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Abstract

The present thesis employs fuzzy-polynomial control techniques in order to
improve the stability analysis and control of nonlinear systems. Initially, it
reviews the techniques in the field of Takagi-Sugeno fuzzy systems, as well
as the more relevant results about polynomial and fuzzy polynomial systems.
The basic framework uses fuzzy polynomial models by Taylor series and sum-
of-squares techniques (semidefinite programming) in order to obtain stability
guarantees.

The contributions of the thesis are:

• Improved domain of attraction estimation of nonlinear systems for both
continuous-time and discrete-time cases. An iterative methodology based
on invariant-set results is presented for obtaining polynomial boundaries
of such domain of attraction.

• Extension of the above problem to the case with bounded persistent dis-
turbances acting on a nonlinear system. Different characterizations of
inescapable sets with polynomial boundaries are determined.

• State estimation: extension of the previous results in literature to the
case of fuzzy observers with polynomial gains, guaranteeing stability of
the estimation error and inescapability in a subset of the zone where the
model is valid.

• Proposal of a polynomial Lyapunov function with discrete delay in order
to improve some polynomial control designs from literature. Prelimi-
nary extension to the fuzzy polynomial case.

The last chapters present a preliminary experimental work in order to check
and validate the theoretical results on real platforms.
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Resumen

La presente tesis emplea técnicas de control polinomial borroso para mejorar el
análisis de estabilidad y control de sistemas no lineales. Inicialmente revisa las
técnicas existentes en el ámbito de sistemas borrosos Takagi-Sugeno, así como
los resultados más relevantes de los sistemas polinomiales y borrosos polino-
miales. El marco base del trabajo utiliza modelos borrosos polinomiales por
serie de Taylor y técnicas de suma de cuadrados (programación semidefinida)
para obtener garantías de estabilidad.

Las aportaciones de la tesis son:

• Estimación mejorada del dominio de atracción de sistemas no lineales,
tanto para el caso continuo como discreto. Se presenta una metodología
iterativa para la obtención de fronteras polinomiales de dicho dominio
de atracción basada en resultados sobre conjuntos invariantes.

• Extensión del problema anterior al caso de perturbaciones acotadas per-
sistentes. Se determinan distintas caracterizaciones de conjuntos in-
escapables con frontera polinomial.

• Estimación del estado: extensión de los resultados de literatura previa
al caso de observadores borrosos con ganancias polinomiales, garanti-
zando estabilidad del error de estimación e inescapabilidad de un sub-
conjunto de la zona donde el modelo es válido.

• Propuesta de una función de Lyapunov polinomial con retardo discreto
para mejorar determinados diseños de controladores polinomiales en lit-
eratura. Extensión preliminar al caso borroso polinomial.

Los últimos capítulos presentan trabajo experimental preliminar para poder
probar y validar los resultados teóricos en plataformas reales.
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Resum

La present tesi empra tècniques de control polinomial borrós per a millorar
l’anàlisi d’estabilitat i control de sistemes no lineals. Inicialment revisa les
tècniques existents en l’àmbit de sistemes borrosos Takagi-Sugeno, així com
els resultats més rellevants dels sistemes polinomials i borrosos polinomials.
El marc base del treball utilitza models borrosos polinomials per sèrie de Tay-
lor i tècniques de suma de quadrats (programació semidefinida) per a obtindre
garanties d’estabilitat.

Les aportacions de la tesi son:

• Estimació millorada del domini d’atracció de sistemes no lineals, tant
per al cas continu com discret. Es presenta una metodologia iterativa per
a l’obtenció de fronteres polinomials d’aquest domini d’atracció basada
en resultats sobre conjunts invariants.

• Extensió del problema anterior al cas de pertorbacions acotades persis-
tents. Es determinen distintes caracteritzacions de conjunts inescapables
amb frontera polinomial.

• Estimació de l’estat: extensió dels resultats de literatura prèvia al cas
d’observadors borrosos amb ganancies polinomials, garantint estabilitat
de l’error d’estimació i inescapabilitat d’un subconjunt de la zona on el
model es vàlid.

• Proposta de una funció de Lyapunov polinomial amb retard discret per a
millorar determinats dissenys de controladors polinomials en literatura.
Extensió preliminar al cas borrós polinomial.

Els últims capítols presenten treball experimental preliminar per a poder
provar i validar els resultats teòrics en plataformes reals.

xv





Contents

Abstract xi

1 Introduction 1
1.1 Motivation and background . . . . . . . . . . . . . . . . . . . 2

1.1.1 Linear VS nonlinear . . . . . . . . . . . . . . . . . . 2
1.1.2 Control problems in nonlinear systems . . . . . . . . 3

1.2 Scope and objectives . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I State of the Art 9

2 Takagi-Sugeno Fuzzy Systems 11
2.1 Takagi-Sugeno fuzzy modelling . . . . . . . . . . . . . . . . 12

2.1.1 Sector Nonlinearity approach . . . . . . . . . . . . . 14
2.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Lyapunov stability . . . . . . . . . . . . . . . . . . . 16
2.2.2 Fuzzy systems’ stability . . . . . . . . . . . . . . . . 19

2.3 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Parallel distributed compensator . . . . . . . . . . . . 20
2.3.2 Further developments . . . . . . . . . . . . . . . . . . 22
2.3.3 Observer design . . . . . . . . . . . . . . . . . . . . 23

2.4 Nominal performance and LMI’s . . . . . . . . . . . . . . . . 24
2.4.1 H2 performance . . . . . . . . . . . . . . . . . . . . 25
2.4.2 H∞ performance . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Decay Rate . . . . . . . . . . . . . . . . . . . . . . . 29

xvii



xviii CONTENTS

2.4.4 Guaranteed cost . . . . . . . . . . . . . . . . . . . . . 30
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Fuzzy Polynomial Systems 33
3.1 Fuzzy polynomial modelling . . . . . . . . . . . . . . . . . . 34

3.1.1 Taylor-series based polynomial fuzzification . . . . . 35
3.1.2 State growing by recasting nonlinearities . . . . . . . 39

3.2 Stability analysis via sum of squares . . . . . . . . . . . . . . 41
3.2.1 Global stability . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Local stability . . . . . . . . . . . . . . . . . . . . . 44

3.3 Fuzzy-Polynomial Stabilization . . . . . . . . . . . . . . . . . 48
3.3.1 Controller design . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Observer design . . . . . . . . . . . . . . . . . . . . 50

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

II Contributions 57

4 Domain of Attraction Estimation 59
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Problem statement . . . . . . . . . . . . . . . . . . . 62
4.2 Prefixed-shape DA estimation . . . . . . . . . . . . . . . . . 64

4.2.1 Local fuzzy polynomial models . . . . . . . . . . . . 65
4.2.2 Local stability analysis . . . . . . . . . . . . . . . . . 67
4.2.3 Domain of attraction expansion . . . . . . . . . . . . 72

4.3 Iterative DA estimate expansion . . . . . . . . . . . . . . . . 74
4.3.1 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Discrete-time DA estimation . . . . . . . . . . . . . . 76
4.3.3 DA estimation in continuous-time systems . . . . . . 80

4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Inescapable-set Estimation with Nonvanishing Disturbances 107
5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Invariant sets under nonvanishing disturbances . . . . . . . . . 110



CONTENTS xix

5.2.1 Application to local fuzzy models . . . . . . . . . . . 112
5.3 Inescapable-set issues in stabilization . . . . . . . . . . . . . 117
5.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Local Fuzzy Polynomial Observers 125
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1.1 Problem statement . . . . . . . . . . . . . . . . . . . 127
6.2 Observer design under vanishing disturbances . . . . . . . . . 130
6.3 H∞ polynomial observer design . . . . . . . . . . . . . . . . 134

6.3.1 Stability and performance analysis . . . . . . . . . . . 134
6.3.2 Direct discrete-time design . . . . . . . . . . . . . . . 137
6.3.3 Continuous-time based design . . . . . . . . . . . . . 140

6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Discrete-time Control Synthesis with Input Saturation 149
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1.1 Problem statement . . . . . . . . . . . . . . . . . . . 152
7.2 Synthesis via delayed-state Lyapunov functions . . . . . . . . 155

7.2.1 Extension to fuzzy-polynomial systems . . . . . . . . 160
7.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

III Experimental Applications 165

8 State Estimation in a 3DoF Electromechanical Platform 167
8.1 Description and modelling of the test setup . . . . . . . . . . 169

8.1.1 Fuzzy modelling . . . . . . . . . . . . . . . . . . . . 171
8.2 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.3 Design compromises in practice . . . . . . . . . . . . . . . . 176

8.3.1 Disturbance rejection vs. decay trade-off . . . . . . . 176
8.3.2 Proposed methodology . . . . . . . . . . . . . . . . . 177
8.3.3 Choice of disturbance size parameters . . . . . . . . . 179

8.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . 179
8.4.1 Pareto-front results . . . . . . . . . . . . . . . . . . . 181



xx CONTENTS

8.4.2 Evaluation of final design . . . . . . . . . . . . . . . 184
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9 Parameter Estimation in the Air Path of a TCSI Engine 191
9.1 System description . . . . . . . . . . . . . . . . . . . . . . . 193
9.2 Fuzzy polynomial modelling of the air path system . . . . . . 196
9.3 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . 201
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Conclusions of the thesis 207

Bibliography 211

Appendices 227

A Semidefinite and SOS Programming 229
A.1 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . 229

A.1.1 Schur complement . . . . . . . . . . . . . . . . . . . 230
A.1.2 S-procedure . . . . . . . . . . . . . . . . . . . . . . . 231
A.1.3 Finsler’s lemma . . . . . . . . . . . . . . . . . . . . . 232
A.1.4 Nonconvex matrix inequality problems . . . . . . . . 232
A.1.5 Numerical resolution . . . . . . . . . . . . . . . . . . 233

A.2 Sum Of Squares . . . . . . . . . . . . . . . . . . . . . . . . . 234
A.2.1 Positive polynomials: an outline . . . . . . . . . . . . 234
A.2.2 Positivstellensatz . . . . . . . . . . . . . . . . . . . . 236
A.2.3 SOS matrices . . . . . . . . . . . . . . . . . . . . . . 238
A.2.4 SOS problems . . . . . . . . . . . . . . . . . . . . . 239
A.2.5 Numerical resolution . . . . . . . . . . . . . . . . . . 241
A.2.6 Code of examples . . . . . . . . . . . . . . . . . . . . 242

B Proofs 249
B.1 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . 249
B.2 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . 250
B.3 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . 250
B.4 Proof of Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . 251



Chapter 1

Introduction

“Wheel was a great idea,
relativity was a great idea.

This one is an idea,
and a pretty loose one I should say.”

Dr. Sheldon Cooper

Automatic control is present in industrial processes since the 1940s. In
this framework, “automatic” means “without the need of any operator inter-
vention”.

Traditionally, early model-based design of automatic control systems used
input-output models and linear control techniques, such as PID controllers.

Those techniques would be enough if all processes in the real world were
linear. Unfortunately, real processes are always of high order (or even infinite)
and have some non-linearities, which, in their major part, are not negligible.

In order to solve, or at least to mitigate this problem, different methodolo-
gies have been proposed with the objective of effectively controlling nonlinear
systems. From the Jacobian linearization to gain scheduling (based on the lin-
earization on many points), to fuzzy control (say, by exact sector-nonlinearity
modelling), to pure nonlinear control (backstepping, adaptive, etc.), there is
a wide choice of tools and methodologies to select them when faced with a
control problem.

Using pure nonlinear control techniques may ensure, theoretically, that the
system is going to stable in all possible state range of the process. However,
this way may be complex to analyze and designing a controller might be even
impossible. Therefore, excluding simple nonlinear cases in which designing
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2 CHAPTER 1. Introduction

a controller is not so difficult, the option is usually restricting the problem to
modelling the nonlinear system around a desired operation point and applying
linear techniques.

1.1 Motivation and background

When the designer tries to address a control problem, many questions related
to modelling accuracy, controller complexity, kind of design approach, etc,
arise in mind and, therefore, many choices have to be made.

1.1.1 Linear VS nonlinear

A nonlinear system can be any system in which the state dynamics is governed
by a set of nonlinear functions (polynomials, powers, exponentials, logarith-
mic, sinusoidal, etc). Nonlinear systems exhibit complex behaviours:

• Several equilibrium points (there is only one in linear systems).

• Limit cycles, bifurcations and chaos.

• Finite escape time: the unstable system state can go to infinity in finite
time.

As a result, global stability analysis and controller design for those kind of
systems may be very complicated, in a general case.

By contrast, a linear dynamical system, as it is well-known, is a system
whose dynamical equations are linear, i.e, the state variables and inputs only
appear with degree one and multiplied by (possibly time-dependent) coeffi-
cients in the state-evolution equations. The linear time-invariant (LTI, con-
stant coefficients) and linear time-varying (LTV, time-dependent coefficients)
systems are included in this group. There exist a well-defined theory and pow-
erful tools for analyzing and controlling such systems, particularly the LTI
ones.

Usually, LTV systems are understood as those linear systems in which the
time variation of the coefficients is known beforehand. On the other hand, a
so-called linear parameter-varying (LPV) system is a family of linear plants
which are indexed by a “scheduling parameter”; they differ from LTV systems
in that the time variation (i.e., the scheduling parameter) is unknown a priori
but it can be measured upon operation of the system (or, at least, bounded
somehow).
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Classically, LPV systems are not considered as linear systems due to the
uncertainty about the future values of the scheduling parameters (which might
be state-dependent), but they are “close” to them because its family of dynam-
ical equations are still linear, so some tools derived from linear systems can be
applied to them (perhaps conservatively).

In this wide framework, the so-called fuzzy systems provide an intermedi-
ate option for analyzing and controlling nonlinear systems. Fuzzy systems are
a time-varying convex combination of various low-complexity vertex mod-
els. In particular, the set of fuzzy systems formed by linear vertex models
are a class of LPV systems denoted as Takagi-Sugeno (TS) fuzzy systems.
Moreover, those TS fuzzy systems in which one or more of the scheduling
parameters are the states of the system, are included in the so-called class of
“quasi-LPV” systems. Suitable definitions of all the above concepts appear on
Chapter 2.

Recently, extensions of some linear analysis and control tools have been
developed for polynomial dynamic systems. Hence, some of these extensions
can apply to fuzzy systems with polynomial vertex models, to be denoted as
“fuzzy polynomial” systems, to be discussed on Chapter 3.

One key advantage of the fuzzy approach to nonlinear control is the fact
that there exists a systematic methodology to model a smooth nonlinear system
as a fuzzy one (sector-nonlinearity approach) or as a polynomial one (Taylor
series approach, being the sector-nonlinearity a particular case of it).

1.1.2 Control problems in nonlinear systems

Control has the mission of achieving a desired dynamic behavior on a system.
In order to do that, the control structure is in charge of transforming the original
system dynamics.

Following Khalil (2002), nonlinear control techniques can be grouped in
two broad approaches:

1. Feedback linearization (input-output, input to state or exact): Tries to
introduce an auxiliar nonlinear feedback in order to make the resultant
system be linear from the control action point of view.

2. Based on Lyapunov stability theory (backstepping, sliding mode, adap-
tive control, Lyapunov redesign).

In order to deal with the control problem in a easier way, the set of fuzzy-
modelling methodologies, which are based on expressing the original nonlin-
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ear system as a convex combination of various low-complexity vertex models,
is an interesting option. Those methodologies have the advantage of extending
the use of linear tools, at the price of conservativeness.

In this framework, knowledge of the achievable stable operating region is
very important: this determines the safe operating zone. If the system goes out
of it, perhaps it cannot go back to the desired operating point. This involves
determining the domain of attraction (DA) of the nonlinear system around
the desired equilibrium/operating point. Nevertheless, exact determination of
such region is only possible in very simple cases. Usually, a computation of an
inner “estimate” of such DA is the only possible, meaning the computation of
a (possible small) subset of the DA.

1.2 Scope and objectives

At sight of the presented control problems, the motivation of this research work
is using fuzzy model-based techniques in order to improve (meaning by this to
reduce conservativeness holding a tractable complexity) analysis and control
of nonlinear systems. Fuzzy techniques may provide useful advantages over
pure nonlinear ones (using linear tools, well-defined methodologies, etc) and
over pure linear ones (possibility of giving guarantee of stability in a non-
infinitesimal region, etc).

The basic framework in this work is using fuzzy-polynomial techniques
and the available “sum-of-squares” semidefinite-programming tools in order
to search for theoretical stability guarantees.

In particular, this thesis is focused in contributing to the following prob-
lems:

• Stability analysis: domain of attraction estimation. The local-stability
analysis can be addressed in a more promising way by fuzzy-polynomial
techniques, which provide more degrees of freedom in order to fit the
actual nonlinear dynamics, i.e., in sense of obtaining proven estimates
which are closer to the real DA of the nonlinear system.

• Stability analysis under disturbances: analyzing the effect of bounded
disturbances over a system and, based on the developments for DA esti-
mation, computing reachable sets via inescapable-set considerations.

• State estimation: designing fuzzy observers with polynomial gains, in-
cluding information about local regions on the state and the estimation
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error. Moreover, guaranteeing inescapable regions and/or performance
indexes in systems with presence of disturbances.

• Control design: reducing existent conservativeness in fuzzy-polynomial
control-synthesis literature for nonlinear systems by using a more gen-
eral class of Lyapunov functions and relaxing design conditions with
local information about modelling regions and input constraints.

In the last stages of the work, modelling and experimental data collection
from real plants has been undertaken. The state estimation methodologies have
been validated in practice, and there is ongoing work on testing the other the-
oretical results from this thesis on these platforms.

1.3 Structure of the thesis

The manuscript is organized in three blocks:
Part I summarizes the most relevant results existent in literature which are

related to the objective of this thesis. In this way, next chapter summarizes the
main results within the fuzzy TS framework. Similarly is done in Chapter 3,
with the fuzzy polynomial literature.

Contributions are presented in Part II. First, in Chapter 4, new develop-
ments in local domain of attraction estimation are presented in both continuous-
time and discrete-time cases. Fuzzy-polynomial models, polynomial Lya-
punov functions and invariant/inescapable set considerations are used as the
basis over which existent results in literature are improved.

The extension to the stability analysis in which disturbances are present
is also addressed in Chapter 5, discussing computation of the so-called in-
escapable sets. In addition, classical control designs like H∞ for continuous-
time nonlinear systems are analyzed in presence of nonvanishing disturbances
and a design methodology is proposed in order to ensure the validity of the
fuzzy polynomial models by inescapable-set considerations.

Chapter 6 proposes a state-observer design for nonlinear systems in pres-
ence of disturbances. The bases are fuzzy polynomial modelling, sum of
squares tools and inescapable-set considerations. Two approaches are con-
sidered: first, with vanishing disturbances and, second, with nonvanishing dis-
turbances plus measurement noise.

Chapter 7 presents a novel control design for discrete-time polynomial
systems which propose the use of Lyapunov functions and controller gains
depending on present and past states. Such increase of complexity is proven
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to overcome existent results when information about input saturation is avail-
able. Then, this idea is also extended preliminarly to a more general class of
nonlinear systems by using fuzzy polynomial models.

Part III presents two experimental applications developed in the last stages
of the research work. The applications consider observer design for two pro-
totypes: a three degree-of-freedom fixed quadrotor (Chapter 8) and a tur-
bocharged internal combustion spark-ignition engine (Chapter 9).

The thesis ends with a summary of the main conclusions extracted from the
research work and some ideas about interesting problems for future work. In
addition, some appendices summarize well-known results and tools in semidef-
inite programing (linear matrix inequalities) as well as those in sum-of-squares
polynomials, which are widely used throughout this thesis.

1.4 Publications

The research work performed within the framework of this thesis has led to
several publications, listed below.

Book chapters

PITARCH, J. L., SALA, A. and ARIÑO, C. Polynomial fuzzy systems: Sta-
bility and control. In Fuzzy Modeling and Control: Theory and Ap-
plications (edited by F. Matía, G. N. Marichal and E. Jiménez), vol. 9
of Atlantis Computational Intelligence Systems, pages 95–115. Atlantis
Press, 2014a. ISBN 978-94-6239-081-2

Referred journal papers

PITARCH, J. L., SALA, A. and ARIÑO, C. V. Closed-form estimates of the
domain of attraction for nonlinear systems via fuzzy polynomial models.
IEEE Transactions on Cybernetics, vol. 44(4), pages 526–538, 2014b

PITARCH, J. L. and SALA, A. Multicriteria fuzzy-polynomial observer de-
sign for a 3 DoF nonlinear electromechanical platform. Engineering
Applications of Artificial Intelligence, vol. 30, pages 96–106, 2014

PITARCH, J. L., SALA, A., LAUBER, J. and GUERRA, T. M. Control syn-
thesis for polynomial discrete-time systems under input constraints via
delayed-state lyapunov functions. International Journal of Systems Sci-
ence, vol. 47(5), pages 1176–1184, 2016
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PITARCH, J. L., SALA, A., ARIÑO, C. V. and BEDATE, F. Estimación del
dominio de atracción de sistemas no lineales mediante modelos borrosos
polinomiales. Revista Iberoamericana de Automática e Informática In-
dustrial RIAI, vol. 9(2), pages 152 – 161, 2012b

PITARCH, J. L., SALA, A. and ARIÑO, C. V. Estabilidad de sistemas Takagi-
Sugeno bajo perturbaciones persistentes: Estimación de conjuntos in-
escapables. Revista Iberoamericana de Automática e Informática indus-
trial RIAI, vol. 12(4), pages 457–466, 2015

SALA, A. and PITARCH, J. L. Optimisation of transient and ultimate in-
escapable sets with polynomial boundaries for nonlinear systems. Auto-
matica, vol. 73, pages 82 – 87, 2016

Conference papers

SALA, A., PITARCH, J. L., BERNAL, M., JAADARI, A. and GUERRA, T. M.
Fuzzy polynomial observers. Proc. of the 18th IFAC World Congress,
Milano, Italy, pages 12772–12776, 2011

PITARCH, J. L., ARIÑO, C. V., BEDATE, F. and SALA, A. Local fuzzy mod-
eling: Maximising the basin of attraction. In 2010 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–7. Barcelona, Spain,
2010. ISSN 1098-7584

PITARCH, J. L. and SALA, A. Discrete fuzzy polynomial observers. In 20th
Mediterranean Conference on Control Automation (MED), pages 819
–823. Barcelona, Spain, 2012

PITARCH, J. L., ARIÑO, C. V. and SALA, A. Estimating domains of attrac-
tion of fuzzy polynomial systems. In Proceedings of the 7th Conf. of the
European Society for Fuzzy Logic and Technology (EUSFLAT-LFA), Ad-
vances in Intelligent Systems Research, pages 680–685. Atlantis Press,
Aix-les-Bains, France, 2011. ISBN 9789078677000

PITARCH, J. L., SALA, A., BEDATE, F. and ARIÑO, C. V. Inescapable-
set estimation for nonlinear systems with non-vanishing disturbances.
In 3rd IFAC Inter. Conf. on Intelligent Control and Automation Science
(ICONS), pages 457–462. Chengdu, China, 2013
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models. In 2011 IEEE International Conference on Fuzzy Systems (FUZZ),
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PITARCH, J. L. and SALA, A. Síntesis de observadores y controladores
para sistemas no lineales mediante técnicas borrosas polinomiales. In
IX Simposio CEA de control inteligente, pages 87–92. Tenerife, Spain,
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Chapter 2

Takagi-Sugeno Fuzzy Systems

Like a plucked and skinny goose,
I asked myself with unsteady voice

if of all the stuff I read,
I’ll ever make the slightest use.

James Clerk Maxwell

ABSTRACT: This chapter gives a brief outline about the existent litera-
ture on the use of fuzzy Takagi-Sugeno techniques in order to deal with
analysis and control of nonlinear systems. Sector nonlinearity approach
and linear matrix inequalities (LMI) are the basis of the results summa-
rized on this chapter. Methodologies for analysis/design are provided in
both, continuous-time and discrete-time cases. The cases of disturbance
rejection and performance evaluation are also addressed.

Fuzzy control originated more than 40 years ago (Zadeh, 1965), but nowa-
days it is a mature control methodology with many alternatives based on LMI’s.
They allow to analyze nonlinear systems and design stable controllers with a
desired performance in terms of decay rate or disturbance attenuation (Tanaka
and Wang, 2001; Liu and Zhang, 2003; Sala, Guerra and Babuška, 2005; Feng,
2006). Furthermore, a large class of nonlinear systems can be modelled as
fuzzy Takagi-Sugeno (TS) systems via the sector nonlinearity approach (later
presented) or via identification paradigms (Babuška, 1998), which are out of
the scope of this thesis.

Hence, fuzzy control is nowadays a viable option for control of many non-
linear systems in practice (Guelton, Delprat and Guerra, 2008; Lee, Park, Joo,

11
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Lin and Ham, 2010; Mohammad, Guerra, Grobois and Hecquet, 2011), al-
though there are some sources of conservativeness with respect to an ideal
nonlinear controller (Sala, 2009). For instance, most processes are subject to
constraints on input and/or state in practice (actuator saturation or rate varia-
tion are the most common ones). However controllers designed with classical
TS approaches actually never reach those limits, except perhaps at the initial
instant or under strong disturbances.

Those classical approaches, joint with further works which propose modi-
fications for reducing conservatism, are outlined on the following sections.

This chapter organizes as follows: next section presents the Takagi-Sugeno
fuzzy modelling methodology by the well-known sector nonlinearity approach,
Section 2.2 reviews the results of Lyapunov-based stability and its application
to fuzzy TS systems, Section 2.3 deals with the most employed controller and
observer design methodologies in such kind of systems, in addition Section 2.4
discusses the most used performance indexes and, finally, Sections 2.5 and 2.6
provide a discussion about the existent problems/limitations and some conclu-
sions of the TS systems approach respectively.

2.1 Takagi-Sugeno fuzzy modelling

This thesis is focused on fuzzy models of nonlinear systems for which a math-
ematical model is available, for instance by first principles. In those systems,
there exist some nonlinear terms which may be complicated to deal with from a
control point of view. In this framework, Takagi-Sugeno (TS) fuzzy modelling
(Takagi and Sugeno, 1985) gives a fairly simple and well-defined methodol-
ogy to deal with a large class of such nonlinear systems. Let us first recall
important definitions of dynamical systems from literature.

Definition 2.1 (Chen (1998)). A linear time-varying system (LTV) is a dy-
namical system whose evolution is defined through state-space equations of
the form

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) (2.1)

where x(t) ∈ Rn denotes the system state, u(t) ∈ Rb denotes the system
inputs, y(t) ∈ Rc denotes the system outputs, and where ẋ(t) = dx

dt (t) denotes
the derivative of x with respect to time.
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In those systems the time variations are known beforehand. A particular
case of LTV systems are the linear time-invariant (LTI) ones, in whichA,B,C
are constant matrices.

Definition 2.2 (Shamma (1988)). A linear parameter-varying (LPV) system
is defined as a linear system whose coefficients depend on an exogenous time-
varying parameter θ(t):

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t)

y(t) = C(θ(t))x(t) (2.2)

The “scheduling” parameters θ take values in some prescribed set θ(t) ∈ Θ.
If the scheduling parameters are actually endogenous to the state dynamics
(e.g. θ ≡ x) the system is named quasi-LPV.

Now consider a nonlinear system represented by

ẋ = f(x) + b(x, u)
y = c(x)

(2.3)

where f(x), c(x) and b(x, u) can be any set of linear and nonlinear functions
of the states and/or inputs respectively.

The objective of the fuzzy TS modelling is to express the existent nonlin-
earities (usually in a region of interest Ω(x, u)) between a convex combination
of LTI vertex models. In this way, the nonlinearity is always proven to lie in
some point between the linear systems. Each rule associates a LTI model at
the consequent part of a weighting function obtained from the premises (sup-
posedly known variables). The Ri fuzzy rules of the TS model are of the form

IF z1(t) is Mi1 and...and zp(t) is Mip

THEN

{
ẋ(t) = Aix(t) +Biu(t)
y(t) = Cix(t)

i = 1, . . . , r
(2.4)

where Mij is the fuzzy set, r is the number of fuzzy rules and z1(t)...zp(t) are
the premise variables which can be function of the state, external inputs and/or
time.

Definition 2.3 (Tanaka and Wang (2001)). A Takagi-Sugeno fuzzy model of a



14 CHAPTER 2. Takagi-Sugeno Fuzzy Systems

nonlinear system (2.3) can be represented in the form

ẋ(t) =
r∑
i=1

µi(z(t))(Aix(t) +Biu(t))

y(t) =
r∑
i=1

µi(z(t))Cix(t) (2.5)

where x ∈ Rn is the state, u ∈ Rb are the inputs, µi are the membership
functions being its arguments z the premise variables of the fuzzy rules, and
the output y ∈ Rc is a linear combination of the rule consequents. The mem-
bership functions µi are designed by taking into account the original nonlin-
earities and they should verify the convex sum property:

r∑
i=1

µi(z) = 1, µi(z) ≥ 0 ∀z, i : 1, . . . , r (2.6)

Further details and the discrete-time case can be consulted in Tanaka and
Wang (2001, Chap. 2).

In this way, by taking the membership functions µ(z(t)) as the schedul-
ing variables θ(t), i.e., A(θ) =

∑r
i=1 µi(z)Ai, B(θ) =

∑r
i=1 µi(z)Bi and

C(θ) =
∑r

i=1 µi(z)Ci in (2.2), the TS fuzzy systems can be interpreted as a
quasi-LPV form (Guerra, Kruszewski and Lauber, 2009).

In the following, this chapter focus on the form (2.5) of TS models. Two
methods are generally possible to obtain (2.5) from (2.3). The first one is
based on the linearization around several set points of the nonlinear plant. In
this case, the resulting model is only an approximation and the µi(z(t)) are
chosen as triangular or sigmoid functions (Tanaka and Wang, 2001). The sec-
ond one is the sector nonlinearity approach which allows representing exactly
the nonlinear model (2.3) in a compact set of the state variables. This thesis
focus on that second methodology, detailed below.

2.1.1 Sector Nonlinearity approach

Defining a global fuzzy model for a nonlinear system is usually a difficult
task (sometimes impossible, i.e., if the partial derivatives are unbounded for
instance). Moreover, even if possible, may be very conservative. Therefore,
the usual way to proceed is making a local fuzzy model which is valid within
an expected region Ω of the state space.
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In order to perform that local modelling, the well-known Sector Nonlin-
earity approach is employed. It appeared first in Kawamoto, Tada, Ishigame
and Taniguchi (1992) and the idea is that, given a nonlinearity f(x) which ful-
fills f(0) = 0, defining r linear systems Aix(t) within an interval of interest
Ω = {x ∈ −d ≤ x ≤ d}. This defines a sector where the nonlinearity will
always lie in (see Figure 2.1). This technique guarantees a fuzzy model which
represents the original nonlinear system in an exact way, inside the modelling
region Ω of course.

Figure 2.1: Sector nonlinearity modelling.

In order to obtain the membership functions µi, the maximum and mini-
mum values of the nonlinearities present in f(x) are computed for the mod-
elling region Ω. Then, jointly with the convex sum property (2.6), f(x) can be
represented by the memberships and that max/min values. Examples of mod-
elling can be found in Tanaka and Wang (2001, Chap. 2). Details are omitted
for brevity as the issue has been deeply explored in prior literature and, fur-
thermore, this will be a particular case of polynomial fuzzy modelling to be
addressed in next chapter.

2.2 Stability analysis

The stability analysis for TS fuzzy systems is based on the Lyapunov theory
(Kalman and Bertram, 1960) and Linear Matrix Inequalities (LMI) develop-
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ments (Boyd, Ghaoui, Feron and Balakrishnan, 1994).
Lyapunov stability theory analyzes the stability of a system respect to an

equilibrium point. Variations to it allow analyzing BIBO stability, as later
discussed.

2.2.1 Lyapunov stability

The following definition introduces several types of stability.

Definition 2.4. Consider the general nonlinear autonomous dynamical system
ẋ(t) = f(x(t)) and let xe be an equilibrium point for it.

1. The equilibrium point xe is Lyapunov stable if, for every neighborhood
U of xe, there is a region V ⊂ U , xe ∈ V such that every solution x(t)
starting in V (x(0) ∈ V ) remains in U for all t ≥ 0. See Figure 2.2a.
Note that x(t) does not need to approach xe.

2. The equilibrium point is locally asymptotically stable if it is Lyapunov
stable and, additionally, V can be chosen such that ‖x(t)− xe‖ → 0
when t → ∞ for all x(0) ∈ V . See Figure 2.2b. Moreover, if for
all x(0) ∈ Rn, limt→∞ x(t) = xe, the equilibrium point is globally
asymptotically stable.

3. The equilibrium point xe is locally exponentially stable if there is a
neighborhoodW of xe and positive constants β, α such that ‖x(t)− xe‖
< β ‖x(0)− xe‖ e−αt for all t ≥ 0 and x(0) ∈ W . Moreover, if
W = Rn, the equilibrium point is globally exponentially stable.

4. Finally, an equilibrium point xe is unstable if it is not Lyapunov stable.

Exponentially stable equilibria are also asymptotically stable, and hence
Lyapunov stable. For more detailed explanation the reader is referred to the
works Haddad and Chellaboina (2008, Chap. 3,4) and Khalil (2002, Chap.
3,4).

Lyapunov functions

Aleksandr Mikhailovich Lyapunov, in his original Ph.D. thesis (1892), pro-
posed two methods for demonstrating stability. The second method is almost
universally used nowadays. It makes use of a Lyapunov function V (x) which
has an analogy to the energy function in mechanical systems.
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(a) Stable equilibrium (b) Asymptotically stable equilibrium

Figure 2.2: Lyapunov stability

Theorem 2.1 (Lyapunov (1992)). Consider a system having an equilibrium
point at x = 0 and let Ω ⊂ Rn be a domain containing x = 0. If a contin-
uously differentiable candidate function V (x) : Ω → R is found fulfilling the
following conditions

V (0) = 0

V (x) > 0 ∀ x ∈ Ω, x 6= 0

V̇ (x) =
dV (x)

dt
< 0 ∀ x ∈ Ω, x 6= 0 (2.7)

then the equilibrium point is asymptotically stable in the sense of Lyapunov. If
Ω ≡ Rn and the additional condition for V (x) being radially unbounded is
required, global asymptotic stability is proven.

This ensures stability in the Lyapunov sense because the function V (x)
always decreases until reaching the equilibrium point. The discrete-time case
is almost identical to that for continuous-time systems, replacing the condition
V̇ (x) < 0 by the one-step discrete increment ∆V = Vk+1(x)− Vk(x) < 0.

Let us denote the trajectory of a certain nonlinear dynamic system ẋ =
f(x) as x(t) = ψ(t, x0), where x0 are the initial conditions at t = 0. Theorem
2.1 implies that, when a trajectory crosses a Lyapunov level surface V (x) = c,
it moves inside the set {x ∈ Rn : V (x) ≤ c} and never can come out again.
Due to condition (2.7), the trajectory moves from one Lyapunov surface to an
inner one with a smaller c. As c decreases, the Lyapunov surface V (x) = c
shrinks to the origin. Therefore, computing Lyapunov surfaces are very related
to the domain (or region) of attraction estimation problem (Gordillo, 2009).
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Next, a definition of the domain of attraction of the equilibrium point
x(t) = 0 of the nonlinear system is given.

Definition 2.5. The domain of attraction of a system (2.3), denoted as D, is
the set of points belonging to the state space whose trajectory x(t) = ψ(t, x0)
ends in the asymptotically stable equilibrium point x = 0 (Khalil, 2002, Chap.
4).

D =
{
x ∈ Rn|ψ(t, x) ∈ Ω∀t ≥ 0, lim

t→∞
ψ(t, x) = 0

}
(2.8)

Introducing the notation Vc = {x : V (x) < c} to denote the level sets of
V (x), we have:

Lemma 2.1 (Khalil (2002)). If V (x) ≥ 0 and V̇ (x) < 0 in Ω, then Vc ⊂ Ω
implies Vc ⊂ D.

Then, in many literature references, the estimated DA is given by Vc∗

where c∗ is the largest c such that Vc ⊂ Ω.
Conditions on the Lyapunov function V (x) in Theorem 2.1 can be relaxed.

In particular, the strict negative-definiteness condition on the Lyapunov func-
tion derivative can be relaxed while ensuring asymptotic stability.

Definition 2.6. A set N is said to be a positively-invariant set with respect to
system (2.3) if

x(0) ∈ N ⇒ x(t) ∈ N , ∀t ≥ 0

That is, if a solution belongs toN at some instant, then it belongs toN for all
future time.

If a V (x), defined on a compact invariant set with respect to the nonlinear
system, can be constructed such that its derivative is negative semidefinite and
no system trajectories can stay indefinitely at points where V̇ (x) vanishes,
except at x = 0, then the system is asymptotically stable on the equilibrium
point x = 0. This result follows from the LaSalle invariance principle.

Theorem 2.2 (LaSalle (1960)). Assume that Ω ⊂ Rn is a compact positively
invariant set with respect to system (2.3) and assume there exists a continu-
ously differentiable function V : Ω → R such that V̇ (x) ≤ 0, x ∈ Ω. Let
R = {x ∈ Ω : V̇ (x) = 0} and let N be the largest invariant set contained in
R. If x(0) ∈ Ω, then x(t)→ N as t→∞.

There are plenty of applications of the above ideas in generic nonlinear
control (Albea, Gordillo and de Wit, 2013; Freeman and Kokotovic, 2008;
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Khalil, 2002). However, the motivation of this thesis is to focus on Takagi-
Sugeno systems (or its polynomial enhancements), so the discussion will now
be devoted to such class of systems.

2.2.2 Fuzzy systems’ stability

A nonlinear system can be analyzed around an equilibrium point x(0) = 0 by
using its equivalent fuzzy TS model. Given a fuzzy TS model derived from
a set of rules (2.4), in the form (2.5), the goal is to analyze its stability when
there is no input.

Theorem 2.3 (Tanaka and Wang (2001)). Consider a quadratic candidate Lya-
punov function V (x) = xTPx. The equilibrium x = 0 of the continuous fuzzy
system (2.5), with u(t) = 0, is globally asymptotically stable if there exists a
matrix P such that

P � 0 (2.9)

ATi P + PAi ≺ 0, i : 1, ..., r (2.10)

that is, a common P has to exist for all vertex subsystems.

And this is an LMI problem (see Appendix A.1) in which a matrix P � 0
has to be found fulfilling the second condition for each linear subsystem con-
forming the fuzzy model. The result for discrete-time systems can be obtained
in a similar way by replacing (2.10) by the discrete incrementATi PAi−P ≺ 0.
Details omitted for brevity.

The Lyapunov function V (x) provides a set of initial conditions of the
state space which belong to the domain of attraction of the nonlinear system
around the equilibrium point x = 0. That set of initial conditions is defined by
the largest Lyapunov level set of V (x), say V ≤ c, which is contained in the
modelling region Ω, i.e., {x ∈ Rn : V (x) ≤ c} ⊂ Ω. See Figure 2.3.

If V (x) is defined by a quadratic function as in Theorem 2.3, the provable
domain of attraction is an ellipsoid and it is also called by “basin of attraction”
in the quadratic TS literature (Cuesta, Gordillo, Aracil and Ollero, 1999; Wang,
Tanaka and Griffin, 1996).

