'n1-z'n2
z'n0-zn1-z'n2

Figure 3.2: Test vectors mapped in a hypercube for a decoder with η = 3.

LCC decoding obtains its coding gain not because of the algorithm applied to
decode each test-vector, but due to the fact that there is a high probability that
considering z′n instead of zn some errors are corrected before the decoding. Select-
ing the locations in which the hard decision is weak due to the noise, and changing
it by the second best decision reduces the number of symbols with errors to t in
some cases, and allows the decoder to recover the correct message. It is impor-
tant to remark that the algorithm to be applied to decode the test-vectors is not
specified in the original paper where Chase’s method was published, [75]. Using
interpolation it is not mandatory, but convenient. Applying interpolation methods
to the binary tree [71] or the hypercube mapping [70] have shown some advantages
as resource and computation sharing compared to KV algorithm. However, this
method has also some drawbacks, like requiring two hard decision decoders based
on erasures, one for the re-encoder and another to avoid factorization. Moreover,
applying interpolation for decoding RS has not any advantage from a coding gain
perspective when multiplicity is one. In [76] it is demonstrated and illustrated with
an example that there is no difference between the coding gain of a decoder based
on Nielsen’s algorithm with multiplicity equal to one and a HDD decoder. How-
ever, the use of traditional HDD methods based on key-equation solvers (KES)

126

3.3 Low complexity Chase algorithm for Reed-Solomon soft-decision

z
n
0 -z
n
1 -z
n
2

z
n
0 -z
'n
1 -z
n
2

z
'n
0 -z
n
1 -z
n
2

z
n
0 -z
n
1 -z
'n
2

z
'n
0 -z
'n
1 -z
'n
2

z
'n
0 -z
'n
1 -z
n
2

z
n
0 -z
'n
1 -z
'n
2

z
'n
0 -z
n
1 -z
'n
2

zn0 z'n0

zn1 z'n1 zn1 z'n1

zn2 z'n2 zn2 z'n2 zn2 z'n2 zn2 z'n2

Figure 3.3: Test vectors mapped in a binary tree for a decoder with η = 3.

127

Chapter 3. State of the art of algebraic soft-decision Reed-Solomon decoding algorithms

like Berlekamp-Massey or Euclidean algorithms [76], [77] have not been consid-
ered suitable to recover the information, because they involve more products than
methods based on interpolation using the re-encoding technique. Such an affirma-
tion is true if no simplifications are made and the decoding of the test-vectors is
performed in brute force manner, applying one HDD to each test-vector.

In the next chapter, we will show that the test-vectors have some common points
that allow us to reduce the complexity and increase the speed if HDD is applied
to LCC decoding.

3.4 Conclusions

In this chapter we review the basics of Reed-Solomon hard-decision and soft-
decision decoding. The conclusions are:

• Hard-decision Reed-Solomon algorithms have a limited error correction ca-
pacity.

• If higher coding gain wants to be achieved, soft-decision algorithms are nec-
essary.

• Algebraic soft-decision algorithms are the soft-decision solutions that allow
us a moderate increase of coding gain with reduce complexity.

• Algebraic soft-decision algorithms based on low complexity Chase decod-
ing are more efficient than other algorithms such as Koetter-Vardy, because
work with a lower multiplicity, which reduces the number of computations
required.

• Low complexity Chase decoding schemes are based on interpolation, which
requires, a part from the interpolator, a re-encoder, an erasure decoder,
Chien search block and Forney’s algorithm.

• It is not mandatory to use interpolation for low complexity Chase decoding,
just a decoder that corrects t error by test vector is necessary.

128

Chapter 4

Contributions to algebraic
soft-decision decoding algorithms

In this chapter the reader will find the algorithmic and architectural contributions
of the thesis to the field of algebraic soft-decision decoding. There are two main
sections. The first one proposes a new scheme to perform low complexity Chase
decoding algorithm based on hard decision decoding algorithms. The second sec-
tion includes the proposed architecture derived from the low complexity Chase
algorithm. Comparisons with the existing architectures for this algorithm are also
performed in this section. The last section summarizes the conclusions of this
chapter.

4.1 Low complexity Chase decoding algorithm based on
HDD

The method proposed in this section combines the hard-decision decoding tech-
niques with LCC decoding to decode the RS codes using the channel information.

The problem we face up while we are using a procedure like hard-decision decoding
for LCC arises mainly due to the fact that LCC decoder requires to decode 2η test-
vectors. If the decoding of each test-vector is performed directly by an independent
hard decision decoder, the computational complexity would increase prohibitively.
Furthermore, a mechanism to choose the correct decoded vector is not proposed
yet for HDD. Therefore, a selection process to choose the correct test-vector is
needed and modifications are required in the traditional HDD steps to reduce its
complexity.

129

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

The block diagram of the proposed decoder is shown in Fig.4.1. The steps of the
decoder are: multiplicity assignment, syndrome computation, KES, Chien Search,
decoding failure (DF) detection and Forney’s algorithm. The main ideas are: i)
to share the computation of the common symbols among the test-vectors in the
syndrome computation stage to exclude the redundant processing; and ii) to select
the correct test-vector by means of detecting a decoding failure.

Syndrome

computation

Shared

KES

Chien

search

Forney's

algorithm

r(x)

+

FIFO

e(x) c(x)
Multiplicity

assignment

Partial

syndrome

computation

of the common

symbols

Contribution

of the uncommon

symbols

S1(x)

S2η(x)

λ1(x)

ω1(x)

λ2η(x)

ω2η(x)

Root

counter

Degree

counter

Decoding

failure

detection

Figure 4.1: Block diagram of the LCC soft-decoder based on decoding failure

4.1.1 Multiplicity assignment

The multiplicity assignment for the proposed LCC decoding algorithm is different
from that used in works based on interpolation. With the HDD there is no need
of re-encoding to reduce the number iterations. Hence, it is not necessary to force
2t unreliable symbols, because it is not required to mark 2t erasures in the re-
encoding process 1. With the LCC decoder based on HDD, zero-multiplicity is
assigned just to η symbols to create the 2η test-vectors. The rest of symbols are
considered as one-multiplicity.

To classify the multiplicity of the symbols, the probability ratios for the received
message r(x) (Equation 3.5) are sorted. The η symbols with the minimum ratio
values are denoted as zero-multiplicity. The locations of these η symbols will be
the ones with different values for the test-vectors, zn or z′n.

1Note that the re-encoder is implemented by means of an erasure decoder, as we mention in
the previous chapter

130

4.1 Low complexity Chase decoding algorithm based on HDD

4.1.2 Syndrome computation

To apply HDD to LCC decoding a modification of the conventional syndrome pro-
cessing is required. For doing this it is necessary to use multiplicity information
of the LCC decoder. Algorithm 1 describes the proposed modified syndrome com-
putation. First, the n − η symbols with one-multiplicity are used for the partial
syndrome computation of the common symbols of all the test-vectors (step A1).
Second, the contribution to the syndrome of the hard-decision and the second
hard-decision values of each one of the η zero-multiplicity symbols are calculated
(step A2). Finally, the syndrome computation is finalized by combining the results
of the previous computation to form the 2η test-vectors (step A3).

In the description of Algorithm 13, zn represents the hard-decision of the received
symbols, z′n is the second best decision, and Mn denotes the multiplicities. The
computation of partial values of the 2t syndromes having the common symbols
is represented as scg. The representation sjg is used for the contribution to the
syndromes of the uncommon η locations with multiplicity zero. The subindex
g indicates the syndrome which is computed. The superscript j represents the
number of test-vector from the 2η possible ones. If the information is computed
with hard-decision symbols, the syndrome for the uncommon symbol is represented
as sjg; if the second best decision is computed, the syndrome is denoted as s

′j
g . For

the final syndrome representation of each test-vector, we use Sd
c , where c represents

the syndrome that is stored, (from 1 to 2t), and d is the binary representation of
the number of test-vectors. The binary representation of the test-vectors is used
to indicate that ‘0’ is equivalent to a contribution made with a zn symbol and ‘1’
is used to indicate that the computation is done by means of z′n. For example, if
LCC decoding works with η = 4 and a syndrome S0101

2 is evaluated, it means that
the syndrome corresponds to the α2 evaluation, and the contributions for the η
uncommon symbols used to compute the syndrome are a combination of zn3, z

′
n2,

zn1 and r′n0.

Note that such a syndrome computation based on two steps, i) the partial syn-
drome computation of the common symbols and ii) inclusion of contribution to the
syndrome of the uncommon symbols, is less complex than the brute-force one. This
is due to two facts: first, the products of the common symbols are not repeated
for each test-vector; second, the η different symbols only require 2η products per
syndrome, (i.e., two products per symbol per syndrome: one for zn and other
for z′n), instead of the 2η products per syndrome that a straight-forward method
would have required. The output of the syndrome-computation is 2t syndromes
per test-vector.

131

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

Algorithm 13 Syndrome computation for LCC decoding

Input: zn, z
′
n, Mn

for i = 0 → N do
if Mi = 1 then
for g = 1 → 2t do

A1:
scg= zi · αg·i + scg

end for
else
if j < (η + 1) then

for g = 1 → 2t do
A2:
sjg= zi · αg·i

s
′j
g = z′i · αg·i

j = j + 1
end for

end if
end if

end for
for b = 1 → 2t do
A3:
S00...0
b = scb + sηb + s

(η−1)
b + ...+ s0b

S00...1
b = scb + sηb + s

(η−1)
b + ...+ s

′0
b

....................
S11...1
b = scb + s

′η
b + s

′(η−1)
b + ...+ s

′0
b

end for
Output: Sb−00...0, Sb−00...1, ...Sb−11...1, b=1 to 2t

132

4.1 Low complexity Chase decoding algorithm based on HDD

4.1.3 Key equation solver

Once the syndromes of the 2η test-vectors are computed, KES is applied to each
of the test-vectors. There are two algorithms for the realization of KES that have
been widely studied from a hardware perspective. One of them is Berlekamp-
Massey (BM) algorithm [78], [79], [80] and the other is Euclidean algorithm [81],
[82] , [83]. The original descriptions of both algorithms have been modified, and
different versions have been proposed in literature. The recent-most versions are
the Ultra-Ultra Folded inversionless Berlekamp-Massey (UiBM) algorithm [79] and
the modified Euclidean (ME) [81] algorithm, which provide the best throughput
and area performances.

