Contents

Resumen xi

Resum xiii

Summary xv

1 Introduction 1

1.1 Next generation of linear colliders 1
1.2 The CLIC Test Facility 3 8

2 Beam Diagnostics in Particle Accelerators 13

2.1 Introduction ... 13
2.2 Overview of beam parameters and diagnostics devices 13
2.2.1 Beam intensity .. 14
2.2.2 Beam position ... 16
2.2.3 Beam profile and beam size 17
2.2.4 Other relevant beam parameters: tune, chromaticity and luminosity 19
2.3 Beam diagnostics requirements for different machines and operation modes 22
2.4 Underlying physical processes 24
2.5 Electronic readout chain 25

3 Fundamentals of the Inductive Pick-Up for Beam Position Monitoring 29

3.1 The Inductive Pick-Up (IPU) concept 29
3.2 Characteristics parameters for beam position measurements 31
3.3 Beam-induced electromagnetic fields and wall image current 32
3.4 Electrode wall currents for beam position and current measurements 38
3.5 Operation principles of the BPS-IPU 42
3.5.1 Basic sensing mechanism 42
3.5.2 Output voltage signals 43
3.5.3 Frequency response and signal transmission 48

4 Design of the BPS Monitor for the Test Beam Line 55

4.1 Design background of the BPS-IPU 55
4.2 Main features of the BPS-IPU and TBL line specifications 55
4.3 Outline of the BPS project development phases 60
4.4 Layout of the BPS monitor: mechanical and functional design aspects 63
4.4.1 Vacuum chamber assembly 64
4.4.2 Non-vacuum outer assembly 69
4.5 Outline of the BPS monitor function: the wall image current paths

4.6 Electronic design of the on-board BPS PCB

4.7 BPS electrical model and frequency response simulations

4.7.1 Analysis of the circuit model and derived formulas

4.8 The BPS readout chain

4.8.1 Characteristics of the Analog Front-End (AFE) electronics

4.8.2 Characteristics of the Digital Front-End (DFE) electronics

4.8.3 Rad-hard considerations and components

5 Characterization Tests of the BPS Monitor

5.1 The BPS prototype wire test bench at CERN

5.2 The BPS series wire test bench at IFIC

5.2.1 Metrology of the wire test bench

5.2.2 Instrumentation equipment setup and test configurations

5.2.3 System control and data acquisition software application

5.3 Characterization low frequency tests results. The BPS benchmarks

5.3.1 Linearity test

5.3.2 Frequency response test

5.3.3 Pulse response test

5.4 High frequency test for longitudinal impedance of the BPS

5.4.1 Basic operation mechanism of the BPS monitor

5.4.2 Longitudinal impedance $Z_{||}$

5.4.3 The coaxial waveguide test bench simulation and design

5.4.4 HF test method and results of the BPS longitudinal impedance

5.5 Beam test performance of the BPS

5.5.1 Characterization test benchmark of the resolution parameter

5.5.2 Beam test for the BPS resolution measurement

6 Conclusions

Bibliography