Remark 2.1. Proving global stability of a fuzzy TS model means proving local
stability of the original nonlinear system, because the TS model is only valid
inside the chosen modelling region Ω.
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Figure 2.3: Domain of attraction and trajectories of a nonlinear system in the
phase plane.

2.3 Control design

In order to control nonlinear systems modelled in TS form (2.5), a control law
u(t) must be designed. The most extended methodology for control design of
TS systems is the Parallel Distributed Compensator (PDC) and its subsequent
modifications, whose ideas and design methodologies are summarized below.

2.3.1 Parallel distributed compensator

In this controller, each control law is designed from the corresponding fuzzy
rule of the TS model and shares the same fuzzy sets and memberships with
the model (Wang, Tanaka and Griffin, 1995; Li, Niemann, Wang and Tanaka,
1999).

The controller rules are built in the following form, analogous to (2.4):

IF z1(t) is Mi1 and...and zp(t) is Mip

THEN u(t) = −Kix(t), i = 1, . . . , r.
(2.11)

Finally the complete controller is expressed as

u(t) = −
r∑
i=1

µi(z(t))Kix(t), (2.12)
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so the closed-loop system becomes:

ẋ(t) =

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t)) (Ai −BiKj)x(t) (2.13)

The design problem is reduced to finding the gains Kj which fulfill the
Lyapunov stability conditions (2.7). The synthesis problem can be solved in
a similar way to Theorem 2.3 by taking Ai − BiKj instead of Ai and then
performing the change of variable X = P−1, Mj = KjX in order to put
the problem in convex form. For details see Tanaka and Wang (2001, Chap.
3). In this way, the PDC design reduces to solve an LMI problem from which
the values of P = X−1 and Kj = MjP are obtained. However, this is very
conservative because double fuzzy-summation terms appear, see below.

In addition, constraints on the inputs/outputs as well as performance guar-
antees (see Section 2.4) can be included on the design phase. See Tanaka and
Wang (2001, Chap. 3) for details on the procedure.

Fuzzy summations

In the above design, as in many fuzzy control problems, a double fuzzy sum-
mation appears in the resulting LMI’s due to the term

∑r
i

∑r
j µi(z)µj(z)BiKj .

First, in order to obtain LMI’s from expressions such as

r∑
i

r∑
j

µi(x)µj(x)Mij > 0

where the memberships µi are state dependent (premise variables z ≡ x), a
conservative step transforms µi(x) into an arbitrary scalar µi in the standard
simplex µi ∈ ∆ (state independent). Hence, the original problem has been
translated to a co-positivity (Wang, Tanaka and Griffin, 1996) one:

r∑
i

r∑
j

µiµjMij > 0 ∀µi ∈ ∆

In this way, stability can be proved by setting LMI’s with the vertex mod-
els.

Remark 2.2. Note that due to the above transformation, Theorem 2.3, if fea-
sible, proves stability for the particular nonlinear system and for all the rest
which can be represented by the same vertices.



22 CHAPTER 2. Takagi-Sugeno Fuzzy Systems

However, checking all j gains for each i condition is useless in the sense
of obtaining fuzzy controller gains: they will never be better than a single
gain. Therefore, sum relaxations are required to reduce this conservatism.
A basic sufficient solution for this fuzzy control problem was carried out in
Wang, Tanaka and Griffin (1996). A refinement of that approach was pro-
posed in Tuan, Apkarian, Narikiyo and Yamamoto (2001). Later, those ap-
proaches were generalized by the works Sala and Ariño (2007a); Kruszewski,
Sala, Guerra and Ariño (2009) on which a progressive asymptotically exact re-
duction of conservatism is proven by increasing the complexity and/or number
of LMI conditions. See the cited references for further details.

2.3.2 Further developments

In the classical PDC design, the Lyapunov function is quadratic and the fuzzy
control rules have linear consequents, state feedback in this case. Nevertheless,
other kind of controllers can be used, for instance static and dynamic output
feedback ones (Bouarar, Guelton and Manamanni, 2013; Tanaka and Wang,
2001, Chap. 12,13). In the work Lam and Leung (2007) a similar idea is
presented and it is more focused on finding control laws which ensure some
dynamical specifications by iterative LMI algorithms (Appendix A.1.4).

Non-quadratic results with PDC based control laws are also stated by using
fuzzy Lyapunov functions

V (x) = xT

(
r∑
i=1

µi(z)Pi

)
x

assuming a priori bounds on the membership function’s derivatives |µ̇i(z)| ≤
φi (Tanaka, Hori and Wang, 2003; Mozelli, Palhares and Avellar, 2009), or on
its partial derivatives (Jaadari, 2013) by expressing

r∑
i=1

µ̇i(z) =

r∑
i=1

(
∂µi
∂z

)T
ż ,

∣∣∣∣∂µi∂z

∣∣∣∣ ≤ βi.
Furthermore, the non-PDC control laws introduced in Guerra and Ver-

meiren (2004) for the discrete-time case, whose ideas are further developed
in Jaadari (2013) for the continuous-time one

u =

r∑
i=1

µi(z)Ki

 r∑
j=1

µj(z)Pj

−1

x,
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can also be used to improve over classical PDC designs by adding information
on the membership derivatives. See details on the cited sources.

In addition, the works presented in the references Sala and Ariño (2007b);
Bernal, Guerra and Kruszewski (2009), focus on the problem of conservative-
ness when assuming state independence in the membership functions, men-
tioned in the above section, and propose ideas in order to add the membership
information to the LMI problem.

2.3.3 Observer design

Most control designs include total or partial state feedback but, unfortunately,
not all the states are measurable. For those cases, a good state estimation is
required. The problem of observer design for TS systems has been widely
addressed on literature (Tanaka and Wang, 2001; Lendek, Guerra, Babuška
and De Schutter, 2010). This section summarises the main approaches.

An observer under no disturbances and no modelling error must satisfy

x(t)− x̂(t)
t→∞→ 0

where x̂(t) are the estimated states by the observer. This condition guarantees
that the estimated states will converge to the real ones in stationary state.

An idea for designing a fuzzy observer is to follow a similar structure to
the PDC controller:

IF z1(t) is Mi1 and...and zp(t) is Mip

THEN

{
x̂(t) = Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t)), i = 1, . . . , r
ŷ(t) = Cix̂(t)

(2.14)
The fuzzy observer has linear observation laws as consequents in this case.
The observer gainsLi can be obtained again from solving an LMI problem.

However, the design procedure varies considerably with the dependence of the
premise variables z(t) on the states x(t). Two alternatives can be presented:

1. The premise variables depend on measurable quantities (outputs or mea-
surable inputs):

˙̂x(t) =
r∑
i=1

µi(z(t)) [Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))]

ŷ(t) =
r∑
i=1

µi(z(t))Cix̂(t) (2.15)
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2. The observer premises depend on the estimated states:

˙̂x(t) =
r∑
i=1

µi(ẑ(t)) [Aix̂(t) +Biu(t) + Li(y(t)− ŷ(t))]

ŷ(t) =
r∑
i=1

µi(ẑ(t))Cix̂(t) (2.16)

The design procedure guaranteeing stability for case 1 is much simpler
than for case 2. This is because the membership functions of the model and
the observer are the same and depend on known variables in every moment.
The procedure for case 1, both in continuous-time and discrete-time, is done
by solving an LMI problem on the estimation error e(t) = x(t) − x̂(t). See
Tanaka and Wang (2001, Cap. 4) for details.

However, for case 2 design becomes much more complicated. This is be-
cause the membership functions of the model depend on the “unknown” states
and the observer ones on the estimated states. Therefore, both memberships
can take different values at same time, i.e., µi(z) 6= µi(ẑ) because z 6= ẑ in
general. In this case, the design developments for case 1 are no longer valid.

Some conservative proposals have been presented recently to deal with
case 2. For instance, the observer-model mismatch must fulfill a Lipschitz-like
bound (Ichalal, Marx, Ragot and Maquin, 2010; Lendek, Guerra, Babuška and
De Schutter, 2010) ∥∥∥∥∥

r∑
i=1

(µi(z)− µi(ẑ))Aix

∥∥∥∥∥ ≤ σ ‖e‖ , (2.17)

or bounding its derivatives and expressing it as a TS model too (Ichalal, Marx,
Maquin and Ragot, 2012a), or also bounding the derivatives of the member-
ships |µ̇i(ẑ)| < ρi ensuring input-to-state stability (ISS) (Ichalal, Marx, Ragot
and Maquin, 2012b), in order to proceed further and set up LMI’s.

2.4 Nominal performance and LMI’s

In this section, the results on dissipative systems and linear matrix inequalities
presented on the above sections are used to characterize a number of relevant
performance criteria for dynamical systems.

Consider a dynamical fuzzy TS system in the form (2.5) where u ∈ Rb are
external inputs (can be control or disturbances). It is assumed throughout this
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section that the system is asymptotically stable. If not, a controller must be
designed to make the closed-loop system fulfill this assumption.

There exist several indicators for nominal performance, for instance the
energy in the impulse response of the system, the percentage overshoot or
speed of convergence in step responses, minimizing or maximizing the effect
of u (depending on the control or disturbance nature of u) on the output y
(error indicator), etc. On the following, the most common indicators with LMI
approaches existent in literature are summarized.

2.4.1 H2 performance

Generally, definitions of H2 for exponentially stable LTV systems have been
proposed based on system response to either stationary white noise or a unit
impulse.

Stochastical interpretation. The first interpretation of the H2 norm makes
use of stochastics. Assume that the components of the input u are independent
zero-mean white noise processes with identity covariance matrix. According
to Stoorvogel (1993), the H2 norm of an exponentially stable LTI system T ,
with x(0) = 0, can be defined by

‖T‖22 := lim
h→∞

E
{

1

h

∫ h

0
y(t)ty(t)dt

}
(2.18)

where y(t) ∈ Rc is the objective output and E denotes the mathematical ex-
pectation.

Then, H2 performance can be interpreted in LTI systems as the output
variance when subject to that input (Scherer and Weiland, 2004).

The time-varying version of the H2 norm, for an LTV system Ttv, given
by ẋ = A(t)x+B(t)u, y = C(t)x is defined in Stoorvogel (1993) by:

‖Ttv‖22 := lim
h→∞

supE
{

1

h

∫ h

0
y(t)ty(t)dt

}
=

lim
h→∞

sup Trace

{
1

h

∫ h

0
B(t)TL(t, h)B(t)dt

}
(2.19)

where L is the unique bounded matrix function satisfying the Lyapunov differ-
ential equation:

−L̇(t, h) = AT (t)L(t, h) + L(t, h)A(t) + CT (t)C(t)

L(h, h) = 0
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The “lim sup” guarantees existence of this limit (the integral is bounded).
However, it is only a semi-norm, (2.19) can be 0 for nonzero systems (e.g.
B(t) = 0, t > 1000).

In a general case, let us consider computing a bound for the state variance.
Consider a matrix function of the state V (x(t)) for which we want to com-
pute its mean, for instance V (x(t)) = x(t)xT (t), with the goal of obtaining
E(V (x(t)). Then, by following Itô’s lemma derivations (Itô, 1944) we can
state for system dx = A(z)xdt+B(z)db, y = C(z)x

dV (x(t)) = (A(z)x(t)xT (t) + x(t)xT (t)A(z)T +B(z)TB(z))dt

+B(z)x(t)db = (A(z)V (x(t)) + V (x(t))A(z)T

+B(z)TB(z))dt+B(z)x(t)db (2.20)

where functions A(z) =
∑r

i=1 µi(z)Ai, B(z) =
∑r

i=1 µi(z)Bi and C(z) =∑r
i=1 µi(z)Ci are nonlinear functions of the premise variables z and db repre-

sents the Brownian motion.
Afterwards, taking variable expectations in (2.20), two possibilities arise:

1. z is statistically independent to x. In this case, the expectation E(V (x(t)))
is the solution of the matrix differential equation:

d

dt
E(V (x(t))) = A(z)E(V (x(t))) + E(V (x(t)))A(z)T +B(z)TB(z)

(2.21)
Then, if a matrix P � 0 can be found fulfilling

A(z)P + PA(z)T +B(z)TB(z) < 0 (2.22)

we have that P is an upper bound for the considered expectation, i.e.,
P > E(V (x(t))) (Stoorvogel, 1993; Xie, 2005). Consequently, the out-
put variance leads to

E(yT y) = E(xTC(z)TC(z)x) = E trace(C(z)xxTC(z)T )

= trace(C(z)E(xxT )C(z)T ) ≤ trace(C(z)PC(z)T ) (2.23)

which can be cast as an LMI optimization problem. Less conservative
results can be obtained by using a parameter-dependent matrix P (z)
instead of a constant one. See Xie (2005) for details.
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2. z depends on x. This is the case of the TS fuzzy models, where z ≡ x. In
this case, the expectation E(dV (x(t))) cannot be expressed as a function
of E(V (x(t))) because E(A(x)V (x)) 6= A(x)E(V (x)).

Therefore, although similar LMI conditions to LPV systems can be posed,
the output-variance meaning of the H2 norm bound can only be inter-
preted as it when the membership functions of the TS system remain
almost constant during a long time.

Note. In LTI systems, the exact solution for (2.19) or, equivalently, (2.21) can
be computed and it is called the observability/controllability gramian respec-
tively (Scherer and Weiland, 2004)[Chap. 3]. Therefore, in this case the H2

norm is exactly computing the asymptotic output variance of the system when
it is excited by white-noise input signals.

Impulsive behaviour. The second interpretation of the H2 norm of a sys-
tem is related to its impulsive behaviour, i.e, the interest is only focused in
minimizing the impulse responses of the system (u(t) = δ(t)ei)1. Assuming
there are a total of b inputs, in this case, the H2 norm of an LTV system Ttv is
defined in Stoorvogel (1993) by:

‖Ttv‖22 :=

b∑
i=1

‖yi‖22 (2.24)

See the cited reference for details in the LTV case. For continuous-time TS
systems, the values of the state-dependent membership functions may change
within the impulsive response. So, up to the author’s knowledge, the problem
of computing a bound of this H2 interpretation for TS systems has not been
posed in LMI form. Instead of it, the guaranteed-cost performance is used, see
Section 2.4.4.
Remark 2.3. Under this point of view, theH2 performance of a nonlinear sys-
tem is understood as a speed of convergence index, because it evaluates the
system’s output evolution starting from the particular set of initial conditions
given by unit impulse inputs.

Equivalent developments can be addressed for discrete-time systems in
whichD is not forced to be zero (typical measurement noise present on discrete-
time systems). See De Caigny, Camino, Oliveira, Peres and Swevers (2010)
for details in the LPV case and Zhou, Doyle and Glover (1996)[Chap. 21] in
the LTI one.

1ei is the i-th basis vector in the standard basis of the input space Rb (i : 1, . . . , b).
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2.4.2 H∞ performance

Consider an asymptotically stable system (2.5) denoted by T . The H∞ norm
for system T is defined by the worst case gain:

‖T‖∞ := sup
0<‖u‖2<∞

‖y‖2
‖u‖2

(2.25)

In LTI systems this means that the H∞ norm of a transfer function is the
supremum of the maximum singular value of the system’s frequency response
(Scherer and Weiland, 2004)[Chap. 3]:

‖T‖∞ := sup
jω∈C+

σmax(T (jω)) <∞ (2.26)

The following proposition gives a bound
√
γ for the worst case gain of

system (2.5) in terms of linear matrix inequalities.

Proposition 2.1 (Tanaka and Wang (2001)). Let the system (2.5) be asymptot-
ically stable and assume that the initial conditions are equal to zero x(0) = 0.
Then the system is strictly dissipative with respect to the supply function S =
γ ‖u‖2 − ‖y‖2 and ‖T‖∞ <

√
γ if the following LMI problem is feasible:

Minimize γ subject to

γ > 0, P � 0, (2.27) −ATi P − PAi CTi PBi
Ci I 0
BT
i P 0 γI

 � 0 i : 1, . . . , r (2.28)

Proof omitted for brevity, see Appendix B.1.
Equivalent result can be obtained for discrete-time systems by replacing

the derivative V̇ by its discrete increment ∆V = Vk+1−Vk and using discrete
sums

∑T
k=0 Vk instead of the integrals. See Tanaka and Wang (2001, Chap.

3.7) for details.

Remark 2.4. The H∞ performance of a nonlinear system can be understood
as a robustness index because it evaluates the effect of the worst case input
(external signal or even a state-dependent modelling error). The proof is based
on the small-gain theorem, see Khalil (2002, Chap. 5) for details.

For example, given a TS model of a nonlinear system under disturbances,
the objective is to find a PDC controller with a good disturbance attenuation.
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The closed loop will be on the form

ẋ(t) =

r∑
i=1

µi(z(t))((Ai −BiKi)x(t) + Eiv(t)),

y(t) =

r∑
i=1

µi(z(t))Cix(t), (2.29)

where v(t) are now the considered disturbances to reject, i.e., (Ai −BiKi) ≡
Ai and Ei ≡ Bi on Proposition 2.1.

The controller gains Ki have to be designed in order to achieve a mini-
mum variation on the output y(t) when a disturbance v(t) is acting. It can be
expressed as:

sup||v(t)||2 6=0

||y(t)||22
||v(t)||22

≤ √γ. (2.30)

This synthesis problem is very popular within LTI, LPV and LTV literature
and can be cast as an LMI optimization problem following Proposition 2.1
which, in case of TS systems and PDC controller, can be consulted in Tanaka
and Wang (2001, Chap. 3).

2.4.3 Decay Rate

The so-called decay rate of a system is the largest time constant α of a negative
exponential (e−αt) for which the system is proven to decrease equal or faster
(related to exponential stability according with Definition 2.4) (Haddad and
Chellaboina, 2008, Chap. 3). Therefore it is a measure of system’s speed.

This decay-rate guarantee can be proven by adding a quadratic constraint
to the stability LMI’s, forcing the derivative of the Lyapunov function V to be
more negative than −2αV (Ichikawa, 1993):

V̇ (x(t)) ≤ −2αV (x(t)) (2.31)

For instance, in case of having TS systems and quadratic Lyapunov func-
tions V (x), the LMI’s (2.10) are modified as follows:

ATi P + PAi ≤ −2αP (2.32)

Nevertheless, (2.32) is not a convex problem due to the product of decision
variables α and P . Fortunately it is a quasiconvex problem denoted GEVP
(Appendix A.1.4.1) which can be solved by bisection, fixing α and solving
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the remaining LMI problem in each step. In this way α can be maximized.
Detailed development, also for discrete-time case, can be found in Tanaka and
Wang (2001, Chap. 3).

2.4.4 Guaranteed cost

Guaranteed cost fuzzy control under LMI’s was presented in Tanaka and Wang
(2001, Chap. 6). Consider a quadratic performance index in the form

J =

∫ ∞
0

(yT (t)Wy(t) + uT (t)Ru(t))dt (2.33)

where y is the output, u is the control action andW,R are user-defined weight-
ing matrices. The designed controller must minimize an upper bound on it,
defined by a positive definite function V = xTPx, so that:

J < xT0 Px0 (2.34)

This bound holds if the following index Jd is negative:

Jd = yTWy + uTRu+ ẋTPx+ xTPẋ < 0 (2.35)

The proof arises easily by integrating (2.35) between 0 and∞, see the above
cited reference for more details.

Then, substituting in (2.35) the expression of ẋ and y as stated in (2.5),
and defining u by a PDC control law (2.12), the following double-summation
condition is obtained after application of Schur Complement (Appendix A.1.1)

r∑
i=1

r∑
j=1

µi(z)µj(z)x
TQijx ≤ 0 (2.36)

with

Qij =
1

2


2Dij XCTi −Mj XCTj −Mi

CiX −W−1 0 0 0
−Mj 0 −R−1 0 0
CjX 0 0 −W−1 0
−Mi 0 0 0 −R−1


Dij = AiX +XATi −BiMj −MT

j B
T
i

and X = P−1, Ki = MiP .
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The optimization problem to solve is:

Maximize λ−1 subject to

λ−1I < X (2.37)
r∑
i=1

r∑
j=1

µi(z)µj(z)x
TQijx ≤ 0 (2.38)

in order to obtain a lower bound for the cost (2.33) given by J ≤ λxT0 x0. For
details see Tanaka and Wang (2001, Chap. 6).

Note. The above expression (2.38) is not directly an LMI. There are many
well-known procedures in order to transform it into an LMI problem, see Sec-
tion 2.3.1 on fuzzy summations.

2.5 Discussion

The reviewed Takagi-Sugeno fuzzy approaches for stability analysis and con-
trol of nonlinear systems are obviously conservative (comparing to other pure
nonlinear control techniques). The main drawbacks are listed below:

• The LMI optimization problems derived from Lyapunov theory, if feasi-
ble, are proving stability for all possible nonlinear systems represented
by the same vertices. However, knowledge of the shape of the mem-
bership functions may allow to lift some conservativeness. For instance,
Example 6 in Tanaka and Wang (2001, Chap. 2) shows that the basin of
attraction for fuzzy systems may be membership dependent: the same
vertices but different memberships give rise to different (nonlinear) basins
of attraction. Anyway, unless fuzzy-Lyapunov functions are used (Tanaka,
Hori and Wang, 2003; Jaadari, 2013), the basins of attraction proved
with LMI’s are not membership dependent. This drawback has been ad-
dressed in some works like Sala and Ariño (2007b); Bernal, Guerra and
Kruszewski (2009), which add membership function information to the
LMI problem. Nevertheless, this is an inherent price to pay in extending
linear tools for doing nonlinear control.

• There are stable or stabilizable systems which do not necessarily have
a quadratic Lyapunov function (Sala, 2009). This issue has been ad-
dressed also in literature with several works which propose different
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non-quadratic candidate Lyapunov functions: piecewise (Feng, 2004;
Feng, Chen, Sun and Zhu, 2005), polynomial (Prajna, Papachristodoulou
and Wu, 2004b; Tanaka, Yoshida, Ohtake and Wang, 2009c), line-integral
(Rhee and Won, 2006) or fuzzy ones (Tanaka, Hori and Wang, 2003;
Guerra and Vermeiren, 2004; Jaadari, 2013). Despite the amount of ex-
istent literature, this issue is still an open problem because all works
present their own drawbacks in addressing the general case.

• The type of TS model: the model representation is not unique (Sala,
2009) and this fact can lead to a significant difference on the required
number of fuzzy rules, with their consequent increase of LMI vertex
conditions to check in the optimization problem. The more number of
LMI’s is the high computational resources are (Boyd, Ghaoui, Feron
and Balakrishnan, 1994). For instance, the TS descriptor representation
is usually more efficient for mechanical systems than the form (2.5), see
Tanaka and Wang (2001, Chap. 10).

2.6 Conclusions

This chapter has reviewed the existent fuzzy TS-based approaches for control
of nonlinear systems. They have been demonstrated to be a valid way to an-
alyze and control systems for which its original nonlinear model is available.
Moreover, the use of powerful tools on semidefinite programming allow man-
aging a large amount of decision variables and fuzzy rules for proving stability
analysis and stabilization.

However, there exist some sources of conservativeness in the modelling
phase (forced to embed nonlinearities between linear vertices), choice of the
Lyapunov functions, locality of the results, conditioning issues, growing com-
putational requirements to approach pure nonlinear control, and issues arising
with non-measurable premise variables.

In summary, the conservativeness of LMI fuzzy control as a tool for gen-
eral nonlinear control can be significantly reduced using some “fuzzy” suffi-
cient conditions (asymptotically) and exploiting some nonlinear knowledge.
This later fact motivates research in the use of fuzzy-polynomial modelling
methodologies and tools with the objective of decreasing part of such conser-
vativeness.



Chapter 3

Fuzzy Polynomial Systems

The best structure does not guarantee
neither results nor performance. However,

the wrong structure is a guarantee of
failure.

Peter Drucker

ABSTRACT: This chapter summarizes the existent literature on local
stability analysis and stabilization of nonlinear systems by using fuzzy
polynomial techniques. Results in sum-of-squares polynomials and avail-
able semidefinite programming tools are the basis for the results of this
chapter. Methodologies for analysis and design are provided in both
continuous-time and discrete-time cases. Developments in case of exis-
tence of bounded disturbances are also addressed.

The previous chapter reviewed a structured way to address stability anal-
ysis and controller synthesis for nonlinear systems by expressing it as a fuzzy
combination of linear vertex models. In this chapter, the stability analysis over
polynomial systems is presented. This methodology was presented first by
Papachristodoulou and Prajna (2002) and provided a way to analyze systems
with only polynomial nonlinearities, by checking if the resulting polynomial
Lyapunov conditions V (x) > 0, −V̇ (x) > 0 hold.

The core idea in this chapter is putting together the advantages of both
fuzzy TS and polynomial methodologies, in order to address the control prob-
lem of nonlinear systems in a less conservative way. In order to do this, an

33
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extension of the sector-nonlinearity modeling technique, based on the Taylor
series decomposition (Sala and Ariño, 2009; Chesi, 2009), is employed. With
this technique, a family of progressively more precise1 fuzzy polynomial mod-
els can be obtained. In this way, generalized fuzzy polynomial models from
nonlinear systems are obtained. Importantly, Takagi-Sugeno models become a
particular case of the fuzzy polynomial models. Following this methodology,
some stability and stabilization problems can be successfully solved for the
resulting fuzzy polynomial systems (Sala, 2009; Tanaka, Yoshida, Ohtake and
Wang, 2007b,a; Tanaka, Ohtake and Wang, 2009b; Tanaka, Yoshida, Ohtake
and Wang, 2009c), by extending the seminal methodologies in Prajna, Pa-
pachristodoulou and Wu (2004b) to the fuzzy case.

The presented methodology allows asymptotically exact results for smooth
nonlinear systems: if there is a smooth Lyapunov function for it, there will exist
a polynomial Lyapunov function and a fuzzy polynomial model with a finite
degree, which will allow proving stability of the original system with some
extra assumptions (Sala and Ariño, 2009). Asymptotic exactness applies only
in compact regions of interest where the Taylor series approximation of the
nonlinearities, as well as those of a valid Lyapunov function and its derivatives,
converge uniformly. Control synthesis, however, requires an affine-in-control
structure as well as some additional artificial variables, which introduce some
conservativeness (Sala, 2009).

A set of examples will show that fuzzy polynomial modeling is able to
reduce conservativeness with respect to standard TS approaches as the degrees
of the involved polynomials increase.

The chapter is structured as follows: next section presents the fuzzy poly-
nomial modelling methodology, the stability analysis for fuzzy polynomial
systems is addressed in Section 3.2, the stabilization and observer designs are
outlined on Section 3.3, a discussion on the main drawbacks and open prob-
lems is given in Section 3.4 and, finally, a conclusion section closes the state
of the art review.

3.1 Fuzzy polynomial modelling

Sector-nonlinearity modelling methodology (Section 2.1.1) can be extended to
a polynomial case. Indeed, there exists the possibility to bound a nonlinearity

1The sector-nonlinearity technique is exact (no approximation involved) for any polynomial
degree, including the classical TS models. Precise above must be understood as consequent
models fitting more closely the nonlinearity being modeled.
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within two polynomials (instead of two constants): the result would be a so-
called fuzzy polynomial system representation, but more general than the TS.
This is the objective of this subsection, where f(x) can correspond to any
of the non-polynomial nonlinearities in a system’s dynamics. Nevertheless,
the sector-nonlinearity technique represents exactly the nonlinear system in
a modelling region (no approximation involved) for any polynomial degree,
including the classical TS models.

3.1.1 Taylor-series based polynomial fuzzification

Lemma 3.1 (Sala and Ariño (2009); Chesi (2009)). Consider a sufficiently
smooth function of one real variable, f(x), so that its Taylor expansion of de-
gree “n” exists (Apostol, 1967), i.e., there exists an intermediate point ψ(x) ∈
[0, x], so that:

f(x) =
n−1∑
i=0

f [i](0)

i!
xi +

f [n](ψ(x))

n!
xn (3.1)

where f [i](x) denotes the i-th derivative of f and f [0](x) is defined, plainly, as
f(x). Assume also that f [n](x) is continuous in a compact region of interest
Ω. Denoting the Taylor reminder by f(x)− fn(x) = Tn(x)xn and computing
its maximum and minimum values in Ω

ψ1 := sup
x∈Ω

Tn(x), ψ2 := inf
x∈Ω

Tn(x)

the reminder can be expressed as a fuzzy term in the form

Tn(x) = (µ1(x) · ψ1 + µ2(x) · ψ2) (3.2)

with the memberships

µ1(x) =
Tn(x)− ψ2

ψ1 − ψ2
, µ2 = 1− µ1 (3.3)

Then, an equivalent fuzzy representation of (3.1) exists in the form:

f(x) = µ1(x) · p1(x) + µ2(x) · p2(x) ∀x ∈ Ω (3.4)

where µ1(x) + µ2(x) = 1 and p1(x), p2(x) are polynomials of degree n.
Furthermore, p1 − p2 is a monomial of degree n.
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Proof omitted for brevity, see Appendix B.2.

Note. As in TS modeling, the representation (3.4) is exact, i.e., there is equal-
ity (no approximation involved) and there is no uncertainty in the membership
functions, defined in (3.3).

Conceptually, the resulting membership functions can be thought of as
entities capturing “the nonlinearity which cannot be described by a polyno-
mial of a prescribed degree”. The idea generalizes the interpretation of classi-
cal Takagi-Sugeno memberships (they captured “all” the nonlinearity between
some linear sector boundings).

Remark 3.1. If f(0) = 0, setting n = 1 in the developments in Lemma 3.1 we
obtain the usual sector-nonlinearity methodology (Section 2.1.1).

As a conclusion, using the Taylor-based modeling for non-polynomial non-
linearities (say, trigonometric, exponential, etc.), any smooth nonlinear system
can be exactly expressed as a fuzzy polynomial one in a compact domain Ω.
On the following, some illustrative examples are provided.

Example 3.1.1. Consider a nonlinear system

ẋ =


− tanh(x3

1)− (0.05 + 0.95 sin2(x1))x1x
2
3

−(1 + sin2(x1))x2 − x1x2

−x3 + 3x2
1x3 − 3 sin(x1)x3

(3.5)

to be modeled in the zone Ω = {−1 ≤ x1 ≤ 1}. Then, by computing maxi-
mum and minimum values in Ω we have

sin(x1) = 0.8415µ11 + (−0.8415)µ12, µ11 + µ12 = 1

sin2(x1) = 0.708122µ2
11 − 1.41624µ11µ12 + 0.708122µ2

12

and, also, as tanh(x3
1) = ((tanh(x3

1))/x3
1) · x3

1 we may model:

tanh(x3
1)/x3

1 = 0.7616µ21 + 1 · µ22

so tanhx3
1 = µ21 · 0.7616x3

1 + µ22x
3
1, µ21 + µ22 = 1. In this way, a poly-

nomial fuzzy model results by replacing the above expressions in the original
equations (details omitted for brevity). Note that the modeling is not unique:
for instance, tanhx3

1 may also be approximated by (0.7616µ3 + 0 · µ4)x1

(in fact, this would be the standard sector nonlinearity approach by bounding
0 ≤ tanh(x3

1)/x1 ≤ 0.7617 for −1 ≤ x1 ≤ 1).
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Example 3.1.2. Consider the Taylor series of the cosine around x = 0:

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

then, we define, from the notation in Section 3.1.1:

f1 = 1, T1(x) = (cos(x)− 1)/x

so by finding the maximum and minimum of T1(x) in [-1,1], which are 0.45961
and −0.45961, we may express:

cos(x) = µ1(x)(1 + 0.45961x) + µ2(x)(1− 0.45961x) (3.6)

which, in fact, coincides with the standard sector-nonlinearity TS modelling,
reviewed in the previous chapter.

By considering higher order terms in the Taylor series development, the
fuzzy model will be more precise when fitting cos(x), in the terms discussed
in the footnote on page 34. Table 3.1 summarizes the tested different modeling
choices. Note that the two bounding polynomials are closer and closer as their
degree increases, as the maximum and the integral of their difference express.

Order p1(x) p2(x)

1st 1 + 0.45961x 1− 0.45961x
3th 1− 0.5x2 − 0.0403x3 1− 0.5x2 + 0.0403x3

5th 1− 0.5x2 + x4

24 + 0.001364x5 1− 0.5x2 + x4

24 − 0.001364x5

max |p1 − p2|
∫ 1
−1 |p1 − p2|

1st 0.91922 0.91922
3th 0.0806 0.0403
5th 0.002728 0.0009093

Table 3.1: Expressing cos(x) as a fuzzy combination of two polynomials
µ1(x)p1(x) + µ2(x)p2(x)

In fact, both 3rd- and 5th-order bounds are very accurate (maximum error
0.0806 and 0.002728, respectively) in the chosen interval. In order to illustrate
the differences between the various polynomial model choices, a similar pro-
cedure using as region of interest the wider interval [−3.1, 3.1] has also been
carried out. The results are the upper and lower approximations depicted in
Figure 3.1, for linear, 3rd and 5th order polynomials.

For more details on the procedure and examples the reader is referred to
Sala and Ariño (2009).
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Linear TS bounds

Cos(x)
Degree 5

 bounds

Degree 3 bounds

0.5 1.0 1.5 2.0 2.5 3.0
x

-3

-2

-1

0

1

2

3

Figure 3.1: Linear (TS), 3rd and 5th order fuzzy models of f(x) = cos(x) for
x ∈ [−3.1, 3.1]. Only the positive interval is depicted due to symmetry.

The Taylor-series approach above can be applied to any function which
can be written as an expression tree with functions of one variable, addition
and multiplication. See Example 6 in Sala and Ariño (2009).

Note. As each nonlinearity results in a two-rule polynomial fuzzy description,
the number of rules will still be a power of 2, keeping a final tensor-product
structure (Ariño and Sala, 2007). Details are analogous to those in classical
sector-nonlinearity models, omitted for brevity.

Homogeneous expression of fuzzy polynomial models.

Consider a continuous-time fuzzy polynomial system expressed as

ẋ(t) = p(x(t), µ(t)) (3.7)

or its discrete-time equivalent

xk+1 = p(xk, µk) (3.8)

where k ∈ N is the sample number, fulfilling t = kTs and Ts is the considered
sample time.

For later operational purposes (Sala, 2009), the polynomials should be
made homogeneous in the membership functions µ. It is easy to see that an
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arbitrary fuzzy polynomial system can be expressed without loss of generality
as:

ẋ =

r∑
i=1

µi(z)pi(x), (3.9)

Or, in the discrete case, as:

xk+1 =
r∑
i=1

µi(z)pi(xk) (3.10)

Example 3.1.3. Consider a nonlinear system

ẋ =


−x3

1 − (0.05 + 0.95 sin2(x1))x1x
2
3

−(1 + sin2(x1) + x2
1)x2

(3x2
1 − 4)x3

(3.11)

which, using the methodology presented on Section 3.1, can be modelled as:

ẋ =


−x3

1 − µ1(x1)x1x
2
3 − 0.05µ2(x1)x1x

2
3

−µ1(x1)x2 − 2µ2(x1)x2 − x2
1x2

3x2
1x3 − 4x3

(3.12)

where the sector-nonlinearity methodology is used to model sin2(x1) expressed
as an interpolation between 0 and 1. Multiplying the terms x3

1, x1x2, x2
1x3 and

x3 by µ1 +µ2 the system is expressed as a degree-1 homogeneous polynomial
in the memberships.

3.1.2 State growing by recasting nonlinearities

An alternative polynomial modelling methodology is recasting the non poly-
nomial nonlinearities to new auxiliary state variables in order to get a pure
polynomial extended model.

The procedure, adapted from the one explained in Savageau and Voit (1987),
would be as follows:

1. Create new state variables zi for each elemental non-polynomial nonlin-
ear function (sinus, cosinus, logarithm, exponential, etc) fi(x), or com-
bination of them, and assign zi = fi(x).

2. Compute, using the chain rule, the derivative of the new state variables
żi = dfi(x)

dt and replace each fi(x) by the new zi in the whole system’s
model.
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3. As a result of the above step, new nonlinearities might appear in żi.
Then, repeat the above steps with the new extended dynamic equations
until obtaining a totally polynomial model.

4. Additional information, if provided, can be added as algebraic con-
straints over the new variables zi.

At the end of the procedure, a polynomial model is obtained in the form

˙̃x1 = f1(x̃1, x̃2, u),

˙̃x2 = f2(x̃1, x̃2, u), (3.13)

such that

G1(x̃1, x̃2) = 0

G2(x̃1, x̃2) ≥ 0 (3.14)

where x̃1 = (x1, ..., xn) are the original state variables and x̃2 = (z1, ..., zn)
are the new artificial variables product of recasting non-polynomial nonlinear-
ities.

Example 3.1.4. Consider the whirling pendulum in (Furuta, Yamakita and
Kobayashi, 1992) with length lp and whose suspension end is attached to a
rigid arm of length la and a mass mb is attached to its free end. The arm
rotates with angular velocity θ̇a. The pendulum can oscillate with angular
velocity θ̇p in a plane normal to the arm, making an angle θp with the vertical
in the instantaneous plane of motion. Using x1 = θp and x2 = θ̇p as state
variables, a simplified model for the system is:

ẋ1 = x2

ẋ2 = θ̇2
a sin(x1) cos(x1)− g

lp
sin(x1) (3.15)

When the condition
θ̇2
a <

g

lp
(3.16)

is satisfied, the only equilibria in the system are (x1, x2) satisfying sin(x1) =
0, x2 = 0. One equilibrium corresponds to x1 = 0, i.e., the pendulum is
hanging vertically downward (stable), and the other equilibrium corresponds
to x1 = π, i.e., the vertically upward position (unstable).
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Since the vector field is not polynomial, a transformation to a polynomial
one must be performed before stability analysis. For this purpose, introduce
new variables z1 = sin(x1) and z2 = cos(x1) to get the extended model:

ẋ1 = x2

ẋ2 = θ̇2
az1z2 −

g

lp
z1

ż1 = x2z2

ż2 = −x2z1

In addition, the trigonometric constraint sin2(x) + cos2(x) = 1 can be added
by the algebraic constraint:

z2
1 + z2

2 − 1 = 0

Wide details on this and more examples can be consulted in the work Pa-
pachristodoulou and Prajna (2005).

Note. The extended model (3.13) is not a fuzzy model. However, this tech-
nique of recasting can be combined with the sector nonlinearity (Section 3.1.1)
in order to fuzzify a new non-polynomial nonlinearity involving any zi. This
avoids the introduction of a new variable z with its corresponding dynamical
equation. In this way, an extended fuzzy polynomial model is obtained.

3.2 Stability analysis via sum of squares

The techniques outlined in the above section allow obtaining polynomial fuzzy
models of arbitrary degree for any smooth nonlinearity present on the first-
principle equations of a physical system (say, exponentials, trigonometric func-
tions, etc). Once such local models are available, fuzzy stability analysis and
control design techniques can be explored on them.