The inputs (syndromes) and outputs (λ(x), ω(x)) of both algorithms, are identical
and the techniques and the definitions presented in this manuscript can be applied
to both of them. We have preferred to use the BM algorithm for the proposed LCC
decoder, because of its potential for lower latency of implementation compared to
Euclidean algorithm. However, we have not selected the UiBM version because
it requires processing intermediate polynomials with higher order than previous
versions of BM, and consequently requires more registers. Instead of UiBM, the
inversionless Berlekamp-Massey (iBM) algorithm from [78] is used in the proposed
decoder, Algorithm 14.

The outputs of KES process in LCC decoder are error locator polynomials, λ(x),
and a magnitude polynomial, ω(x), for each of the test-vectors. These polynomials
have a maximum degree of t. The degree of the λ(x) of each test-vector is stored
to perform the necessary comparisons to detect the occurrence of decoding failure.

4.1.4 Chien search, Forney and test-vector selection

The next step is to extract the roots of λ(x). The most efficient method is the Chien
search. One Chien search for each test-vector is performed, and the number of
zeros is counted. After the completion of Chien Search, the number of zeros/roots
of this step, and the degree of λ(x) are compared. The first test-vector that has the
same degree as the number of roots is selected to run the Forney’s algorithm. The
fact of having the same degree and number of roots ensures that the test-vector
is free from decoding failure. Therefore, if one of the 2η test-vectors has less than
t+1 errors then decoder will be able to correct them in all cases. The comparison
between roots and polynomial degree conforms the test-vector selection step.

133

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

Algorithm 14 Inversionless Berlekamp-Massey algorithm

Input: 2t syndromes, λ(x) = 1, A(x) = 1, k = 0, γ = 1
for r = 0 → 2t do
A1:δ =

∑t
n=0 λn · Sr+1−n

T (x) = γ · λi(x)− δ ·A(x) · x
A2:
if δ ̸= 0 and k ≥ 0 then
A(x) = λ(x)
γ = λ
k = −k − 1

else
A(x) = A(x) · x
γ = γ
k = k + 1

end if
λ(x) = T (x)

end for
ωi =

∑i
n=0 λn · Si−n

Output: λ(x) and ω(x)

4.1.5 Frame error rate performance for LCC based on HDD

The proposed LCC decoding based on HDD has the same performance as the
theoretic Chase decoder and the one reported in LCC works based on interpolation
methods.

Fig.4.2 shows the FER performance for a (255, 239)2 RS code using the proposed
LCC scheme with η = 3 and η = 4. We have simulated the proposed decoder
for BPSK modulated message with AWGN. It is shown that LCC gets around
0.3dB of coding gain at a FER of 10−3 with moderated complexity and 10 bits to
quantize the channel information required to compute the multiplicities. Unlike
other codes such as LDPC, Reed-Solomon based on soft-decision does not intro-
duce any degradation such as error-floor, so coding gain for lower FER values can
be estimated extrapolating the slope from the figure.

2The (255, 239)RS code is considered in this manuscript because it is the commonest code in
VLSI literature and optical communication standards.

134

4.1 Low complexity Chase decoding algorithm based on HDD

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
(dB)

F
E

R

Hard decision decoder (255, 239) RS code
LCC based on hard decision (255, 239) RS code, η=3
LCC based on hard decision (255, 239) RS code, η=4

Figure 4.2: FER performance for a (255,239) RS code applying HDD and an LCC
decoder based on HDD for η = 3 and η = 4 over an AWGN channel with a BPSK
modulation

135

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

4.2 Architecture for LCC decoder based on HDD

In this section, a high-throughput architecture for the different stages of the pro-
posed LCC decoder is detailed.

4.2.1 Multiplicity-assignment unit

The first step of LCC decoding is the multiplicity-assignment, which implemented
by the multiplicity-assignment unit. The proposed method makes use of the η
least reliable symbols, which can be found in parallel by using η comparators,
η registers of length Qb

3 to store the channel information, and η registers of p
bits each to store the position of the unreliable symbols. When the first ratio of
probabilities between a hard-decision symbol and the second-best decision arrives
to the multiplicity unit, the η registers are loaded with the channel information
and the position of the symbol. The incoming ratios (corresponding to the newly
received symbols) are compared with the ones stored in the η registers. The
lowest reliability value at each moment is compared with the reliability of the new
symbol, and if it found to be more reliable than the latter, then all the values in
the η registers are shifted through one position, so that the most unreliable value
takes the position of the second most unreliable one, and the new symbol takes
the position of the most unreliable value. As a result, the least unreliable value is
flushed out of the array of η registers when a more unreliable value arrives at. If
the new symbol is less unreliable than the most unreliable symbol, then the second
most-unreliable symbol at that moment is compared with a new symbol. If the
second most-unreliable symbol is found to be more reliable than the new symbol,
then all the values in the η − 1 registers are shifted through one position so that
the second most-unreliable value takes the position of the third most unreliable
one, and the new symbol takes the position of the second most-unreliable value.
The process is repeated for all the symbols in the registers, because these symbols
are placed across the array of registers in the descending order of unreliability
and the arrays of registers hold the η least reliable symbols. The location of the
symbol from which the content of the registers needs to be shifted is identified
by η comparators. After all the N symbols of the received message are passed
through this process, the block of η registers of p-bit each contains the symbols
with zero-multiplicity.

3Let us assume that Qb is the number of bits required to quantize the ratio of probabilities
from Equation 3.1 without introducing performance loss

136

4.2 Architecture for LCC decoder based on HDD

4.2.2 Syndromes computation unit

The syndrome computation unit performs the syndrome computation by means
of Algorithm 13. It has three blocks: i) the partial syndrome computation of the
common symbols, ii) the computation of the contribution to the syndromes from
the differing symbols, and iii) the final computation of all the syndromes from
previous computations. In the next sub-sections we have illustrated the complete
syndrome computations of a (7,5)RS code over GF(8) by three examples. Exam-
ples 4.2.1, 4.2.2 and 4.2.3, respectively explain the partial syndrome computation
of the common symbols, evaluation of the differing symbols and total computa-
tion. Note that all these examples are included only to clarify the behavior of
the proposed architectures. The order of Galois field and the RS code of these
examples are different from the field and the RS code used in the implementation
of the architectures.

Computation of partial syndrome of the common symbols

The computation of partial syndrome of the common symbols is shown in Fig.4.3.
It is based on the recursive computation of the Horner’s rule for polynomial eval-
uation. A multiplexor is used at the input for selecting the symbols with one-
multiplicity for the computation of syndrome, as they are the common symbols
for all the test-vectors. The η symbols with zero-multiplicity are replaced by a
null symbol, for not affecting the result of the evaluation of the common symbols.
The creation and evaluation of the new polynomial composed of common symbols
of the test-vectors is illustrated in Example 4.2.1. The partial syndrome compu-
tation circuit involves 2t constant multipliers, 2t adders, 2t + 1 registers and a
multiplexor as shown in Fig.4.3.

+

x

sc1

+

x

+

x

sc2 sc2t

α α
2 α

2t

zn

0

M
n

D

D D D

Figure 4.3: Architecture for the partial syndrome computation with the common sym-
bols

Example 4.2.1 Consider a (7, 5) RS code over GF(8). In this code, two syn-
dromes can be found. Assume that the received hard decision vector is : α3 · x6 +
α0 ·x5+α5 ·x4+α4 ·x3+α5 ·x2+α4 ·x+α3 and the multiplicity assignment is as
follows : {0,1,1,1,0,1,1 }, as we work with η = 2. For the two unreliable positions,

137

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

x6 and x2, the second best decision is α0 and α3, respectively. To calculate the par-
tial syndrome computation, we replace the symbols of zero-multiplicity by the null
symbol, having as result χ(x) = 0 ·x6+α0 ·x5+α5 ·x4+α4 ·x3+0 ·x2+α4 ·x+α3 =
α0 ·x5 +α5 ·x4 +α4 ·x3 +α4 ·x+α3. Applying the Horner’s rule, we evaluate the
new polynomial with α and α2 to obtain the two syndromes of the (7, 5) RS code:

sc1 = χ(α) = α4, sc2 = χ(α2) = α3

Evaluation of contribution of the differing symbols to the syndrome

A circuit for computing the contribution to the syndrome of the differing symbols is
depicted in Fig.4.4. For the η zero-multiplicity symbols, hard-decision and second
most-reliable decision symbols are stored in a group of 2η registers (SR3). This
information is stored during the partial syndrome computation with the common
symbols. In Example 4.2.2, we can see that we have to store α3 and α0 for the
first differing symbol (as these are the values of the hard-decision and second most-
reliable decision symbols of the first differing symbol) and the α5 and α3 for the
second differing symbol, so four values are stored as per requirement for η = 2.