As the derivatives (increments in discrete-time case) of functions of the
state will involve polynomial terms, stability analysis and control design (to be
discussed in next sections) will require proving positiveness or negativeness
of some polynomials (in several variables, actually state-space ones). These
issues have been developed in literature at the beginning of the past decade,
conforming what it is now called sum of squares (SOS) programming and
optimization. Appendix A.2.4 summarizes the main results and software used
in this thesis.
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Notation

The following notation about polynomials will be used within the rest of the
thesis:

Arbitrary degree polynomials in variables “z” will be denoted by Rz . For
instance, the polynomials in x = (x1, x2, x3) such as p(x) = x4

1x2 + x6
2 −

2x3
1 + 5 − x3 will be said to verify p(x) ∈ Rx. The n-dimensional vectors

of polynomials in variables z will be denoted by Rnz . For instance, the right-
hand side of state-space equations of a polynomial 3rd-order system will be a
polynomial vector inR3

x.
In matrices, the corresponding element of a symmetric expression will be

omitted and denoted as (∗). For instance, (∗) denotes B(z) on both of the
expressions below: [

A(z) (∗)T
B(z) C(z)

]
, (∗)TPB(z)

Polynomials in some variables z which can be decomposed as a sum of
squares of other polynomials will be denoted by Σz .

Given polynomials {k1, ..., kd}, where d denotes the number of them,M
will denote the multiplicative monoid, ℘ denotes the cone, and I the ideal
generated by the set of kd’s. See Appendix A.2.2 for such formal definitions.
In order to shorten notation, the ideal generated by a vector of polynomials
P ∈ Rnz will be defined as the ideal generated by its elements.

3.2.1 Global stability

In fuzzy polynomial systems (3.7), as the memberships are always positive,
they may be described by the change of variable µi = σ2

i , resulting in a poly-
nomial model:

ẋ = p̃(x, σ) (3.17)

Identically for discrete-time systems (3.8):

xk+1 = p̃(xk, σk) (3.18)

Example 3.2.1. For instance, (3.12) can be written as:

ẋ =


−(σ2

1 + σ2
2)x3

1 − σ2
1x1x

2
3 − 0.05σ2

2x1x
2
3

−σ2
1x2 − 2σ2

2x2 − (σ2
1 + σ2

2)x2
1x2

(σ2
1 + σ2

2)(3x2
1x3 − 4x3)

(3.19)

where µi = σ2
i .
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Once the systems are in the above form, the following well-known re-
sults are derived from Lyapunov stability theory (Tanaka, Yoshida, Ohtake and
Wang, 2007b).

Lemma 3.2 (Continuous-time). Global stability of a system (3.17) will be
proved if a polynomial Lyapunov function V (x) can be found verifying

V (x)− ε1(x) ∈ Σx (3.20)

−dV
dx

p̃(x, σ)− ε2(x) ∈ Σx,σ (3.21)

where ε1(x) and ε2(x, σ) are radially unbounded (in the state x) positive poly-
nomials, usually ε1(x) =

∑n
i=1 x

2
i and ε2(x) = ε1(x) (but not necessarily so),

in order to avoid trivial solutions V (x) = 0 and to ensure asymptotic stability.

Replacing the derivative of the Lyapunov function V̇ by its discrete incre-
ment ∆V = Vk+1−Vk, the above lemma can be adapted to prove stability for
discrete-time systems.

Lemma 3.3 (Discrete-time). Global stability of a system (3.18) will be proved
if a polynomial Lyapunov function V (x) can be found such that (3.20) holds
and

V (x)− V (p̃(x, σ))− ε2(x) ∈ Σx,σ (3.22)

Indeed, setting V (x) to be an arbitrary degree polynomial in the state vari-
ables (but not in the memberships, in order to avoid the need of its derivatives),
dV
dx is also a vector of polynomials in the variables x and σ. Hence dV

dt in
(3.21) and ∆V in (3.22) are polynomial. If V is linear in some decision vari-
ables (the natural choice are the polynomial coefficients), expressions (3.20),
(3.21) and (3.22) can be introduced into sum-of-squares programming pack-
ages (Appendix A.2.5) in order to get values of the decision variables fulfilling
the above constraints. Also, expressions (3.21) and (3.22) need to be modified
for actual computations, making it homogeneous in the memberships (i.e., all
the monomials must have the same degree in σ). It can be achieved by mul-
tiplying anything by

∑r
i=1 σ

2
i (which is equal to one, anyway) as many times

as needed. Details omitted for brevity, as the procedure is well known (Sala,
2009).

Example 3.2.2. Recall system (3.19) and consider now a Lyapunov function
V (x) in the form of a fourth degree polynomial in the state variables x1, x2,
x3 and tolerances:

ε1(x) = 0.01(x4
1 + x4

2 + x4
3) ε2(x)(σ2

1 + σ2
2) = ε1(x)(σ2

1 + σ2
2)
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Then, conditions of Lemma 3.2 can be introduced in a SOS programming
package in order to check their positiveness. See the Appendix for details.

Note that the derivative of the Lyapunov function will then be non-positive
for any value of σi, i.e., for any non-negative µi.

Using YALMIPSOS and SeDuMi, the solver finds a 4th-degree Lyapunov
function given by (terms lower than 10−7 set to zero):

V (x) = 24.49x2
1 + 6.453x2

3 + 50.875x4
1 + 19.18x2

2 + 19.532x4
2

+ 0.0182x4
3 + 33.555x2

1x
2
2 + 6.138x2

1x
2
3 + 1.683x2

2x
2
3

which is, evidently, SOS and whose time derivative with changed sign is also
SOS. Luckily, the proposed system is asymptotically stable in all state space
(as it is easy to derive from system dynamic equations). However, V̇ , or the
equivalent discrete ∆V , often are not SOS for all x ∈ Rn (for instance if V̇ is
not an even degree polynomial). Therefore, proving global stability for fuzzy
polynomial systems is usually difficult.

Remark 3.2. Despite setting up global conditions, as Taylor-series fuzzy poly-
nomial models are only valid locally in most cases, stability or decay-rate per-
formance is not proved in the whole state space where the SOS conditions hold
(unless Ω = Rn). The actually proved domain of attraction (DA) is the largest
invariant set V (x) ≤ γ, γ constant, contained in Ω. The set can actually be a
very small fraction of Ω. This problem will be widely addressed on Chapter 4.

Remark 3.3. Note that, as there are many positive polynomials which are not
SOS (Section A.2.1), even if (asymptotically) there is no conservativeness in
many fuzzy polynomial modeling cases, conservativeness remains in the SOS
approach to fuzzy polynomial system analysis.

Unfortunately, many nonlinear systems of interest are not globally stable2.
Hence, refinements to the above conditions are needed in order to obtain a DA
estimate (ideally, as large as possible).

3.2.2 Local stability

Consider a region of the state space Ω = {x : g1(x) ≥ 0, . . . , gi(x) ≥
0, h1(x) = 0, . . . , hj(x) = 0}, being gi(x), hj(x) a set of d and l known
polynomials respectively.

2Even if they are, maybe a low-degree polynomial Lyapunov function might not be enough
to prove such global stability.
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If the global stability problem renders infeasible, a local stability condition
can be posed, based on standard invariant-set arguments (Theorem 2.2).

In order to apply Lemma 2.1 to polynomial systems, the Positivstellensatz
theorem (Appendix A.2.2) enables checking local positiveness conditions with
SOS programming (sufficient conditions). It will be used to modify conditions
(3.20) and (3.21) or (3.20) and (3.22), in order to make them hold locally in Ω,
as follows:

Lemma 3.4 (Chesi (2011)). If polynomials (s0(x),si(x)) ∈ Σx, zj(x) ∈ Rx,
can be found fullfilling

−s0(x)(
∂V

∂x
p̃(x, σ)+ε(x))−

d∑
i=1

si(x)gi(x)+
l∑

j=1

zj(x)hj(x) ∈ Σx,σ (3.23)

then V̇ (x) is locally negative in Ω except at the origin and, hence, its level sets
Vγ ⊂ Ω belong to the DA of the origin if V (x) ≥ 0 (Lemma 2.1).

The above lemma applies a simplified version of the original Positivstel-
lensatz result in which (3.23) would be replaced by the less conservative ex-
pression:

F1(x, σ) + F2(x, σ) ∈ Σx,σ (3.24)

where F1 belongs to the polynomial cone ℘(−∂V
∂x p̃(x, σ), g1(x), ..., gd(x)) and

F2 belongs to the ideal I(h1(x), .., hl(x)).

Note. Conditions (3.23) are not linear in decision variables if both s0, and
V have to be found. However, the problem becomes convex if either V (x)
is fixed, proposed in Chesi (2011, Chap. 4)3, or s0(x) is fixed, for instance
to s0(x) = 1, as proposed in Tanaka, Yoshida, Ohtake and Wang (2007b).
Once V (x) is found, a bound for the maximum γ fulfilling Lemma 2.1 can be
also easily found via SOS techniques. Note also that (3.23) should be made
homogeneous in σ for actual computations, as stated in the above section.

In order to avoid ill-shaped solutions, additional SOS constraints may be
added to find the Lyapunov function level set containing the largest region
with a particular predefined shape (circle, hypercube, . . . ), or maximising an
approximation to the volume based on the maximum-volume formula for a

3 Chesi (2011) uses a Lyapunov function from the linearized system, and take Ω ≡ Vγ . If γ
is maximized, it can be recast as a generalized SOS problem (Appendix A.2.4), a kind of SDP
quasiconvex problem.
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quadratic form (Chesi, 2011). A variation of this methodology is addressed in
Khodadadi, Samadi and Khaloozadeh (2014) in which a BMI iterative proce-
dure is proposed by forcing to compute a new Lyapunov level set containing
the largest possible region defined by the quadratic part of the previously com-
puted Lyapunov function. Nevertheless, BMI problems are nonconvex and are
out of the scope of this thesis.

Discrete systems. Equivalent result can be proved for discrete-time systems
using (3.22) instead of (3.21) in Lemma 3.4. However, the resulting condition
involves a polynomial whose degree is that of p̃ plus that of V in the state
variables as well as two plus the degree of V in the auxiliary variables σ; it
also needs the algebraic manipulations to make the inequality homogeneous
in σ, see Section 3.1 for details. Hence, the degree of the polynomials and
the number of decision variables may be high even for simple local stability
problems.

Next example illustrates the local-stability analysis procedure.

Example 3.2.3. Consider the system:

ẋ1 = −3x1 + 0.5x2

ẋ2 = (−2 + 3 sin(x1))x2 (3.25)

with the objective of finding a decreasing Lyapunov function in the square
region

Ω = {x : x2
1 − π2 ≤ 0, x2

2 − π2 ≤ 0} (3.26)

ensuring maximal decay rate. Under usual TS modeling, as sin(x1) ranges
between -1 and 1, we have −5x2 ≤ (−2 + 3 sin(x1))x2 ≤ x2, so we would
obtain ẋ =

∑2
i=1 µiAix, with:

A1 =

(
−3 0.5
0 −5

)
A2 =

(
−3 0.5
0 1

)
and, as A2 is not stable, the TS approach would fail in proving stability.

However, using the 1th-order Taylor expansion of sin(x1), we can show
that there exists a fuzzy model so that sin(x1) = µ1 · 0 ·x1 +µ2 · 1 ·x1. In this
way, we obtain the fuzzy-polynomial model:

ẋ1 = −3x1 + 0.5x2

ẋ2 = −2x2 + 3µ2x1x2 (3.27)
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Replacing µ1 = σ2
1 , µ2 = σ2

2 , and noting that σ2
1 + σ2

2 = 1, we get:

ẋ1 = (−3x1 + 0.5x2)(σ2
1 + σ2

2)

ẋ2 = −2x2(σ2
1 + σ2

2) + 3σ2
2x1x2 (3.28)

Looking for a quadratic Lyapunov function

V (x) = v1x
2
1 + v2x1x2 + v3x

2
2

with vi ∈ R decision variables, and a decay-rate bound α, condition

Q(x, σ) = −V̇ − 2αV (σ2
1 + σ2

2) > 0

must be proved (see Boyd, Ghaoui, Feron and Balakrishnan (1994); Tanaka
and Wang (2001)) in the region defined by (3.26). Hence, using Corollary A.1,
a SOS program is set up in order to find decision variables proving

V (x)− ε(x) ∈ Σx (3.29)

Q(x, σ)− s1(x, σ)(π2 − x2
1)− s2(x, σ)(π2 − x2

2) ∈ Σx,σ (3.30)

where (s1, s2) ∈ Σx,σ are polynomial Positivstellensatz multipliers, homoge-
neous in σ, to be found. As Q(x, σ) is degree 3 in x and degree 2 in σ, we
chose multipliers of of degree 4 in x and σ which proved powerful enough to
obtain a feasible result. The tolerance ε(x) is set to 0.01(x2

1 + x2
2).

As a result, tools like SOSTOOLS+SeDuMi are able to find a Lyapunov
function

V (x) = 3.8982x2
1 − 0.0096x1x2 + 0.2087x2

2

proving a decay rate of α = 0.272. The actual code for the example appears
in Appendix A.2.6. A larger value of α resulted into numerical problems or
infeasibility.

If a third-order approximation of the sinusoid is used:

x1 − 0.16667x3
1 ≤ sin(x1) ≤ x1 − 0.1012x3

1 ∀ x1 ∈ [−π, π] (3.31)

we get a decay α = 0.309 with also a quadratic Lyapunov function.

Hence, this example has illustrated that fuzzy polynomial modeling may
provide satisfactory results in situations where classical TS methods fail, and
that increasing the precision (degree of Taylor expansion) of the fuzzy polyno-
mial modeling may improve the achieved results.
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3.3 Fuzzy-Polynomial Stabilization

Once stability analysis for fuzzy polynomial systems has been addressed, the
stabilization problem is the next step to be solved. In this, controller gains are
required to be designed in order to close the loop with the nonlinear system
and to fulfill some required specifications.

3.3.1 Controller design

Consider a modelling region Ω defined by gi(x) polynomial boundaries:

Ω = {x : g1(x) > 0, . . . , gk(x) > 0} (3.32)

Given an affine-in-control continuous-time fuzzy polynomial model, com-
puted in (3.32), in the form

ẋ =

r∑
i=1

µi(x,w)(Ai(x)z(x) +Bi(x)u) (3.33)

or a discrete-time equivalent one

xk+1 =

r∑
i=1

µi(xk, wk)(Ai(xk)z(xk) +Bi(xk)uk) (3.34)

where z(x) ∈ Rvx is a vector of monomials of x andw ∈ Rd are known external
inputs and/or time, a first approach to design a stabilizing control law could be
extending the well-known ideas of parallel-distributed compensator (PDC) to
the polynomial framework (Tanaka, Yoshida, Ohtake and Wang, 2007a) (an
adaptation to the fuzzy case of those in Prajna, Papachristodoulou and Wu
(2004b)):

u =
r∑
i=1

µi(x,w)Ki(x)z(x) (3.35)

Define also a polynomial candidate Lyapunov function in the form

V (x) = z(x)TP (x̃)z(x) (3.36)

where x̃ are the state variables whose time derivative does not depend on u,
i.e., (∂ẋi/∂u) = 0 (the corresponding row of all Bi in (3.33) is zero).

Then, the following theorem, which is an adaptation with Positivstellensatz
of the one presented in Tanaka, Yoshida, Ohtake and Wang (2007a), can be
used to design a polynomial PDC control law locally in Ω.
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Theorem 3.1. If matrices X(x̃), Mi(x) can be found fulfilling:

ρT (X(x̃)− εI) ρ ∈ Σx,ρ (3.37)

− 2ρTR(x) (Ai(x)X(x̃)−Bi(x)Mi(x)) ρ+ ρT
dX(x̃)

dx
(Ai(x)z(x)) ρ

−
k∑
c=1

sic(x, ρ)gc(x) ∈ Σx,ρ i : 1, . . . , r (3.38)

− 2ρTR(x) (Ai(x)X(x̃)−Bi(x)Mj(x) +Aj(x)X(x̃)−Bj(x)Mi(x)) ρ

+ ρT
dX(x̃)

dx
Ai(x)z(x)ρ−

k∑
c=1

sijc(x, ρ)gc(x) ∈ Σx,ρ
i : 1, . . . , r
r ≥ j > i

(3.39)

where ε > 0 acts as a tolerance, R(x) = dz(x)
dx ∈ Rv×nx and si(x) ∈ Σx,

(sic(x, ρ), sijc (x, ρ)) ∈ Σx,ρ, then controller (3.35) stabilizes system (3.33)
in a region of the state space Vc ⊂ Ω by Lemma 2.1. Controller gains can be
obtained by Kj(x) = Mj(x)X(x̃)−1.

Proof omitted for brevity, see Appendix B.3.

Remark 3.4. Note that conditions (3.39) may be relaxed via dimensionality
expansion or via artificial decision variables by using Polya’s theorem (Sala
and Ariño, 2007a).

Other state-feedback design criteria (such as decay rate, H∞, etc) may
also be adapted to the fuzzy polynomial case. Details and examples omitted
for brevity, see Prajna, Papachristodoulou and Wu (2004b); Tanaka, Ohtake
and Wang (2009b).

The discrete-time case can be addressed by using the discrete-time fuzzy
polynomial model (3.34) and replacing conditions (3.38) and (3.39) by

ρT
(

X(x̃)−
∑k

c=1 sic(x, ρ)gc(x)I (∗)
T (Ã(x)x)(Ai(x)X(x̃)−Bi(x)Mi(x)) X(Ã(x)x)

)
ρ ∈ Σx,ρ

i : 1, . . . , r (3.40)

ρT
(
X(x̃)−

∑k
c=1 sijc(x, ρ)gc(x)I (∗)

1
2T (Ã(x)x)(Ξij(x) + Ξji(x)) X(Ã(x)x)

)
ρ ∈ Σx,ρ

i : 1, . . . , r
r ≥ j > i

(3.41)
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respectively, where Ξij(x) = Ai(x)X(x̃) − Bi(x)Mj(x), (si(x), sic(x, ρ),
sijc(x, ρ)) are as in Theorem 3.1, x̃ are the states whose time derivative does
not depend on u and does not contain non-polynomial nonlinear terms, Ã(x)
is a matrix formed by the rows of ˙̃x and T (x̃) is a polynomial matrix defined
by z(x) = T (x̃)x. Proof omitted for brevity, for details see Tanaka, Ohtake
and Wang (2008).

3.3.2 Observer design

State-feedback controllers, like the one proposed in the above section, require
the complete knowledge of the whole system state. However, measuring all the
states is not often possible, so a state observer is needed in order to estimate
the unmeasurable states.

Observers for nonlinear systems have been developed in literature by dif-
ferent ways (Koenig, 2006; Howell and Hedrick, 2002; Arcak and Kokotovic,
2001). Those achieve better performance than classical LTI designs but they
are only focused on some kind of nonlinear systems and the obtained gains are
still constant matrices.

The work in Ichihara (2009a) presented an observer design methodology
for non-fuzzy polynomial systems under vanishing disturbances. In such ap-
proach, the observer gains are allowed to depend polynomially on the mea-
surements and estimated states, see below.

Consider the polynomial system:

ẋ = p(x) + E(x)w y = C(x) (3.42)

where x ∈ Rn is the state vector and w ∈ Rd are process disturbances in this
case. Then, a state observer in order to estimate state x from the measurement
y, is on the form

˙̂x = p(x̂) + L(y, x̂)(y − ŷ) (3.43)

where x̂ denotes the estimated state and L(y, x̂) is the set of polynomial ob-
server gains, on the measured output and estimated state, to be computed.

Also make the following assumptions:

• Consider vanishing disturbances bounded by ‖w‖22 < β, i.e., limited
energy.

• Initial estimation error is equal to initial state, as x̂(0) = 0 is freely
assignable.
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• System trajectories are ensured to remain in an operating region χx =
{x : 1 − xTSxx > 0, Sx � 0}. The system is assumed stable or there
exist a control law stabilizing it.

• There exist a maximum allowed region where the estimation error e =
x− x̂ must remain in:

χe = {e : 1− eTSee > 0, Se � 0}, χe(0) ⊂ χx

Holding the error inside this region is one of the objectives of the ob-
server design.

Consider a quadratic candidate Lyapunov function on the error V (e) = eTQe
and consider the initial error starting from points inside the region defined by

χe(0) = {e ∈ Rn : V (e) ≤ α, α > 0}

Then the following result can be applied.

Theorem 3.2 (Ichihara (2009a)). If the following SOS problem is feasible with
(s21, s22) ∈ Σx,x̂ and s11, s12, s31 ∈ Σx

xTPx− ε(x)− s11χx − s12χe ∈ Σx (3.44)[
Ψ(x, x̂) (∗)T
E(x)TQe I

]
∈ Σx,x̂ (3.45)

xTQx− α− β + s31χx ∈ Σx (3.46)

where

Ψ(x, x̂) = −2eT (Q(p(x)− p(x̂))−H(y, x̂)(C(x)− C(x̂)))−s21χx−s22χe

then the polynomial observer gains can be obtained by L(y, x̂) = Q−1H(y, x̂)
and trajectories of the estimation error starting from χe(0) will remain in the
region {e : V (e) ≤ α+ β}.

Proof and details omitted for brevity. The reader is referred to the cited
source.

Once fuzzy polynomial models are available, design methodologies for TS
systems, previously summarized on Chapter 2, can be combined with the above
polynomial ones in order to obtain fuzzy polynomial observers. A first ap-
proach was presented by Tanaka, Ohtake, Wada, Wang and Ying-Jen (2009a)
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designing the controller and observer simultaneously under some assumptions
about system’s structure.

Consider the fuzzy polynomial system:

ẋ =

r∑
i=1

µi(z)(Ai(y)x+Bi(y)u)

y =

r∑
i=1

µi(z)Cix (3.47)

where u is the control input, z are known premise variables and the matrices
Ai, Bi are assumed to depend only on the measurements. In addition, consider
the following polynomial PDC control law

u = −
r∑
i=1

µi(z)Ki(y)x̂ (3.48)

instead of the general (3.35).
Then, a state observer in order to estimate state x from the measurement y,

is proposed of the form

˙̂x =
r∑
i=1

µi(z)(Ai(y)x̂+Bi(y)u+ Li(y)(y − ŷ)) (3.49)

where x̂ denotes the estimated state and Li is the set of polynomial observer
gains on the measured output to be computed.

Thanks to the above assumptions, the separation principle can be applied in
order to compute the controller and observer gains together, ensuring stability
on the whole closed loop.

Consider a candidate Lyapunov function:

V (x̂, e) = [ x̂ e ]

[
λQ1 0

0 Q2

] [
x̂
e

]
, λ > 0

Theorem 3.3 (Tanaka, Ohtake, Wada, Wang and Ying-Jen (2009a)). The over-
all control system consisting of (3.47), (3.48) and (3.49), is stable and the esti-
mated states converge to the real ones if the following SOS problem is feasible

xT (X1 − ε1I)x ∈ Σx (3.50)

xT (Q2 − ε1I)x ∈ Σx (3.51)

−2vT (Ai(y)X1 −Bi(y)Mi(y)− ε2(y)I)v ∈ Σy,v ∀i (3.52)

−2vT (Q2Ai(y)−Ni(y)Ci − ε2(y)I)v ∈ Σy,v ∀i (3.53)
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− 2vT (Ai(y)X1 −Bi(y)Mj(y) +Aj(y)X1

−Bj(y)Mi(y)− ε2(y)I)v ∈ Σy,v i < j (3.54)

− 2vT (Q2Ai(y)−Ni(y)Cj +Q2Aj(y)

−Nj(y)Ci − ε2(y)I)v ∈ Σy,v i < j (3.55)

where v ∈ Rn are variables independent of y, ε1 > 0 and ε2(y) > 0 when
y 6= 0 and is 0 when y = 0. The polynomial controller and observer gains can
be obtained by Ki(y) = Mi(y)X−1

1 and Li(y) = Q−1
2 Ni(y) respectively.

Proof and details omitted for brevity. The reader is referred to the cited
source.

This preliminary result has been extended recently in Tanaka, Ohtake, Seo,
Tanaka and Wang (2012), where both controller and observer can be designed
together only requiring matrices Bi to be independent from unmeasurable
states

ẋ =
r∑
i=1

µi(z) {Ai(x)x+Bi(ξ)u} (3.56)

where ξ is a measurable time-varying vector that may be external variables,
outputs, and/or time. The general case where Ai(x), Bi(x) is addressed too
but, as in Ichihara (2009a), the controller has to be designed first assuming that
all states are known. Afterwards, the observer needs to be designed guaran-
teeing the stability for the whole closed loop. So, sequential design might be
suboptimal.

3.4 Discussion

The use of fuzzy polynomial techniques allows reducing conservativeness (com-
paring to fuzzy TS ones) in the modelling phase as well as the stability anal-
ysis: the Lyapunov function lifts the strong constraint of being defined by a
quadratic curve. However, some issues are still inherited from TS method-
ologies: the shape of the membership functions is often forgotten in the re-
sulting SOS stability conditions and the derivative of the Lyapunov function
is required to be strictly negative in the whole modelling region, so there
cannot be other equilibrium points or limit cycles inside the considered re-
gion. Recent literature focuses on some of those problems: Narimani and
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Lam (2010) introduce membership information in the SOS conditions by ap-
proximating those functions with polynomials in subregions of the modelling
region; Lam, Narimani, Li and Liu (2013) divide also the modelling region
in user-defined subspaces and they use piecewise polynomial Lyapunov func-
tions in order to reduce conservativeness, and Chesi (2011) checks stability
conditions (V > 0, V̇ < 0) only in the largest Lyapunov level set to be found
inside the modelling region, but leading to a nonconvex BMI problem.

The case of synthesis is even more misleading, except for only-polynomial
systems. The polynomial controller allows a more complex structure to con-
trol the nonlinear system but, due to the changes of variable required in Schur
complement in order to put the problem in convex form, the information about
the states in z(x) is lost on SOS conditions. As a consequence, the local re-
sults developed for stability analysis cannot be applied directly to the synthesis
problem for obtaining domain-of-attraction guarantees, but only in a posteri-
ori analysis. In addition, the Lyapunov functions used for design cannot be of
arbitrary degree in the full-state variables, if the problem is desired to remain
convex (Lam, Narimani, Li and Liu, 2013; Tanaka, Ohtake and Wang, 2008).
Therefore, the great advantage of fuzzy-polynomial techniques over classical
TS ones for stability analysis of nonlinear systems often vanishes for controller
synthesis.

The review on polynomial observer design literature shows that the prob-
lem is still addressed preliminarily: Ichihara (2009a) uses Positivstellensatz
theorem to state local SOS design conditions but the approach is only for
polynomial systems and vanishing disturbances. On the other hand, Tanaka,
Ohtake, Seo, Tanaka and Wang (2012) address the problem for fuzzy poly-
nomial systems but the controller/observer joint design forces taking strong
assumptions on system’s structure. In addition, the approach does not consider
neither disturbances nor local conditions, so the observer, if feasible, is valid
in all the state space. Even this might be an advantage, the usual case is ob-
taining global infeasibility, because proving a polynomial being SOS for all x
is difficult (see Appendix A.2.1 and A.2.2). For those reasons, the approach of
Tanaka, Ohtake, Seo, Tanaka and Wang (2012) is limited when trying to obtain
a successful solution in most practical cases.

3.5 Conclusions

In this chapter, a fuzzy-modelling methodology where the consequents are
polynomial vertex models is used in order to represent nonlinear systems in an
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exact way. Those fuzzy-polynomial modelling techniques have been proved
to generalize the classical TS ones but having the advantage of obtaining ver-
tex models which fit more precisely the existent nonlinearities. Therefore, the
existent conservativeness associated to the use of those models for analysis is
reduced as polynomial degrees increase.

Stability analysis for such models has been addressed from both, global
and local points of view. Also common methodologies in order to give a lo-
cal estimate of the domain of attraction using fuzzy polynomial systems were
outlined. In addition, typical controller and observer designs from fuzzy TS
literature have been translated to the fuzzy polynomial framework.

The conclusion from the review of the state of the art is that there are
still some open problems without an extensive analysis in both, local domain-
of-attraction estimation and controller/observer design for nonlinear systems
using fuzzy polynomial techniques, as discussed in the above section. Some
of these open issues are the starting point for the contributions presented in this
thesis. In particular, the problems of

• lifting the strictly-negativeness constraint of the Lyapunov-function deriva-
tive inside the whole modelling region for stability analysis,

• using more general Lyapunov functions for controller synthesis,

• and employing local conditions to present the fuzzy-polynomial observer
design under disturbances in an unified way,

will be further addressed on the following chapters. Moreover, the stabil-
ity analysis for nonlinear systems under disturbances is quite disregarded in
present fuzzy-polynomial literature. This thesis will also address this problem,
albeit in a preliminary way because not all the results of interest are finally cast
as convex problems.
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Chapter 4

Domain of Attraction
Estimation

True stability results when presumed order
and presumed disorder are balanced. A

truly stable system expects the unexpected,
is prepared to be disrupted, and waits to

be transformed.

Tom Robbins

ABSTRACT: A common approach for stability and performance anal-
ysis in TS/polynomial fuzzy models is to solve an LMI problem which
proves global or local stability and an upper bound of a given perfor-
mance function for any shape of membership functions. However, fuzzy
models are local and, obviously, a larger modelling region yields lower
performance bounds. This chapter analyzes the common problems in lo-
cal stability and domain of attraction estimation literature. Then, several
ideas are presented and developed in order to relax classical constraints,
thus reducing conservativeness and obtaining better estimates.

Many results in present literature address the stability analysis problem for
nonlinear systems using fuzzy TS or polynomial-modelling techniques (TS are
simply a special case of polynomials). In particular, Lyapunov-based methods
are very extended in order to prove local stability of the original nonlinear sys-
tem and to obtain a conservative estimate of the domain of attraction. However
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in many of the literature results (usually those which are addressing the stabi-
lization problem), once a feasible Lyapunov function is found, the analysis of
the proved domain of attraction is forgotten. The case of DA estimation with
disturbance analysis is even more disregarded in literature.

However, domain of attraction estimation is an important problem when
a precise stability analysis is to be carried out. Indeed, this problem has re-
cently received an increasing interest within the polynomial framework (Chesi,
2009; Chakraborty, Seiler and Balas, 2011; Chesi, 2011; Hancock and Pa-
pachristodoulou, 2013; Khodadadi, Samadi and Khaloozadeh, 2014). In par-
ticular, analyzing the proven performance obtained in a controller synthesis is
an interesting point to be taken into account. For instance, an ill-shaped Lya-
punov function might result in state trajectories with an overshoot greater than
the initial conditions. Obtaining a simple closed form characterizing the do-
main of attraction is also required if the obtained estimate is going to be used
for carrying out some further computations or designs.

In this chapter, some novel contributions to the DA estimation are pre-
sented and developed. They address some problems which usually arise from
existent approaches in literature (see Section 3.4). The work has led to several
conference and journal contributions, which are summarized on the following
sections.

This chapter is organized as follows: next section summarizes briefly the
existent drawbacks in literature related to DA estimation and highlights which
of them are going to be addressed in this chapter, Section 4.2 presents some
stability analysis results with the objective of finding the largest prefixed-shape
DA estimate, an unified iterative approach to enlarge the DA estimate is pre-
sented on Section 4.3, some examples are included on Section 4.4 in order to
show the achieved improvement with the proposed results and, finally, Section
4.5 gives the conclusions of this work.

4.1 Preliminaries

In the major part of level-set based DA estimation contributions in literature,
LMI and SOS stability conditions are stated in order to prove global (or local)
stability and performance of fuzzy systems (Lemmas 3.2, 3.3 and 3.4 or simi-
lar). However, such techniques give only a positive or negative response to the
stability analysis problem but they often forget to analyze the region of validity
for those results. In case of unsatisfactory Lyapunov-function search (but the
linearized system at the origin is stable, 1st Lyapunov theorem), the ways to
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explore proposed in literature are:

• Try with a higher-degree global Lyapunov function. This can quickly
exhaust computational resources (Prajna, Papachristodoulou and Wu,
2004b).

• Remodel the nonlinear system in a smaller region Ω in order to reduce
the “distance” between vertex models (see Figure 4.1a: modelling in Ω1

gives closer bounds than those in Ω0) and try to find a new Lyapunov
function (Sala and Ariño, 2006).

• Add shape information, if it is possible, by using polynomial constraints:
splitting the state space in regions Ωd where a set of polynomial con-
straints rd(x, µ) hold. They can be added to Lyapunov conditions as
explained for TS systems in Sala and Ariño (2008) or in the polynomial
framework (bounds on partial derivatives) in Bernal, Sala, Jaadari and
Guerra (2011a).

• Prove local stability in a region Ω = {x : gi(x) ≥ 0} defined by “d”
known polynomial boundaries gi(x), as discussed on Section 3.2.2.

(a) Remodelling (b) Conditioning

Figure 4.1: Conditioning and model-conservativeness associated problems in
local stability study.

In particular, despite of obtaining feasible results with local stability ap-
proaches for fuzzy models, there exist still some important sources of conser-
vativeness to discuss:



62 CHAPTER 4. Domain of Attraction Estimation

1. Existence of larger invariant sets in Ω. There exist invariant sets in Ω
which are not level sets of a low-degree polynomial Lyapunov function.
Indeed, although a decreasing Lyapunov function V (x) has been found,
local stability in the modelling region Ω has not been proved, but only
in the largest invariant set Vγ = {x : V (x) ≤ γ} (Lyapunov level set)
such that Vγ ⊂ Ω (see Figure 4.1b: the found ellipsoid for Ω0 is worse
conditioned than the one found in Ω1). Ill-shaped Lyapunov functions
may be of little use for practical results if the goal is to certify a stable
“large” enough zone around the equilibrium point.

2. Choice of modelling region. If the modelling region Ω is chosen too
large, the associated Lyapunov conditions may render infeasible (con-
sequents separate too much). From classical Lyapunov theorems, if the
linearised system is stable, a “small enough” modelling region will ren-
der a feasible problem1. The problem, then, is how to choose which is
the right modelling region to obtain the largest DA estimate.

3. Conservative sign conditions. One of the reasons for infeasibility is
requiring V (x) and −V̇ (x) (increment of V in the discrete case) to be
positive in all Ω. In fact, it would be needed only inside a suitable level
set. For instance, if there is more than one equilibrium point in the
modelling region Ω, all the theorems and corollaries from Chapter 3
fail as there is one x 6= 0 where V̇ (x) = 0 for any choice of V (x).

Some of these above issues have been addressed partially in literature. For
instance, the first one gives rise to piecewise Lyapunov functions in the form
V (x) = mini Vi(x), etc (Feng, 2004).

For completeness, note that, apart from Lyapunov methods, DA estimation
can be done numerically (Genesio, Tartaglia and Vicino, 1985).

4.1.1 Problem statement

Assuming that global stability of the nonlinear system is not feasible, the ob-
jective of the stability analysis phases should be obtaining the largest region in
which a particular performance bound is attained.

Consider a continuous-time nonlinear dynamic system without disturbances
denoted by:

ẋ(t) = f(x(t)) (4.1)

1Indeed, if the linearised system is stable, a quadratic V (x) will suffice for small Ω.
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or equivalently in discrete-time

xk+1 = f(xk) (4.2)

where t = kTs and Ts is the sampling time, x ∈ Rn is the state vector and
f(x) is a nonlinear function of the state.

The trajectory of a nonlinear dynamic system (4.1) is denoted as x(t) =
ψ(t, x0), where x0 are the initial conditions at t = 0.

A continuous-time fuzzy polynomial model, in a region Ω, from a nonlin-
ear system (4.1) is expressed in the form:

ẋ(t) =

r∑
i=1

µi(z(t))pi(x(t)) (4.3)

or equivalently for a discrete-time system:

xk+1 =
r∑
i=1

µi(zk)pi(xk) (4.4)

where x ∈ Rn is the state vector, z ∈ Rp are the premise variables of the
membership functions and pi(x) ∈ Rnx are the polynomial vertex models. The
origin x = 0 is a stable equilibrium point by assumption.

As the objective of this section is local stability analysis, u = 0 has been
supposed in (4.3), (4.4) and further developments. However, the presented
results could estimate the “a posteriori” domain of attraction of closed-loop
fuzzy polynomial systems whose controllers were previously designed with
the approaches mentioned in Chapter 3. Indeed, if u in (3.33) is replaced by a
control law u = K(x), allowing K(x) to have constant or polynomial terms
fulfilling f(0,K(0)) = 0 (i.e., the origin is an equilibrium point), then the
local analysis methodology proposed in this chapter applies.

The local domain of attraction for fuzzy polynomial systems in a region Ω
can be defined as follows.

Definition 4.1. The Local Robust Domain of Attraction (LRDA) of system
(4.3) or (4.4), referred to a region Ω, will be denoted by DΩ. It is defined as
the set of the state-space initial conditions whose trajectory x(t) = ψ(t, x0)
never escapes Ω for any x0, and ends in the asymptotically stable equilibrium
point x = 0:

DΩ =

{
x0 ∈ Ω :

ψ(t, x0, µ) ∈ Ω∀t ≥ 0,∀µ ∈ Γ
limt→∞ ψ(t, x0, µ) = 0, ∀µ ∈ Γ

}
(4.5)
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Note that the condition for the trajectories not leaving Ω above is needed
as (4.3) and (4.4) are, by assumption, not valid outside Ω.

The term “robust” in the definition is due to the fact that DΩ is defined
considering “all” possible µ in the standard simplex Γ and not the particu-
lar, possibly non-polynomial, µ(z) giving actually exact equivalence with the
nonlinear system. That allows polynomial techniques to be used at the price
of conservativeness. Indeed, based on the above, as (4.3) and (4.4) include the
present in-study nonlinear system in Ω (plus many other systems), then obvi-
ously, DΩ ⊂ D: by finding the LRDA from a fuzzy polynomial model, we
have found an inner estimate of the DA of the original nonlinear system, as
defined in (Chesi, 2011, Chap. 6).

As the actual LRDA may be a very complicated region and hardly char-
acterizable, the goal of this chapter is to obtain an estimate of such LRDA, as
large as possible, with a closed-form expression given by a low-degree poly-
nomial boundary. The polynomial degree will be chosen depending on the
available computing resources. The presented results are proved to outperform
existent results in Lyapunov literature.

The main ideas are:

1. Exploring with different modelling regions Ωd to obtain the largest DA
estimate.

2. Setting “regions of interest” smaller than the modelling region Ω in local
stability conditions.

3. Lifting the restriction of the DA estimate being a Lyapunov level set.

4. Allowing for more than one equilibrium point (also saddle points or limit
cycles) inside the modelling region Ω.

The proposed contributions following those guidelines are presented on
next sections. All the results are recast as SOS optimization problems, solvable
by standard convex SDP optimization tools.

4.2 Prefixed-shape DA estimation

This work is based on, once a fuzzy polynomial model is obtained from a
nonlinear system in a large region Ω, exploring how to obtain local results in a
smaller region of interest without the need of remodelling. This idea was first
addressed by Pitarch, Ariño, Bedate and Sala (2010) in a preliminary way for
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TS systems. This section generalizes those results and gives a deeper study on
them by employing fuzzy-polynomial tools.

In this section, the idea is applied to stability analysis and it is shown that
ensuring the largest prefixed-shape domain of attraction around the origin re-
quires an iterative procedure in the size of the modelling region. The idea
applies to sophisticated Lyapunov functions, performance inequalities or to
non-polynomial (polytopic) target shapes.

As long as the Jacobian linearization at the origin is (strictly) stable, a
local result will be obtained with a polynomial Lyapunov function for a small
enough region of interest. If the Jacobian is not strictly stable, the method may
fail (as stability of the nonlinear system is not guaranteed in this case, neither
the existence of a local Lyapunov function).