To know the contribution of the differing symbols to the final evaluation of syn-
dromes, the position of the symbol in the received polynomial must be known.
This position allows us to obtain the appropriate power of α for the evaluation
of the differing symbols. The power of x variable in the positions of the differ-
ing symbols must be known for evaluating each one of those differing symbols
regardless of the rest of the symbols. In the Example 4.2.1, these powers are six
and two, because the positions of the zero-multiplicity symbols correspond to the
x6 and the x2 received symbols. As Example 4.2.2 shows, if we know the value
of these powers we also know that for the first syndrome (evaluated in α) the
evaluation of the variable x in the differing symbols are α6 and α2. For the next
syndrome (evaluated in α2) the evaluation of the variable x in the special symbols
is (α2)6 = α12 = α5 and (α2)2 = α4.

For this task, an exponentiation circuit consisting of a constant multiplier (M1) and
a register is used, where the successive power of α, starting from α0 and ending at
αN−1 are evaluated by recursive multiplications. When a zero-multiplicity symbol
is computed, the value of the register is passed through an inverter circuit and
stored in two different registers (SR1-SR2). The knowledge of the power of α
allows us to count the location of a zero-multiplicity symbol, but the problem is
that the received symbols do not start with the element with x0 of the polynomial;
instead they start with xn−2, as detailed in Example 4.2.2. Therefore, for the
partial syndrome computation, the inverter transforms αy into αn−y−1 using the
properties of binary fields [84], explained in Example 4.2.2.

138

4.2 Architecture for LCC decoder based on HDD

x

αζD

D

GF

inv

D zζ

x D

x

D

α

αθ

αθn αζn

z'ζ

M1

M2

M3

SR1

SR2

SR3

Sout

η

η

2η

Figure 4.4: Architecture for the contribution to the syndrome of the uncommon symbols

The product of the stored hard-decision and the second most-reliable decision
(stored in SR3) by the suitable power of α (stored in SR2) is performed with
the multiplier M2 to obtain their contribution for syndromes of each test-vector.
However, only the contribution to the first syndrome (evaluated on x = α) can be
computed as mentioned previously. That is the reason of using a double storage
for the powers that represents the positions of the zero-multiplicity symbols. Using
the third multiplier (M3) and the shift registers SR1-SR2, (shown in Fig. 4.4), the
powers that represent the locations for the first syndrome can be transformed into
the powers required for the rest of the syndromes. The shift-register, SR1 in the
upper block of Fig.4.4 contains the values of the powers that have been stored for
the first syndrome and the other shift-register (SR2) stores a new power every time
it is shifted, which is calculated by applying Horner’s recursions again. In Example
4.2.2, SR1 and SR2 store the first α6 and α2 (these values are only suitable for the
first syndrome). With the multiplier M3 we perform the multiplication between
α6 of SR1 and SR2 to obtain the value for the second syndrome α6 ·α6 = (α2)2 =
α12 = α5, which is stored in SR2. After a shift of SR1 and SR2, the new output
value is α2, and following the same reasoning of α6, with the multiplier M3, α2 ·
α2 = (α2)2 = α4 is computed and stored in SR2.

As a generic example, when the symbol of the ζ location of the polynomial is
evaluated, the products of zζ and αζ and of z′ζ and αζ are computed by M2. After
that, the two shift registers (SR1-SR2) are shifted and SR2 stores a new value,
α2ζ , which is the result of the multiplication of the outputs of SR1 and SR2 (by
M3). This new value is used for the computation of the contribution to the second
syndrome (evaluated on x = α2). This example can be extended to the rest of

139

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

the syndromes, knowing that shift-register SR1 keeps αζ and the SR-2 stores αζn,
with n from 0 to 2t.

So the proposed architecture allows us to compute the evaluation of the η special
symbols independently, to have the values of the different hard-decision and second
best-decision symbol contributions to the syndromes of each test-vector.

Example 4.2.2 Assuming the conditions of Example 4.2.1, as we have two differ-
ent symbols for each one of the two unreliable positions of the received polynomial:
α3 and α0 for x6, and α5 and α3 for x2. The received symbols are ordered from
x6 to x0. This allows us to apply the Horner’s rule during the partial syndrome
computation, but it makes difficult to compute the powers of the unreliable symbols
for the contribution of the differing symbols. To make the evaluation of the differ-
ing symbols, α3 · x6 or α0 · x6 and α5 · x2 or α3 · x2, we proceed with the following
steps:

• Store the differing symbols, hard decision and second hard decision, in SR3.
The symbols are ordered in SR3 from input to output as follows: α3, α5, α0

and α3.

• Perform the evaluation of x6 and x2, and store the result in SR1 and SR2.

For the evaluation of x6 and x2, we use a Galois field property. This property
uses the inversion definition in which the inverse of a given power of α power is
another power of α, such that multiplication of both those powers of α gives the
result α0 = 1. If we extract all the inverses of a field GF (q), where N = q, we can
proof that the inverse of a power αi is always αN−1−i, for all the elements in the
field including α0, whose inverse is α7 that is the same as α0 (α7 = α0).

Different powers of α (from α to α6) are calculated in successive clock cycles
by Multiplier M1, where the output of the multiplier is returned back as input
through a register. Since the received symbols are ordered from x6 to x0, for the
evaluation of the differing symbols we need reverse order of computation of the
powers of α from α6 to α instead of α to α6. So we add to the multiplier M1
an inverter of the field, that makes this transformation: {α, α2, α3, α4, α5, α6}−1

=⇒ {α6, α5, α4, α3, α2, α}. The inversion operator can be implemented in different
ways: one simple option is to use a memory with all the inverses of a given field,
other is to implement by a combinational operator. The outputs of the inverter
are stored in SR1 and SR2 while the symbol of zero-multiplicity is stored in SR3.
The followed steps are executed thereafter.

• Multiply the contents of SR2 and SR3: α3 · α6, by the multiplier M2. This
product gives the evaluation of α3 · x6 in α, for the contribution of the first
differing symbol zn (α3) to the first syndrome (evaluated on x = α).

140

4.2 Architecture for LCC decoder based on HDD

• Perform a shift on SR3 by one position (right) to change the value of the
output register from the zn of the first symbol (α3) to the z′n of the first
symbol (α0).

• Multiply the values of the outputs of SR2 and SR3: α0 · α6, (using the mul-
tiplier M2) to obtain α0 ·x6, for the contribution of the first differing symbol
z′n (α0) to the first syndrome (evaluated on x = α).

• Shift the contents of SR1 and SR2 one position (right) to change the value
of the output from α6 to α2. This changes the evaluation of x from the first
differing symbol position (x6), to the second differing symbol position (x2).
Multiply the outputs of SR1 and SR2 with M3, before the shift, to compute:
α6 · α6, and store the result in SR2. The stored value provides the second
syndrome (evaluated on x = α2) of the first differing symbol, at the position
of x6. Shift the content of SR3 one position (right) to change the value of
the output register from the z′n of the first symbol (α0) to the zn of the second
symbol (α5).

• Multiply (using M2) the values of the output registers SR2 and SR3: α5 ·α2,
to find α5 · x2, for the contribution of the second differing symbol zn (α5) to
the first syndrome (evaluated on x = α).

• Shift the content of SR3 by one position (right) to change the value of the
output register from the zn of the second symbol (α5) to the z′n of the second
symbol (α3).

• Multiply with the values of the output registers SR2 and SR3: (α3 ·α2, (using
M2) for the evaluation of α3 · x2, to estimate the contribution of the second
differing symbol z′n (α3) to the first syndrome (evaluated on x = α).

• Shift the contents of SR1 and SR2 one position (right) to change the value of
the output from α2 to α6 in SR1 and from α2 to α12 in SR2. The change of
SR2 allows us to make the evaluation of x from the second differing symbol
position (x2), to the first differing symbol position (x6), but this time on the
second syndrome. Multiply the outputs of SR1 and SR2 (using M3), before
the shift, to compute: α2 · α2 and store it in SR2. The stored value provides
the second syndrome (evaluated on x = α2) of the second differing symbol, at
the position of x2. Perform a shift on SR3 by one position (right) to change
the value of the output register from the z′n of the second symbol (α3) to the
zn of the first symbol (α3).

• Multiply the values of the output registers SR2 and SR3: α3 ·α12 (using M2),
to find α3 · x6, which gives the contribution of the first differing symbol zn
(α3) to the second syndrome (evaluated on x = α2).

• Shift the content of SR3 one position (right) to change the value of the output
register from the zn of the first symbol (α3) to the z′n of the first symbol (α0).

141

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

• Multiply the output of the registers SR2 and SR3: α0 · α12, to find α0 · x6,
the contribution of the first differing symbol z′n (α0) to the second syndrome
(evaluated on x = α2).

• Shift the content of SR2 by one position (right) to change the value of the
output from α12 to α4. This changes the evaluation of x from the first dif-
fering symbol position (x6), to the second differing symbol position (x2), this
time in the second syndrome (evaluated on x = α2). Shift the content of SR3
too by one position (right) to change the value of the output register from the
z′n of the first symbol (α0) to the zn of the second symbol (α5).

• Multiply the outputs of SR2 and SR3: α5 ·α4 (using M2) to find α5 · x2, the
contribution of the second differing symbol zn (α5) to the second syndrome
(evaluated on x = α2).

• Make the last shift of SR3 by one position (right) to change the value of the
output register from the zn of the second symbol (α5) to the z′n of the second
symbol (α3).

• Multiply the contents of SR2 and SR3: α3 ·α4, to find α3 ·x2,the contribution
of the second differing symbol z′n (α3) to the second syndrome (evaluated on
x = α2).

As a result the contribution of all the differing symbols to the pair of syndromes is
obtained for the hard decision and the second best decision.

Total computation

To combine the results of the partial computation of syndromes obtained for the
common symbols and the contribution of the differing symbols a 2t · 2η matrix of
registers is required for 2t syndromes per test-vector of LCC. At the end of the
computations pertaining to the common symbols, the values stored at the registers
of Fig.4.3 are loaded into the registers of Fig.4.5 (the wires sc1, sc2 and sc2t of
Fig.4.3 are connected to the wires with the same name in Fig.4.5). In addition,
the wire marked Sout (right side register of Fig.4.4) is connected to the left input
with the same name as Fig.4.5. The function of this block is described next.

After the result of the common syndrome-computation is loaded, the contribution
of the hard-decision or the second hard-decision of the η different symbols is added
to the partial syndrome of common symbols stored in the matrix of registers, as
explained in Example 4.2.3.

As a generic example, if we consider the case of η = 3, there are six different
symbols: three corresponding to the hard-decision (zζ , zθ and zξ) and three cor-
responding to the second best decision (z′ζ , z

′
θ and z′ξ). As shown in Table 4.1,

142

4.2 Architecture for LCC decoder based on HDD

during the first clock cycle, after the result of common computation is loaded (at
clock cycle 0), the contribution of the first differing symbol hard-decision, zζ (in-
put Sout), is added to the values of registers S0

1 , S
2
1 , S

4
1 and S6

1 , and the content of
the rest of the resisters remain the same since they are disabled. During the next
cycle, (cycle 1) the second best-decision contribution (z′ζ) is added to S1

1 , S
3
1 , S

5
1

and S7
1 registers. The same procedure is applied to the symbols zθ , zξ, z

′
θ and

z′ξ according to the schedule of Table 4.1, until the combinations shown on the
summary column are achieved.

These combinations are equivalent to the values of the test-vectors and allow us
to compute the syndrome S1 for all the vectors without computing twice the value
of the common symbols. As each row of the matrix of registers of Fig.4.5 behaves
as a shift-register, the rest of syndromes (S2...S2t) are computed by shifting the
values from one register to another. This reduces the requirement of the number
of adders.

Example 4.2.3 In Example 4.2.1 we have shown the computation of partial syn-
dromes sc1 = α4 and sc2 = α3. In Example 4.2.2 we have shown the computation
of the contribution of the differing symbols: for the first syndrome (α3 ·α6, α0 ·α6,
α5 · α2, α3 · α2) and for the second syndrome (α3 · α12, α0 · α12, α5 · α4, α3 · α4).
Finally, we combine these results obtained in Examples 4.2.1 and 4.2.2 as follows
to obtain the four test vectors syndromes: First syndrome for the test vector zn0,
zn1:

• S0
1 = sc1 + α3 · α6 + α5 · α2

First syndrome for the test vector zn0, z
′
n1:

• S1
1 = sc1 + α3 · α6 + α3 · α2

First syndrome for the test vector z′n0, zn1:

• S2
1 = sc1 + α0 · α6 + α5 · α2

First syndrome for the test vector z′n0, z
′
n1:

• S3
1 = sc1 + α0 · α6 + α3 · α2

Second syndrome for the test vector zn0, zn1:

• S0
2 = sc2 + α3 · α6 + α5 · α4

143

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

Second syndrome for the test vector zn0, z
′
n1:

• S1
2 = sc2 + α3 · α6 + α3 · α4

Second syndrome for the test vector z′n0, zn1:

• S2
2 = sc2 + α0 · α6 + α5 · α4

Second syndrome for the test vector z′n0, z
′
n1:

• S3
2 = sc2 + α0 · α6 + α3 · α4

+

+

+

+

sc1

sc1

sc1

sc1

sc2

sc2

sc2

sc2

sc2t

sc2t

sc2t

sc2t

Sout S0 S0 S0

S1

S0S1 S2 S2t

S1S1 S1S2 S1S2t

S2S1 S2S2 S2S2t

S2
η
-1S1 S2

η
-1S2 S2

η
-1S2t

Figure 4.5: Storage of the 2t syndromes of the 2η test-vectors

144

4.2 Architecture for LCC decoder based on HDD

Table 4.1: Timing diagram of the syndrome processing for eight test-vectors

Clock cycle 0 1 2 3 4 5 Summary

S0
1 zς Disable zθ Disable zξ Disable HD-HD-HD

S1
1 Disable z′ς zθ Disable zξ Disable HD-HD-2HD

S2
1 zς Disable Disable z′θ zξ Disable HD-2HD-HD

S3
1 Disable z′ς Disable z′θ zξ Disable HD-2HD-2HD

S4
1 zς Disable zθ Disable Disable z′ξ 2HD-HD-HD

S5
1 Disable z′ς zθ Disable Disable z′ξ 2HD-HD-2HD

S6
1 zς Disable Disable z′θ Disable z′ξ 2HD-2HD-HD

S7
1 Disable z′ς Disable z′θ Disable z′ξ 2HD-2HD-2HD

4.2.3 Key equation solver unit

The next unit of the proposed decoder is the KES. As shown in Algorithm 14,
there are two parts in the iBM algorithm: the discrepancy computation (Step A1)
and the updating of the polynomials (Step A2). Due to the data dependency, it
is not possible to compute A1 and A2 at the same time; therefore, A2 must be
computed after A1. As the number of test-vectors is always an even number for
any η, two test-vectors can use the same KES unit. Then, the discrepancy of
odd test-vectors can be computed while the polynomials of the even vectors are
updated and vice versa. This shared architecture allows us to reduce the number
of multipliers and adders in the KES unit.

To improve the throughput of the decoder, the matrix of syndrome registers
(Fig.4.5) is duplicated to save the syndrome results from a message in two iden-
tical storage units. This will help to compute the syndromes of the next message
concurrently with KES computation of the previous message. The proposed ar-
chitecture is based on the parallel form of the iBM algorithm [78], which we have
modified to share the arithmetic resources for computing two KES at a time. As
shown in Fig.4.6, two test-vectors are computed at the same time. Multiplexors
make a selection of the even or the odd test-vectors. When the discrepancy δ of an
even test-vector is calculated, the updating of the odd λ(x) is computed simulta-
neously, and vice versa. The polynomials A(x) and λ(x) require t+1 registers for
each test-vector, the ω(x) coefficients require t registers for each test-vector and
the discrepancy δ need one more register per test-vector. The number of multipli-
ers and adders is three in each KES unit, and 2η−1 KES units are used to compute
the iBM algorithm for the 2η test-vectors.

On the other hand, the reason to not use the UiBM [79] is that although requires
one multiplier less than our proposed architecture, the number of registers is 2t
higher. Since, the proposed architecture is based on multiplexing of KES com-
putation of the test-vectors, the number of arithmetic elements (as multipliers) is
reduced to half, unlike the storage elements (registers), which remain the same.
Since we have 2η test-vectors, 2η−1 multipliers are saved with the UiBM, but 2t ·2η

145

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

more registers are required because it works with polynomials of bigger order. For
example, for a (255,239)RS code with η = 3 applying the proposed scheme based
on iBM instead of the UiBM, involves seven times less XOR gates, without increase
in latency.

+

S1

S1

S1

S1

x

x

+

+

x

D

D

D D D D

D D D D

D D D D

D D D D

Si-even

Si-odd

λi-even

λi-odd

λi-even

λi-odd

λeven(x)

λodd(x)

Aeven(x)

Aodd(x)

 δev

 δod

 γ

Figure 4.6: KES unit for computing two test-vectors

4.2.4 Chien search, Forney and test-vector selection units

After λ(x) and ω(x) are computed 2η Chien searches are performed in parallel.
The conventional architecture based on t constant multipliers and t adders are
replicated 2η times to extract the locations of the errors and the number of roots
that are used in DF detection. For each test-vector t + 1 registers are used to
store λ(x), t registers are used to store ω(x), t registers are used for the evaluation
of λ′(x) on the error symbols, t registers are used to store the locations of the
errors and t multiplexors are used to select between the desired coefficients of the
polynomials to evaluate λj and the power of α used to perform the computation of
the Horner’s recursions (Fig.4.7). Due to the properties of the formal derivative of
a polynomial whose coefficients are GF elements, λ′(x) evaluation does not need
extra arithmetic resources, as this value can be calculated with the evaluation
of the even coefficients of λ(x) [78]. However an extra counter is needed for each
test-vector, placed after Chien search. Each counter increases the count with every
root of λ(x). The maximum number of the count is t. A comparator checks if the
degree of λ(x) is the same as the number of roots of λ(x) and generates the DF
signals.

146

4.2 Architecture for LCC decoder based on HDD

Only one Forney block is needed by the proposed architecture, Fig.4.8. In the
Forney block, the locations of the test-vector free of DF are loaded in t registers.
The evaluation of λ′(x) in these locations are stored in t additional registers and
one Chien search for the selected ω(x) is performed. This Chien search needs t
constant multipliers, t adders and t registers. To match the corresponding evalua-
tion of ω(x) with the stored evaluation of λ′(x), the error locations are compared
with a counter that counts all the possible locations in the polynomial (at the
same time the Chien search for the selected ω(x) is performed). A control signal is
activated when the counter and one of the stored locations are the same, showing
that the associated value of evaluation of λ′(x) to this location must be read to
obtain a correct match with the evaluation of ω(x). A multiplier, which makes the
products between the correct λ′(x) evaluations and the ω(x) ones, is needed to
compute the magnitudes of the errors. Finally, the addition of these magnitudes
to the received message is made with another adder.