In addition, the existence of larger invariant sets inside Ω belonging to the
DA, which are not bounded by a low-degree Lyapunov level set is addressed.
A first approach in order to lift this restriction is proposed by allowing the
Lyapunov level set to leave Ω by some zones of its boundary.

The results presented on this section have been published on several con-
ference papers (Pitarch, Ariño, Bedate and Sala, 2010; Pitarch, Ariño and Sala,
2011; Pitarch, Sala and Ariño, 2012a) and in the journal paper Pitarch, Sala,
Ariño and Bedate (2012b).

4.2.1 Local fuzzy polynomial models

In order to analyze local stability of a previously computed fuzzy polynomial
model within a region, such original model can be modified using the informa-
tion of the membership functions.

The idea was presented first by Sala and Ariño (2006) for TS fuzzy models
and the goal is avoiding the need of remodelling by expressing the the member-
ship functions µ(z) as a convex sum of some vectors vj . This section extends
it to the fuzzy polynomial case.

Lemma 4.1. If the membership functions µ(z) of a fuzzy polynomial system
described as (4.3) in a region Ω, can be themselves expressed as a convex sum
of some vertex vectors2 vj ∈ Rn, j : 1, . . . , nv, of elements vji, i : 1, . . . , n

µ(z) =

nv∑
j=1

βj(z)vj , ∀ z ∈ Ω (4.6)

2The vertices vj can be easily obtained computing the minimum and maximum bounds of
µi in Ω. See Note 4.2.1.
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where
µ(z) = [µ1(z), µ2(z), . . . , µn(z)]

nv∑
j=1

βj(z) = 1, βj(z) > 0 ∀z ∈ Ω j : 1, . . . , nv

then, for polynomial fuzzy models, the system can be transformed to

ẋ =

nv∑
j=1

βj(z)pj(x)∗, ∀z ∈ Ω (4.7)

where the new vertex polynomial vectors are:

pj(x)∗ =

n∑
i=1

vjipj(x) (4.8)

Proof. The expression (4.6) can be substituted in the system equation (4.3):

vj = [vj1, vj2, . . . , vjn] → µi(z) =

nv∑
j=1

βj(z)vji

ẋ =
n∑
i=1

nv∑
j=1

βj(z)vjipi(x) → ẋ =

nv∑
j=1

βj(z)
n∑
i=1

vjipi(x)

so the local representation of the system in Ω is (4.7).

An equivalent result can be applied with discrete-time systems (4.4).
The advantage of this result is to express a fuzzy polynomial model in a

region Ωd ⊂ Ω, i.e., smaller than the original, without the need of remodelling
again from the nonlinear system. The convex-combination conditions for the
membership functions required in the above lemmas are easy to meet. Indeed
µi are assumed to be known in fuzzy systems. Then, the result below may be
applied to obtain a (possibly conservative) vertex set.

Note. Let us consider a region Ωd ⊂ Ω. If bounds µMi and µmi on the extreme
values of the membership functions in Ωd can be computed, in such a way that:

µMi ≥ max
z∈Ωd

µi(z) µmi ≤ min
z∈Ωd

µi(z) (4.9)

then there exist a set of βj(z), j = 1, . . . , nv so that the vector of membership
functions

µ(z) = [µ1(z), µ2(z), . . . , µn(z)]

may be expressed in Ω as (4.6).
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Indeed, the linear restrictions µMi ≥ µi ≥ µmi ,
∑

i µi = 1 describe
a bounded polytope with a finite number of vertices, so well-known linear-
programming-related methods to obtain the membership-vector vertices may
be used (related to the obtention of the basic feasible solutions in an LP prob-
lem). See Luenberger (2003) for details.

4.2.2 Local stability analysis

Local stability results may be obtained by stating the lemmas presented in
Section 3.2 with the transformed models discussed above.

Lemma 4.2. The region Θ ⊂ Ωd defined as:

Θ = {x : V (x) ≤ VM , V (x) > 0} (4.10)

belongs to the LRDA of the equilibrium point x = 0 of the system (4.3) if

VM ≤ min{V (x) : x ∈ ∂Ωd} (4.11)

where ∂Ωd denotes the boundary of Ωd and V (x) verifies Lyapunov stability
conditions:

V (x) > 0 ∀x ∈ Ωd\ {x = 0} (4.12)

−dV
dx

pj(x)∗ > 0 ∀x ∈ Ωd\ {x = 0} j : 1, . . . , nv (4.13)

i.e., all trajectories with initial state in Θ converge asymptotically to x = 0.

Proof. As, by Lemma 4.1, the system can be expressed in Ωd as (4.7), if con-
ditions (4.12) and (4.13) are feasible for a function V (x), then a Lyapunov
function proving global asymptotic stability for (4.3) is found, and Θ is an
invariant set (Khalil, 2002, Chap. 4.2).

As the expression of the local system (4.7) is not valid outside Ωd, then
the local stability can only be proved in the biggest region Θ with boundary
V (x) = VM contained in Ωd. This region will be defined by a value of VM
equal to the minimum value of V (x) in the boundary of Ωd (∂Ωd):

VM = min
x∈∂Ωd

V (x).
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The following lemma is useful in order to determine when a region char-
acterized by a polynomial curve (for instance a Lyapunov level set) contains a
prefixed-shape region Φ.

Lemma 4.3. Let Φ be a region defined by the intersection of previously-fixed
nr polynomials ki(x)

Φ = {x : ki(x) ≥ 0, i = 1, . . . , nr}, (4.14)

such that the interior of Φ contains the equilibrium point x = 0 and its frontier
is the union of sets defined by:

Bi = {ki(x) = 0, kj(x) ≥ 0 i 6= j} i : 1, . . . , nr (4.15)

LetM(k1, . . . , knr) be the multiplicative monoid generated by the constraints
Bi, let I(ki) be the ideal generated by the polynomials ki(x) associated to Bi
and let ℘(k1, . . . , knr) be the cone generated by the set of polynomials which
define the region Φ. Then, the region Θ = {x : q(x) ≤ 1} contains the frontier
of Φ if the following nr SOS conditions hold:

−(q(x)− 1)− Fi(x)−Gi(x) ∈ Σx i : 1, . . . , nr (4.16)

Where Fi(x) ∈ ℘(k1, . . . , knr) and Gi(x) ∈ I(ki).

Proof. If there exist polynomials Fi(x) ∈ ℘(k1, . . . , knr), Gi(x) ∈ I(ki) and
g ∈ Rx verifying

(q(x)− 1) + Fi(x) +Gi(x) + g2 = 0

then the set of values {x : q(x)− 1 > 0} ∩Bi is empty by Theorem A.1. This
can be proved by performing a sign change, if (4.16) is feasible.

Definition 4.2. Given a region with predefined shape defined as a set of poly-
nomial constraints

Φ1 = {x : k1(x) ≥ 0, . . . , knr(x) ≥ 0}, (4.17)

the set Φ2 = {x : k1(λ−1x) ≥ 0, . . . , knr(λ
−1x) ≥ 0} will be named as

scaled region and λ will be denoted as scale factor. For simplicity, the notation
Φ2 = λΦ1, k̄i(x) = ki(λ

−1x) will be sometimes used in later developments.
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The overall problem will consider the full region of interest Ω, where the
model is valid, plus a predefined-shape one to be enlarged as much as possible
in its interior. This scalable predefined-shape region, stated in Definition 4.2,
must belong to the DA of the nonlinear system for the maximum achievable
scale factor. In order to ensure this objective, Lemma 4.3 will be applied to
force the predefined-shape region to be contained in a Lyapunov level set. In
addition, a similar condition to the considered in (4.16) will be used in order
to force this Lyapunov level set to be contained in Ωd ⊂ Ω. Let us detail the
procedure below.

Consider a region of the state space Ωd defined by ng polynomial inequal-
ities as follows:

Ωd = {x : g1(x) ≥ 0, . . . , gng(x) ≥ 0} (4.18)

Theorem 4.1. Consider system (4.3) and let V (x) be a predefined-degree can-
didate polynomial Lyapunov function. The region with prefixed shape Φ2 =
{x : ki(λ

−1x) ≥ 0} and scale factor λ, according to Definition 4.2, belongs
to the local robust domain of attraction of x = 0 in a region of interest Ωd,
defined on (4.18), if the following SOS problem is feasible:

1− V (x)− F1m(x) +G1m(x) ∈ Σx m : 1, . . . , nr (4.19)

V (x)− 1− F2i(x) +G2i(x) ∈ Σx i : 1, . . . , ng (4.20)

V (x)− ε(x)− T0(x) ∈ Σx (4.21)

−dV (x)

dx
pj(x)∗ − ε(x)− Tj(x) ∈ Σx j : 1, . . . , nv (4.22)

Where F1m(x) ∈ ℘(k̄i, . . . , k̄nr), G1m(x) ∈ I(k̄m), (F2i, T0(x), Tj(x)) ∈
℘(gi, . . . , gng), G2i(x) ∈ I(gi) and ε(x) is a radially unbounded positive
polynomial. Moreover, the region Θ = {x ∈ Ωd : V (x) ≤ 1} belongs also to
the LRDA of x = 0.

Proof. Conditions (4.21)-(4.22) imply (4.12) and (4.13) locally in Ωd by Theo-
rem A.1 and the fact that βi ≥ 0,

∑r
i=1 βi = 1. Therefore, V (x) is a Lyapunov

function by Lemma 3.2 and, jointly with conditions (4.20), the region

Θ = {x ∈ Ωd : V (x) ≤ 1} ⊂ DΩ

because conditions (4.20) force V (x) ≥ 1 over the boundary of Ωd by Theo-
rem A.1. This is achieved, in a similar way to Lemma 4.3, by forcing V (x) ≥ 1
in each gi(x) = 0, g1(x) ≥ 0, . . . , gng(x) ≥ 0, i : 1, . . . , ng.
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By condition (4.19), the region Φ2 with size λ is contained in the region
Θ = {x ∈ Ωd : V (x) ≤ 1} by Lemma 4.3. Again by conditions (4.20), the
region Φ2 ⊂ Θ ⊂ Ωd, and being V (x) a Lyapunov function, Φ2 ⊂ DΩ.

The discrete-time case can be also addressed with Theorem 4.1 by using
system (4.4) instead of (4.3) and replacing (4.22) by:

V (x)− V (pj(x)∗)− ε(x)− Tj(x) ∈ Σx j : 1, . . . , nv (4.23)

However degree in the involved polynomials increases considerably by compo-
sition of functions in V (pj(x)∗), instead of the product of them in the continuous-
time term −dV (x)

dx pj(x)∗.
Note that optimization problem presented in Theorem 4.1 is a convex SOS

one with λ fixed a priori.
The above result can be used in order to obtain a “well-shaped” estimate of

the RLDA by solving a generalized SOS problem (Appendix A.2.4) (which are
closely related to the well-known procedure of GEVP optimization problems
in the LMI case), maximizing the scale factor λ by bisection search or other
similar methods. Higher considered degrees for V (x), F (x), G(x) and T (x)
will give larger estimates, as more degrees of freedom are provided to the
optimization problem.

Despite of maximizing the size of the chosen prefixed-shape region Φ2,
obtaining the largest provable DA estimate (for fixed maximum degree of
V (x), F (x), G(s) and T (x) in Theorem 4.1) depends also on the modelling-
region size. Indeed, the smaller Ωd is, the smaller the provable DA is. How-
ever, the larger Ωd is, the more conservative the fuzzy model becomes, so the
provable DA might be small too (large Ωd might result in infeasible SOS con-
ditions).

If the objective is to obtain the largest DA estimate of the original nonlinear
system, an exploration in the modelling-region size is required, as first noted
in Pitarch, Ariño, Bedate and Sala (2010). Examples 4.4.1 and 4.4.2 in Section
4.4 illustrate this nonlinear behaviour in the modelling-region size.

Iterative algorithm

The results in previous sections may be combined in order to obtain an al-
gorithm to compute, for example, an estimate of the largest spherical region
around x = 0 with radius λ, Φ = {x : (xTλ−2x ≤ 1}, for which attraction
is ensured. This can be checked, for instance, by choosing a modelling region
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defined by a symmetric polytope containing x = 0

Ω = {x : (aTi x)2 ≤ 1 i : 1, . . . , ng} (4.24)

and a set of smaller regions of interest Ωd with scale factor ρ:

Ωd =

{
x :

(
aTi
ρ

x

)2

≤ 1 i : 1, . . . , ng

}
(4.25)

As Φ must be contained in Ωd, the maximum radius λmax can be computed “a
priori” as a LMI problem in the more general case (Boyd, Ghaoui, Feron and
Balakrishnan, 1994). This is a particular case of Theorem 4.1, nevertheless
other kind of geometries for Ωd and Φ can be applied.

Basically, the procedure will first check the extreme cases; [1] checking for
feasibility of SOS problems as stated in Section 3.2, [2] checking for stability
of the linearised model around x = 0.

Then, in case that [1] will not be feasible or it will lead in poor results but
[2] will be stable or marginally stable (the nonlinear model might be locally
stable (Khalil, 2002, Chap. 8)), the following algorithm is proposed to obtain
better results.

Algorithm 4.1. Consider the system (4.3) obtained in a large region Ω.

1. Define a new region {Ωd ⊂ Ω : Ωd = ρΩ} with a initial ρ = ρ0
∼= 0

and express the system (4.3) in Ωd as (4.7) using Lemma 4.1.

2. Fix a maximum degree for the polynomial Lyapunov function V (x).

3. Solve the following problem:

Maximize λ, 0 ≤ λ ≤ ρλmax, subject to

V (x)− ε(x) +

ng∑
i=1

υi(x)

((
aTi
ρ
x

)2

− 1

)
∈ Σx (4.26)

V (x)− 1 + φii(x)

((
aTi
ρ
x

)2

− 1

)
+

ng∑
j=1

φij(x)

(aTj
ρ
x

)2

− 1

 ∈ Σx
i : 1, . . . , ng

j 6= i
(4.27)
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1− V (x) + χ0(x)(xTλ−2x− 1) ∈ Σx (4.28)

−dV
dx

pj(x)∗ − ε(x) +

ng∑
i=1

ψij

((
aTi
ρ
x

)2

− 1

)
∈ Σx j : 1, . . . , nv

(4.29)
with multipliers (υi, φij , ψij) ∈ Σx and (φii, χ0) ∈ Rx.

4. Increase the zoom factor ρ = ρ + ∆ρ if ρ < 1 and return to step 2. In
case of reaching ρ = 1 or if the problem was infeasible, the algorithm
ends.

This procedure maximize the radius of the quadratically-invariant sphere
contained in Ωd, which belongs to the LRDA, by solving a generalized SOS
problem in λ (Appendix A.2.4) and performing an exploration in ρ. Indeed,
such a maximum-size sphere may appear at an intermediate point, as examples
4.4.1 and 4.4.2 in Section 4.4 will later show. Hence, no bisection or related
idea is applicable in principle, as the radius provable with the above theorem
sometimes increases when increasing the domain of interest and some others
decreases, with local maxima and minima.

Better results might be obtained by increasing the degree of the Lyapunov
function and/or Positivstellensatz multipliers, by adding more multipliers with
cross products of the region constraints or by exploring regions Ωd different
from a symmetrically scaled Ω.

4.2.3 Domain of attraction expansion

The proposed approach and others mentioned in literature, obtain conservative
results in the sense that the proven local domain of attraction is the largest
level set of the Lyapunov function V (x) < VM contained in Ωd. However, as
previously mentioned on Section 4.1.1, there may be points outside V (x) <
VM which belongs to DΩ too.

Results can be improved in the same region of interest Ωd, using the ob-
tained Lyapunov function V (x), and without increasing computational com-
plexity of LMI/SOS problems.

Usually, the largest level set of the Lyapunov function contained in the
modelling region Ωd defines the LRDA, because outside this level set a trajec-
tory that leaves Ωd is possible. However, it is not necessary to take into ac-
count all the possible trajectories, only such ones which will leave Ω by some
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forbidden regions of the boundary (Khalil, 2002, Chap. 8.2). The following
lemma provides the optimization problem which ensures that any trajectory
starting from points inside a region Θ will not touch these forbidden regions
and, therefore, Θ ⊂ DΩ.

Lemma 4.4. Given a fuzzy modelling region Ωd defined as (4.18), with the
known sets Bi defining its boundary (∂Ωd),

Bi = {gi(x) = 0, gj(x) ≥ 0 j 6= i} i : 1, . . . , ng

and given a polynomial Lyapunov function V (x) obtained with Theorem 4.1,
or any other procedure, the largest region proved to belong to the local do-
main of attraction, using SOS techniques, is obtained by solving the following
problem:

Maximize γ subject to

V (x)− γ − Fi(x)−Gi(x) ∈ Σx i : 1, . . . , ng (4.30)

for polynomials Fi(x) ∈ ℘(−ġi, g1, . . . , gng) and Gi(x) ∈ I(gi).
The largest proven local domain of attraction Θ is:

Θ = {x ∈ Ωd : V (x) ≤ γ} = {x : min (γ − V (x), gi(x)) > 0} (4.31)

Proof. Let us define the allowed regions in the frontier of Ωd (∂Ωd) as

Ri = {x ∈ ∂Ωd : ġi(x) > 0, gi(x) = 0, gj(x) ≥ 0} i : 1, ..., ng
j 6= i

(4.32)

i.e., the boundaries where system trajectories point to inside Ωd. Therefore,
there is no need for Θ ⊂ Ωd if it does not intersect with any forbidden region,
i.e., the zones of the frontier which do not belong to anyRi. Thus, the objective
is to prove the maximum γ such that:

{x : V (x) ≤ γ, x ∈ Bi} ⇒ ġi(x) > 0 i : 1, . . . , ng (4.33)

With such γ, (4.31) defines an invariant set. Indeed, parts of ∂Θ are in ∂Ωd

and others in V (x) = γ. By (4.33), if one point x belonging to the frontier
of Θ is included in ∂Ωd, then it does not abandon Ωd because ġi(x) > 0 and,
if such point x is in the interior of Ωd, condition of decreasing V (x) (above
sections) ensures it to continue belonging to Θ in the future.
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Therefore, as (4.31) is an invariant set and only the origin belongs to the
set {x : V̇ (x) = 0}, the region Θ is a subset of DΩ.

In order to check (4.33), having a Lyapunov function V (x) in Ωd, it has to
be checked that all the sets

ci = {V (x) ≤ γ, ġi ≤ 0, gi(x) = 0, gj(x) ≥ 0} i : 1, ..., ng
j 6= i

(4.34)

are empty. Then the problem is to maximize γ such that all ci remain empty.
It can be done, applying Theorem A.1, if the following equality is true

h2 + (γ − V (x)) + Fi(x) +Gi(x) = 0 (4.35)

for polynomials (h,Gi(x)) ∈ Rx and Fi(x) ∈ Σx, which is proved with a
sign change, leading to condition (4.30).

The new found DA estimate will be always bigger or equal than the one
obtained with results stated in previous sections. See Example 4.4.2 in Section
4.4 for such a case.

Note. If Lemma 4.4 results in γ → ∞ , it means that the proven Θ is the
whole region Ωd, so the nonlinear system can be modelled in a bigger region
obtaining, probably, a larger domain of attraction estimate.

4.3 Iterative DA estimate expansion

Given the above results, the objective of this section is presenting a method-
ology to expand the domain of attraction starting from a previously computed
proven subset of it: any (possibly small) subset of the domain of attraction
found with current LMI/SOS results (to be denoted as, say, B1) can be used
as a “seed” for an iterative algorithm that expands it. The methodology is
discussed for both continuous-time and discrete-time cases.

This section shows that, once any seed setB1 is available, there is no longer
need of using actual Lyapunov functions, but only proving that there is a set
B2 such that trajectories starting in it fall intoB1, soB2 belongs to the DA too.
A SOS approach provides a numerical tool to obtain such a set and an iterative
algorithm naturally ensues by using B2 ∪ B1 as the new seed. If B1 ⊂ B2,
SOS algorithms provideB2 which is an estimate of the DA expressed in closed
form as a polynomial.
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The function defining the boundary of the resulting DA estimates in this
section is free from the restriction of being decrescent and positive in its inte-
rior. That allows for improved estimates over previous results.

The results presented on this section have been published in the journal
paper Pitarch, Sala and Ariño (2014b).

4.3.1 Auxiliary lemmas

Consider a compact set defined by oq polynomial boundaries Θ = {x : Ql(x) ≤
1} l : 1, ..., oq, and an inner region B = {x ∈ Θ : V (x) < 1} containing the
origin (V (0) < 1). The following definition will be later taken in the rest of
the chapter as the best low-degree fit of Θ.

Definition 4.3. Consider a decision-variable polynomial of predefined degree
denoted by R(x). The best fitting region ΘR = {x ∈ Θ : R(x) ≤ 1}, fulfill-
ing B ⊂ ΘR ⊂ Θ, is defined to be the solution of the following problem:

Minimize τ subject to

1 + τ ≥ R(x) when x ∈ Θm, m = 1, . . . , oq (4.36)

R(x) ≤ 1 when x ∈ B (4.37)

R(0) = 0 (4.38)

being Θm each one of the oq portions of the frontier of Θ, defined as Θm =
{x : V (x) ≥ 1, Qm(x) = 1}.

In this way, ΘR will be an inner approximation to Θ with a single polyno-
mial restriction.

Note that condition (4.38) is needed in order to avoid the trivial solution
τ = 0, R = 1, requiring that at least one point has a value different from one3.

Let us discuss an auxiliary result regarding lower-complexity SOS con-
ditions for stability. As commented in Chapter 3, some developments (par-
ticularly in discrete-time) require a high-degree polynomial in both state and
auxiliary membership variables σ2 = µ. As an alternative, a dummy vari-
able ρ may be introduced jointly with the equality constraint ρ = xk+1, i.e.,
ρ −

∑r
i=1 µiPi = 0. In this way, Lemma 3.3 may be reformulated, following

a Positivstellensatz argumentation.

3There is no loss of generality in setting R(0) to zero, as a straightforward argumentation
with affine scalings shows (details omitted for brevity).
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Lemma 4.5. The system (4.4) is globally stable if there exist functions V (x)
and G1(ρ, x) such that:

V (x)− V (ρ)− ε(x) +G1(ρ, x) > 0 (4.39)

with4 G1 ∈ I(ρ−
∑r

i=1 µiPi) arising from the equality constraint.

Note that (4.39) is not yet a SOS problem (because of the nonlinear func-
tions µi appearing in G1); however, it is a fuzzy summation so well-known
semidefinite relaxations based on Polya’s theorem (Sala and Ariño, 2007a)
may be applied.

For instance, if G1(ρ, x) were chosen as the simple expression

G1(ρ, x) = φ(x, ρ) · (ρ−
r∑
i=1

µiPi)

being φ(x, ρ) a polynomial vector inRnρ,x, then (4.39) is a single-dimensional
fuzzy summation whose positiveness for µi ∈ Γ is proved if the r SOS condi-
tions below hold:

V (x)− V (ρ)− ε(x) + φ(x, ρ)(ρ− Pi(x)) ∈ Σρ,x i = 1, . . . , r (4.40)

In fact, the above proposed structure of G1 will be the actual choice in later
examples.

4.3.2 Discrete-time DA estimation

Given a particular region B1 which belongs to the DA of a nonlinear system
(4.2), a larger estimate of the DA can be calculated following the next result.

Lemma 4.6. Let B1 = {x ∈ Rn : V1(x) < 1} ⊂ D be a (previously proven)
bounded subset of the domain of attraction of (4.2) and let N be a horizon
parameter (number of future samples) fixed a priori. Then, any region B2 such
that

B2 ⊆ {x ∈ Rn : V2(x) < 1}, (4.41)

where5 V2(x) = V1(f [N ](x)), belongs also to the domain of attraction of the
system (4.2).

4 A slight abuse of notation is involved in the definition of the ideal as it is generated by
an expression which is not a polynomial. In this context, the ideal will be considered to be the
product of arbitrary polynomials –to be obtained by SOS optimization– by any product of the
generating functions.

5Notation: f [N ](x) = (f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
N

)(x).
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Proof. Following system dynamics (4.2), the points which inN future samples
will be inside B1 are those defined by:

V1(xk+N ) < 1 ≡ V1(f [N ](xk)) < 1

So the region B2 is a subset of the DA as any starting point in B2 will enter
the open set B1 in a finite number of time steps. Hence, it will later reach the
origin as B1 ⊂ D.

Corollary 4.1. If B1 contains the origin, when N →∞, B2 exactly coincides
with the actual DA of the origin of the nonlinear discrete-time system.

Proof. Indeed, no point reaching the origin can avoid entering B1 in a finite
number of time steps, as the origin is in its interior.

Remark 4.1. Note that B1 does not need to be a Lyapunov level set like the
ones considered in classical results (which implicitly considerN = 1). In fact,
there is no need of it being even an “invariant” set as understood in literature
(Khalil, 2002).

4.3.2.1 Application to fuzzy polynomial systems

Despite of Lemma 4.6 gives an exact description of theN -step DA, unless f is
linear, the result is a very high-degree expression if fuzzy polynomial models
for system (4.2) are used (both in the state variables and in the membership
functions). So, the results in the above lemma may be of little use if a reason-
ably simple approximation of the DA of a nonlinear system were needed for
subsequent analysis or representation.

In order to obtain a simpler reliable representation for the DA, the follow-
ing lemmas propose the use of fuzzy polynomial models in order to describe
the nonlinear dynamics. Hence, inspired on the “best fitting region” of Defini-
tion 4.3, they obtain a user-defined low degree polynomial in order to charac-
terize the LRDA.

The basic idea motivating the results below is obtaining a low-degree ap-
proximation of the 1-step DA V (f(x)) < 1 in Lemma 4.6 and, later, iterating
such approximation.

Lemma 4.7. Consider a known seed set B1 ⊂ DΩ defined by a polynomial
V1(x), B1 = {x ∈ Ω : V1(x) < 1} and a user-defined modelling region Ω de-
fined by oq restrictions Ω = {x : Ql(x) ≤ 1} l : 1, ..., oq, such that it is
compact. Then, the region B2 = {x : Ql(x) ≤ 1, V2(x) ≤ 1} belongs to DΩ
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and B2 ⊃ B1, if a function V2(x) can be found solving the following problem:

Minimize τ subject to

V2(0) = 0 (4.42)

V2(x)− 1− F1(x, ρ) +G1(x, ρ) > 0 ∀x, ρ (4.43)

V2(x)− 1− F2(x, ρ) +G2(x, ρ) > 0 ∀x, ρ (4.44)

1− V2(x) + τ − F3(x, ρ) +G3(x, ρ) +G4(x, ρ) > 0 ∀x, ρ (4.45)

1− V2(x)− F4(x) > 0 ∀x (4.46)

Where

• τ > 0,

• F1(x, ρ) ∈ ℘(V1(ρ)− 1, 1−Q1(x), ..., 1−Qoq(x)),

• F2(x, ρ) ∈ ℘(Q1(ρ)− 1, ..., Qoq(ρ)− 1, 1−Q1(x), ..., 1−Qoq(x)),

• F3(x, ρ) ∈ ℘(1−Q1(x), ..., 1−Qoq(x)),

• F4(x) ∈ ℘(1− V1(x), 1−Q1(x), ..., 1−Qoq(x)),

• G3(x, ρ) ∈ I(V1(ρ)− 1),

• {G1(x, ρ), G2(x, ρ), G4(x, ρ)}∈I(ρ−
∑r

i=1 µiPi(x))

Note that the same abuse of notation issue discussed in footnote 4 has been
assumed.

Proof. By condition (4.43), the region V2 < 1 will be an inner approximation
(actually it has to fulfill the requirement only inside the modelling region Ω)
to the region defined by V1(xk+1) < 1 (the points which in one sample will be
insideB1): the condition implies that V2(x) is greater than 1 when V1(xk+1) ≥
1 and x ∈ Ω.

Condition (4.44) implies that V2(x) should be greater than one for those
points x ∈ Ω such that xk+1 6∈ Ω. Jointly with (4.43) the condition discards
the points x ∈ Ω for which V1(xk+1) < 1 but xk+1 6∈ Ω.

So conditions (4.43),(4.44) together mean that all points in V2(x) < 1 will
fulfill V1(xk+1) ≤ 1 and xk+1 ∈ Ω, i.e. xk+1 ∈ B1. Hence the obtained level
set can be used as B2 in (4.41), for N = 1.
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Figure 4.2, in which Ω is, for clarity, only defined by a circle Q(x) < 1,
illustrates the different regions involved in the conditions: the pink region V2 <
1 must not intersect green zones (V1(xk+1) > 1) and red ones (Q(xk+1) > 1).

Lastly, conditions (4.42), (4.45) and (4.46) are the adaptation of the best-fit
conditions (4.38), (4.36) and (4.37), respectively, to the setting now in consid-
eration, in order to obtain the “optimal” V2 according to Definition 4.3.
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Figure 4.2: Example of regions involved in Lemma 4.7 (Blue: B1, Pink+Blue:
B2, plus other relevant boundaries in the legend).

The optimization problem in the above Lemma cannot be solved via SOS
techniques. The reason is that conditions must involve only polynomial terms
in order to be able to use semidefinite programming. However, it can be con-
verted in an straightforward way to a SOS problem if all V1(x), V2(x), Q1(x),
. . . , Qoq(x) belong to the polynomials Rx and semidefinite relaxations are
suitably applied: the case is identical to the one when transforming (4.39) to
(4.40) in a previous section (details omitted for brevity).

Remark 4.2. Note that the slack variables ρ in Lemma 4.7 are introduced in-
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stead of directly using
∑

i σ
2
i Pi (σ2 = µ), in order to reduce the degree of the

conditions. Therefore, the computational complexity of the resulting semidef-
inite problem (Lemma 4.5) is lower.

Remark 4.3. Usually, B1 will have been obtained with a shape-independent
fuzzy technique in literature and this is why, in Lemma 4.7, the LRDA con-
dition B1 ⊂ DΩ has been assumed. If B1 had been obtained with a shape-
dependent or other nonlinear stability analysis technique, then the resulting
B2 will be a larger set possibly including points of the DA outside the LRDA,
so it would be a better solution: evidently, the larger the initial estimate B1 is,
the better the proposed methodology will work.

Remark 4.4. Note that, as in Lemma 4.6, B1 does not need to be a Lyapunov
level set fulfilling V1(xk+1) − V1(xk) < 0 in all its interior, even if the pre-
vious remark suggests it as a reasonable seed set. Note also that the result-
ing B2 is also free from the above Lyapunov decrease condition. In fact, we
don’t even need to enforce neither V1 > 0 nor V2 > 0 inside the level set
(with Positivstellensatz conditions). These are the reasons why the proposed
methodology obtains better results than previous literature.

Iterative procedure

As a natural choice, using the obtained B2 in Lemma 4.7 to define a new re-
gion B1, a sequence of new functions and associated regions would be readily
obtained by repeatedly applying Lemma 4.7. See Example 4.4.5 in Section
4.4.

Remark 4.5. There is also the possibility of remodelling while iterating, defin-
ing a new larger region Ω2 ⊃ Ω in order to obtain larger LRDA estimates, in
particular when {x : V2(x) ≤ 1} 6⊂ Ω. Note that, in that case, conditions
(4.44) must make reference to the previous modelling region Ω when setting
up F2, in order to fullfill Lemma 4.6. The other Positivstellensatz polynomials
F1, F3 and F4 must belong to the cone formed with the constraints associated
to Ω2. For further details, see Example 4.4.5 in Section 4.4.

4.3.3 DA estimation in continuous-time systems

The following theorem states conditions so that, given a particular region B1

elsewhere proven to belong to the DA of (4.1), a larger one can be found via
invariant set considerations.
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Theorem 4.2. Let Θ = {x : Ql(x) ≤ 1, l : 1, ..., oq} be a compact user-
defined region of interest, with Ql(x) differentiable. Let B1 = {x ∈ Θ :
V1(x) < 1} ⊂ D be a (previously proven) bounded subset of the domain of
attraction of the origin of system (4.1). If we can find a differentiable function
V2(x) such that, given ε > 0, the following conditions hold:

V2(x) ≥ 1 ∀ x ∈ Cm m : 1, .., oq (4.47)

V̇2(x) < −ε(x) when V1(x) ≥ 1, Ql(x) ≤ 1 ∀l (4.48)

where

Cm = {x : Qm = 1, Q̇m > 0, V1 ≥ 1, and Ql ≤ 1 ∀l 6= m}

Then, the interior of the region B2 = {x : Ql(x) ≤ 1, V2(x) ≤ 1} ∪ B1

belongs to D.

Proof. As B1 ⊂ Θ, we have B1 ⊆ B2 ⊆ Θ. Condition (4.48) means that
V̇2(x) is strictly negative in Θ\B1 = {x : x ∈ Θ, x 6∈ B1}.

We will now prove that all trajectories starting in x0 in the interior of
B2\B1 reach in finite time B1.

Indeed, as V2(x0) < 1, and for all l, Ql(x0) < 1 then V2(x(t)) < 1 for
all t ≥ t0 while in B2\B1 by (4.48). Hence, it will never exit B2\B1 neither
via the frontier V2(x) = 1, evidently, nor via Ql(x) = 1 because V2(x) ≥ 1 or
Q̇l(x) < 0 in such points due to (4.47). So, the only way of a trajectory to exit
B2\B1 will be entering B1.

As the fact that the trajectory remains forever in B2\B1 is not possible we
can conclude that the trajectory from the above x0 will enter B1 in finite time
(see below).

Indeed, we have B2\B1 ⊂ Θ\B1. Also, Θ\B1 is compact and, by (4.48),
V̇2(x(t)) < −ε when x(t) ∈ Θ\B1. V2(x) will achieve a minimum α in
Θ\B1. Consider a trajectory such that V2(x(0)) ≤ 1 and V̇2(x(t)) < ε for all
t ≥ 0. In that case, for all t > (1−α)/ε we would have V2(x(t)) < α, so such
trajectory is not possible inside Θ\B1: the state must have left Θ\B1 (hence,
B2\B1) in finite time.

Note that some sets Cm may be empty so, in those cases, there is no need
of checking condition (4.47).

Corollary 4.2. If the condition

V2(x) ≤ 1 when V1(x) ≤ 1, Ql(x) ≤ 1 ∀l (4.49)
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is also enforced, then B2 = {x ∈ Θ : V2(x) ≤ 1}, and B1 ⊂ B2. So B2

and V2 can be used again for finding new points in the domain of attraction,
replacing V1 and B1 with them.

The advantage of the above corollary is that there is no need of considering
the union of regions discussed in Theorem 4.2 when defining B2, simplify-
ing further computations. An iterative algorithm naturally ensues (see Section
4.3.3.2).

4.3.3.1 Application to fuzzy polynomial systems

In the following, fuzzy polynomial models (4.3) and restrictions will be used in
the context of the above theorem to obtain LRDA estimates DΩ of the domain
of attractionD of (4.1) in a modelling region Ω. In this way, SOS programming
can be used. In order for the polynomial model to be valid, the condition
Θ ⊂ Ω must be enforced by a suitable definition of Ql, being Θ the region of
interest discussed in Theorem 4.2.

Remark 4.6. The “region of interest” Θ is introduced, instead of the full mod-
elling region Ω, in order to reduce conservatism by eliminating the need of
checking V̇2 < 0 in the whole Ω, which may be infeasible. Indeed, note that
if there are equilibrium points in Θ\B1 then (4.48) will not hold. A suitable
choice for Θ will be later discussed.

Lemma 4.8. Consider a known set B1 ⊂ DΩ defined by a polynomial V1(x),
B1 = {x ∈ Ω : V1(x) < 1} and a user-defined region Θ defined by oq re-
strictions Θ = {x : Ql(x) ≤ 1} l : 1, ..., oq, such that Θ ⊂ Ω and it is
compact. Then, the region B2 = {x : Ql(x) ≤ 1, V2(x) ≤ 1} belongs to DΩ

and B2 ⊃ B1, if a continuous differentiable function V2(x) can be found solv-
ing the following SOS problem:

Minimize τ subject to

V2(0) = 0 (4.50)

−(
∂V2(x)

∂x
ρ+ ε)− F1(x, ρ) +G1(x, ρ) ∈ Σx,ρ (4.51)

V2(x)− 1− F2m(x, ρ) +G2m(x, ρ) ∈ Σx,ρ m : 1, ..., oq (4.52)

1− V2(x) + τ − F3m(x) +G3m(x) ∈ Σx m : 1, ..., oq (4.53)

1− V2(x)− F4(x) ∈ Σx (4.54)

Where
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• τ > 0, ε > 0,

• F1(x, ρ) ∈ ℘(V1(x)− 1, 1−Q1(x), ..., 1−Qoq(x)),

• F2m(x, ρ) ∈ ℘(V1(x)− 1, ∂Qm(x)
∂x ρ),

• F3m(x) ∈ ℘(V1(x)− 1),

• F4(x) ∈ ℘(1− V1(x), 1−Q1(x), ..., 1−Qoq(x)),

• G2m(x, ρ) ∈ I(Qm(x)− 1, ρ−
∑r

i=1 µiPi(x)),

• G3m(x) ∈ I(Qm(x)− 1),

• G1(x, ρ) ∈ I(ρ−
∑r

i=1 µiPi(x)).

Proof. Conditions (4.51) and (4.54) mean (4.48) and (4.49) respectively. As
Q̇m = ∂Qm

∂x ρ, constraining ρ =
∑

i µiPi(x) by “Positivstellensatz” multipli-
ers, then condition (4.52) implies (4.47), also condition (4.53) implies (4.36),
and condition (4.54) implies (4.37).

Note that, inspired in Definition 4.3, minimization of τ above allows ob-
taining a region B2 which best fits Θ subject to the additional constraint of
belonging to DΩ.
Remark 4.7. As in the discrete case, the above optimization problem doesn’t
involve polynomial finite conditions. So, in order to be able to use semidef-
inite programming, a recasting is needed by taking (V1(x), V2(x), Q1(x), ...,
Qoq(x)) ∈ Rx and a finite number of terms from the cones and ideals. See,
again, the transformation from (4.39) to (4.40) (details omitted for brevity).

The above lemma generalises particular cases in literature, as follows:

Corollary 4.3. If B1 = {0} and all conditions of Lemma 4.8 are set with
the particular choices F1(x, ρ) ∈ ℘(1 − Q1(x), ..., 1 − Qoq(x)), F2m = 0,
F3m = 0, and (4.54) is omitted, V2 is a Lyapunov function whose level set
{x : V2 ≤ 1} belongs to the DA of the origin, recovering classical local-
stability results (Lemma 4.2).

Proof. If B1 = {0} relaxing requirements of positiveness and decrescence
inside {V1 ≤ 1} should not be done because such V1 does not exist. Hence,
the term V1(x) − 1 should be removed from the generator of the cones. Also,
(4.54) which refers to conditions inside B1 ∩ Θ (i.e, the origin) is redundant
with (4.50). The rest of conditions can then be interpreted as the usual ones on
Lyapunov functions (locally in Θ).



84 CHAPTER 4. Domain of Attraction Estimation

Corollary 4.4. If conditions in Corollary 4.3 are solved getting V2 and, later,
only (4.52) is posed setting a new V2 equal to an scaled version of the one just
computed, then Lemma 4.4 is obtained.

Indeed, Section 4.2.3 discusses only a posteriori scaling of Lyapunov func-
tions.