+

x

D

D

+

a) b)
cj-1 cj

αj

 λj

c0 c2 ceven

c1 c3 codd

 λ(αj)

 λ'(αj)

λ0 λ2 λeven

λ1 λ3 λodd

Figure 4.7: (a) Basic cj block. (b) Chien search block diagram

xD

+

 λ'(αj)

D

D GF

inv

D D
 λ(αj)

 ω(αj)

 e(x) c(x)

FIFO
 r(x)

Figure 4.8: Forney’s algorithm classical architecture

147

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

4.2.5 Area and timing complexity analysis

The syndrome computation latency is equal to the sum of the latency of the
partial syndrome computation of one of the common symbols and the latency of
the contribution to the syndromes of the differing symbols. The computation of
the syndromes for the common symbols takes N + 1 clock cycles, because all the
N symbols of the received message must be processed and there is a delay of one
cycle caused by the input register. It is important to remark that the storage
of the η unreliable symbols is done during the common computation. As it was
explained in previous subsections, every time that a zero multiplicity is detected
in the input, the hard decision and the second best decision of this symbol is
stored in parallel on the SR3 (Fig.4.4), avoiding the increase of latency during
this step. In addition, the multiplier M1 (Fig.4.4) starts to compute locations
during the common computation, and stores the locations of the differing symbols
in SR1 and SR2 (Fig.4.4) each time a zero multiplicity is detected. Hence, the
generation of the locations for the differing symbols is done in parallel with the
common computation, so it does not increase latency on the common symbols or
the differing symbols computations. The computation pertaining to the differing
symbols involves 2η contributions per syndrome for 2t syndromes. It introduces a
latency of 2t ·2(η+1). Note that two cycles of additional latency per syndrome are
introduced due to the pipeline registers included to maintain critical path limited
to the sum of one multiplier, one adder and one multiplexor. Therefore the total
latency of the syndrome computation unit is N + 1 + 2t · 2(η + 1).

KES units require t + 1 coefficients for the discrepancy computation and t + 1
coefficients must be updated during 2t iterations. Hence, 2(t+ 1) · 2t clock cycles
are required for the computation of one value of λ(x). Since the resources during
the KES for the odd and even test vectors computations are shared, the last t+1
coefficients of the odd (or even) polynomials cannot be multiplexed, hence extra
cycles are needed to complete the computation of odd (or even) λ(x). In addition,
the KES unit must perform t additional iterations to compute the ω(x). During
the calculation of the coefficients for ω(x) only the discrepancy computation must
be run and there is no need to update the coefficients. Therefore, the last iteration
requires t − 1 cycles, resulting a latency of t · 2(t + 1) − (t + 1) cycles. The total
latency of KES unit is [2(t + 1) · 2t + t + 1 + t · 2(t + 1) − (t + 1)] = 6t · (t + 1).
The latency of the Chien search is K + 1 cycles. The latency Forney’s algorithm
equals to the length of the message N + 1.

For our implementation of a (255,239)RS code, t = (255−239)/2 = 8, N = 255 and
K = 239. In addition, the latency of the proposed LCC architecture is analyzed
for η = 3 and η = 4 because for high-rate codes these are common values. With
η > 4 coding gain compared to η = 4 is negligible and complexity is prohibitive for
hardware implementations. With η < 3 coding gain is not remarkable and does
not justify and increase of area. Therefore, the latency of different blocks could
be evaluated as follows:

148

4.2 Architecture for LCC decoder based on HDD

(i) Syndrome computation: N + 1+ 2t · 2(η + 1) = 384 clock cycles with η = 3
and N + 1 + 2t · 2(η + 1) = 416 clock cycles with η = 4

(ii) KES: 6t · (t+ 1) = 432 clock cycles

(iii) Chien search: K + 1 = 240 clock cycles

(iv) Forney’s algorithm: N + 1 = 256 clock cycles

Since the block with the maximum latency establishes the latency of the decoder,
latency of the complete LCC decoder with η = 3 and η = 4 is 432 clock cycles,
which is the same as the one of KES block. Interestingly, the critical path of the
LCC decoder is one multiplier, one adder and one 2-to-1 multiplexor regardless of
the value of t or η. Therefore, the maximum usable frequency remains invariant
of t and η.

On the other hand, Table 4.2 includes the hardware resources required by the pro-
posed decoder. As it can be seen, area increases exponentially with η and linearly
with t. The proposed arithmetic and control resources of this LCC architecture
are independent from N and K. Just the memories required to store the received
sequence between the different processors depend on the length of the codeword.

4.2.6 FPGA and ASIC results

The proposed LCC architecture for a (255, 239)RS code with η = 3 has been
modelled in VHDL and implemented in a Virtex-V FPGA device. It is found
to involve 5399 bit-registers and 5114 LUTs in 2527 slices. The maximum clock
frequency is found to be 150.5MHz which is equivalent to a throughput of (255×
8× 150.5)/432 = 710.69Mbps.

The same VHDL model of the proposed decoder has been synthesized with the
Synopsis tool as well, using the SAED 90nm standard cell library. The synthesis
result shows that the proposed decoder has area equivalent to 31138 XOR gates
and the data arrival time of 1.24ns. Since, the proposed decoder for η = 3 has
latency of 432 clock cycles; we can estimate its throughput to be (255× 8)/(432×
1.124ns) = 4.2Gbps for ASIC implementation.

149

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

Table 4.2: Theoretical estimation of the area-complexity of the proposed LCC decoder

Syndromes KES Chien Forney’s Total Total
Search algorithm (η = 3) (η = 4)

GF Mult 2 3 · 2η−1 0 1 15 30
GF Adders 2t+ 2η 3 · 2η−1 t · 2η t+ 1 109 193

GF Const Mult 2t+ 1 0 t · 2η t 89 153
GF Inv 1 0 0 1 2 2

Reg.(Byte) 2t · (2η + 1) (5t+ 3) · 2η (4t+ 1) · 2η 3t 783 1511
+4η + 3

MUX 2-1(Byte) 4t · 2η + 3 9 + 2η−1 t · 2η t 255 499
RAM(Byte) N N N 0 765 765

4.3 Comparisons with other works

In this subsection we compare the area-complexity of the proposed decoder ar-
chitecture with other efficient decoders found in literature. All the architectures
compared in this subsection are for a (255,239)RS code with η = 3. In Table 4.3
we have listed the complexity of Galois field multiplier, adder and inverter in terms
of their equivalent XOR and AND gate-counts extracted from [64], [70], [73], [85],
[86].

When the architecture and the algorithm described in this chapter were submitted
for publication at the end of 2010, the most efficient LCC decoders were based on
interpolation methods. To the best knowledge of the author, the architecture for
a full LCC decoder based on the backward interpolation implementation of [64]
proposed in [70] and a free-factorization architecture of LCC in [85] were the
implementations with better area over ratio results. For this reason they are
taken as references for comparison.

Comparing the results from [70] with the architecture of the proposed LCC decoder
(Table 4.4), we find that the proposed architecture involves (48479−38520)/48479 =
20.5% less area than the LCC re-encoded decoder with η = 3 based on backward
interpolation of [64]. Compared with the free-factorization based design of [85]
with η = 3, the area of our proposed decoder is (39311 − 38520)/39311 = 2.1%
less, for the same (255,239)RS code.

The area-delay product of factorization-free decoder of [85] amounts to (39311 ×
660) units (because latency is 660 clock cycles and the estimated area is equivalent
to 39311 XOR gates); whereas the area-delay product of our proposed decoder is
(38520× 432) units. Since, the duration of clock periods are the same in both the
structures, the proposed decoder provides nearly (39311 × 660)/(38520 × 432) −
1 = 56% saving in area-delay product over that of [85]. Similarly, the area-delay
products of re-encoded decoder is (48479×660) units (because latency is 660 clock
cycles and the estimated area is equivalent to 48479 XOR gates). The proposed

150

4.3 Comparisons with other works

Table 4.3: Equivalence in XOR gates of hardware resources

GF(28) GF(28) GF(28) Register Mux 2-1 RAM GF(28) AND
Multiplers Const. Mult. Adders (Bit) (Bit) (Bit) Inv Gate

100XORs 15XORs 8XORs 3XORs 1XOR 1XORs 150XORs 3/4XORs

decoder therefore provides a saving of (48479 × 660)/(38520 × 432) − 1 = 92.3%
over the re-encoded decoder of [70].

After the publication of this proposal in 2011, several re-encoders and interpola-
tion processor have been proposed, however just two complete LCC decoders have
been published: i) the decoder based on interpolation and systematic re-encoder
from [86]; and ii) the decoder in [87], which is based on the algorithm and archi-
tecture proposed in this chapter, and improves its performance. If we compare our
proposal in terms of area-delay (or area over ratio efficiency) we obtain that it is
(38520× 432)/(18948× 363)− 1 = 142% less efficient than the one in [86]. Com-
pared to [87], our proposal is (38520×432)/(20233×275)−1 = 199% less efficient.
In addition, it is important to make comparisons between the improved decoder
based on the LCC scheme from this thesis [87] and the decoder based on interpo-
lation from [86]. In terms of efficiency, the decoder architecture for LCC based on
HDD is (18948× 363)/(20233× 275)− 1 = 24% more efficient than the one based
on interpolation. Moreover, latency is reduced in a 363− 275/275 = 32% with the
architecture based on HDD, and as consequence throughput is 32% higher. Fi-
nally, it is remarkable that the architecture derived from HDD has almost achieved
on-the-fly decoding, as each clock cycle one symbol is received and there are 255
symbols and the decoder has a latency of 275 clock cycles, so it is introducing just
a delay of 15 clock cycles. The architecture that outperforms our proposal from
this chapter introduces a more efficient processor to compute syndromes of the
test-vectors. The architecture proposed in [87] obtains a throughput of 1.1Gbps
on a Virtex V device, which is 1.1Gbps/0.710Gbps= 1.55 times more throughput
than the result obtained in Section 4.2.6 for the same device.

Finally, we compare our LCC proposal with a conventional hard-decision decoder
based on BM [85], included in Table 4.5. Both decoders have similar latency in
terms of clock cycles with a slight improvement of (510−432)/510 = 15.3% in our
proposal. In terms of area, the soft-decision decoder requires just 30959/14640 =
2.1 times more area than the hard-decision one. This last result shows the efficiency
of the architecture, since LCC decoder processes eight hard decision test-vectors,
but only requires twice more hardware resources keeping similar latency. To sum
up, we can conclude that LCC decoder represents an efficient way to obtain some
extra coding gain keeping area resources relatively low with high throughput.

151

Chapter 4. Contributions to algebraic soft-decision decoding algorithms

Table 4.4: XOR-gate complexity of LCC decoders for (255,239) RS code

LCC GF(28) Mult./ GF(28) GF(28) MUX 2-1 RAM ROM Reg. Total Latency

decoder Const. Mult. Inv. Adders (Bit) (Bits) (Bits) (Bits) xors clock cycles

[70], [64] 10200 0 1008 1317 12288 16928 6738 48479 660
[85] 7400 0 864 1109 8192 16928 4818 39311 660
[86] 2700/2340 2 1432 752 6736 704 3984 18948 363
[87] 5100/2415 1 1400 656 4080 0 6432 20233 275

This work 1500/1335 2 872 2040 6120 0 18792 30959 432

Table 4.5: XOR-gate complexity of a hard-decision decoder for (255,239) RS code

BM GF(28) Mult. GF(28) GF(28) MUX 2-1 RAM ROM Reg. Total Latency

decoder Inv. Adders (Bit) (Bits) (Bits) (Bits) xors clock cycles

[85] 19 0 17 165 4096 6144 733 14640 510

4.4 Conclusions

In this chapter, we propose a new scheme to implement low complexity Chase
decoding. This new algorithm avoids complex solutions such as interpolation, re-
encoder and factorization and makes use of hard-decision techniques to decode the
different test-vectors. In addition, an algorithm based on binary tree mapping is
applied in the syndrome computation to reduce complexity and the total number
of operations. Moreover, a method to select the test-vectors based on decoding
failure is also implemented in order to choose the correct decoded codeword. This
algorithm does not introduce any performance loss and allows us to derive effi-
cient high-throughput architectures. The architecture proposed in this chapter
was modified by other authors obtaining lower area and higher-throughput. The
improved architecture based on our algorithm shows that low complexity Chase de-
coding combined with hard decision decoding techniques can reach higher through-
put and higher efficiency than interpolation based architectures. Hence, we can
conclude that the algorithm proposed in this chapter outperforms interpolation
methods from a VLSI perspective, without any performance degradation.

152

Part III

Conclusion and future works

Chapter 5

Conclusion and future works

The objective of this thesis was the design of high speed non-binary decoder ar-
chitectures based on both NB-LDPC and Reed-Solomon codes, and in particular
for high-rate codes. In this chapter the main conclusions of the thesis are exposed
and the future lines of research are drawn.

5.1 Conclusions

In the first part of this manuscript, focused on NB-LDPC codes, we conclude
that algorithms derived from Qary Sum-Product, like EMS and Min-max, involve
high complexity. The most efficient hardware architectures that can be derived
from the existing algorithms suffer from an extremely high number of clock cycles
per iteration, which leads to low speed solutions. Other alternatives with higher
degree of parallelism, such as the ones based on trellis, yield to very dense routing
and large silicon area. Moreover, high-rate codes have an added difficulty to reach
good area over speed ratio. For architectures based on algorithms such as forward-
backward or bubble check, throughput decreases with the degree the check node,
dc, and dc is very large for codes with rates over 0.8. For architectures based on
parallel trellis area and routing increases also with dc, turning them into inefficient
solutions for high-rate codes over fields above GF(16).

The main objective of the research in this area is the proposal of alternatives to
Qary Sum-Product, EMS and Min-max with lower complexity and better area over
speed ratio. The most interesting candidates are symbol-flipping algorithms and in
particular, for the high-rate codes, Generalized Bit-Flipping algorithm (GBFDA).
Although the complexity of the decoder also depends on dc, its check node performs
only hard-decision operations that simplifies by q routing and area, being q the

155

Chapter 5. Conclusion and future works

size of the Galois Field. However, a direct mapping architecture of GBFDA suf-
fers from elevate number of memory resources and reduced throughput, as GBFDA
requires two times more iterations to converge. In addition, GBFDA has a per-
formance loss of around 0.7dB compared to EMS algorithm. Hence, the aim of
this part of the work was: i) reduce area requirements, especially the ones due
to memories; ii) increase throughput; and iii) increase the coding gain of symbol
flipping algorithms.

First, a modified tentative decoding algorithm for GBFDA (M-GBFDA) was pro-
posed in order to reduce the amount of storage resources for a partial parallel
architecture based on flooding schedule. This method consists in computing the
hard-decision at the tentative decoding based on the extrinsic information, intro-
ducing a negligible performance loss of 0.05dB. For example, for the (837,723)
NB-LDPC code, this modification on the algorithm reduces in 22% the total area
compared to the original GBFDA.

On the other hand, throughput for M-GBFDA architecture is limited when clip-
ping is applied as the technique to control the data growth. For the partial parallel
architecture based on flooding schedule, a parallel implementation of the clipping
would require too much area, so serial implementation is the only efficient solu-
tion. Unfortunately, serial implementation of clipping reduces in a factor q the
throughput. To avoid clipping, an alternative data growth control technique,
named blocking, was proposed. This technique not only increases throughput
but also reduces complexity avoiding comparisons and subtractions. For a high-
rate code over GF(32), the throughput for a partial parallel architecture based
on M-GBFDA using blocking is nine times the one of clipping. The drawback
of this solution is that introduces an error floor around a bit error rate of 10−7,
which is enough for wireless communications but it makes mandatory the use of
concatenation with other codes for systems such as optical communications.

Comparing post place and route reports with synthesis reports we detected that
there were differences in the maximum frequency achievable due to the excess of
routing. To reduce routing and hence increase throughput we explored broad-
casting techniques in order to reach similar results in both synthesis and post
place and route processes. While half-broadcasting increases at least 1.4 times the
throughput for a high-rate code over GF(32) when ASIC technology is applied, if
the same design is routed in an FPGA device, the increase of speed is not good
enough to balance the area overhead caused by this technique.

For the architectures based on M-GBFDA with flooding schedule we conclude that:
i) the one based on clipping has a performance similar to GBFDA (only 0.05dB
of difference) but its throughput is very reduced, even applying half-broadcasting;
and ii) the one based on blocking has a very high throughput but suffers a per-
formance degradation which introduces error floor. Based on this we decided to

156

5.1 Conclusions

explore serial schedule algorithms for symbol-flipping algorithms because they can
reduce the number of iterations and therefore increase the throughput.

The first serial algorithm that was proposed, ES-GBFDA, has two improvements
compared to a conventional layered/serial scheduling: i) it accumulates all the
information from the previous iterations achieving a better convergence; and ii)
stores the intrinsic information from the voting process in a separate variable from
the channel information, reducing the number of bits required for the quantize
model. For applying the serial update, ES-GBFDA reduces to half the number of
iterations required. The derived architecture reduces memory requirements com-
pared to M-GBFDA and reaches similar throughput to M-GBFDA with blocking,
but without introducing any performance degradation, because implements a par-
allel version of clipping.

As the parallel version of clipping reduces the maximum frequency achievable and
increases the number of arithmetic resources, a different initialization is proposed
to avoid clipping. Furthermore, a second serial algorithm is proposed. This algo-
rithm, named SES-GBFDA, is a simplified version of the first one, and only stores
the information form the previous iteration, but scales the votes according to some
statistical parameters. This scaling emulates the effect of storing the votes of all
the iterations but at the same time reduces the number of bits required to quan-
tize the intrinsic information to one. The architecture for SES-GBFDA has higher
throughput that M-GBFDA and ES-GBFDA architectures, due to the alternative
initialization and the reduction of wiring to one bit quantization; this proposal also
reduces the total area to half compared to the architecture based on ES-GBFDA.
SES-GBFDA architecture gets higher throughput and higher efficiency in terms of
area over speed than previous solutions found in literature. We can conclude that
with SES-GBFDA we have accomplished the objectives of getting a NB-LDPC
with a very reduced area and a reasonable high throughput.

In the second part of the thesis, soft-decision Reed-Solomon algorithms are eval-
uated concluding that LCC is the most efficient one if high-rate codes and high

157

Chapter 5. Conclusion and future works

speed are the targets. Compared to other efficient soft-decision algorithms such
as Koetter-Vardy’s one, LCC reaches similar coding with lower number of opera-
tions. However, to the best knowledge of the author all the hardware approaches
of LCC until the proposal included in this manuscript were based on interpolation
and factorization, which still involves high complexity.

In this thesis, an LCC decoder based on hard-decision algorithms was designed.
This decoder reduces the complexity of the soft-decision decoding for Reed-Solomon
codes without introducing any performance degradation. A new architecture for
this version of LCC decoding was also implemented, reaching high-throughput an
lower area than previous proposals. This architecture has been improved by other
authors showing that the hard-decision scheme proposed here outperforms solu-
tions based on interpolation in terms of hardware efficiency and under the same
performance.

5.2 Future research lines

After the conclusions of the thesis, we think that some interesting future works in
this area are:

For the NB-LDPC field:

• The design of binary LDPC decoders based on some of the improvements
of symbols flipping for GBFDA in order to reduce more the complexity of
these decoders.

•

•

•

• The modification of Min-max check node update equations, inspired by T-
EMS.

•

• The implementation and study of NB-LDPC decoders combined with higher
order modulations and different channels.

For Reed-Somon soft-decision codes:

158

5.2 Future research lines

• The design of an LCC decoder based on FFT hard-decision decoders, as it
have been shown that they can be implemented with half area and twice
throughput.

• The proposal of a new algorithm similar to LCC based on the erasure de-
coders.

• The study of belief propagation algorithms for Reed-Solomon using NB-
LDPC experience.

Finally, other works that involve both parts of the thesis are:

• Continue improving and modifying architectures and algorithms in order to
achieve 25Gbps.