4.3.3.2 Iterative procedure

Lemma 4.8 starts with a seed set B1 = {x : V1 < 1} and a user-defined region
Θ which, obviously, should intersect with the seed set (in most of practical
cases, it will actually contain the seed set). The result is a new level set {x :
V2 < 1} larger than B1 such that its intersection with Θ belongs to the DA.

a) Progressive enlargement of the DA estimate: As a natural choice, if Θ
were fixed, using the larger V2 obtained with Lemma 4.8 to define a new seed
region B1, then the conditions of Lemma 8 are fulfilled and, thus, it can be
applied again with the new seed. Hence, a sequence of new functions and
associated regions would be readily obtained by repeatedly applying Lemma
4.8.

b) Choice of region of interest Θ: There are various posibilities for choos-
ing a region Θ but:

• a large Θ might eventually lead to (4.51) being infeasible, e.g., if Θ
included more than one equilibrium point.

• a small Θ would lead to little improvement in the domain of attraction
estimates and, also, the restrictions (4.53) and (4.54) would be hard to
fulfill if V2 were a low-degree polynomial and Θ and V1 defined com-
plicated shapes.

Furthermore, as iterations progress and the DA estimates grow larger (en-
compassing most of Θ), then constraining Θ to the initial “small” choice may
not be a good option. This fact, jointly with the above issues arising in the
choice of Θ motivate incorporating iterations in the size and shape of such
region, as discussed below.

c) Proposal for modification of Θ: Although there might be alternative op-
tions, for instance, the new region of interest can be defined by a user-defined
“zoom” factor υ ≥ 1 as:

Θ = {x ∈ Ω : V1(x) ≤ υ, υ ∈ R} (4.55)



4.3. Iterative DA estimate expansion 85

The smaller υ is, the smaller the region Θ − B1 is, so condition V̇2 < 0 there
becomes less restrictive.

If V1(x) were C1 differentiable, and enhanced proposal for the choice of
Θ may be based on the evident fact that for any fixed time δ > 0, the set
{x0 ∈ Rn : V1(x(δ)) < 1, x(0) = x0} is included in the domain of attraction
D. Intuitively, from the first order Taylor series expansion of V1(x(t)),

V1(x(δ)) ≈ V1(x0) + δ
∂V1

∂x
ẋ(0)

the new region of interest in Corollary 4.8 can be, choosing δ > 0:

Θ =

{
x ∈ Ω : V1(x) + δ

∂V1(x)

∂x

r∑
i=1

µiPi(x) ≤ υ, x ∈ G

}
(4.56)

whereG ∈ Ω is, in general case, a sphere limiting the search zone and ensuring
compatness (G ≡ Ω if Ω is compact). The constant υ has the same meaning
as in (4.55) and δ is a new user-defined constant.

The idea behind this option is to explore stability in “promising” direc-
tions: the region (4.56) will include the set of points x which “approximately”
in δ seconds will be inside B1.

Note that the accuracy of these steps is not very relevant because region Θ
can actually be arbitrarily defined by the user in Theorem 4.2. Also, in order
to be less conservative, the original nonlinear system may also be remodelled:
indeed, for a given Θ ⊂ Ω, the closer the modelling region Ω is to Θ the less
uncertain the fuzzy model will be.

To clarify the proposed methodology, the examples 4.4.3 and 4.4.4 in Sec-
tion 4.4 use the following algorithm (particular case of Lemma 4.8):

Algorithm 4.2. Starting from a known B1 = {V1(x) < 1}, B1 ∈ D and
V1(x) ∈ Rx, carry out the following steps:

1. Choose a starting combination of region increase parameters δ ≥ 0
(gradient) and υ ≥ 1 (zoom), defining a candidate region of interest6

(4.56).

6 A slack variable ρ =
∑
i µiPi will be introduced as in Lemma 4.5 in next steps. Note

also that region (4.56) might be defined by a high-degree polynomial for δ 6= 0, so it may
have a strange shape and can take large values far from the origin. Hence, to avoid numerical
problems, a low-degree best-fitting region (Definition 4.3) to (4.56) may also be obtained in this
step for later use if needed. Details omitted for brevity.
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2. Find a new polynomial V2(x) solving the following SOS problem:

Minimize τ such that
V2(0) = 0 (4.57)

− (
∂V2

∂x
ρ+ ε)− ψ1i(V1 − 1)− ψ2i(R− xTx)

− ψ3i(υ − V1 − δ
∂V1

∂x
ρ) + φ1(ρ− Pi) ∈ Σx,ρ i : 1, ..., r (4.58)

1− V2 − ψ4(1− V1)− ψ5(R− xTx) ∈ Σx (4.59)

V2 − 1 + φ2i(V1 + δ
∂V1

∂x
ρ− υ)− ψ6i(R− xTx)

+ φ3(ρ− Pi) ∈ Σx,ρ i : 1, ..., r (4.60)

V2 − 1− ψ7i(υ − V1 + δ
∂V1

∂x
ρ) + φ4i(R− xTx)

+ φ5(ρ− Pi) ∈ Σx,ρ i : 1, ..., r (4.61)

1− V2 + τ + φ6i(V1 + δ
∂V1

∂x
ρ− υ)− ψ8i(R− xTx)

+ φ7(ρ− Pi) ∈ Σx,ρ i : 1, ..., r (4.62)

where ε > 0, τ > 0, R is a user-defined radius of a sphere belonging to
Ω, ψj ∈ Σx, ψji ∈ Σx,ρ, φk ∈ Rnx,ρ and φki ∈ Rx,ρ.

3. If the above problem is feasible, set V1(x) = V2(x) and return to Step 1.

4. If problem in Step 2 is not feasible, then:

(a) If υ > 1, set υ = max(1, υ −∆υ) (∆υ user-defined step) and go
back to Step 2.

(b) If υ = 1, reduce δ by ∆δ (user-defined step) and go back to Step 2.
(c) If υ = 1 and δ ≤ 0 stop the algorithm, due to lack of progress. The

finally proved DA estimate B2 is obtained in closed-form by the
current V1(x), computed in the last feasible iteration (i.e., after
setting V1 = V2 in Step 3):

B2 = {x : V1(x) < 1, x2
1 + x2

2 < R2}
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Note. Conditions on the above algorithm are a particularization of those in
Lemma 4.8 as follows:

• (4.57), (4.58), (4.59) and (4.62) correspond to (4.50), (4.51), (4.54), and
(4.53), respectively

• (4.60) and (4.61) are conditions (4.52) but forcing {x : V2(x) = 1}
to be contained inside Θ to avoid the result of each iteration being an
“intersection” (i.e., forcing B1 in next iteration to be defined by only
one polynomial inequality), setting F2m = 0.

Remark 4.8. With condition (4.59), i.e., V2 ≤ 1 when V1 ≤ 1, Corollary 4.2
applies and the proved domain of attraction increases in each iteration. Note
that improvements come from the fact that there is no need for either V1 > 0,
V̇1 < 0, V2 > 0 or V̇2 < 0 in all the interior of the level sets, contrary to usual
Lyapunov approaches.

4.4 Examples

This section presents several examples in order to show the effectiveness of the
proposed methodologies. The evolution of the largest sphere, which is guaran-
teed to belong to the DA, is shown for different modelling region sizes. Also
the final shape of the found DA estimate is shown for the used methodology in
each example.

Example 4.4.1. Consider a 2-rules fuzzy polynomial model (4.3) with its cor-
responding membership functions given by:

µ1(x) = e−(x21+x22); µ2(x) = 1− µ1(x)

p1(x) =

(
−0.116x1 + 0.015x4

2 + 0.0603x2

0.2x2
1x2 − 0.0603x1 − 0.4711x2

)
p2(x) =

(
−0.1106x1 + 0.03x4

2 − 0.2796x2

−0.1x2
1x2 + 5.8714x1 − 0.4763x2

)
The region Ωd is defined as a square region in the state space given by:

Ωd =

{
x :

∣∣∣∣(0
1

ρd

)
x

∣∣∣∣ ≤ 1,

∣∣∣∣( 1

ρd
0

)
x

∣∣∣∣ ≤ 1

}
(4.63)

where d is the iteration number and ρd is the scale factor which changes in
each iteration.
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In this case, the maximum and minimum of the membership functions µi
in Ωd is easy to compute due to their monotonicity: those values are obtained
in the center (max µ1, min µ2) and in the extreme vertex of the square (min
µ1, max µ2), which will be denoted by ξ. Therefore, the vdi vertices are:

v11 = µM1 = µ1(0), v21 = µm1 = µ1(ξ)

v12 = µm2 = µ2(0), v22 = µM2 = µ2(ξ)

The procedures presented on Section 4.2 allow to determine the largest sphere
around x = 0 for which local stability conditions hold. In this first example,
quadratic stability (V (x) = xTPx) has been chosen for simplicity. Higher-
degree polynomial Lyapunov functions will be used on next examples.

Consider as a first iteration ρ1 = 0.01, and increments of 0.01 for next
iterations until infeasibility of the SOS problem is reached. The largest prov-
able sphere with Algorithm 4.1 is obtained by performing an exploration in
Ωd, replacing conditions (4.29) by:

−dV
dx

(µM1 p1 + µm2 p2)− ε(x) + ψ11(x2
1 − ρ2

d) + ψ12(x2
2 − ρ2

d) ∈ Σx (4.64)

−dV
dx

(µm1 p1 + µM2 p2)− ε(x) + ψ21(x2
1 − ρ2

d) + ψ22(x2
2 − ρ2

d) ∈ Σx (4.65)

The ellipsoidal estimates and the largest sphere contained in each one of them
are shown on Figure 4.3, for some exploration values ρd. Let us focus on how
ill-conditioned ellipsoids prove a small “stable” area in comparison with the
whole square Ωd, in which the Lyapunov function is forced to decrease. This
fact is even more stressed when looking at the found spherical regions: For
instance, with a 0.6 side square Ωd, the maximum sphere has a radius of 0.18,
i.e., this area is only 7% of the modelling region.

Now, if some decay-rate performance α is to be proven for this system, the
term

−2α[x1 x2]P [x1 x2]T

has to be added to the conditions (4.64) and (4.65). Then, starting with α = 0
and increasing it progressively, SOS conditions become more restrictive so
the maximum provable radius will be smaller. Figure 4.4 shows the radius
evolution of the largest provable sphere with Ωd for different decay rates. The
top line correspond to simple stability (α = 0).

As it can be seen, radius evolution is not always positive due to the fact that
the larger the modelling region is, the more uncertainty may be added between
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Figure 4.3: DA estimates for different regions Ωd (squares) using quadratic
Lyapunov functions.

the fuzzy vertex models. This fact is reflected progressively with a worse con-
ditioning on the Lyapunov functions. However, after an initial degradation, no
new nonlinearities are found when increasing the modelling region, so the ra-
dius increases monotonically until infeasibility. In conclusion, no monotonic
properties can be proved on the radius evolution because it depends on the
particular features of the analyzed system.

Example 4.4.2. Consider the following continuous-time nonlinear system:

ẋ1 = −3x1 + 0.5x2

ẋ2 = x2(−2 + 3 sin(x1))
(4.66)

which has equilibrium points at x = 0, at (x1 = 0.7297 + 2kπ, x2 = 6x1) and
at (x1 = −0.7297 + (2k + 1)π, x2 = 6x1) for k ∈ Z.

The objective is to find a Lyapunov function in the region

Ω = {x1, x2 : 42 − x2
1 ≥ 0, 42 − x2

2 ≥ 0} (4.67)



90 CHAPTER 4. Domain of Attraction Estimation

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ρ

λ−
1/

2

 

 

α=0
α=0.02
α=0.04
α=0.06
α=0.08
α=0.1

Figure 4.4: Radius evolution for different decay rates using quadratic Lya-
punov functions (fuzzy polynomial model).

in which the nonlinearity sin(x) will be modelled by following the Taylor
series approach presented on Section 3.1.1. The resulting fuzzy polynomial
model (4.3) using Taylor decomposition until degree 3 is:

µ1(x) =
sin(x1)− x1 + 0.074325x3

1

−0.0923417x3
1

; µ2(x) = 1− µ1(x)

p1(x) =

{
−3x1 + 0.5x2

−2x2 + 3x2(x1 − 0.166667x3
1)

p2(x) =

{
−3x1 + 0.5x2

−2x2 + 3x2(x1 − 0.074325x3
1)

Then, following the methodology described on Section 4.2 with Algorithm
4.2.3 and expressing the exploration region as in (4.63), the largest spheres are
obtained by performing iterations with ρd. Note that the extreme values of the
membership functions are computed in a similar way to the above example
because they are monotonic with Ωd.
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First, if quadratic stability is analyzed, similar results to Example 4.4.1
are obtained. In addition, the orientation of the found ellipsoids changes with
the region of study Ωd. After that, the use of higher-degree Lyapunov func-
tions has been analyzed in order to check the improvement on the obtained
DA estimates. Figure 4.5 shows how with using 4th and 5th degree Lyapunov
functions, larger spheres belonging to the DA are found than in the quadratic
case. Indeed, since ρd = 2.1, conditioning of quadratic Lyapunov functions
decrease quickly and they give smaller spheres.

X
1

X
2

 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Quadratic LF
Largest spheres found
LF degree 5
LF degree 4

Figure 4.5: Better DA estimates found with different Lyapunov functions.

Once a Lyapunov function is obtained, for instance the 4th order one

V (x) = 0.016x4
1 + 0.00742x3

1x2 − 0.0133x3
1 + 0.0147x2

1x
2
2

+ 0.0246x2
1x2 + 0.0133x2

1 − 0.00139x1x
3
2 + 0.0374x1x

2
2

− 0.0272x1x2 − 0.0029x4
2 − 0.0041x3

2 + 0.133x2
2,

the “a posteriori” procedure explained on Section 4.2.3 can be applied. Thus,
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defining constraints (4.18) as g1 = ρd−x2, g2 = ρd−x1, g3 = −ρd−x1 and
g4 = −ρd − x2, the borders of the squared region of study are:

B1(x) = {x1| − ρd ≤ x1 ≤ ρd, x2 = ρd}

B2(x) = {x2| − ρd ≤ x2 ≤ ρd, x1 = ρd}
B3(x) = {x1| − ρd ≤ x1 ≤ ρd, x2 = −ρd}
B4(x) = {x2| − ρd ≤ x2 ≤ ρd, x1 = −ρd}

With the zones of the frontier where system trajectories point to inside Ωd,
Lemma 4.4 can compute a larger level set of V (x) until it touches some bor-
der zone in which ġ(x) < 0. As a result of this procedure, Figure 4.6 shows;
the numerically computed forbbiden regions of the border (in red) where sys-
tem trajectories leave the modelling square, the previously proven DA using
Algorithm 4.1 and the improving obtained with the expansion of Lemma 4.4.
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Figure 4.6: Conventional DA estimate and expanded one (Lemma 4.4) using
4th order Lyapunov function. In red the zones of ∂Ω where ġ(x) < 0.

As it can be seen, in this case, by means of this expansion procedure the
stable spherical region around the origin is enlarged, without increasing the
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Lyapunov-function order. For completeness, the LRDA surface corresponding
to the fourth order Lyapunov function is depicted on Figure 4.7.
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Figure 4.7: DA surface using a 4th order Lyapunov function.

In order to have an idea of which amount of conservativeness is implied
with this technique, on Figure 4.8 several system trajectories have been traced
from different initial conditions. In this way, the real domain of attraction of
the nonlinear system is estimated by simulation. Then the best proven LRDA
obtained with the proposed methodology (Algorithm 4.1 + Lemma 4.4), using
a 7th degree Lyapunov function, is superposed. It can be observed that the
largest sphere has been well estimated because, indeed, the Lyapunov function
level set (which overflow the border of Ω due to expansion for Lemma 4.4) fits
the real DA in the upper right quadrant, and the sphere is tangent to this level
set.

Finally, on Figure 4.9, the evolution of the largest-found sphere contained
in the Lyapunov level set is presented for different degrees on the Lyapunov
functions. Also it compares the results before and after applying the expansion
procedure of Section 4.2.3. It is shown that the higher degree of the Lya-
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Figure 4.8: Phase plane of the nonlinear system jointly with the estimated
LRDA using a 7th order Lyapunov function.

punov function is, the lower the improvement with the expansion procedure is
achieved. The reason is that, with higher degree, more flexibility is provided
to the Lyapunov function in order to adapt the real DA. Indeed, on Figure 4.8
is slightly hard to realize that the maximum Lyapunov level set overflows the
border ∂Ω. This fact is also checked with green curves on Figure 4.9.
Computational cost. In order to give an idea of the required computational
resources for the proposals in this chapter, in this particular example the res-
olution of one iteration with Algorithm 4.4 in an Intel R© CoreTM2 Duo P8600
and 4 Gb of DDR3 RAM takes 94 sec. for a quadratic Lyapunov function, 100
sec. for degree 4 and 118 sec. for degree 6. MATLAB R© 2008a with SDPT3
4.0 and SOSTOOLS 2.03 have been used for implementation.
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Figure 4.9: Evolution of the largest sphere centered on the origin with the scale
factor of the modelling region.

Example 4.4.3. Non-fuzzy polynomial system.

Now, a simple example from Khalil (2002, Example 8.9) is provided in
order to show the performance of the proposed methodology in Section 4.3
over standard level-set ones in the referred source.

Consider the polynomial system:

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2

(4.68)

For the above system, linearization shows that the origin is stable: there is
a neighborhood of it belonging to its DA provable with a Lyapunov function
V (x) = 1.5x2

1 − x2x1 + x2
2, see Khalil (2002) for details. However, phase

plane simulation shows that it has an unstable limit cycle so the DA of the
origin is limited by it.

The Lyapunov-based methodology proposed in Khalil (2002) obtains an
initial estimate of the DA from a rough bounding of V̇ given by {x : V (x) ≤
0.801}. Then, zooming out this region by performing a trial-and-error contour
plotting, the above estimate is expanded to {x : V (x) ≤ 2.25}.

Now, using the proposal in Section 4.3, the region B1 = {x : V (x) ≤
2.25} is used as the algorithm seed region. The initial step-size parameters are



96 CHAPTER 4. Domain of Attraction Estimation

set to ν = 1.1, δ = 0.2 and a 4th degree polynomial boundary V2 is chosen.
With ∆ν = 0.1, ∆δ = 0.1, Algorithm 4.2 runs for 9 iterations until it stops due
to lack of progress. The largest region obtained with a 4th degree polynomial
boundary is {x : V2(x) < 1}, where

V2(x) = 0.18157x2
1 − 0.58255x1x2 + 0.0058x2

2 + 0.0327x4
1

+0.15975x3
1x2 + 0.14346x2

1x
2
2 − 0.0709x1x

3
2 + 0.053x4

2
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 V (x) < 0.801

B1 := V (x) < 2.25

V2(x) < 1

Limit cycle

B2

Figure 4.10: Domain of attraction evolution using 4th order polynomial curves
(blue) and 6th order ones (brown). Seed set B1 taken from Khalil (2002).

Then, four more iterations are executed by reducing starting algorithm pa-
rameters to ν = 1.02, δ = 0.05 and also setting a 6th degree for the new
polynomial boundaries V2. Finally, the new DA estimate is, explicitly:

B2 = {x : −0.02023x5
1x2 − 0.401x1x2 + 0.595x2

1 − 0.1633x4
1

+0.3378x2
2 − 0.0514x4

2 + 0.0206x6
1 + 0.055x6

2 − 0.15867x2
1x

2
2
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+0.09x1x
3
2 − 0.0208x1x

5
2 + 0.182x3

1x2 − 0.0578x3
1x

3
2

+0.049x2
1x

4
2 + 0.0388x4

1x
2
2 < 1}

The improvement over estimates in Khalil (2002) can be checked on Figure
4.10. In fact, the obtained boundary of B2 is pretty close to the actual limit
cycle (see Figure 8.2 in the cited source, and green contour below for numerical
simulation-based approximations to it) which is the exact shape of the DA for
which a closed-form solution is, however, unavailable.

Example 4.4.4. Continuous-time non-polynomial system.

Consider the nonlinear system presented in Example 4.4.2.
The objective is to estimate the domain of attraction of the origin in a state-

space modelling region Ω defined as a sphere of radius Re centered in x = 0:

Ω = {(x1, x2) |x2
1 + x2

2 < R2
e}

For instance, for Re = 10, we have the two equilibrium points inside Ω:
e0 = (0, 0) and e1 = (0.7297, 4.378). Linearization shows that e0 is a stable
node (two negative real Jacobian eigenvalues), and e1 is a saddle point (one
stable and one unstable eigenvalues).

Taking into account the range −10 ≤ x1 ≤ 10 and using the 5th degree
Taylor expansion of sin(x1), there exists an exact fuzzy-polynomial represen-
tation in Ω such that sin(x1) = µ1(x)p1(x) + µ2(x)p2(x), where:

p1(x) = x1 −
1

6
x3

1 + 9.16 · 10−3x5
1

p2(x) = x1 −
1

6
x3

1 + 1.56 · 10−3x5
1

which gives a two-vertices fuzzy polynomial model (4.3) with membership
functions (z ≡ x):

µ1(x) =
sin(x1)− p2(x)

7.6 · 10−3x5
1

, µ2(x) = 1− µ1(x)

For other sizes of the modelling region Ω, resulting in different ranges of x1,
suitable vertex models may be obtained by the same Taylor-series methodol-
ogy.

A starting region B1 is obtained with well-known methodologies (Chesi,
2011; Papachristodoulou and Prajna, 2002): a search was made for a poly-
nomial Lyapunov function V1(x) giving the maximum radius R1 of a circle
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included in its level set {V1(x) ≤ 1}, and such that V̇1 decreases in a spherical
modelling region around the origin of radius Re.

As there is a saddle point e1, whatever the choice for V1 is, we will have
V̇1(e1) = 0. Forcefully, any Lyapunov function search from literature (for in-
stance, Lemma 3.4, Theorem 4.1) will not be feasible for Re ≥ ‖e1‖ = 4.44.
So, to obtain a first seed set, Re was set to 4.42 in the numerical implementa-
tions, corresponding to curve C1 in Figure 4.11. In fact, because of the inher-
ent conservatism from fuzzy modelling, the single saddle point in the original
nonlinear system becomes a “strip” of possible equilibrium points (for differ-
ent values of µ) in the fuzzy model.

The Lyapunov function is found by adapting Theorem 4.1 to solving the
SOS problem of maximize Ri subject to

V − εxTx+ ψ1(xTx−R2
e) ∈ Σx

V − 1− ψ2(xTx−R2
e) ∈ Σx

1− V + ψ3(xTx−R2
i ) ∈ Σx

−(
∂V

∂x
pi(x) + εxTx)− φi(R2

e − xTx) ∈ Σx i = 1, 2

for ε = 0.001, and multipliers {φi, ψj} ∈ Σx. The Lyapunov function’s
degree has been set to 4. Obviously, higher degrees would yield better results,
but the objective of the methodology is showing that improvements in DA
estimation can be made without increasing the polynomial degree.

The largest circle proved to belong to the DA with this standard method-
ology is C2, and the Lyapunov level set is limited by the dashed-purple curve
“Initial B1” in Figure 4.11.

The proved domain of attraction is then enlarged following Algorithm 4.2,
looking for 4th degree new polynomials V2(x). Figure 4.11 shows how the
estimated domain of attraction increases from the Lyapunov-only solution,
i.e.,“Initial B1”, as iterations progress. First, with a zoom factor υ = 1.2
and δ = 0, and ∆υ = 0.1, Algorithm 4.2 works for five iterations reaching
region labelled as Bzoom in the figure.

Using Bzoom as seed, restarting the algorithm with δ = 0.03, ∆δ = 0.01
and υ = 1, the algorithm runs for 12 more iterations, and gives the best feasible
DA proved (curve “Final B2” in the Figure).

Although simulations show that the domain of attraction is quite larger, it-
erations find hard to obtain a better estimate using a closed 4th degree bound-
ary. Indeed, each new candidate region has to be valid for the family of “all”
systems between p1 and p2: however, the difference between the vertex poly-



4.4. Examples 99

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

X1

X2

 

 C1

C2

Initial B1

Bzoom

Final B2

Eq. &

saddle

points

C1: Starting modelling region Ω with a single equilibrium (Eq) point inside
(classical Lyapunov techniques used locally in C1);

Initial B1: Level set of the Lyapunov function proving C2;

Bzoom: Last iteration with ν 6= 1, δ = 0;

Final B2: Last iteration with ν = 1, δ 6= 0.

Figure 4.11: Domain of attraction evolution using 4th order polynomial curves.

nomials grows larger as we depart further from the origin. Anyway, the ob-
tained result “Final B2” is substantially larger than the initial Lyapunov level
set “Initial B1” from usual methodologies in literature.

In summary, the largest set proved to belong to the LRDA DΩ is the set:

B2 = {x : −0.2828x1 − 0.1238x2 − 0.1315x2
1 − 0.0918x2x1 − 0.0468x2

2

+ 0.0056x3
1 + 0.0252x2

1x2 + 0.1111x2
2x1 + 0.0039x3

2 + 0.0099x4
1

+ 0.0123x3
1x2 + 0.0358x2

1x
2
2 + 0.002x1x

3
2 + 0.0017x4

2 < 1}

Note. In general the proved DA with Lemma 4.8 is an intersection between a
level set and the region of interest, i.e., B2 = {x : V2(x) < 1 ∩Θ}. However,
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in this particular case, the intersection notation is not needed (in fact the possi-
bility is intentionally not allowed enforcing {x : V2(x) < 1} ⊂ Θ ⊂ Ω). The
next example considers the more general case.

Note also that the techniques in Section 4.2.3 obtain a DA estimate larger
than “Initial B1” but smaller than Bzoom ∩ C1, much smaller than the one
“Final B2” obtained in this work. See Figure 4.12.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

x1

x2

Domain of attraction
C1

C2

Init ial B1

Bzoom

Final B2

Eq. &

saddle

points

Best using       (+)

Curves C1, C2, Initial B1, Bzoom and Final B2 are as in Figure 4.11;

Best using (+): Largest DA estimate using the expansion method in Section 4.2.3.

Figure 4.12: DA estimate comparison with proposed techniques.

Example 4.4.5. Discrete-time system.

Consider the following nonlinear system obtained by the Euler discretiza-
tion of (4.66) at sample time T = 0.1 seconds:

x1k+1 = 0.7x1k + 0.05x2k

x2k+1 = x2k(0.8 + 0.3 sin(x1k))
(4.69)
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which has the same equilibrium as (4.66). However, due to the large sampling
period in the Euler approximation, the domain of attraction may change, as
discussed below. Also, for illustration, the degree of the fuzzy-polynomial
approximation of sin(x1) has been chosen differently.

The objective again is to estimate the domain of attraction of the origin in
a state-space circular modelling region of radius Re centered in x = 0. The
discrete system has the same equilibrium points as the continuous-time one.

For instance, using the 3th degree Taylor expansion of sin(x1k) computed
in the range |x1| < 10, there exists an exact fuzzy-polynomial representation
in Ω such that sin(x1k) = µ1(xk)p1(xk) + µ2(xk)p2(xk), where:

p1(xk) = x1k −
1

6
x3

1k

p2(xk) = x1k − 0.01054x3
1k

which gives a two-vertices fuzzy polynomial model (4.4) with membership
functions (zk ≡ xk):

µ1(xk) =
sin(x1k)− p2(xk)

−0.15612x3
1k

, µ2(xk) = 1− µ1(xk)

A starting regionB1, is again obtained with well-known Lyapunov methodolo-
gies (Tanaka, Ohtake and Wang, 2008). The way is to search for a polynomial
V1(x) which gives the maximum radius R1 of a circle included in the region
{x : V1(x) < 1} such that V1 decreases in a circular region around the origin
of radius Re. Let us detail how initial V1 was crafted in this example:

As in Example 2, whatever the choice for V1 is, any Lyapunov function
search from literature will not be feasible for Re ≥ ‖e1‖ = 4.44, so Re was
set to 4.15 in the numerical implementations7, hence Ω in the previous sections
corresponds to curve C1 in Figures 4.13 and 4.14.

The starting Lyapunov function may be found by two approaches:

1. Solving the SOS problem of maximising Ri subject to

V (x)− εxTx+ ψ1(xTx−R2
e) ∈ Σx

V (x)− 1− ψ2(xTx−R2
e) ∈ Σx

1− V (x) + ψ3(xTx−R2
i ) ∈ Σx

7Re cannot be increased without leading to an infeasible problem due to the intrinsic con-
servativeness issues of the fuzzy-polynomial approach (Sala and Ariño, 2009).
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Z(σ)V (x)− V (
∑
i

σ2
i pi(x))− Z(σ)εxTx

− φ1Z(σ)(R2
e − xTx) ∈ Σx,σ

where ε = 0.001, Z(σ)is used to make conditions homogeneous8 in σ2

, and {φ1 ψj} ∈ Σx are Positivstellensatz multipliers.

The drawback with this approach is that the degree of the polynomial
conditions above grows quickly with the Lyapunov function’s degree
(because computations involve products of σ2 and powers of x).

2. If the idea of introducing slack variables ρ is applied (Lemma 4.5), the
above problem can be expressed as maximizing Ri subject to:

V − εxTx+ ψ1(xTx−R2
e) ∈ Σx

V − 1− ψ2(xTx−R2
e) ∈ Σx

1− V + ψ3(xTx−R2
i ) ∈ Σx

V − V (ρ)− εxTx− φ1i(R
2
e − xTx) + φ2(ρ− pi(x)) ∈ Σx,ρ i : 1, 2

where ε = 0.001 and multipliers φ2 ∈ Σn
x,ρ, φ1i ∈ Σx,ρ, ψj ∈ Σx.

In the example, the second approach has been used, and the Lyapunov
function’s degree has been set to 4. The largest circle proved to belong to the
DA with this standard methodology isC2, and the Lyapunov level set is limited
by the dashed-blue curve Initial B1 in figures 4.13 and 4.14.

The proven domain of attraction is then enlarged following Lemma 4.7, as
proposed in Section 4.3.2.1, iteratively searching for new polynomials V2(x)
of 4th degree. Two trials of the iterations with different modelling regions have
been considered.

a) Circle of radius Re = 5.5: Consider the user-defined spherical region
(C3 in Figure 4.13):

C3 = {x : x2
1 + x2

2 < 5.52}

so Ω ≡ C3 in this case. Note, importantly, that it includes the saddle point so
no Lyapunov function can be ever found to decrease in all C3.

8The change µ ≡ σ2 is enforced. Also, suitable manipulations (multiplication by powers of
1 =

∑
i σ

2
i ) in the term V (

∑
i σ

2
i pi(x)) are implicitly assumed for homogenization.
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C2: largest circle in DA proved with classical Lyapunov techniques overC1;

C3: New modelling region, including the saddle point (always infeasible
with previous literature results);

Initial B1: Level set of the classical Lyapunov function proving C2;

Final B2: Last iteration of iterative algorithm in Section 4.3.2.1.

Figure 4.13: DA evolution using 4th order polynomial curves and fixed Re.

Figure 4.13 shows how the estimated domain of attraction increases from
the Lyapunov-only solution “Initial B1” as iterations progress.

The final estimation of the LRDA is given by:

B2 = {x : V2(x) < 1, x2
1 + x2

2 < 5.52}

with V2(x) = 0.003054x4
1 − 0.00132x3

1x2 − 0.02021x3
1 + 0.01636x2

1x
2
2 −

0.001495x2
1x2 + 0.004x2

1 + 0.00075x1x
3
2 + 0.03096x1x

2
2 + 0.02511x1x2 +

0.32495x1 − 0.00034x4
2 + 0.0025x3

2 + 0.02942x2
2 + 0.030556x2.
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C1: Starting modelling region close to largest circle with a single equilib-
rium (Eq) point inside (same as Fig. 4.13);

C2: largest circle in DA proved with classical Lyapunov techniques over C1

(same as Fig. 4.13);

C4: Circular modeling region for Re = 10;

Initial B1: Lyapunov level set proving C2 (same as Fig. 4.13);

Final B2: DA estimate in last iteration.

Figure 4.14: DA evolution using 4th order polynomial curves for increasingly
larger modelling region radius.

b) Circle of radius Re = 10: Note that, as iterations progress in the above
case (a), the obtained sets approach the boundary of the modelling region C3

(actually, they cross it). Hence, that suggest that larger regions might be ob-
tained if the modelling region is expanded. This second case considers expand-
ing a little the modelling region in each iteration until a final target Re = 10 is
reached (or the algorithm stops improving).

Figure 4.14 shows the final DA estimation. The new LRDA found (“Final
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B2” on the picture) is

B2 = {x : V2(x) < 1, x2
1 + x2

2 < 102}

being V2(x) = 0.00864x4
1 − 0.00214x3

1x2 − 0.0454x3
1 + 0.01313x2

1x
2
2 +

0.00427x2
1x2 − 0.0042x2

1 + 0.003525x1x
3
2 + 0.0388x1x

2
2 + 0.0394x1x2 +

0.4642x1 + 0.0006x4
2 + 0.00454x3

2 + 0.01627x2
2 − 0.05847x2.

4.5 Conclusions

In this chapter some local stability problems in nonlinear systems have been
addressed within a polynomial framework. The objective was estimating as
better as possible the real domain of attraction of a nonlinear system and ex-
pressing it in closed form by polynomial boundaries. Procedures have been
presented for both continuous-time and discrete-time cases. Several improve-
ments over existent literature have been proposed:

1. Expressing the membership functions as a polytopic expression in order
to take into account its local information in a reduced region of study.

2. Trying to avoid ill-shaped solutions by means of forcing to obtain the
largest prefixed-shape region which is proved to belong to the DA.

3. Expanding the actually proven DA by allowing the Lyapunov level set
to not be contained in the modelling region.

4. Remove the classical Lyapunov stability constraints using an iterative
methodology for expansion based on invariant-set considerations: start-
ing from a “seed” region, the DA estimate is enlarged iteratively.

It has been checked that the largest scale factor of a prefixed-shape region,
proven to belong to the DA, is a non-monotonic function with the modelling
region size. Therefore, an iterative exploration is required to find the optimum.

The iterative methodology for expansion of the DA (Section 4.3) always
improves the starting “seed” subset of the DA, or at least finds the same set.
Nevertheless, the procedure may fail after several iterations (i.e. return infeasi-
ble solutions due to numerical problems) when there won’t be enough freedom
to find an improving solution. This fact will occur for instance when the pre-
viously proven subset of the DA is pretty close to other equilibrium points or
limit cycles, because there might not be enough space for a low-degree polyno-
mial boundary to fit the actual shape of the DA. In addition, the Taylor-series
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developments up to a prefixed degree are very close to the actual nonlinear sys-
tem around the equilibrium point, but the polynomial vertex models separate
abruptly far from the origin, thus increasing the size of the fuzzy sector and its
associated conservativeness.

In those cases, the procedure can progress further by increasing the degree
of the decision-variable polynomials (boundaries and/or Positivstellesatz mul-
tipliers) and/or taking higher-degree terms in the Taylor-series developments
in the modelling phase, at the prize of increasing computational effort, or per-
haps, increasing/reducing the size of the modelling region Ω in order to give
more freedom (if the last successful estimate is too much close to Ω) /reducing
conservativeness associated to the fuzzy modelling.



Chapter 5

Inescapable-set Estimation with
Nonvanishing Disturbances

You step onto the road, and if you don’t
keep your feet, there’s no knowing where

you might be swept off to.

John Ronald Reuel Tolkien,
The Lord of the Rings

ABSTRACT: Fuzzy TS and polynomial models are local and, obvi-
ously, a larger modelling region yields lower performance bounds. In
systems subject to disturbances, determining the optimal size of the
modelling region is needed in order to avoid small ones (state escapes
from them) or overly large ones (suboptimal performance). This chapter
addresses such problem and, furthermore, suggest a multicriteria fuzzy
control-design strategy in order to ensure disturbance-rejection perfor-
mance without leaving a particular modelling region. The presented re-
sults allow extending the concept of Lyapunov level sets used in stability
analysis to the case where disturbances are present.

The above chapter has addressed the stability analysis problem of obtain-
ing well-shaped domain of attraction estimates for nonlinear systems. Never-
theless, the case of stability analysis in presence of disturbances is still dis-
regarded. Normally disturbance rejection is addressed by H∞/H2 optimum
control designs, which are wide-applied with fuzzy TS systems. However,

107



108 CHAPTER 5. Inescapable-set Estimation with Nonvanishing Disturbances

those optimum designs do not ensure stability of the original nonlinear system
for any particular disturbance (if a disturbance pushes the system out of the
modelling region, system’s behavior is unknown) or if initial conditions are
not zero.

The preliminary work Salcedo, Martínez and García-Nieto (2008) analyzes
those above presented problems of optimum disturbance-rejection designs for
TS systems and the PDC control law case, concluding that those methods can-
not be used in applications with bounded persistent disturbances. Indeed, esti-
mating stable regions under disturbances is still an open problem. In addition,
it also proposes an L1 control-design method that assumes an a priori bound
on the disturbance level, which allows the output L1 norm to be minimized.

This chapter presents a generalization of such preliminary work to the
fuzzy polynomial framework and analyzes the system’s behavior with nonvan-
ishing disturbances (“bounded power” during a certain integral time), comput-
ing an estimate of the smallest inescapable set. The polynomial control syn-
thesis problem is modified by taking into account the validity of the obtained
results in disturbance-rejection control designs. The developments presented
in this chapter were preliminary results available at the time this thesis was
defended, published in the conference paper Pitarch, Sala, Bedate and Ariño
(2013). Nevertheless, they have been further extended afterward in the jour-
nal paper Pitarch, Sala and Ariño (2015) for pure stability analysis, and more
deeply studied in a general disturbance-invariant control framework in Sala
and Pitarch (2016).

The structure of this chapter is as follows: preliminaries and main objec-
tives are stated on next section, a precise disturbance analysis, defining the ini-
tial, transitory and final regions for non-vanishing disturbances, is presented on
Section 5.2 jointly with the main results provided for the studied disturbance
properties, Section 5.3 addresses the control design, an academic example is
provided on Section 5.4 and finally Section 5.5 concludes the chapter.

5.1 Problem statement

Consider the nonlinear continuous-time system:

ẋ = A(x)x+B(x)u+ Ew

y = C(x) +Du (5.1)

where x ∈ Rn is the state vector, u ∈ Rb is the control input, w ∈ Rc is a dis-
turbance vector and A(x), B(x), C(x) are matrices of appropriate dimension
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containing nonlinear terms.
If there exist a known control action u, system (5.1) reduces to:

ẋ = f(x) + Ew

y = c(x) (5.2)

where f(x) and c(x) are, in general case, vectors of nonlinear functions of the
state.

Consider a modelling region Ω defined by gi(x) polynomial boundaries as
follows:

Ω = {x : g1(x) > 0, . . . , gk(x) > 0} (5.3)

Then, by using the polynomial sector nonlinearity approach (Section 3.1.1),
a fuzzy-polynomial model for (5.1) can be obtained in the form

ẋ =

r∑
i=1

µi(x) (Ai(x)z(x) +Bi(x)u) + Ew

y =

r∑
i=1

µi(x)Ci(x) +Du (5.4)

where x ∈ Rn is the state vector, y ∈ Rm is the output, u ∈ Rb is the control
action, w ∈ Rc is the disturbance input, z(x) ∈ Rlx is a vector of polynomials
of x, (Ai(x), Bi(x)) ∈ Rnx and Ci(x) ∈ Rmx are polynomial vertex models,
µi(x) are their corresponding nonlinear membership functions and r is the
number of fuzzy rules.