• Concatenate the different architectures of NB-LDPC decoders with the LCC
for Reed-Solomon to see what is the best configuration in terms of coding
gain and hardware efficiency for future optical communication systems.

159

Bibliography

[1] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu, “Construc-
tion of non-binary quasi-cyclic LDPC codes by arrays and array dispersions -
[transactions papers],” IEEE Transactions on Communications, vol. 57, no. 6,
pp. 1652 –1662, June 2009.

[2] R. Gallager, “Low-density parity-check codes,” Transactions on Information
Theory, IRE, vol. 8, no. 1, pp. 21–28, 1962.

[3] D. J. C. MacKay, “Good error-correcting codes based on very sparse matri-
ces,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399–431,
1999.

[4] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 619–637, 2001.

[5] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-
density parity-check code decoder,” IEEE Journal of Solid-State Circuits,
vol. 37, no. 3, pp. 404–412, 2002.

[6] S.-H. Kang and I.-C. Park, “Loosely coupled memory-based decoding archi-
tecture for low density parity check codes,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 53, no. 5, pp. 1045–1056, 2006.

[7] Z. Wang, Z. Cui, and J. Sha, “VLSI design for low-density parity-check code
decoding,” IEEE Circuits and Systems Magazine, vol. 11, no. 1, pp. 52–69,
2011.

[8] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),”
IEEE Communications Letters, vol. 2, no. 6, pp. 165 –167, June 1998.

[9] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over
GF(q),” in Proceedings of the 2003 IEEE Information Theory Workshop,
April 2003, pp. 70 – 73.

161

Bibliography

[10] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of
LDPC codes over GF(q),” in 2004 IEEE International Conference on Com-
munications, vol. 2, June 2004, pp. 772 – 776.

[11] C. Spagnol, E. Popovici, and W. Marnane, “Hardware implementation of
LDPC decoders,” IEEE Transactions on Circuits and Systems I: Regular Pa-
pers, vol. 56, no. 12, pp. 2609 –2620, Dec. 2009.

[12] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC
codes over GF,” IEEE Transactions on Communications, vol. 55, no. 4, pp.
633 –643, April 2007.

[13] V. Savin, “Min-max decoding for non binary LDPC codes,” in IEEE Interna-
tional Symposium on Information Theory, 2008. ISIT 2008., July 2008, pp.
960 –964.

[14] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary LDPC codes in high order fields,” IEEE
Transactions on Communications, vol. 58, no. 5, pp. 1365 –1375, May 2010.

[15] Y.-L. Ueng, K.-H. Liao, H.-C. Chou, and C.-J. Yang, “A high-throughput
trellis-based layered decoding architecture for non-binary LDPC codes using
max-log-QSPA,” IEEE Transactions on Signal Processing, vol. 61, no. 11, pp.
2940–2951, 2013.

[16] E. Boutillon and L. Conde-Canencia, “Bubble check: a simplified algorithm
for elementary check node processing in extended min-sum non-binary LDPC
decoders,” Electronics Letters, vol. 46, no. 9, pp. 633 –634, April 2010.

[17] X. Zhang and F. Cai, “Reduced-complexity decoder architecture for non-
binary LDPC codes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 19, no. 7, pp. 1229 –1238, July 2011.

[18] X. Chen, S. Lin, and V. Akella, “Efficient configurable decoder architecture
for nonbinary quasi-cyclic LDPC codes,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 59, no. 1, pp. 188 –197, Jan. 2012.

[19] E. Li, K. Gunnam, and D. Declercq, “Trellis based Extended Min-Sum for de-
coding nonbinary LDPC codes,” in 8th International Symposium on Wireless
Communication Systems (ISWCS), 2011, Nov. 2011, pp. 46 –50.

[20] X. Ma, K. Zhang, H. Chen, and B. Bai, “Low complexity X-EMS algorithms
for nonbinary LDPC codes,” IEEE Transactions on Communications, vol. 60,
no. 1, pp. 9 –13, January 2012.

[21] D. Project. (2010, Jun.) Final publishable summary. [Online]. Available:
http://www.ict-davinci-codes.eu/project/deliverables/FR www.pdf

162

Bibliography

[22] A. Darabiha, A. Carusone, and F. Kschischang, “Block-interlaced LDPC de-
coders with reduced interconnect complexity,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 55, no. 1, pp. 74 –78, Jan. 2008.

[23] J. Lin, J. Sha, Z. Wang, and L. Li, “Efficient decoder design for nonbinary
quasicyclic LDPC codes,” IEEE Transactions on Circuits and Systems I: Reg-
ular Papers, vol. 57, no. 5, pp. 1071 –1082, May 2010.

[24] F. Cai and X. Zhang, “Relaxed Min-Max decoder architectures for Nonbinary
Low-Density Parity-Check codes,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2013.

[25] E. Li, “Decodeurs haute performance et faible complexite pour les codes
LDPC binaires et non-binaires,” Ph.D. dissertation, l’Universite de Cergy-
Pontoise, Ecole Nationale Superieure de l’electronique et de ses Applications,
December 2012.

[26] D. Zhao, X. Ma, C. Chen, and B. Bai, “A low complexity decoding algorithm
for majority-logic decodable nonbinary LDPC codes,” IEEE Communications
Letters, vol. 14, no. 11, pp. 1062 –1064, November 2010.

[27] C. Chen, B. Bai, X. Wang, and M. Xu, “Nonbinary LDPC codes constructed
based on a cyclic MDS code and a low-complexity nonbinary message-passing
decoding algorithm,” IEEE Communications Letters, vol. 14, no. 3, pp. 239
–241, March 2010.

[28] B. Zhou, J. Kang, Y. Y. Tai, Q. Huang, and S. Lin, “High performance non-
binary quasi-cyclic LDPC codes on euclidean geometries,” in IEEE Military
Communications Conference, 2007. MILCOM 2007., Oct. 2007, pp. 1 –8.

[29] B. Liu, J. Gao, G. Dou, and W. Tao, “Weighted symbol-flipping decoding for
nonbinary LDPC codes,” in Second International Conference on Networks Se-
curity Wireless Communications and Trusted Computing (NSWCTC), 2010,
vol. 1, April 2010, pp. 223 –226.

[30] ——, “Majority decision based weighted symbol-flipping decoding for nonbi-
nary LDPC codes,” in 2nd International Conference on Future Computer and
Communication (ICFCC), 2010, vol. 3, May 2010, pp. V3–6 –V3–10.

[31] S. El Hassani, M. Hamon, and P. Penard, “A comparison study of binary
and non-binary LDPC codes decoding,” in International Conference on Soft-
ware, Telecommunications and Computer Networks (SoftCOM), 2010, 2010,
pp. 355–359.

[32] V. S. Ganepola, R. Carrasco, I. Wassell, and S. Le-Goff, “Performance study
of non-binary LDPC codes over GF(q),” in 6th International Symposium on
Communication Systems, Networks and Digital Signal Processing, 2008. CNS-
DSP 2008., 2008, pp. 585–589.

163

Bibliography

[33] X. Zhang and F. Cai, “Efficient partial-parallel decoder architecture for quasi-
cyclic nonbinary LDPC codes,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 58, no. 2, pp. 402–414, 2011.

[34] D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu,
and Q. Xiong, “FPGA verification of a single QC-LDPC code for 100 gb/s
optical systems without error floor down to BER of 10−15,” in Optical Fiber
Communication Conference and Exposition (OFC/NFOEC), 2011 and the
National Fiber Optic Engineers Conference, 2011, pp. 1–3.

[35] M. Magarini, R. J. Essiambre, B. Basch, A. Ashikhmin, G. Kramer, and
A. de Lind van Wijngaarden, “Concatenated coded modulation for opti-
cal communications systems,” IEEE Photonics Technology Letters, vol. 22,
no. 16, pp. 1244–1246, 2010.

[36] I. Djordjevic, L. Xu, and T. Wang, “On the reverse concatenated coded-
modulation for ultra-high-speed optical transport,” in Optical Fiber Commu-
nication Conference and Exposition (OFC/NFOEC), 2011 and the National
Fiber Optic Engineers Conference, 2011, pp. 1–3.

[37] M. Arabaci, I. Djordjevic, R. Saunders, and R. Marcoccia, “Rate-adaptive
non-binary-LDPC-coded polarization-multiplexed multilevel modulation with
coherent detection for optically-routed networks,” in 11th International Con-
ference on Transparent Optical Networks, 2009. ICTON ’09., 2009, pp. 1–4.

[38] M. Arabaci, I. Djordjevic, L. Xu, and T. Wang, “Four-dimensional nonbinary
LDPC-coded modulation schemes for ultra-high-speed optical fiber commu-
nication,” IEEE Photonics Technology Letters, vol. 23, no. 18, pp. 1280–1282,
2011.

[39] H. Song and J. Cruz, “Reduced-complexity decoding of Q-ary LDPC codes
for magnetic recording,” IEEE Transactions on Magnetics, vol. 39, no. 2, pp.
1081–1087, 2003.

[40] C. Chen, B. Bai, X. Ma, and X. Wang, “A symbol-reliability based message-
passing decoding algorithm for nonbinary LDPC codes over finite fields,”
in 6th International Symposium on Turbo Codes and Iterative Information
Processing (ISTC), 2010, Sept. 2010, pp. 251 –255.

[41] C.-S. Choi, H. Lee, N. Kaneda, and Y.-K. Chen, “Concatenated non-binary
LDPC and HD-FEC codes for 100Gb/s optical transport systems,” in IEEE
International Symposium on Circuits and Systems (ISCAS), 2012, May 2012,
pp. 1783 –1786.