In a similar way, if there exist a known control input u, system (5.2) can
be equivalently expressed in Ω as the fuzzy-polynomial model in the form:

ẋ =

r∑
i=1

µi(x)pi(x) + Ew

y =

r∑
i=1

µi(x)ci(x) (5.5)

The objectives of this chapter are:

1. Generalizing the existent preliminary work to the fuzzy polynomial frame-
work and including a more general class of disturbances (“bounded power”
during a certain integral time).
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2. Analyzing system’s behavior with non-vanishing disturbances acting and
computing an estimate of the inescapable set given particular distur-
bance features.

3. Proposing a control design methodology which, starting inside a certain
initial set, ensures that the transient trajectories do not exceed the fuzzy-
modelling region.

5.2 Invariant sets under nonvanishing disturbances

Now, a stability analysis is presented for a class of non-vanishing disturbances
whose main feature is to give a limited power during a certain time period.

Theorem 5.1. Assume, for the system (5.2), that the disturbance fulfills∫ t+T

t
w(t)Tw(t) ≤ β ∀t ≥ 0 (5.6)

for a known time-horizon T , and that there exist a nonnegative function V (x)
fulfilling:

V̇ (t) + αV (t)− w(t)Tw(t) ≤ 0 (5.7)

Then,

lim
t→∞

V (t) ≤ β

1− e−αT
(5.8)

and, during the transient from an initial condition V (0), V can be bounded
as:

V (t) ≤ max(V (0) + β,
β

1− e−αT
) ∀t ≥ 0 (5.9)

Proof. Consider the linear first-order differential equation

V̇ (t) + αV (t)− w(t)Tw(t) = −g(t)

where some g(t) ≥ 0 exists by (5.7). Its solution, with initial condition V (0)
is:

V (t) = e−αtV (0) +

∫ t

0
(w(τ)Tw(τ)− g(τ))e−α(t−τ) dτ
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As g is nonnegative, this can be rewritten, considering the largest N such that
NT ≤ t as:

V (t) ≤ e−αtV (0) +

∫ T

0
w(τ)Tw(τ)e−α(t−τ) dτ+∫ 2T

T
w(τ)Tw(τ)e−α(t−τ) dτ + · · ·+

∫ t

NT
w(τ)Tw(τ)e−α(t−τ) dτ (5.10)

so that, after some straightforward manipulations, we have the bound (5.10)
explained better:

V (t) ≤ e−αtV (0) + (1 + e−αT + · · ·+ e−αNT )β (5.11)

And, as t ≥ NT

V (t) ≤ e−αNTV (0) + (1 + e−αT + · · ·+ e−αNT )β (5.12)

Note that the right-hand side bound, call it ψ, as N progresses is the output of
the first-order equation:

ψN+1 = e−αTψN + β

Hence it is monotonic. If the initial value ψ0 is larger than the steady-state
one β

1−e−αT , then the bound will be ψ0 = V (0) + β; otherwise it will be

ψ = β
1−e−αT .

Note that, from the proof, the switching point will be

V (0) + β =
β

1− e−αT

which yields to:

V (0) =
β

1− e−αT
− β =

e−αTβ

1− e−αT

Particular cases:

• Norm-bounded disturbances: if ‖w‖2 ≤ β, the above theorem, letting
T →∞, results in

V (t) ≤ V (0) + β
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• Peak-bounded disturbances: if wTw ≤ γ, the above theorem, letting
β = γT and T → 0, results in

V (t) ≤ max(V (0),
γ

α
) lim

t→∞
V (t) ≤ γ

α

Given an initial set Θi = {V ≤ V (0)}, the above result defines two im-
portant types of sets (see Figure 5.1):

• a “transient inescapable set” Θt from (5.9) in which the state is guaran-
teed to never leave

• a “stationary inescapable set” Θf from (5.8), Θf ⊂ Θt, where the states
will ultimately lie (and not escape).

Some optimization problems in such sets can be stated, see next section.
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Figure 5.1: “Initial”, “final” and “transitory” regions.

5.2.1 Application to local fuzzy models

A TS or fuzzy-polynomial model computed using sector-nonlinearity approach,
is only valid locally in a modelling region Ω. Therefore, the above sets Θi, Θt

should not leave Ω. Hence, Theorem 5.1 may be stated, for local models, as
follows.
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Theorem 5.2. Given an initial set Θi, if there exist a Lyapunov function V (x)
fulfilling

Θi ⊂ {x : V (x) ≤ V0} (5.13)

{x : V (x) ≤ V0 + β} ⊂ Ω (5.14)

{x : V (x) ≤ β

1− e−αT
} ⊂ Ω (5.15)

V̇ (x) + αV (x)− wTw ≤ 0 ∀x ∈ Ω (5.16)

then the system does not leave Ω if initial conditions are in Θi and, ultimately,
reaches the level set Θf = {x : V ≤ β

1−e−αT }.

Proof. Condition (5.16) makes the final reachable set to be Θf = {x : V ≤
β

1−e−αT } by Theorem 5.1. Condition (5.13) ensures that the Lyapunov level set
V0 includes the region of initial conditions Θi. Condition (5.14) ensures the
region {x : V (x) ≤ V0 + β} to be inside the modelling region and condition
(5.15) ensures the region {x : V ≤ β

1−e−αT } to be also inside the modelling
region. Then, conditions (5.14) and (5.15) together mean (5.9). Moreover,
transient region Θt is always inside Ω, where the fuzzy model is valid to rep-
resent (5.1).

Remark 5.1. Note that, for global models, conditions (5.14)–(5.15) regarding
Ω should be dismissed and condition (5.16) must hold for all x ∈ Rn. Also, for
systems initially in equilibrium, condition (5.13) should be disregarded too.

Remark 5.2. If Θi = 0, the region of interest is given by an output equation
xTCTCx ≤ γ2 and the disturbance is bounded by wTw ≤ β, the inescapable-
ellipsoid results in Salcedo, Martínez and García-Nieto (2008) are obtained.

The above conditions are nonlinear in α. However, the set-inclusion condi-
tions and the Lyapunov decrease can, in some interesting cases, be cast as con-
vex programming conditions. Hence, fixing α, such problems can be solved
via convex programming; the optimal solution in some sense would, however,
require some bisection or exploration strategies over α between convex pro-
gramming iterations (see details in Seiler and Balas (2010)).

Let us state some interesting problems to which Theorem 5.2 applies. Con-
sider the fuzzy polynomial model (5.5), initial conditions x(0) = 0 and a mod-
elling region Ω defined by polynomial boundaries, in a similar way to (4.18).

Corollary 5.1 (Bounding reachable set from origin). If there exists a polyno-
mial V (x) fulfilling

V (x)− ε(x) ∈ Σx (5.17)



114 CHAPTER 5. Inescapable-set Estimation with Nonvanishing Disturbances

V (x)− β

1− e−αT
+ si(x)gi(x) ∈ Σx i : 1, . . . , k (5.18)

−dV (x)

dx
(pj(x) + Ew)−αV (x) +wTw−

k∑
i=1

sji(x)gi(x) ∈ Σx j : 1, . . . , r

(5.19)
where ε(x) is a radially-unbounded positive polynomial and (si(x), sji(x)) ∈
Σx are Positivstellensatz multipliers, then system (5.2) does not leave Ω if
initial conditions are in Θi = {x : V ≤ e−αT β

1−e−αT }, and it does not leave

either Θf = {x : V ≤ β
1−e−αT }.

Proof. Conditions (5.19) mean (5.16) and, jointly with (5.17), make V (x) be a
Lyapunov function of system (5.2) locally in Ω by Theorem 5.2 and Theorem
A.1. Conditions (5.18) mean (5.15). If initial conditions Θi ⊂ {x : V ≤
e−αT β

1−e−αT }, then V0 ≤ β
1−e−αT − β and condition (5.15) will be always more

restrictive than (5.14) in Theorem 5.2. Therefore, conditions (5.13) and (5.14)
can be disregarded here.

This allows solving:

• Maximum disturbance level β tolerated in a given set Ω starting from
the origin (actually, a small set around the origin whose size depends on
β).

• Minimum reachable set Θf for a given disturbance level: starting from
the linearized model on the origin, an iterative methodology of comput-
ing Θ

[k]
f and remodelling for Ω[k+1] = Θ

[k]
f could be enforced until reach

Θ
[k]
f ⊂ Ω[k] or infeasibility.

Particularization: TS quadratic case. Considering V = xTPx, a TS fuzzy
model (i.e., pi(x) = Aix) and Ω a sphere of radius

√
ρΩ, the above corollary

reduces to the following LMI problem:

P > ε1I (5.20)

P > (
β

1− e−αT
)ρ−1

Ω I (5.21)(
PAi +ATi P + αP PE

ETP −I

)
+ ε2iI < 0 i : 1, . . . , r (5.22)
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Where ε1 > 0 and ε2i > 0 are user defined tolerances to ensure strict positivity
(or negativity) of matrices.

Note that maximising β for a fixed α is a convex problem, as well as min-
imising ρΩ.

Consider now a given set of initial conditions defined also by a set of poly-
nomial boundaries:

Θi = {x : h1(x) > 0, . . . , hm(x) > 0} (5.23)

If initial conditions Θi 6⊂ {x : V ≤ e−αT β
1−e−αT }, computed from Corollary

5.1, the following result is a direct application of Theorem 5.2 to the fuzzy
polynomial case.

Corollary 5.2 (Bounding the inescapable set from prescribed initial-condition
set Θi). If there exists a polynomial V (x) fulfilling

V (x)− ε(x) ∈ Σx (5.24)

V0 − V (x)−
m∑
i=1

s1i(x)hi(x) ∈ Σx (5.25)

V (x)− V0 + β + s2i(x)gi(x) ∈ Σx i : 1, . . . , k (5.26)

V (x)− β

1− e−αT
+ s3i(x)gi(x) ∈ Σx i : 1, . . . , k (5.27)

−dV (x)

dx
(pj(x) + Ew)−αV (x)+wTw−

k∑
i=1

s4ji(x)gi(x) ∈ Σx j : 1, . . . , r

(5.28)
where ε(x) is a radially-unbounded positive polynomial and (s1i(x), s2i(x),
s3i(x), s4ji(x)) ∈ Σx are Positivstellensatz multipliers, then system (5.2) does
not leave Ω and the state will remain inside Θf = {x : V ≤ β

1−e−αT } after
enough time.

Proof. Conditions (5.24) and (5.28) make V (x) be a Lyapunov function for
system (5.2) locally in Ω by Theorem A.1, as in Corollary 5.1. Then conditions
(5.25), (5.26) and (5.27) mean (5.13), (5.14) and (5.15) respectively.

Problems that can be solved:

• Maximize β for fixed Ω and Θi. Maximum allowed disturbance power
to hold trajectories inside the modelling region.
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• Maximize size of Θi for a fixed β. Largest set of initial conditions en-
suring that a particular region is not abandoned.

• Minimize the size of Ω for fixed β and Θi. Minimum modelling re-
gion ensuring the fuzzy model to be valid, starting from a set of initial
conditions, with a particular disturbance acting.

Remark 5.3. First problem requires only exploration in α, however second
and third problems are totally nonconvex and need exploration in α and Θi, Ω
respectively.

Particularization: TS quadratic case. Denoting V ′(x) = V (x)/V0 =
xTPx, considering a TS model and Ω, Θi spheres of radius

√
ρΩ and

√
ρ0

respectively, we have the following GEVP (γ = V −1
0 ):

P > ε1I (5.29)

P < ρ−1
0 I (5.30)

P > (1 + γβ)ρ−1
Ω I (5.31)

P > (
γβ

1− e−αT
)ρ−1

Ω I (5.32)(
PAi +ATi P + αP PE

ETP −γI

)
+ ε2iI < 0 i : 1, . . . , r (5.33)

Where ε1 > 0 and ε2i > 0 are user defined tolerances to ensure strict positivity
(or negativity) of matrices.

In the quadratic case, problems of;

• maximize β for fixed ρ0 and ρΩ,

• maximize the radius ρ0 for fixed β and ρΩ,

can be solved only by exploring in α. The problem of minimize ρΩ for fixed β
and ρ0 is still not an LMI problem.
Remark 5.4. As the objective of the chapter is discussing the inescapable-
set problem in the polynomial framework, detailed comparative analysis with
other proposals in TS LMI literature is omitted. Related TS results can be
consulted in the already cited work Salcedo, Martínez and García-Nieto (2008)
as well as in Li, Xu and Li (2013), stemming from the basic LMI analysis for
linear cases in Boyd, Ghaoui, Feron and Balakrishnan (1994). Furthermore,
some of these works discuss stabilization. A proposal for L1 controller design
in the polynomial case, derived from the above results in stability analysis, is
discussed in next section.
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5.3 Inescapable-set issues in stabilization

This section makes use of the invariant-set analysis under nonvanishing dis-
turbances previously carried out in the above section. The objective now is
designing a controller which fulfills some performance or stability condition
while a bounded-power disturbance is acting.

Define a candidate Lyapunov function as

V (x) = z(x)TP (x̃)z(x) (5.34)

where P−1(x̃) ∈ Rl×lx̃ and x̃ ∈ Rb are the state variables which corresponding
row in B(x) is equal to 0, i.e., do not depend on the control input (Prajna,
Papachristodoulou and Wu, 2004b).

Consider now the fuzzy-polynomial model (5.4) modelled in (5.3), with a
PDC state-feedback control law

u = −
r∑
i=1

µi(x)Ki(x)z(x) (5.35)

where Ki(x) = Mi(x)P (x̃) ∈ Rb×lx are the controller-gain matrices to be
designed. If initial conditions x(0) = 0 and the modelling region (5.3) can be
expressed in the form

Ω = {x : σ1 − z(x)TN1(x)TN1(x)z(x) > 0, . . . ,

σk − z(x)TNk(x)TNk(x)z(x) > 0 (5.36)

then, by performing the standard technique of change of variables v = Pz,X =
P−1 (Bernussou, Peres and Geromel, 1989), a closed-loop reachable set com-
putation can be carried out.

Corollary 5.3 (Closed-loop inescapable set). If matrices X(x̃), Mi(x) can
be found, with α fixed, fulfilling:

vT (X(x̃)− εI) v ∈ Σx,v (5.37)

φT

(
X(x̃) + si(x)gi(x)I X(x̃)Ni(x)T

Ni(x)X(x̃) σi(1−e−αT )
β I

)
φ ∈ Σx,φi : 1, . . . , k (5.38)
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− 2vTR(x) (Ai(x)X(x̃)−Bi(x)Mi(x)) v − 2vTR(x)Ew

+ vT
∂X(x̃)

∂x
(Ai(x)z(x) + Ew + αX(x̃))v + wTw

−
k∑
c=1

sic(x, v)gc(x) ∈ Σx,v i : 1, . . . , r (5.39)

− vTR(x) (Ai(x)X(x̃)−Bi(x)Mj(x) +Aj(x)X(x̃)−Bj(x)Mi(x)) v

− 2vTR(x)Ew + vT
∂X(x̃)

∂x
(Ai(x)z(x) + Ew + αX(x̃)) v

+ wTw −
k∑
c=1

sijc(x, v)gc(x) ∈ Σx,v
i : 1, . . . , r
r ≥ j > i

(5.40)

where ε > 0 acts as a tolerance, R(x) = ∂z(x)
∂x ∈ Rm×nx and si(x) ∈ Σx,

(sic(x, v), sijc(x, v)) ∈ Σx,v are Positivstellensatz multipliers, then controller
(5.35) makes system (5.1) to not leave Ω if initial conditions are in {x : V ≤
e−αT β

1−e−αT } and, furthermore, it does not leave {x : V ≤ β
1−e−αT }. Controller

gains can be obtained by Kj(x) = Mj(x)X(x̃)−1.

Proof. If initial conditions Θi ⊂ {x : V ≤ e−αT β
1−e−αT }, then conditions (5.13)

and (5.14) can be disregarded as in Corollary 5.1. Conditions (5.39) and (5.40)
mean (5.16) after carrying out some operations with the change of variable
v = Pz,X = P−1 and the evident fact of

P (x̃)X(x̃) = I,

dP (x̃)

dt
X(x̃) + P (x̃)

dX(x̃)

dt
= 0.

So, jointly with (5.37), they make V (x) to be a Lyapunov function for system
(5.1), with controller (5.35), locally in Ω by Theorem 5.2 and Theorem A.1.
The use of X(x̃) instead of X(x) allows conditions (5.39)-(5.40) to be convex
due to the fact that term vT ∂X(x̃)

∂x (Bi(x)Kj(x)z)v = 0 in V̇ (x). Condition
(5.15) fulfilled locally in Ω is, for each i:

zTP (x̃)z − β

1− e−αT
+ si(x)∗gi(x) ∈ Σx (5.41)



5.3. Inescapable-set issues in stabilization 119

with gi = σi − zTNT
i (x)Ni(x)z. Then, if Ω can be expressed as (5.36), then

the Positivstellensatz multiplier can be selected as:

si(x)∗ = s∗∗i (x) +
β

σi(1− e−αT )
∈ Σx

Also, without loss of generality, we can express the multiplier as:

s∗∗i (x) = zTP (x̃)si(x)P (x̃)z

Then, substituting all in (5.41), we have

zT (P (x̃) + P (x̃)si(x)gi(x)IP (x̃)−Ni(x)T
β

σi(1− e−αT )
INi(x))z ∈ Σx

(5.42)
which, doing the change of variable v = Pz and using Schur complement,
leads to (5.38).

Remark 5.5. Note that conditions (5.40) may be relaxed via dimensionality
expansion or via artificial decision variables by using Polya’s theorem (Sala
and Ariño, 2007b), at the prize of increasing computational effort. Note also
that Corollary 5.3 does not necessarily involve more complex constraints than
the ones proposed in literature (Ichihara, 2008; Tanaka, Ohtake and Wang,
2009b), from a computational point of view. Nevertheless, the problem may
become intractable due to the inclusion of w, v independent variables, ma-
trix size growing by Schur complement, the chosen degree of Positivstellesatz
multipliers and, of course, system’s order and chosen degree of the Lyapunov
function (term vT ∂X(x̃)

∂x (Ai(x)z(x) + Ew + αX(x̃))v on conditions (5.39)-
(5.40)).

Discussion

Once the conditions for inescapability have been set up on controller-design
basic framework, the issue is to decide which objective to choose in order to
optimize. Holding the problem to be convex (with α fixed a priori), we may
either:

• Minimize the modelling region in order to compute the smallest final
inescapable set Θf (exploration in Ω required).

• Maximize the disturbance power β which is proved to hold system tra-
jectories inside the modelling region (Θt = Θf ⊂ Ω).
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Or in a multicriteria setting, jointly with the following common objectives;

• optimizing the L2 → L2 induced norm,

• optimizing an integral quadratic measure of the disturbance-free tran-
sient (guaranteed-cost control),

we may optimize a weight on the three criteria or set bounds in one or two of
them.

In summary, the above suggests simultaneously setting up conditions (5.37)-
(5.40) jointly with:

V̇ + ζT1 ζ1 − γ1w
Tw ≤ 0 (5.43)

V̇ + γ2ζ
T
2 ζ2 ≤ 0 (5.44)

where ρΩ is a size parameter of a set of variables whose maximum deviation
must be bounded, γ1 and ζ1 are disturbance-rejection H∞ performance and
variables, respectively, and γ2 and ζ2 are guaranteed-costH2 performance and
variables, respectively.

Note. Limitations in control action can also be included. For instance the ones
proposed in Tanaka and Wang (2001), i.e., on the region {V ≤ β

1−e−αT } →
‖u‖ ≤ η2.

From engineering insight, different performance compromises might be
wished using a multi-model approach (setting different fuzzy models for dif-
ferent state space regions):

• Far from the origin, it is suggested to optimize guaranteed-cost perfor-
mance, possibly subject to a constraint stating that the final inescapable
set Θf should be reasonably smaller than Ω (for instance in order to
facilitate the switch to other controller with better performance).

• Close to the origin: disregard transient guaranteed-cost performance and
consider H∞ performance and size of inescapable sets (an approxima-
tion to L1 control) to concentrate on disturbance rejection.

5.4 Example

On the following, an academic example is presented in order to remark the
importance of the problem addressed in Section 5.3.
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Example 5.4.1. Consider the following first-order nonlinear system:

ẋ = −4.7x− sin(x) + 0.7u+ 1.6w

y =

(
1
0

)
x+

(
0
2

)
u (5.45)

where x, u and w are as defined in (5.1).
Following the polynomial fuzzy-modelling methodology in Section 3.1.1,

a two-rules polynomial-fuzzy model (5.4) of sin(x) can be computed:

ẋ =
2∑
i=1

µi(x)Ai(x)x+ 0.7u+ 1.6w

y =

(
1
0

)
x+

(
0
2

)
u (5.46)

For instance, we are interested in getting a fuzzy model of (5.45) valid between
the range Ω = −4 ≤ x ≤ 4, which gives the following two polynomial vertex
models with their corresponding membership functions:

A1(x) = −5.7 + 0.16667x2;

A2(x) = −5.7 + 0.074325x2;

µ1 = sin(x)−x+0.074325x3

−0.0923417x3
; µ2 = 1− µ1

Once this model is available, disturbance-rejection controllers can be de-
signed. For instance, a classical H∞ non-fuzzy polynomial optimal controller

u = −K(x)x (5.47)

can be designed fulfilling

V̇ + yT y − γwTw < 0 (5.48)

which, using a quadratic Lyapunov function, is the direct extension of Scherer
and Weiland (2004) to polynomial framework. This can be done by solving
the following SOS problem:

minimize γ subject to

X > 0, γ > 0 (5.49)



122 CHAPTER 5. Inescapable-set Estimation with Nonvanishing Disturbances

vT


ψi(x) X 2M(x) 1.6
X 1 0 0

2M(x) 0 1 0
1.6 0 0 γ

 v ∈ Σx,v i : 1, 2 (5.50)

where
ψi(x) = −2(Ai(x)X − 0.7M(x))− τi(x)(42 − x2),

τi(x) ∈ Σx are Positivestellesatz multipliers in order to make (5.48) hold only
locally in Ω and the polynomial controller gain1 can be obtained by K(x) =
M(x)X−1.

By setting up a maximum degree of two for K(x), the solution found is:

γ = 0.524, K(x) = 0.0186242 + 0.0024x2 (5.51)

Disturbance analysis
Usually, the controller design ends here in the major part of literature re-

sults, without taking care about the validity of the found solution in front of a
particular disturbance. Let us study for instance, what happens if the process
(5.45) under control (5.51) is at x = 0 and a disturbance w with the following
features appears

β = 21, T = 0.75

where β is the maximum disturbance power available to be spent each T sec-
onds. Then, the closed-loop system can be analyzed by using (5.46) and Corol-
lary 5.1. Effectively, starting from the linearized model computed on the origin

ẋ = −5.713x+ 1.6w (5.52)

Corollary 5.1 gives the minimal inescapable region Θ
[0]
f , where the above con-

sidered disturbance may push the linearized system (5.52). Thus, by exploring
between 0.01 ≤ α ≤ 4.5, the obtained region has a radius of 2.68 (maximum
radius of the Lyapunov level set).

Once this range is known, computation is repeated using the fuzzy system
(5.46) modelled in Ω[1] = Θ

[0]
f , obtaining a new and probably larger range

(indeed, the TS model in the larger zone, obtains an inescapable region of
radius 3.15); iterations on this procedure give rise to progressive larger in-
escapable regions. The procedure continues up to get convergence in the found
Θ

[k+1]
f ⊂ Ω[k] or stops if any iteration gives an infeasible solution.

1Note that (5.50) is required to be SOS on independent variables v, which are product of the
usual change of variable required in order to present the problem in LMI form.
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Figure 5.2: Evolution of the proved inescapable region with modelling region
for system (5.45).

The evolution of the analysis procedure is shown on Figure 5.2. In this
case, in the worst case of the proposed disturbance, all the trajectories of sys-
tem (5.45) are not guaranteed to remain inside the fuzzy modelling region, so,
as outside Ω the fuzzy-polynomial model is not valid, stability (understood as
bounded output) of (5.45) under this disturbance is not guaranteed using con-
troller (5.51).

Multicriteria design
If stability has to be ensured for a disturbance with the known bound β =

21 (and associated T = 0.75), the H∞ controller design must include shape
constraints in order to keep the inescapable region inside the TS modelling
region. This can be done by solving the SOS problem proposed in Corollary
5.3 jointly with constraints (5.49) and (5.50).

Then, minimizing γ by carrying out an exploration in the decay rate α, the
obtained solution is

γ = 4.2679, K(x) = 65.9675− 0.4481x2 (5.53)

with an optimal target decay α = 22 (with α = 1→ γ = 4.3294 and with α =
200 → γ = 4.5018). As it is expected, the new controller is more powerful
in order to counteract the disturbance, however the minimum H∞ achieved
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bound γ is bigger. The advantage in this case is that stability is guaranteed in
front of that expectable disturbance.

5.5 Conclusions

In this chapter, the BIBO stability problem of nonlinear systems under period-
bounded nonvanishing disturbances has been addressed. Existent inescapable-
set estimation approaches for TS systems have been extended to the fuzzy
polynomial framework.

A general methodology of analysis is presented in order to check whether
a closed-loop system (designed with classical approaches) ensures that trajec-
tories do not escape the fuzzy modelling region (guaranteed stability) when
confronting a disturbance with known characteristics.

In addition, fuzzy-polynomial design constraints are developed in order to
enable a multicriteria controller design by combining them with other classical
requirements. However, the assumptions of initial conditions being zero and
the special structure required for the modelling region make the problem more
restrictive, therefore loosing generality.

Future work will be pointed in addressing the more general controller-
design problem when initial conditions are not zero and also in introducing a
switching-controller methodology for each of the found inescapable/reachable
sets.



Chapter 6

Local Fuzzy Polynomial
Observers

If there was an observer on Mars, they
would probably be amazed that we have

survived this long.

Noam Chomsky

ABSTRACT: This chapter proposes a fuzzy-polynomial observer syn-
thesis for nonlinear systems based on SOS techniques. With the de-
signed observers, the estimation error is proven to converge asymptoti-
cally to zero, fulfilling some decay-rate performance. Dealing with the
presence of external disturbances and measurement noise is also intro-
duced on the design phase. Design conditions are relaxed by introducing
the information of some operating regions of the state space and estima-
tion error.

Many problems in decision making, monitoring, fault detection, and con-
trol require the knowledge of state variables and time-varying parameters that
are not directly measured by sensors. In such situations, observers (or esti-
mators) can be employed, using the measured input and output signals along
with a dynamic model of the system, in order to estimate the unknown states
or parameters. An essential requirement in designing an observer is guaran-
teeing the convergence of the estimates to the true values, or at least to a small
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neighborhood around them. However, for nonlinear or time-varying systems
the design and tuning of an observer is generally complicated.

Polynomial fuzzy-modelling methodologies for nonlinear systems which
were discussed previously on Chapter 3.3, in particular the Taylor series ap-
proach (Section 3.1.1), allow to design polynomial observer laws in order to
estimate the unmeasurable process states or parameters.

The available sum-of-squares tools and software allow doing observer de-
sign for polynomial systems by means of convex optimization. However, ob-
servers for polynomial systems are not very developed yet and existent ap-
proaches which deal with disturbance rejection, are still in preliminary phases.
See details on them in Section 3.3.2.

In this chapter, the main objective is extending the existent observer-design
methodology done for polynomial systems to a more general class of nonlinear
ones, by employing fuzzy polynomial models and also using fuzzy-observer
gains. Furthermore, this chapter presents a more complete disturbance-rejection
analysis by considering a more general class of process disturbance (and mea-
surement noise) than the existent in previous polynomial-observer literature.

Developments are presented for both continuous-time and discrete-time
design cases, either with domain of attraction guarantee or robustness versus
performance multicriteria objective. In addition, some additional constraints
are introduced on the design phase in order to avoid undesirable behaviors
in practice, i.e., remove fast or oscillating dynamics from the set of feasible
solutions, because it can excite some unmodelled dynamics, leading to unpre-
dictable responses on the physical process.

This chapter is organized as follows: next section discusses the actual liter-
ature results related to observer design for nonlinear systems using fuzzy mod-
elling techniques, Section 6.2 addresses a polynomial observer design which
ensures some domains of attraction under vanishing disturbances, the observer
design under bounded nonvanishing disturbances is presented and discussed on
Section 6.3, an academic example is included on Section 6.4 in order to show
the effectiveness of the proposed results and, finally, Section 6.5 summarizes
the conclusions of this work.

6.1 Preliminaries

Nowadays research in observer design using fuzzy methodologies and Lya-
punov theory is very focused on nonlinear systems for which a systematic
modelling methodology (sector nonlinearity) can be used. The more extended
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proposals in literature are based on Takagi-Sugeno models, which are a time-
varying convex combination of linear models (Tanaka and Wang, 2001, Chap.
4),(Howell and Hedrick, 2002; Koenig, 2006; Guerra, Kerkeni, Lauber and
Vermeiren, 2012). As it was pointed previously on Chapter 2, the resulting
fuzzy observer laws have linear consequents and the computed observer gains
are constant matrices.

Chapter 3.3 in this thesis presented the existent literature results on ob-
server design for polynomial systems, which has been addressed recently since
sum-of-squares tools and software are available. In this case, the observer
gains are allowed to be polynomial in both estimated state and measurements
(Ichihara, 2009a). The treatment of process disturbances has also been ad-
dressed within the observer design phases in a preliminary way, assuming that
disturbances fulfill some kind of bounds.

More recently, the idea has been extended to a more general class of non-
linear systems using fuzzy polynomial models, allowing to design both ob-
server and controller simultaneously under some restrictive assumptions, in
which the separation principle holds (Tanaka, Ohtake, Seo, Tanaka and Wang,
2012).

6.1.1 Problem statement

Following Lyapunov methodologies, the above-mentioned proposals in liter-
ature are able to design fuzzy polynomial observers for nonlinear systems.
However those proposals have some drawbacks or limitations which are high-
lighted on the following.

The work of Ichihara (2009a) proposes a “local” fuzzy-polynomial ob-
server design methodology for continuous-time systems which combine dis-
turbance rejection and invariant-set guarantees. This is done by relaxing Lya-
punov stability conditions, introducing information of regions in the state space
and in the estimation error by means of Positivstellensatz (Theorem A.1). The
main inconveniences are:

• The considered disturbances are vanishing. They must be bounded by

an integral bound
√∫∞

0 wTw dt = ‖w‖2L2 ≤ β. This is a restrictive
assumption because the major part of disturbances are non-vanishing in
real world.

• The methodology is only addressed in a continuous-time case so possi-
ble measurement noise, usually present in a discrete-time implementa-
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tion, is not taken into account, i.e., there is no sensor dynamics with as-
sociated process-disturbance consideration (Dufour and Bertrand, 1994;
Walter and Pronzato, 1997).

• The approach is only valid for polynomial systems, a particular class of
nonlinear ones.

• There is no decay-rate guarantee. Moreover, the presented SOS in-
equalities are not proven to be strictly positive (zero is sum of squares).
Therefore, when disturbances are not acting the error is not ensured to
decrease until zero but only to remain in its proven invariant set.

The work in Tanaka, Ohtake, Seo, Tanaka and Wang (2012) extends the
classical continuous-time fuzzy TS observer design to the fuzzy polynomial
case. Also, if some assumptions are made about the fuzzy-modelling premise
variables, the paper proposes a methodology for designing together the ob-
server and controller. The drawbacks of this work are the following:

• No local information is added into Lyapunov conditions. Therefore the
obtained designs, if found feasible, are global, which is a good point.
However, the SOS problem will be usually infeasible because high-
degree polynomials take large values far away from the origin and it
is difficult to obtain sum-of-squares certificates, even for small values
of their negative coefficients. For example, if the highest degree of the
polynomial to be checked is not even, positiveness cannot be proved for
all x ∈ Rn.

• There is no process disturbance or measurement noise (in discrete-time)
consideration, neither decay-rate guarantee.

Given the above preliminary works and its limitations, the main objec-
tive of this chapter is presenting and developing an unified observer design
for fuzzy polynomial systems including the advantages of both existent ap-
proaches. In particular, the achieved objectives are listed below:

1. Extending the existent theory in observer design for polynomial systems
with vanishing disturbances to a more general class of nonlinear systems
and disturbances using fuzzy polynomial models.

2. Developing theory for multiobjective H∞ plus decay-rate observers for
fuzzy polynomial systems, relaxing conservativeness by adding operating-
region information.
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3. Extending the above design methodologies to the discrete-time case and
adding extra constraints, regarding the fastest components of the dynam-
ics, in order to avoid undesirable behaviors in practice, for instance due
to Euler discretization.

On the following, preliminary definitions and notation are presented for
the rest of the chapter.

Consider a continuous-time nonlinear system with a known control input,
modelled as a fuzzy-polynomial system in a region of the state space Ω:

ẋ(t) =

r∑
i=1

µi(z(t)) (pi(x(t)) + Ei(x(t))w(t)) (6.1)

y(t) = C(x(t)) +Rη(t)

Or an equivalent discrete-time model at sample time Ts (t = k · Ts):

xk+1 =
r∑
i=1

µi(zk) (Pi(xk) + Ei(xk)wk) (6.2)

yk = C(xk) +Rηk

Where z are the premise variables (might be states or not), r denotes the
number of fuzzy rules (usually a power of 2), x ∈ Rn is the state vector,
y ∈ Rm are the measurments, the input w ∈ Rc is considered to be an un-
measurable process disturbance and η ∈ Rd is the measurement disturbance
or noise.

Denote now the estimated states of a nonlinear system by x̂ and the esti-
mation error by e = x− x̂.

Definition 6.1. Given a fuzzy polynomial system (6.1), a fuzzy-polynomial
continuous-time observer for it is defined to be the dynamic system with equa-
tions:

ẋ(t) =

r∑
i=1

µi(z(t)) (pi(x̂(t)) + Li(x̂(t), y(t))(y(t)− C(x̂(t))) (6.3)

In a similar way, a fuzzy-polynomial discrete-time observer for a system (6.2)
is defined by

xk+1 =

r∑
i=1

µi(zk) (Pi(x̂k) + Li(x̂k, yk)(yk − C(x̂k))) (6.4)

where the observer gains Li may depend polynomially on sensor measure-
ments and estimated states.
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6.2 Observer design under vanishing disturbances

This section extends the results of Ichihara (2009a) to fuzzy polynomial sys-
tems. The results and procedures presented in this section have been published
in the conference papers; Sala, Pitarch, Bernal, Jaadari and Guerra (2011)
for the continuous-time case, and Pitarch and Sala (2012) for the discrete-
time one. In the following, only the discrete-time design is presented and
the continuous-time one is omitted for brevity, because developments are very
similar. See the cited references for more details.

Consider a fuzzy polynomial model (6.2) of a nonlinear system without
measurement noise (η = 0) and a fuzzy polynomial observer (6.4) for that
system.

The error dynamics e = x− x̂ will be given by:

ek+1 =

r∑
i=1

µi(zk)(Pi(xk)−Pi(x̂k)−Li(yk, x̂k)(C(xk)−C(x̂k))+Ei(xk)wk)

(6.5)
The input w is considered to be an unmeasurable disturbance, bounded

by an integral bound
∑∞

k=0w
T
k wk = ||w||22 ≤ β or an instantaneous bound

wTk wk ≤ β2. On the following the notation zk ≡ z(k) will be used for sim-
plicity.

A candidate Lyapunov function may be defined as V (e) = eTQe. Then,
its discrete increment ∆V = V (ek+1)− V (ek) can be written as:

∆V =

r∑
i=1

µi(zk)(∗)TQ(Pi(xk)− Pi(x̂k) + Ei(xk)wk

− Li(yk, x̂k)(C(xk)− C(x̂k)))− eTkQek (6.6)

Computing inescapable set starting from a low error

Ensuring the condition

∆V (xk, x̂k, wk)− wTk wk < 0 (6.7)

ensures

Vk < V0 +
∞∑
k=0

wTk wk

for all k ∈ R. The bound |wk|2L2 ≤ β will be assumed available.
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The inequality (6.7) will be required to hold for all xk, x̂k in a particular
region defined by the sets:

χS = {xk ∈ Rn|Gs(xk) > 0}

χE = {ek ∈ Rn|Ge(ek) > 0}
where χS is assumed known (a bounded region of state space where the “true”
system state lies), and χE is an user-defined region fulfilling:

• χS ⊂ χE because e(0) = x(0) if the observer starts in x̂(0) = 0.

• χS ⊕ χE ⊂ Ω is required to ensure x̂k ∈ Ω

• χE must be reasonably small in order to limit the maximum error in the
transient (and to limit the required size of Ω).

Obviously, in order to use SOS conditions, it is assumed that Gs(xk),
Ge(ek) are defined by polynomials. For instance:

Gs(xk) = 1− xTk SXxk, Ge(ek) = 1− eTk SEek

with SX � 0 and SE � 0.
Then, if the initial error (i.e., initial state) is small enough so that V0 ≤ α,

then
Vk = eTkQek ≤ α+ β ∀ k (6.8)

Obviously, the increment of actual error caused by β will be small if Q is
big. This suggests maximizing a parameter γ subject to Q > γI and (6.7).

Once the above optimal Q has been obtained, then, the maximum value φ
so that the ellipsoid xTkQxk ≤ φ ⊂ χE can be computed and, subsequently
α = φ − β will give a guaranteed initial state ellipsoid xTkQxk ≤ α (equal to
initial error as x̂0 = 0 by assumption) so that the error will be guaranteed to
not leave its maximum allowed region χE , see Figure 6.1.

Lemma 6.1. An observer (6.4) for system (6.2) which minimizes the effect of
disturbances, i.e., maximizes the set of initial conditions {e : V (e) ≤ α} which
holds the estimation error within the allowed region χE , is obtained by solving
the following SOS optimization problem:

Maximize γ subject to

xT (Q− γI)x ∈ Σx (6.9)

ψT
[
F1i F2Ti
F2i Q

]
ψ ∈ Σx,x̂,w,ψ i : 1, ..., r (6.10)
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Figure 6.1: Example of regions involved in Lemma 6.1.

with

F1i = eT (Q− εI)e+ wTw − φi(x, x̂) (6.11)

F2i = Q(Pi(x)− Pi(x̂) + Ei(x)w −Hi(y, x̂)(C(x)− C(x̂))(6.12)

where ε > 0 acts as a tolerance in order to ensure that the error tends to
zero in absence of disturbances and φi(x, x̂) ∈ ℘(Gs(x), Ge(e)). The discrete
observer gains can be obtained by Li(yk, ẑk) = Q−1Hj(yk, ẑk).

Proof. Condition (6.9) means V (e) > 0 and, at same time, computes the
smallest ellipsoid by maximizing the eigenvalues of Q.

Condition (6.10) means that (6.7) holds inside the considered state-space
regions of interest:

V (ek+1)− V (ek)− wTk wk + φ(xk, x̂k) =

eTk+1QQ
−1Qek+1 − eTkQek − wTk wk + φ(xk, x̂k) < 0 (6.13)

which applying Schur complement, using Proposition A.1 and fuzzy polyno-
mial models, leads to (6.10).

Remark 6.1. The fuzzy gain in Lemma 6.1 is only useful if the premise vari-
ables z are “known or measurable”, such as µi(y). If not, the use of fuzzy
gains is useless because of the double summation

∑
µi(x)µj(x̂), for which

any Lj must hold for all i vertex models. In this case, the choices to proceed
with the design can be either a single observer gain L(y, x̂) or bounding the
unknown term ∥∥∥∥∥

r∑
i=1

(µ(x)− µ(x̂))pi(x)

∥∥∥∥∥ ≤ ρ ‖e‖ (6.14)
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locally in Ω, in a similar way to what is done in Ichalal, Marx, Ragot and
Maquin (2010); Lendek, Berna, Guzmán-Giménez, Sala and García (2011).

Decay rate. Deriving the developments in Section 5.2 now for discrete-time
systems, if inequality (6.7) is changed to

Vk+1 − δVk − wTk wk < 0 (6.15)

and the following term is renamed as

Vk+1 − δVk = Gk

then:

Vk = δkV0 +
k−1∑
i=0

δiGk−i−1 (6.16)

Hence, as by (6.15), |Gk| ≤ wTk wk, it implies:

Vk < δkV0 +

k−1∑
i=0

δiwTk−i−1wk−i−1

So considering bounded vanishing disturbances
∑∞

i=0w
T
i wi ≤ β:

k−1∑
i=0

δiwTk−i−1wk−i−1 ≤ β, 0 ≤ δ ≤ 1 (6.17)

allows bounding Vk by:
Vk ≤ δkV0 + β (6.18)

Furthermore, considering non-vanishing disturbances:

N−1∑
i=0

δiwTk−i−1wk−i−1 ≤ β, 0 ≤ δ ≤ 1 (6.19)

then we have

∞∑
i=0

δiwTi wi =

∞∑
j=0

N−1∑
i=0

δi+NjwTi−1+Njwi−1+Nj

Hence, as by (6.15), |Gk| ≤ wTk wk, it implies after some straightforward ma-
nipulations:

Vk < δkV0 +
1

1− δN
β
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Hence, replacing (6.11) by

F1i = eT (δQ− εI)e+ wTw − φi(x, x̂)

on conditions (6.10) allows giving the required decay-rate result.

6.3 H∞ polynomial observer design

This section addresses the fuzzy-polynomial observer design for nonlinear sys-
tems when there exist nonvanishing disturbances but there is no information
about their maximum power or energy bound. In this case, a trade-off between
H∞ norm bounds and speed of convergence performance is taken into account
in the design process: H∞ is a worst-case measure (of disturbance/model error
rejection) so its solutions are conservative in practice whereas decay-rate op-
timization produces unacceptable noisy estimates. The theoretical results pre-
sented in this section have been used for the experimental applications (Part
III of the thesis) and appear published in the journal paper Pitarch and Sala
(2014).

Both continuous-time and discrete-time design methodologies can be pur-
sued in order to obtain an observer with the objective of achieving acceptable
behaviour in practice. Nevertheless, let us first present the stability and H∞
performance analysis of a discrete-time observer.

6.3.1 Stability and performance analysis

Let us first consider how to prove discrete-time stability and performance of
a previously-designed observer (i.e., the assumption that Li does not contain
decision variables will be preliminarily stated) at sample time Ts, as follows.

Consider a fuzzy polynomial model (6.2) of a nonlinear system and a fuzzy
polynomial observer (6.4) for that system.

In order to carry out theoretical stability analysis, the observer error ek =
xk − x̂k follows the equation:

ek+1 =
r∑
i=1

µi(z) (Pi(xk)− Pi(x̂k)−

Li(x̂k, yk)(C(xk) +Rηk − C(x̂k))) + Eiwk (6.20)
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which, of course, in the linear case (constantP, C, L, E , i.e.,Pi(xk)−Pi(x̂k) =
P(xk − x̂k) = Aek ) reduces to the well-known:

ek+1 = (A− LC)ek − LRηk + Ewk

Less conservative conclusions can be obtained if the observer error (e =
x − x̂ where x̂ is the estimated estate) is assumed to lie in a compact region
Ωe. Indeed, the well-known fact that linear systems are globally stable does
not hold in the polynomial case; hence, many times the problems are infeasible
if state and error regions (Ωx and Ωe, respectively) are not introduced.

In the developments here, the error and the state are assumed to be always
contained inside regions

Ωe = {x, x̂ : Ge(x, x̂) ≥ 0}, Ωx = {x : Gx(x) ≥ 0} (6.21)

where Ge(x, x̂), Gx(x) are defined by polynomials or intersections of them.
This assumption is reasonable when the initial estimated state is x̂(0) = 0

(usual observer start-up condition) and the initial state is inside some level-set
of a Lyapunov function (to be later computed) : in that case, e(0) = x(0) and
stability will make the Lyapunov function decrease (Ichihara, 2009a; Khalil,
2002).

Note. On the following developments, the premise variables z for the mem-
bership functions are assumed to be known or measurable. If not, some extra
considerations have to be done. See Remark 6.1 on Section 6.2.

From the above considerations, on the following we will assume that the
state and estimation error do not leave some Lyapunov level sets, so that, in
turn, we can assert e ∈ Ωe and x ∈ Ωx being Ωe and Ωx described by poly-
nomial boundaries as in (6.21). If the disturbances push the system out of
such regions, the stability or performance is not guaranteed because the fuzzy
model is not valid outside Ωx. See such an example on Section 5.4. Also, the
following notation will be intentionally used as a shorthand:

• P̄i(xk, x̂k) stands as Pi(xk)− Pi(x̂k),

• likewise C̄(xk, x̂k) stands as C(xk)− C(x̂k).

• Subscript notation of a sample k is omitted for simplicity, i.e., e stands
as ek where appropriate.
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Consider now a quadratic candidate Lyapunov function on the error in the
form

V (e) = eTQe (6.22)

where Q is a constant symmetric positive-definite matrix.
The following result states sufficient conditions for the above observer to

be locally stable.

Theorem 6.1. Given a discrete-time polynomial observer (6.4), a L2
2 gain at-

tenuation bound γ > 0 on the estimation error for system (6.2) against the
worst-case disturbance, locally in regions on error Ωe and state Ωx, is ob-
tained by solving the following SOS optimization problem:

Minimize γ under the constraints

xTQx− ε(x) ∈ Σx (6.23)

− (∗)TQ
(
P̄i(x, x̂)− Li(x̂, y)C̄(x, x̂) + Eiw − Li(x̂, y)Rη

)
+ eT (Q−DTD)e+ γW TW − s1i(x, x̂) ∈ Σx,x̂,w,η i = 1, . . . , r (6.24)

Also, a decay rate α > 0 is proved if (6.24) is replaced by:

αeTQe− (P̄i(x, x̂)T − C̄(x, x̂)TLi(x̂, C(x))T )Q(P̄i(x, x̂)

− Li(x̂, C(x))C̄(x, x̂))− s2i(x, x̂) ∈ Σx,x̂ i = 1, . . . , r (6.25)

where W =

[
w
η

]
is the disturbance vector, (s1i, s2i) ∈ ℘(Gx(x), Ge(x, x̂))

are Positivstellensatz terms, ε(x) is an arbitrary radially unbounded positive
polynomial andD is a constant matrix which stands as an user-defined scaling
weight, in order to choose a particular combination of errors to minimize.
If the above problem renders feasible, then:

1. If initial condition e0 = 0,
√
γ is an upper bound on the (weighted) L2

2

gain, which is the nonlinear interpretation to the linear H∞ norm (see
Section 2.4.2), i.e.:

sup
0<||w||2<∞

||De||22
||W ||22

< γ (6.26)

2. If the initial condition e0 6= 0, the initial estimation error decays expo-
nentially with rate α in absence of disturbances, i.e.:

V (ek) ≤ αkV (e0)
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Proof. By following classical Lyapunov asymptotic stability conditions Khalil
(2002):

• Condition (6.23) makes Q � 0. Therefore V = eTQe > 0 when e 6= 0.

• Conditions (6.24) mean V (ek+1) − V (ek) + eTkD
TDek − γW T

k Wk <
0∀µi when x ∈ Ωx and e ∈ Ωe by the local information added with
s1i multipliers following Theorem A.1. So, in absence of disturbances
W , V is a Lyapunov function of system (6.2). Furthermore, if initial
conditions are x0 = 0 and adding from time zero till time k (and letting
later k →∞) the above discrete-time inequality results in:

V (ek) + eTkD
TDek − γW T

k Wk < 0 ⇒ ||De||22 < γ||W ||22

• Conditions (6.25) mean V (ek+1) − αV (ek) < 0∀µi when x ∈ Ωx and
e ∈ Ωe, again with s2i following Theorem A.1. Parameter α is the
desired discrete decay rate. Then V is also a valid Lyapunov function
ensuring exponential stability of system (6.2). Note that Li(x̂, y) has
been replaced by Li(x̂, C(x)) because decay-rate conditions consider a
noise-free dynamics in nonzero initial conditions, so y = C(x) + Rη
applies for the particular case η = 0.

Using this result, both the H∞ disturbance/model error rejection gain and
decay performance of a given discrete-time fuzzy-polynomial observer for a
nonlinear system can be checked. However, if the observer gains Li(x̂, y)
have to be found, Theorem 6.1 cannot be used because the product of decision
variables (Q,L) leads to a nonconvex optimization problem. This will be ad-
dressed next: the following subsections consider observer design, both in pure
discrete-time and in continuous-time.

6.3.2 Direct discrete-time design

On the following, a discrete-time polynomial observer design methodology is
presented.

Theorem 6.2. Given a decay rate parameter α > 0, a polynomial observer
(6.4) which gives a L2

2 gain attenuation bound γ on the estimation error for
system (6.2) against the worst-case disturbance, over regions on the error and
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the state (6.21), is obtained by solving the following SOS problem for all i :
1, . . . , r:

Minimize γ subject to

xTQx− ε(x) ∈ Σx (6.27)

ρT

 eT (Q−DTD)e+ γW TW −Ψ1i(x, x̂) (∗)T
QP̄i(x, x̂)−Hi(x̂, y)C̄(x, x̂)

+QEiw −Hi(x̂, y)Rη
Q

 ρ ∈ Σx,x̂,w,η,ρ

(6.28)

ρT
[

αeTQe−Ψ2i(x, x̂) (∗)T
QP̄i(x, x̂)−Hi(x̂, C(x))C̄(x, x̂) Q

]
ρ ∈ Σx,x̂,ρ (6.29)

2eTQP̄i(x, x̂)− 2eTHi(x̂, C(x))C̄(x, x̂)−Ψ3i(x, x̂) ∈ Σx,x̂ (6.30)

Where Ψji ∈ ℘(Gx(x), Ge(x, x̂)), j = 1, 2, 3, γ > 0, W =

[
w
η

]
, ε(x)

and D are the same as in Theorem 6.1. The polynomial observer gains can be
computed as Li(x̂, y) = Q−1Hi(x̂, y).

Proof. Condition (6.27) ensures positive-definiteness of the Lyapunov func-
tion, which in the linear LMI case amounts to (6.34).

Under no disturbances, the basic decay-rate discrete condition ∆V =
Vk+1 − αVk < 0 can be expressed as:

−∆V =

r∑
i=1

µi(z)e
T
(
αQ− (∗)T QQ−1Q

(
P̄i(x, x̂)

−Li(x̂, C(x))C̄(x, x̂)
))
e > 0 (6.31)

Then, by using the convex-sum property and adding local information follow-
ing Theorem A.1 in order to make the positiveness condition of (6.31) hold
only locally in the required regions, it leads to

eT
(
αQ− (∗)T QQ−1Q

(
P̄i(x, x̂)− Li(x̂, C(x))C̄(x, x̂)

))
e

−Ψ2i(x, x̂) > 0 i : 1, . . . , r (6.32)
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This is, by Schur complement, equivalent to the convex SOS conditions

ρT
[

αQ−Ψ2i(x, x̂) (∗)T
QP̄i(x, x̂)−Hi(x̂, C(x))C̄(x, x̂) Q

]
ρ ∈ Σx,x̂,ρ i : 1, . . . , r

(6.33)
which can be checked for SOS with Proposition A.1. In this way, (6.29) is
obtained.

In the disturbance case, conditions (6.28) are obtained by a similar pro-
cedure with the dissipation inequality Vk+1 − Vk + eTkD

TDek − γ2(wTw +
ηT η) < 0 plus information about locality in multipliers in Ψ1i (details omit-
ted for brevity). Note that Li(x̂, C(x)) is used in decay-rate conditions but
Li(x̂, y) in dissipation ones, see proof of Theorem 6.1.

Finally, the meaning of conditions (6.30) in the linear case, would be forc-
ing the real part of the poles to be non-negative (pole-region placement results
in Boyd, Ghaoui, Feron and Balakrishnan (1994)) , which is actually (6.37).
See Remark 6.2.

Remark 6.2. Conditions (6.30) are stated in order to avoid high-frequency os-
cilations with period 2Ts in the error dynamics. This is done via the extensions
to SOS of standard LMI pole-region constraints, avoiding what in a linear case
could be understood as discrete poles with negative real part, see (6.37) below.
Although they may be considered as “optional”, including them is reasonable
in practice both for having an acceptable transient and to avoid exciting high-
frequency dinamics in the underlying physical system: in this way the result
will be more tolerant to errors (such as those due to Euler discretization and
unmodelled dynamics).

With some manipulations, the following result in TS observer literature
can be easily obtained (details omitted for brevity) as a particular case.

Corollary 6.1 (Tanaka and Wang (2001)). With a TS model

xk+1 =

r∑
i=1

µi(z)Aixk + Ewk, yk = Cxk +Rηk

and fuzzy observer gains Li, the above result reduces (by reordering and ex-
tracting variables (x, e, w, η) from matrices) to the well-know LMI optimiza-
tion problem proving globalH∞ bound and decay rate:

Minimize γ subject to:
Q � 0 (6.34)
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
Q−DTD ATi Q− CTHT

i 0 0
QAi −HiC Q QE −HiR

0 ETQ γI 0
0 −RTHT

i 0 γI

 � 0 (6.35)

[
αQ ATi Q− CTHT

i

QAi −HiC Q

]
� 0 (6.36)

ATi Q− CTHT
i +QAi −HiC � 0 (6.37)

where, γ > 0, α > 0 and the observer gains can be obtained as Li = Q−1Hi.

Again, conditions (6.37) state that poles must lie in the right-half plane (of
course, inside the circle of radius α from (6.36)).

6.3.3 Continuous-time based design

The following result presents a continuous-time fuzzy-polynomial observer
(6.3) design methodology. Consider the fuzzy-polynomial continuous-time
system (6.1). The notation p̄i(x, x̂) = pi(x) − pi(x̂) and C̄(x, x̂) = C(x) −
C(x̂) will be used; also, explicit notation of time t is omitted for simplicity,
i.e., e stands for e(t), etc.

Theorem 6.3. Given a decay rate parameter α > 0, a polynomial observer
(6.3) which gives a L2

2 gain attenuation bound γ on the estimation error for
system (6.1) against the worst-case disturbance, over regions on the error and
the state (6.21), is obtained by solving the following SOS problem for all i :
1, . . . , r:

Minimize γ subject to:

xTQx− ε(x) ∈ Σx (6.38)

− 2eT
(
Qp̄i(x, x̂)−Hi(x̂, y)C̄(x, x̂) +QEiw −Hi(x̂, y)Rη

)
− eTDTDe+ γW TW − s1i(x, x̂) ∈ Σx,x̂,w,η (6.39)

−2eT (Qp̄i(x, x̂)−Hi(x̂, C(x))C̄(x, x̂))−2αeTQe−s2i(x, x̂) ∈ Σx,x̂ (6.40)
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2eT (Qp̄i(x, x̂)−Hi(x̂, C(x))C̄(x, x̂))+
2

Ts
eTQe−s3i(x, x̂) ∈ Σx,x̂ (6.41)

Where γ > 0, W =

[
w
η

]
, (s1i, s2i, s3i) ∈ ℘(Gx(x), Ge(x, x̂)) and

ε(x), D are the same as in Theorem 6.1. The polynomial observer gain can
be computed as Li(x̂, y) = Q−1Hi(x̂, y) such that its Euler-discretized imple-
mentation results in:

x̂k+1 =
r∑
i=1

µi (Tspi(x̂k) + x̂k + TsLi(x̂k, yk)(yk − ŷk)) (6.42)

Proof omitted for brevity, see Appendix B.4 for details.

Remark 6.3. Conditions (6.41) are stated in order to avoid state dynamics faster
than a decay 1

Ts
for robustness considerations regarding unmodelled dynamics

and discrete-time implementation via Euler integration (the additional condi-
tions (6.41) exclude many (but not all) of the solutions which would render
(6.42) unstable).

Indeed, further commenting on the above remark, conditions (6.41) and
(6.30) are actually the same if, by Euler discretization method, P̄i(xk, x̂k) −
Li(yk, x̂k)C̄(xk, x̂k) = Ie(t) + Ts(p̄i(x(t)) − Li(y(t), x(t))C̄(x(t), x̂(t))).
Indeed, replacing it on conditions (6.30), setting Ψ3i = 0, it leads to:

2eTQe+ 2Tse
TQ(p̄i − LiC̄) ≥ 0→ 2eTQp̄i − 2eTHiC̄) ≥ − 2

Ts
eTQe

which is (6.41) locally in Ωx,Ωe.

Computational cost. Note that the theorems presented in this chapter are
evaluated off-line, so when computational requirements are discussed, they re-
fer to memory and CPU of the workstation with MATLAB R©code carrying out
sum-of-squares optimizations. Such optimizations are not needed in on-line
operation, but only a very simple direct evaluation of (6.4) once the coeffi-
cients of L are fixed. Such on-line evaluations can be easily encoded on a few
lines of code on any low-range industrial control computer.

By following Theorem 6.2, a discrete polynomial observer can be directly
designed and implemented. However, the need of applying the Schur com-
plement (which increases matrix size), makes the size and complexity of the
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associated SDP optimization problem grow with respect to the continuous-
time design with Theorem 6.3. Note that computational complexity of SOS
programs grows quickly with the system order and multiplier degree. In-
deed, the number of monomials of a polynomial of degree d in n variables
is (n + d − 1)!/(d!(n − 1)!). For instance, in the application presented in
Chapter 8 we have 21 variables amounting to 6 states, 6 estimated states and
9 process and measurement noises. Degree 4 polynomials on them result in
10626 monomials. A higher-degree model forcing checking positiveness of
degree 6 polynomials in them would jump to 230230 monomials.

Note also that, in general, if a polynomial model has p(x) of degree d, the
derivative of the Lyapunov function V (x) = xTQx is of degree d + 1. How-
ever, the increment of V (xk) in the discrete case has the term PT (x)QP(x)
which is of degree 2d.

In summary, the difference in needed computing resources in the discrete
design versus the continuous one, possibly grows significantly as problem
complexity increases.

6.4 Example

This section presents an academic example in order to show the effectiveness
of the proposed methodologies. Both, the computed fuzzy-polynomial ob-
server gains and the estimation error trajectories are shown for the performed
simulations.

In addition, the observer design procedures addressed on the above sec-
tions have been also applied to experimental platforms, see Chapter 8 and 9.

Example 6.4.1. Consider a two-rule TS fuzzy polynomial model (6.1) of a
nonlinear system with membership functions and its corresponding polyno-
mial functions pi(x) and E(x) given by:

µ1 = 1− e−y2 ; µ2 = 1− µ1; E(x) =

[
0

0.5x1x2

]
; (6.43)

p1(x) =

[
1.2x2

−x1 + 1.2x2 − x2
1x2

]
;

p2(x) =

[
0.98x2

−x1 + 0.98x2 − x2
1x2

]
;

and the output equation is y = x3
1 + 0.5x2.
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The Euler discretization of the above fuzzy polynomial model at sampling
period T = 0.01s, with its corresponding polynomial functions Pi(xk) and
E(xk) is given by:

µ1 = 1− e−(0.1yk)2 ; µ2 = 1− µ1; E(xk) =

[
0

0.005x1kx2k

]
;

P1(xk) =

[
x1k + 0.012x2k

−0.01x1k + 1.012x2k − 0.01x2
1kx2k

]
;

P2(xk) =

[
x1k + 0.0098x2k

−0.01x1k + 1.0098x2k − 0.01x2
1kx2k

]
;

Note. The following results are only approximate as the Euler discretization
of a continuous-time system is not exact; they are valid for small enough sam-
pling period, i.e., the larger the sampling period is the more inaccurate the
found solution is, but not because of the proposed SOS methodology.

The region of study χS , and χE for the states, estimated states and error
are specified by the matrices:

SX = SE = 10−2

[
1 0
0 1

]
i.e., a sphere of radius 10 is assumed to be enough to contain the trajectories
of the state and estimated state over the course of simulations. And the highest
degree of the fuzzy-polynomial observer L(yk, x̂k) is fixed at 2.

With those assumptions, we are also in the case of measurable premises so
that an actual fuzzy observer can be sought.

One solution found for the problem is:

γ = 0.0269; Q =

[
0.37536 0.005358
0.005358 0.054277

]
;

and the fuzzy observer is:

L = µ1L1 + µ2L2 = µ1

(
L11

L12

)
+ µ2

(
L21

L22

)
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being the computed polynomial observer gains L1, L2 given by:

L1(yk, x̂k) = 10−3

([
20.11
31.55

]
+

[
−0.0338
−0.0957

]
x̂21k +

[
−0.004
0.0069

]
x̂22k

+

[
−0.0017
−0.0066

]
ykx̂1k +

[
0

−0.002

]
ykx̂2k

[
0.0001
−0.0023

]
x̂1kx̂2k

)

L2(yk, x̂k) = 10−3

([
16.345
27.95

]
+

[
−0.0212
−0.07

]
x̂21k +

[
−0.0054
−0.00625

]
x̂22k

+

[
−0.0008
−0.0035

]
ykx̂1k +

[
0.00002
−0.002

]
ykx̂2k

[
0.00027
0.0007

]
x̂1kx̂2k

)
With this fuzzy discrete observer the results show that φ = α + β =

5.42, so we have proved that starting with any initial conditions inside V0 <
α = 4.22 the error dynamics is stable in the sense that it will not abandon the
interest zone χE .
Once this observer is in place, the decay rate can be proved to be δ = 0.9995,
so it is actually proved that under vanishing disturbances, the error will reach
zero.

For simulation, consider two different scenarios; first starting from initial
conditions x(0) = [−2 7] and considering that there is a disturbance wk =
0.4775 0.9k applied at time t = 0.3 seconds, and then another scenario starting
from x(0) = [−1.5 − 7.8] and considering a disturbance wk =

√
1.2 only if

k = 1. As it can be seen easily, in the two cases the disturbances verify∑∞
k=0w

T
k wk = 1.2, so β = 1.2 can be set up as the square integral disturbance

bound.
On next figures we can see the trajectory of the states and estimated states

corresponding to the first scenario.
In figures 6.2 and 6.3 the states x1 and x2 are reached in about one second

by the estimated ones instead of the disturbance. It can be checked too in
Figure 6.4 where trajectories of the system and the observed system are shown.

In figure 6.5 the evolution of the Lyapunov function of the error is repre-
sented for the two scenarios considered. It can be checked that the Lyapunov
function decreases except when the disturbance is applied but, instead of this,
finally it tends to zero.

Finally Figure 6.6 shows the trajectory of the errors starting from the ini-
tial conditions (inside the ellipsoid V (e) < α). The two trajectories do not
abandon the region V (e) < α+ β, therefore they do not abandon the allowed
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region χE . In addition, trajectories go to zero when disturbances have lost
energy.
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Figure 6.2: Evolution of x1 and x̂1
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Figure 6.3: Evolution of x2 and x̂2
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Figure 6.4: Trajectory of x and x̂
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Figure 6.5: Lyapunov function V(e)

6.5 Conclusions

In this chapter, stable fuzzy-polynomial observers for nonlinear systems have
been designed under bounded (vanishing and nonvanishing) disturbances. The
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Figure 6.6: Error trajectory

result are observer gains which can be polynomial on the output and the es-
timated states. The developments have been presented in discrete-time for
inescapable-set computation with vanishing disturbances, being the continuous-
time ones very similar, and discussed in both continuous-time and discrete-
time cases for theH∞ versus decay-rate multicriteria design.

If premise variables are measurable or some bounds can be assumed on
them, then fuzzy observer gains can be designed. If premises are unknown, a
single polynomial observer gain is always an option. Takagi-Sugeno observer
designs (and, of course, linearized time-invariant ones) can be considered as
particular cases of the proposed methodology.





Chapter 7

Discrete-time Control Synthesis
with Input Saturation

Immense power is acquired by assuring
yourself in your secret reveries that you

were born to control things.

Christian Grey

ABSTRACT: This chapter presents a discrete-time control design method-
ology using a Lyapunov function with dependence on present and past
states. This proposed approach is used to bypass the usual difficulty
of expressing the problem in a convex way, holding the extra decision
variables given by polynomial Lyapunov function approaches. Also
polynomial controllers are allowed to depend on both present and past
states. Furthermore, in the particular case of knowing the saturation lim-
its of the control action, information about the relationship between the
present and past states can be introduced via Positivstellensatz multipli-
ers. Sum-of-squares (SOS) techniques and available SDP software are
used in order to find the controller.

Stability analysis and control design for polynomial systems has received
attention in recent literature, both in continuous-time (Ichihara, 2009b; Prajna,
Papachristodoulou and Wu, 2004b; Hancock and Papachristodoulou, 2013;
Chesi, 2011) and discrete-time settings (Tanaka, Ohtake and Wang, 2008; Xu,

149
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Xie and Wang, 2007). The basic framework uses Sum of Squares (SOS) tech-
niques and Positivstellensatz argumentations in order to prove local stability
/stabilization.

Furthermore, many smooth nonlinear systems can be also transformed to
polynomial ones, either by Taylor-series approximation (Section 3.1.1) or by a
change of variable and state augmentation (Section 3.1.2). Therefore, the poly-
nomial approach may be used to obtain alternative nonlinear control solutions
to others in literature (Slotine, 1991; Khalil, 2002) based on a systematic mod-
elling and convex-programming approach. The approach, however, involves
some conservative choices in order to get a reasonable computational cost:
finite degree of Lyapunov functions, finite degree and number of KKT-like
multipliers associated to algebraic constraints (Jarvis-Wloszek, Feeley, Tan,
Sun and Packard, 2005). Moreover, if the controller has to be designed via
Lyapunov theory, the polynomial discrete-time design case usually leads to
a nonconvex problem which has to be solved via iterative LMI algorithms
(Appendix A.1.4.2) or similar. In order to avoid this problem, Prajna, Pa-
pachristodoulou and Wu (2004b); Tanaka, Ohtake and Wang (2008) proposed
restricting the dependence of the Lyapunov function to the states which are not
affected directly by the control action. This outperforms the classical quadratic
case control design but it is still quite restricted.

In this work, the stabilization problem for polynomial systems with input
bounds is addressed in a convex way using the whole state information. The
main idea is introducing delayed states in the Lyapunov function which breaks
up some bilinear terms and also provides the state-feedback controller with ex-
tra degrees of freedom (polynomial depending on the present and past values).
The use of Lyapunov functions with dependence on delayed scheduling pa-
rameters has been successfully applied in the Takagi-Sugeno LMI framework
(Lendek, Guerra and Lauber, 2012; Guerra, Kerkeni, Lauber and Vermeiren,
2012). In the discrete-time case here considered, due to the construction of the
matrices involved, there is no need of Krasovskii-like terms in Lyapunov func-
tions, as other developments need (Gassara, Hajjaji, Kchaou and Chaabane,
2014).

In this chapter, the idea is applied to include a full delayed state in poly-
nomial systems. Information about the relationship between present and past
state values is introduced by specifying bounds in the control action and Posi-
tivstellensatz multipliers. The approach improves over existent ones in litera-
ture, if restricted to convex optimization setups. The recent work Valmorbida,
Tarbouriech and Garcia (2013) proposes a similar development addressing the
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polynomial control synthesis for discrete-time systems under actuator satura-
tion. However, their proposal leads to a nonconvex bilinear matrix inequality
problem, which needs to be solved iteratively without guarantees of global op-
timality, as widely known (Fukuda and Kojima, 2001). Intentionally, analysis
and comparison with BMI approaches has been left out of the scope of this
paper because the BMI results depend on the initial conditions and iteration
step sizes. The objective of the chapter is, hence, lifting conservativeness in
polynomial control by using delayed-state Lyapunov functions and saturation
bounds while keeping the resulting SOS conditions convex. The main result of
this chapter has been published in the journal paper Pitarch, Sala, Lauber and
Guerra (2016).

The chapter is organized as follows: next section states the notation fol-
lowed in the rest of the chapter as well as summarizes the existent draw-
backs related to the current issue and presents the problem statement, Sec-
tion 7.2 presents a convex control design methodology by delayed polynomial
Lyapunov functions, Section 7.3 shows an academic example demonstrating
the effectiveness of the proposed approach and, finally, a conclusions section
closes the chapter.

7.1 Preliminaries

The existent approaches in convex literature addressing the polynomial con-
troller design for nonlinear systems are usually very conservative (see Section
3.3). This is due to the loss of information made when applying some changes
of variables in a similar way to the Takagi-Sugeno LMI case (Section 2.3.1).
The main reason for making those changes of variables is breaking up some
bilinear terms which appear as products of decision variables present in the
polynomial Lyapunov function V (x) and the polynomial control law K(x).

Moreover, those changes of variables prevent the direct extension of the
domain of attraction results developed in Chapter 4. Indeed, local relaxations
of Lyapunov stability conditions with Positivstellensatz loose their powerful
meaning in the synthesis phase. This is because, after a change of variable,
local information on the new variables is unknown or should be introduced via
non-convex terms.

Let us first introduce some notation about sum-of-squares results to be used
throughout the chapter. The N × N SOS polynomial matrices in variables x
(see Proposition A.2) will be denoted by ΣN

x . Evidently, SOS polynomial
matrices are positive semi-definite matrices for all values of x.
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Denote by IN (f1, . . . , ft) the set of N × N matrices whose elements
belong to the ideal I(f1, . . . , ft). Denote also by ℘N (f1, . . . , ft) the subset
of IN (f1, . . . , ft) formed by the cone of matrices which are positive semi-
definite for any values of the argument variables.

Using the above notation, the cited work recasts the so-called Positivstel-
lensatz theorem (Section A.2.2) in order to assert local non-negativeness of
polynomials in a region with polynomial boundaries. The lemma below gen-
eralizes the concept to local positive semi-definiteness of polynomial matrices:

Lemma 7.1. The polynomial matrix P (x) ∈ RN×Nx is positive semi-definite
in a region Ω = {x : gi(x) > 0, hj(x) = 0, i : 1, . . . , r, j : 1, . . . , v} if there
exist polynomial matrices G(x) ∈ ℘N (g1, . . . , gr), H(x) ∈ IN (h1, . . . , hv)
which verify:

P (x)−G(x) +H(x) ∈ ΣN
x (7.1)

Proof. Multiplying (7.1) by auxiliary variables ν ∈ RN on the left and right, it
results in a polynomial sum-of-squares condition νT (P (x)−G(x)+H(x))ν ∈
Σx,ν by Proposition A.1, so that, if it holds, νTP (x)ν is nonnegative in Ω as
required.

Note that computational checking of (7.1) can be done with the LMI’s
deriving from Proposition A.2. For instance, one choice of matrices above for
computations may be

G(x) =

r∑
i=1

Si(x)gi(x) H(x) =

v∑
j=1

Zj(x)hj(x)

where Si are SOS matrices and Zj are arbitrary ones, both with unknown co-
efficients. S and Z can be full matrices or, for instance, only diagonal ones
depending on the available computing resources.

7.1.1 Problem statement

Up to the author’s knowledge, the general problem of finding a Lyapunov func-
tion and a controller gain together has not been posed in convex form. In fact,
recent literature still employs the assumptions of Prajna, Papachristodoulou
and Wu (2004b) in order to put the problem in convex form. See, for instance,
the work with piecewise polynomial Lyapunov functions in Lam, Narimani,
Li and Liu (2013). Let us recall now those well-known stability results for
discrete-time polynomial systems:
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Consider a polynomial discrete-time system in the form

xk+1 = A(xk)z(xk) +B(xk)uk (7.2)

where xk ∈ Rn, uk ∈ Rb are the state and control input vector at time instant
k respectively, A(xk) ∈ Rn×lxk

, B(xk) ∈ Rn×bxk
and z(xk) ∈ Rlxk . On the

sequel, shorthand zk = z(xk) will be used for brevity.
Define a Lyapunov function candidate V : Rn → R as

V (xk) = zTk Q
−1(xk)zk (7.3)

where Q(xk) ∈ Rl×lxk
is a polynomial matrix in the states. Consider a state

feedback controller in the form

uk = −K(xk)zk (7.4)

where K(xk) = M(xk)Q
−1(xk) is the feedback gain and M(xk) ∈ Rc×lxk

.
According to Lyapunov theory, the controller (7.4) stabilizes the system (7.2)
if conditions

V (0) = 0 (7.5)

V (xk) > 0, ∀xk ∈ D, xk 6= 0 (7.6)

∆V = V (xk+1 − V (xk)) ≤ 0, {xk+1, xk} ∈ D (7.7)

are satisfied (Khalil, 2002). Further if the inequality (7.7) is strict for xk ∈
D\{0}, then the system is asymptotically stable. Moreover, if D = Rn, stabil-
ity is global.

In the controller synthesis problem (i.e., the controller (7.4) has to be found
simultaneously with the Lyapunov function (7.3)), some conservative assump-
tions are addressed in literature (Xu, Xie and Wang, 2007; Tanaka, Ohtake and
Wang, 2008) in order to put the problem in a convex way:

• If Q is constant and zk = xk, the controller synthesis problem becomes
convex by Schur complement, resulting in finding Q and coefficients of
polynomials in M(xk) such that, for an arbitrary ε > 0:[

Q (∗)T
A(xk)Q−B(xk)M(xk) Q

]
− εI ∈ Σ2l

xk

• Following the idea introduced for continuous-time in the work Prajna,
Papachristodoulou and Wu (2004b), use a Lyapunov function defined
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by Q(x̃k), where x̃k = Exk ∈ RL, being E a constant matrix fulfilling1

EB(xk) = 0. If zk can be expressed as

zk = T (x̃k)xk (7.8)

with T (x̃k) ∈ Rl×nx̃k
, the problem is still convex.

If the above problems render infeasible, local stability conditions can be
posed based on modifying conditions (7.6) and (7.7) in order to make them
hold locally in a region of interest Ω ⊂ Rn. Lemma 7.1 enables checking
such conditions with SOS programming (sufficient conditions). For instance,
the local stability results in (Xu, Xie and Wang, 2007) can be adapted to the
notation here as follows:

Corollary 7.1. If polynomial matrices G(xk), H(xk) as defined in Lemma 7.1
can be found fulfilling[

Q (∗)T
A(xk)Q−B(xk)M(xk) Q

]
− εI −G(xk) +H(xk) ∈ Σ2l

xk
(7.9)

with ε > 0, then ∆V (xk) is locally negative in a region of the state space Ω
except at the origin.

When conditions (7.5), (7.6) and (7.7) hold for all x ∈ Ω, the system is
said to be locally stable in Ω, implying that all level sets {x : V (x) ≤ γ} ⊂ Ω
are invariant (Section 3.2.2).

Summarizing, using the nullifier E and setting V = zTQ−1(Exk)z to ig-
nore the bilinearity is what previous literature does. In this chapter, the efforts
are directed to partially overcome such issue (with, of course, some conser-
vatism), so this is the core development. Inspired on the Lyapunov functions
with dependence on delayed scheduling parameters in Guerra, Kerkeni, Lauber
and Vermeiren (2012); Lendek, Guerra and Lauber (2012), a full delayed-state
polynomial Lyapunov function is used to reduce the conservativeness of the
above results, as discussed on next section.

Note that, although introducing delays in the Lyapunov function or in the
system’s dynamics do not help to improve in the general control case2, this

1A particular case (Tanaka, Ohtake and Wang, 2008) is choosing E to be a row-selector
matrix extracting the state variables whose corresponding row of B(x) is zero (i.e. x̃ are states
that do not directly depend on the control input).

2For non-delayed systems, if a delayed Lyapunov function proving stability exists, there will
exist an undelayed Lyapunov proving it too. However, the issue at stake is how to obtain it via
convex conditions. Converse Lyapunov does not ensure that there is a convex characterization
of the sought non-delayed Lyapunov function.
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proposal can obtain better results in the particular case of knowing the satura-
tion limits of the control action.

The specific objective of this chapter is designing a discrete-time poly-
nomial control law in a convex way, ensuring some saturation bounds on the
control action. Furthermore, by introducing available information about the
relationship between present and past-state values will allow reducing the con-
servativeness with existent methodologies.

7.2 Synthesis via delayed-state Lyapunov functions

Consider a delayed-rational candidate Lyapunov function V (xk, xk−1) in the
form

V (xk, xk−1) = zTk Q
−1(x̃k, xk−1)zk (7.10)

and a state-feedback control law which can depend on present and past states

uk = −K(xk, xk−1)zk (7.11)

where, K(xk, xk−1) = M(xk, xk−1)Q−1(x̃k, xk−1) being Q(x̃k, xk−1) ∈
Rl×lxk,xk−1

and M(xk, xk−1) ∈ Rb×lxk,xk−1
. It will be assumed that there ex-

ists a constant matrix E ∈ RL×n such that zk can be expressed as (7.8) and
another constant matrix E⊥ such that ETE⊥ = 0 and the rows of E and E⊥

form a basis of Rn. Obviously, by definition, the columns of B belong to the
row space of E⊥.