[42] X. Zhang, F. Cai, and S. Lin, “Low-complexity reliability-based message-
passing decoder architectures for non-binary LDPC codes,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 11, pp.
1938 –1950, Nov. 2012.

164

Bibliography

[43] F. Garcia-Herrero, M. Canet, J. Valls, and M. Flanagan, “Serial symbol-
reliability based algorithm for decoding non-binary LDPC codes,” IEEE Com-
munications Letters, vol. 16, no. 6, pp. 909 –912, June 2012.

[44] L. Amaru, M. Martina, and G. Masera, “High speed architectures for finding
the first two maximum/minimum values,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 20, no. 12, pp. 2342 –2346, Dec. 2012.

[45] A. Voicila, F. Verdier, D. Declercq, M. Fossorier, and P. Urard, “Architec-
ture of a low-complexity non-binary LDPC decoder for high order fields,” in
International Symposium on Communications and Information Technologies,
2007. ISCIT ’07., Oct. 2007, pp. 1201 –1206.

[46] X. Zhang and F. Cai, “Reduced-complexity extended Min-sum check node
processing for non-binary LDPC decoding,” in 53rd IEEE International Mid-
west Symposium on Circuits and Systems (MWSCAS), 2010, Aug. 2010, pp.
737 –740.

[47] ——, “Reduced-latency scheduling scheme for min-max non-binary LDPC
decoding,” in IEEE Asia Pacific Conference on Circuits and Systems (APC-
CAS), 2010, Dec. 2010, pp. 414 –417.

[48] ——, “Reduced-complexity check node processing for non-binary LDPC de-
coding,” in IEEE Workshop on Signal Processing Systems (SIPS), 2010, Oct.
2010, pp. 70 –75.

[49] ——, “Partial-parallel decoder architecture for quasi-cyclic non-binary LDPC
codes,” in IEEE International Conference on Acoustics Speech and Signal
Processing (ICASSP), 2010, March 2010, pp. 1506 –1509.

[50] ——, “Efficient partial-parallel decoder architecture for quasi-cyclic nonbi-
nary LDPC codes,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 58, no. 2, pp. 402 –414, Feb. 2011.

[51] J. Lin, J. Sha, Z. Wang, and L. Li, “An efficient VLSI architecture for non-
binary LDPC decoders,” IEEE Transactions on Circuits and Systems II: Ex-
press Briefs, vol. 57, no. 1, pp. 51 –55, Jan. 2010.

[52] S. Zhou, J. Sha, L. Li, and Z. Wang, “Layered decoding for non-binary LDPC
codes,” in Proceedings of 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), June 2010, pp. 481 –484.

[53] Y.-L. Ueng, C.-Y. Leong, C.-J. Yang, C.-C. Cheng, K.-H. Liao, and S.-W.
Chen, “An efficient layered decoding architecture for nonbinary QC-LDPC
codes,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59,
no. 2, pp. 385–398, Feb. 2012.

165

Bibliography

[54] J. Lin and Z. Yan, “Efficient shuffled decoder architecture for nonbinary quasi-
cyclic LDPC codes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 21, no. 9, pp. 1756–1761, Sept. 2013.

[55] X. Chen and C.-L. Wang, “High-throughput efficient non-binary LDPC de-
coder based on the Simplified Min-Sum algorithm,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 59, no. 11, pp. 2784 –2794, Nov.
2012.

[56] H. Zhong, W. Xu, N. Xie, and T. Zhang, “Area-efficient min-sum decoder
design for high-rate quasi-cyclic low-density parity-check codes in magnetic
recording,” IEEE Transactions on Magnetics, vol. 43, no. 12, pp. 4117–4122,
2007.

[57] R. E. Blahut, Algebraic Codes on Lines, Planes, and Curves, An Engineering
Approach. Urbana-Champaign, University of Illinois, 2008.

[58] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-Solomon
codes,” IEEE Transactions on Information Theory, vol. 49, no. 11, pp. 2809
– 2825, Nov. 2003.

[59] A. Vardy and Y. Be’ery, “Bit-level soft-decision decoding of Reed-Solomon
codes,” IEEE Transactions on Communications, vol. 39, no. 3, pp. 440 –444,
Mar 1991.

[60] M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based
on ordered statistics,” IEEE Transactions on Information Theory, vol. 41,
no. 5, pp. 1379–1396, Sep 1995.

[61] J. Jiang and K. Narayanan, “Iterative soft-input soft-output decoding of
Reed-Solomon codes by adapting the parity-check matrix,” IEEE Transac-
tions on Information Theory, vol. 52, no. 8, pp. 3746 –3756, Aug. 2006.

[62] R. Nielsen, “Decoding AG-codes beyond half the minimum distance,” Ph.D.
dissertation, University of Denmark, 1998.

[63] K. Lee and M. O’Sullivan, “An interpolation algorithm using Grobner bases
for soft-decision decoding of Reed-Solomon codes,” in IEEE International
Symposium on Information Theory, 2006, July 2006, pp. 2032 –2036.

[64] J. Zhu, X. Zhang, and Z. Wang, “Backward interpolation architecture for
algebraic soft-decision Reed-Solomon decoding,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 17, no. 11, pp. 1602 –1615, Nov.
2009.

[65] R. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon codes be-
yond half the minimum distance,” IEEE Transactions on Information Theory,
vol. 46, no. 1, pp. 246 –257, Jan. 2000.

166

Bibliography

[66] W. Gross, F. Kschischang, and P. Gulak, “Architecture and implementation
of an interpolation processor for soft-decision Reed-Solomon decoding,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 3,
pp. 309 –318, March 2007.

[67] W. Gross, F. Kschischang, R. Koetter, and R. Gulak, “A VLSI architecture
for interpolation in soft-decision list decoding of Reed-Solomon codes,” in
IEEE Workshop on Signal Processing Systems, 2002. (SIPS ’02)., Oct. 2002,
pp. 39 – 44.

[68] J. Bellorado, “Low-complexity soft decoding algorithms for Reed-Solomon
codes,” Ph.D. dissertation, Harvard University, 2006.

[69] J. Jiang and K. Narayanan, “Algebraic soft-decision decoding of Reed-
Solomon codes using bit-level soft information,” IEEE Transactions on In-
formation Theory, vol. 54, no. 9, pp. 3907 –3928, Sept. 2008.

[70] J. Zhu and X. Zhang, “Factorization-free low-complexity Chase soft-decision
decoding of Reed-Solomon codes,” in IEEE International Symposium on Cir-
cuits and Systems, 2009. ISCAS 2009, May 2009, pp. 2677 –2680.

[71] F. Garcia-Herrero, M. Canet, J. Valls, and P. Meher, “High-throughput inter-
polator architecture for low-complexity Chase decoding of RS codes,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 3,
pp. 568 –573, March 2012.

[72] J. Zhu and X. Zhang, “Efficient VLSI architecture for soft-decision decoding of
Reed-Solomon codes,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 55, no. 10, pp. 3050 –3062, Nov. 2008.

[73] X. Zhang and J. Zhu, “High-throughput interpolation architecture for alge-
braic soft-decision Reed-Solomon decoding,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 57, no. 3, pp. 581 –591, March 2010.

[74] ——, “Hardware complexities of algebraic soft-decision Reed-Solomon de-
coders and comparisons,” in Information Theory and Applications Workshop
(ITA), 2010, Feb. 2010, pp. 1 –10.

[75] D. Chase, “Class of algorithms for decoding block codes with channel mea-
surement information,” IEEE Transactions on Information Theory, vol. 18,
no. 1, pp. 170 – 182, Jan 1972.

[76] T. Moon, Error Correction Coding: Mathematical Methods And Algorithms.
John Wiley & Sons Inc, 2004.

[77] R. Blahut, Theory and practice of Error-Control Codes. Addison-Weasley,
1983.

167

Bibliography

[78] D. Sarwate and N. Shanbhag, “High-speed architectures for Reed-Solomon
decoders,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 9, no. 5, pp. 641 –655, Oct. 2001.

[79] K. Seth, K. Viswajith, S. Srinivasan, and V. Kamakoti, “Ultra folded high-
speed architectures for Reed Solomon decoders,” in 19th International Con-
ference on VLSI Design, 2006. Held jointly with 5th International Conference
on Embedded Systems and Design., Jan. 2006.

[80] I. Reed and M. Shih, “VLSI design of inverse-free Berlekamp-Massey algo-
rithm,” IEE Proceedings Computers and Digital Techniques, vol. 138, no. 5,
pp. 295 – 298, Sep. 1991.

[81] B. Yuan, Z. Wang, L. Li, M. Gao, J. Sha, and C. Zhang, “Area-efficient Reed-
Solomon decoder design for optical communications,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 56, no. 6, pp. 469 –473, June
2009.

[82] H. Lee, “A high-speed low-complexity Reed-Solomon decoder for optical com-
munications,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 52, no. 8, pp. 461 – 465, Aug. 2005.

[83] ——, “High-speed VLSI architecture for parallel Reed-Solomon decoder,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11,
no. 2, pp. 288 –294, April 2003.

[84] B. Sklar, Digital Communications: Fundamentals and Applications.
Prentice-Hall, 2001.

[85] X. Zhang, “High-speed VLSI architecture for low-complexity Chase soft-
decision Reed-Solomon decoding,” in Information Theory and Applications
Workshop, 2009, Feb. 2009, pp. 422 –430.

[86] X. Zhang and Y. Zheng, “Systematically re-encoded algebraic soft-decision
Reed-Solomon decoder,” IEEE Transactions on Circuits and Systems II: Ex-
press Briefs, vol. 59, no. 6, pp. 376 –380, June 2012.

[87] W. Zhang, H. Wang, and B. Pan, “Reduced-complexity LCC Reed-Solomon
decoder based on unified syndrome computation,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 21, no. 5, pp. 974 – 978,
May 2013.

168