Consider a region Ω of the augmented state space:

Ω0 = {x : z(x)TUz(x) ≤ R2} (7.12)

Ω = {xk, xk−1 : xk ∈ Ω0, xk−1 ∈ Ω0} (7.13)

and a second region Φ, Φ ⊂ Ω, where initial conditions are supposed to lie in,
described as

Φ = {x0, x−1 : max(zT0 Y z0, z
T
−1Y z−1) ≤ β2} (7.14)

where U and Y are constant user-defined matrices with suitable dimension.
Consider also that each individual control input has known saturation bounds

|ejuk| ≤ σj , σj ∈ R, j : 1, . . . , b (7.15)

where ej is the standard canonical row vector in Rb whose j-th component
is one and the rest are zero. Hence, a set of vectors ūi, i : 1, . . . , 2b can be
constructed such that the control action u belongs to its convex hull.
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Theorem 7.1. Assume {x0, x−1} ∈ Φ. Then, system (7.2) with the control law
(7.11) is locally stable in region (7.13), satisfies the control input saturation
(7.15) and Φ belongs to the domain of attraction of the origin if the following
SOS problem is feasible for all i : 1, . . . , 2b and j : 1, . . . , b:[

Q(Exk, xk−1) (∗)T
Ψ(xk, xk−1) Q(E ·A(xk)zk, xk)

]
− εI −Υ1i ∈ Σ2l

xk,xk−1
(7.16)

(Q(Exk, xk−1)− εI −W1 −H1 ∈ Σl
xk,xk−1

(7.17)

[
Q(Exk, xk−1) (∗)T
ejM(xk, xk−1) σ2

j

]
−Υ2i ∈ Σl+1

xk,xk−1
(7.18)

R2U−1 −Q(Exk, xk−1)−W2 −H2 ∈ Σl
xk,xk−1

(7.19)

[
β−2zTk Y zk zTk

zk Q(Exk, xk−1)

]
−Υ3i ∈ Σl+1

xk,xk−1
(7.20)

where

Ψ(xk, xk−1) = T (E ·A(xk))(A(xk)Q(xk−1)−B(xk)M(xk, xk−1)),

Υdi = Sdi +Hdi +
n−L∑
c=1

Hdcφci, d : 1, 2, 3 (7.21)

being ε > 0 and:

φ̃c = ec(Exk − E ·A(xk−1)zk−1),
φci = ec(E

⊥xk − E⊥A(xk−1)zk−1 − E⊥B(xk−1)ūi),
W1 ∈ ℘l(R2 − zTk Uzk, R2 − zTk−1Uzk−1),

W2 ∈ ℘l(R2 − zTk−1Uzk−1),

S1i ∈ ℘2l(R2 − zTk Uzk, R2 − zTk−1Uzk−1),

S2i ∈ ℘l+1(R2 − zTk Uzk, R2 − zTk−1Uzk−1),

S3i ∈ ℘l+1(β2 − zTk−1Y zk−1),

H1 ∈ I l(φ̃1, . . . , φ̃L),

H2 ∈ I l(R1 − zTk Uzk, φ̃1, . . . , φ̃L),

H1i ∈ I2l(φ̃1, . . . , φ̃L),

{H2i,H3i} ∈ I l+1(φ̃1, . . . , φ̃L),

H1c ∈ R(2l)×(2l)
xk,xk−1 , {H2c, H3c} ∈ R(l+1)×(l+1)

xk,xk−1 .
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Proof. Using the candidate Lyapunov function (7.10), stability condition ∆V =
Vk+1 − V k < 0 now becomes:

∆V = zTk+1Q
−1(x̃k+1, xk)zk+1 − zTk Q−1(x̃k, xk−1)zk < 0

Substituting zk+1 by its value

zk+1 = T (E ·A(xk))(A(xk) +B(xk)K(xk, xk−1))zk,

performing the well-known change of variable

ρ = Q−1(x̃k, xk−1)zk (7.22)

and applying Schur complement, it leads to:

νT
[
Q(x̃k, xk−1) (∗)T
Ψ(xk, xk−1) Q(x̃k+1, xk)

]
ν ≥ 0

The relationship between present and past states is:

E⊥(xk −A(xk−1)zk−1 −B(xk−1)uk−1) = 0,
E(xk −A(xk−1)zk−1) = 0.

(7.23)

This information can be introduced in the SOS constraints with termsH formed
by the ideals associated to the above equalities. However, in order to avoid in-
troducing new variables u in the SOS program, equalities in (7.23) depending
on E⊥ must be introduced with arbitrary multiplier matrices Hdc, conforming
the rightmost summation in the definition of Υdi in (7.21), but keeping linear-
ity in φci. In fact, to actually get (7.21), a last step is needed: as the resulting
expressions are affine in uk−1, they will hold if they do in all the vertices given
by vectors ūi, from convexity arguments. Note that multipliers Hdc must be
shared between all vertices.

Now, positive semi-definite matrix multipliers W,S are provided in order
to add information about Ω in SOS conditions so that they need to hold only
locally (note that multipliers Sdi can actually be different for different ūi).
After these steps, (7.16) and (7.17) are obtained, so (7.10) is a valid Lyapunov
function locally in Ω by Lemma 3.2 and Theorem A.1.

Define now Θ as the Lyapunov level set:

Θ = {xk, xk−1 : V (xk, xk−1) ≤ 1}
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Conditions (7.18) ensure that u does not take values larger than the saturation
bounds σ inside the region Π = Θ ∩Ω. They are obtained from the inequality

zTk Q
−1(x̃k, xk−1)zk − zTk eTj K(xk, xk−1)Tσ−1

j I(∗) ≥ 0

in a similar way to the quadratic case (Boyd, Ghaoui, Feron and Balakrishnan,
1994) for Θ, but relaxed with local information on Ω and system dynamics
analogous to the above discussed multipliers3.

As a last step in the proof, as locality conditions only hold in Ω, we need
to ensure that there exists an invariant subset of Ω containing the initial set Φ.

Let us assume V (xk, xk−1) ≥ 1∀xk ∈ ∂Ω0, xk−1 ∈ Ω0 which is enforced
by (7.19) as later shown. Let us prove that Π = Θ∩Ω is invariant. Indeed, the
points xk ∈ ∂Ω0 and xk−1 ∈ Ω0 are outside Π, so the trajectories will never
leave Π through that part of ∂Ω.

If xk ∈ Ω0, xk−1 ∈ ∂Ω0, V (xk, xk−1) ≤ 1 then xk+1 ∈ Ω0, xk ∈ Ω0

and V (xk+1, xk) < 1. Indeed, V (xk+1, xk) < 1 from (7.16); then expres-
sion (7.19), from the above paragraph, discards the option of xk+1 leaving Ω0.
Hence, if {xk, xk−1} ∈ Π, we have {xk+1, xk} ∈ Π.

To enforce V (xk, xk−1) ≥ 1∀xk ∈ ∂Ω0, xk−1 ∈ Ω0, similar issues to
those arising in (7.18) discussed in footnote 3 apply. Thus, resorting to similar
argumentations gives (7.19).

The last set of SOS constraints must ensure the initial condition set Φ ⊂ Π.
As Φ ⊂ Ω by assumption, Φ ⊂ Θ has to be ensured, too. It can be proved by
enforcing V (xk, xk−1) ≤ 1∀{xk, xk−1} ∈ Φ. A sufficient condition for this
to hold is

1

β2
zTk Y zk − zTk Q−1(x̃k, xk−1)zk ≥ 0

enforced locally in Ω by (7.20), after applying Schur complement and Posi-
tivstellensatz. Details omitted for brevity.

So, {x0, x−1} ∈ Φ ⊂ Π ⊂ Ω, invariance of Π has been ensured by SOS
constraints and Π ⊂ Θ ensures the control action bounds (7.15) are met, so
multipliers arising from (7.23) are valid.

Now, the proven invariant set in the augmented space is not a Lyapunov
function level set: the level set Θ can actually extend outside the local-stability
region Ω, removing conservativeness. So, the discrete-time analog to La-Salle

3Actually, we should prove σj−zeTj KTKejz > 0 via multipliers in the cone (1−zTQ−1z)
and the rest of constraints defining (7.13) and system dynamics (7.23). However, the need of the
change of variable (7.22) forces the use of some constant (S-procedure like) multipliers because
relationship between ρ and x is lost (details omitted for brevity).
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invariance theorem needs to be invoked: the system will converge to the largest
invariant set in ∆V = 0, and only the origin verifies the zero-increment con-
dition (details omitted for brevity).

Remark 7.1. With Q(x̃k), zk = T (x̃k)xk and u = −K(xk)zk, Theorem
7.1 reduces to cases in Xu, Xie and Wang (2007); Tanaka, Ohtake and Wang
(2008). A more general version encompassing the “natural” case V = zTk Q(xk)
zk may be crafted by letting Q(xk, xk−1). In that case, the SOS problems
would involve variables {xk, xk−1, xk+1}. However, in order to keep convex-
ity, new multipliers analog to (7.21) are needed, with additional φc and φci
now referring to the relationship between xk and xk+1. Details are omitted for
brevity.

Remark 7.2. Presence of xk−1 in Q instead of only Q(x̃k) (or Q(xk), remark
above), allows controller M(xk, xk−1) to take into account present and past
information, so it provides more degrees of freedom to find a solution. Note
also that, even if, of course, an undelayed controller u(xk) achieving the same
performance will likely exist, maybe it cannot be obtained with convex SOS
conditions.

In this approach, the bilinearity has been resolved by conceiving a full-rank
matrix [E E⊥] and an implicit change of coordinates, so that:

(a) In the nullspace of B, we can add an arbitrary multiplier because the
control action and the matrix K do not appear. Also, the Lyapunov
function can depend on Exk due to the nullification of B. So, no con-
servatism from the “delay” trick is induced in this subspace.

(b) In the image space of B, in order to avoid decision variables in “K”,
the actual control variable must be kept. Then, as H(u − Kz) would
be bilinear (due to the product of multiplier H and controller K deci-
sion variables), saturation constraints on u should be added either by
Positivstellensatz conditions or, as we chose, by convex-hull argumen-
tations. This may be conservative (we are only considering bounds on
u independent of decision variables, instead of u = Kz) but allows
for more general Lyapunov functions and controllers which effectively
achieved improved results. See Example 7.3.1.

Remark 7.3. In discrete-time, Lyapunov-Krasovskii (LK) functions are actu-
ally a particular case of generic Lyapunov functions of an augmented finite-
dimensional realization (well known, for instance in Hetel, Daafouz and Iung
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(2008); Gonzalez, Sala, Garcia and Albertos (2013)). From the realization
ψk = (xk xk−1)T so

ψk+1 =

[
A−BK 0

I 0

] [
zk
zk−1

]
it can be proved that, using a candidate “full” Lyapunov function

Q =

[
P11 P12

(∗) P22

]
all blocks except P11 must forcefully be zero in the linear case, and also if
changes of variable leading to (7.17) are enforced. So, this is the motivation
on why (7.10) is taken as a LK candidate (equivalent Lyapunov function of the
augmented system) instead of other more complex constructions which would
not be useful with the proposed changes of variables and developments.

7.2.1 Extension to fuzzy-polynomial systems

The above design methodology can be extended to a more general class of
nonlinear systems. In particular, the ones which can be expressed as a fuzzy-
polynomial model in the form

xk+1 =
r∑
i=1

µi(xk)Ai(xk)xk +B(xk)uk (7.24)

where x, u are as in (7.2) and µ are the membership functions of the fuzzy
model. The problem is addressed, in a preliminary way, in the conference
paper Pitarch and Sala (2013b).

Consider now a particularization of (7.10) as a candidate Lyapunov func-
tion

V (xk, xk−1) = xTk P
−1(xk−1)xk (7.25)

and a state-feedback control law (7.11) such thatK(xk, xk−1) = M(xk, xk−1)
P−1(xk−1), being P (xk−1) ∈ Rl×lxk−1

.
Consider also the region of the augmented state

Ω0 = {x : xTUx ≤ R2} (7.26)

Ω = {xk, xk−1 : xk ∈ Ω0, xk−1 ∈ Ω0} (7.27)

and the region (7.14) of initial conditions. Suppose that each individual control
action fulfill the saturation bounds (7.15).
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Corollary 7.2. Assume {x0, x−1} ∈ Φ. Then, system (7.24) with the con-
troller (7.11) is locally stable in the region (7.27), satisfies the control in-
put saturation (7.15) and Φ belong to the domain of attraction of the origin
if the following SOS problem is feasible for all i : 1, . . . , r, j : 1, . . . , b,
h : 1, . . . , 2b:[

Q(xk−1) (∗)T
Ψi(xk, xk−1) Q(xk)

]
− εI −Υ1i ∈ Σxk,x

2l
k−1

(7.28)

xk−1)− εI −W1 −H1 ∈ Σl
xk−1

(7.29)

[
Q(xk−1) (∗)T

ejM(xk, xk−1) σ2
j

]
−Υ2i ∈ Σl+1

xk,xk−1
(7.30)

R2U−1 −Q(xk−1)−W2 −H2 ∈ Σl
xk−1

(7.31)

[
β−2xTk Y xk xTk

xk Q(xk−1)

]
−Υ3i ∈ Σl+1

xk,xk−1
(7.32)

where

Ψi(xk, xk−1) = Ai(xk)Q(xk−1)−B(xk)M(xk, xk−1)),

Υdh = Sdih +

n∑
c=1

Hdcφich, d : 1, 2, 3 (7.33)

being ε > 0 and:

φich = ec(xk −Ai(xk−1)xk−1 −B(xk−1)ūh),
{W1,W2} ∈ ℘l(R2 − xTk−1Uxk−1),

S1ih ∈ ℘2l(R2 − xTkUxk, R2 − xTk−1Ux
T
k−1),

S2ih ∈ ℘l+1(R2 − xTkUxk, R2 − xTk−1Ux
T
k−1),

S3ih ∈ ℘l+1(β2 − xTk−1Y xk−1),

H1c ∈ R(2l)×(2l)
xk,xk−1 , {H2c, H3c} ∈ R(l+1)×(l+1)

xk,xk−1 .

Proof. The proof is easy to derive by following the argumentations of the one
on Theorem 7.1 and the convex-sum property of the fuzzy-vertex models Ai.
Details omitted for brevity.
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Indeed, Corollary 7.2 is a simplified version of Theorem 7.1 in which terms
depending on x̃ have been removed from the Lyapunov function matrix Q in
order to keep linearity on the system’s dynamics

∑
i µiAi and, therefore, being

able to express the Lyapunov stability constraints with the convex hull formed
by all the vertex models.

Remark 7.4. Note that fuzzy controller gains Mi = KiP
−1 may be taken into

account in Corollary 7.2, as well as fuzzy Bi if required (using Polya’s relax-
ations for conditions on whichBiMj appear). However those options have not
been stated in the corollary for clarity reasons and the fact that computational
requirements increase a lot with the amount of new vertex-model conditions.

7.3 Example

Next, an academic example is provided to show the effectiveness of the pre-
sented synthesis methodology.

Example 7.3.1. Consider the following polynomial system:

xk+1 =

[
−0.7 0.05

0.3x2k(1− 0.166x2
1k

) 0.8

]
xk +

[
−0.02

0.05x1k

]
uk (7.34)

The goal will be to obtain the largest possible region of initial conditions
Φ, with a predefined shape, for a fixed degree in the Lyapunov function and
multipliers. Note that, given the model, E = 0, E⊥ = I , zk = xk is the only
option.

Conditions to find a global controller with quadratic V (xk), i.e., constant
Q, are infeasible. Note that setting Q(x̃k) is not a viable option, as E = 0.

Now define a spherical state-space region of interest Ω and a spherical
region of initial conditions Φ as:

Ω = max(x2
1k

+ x2
2k
, x2

1k−1
+ x2

2k−1
≤ 4.52

Φ = max(x2
1k

+ x2
2k
, x2

1k−1
+ x2

2k−1
≤ β2

The objective will be maximizing the size parameter β for fixed control action
bounds σ, |uk| ≤ σ. The maximum degree for M(xk, xk−1) and Q(xk−1) is
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set to two. The parametrizations of Positivstellensatz terms are:

W1 = ψ1(4.52 − x2
1k
− x2

2k
) + ς1(4.52 − x2

1k−1
− x2

2k−1
),

W2 = ψ2(4.52 − x2
1k−1
− x2

2k−1
),

Sdi = ψdi(4.5
2 − x2

1k
− x2

2k
) + ςdi(4.5

2 − x2
1k−1
− x2

2k−1
), d : 1, 2

S3i = ψ3i(β
2 − x2

1k−1
− x2

2k−1
), H1 = H2 = 0

where {ψ, ς} are diagonal matrices of appropiate dimension whose entries be-
long to Σxk,xk−1

.
Constant and delayed Lyapunov functions are compared. The largest β

obtained until infeasibility with the different approaches is shown in Table
7.1. Strict feasible solutions are found by software SOSOPT using the image
representation of the SOS problem (Balas, Packard, Seiler and Topcu, 2012;
Seiler, Zheng and Balas, 2013).

β σ =∞ σ = 6.3 σ = 1.05

Q,M Inf Inf Inf

Q,M(xk) 1.273 1.272 0.937
Q(xk−1),M(xk, xk−1) 1.275 1.383 1.162

* Inf ≡ infeasible

Table 7.1: Comparison of different approaches

The table shows that a linear controller cannot be proved to stabilize the
system in region Ω. A polynomial controller M(xk) using Xu, Xie and Wang
(2007) never needs a bound larger than σ ∼= 6.3 (maximum β is approximately
the same as in the non-saturation case in second column).

The last row shows that improvement with respect to Xu, Xie and Wang
(2007) has been achieved (8.73% increase of β with σ = 6.3 and 24% with
a 6 times lower bound σ = 1.05). Analyzing the results, it is shown that,
without saturation constraints, there is not enough information between past
and present states, so there is no improvement over prior literature results. On
the other hand, if saturation is too restrictive, the percent improvement over
previous work is high, but the proved region remains small.

Computational cost. In order to give a rough idea about the amount of
computing resources required for designing a controller with the proposed ap-
proach in this paper, Table 7.2 shows the amount of RAM memory, the time
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spent in the parsing phase and the time employed by the solver to obtain a
solution for each of the considered approaches with µ = 6.3.

Problem Size RAM Parser Time Solver Time
Q,M 774× 201 10 Mb 1.19 s 0.96 s

Q,M(xk) 784× 201 10 Mb 1.08 s 0.76 s
Q(xk−1)

M(xk, xk−1)
21041× 3320 230 Mb 25.84 s 65.26 s

Table 7.2: Approximate computational resources with the different approaches

The code was executed in an Intel R© CoreTM2 Duo CPU P8600 2.4GHz,
4 Gb DDR3 RAM machine running MATLAB R© R2011b with SOSOPT 2.01
and SeDuMi 1.3.

7.4 Conclusions

This chapter develops a convex stabilization design for polynomial systems,
which reduces some sources of conservatism in previous literature results. An
extension from the classical polynomial Lyapunov function is given based on
including delayed states and knowledge about limits on the control input. Fur-
thermore, it is possible to improve solutions by including information about the
present and past states in the proposed control law. The percentage improve-
ment in performance with respect to prior results increases as input bounds get
smaller. The input bound can be actually considered as a design parameter,
with a maximum value given by the physical saturation limits. The methodol-
ogy has been translated to fuzzy-polynomial systems in a preliminary way.

Future work will be focused on developing refinements for the synthesis
design procedure in order to extend the delayed Lyapunov function technique
to a more general class of nonlinear systems.
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Chapter 8

State Estimation in a 3DoF
Electromechanical Platform

No amount of experimentation can ever
prove me right; a single experiment can

prove me wrong.

Albert Einstein

ABSTRACT: This chapter discusses how the theoretical developments
on polynomial observer design, presented previously in this thesis on
Chapter 6, apply to an experimental bench. The objective is estimating
the unknown (or difficult to measure) speeds in a fixed quadrotor which
will be further required for control tasks on such system. This chapter
tries to verify if the fuzzy-polynomial methodologies are advantageous
over the classical ones from both points of view; modelling accuracy
plus complexity and obtained performance.

Mechatronic systems are usually nonlinear because of trigonometric and
Coriolis-like terms in their differential equation models. Some of these ex-
pressions are polynomials or can be approximated by polynomial ones (or,
ultimately, by linear ones with larger approximation errors). Those mod-
els can be expressed as time-varying polynomial dynamic systems (Section
3.1). Indeed, there exist an amount of applications on where the nonlinear
processes are mainly defined by polynomial nonlinearities (Zhao and Wang,
2008; Peñarrocha, Dolz, Aparicio and Sanchis, 2014). On those cases, the

167
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fuzzy-polynomial modelling and control framework addressed on this thesis
can be helpful to improve over linear or fuzzy TS classical techniques.

The design of state observers for nonlinear systems using TS (or quasi-
LPV) models has been actively considered recently in practical control appli-
cations (Lendek, Berna, Guzmán-Giménez, Sala and García, 2011; Lendek,
Guerra, Babuška and De Schutter, 2010; Bouarar, Guelton and Manamanni,
2013). The proposed polynomial tools are a generalization of them (quasi-LPV
are a particular case of fuzzy polynomial), allowing to obtain better results due
to the lower mismodelling possible with polynomial equations.

The objective of this chapter is designing a discrete-time polynomial ob-
server for a three degrees of freedom (3DoF) fixed quadrotor and validating it
with experimental data. Experiments are presented to show that fuzzy polyno-
mial modelling and SOS tools can be effectively applied in actual applications.
In order to demonstrate the results, this chapter considers the application of the
fuzzy polynomial techniques, previously developed in Section 6.3, to angular
speed estimation on a quadrotor with noisy sensors. A detailed comparative
analysis between fuzzy TS and non-fuzzy (linearised) techniques is reported
too.

Furthermore, in order to get sensible solutions, the chapter discusses a
practical design which proposes a tradeoff between tracking speed versusH∞
worst-case attenuation in a multicriteria setting. The concrete goals are:

1. Developing multiobjectiveH∞ plus decay-rate observers for fuzzy poly-
nomial systems, relaxing conservativeness by adding local information.

2. Adding extra constraints regarding the fastest components of the dynam-
ics, in order to avoid undesirable behaviors in practice due to approxi-
mate discretization.

3. Proposing a practical methodology to choose from the Pareto-front so-
lutions.

4. Comparing the achieved results with other techniques in literature (with
theoretical guarantees absent in linearised designs for nonlinear sys-
tems), and validating the results on an experimental benchmark.

The experimental results presented in this chapter have been published in
the journal paper Pitarch and Sala (2014).

This chapter is structured as follows: Section 8.1 presents the experimen-
tal platform (quadrotor) and its approximate polynomial model, Section 8.2
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presents the considered observer design cases (fuzzy polynomial, TS and LTI)
for comparison, Section 8.3 discusses the many compromises required to craft
a successful engineering application, Section 8.4 presents a comparative anal-
ysis between linear, TS and polynomial observers, both theoretically and ex-
perimentally. Finally, Section 8.5 provides the conclusions of this experiment.

8.1 Description and modelling of the test setup

The experimental platform chosen to evaluate the performance of the designed
observers is a three degrees of freedom (3DoF) system provided by QuanserTM

(Quanser, 2011). The bench platform, shown in Fig. 8.1, consists in a quadro-
tor mounted on a 3DoF pivot joint, such that the body can freely move in
roll, pitch and yaw. The data acquisition tasks and the implementation of re-
quired control algorithms were carried out in a PC running Linux-RT on top
of an Ubuntu 12.04 installation. The communications between the quadrotor
platform and the PC were made with a PMC I/O board. The sensors of the
platform are encoders that measure the position of the three orientation-axes
of the quadrotor φ, θ and ψ. The control inputs are the voltages V1, V2, V3

and V4 applied to each of the 4 propellers of the quadrotor. High-resolution
encoders are available to estimate the “true” speeds, but intentionally, a ran-
dom noise has been added to them in order to evaluate the behavior with much
lower-quality sensors. Indeed, the objective of the experiment is testing the
differences between linear and polynomial approaches in far-from-ideal cases:
as expected from common sense, if sensors were “excellent” then any opti-
mal observer design would, basically, disregard the (more uncertain) model
equations.

The author is grateful to Ph.D. students A. Berna, J. Guzmán and associate
professor P.J. García for their laboratory data acquisition work.

An approximate non-linear model of the 3DoF platform is presented in the
following equations giving accelerations in roll, pitch and yaw coordinates, as
given in Bouabdallah (2007):

φ̈ =
Jrθ̇

Ixx
ug +

Iyy − Izz
Ixx

θ̇ψ̇ + u1

θ̈ =
Jrφ̇

Ixx
ug +

Izz − Ixx
Iyy

ψ̇φ̇+ u2

ψ̈ =
Ixx − Iyy

Izz
θ̇φ̇+ u3

(8.1)
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Figure 8.1: The Quanser quadrotor 3DoF system.

where the gyroscopic effects in the roll and pitch dynamics contain the term

ug(V1, . . . , V4) = Kv(V1 + V3 − V2 − V4) (8.2)

which is the sum of the applied (known) voltages. Furthermore, each acceler-
ation input (u1, u2, u3) from the nonlinear propellers’ actuation, depends on
the applied voltages as follows 1:

u1 =
blK2

v (V 2
2 − V 2

4 )

Ixx

u2 =
blK2

v (V 2
3 − V 2

1 )

Iyy

u3 =
dK2

v (V 2
1 − V 2

2 + V 2
3 − V 2

4 )

Izz

(8.3)

The symbols used and their values, where applicable, are given in Table 8.1
(extracted from Quanser (2011)). The terms Jr θ̇

Ixx
Kv(V1 + V3 − V2 − V4) and

Jrφ̇
Ixx

Kv(−V1−V3 +V2 +V4) denote gyroscopic effects. The terms Iyy−Izz
Ixx

θ̇ψ̇,
Izz−Ixx
Iyy

ψ̇φ̇, Ixx−IyyIzz
θ̇φ̇, denote Coriolis effects.

1The square is shorthand for sign(Vi)V
2
i to account for upwards and downwards thrust.
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Symbol Meaning Type Unit
φ Roll angle Measured rad
φ̇ Roll angular velocity Estimated rad/s
θ Pitch angle Measured rad
θ̇ Pitch angular velocity Estimated rad/s
ψ Yaw angle Measured rad
ψ̇ Yaw angular velocity Estimated rad/s
Vi Voltage to propeller i Known input V
Kv Transformation constant 54.945 rad s/V
Jr Rotators inertia 6 · 10−5 kgm2

Ixx Inertia X-axis 0.0552 kgm2

Iyy Inertia Y-axis 0.0552 kgm2

Izz Inertia Z-axis 0.1104 kgm2

b Thrust coefficient 3.9351 · 10−6 N/Volt
d Drag coefficient 1.1925 · 10−7 Nm/Volt
l Distance pivot-motor 0.1969 m
m Mass 2.85 kg
g Gravity acceleration 9.81 m/s2

Ts Sampling time 0.005 s

Table 8.1: Quadrotor variables and parameters

8.1.1 Fuzzy modelling

Fuzzy-polynomial model. The bounds on the term ug can be computed
based on the bounds of the voltage input, and they are a lower bound ug =
4KvVmin and an upper one ug = 4KvVmax. Following well-known proce-
dures (Rugh and Shamma, 2000), if we define the weighting functions

µ1(V1, . . . , V4) =
ug − ug(V1, . . . , V4)

ug − ug
(8.4)

µ2(V1, . . . , V4) = 1− µ1(V1, . . . , V4) (8.5)

then, the term ug is expressed as ug = µ1ug + µ2ug. Note that the arguments
to µi and ug are omitted for brevity.

With the above input voltage bounds and taking x = (φ, φ̇, θ, θ̇, ψ, ψ̇) as
states, denoting as premise variables z(t) = (V1, . . . V4), the quadrotor model
(8.1) can be expressed at sample time Ts = 5 ms (by Euler-discretization
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method) in the form:

xk+1 =

2∑
i=1

µi(zk)Pi(xk) + B(uk) + TsEwk

yk = C(xk) +Rνk (8.6)

where xk, zk denote the samples x(kTs), z(kTs), model matrices are given by

P1(xk) =


x1k + 0.005x2k

x2k + 0.012x4k − 0.005x4kx6k
x3k + 0.005x4k

x4k − 0.012x2k + 0.005x2kx6k
x5k + 0.005x6k

x6k

,

P2(x) =


x1k + 0.005x2k

x2k − 0.012x4k − 0.005x4kx6k
x3k + 0.005x4k

x4k + 0.012x2k + 0.005x2kx6k
x5k + 0.005x6k

x6k

,

B(uk) =


0

0.005u1k
0

0.005u2k
0

0.005u3k

, C(xk) =

[
x1k
x3k
x5k

]
,

x ∈ R6 is the state, u ∈ R3 is the control input, y ∈ R3 is the output and w ∈
R6, ν ∈ R3 are unknown process disturbance inputs and measurement noise
respectively. Matrices E and R are scaling matrices for expected disturbance
and noise powers respectively, later specified. In this way, we may assume that
the norm of the vector [wT νT ]T is 1 in later designs without loss of generality.

The speeds of the quadrotor η = (φ̇, θ̇, ψ̇) = (x2, x4, x6) will be assumed
to lie in the operating region:

Ωx = {x2, x4, x6 : ηT η ≤ R2
max}, (8.7)

with R2
max = 3

(
π
2

)2. The above bound include a hypercube centered in the
origin spanning the interval [−π/2, π/2] on each coordinate.
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Takagi-Sugeno model. In order to compare the experiment with existent re-
sults in TS fuzzy literature, the quadrotor dynamics (8.1) was also modeled as
a TS system (linear consequents):

xk+1 =

8∑
i=1

µi(zk)Aixk + Buk + TsEwk

yk = Cxk +Rνk (8.8)

The model had 8 vertices, because the Coriolis terms (products of angular
speeds), say for instance φ̇θ̇, had to be modelled as a TS model interpolating
between vertices pθ̇ and qθ̇ where p and q are constants denoting a priori
chosen speed bounds φ̇max and φ̇min, respectively; the resulting membership
function depends on φ̇. Details on the model and procedure can be consulted
in Lendek, Berna, Guzmán-Giménez, Sala and García (2011).

Linear model. In order to compare with standard linear time-invariant tech-
niques, the linearized model of the quadrotor around x = 0, discretized by
Euler method (as the nonlinear model) for Ts = 5 ms, is:

xk+1 = Axk + Buk + TsEwk

yk = Cxk +Rνk (8.9)

where:

A =



1 0.005 0 0 0 0
0 1 0 0 0 0
0 0 1 0.005 0 0
0 0 0 1 0 0
0 0 0 0 1 0.005
0 0 0 0 0 1



B =



0 0 0
0.005 0 0

0 0 0
0 0.005 0
0 0 0
0 0 0.005

 , C =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0


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8.2 Observer design

This section discusses the observer design for the particular case of the quadro-
tor discrete-time model. First, by following the design methodologies pre-
sented in Chapter 6, and given the above presented fuzzy models of the quadro-
tor, a discrete fuzzy-polynomial observer (6.4) will be addressed. Afterwards,
TS and linear observers will be addressed too in order to compare with the
fuzzy-polynomial one.

Fuzzy polynomial observer. In order to carry out observer design, the ob-
server error ek = xk − x̂k follows the equation (6.20). The observer speed
error (es = η − η̂ where η̂ are the estimated speeds) is assumed to lie inside
the same sphere as the actual speed, see (8.7), i.e.:

Ωe = {eTs es ≤ R2
max}. (8.10)

From the above considerations, on the following we will assume that the state
and estimation error do not leave expected operation regions e ∈ Ωe and x ∈
Ωx, being Ωe and Ωx described in (8.10) and (8.7) respectively.

Then, by considering a common quadratic candidate Lyapunov function
on the error in the form V (e) = eTQe and the above particular operating
regions for the quadrotor, a fuzzy polynomial observer (6.4) can be designed
by Theorem 6.2.

Remark 8.1. In the particular fuzzy-polynomial model of the quadrotor (8.6),
as the arguments of µi are measurable (z are the input voltages), on-line im-
plementation of (6.4) can be carried out with very low computational require-
ments.

Fuzzy TS observer. With some manipulations, existent results in fuzzy TS
observer literature can be obtained as a particular case in a straightforward
way. Note, however, that in the plant in consideration in this application, TS
modelling has an important side effect: the observer problem gets converted
to one with unmeasurable premises, as the memberships must be evaluated
with speed estimates η̂ instead of the actual ones η. This did not occur in
the polynomial case, and it will lead to an important performance decrease as
discussed in the experimental results (Section 8.4) and will require theoretical
refinements, addressed next.
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With the TS model (8.8), the observer error dynamics is given by

ek+1 =
8∑
i=1

µi(x̂k)((Ai − LiC)ek − LiRνk) + TsEwk

+

8∑
i=1

(µi(zk)− µi(ẑk))Aixk (8.11)

and the observer-model mismatch must fulfill a Lipschitz-like bound∥∥∥∥∥
8∑
i=1

(µi(z)− µi(ẑ))Aix

∥∥∥∥∥ ≤ σ ‖e‖ (8.12)

in order to proceed further and set up LMI’s (Lendek, Berna, Guzmán-Giménez,
Sala and García, 2011; Lendek, Guerra, Babuška and De Schutter, 2010). The
bound σ depends on the shape of the memberships (actually, bounds in ‖∂µ∂x‖),
the model Ai and the modelling region Ωx. For this quadrotor case, the taken
bound is σ = 0.003. See the above cited references for details about how to
compute it.

Then, if an analogue development to Theorem 6.2 is carried out for TS
models (adding, however, the Lipschitz-bound construction), the SOS results,
as a particular case, get converted to the classical LMIs (basically, similar
to the ones reported in Lendek, Berna, Guzmán-Giménez, Sala and García
(2011); Lendek, Guerra, Babuška and De Schutter (2010)) given in the follow-
ing corollary (details omitted for brevity):

Corollary 8.1. If the quadrotor’s TS model (8.8) is used and non-polynomial
fuzzy observer gains Li are to be designed, the observer is stable if the follow-
ing LMI problem is feasible for α > 0 fixed and i = 1, . . . , 8:

Minimize γ such that
Q � 0 (8.13)


Q−DTD − τ1σ2I (∗) 0 0 0

QAi −HiC Q (∗) (∗) Q
0 TsE

TQ γI 0 0
0 −RTHT

i 0 γI 0
0 Q 0 0 τ1I

 � 0 (8.14)

 exp(−2αTs)Q− τ2σ
2I (∗) 0

QAi −HiC Q Q
0 Q τ2I

 � 0 (8.15)
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ATi Q− CTHT
i +QAi −HiC � 0 (8.16)

where, τ1 > 0 and τ2 > 0 are Lagrange multipliers, γ > 0, and the fuzzy
observer gains can be obtained by Li = Q−1Hi.

LTI observer design. Furthermore, if the quadrotor’s linearized model (8.9)
is used (Ai = A), the well-known LTI observer L design (with the same
performance criteria) trivially results from setting σ = 0 in the above corollary,
which also leads to Corollary 6.1.

8.3 Design compromises in practice

There are some issues to be discussed in order to obtain acceptable responses
in practice from the above observer design techniques, addressed next.

8.3.1 Disturbance rejection vs. decay trade-off

In many practical cases, such as the application here discussed, there is a trade-
off between different relevant aspects:

• Performance, i.e., trying to maximize decay-rate parameter α in (6.29)
for fast convergence from nonzero initial conditions. This point is very
important from the tracking point of view problem.

• Worst-case disturbance rejection, i.e., robustness, asH∞ bounds can be
understood as robustness margins to unstructured time-varying uncer-
tainty via the small-gain theorem (Khalil, 2002).

• Actual-case disturbance rejection (i.e., actual mean error performance
with the random noises, operating ranges and modelling errors of a test
experiment).

Note that H∞ disturbance rejection design is minimizing the effect of the
“worst-case” disturbance (which can be either an external disturbance or a
modeling error). However, it does not directly minimize the effect of “actual”
disturbances (particularly, zero mean random noise).

From the above considerations, a better H∞ attenuation bound (in the de-
sign phase) may result in, for instance, a larger accumulated integral squared
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error index (ISE) in a particular experiment (compared to an alternative design
with theoretically worseH∞ bound).

Moreover, in order to minimize the effect of the worst-case disturbance,
the obtained gains may be very small so achieved decay performance is very
bad. On the other hand, decay-rate optimization does not take into account the
affordable amount of risk if the worst-case disturbance appears. Also, desired
decay-rate performance is very related to the amount of random noise in sensor
readings.

Figures 8.2a and 8.2b illustrate the above-discussed extremal cases2. For
instance, with a noisy sensor, the optimal H∞ estimated speeds are smooth
(noise is very-well filtered) but with an unacceptable error from tracking point
of view (Figure 8.2a). If a fast decay rate is required, the estimated speeds are
also useless because there is a high amount of accumulated error due to noise
spikes (Figure 8.2b).

Therefore, as there is a trade-off, there is no single “optimal” observer de-
sign, but a collection of optimal ones (the multicriteria Pareto front (Marler
and Arora, 2004; Miettinen, 1999)). For instance, the Pareto front can be built
by; (a) providing the fastest decay rate for a given robustness bound, (b) con-
versely, the better robustness bound for a given decay rate or (c) a weighted
combination of both following some importance criteria.

Hence, it’s a choice of the end-user where to lie in the tradeoff: in practice
both extreme designs may be useless (Figure 8.2) whereas an intermediate one
(Figure 8.3) will be satisfactory3 for the “actual case” performance.

8.3.2 Proposed methodology

The above design compromises suggest the following methodology in order to
select, in practice, a particular observer:

I. As the actual disturbances, model errors and the to be tracked signal
bandwidth in practical operation are not known with precision at design
time, obtain a whole Pareto-front for multicriteria H∞ plus decay-rate
settings.

II. Carry out a representative experiment and collect input-output data.

2Data come from the actual experimental platform, but the discussion in this section applies
to more general settings.

3The referred figures have been obtained with the experiments and datasets discussed in
Section 8.4.
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Figure 8.2: Useless speed estimates in the Pareto front. Red line: actual speed,
blue line: estimated speed.
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Figure 8.3: Acceptable speed estimates (same sensor data as Figure 8.2).

III. Test the different observers in the Pareto front over the same data (single
experiment from step II).

IV. Evaluate achieved performance (see details on the particular setting for
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the 3DoF system in Section 8.4.2.2).

V. Choose the design which has achieved the best experimental perfor-
mance with the “actual case” disturbances and modelling errors.

In this way, the “practically” optimal solution is selected from a set of
multiple “theoretically” optimal ones.

8.3.3 Choice of disturbance size parameters

Even if the presented results are correct in theory, there is no clear rule on how
to choose observer design parameters E, R, D. Indeed, the main idea is that
the resulting time response of the observer error will depend on:

• The proportion between process noise/model error E and sensor noise/-
modelling error R.

• The accuracy of the model (expecting polynomial models to be more
accurate than plain linearized ones).

• The relative proportions between the elements ofD: giving more weight
to some position or speed errors trades off a larger error for the less
weighted variables.

• The decay-rate parameter discussed above.

For simplicity, from the above considerations, it is suggested to choose
simple structures for the design matrices (such as diagonal), and tune actual
performance of the observer via the decay-rate parameter instead of devoting
too much time in modifying such matrices.

8.4 Experimental results

The above results have been experimentally tested on the platform described
in Section 8.1.

The objectives of the experiment are; (a) showing that, with actual exper-
imental data, reasonable solutions regarding the performance/robustness are
achieved with the proposed polynomial design and (b) showing that the use of
polynomial techniques dominate the non-polynomial ones based on fuzzy TS
models or on linearised models.
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The expected disturbance, modelling errors and noise sizes on this appli-
cation, jointly with considerations discussed in Section 8.3, made us select the
following scaling matrices in order to run the optimization problem:

E =


0 0 0

0.02 0 0
0 0 0
0 0.02 0
0 0 0
0 0 0.02

 R =

[
0.01 0 0

0 0.01 0
0 0 0.01

]

Indeed, by definition process disturbances on the speed dynamic equations
do not exist. The constant weighting matrix D in (6.26) is chosen as follows

D = diag(0.001, 0.1, 0.001, 0.1, 0.001, 0.1);

in order to take into account speed estimation errors as the objective of the
experiments.

A Pareto front with different decay rates, obtaining different suboptimal
H∞ norm bounds, is made for different observer designs (linear, TS and poly-
nomial), being [yk − Cx̂k] the output estimation error at sample k.

Note that the decay-rate parameter is used to tune the aggressiveness of the
observer instead of the manipulation of the disturbance-size design weights4.

The compared observer design strategies were:

• [LM-D]: x̂k+1 = Ax̂k + Buk − L[yk − Cx̂k], classical linear observer
design with linearized model (Corollary 6.1 with Ai = A, µ = 0).
Without theoretical guarantees in practice (only for infinitesimally small
disturbances and initial conditions on state and estimated state).

• [LM-A]: x̂k+1 =
∑2

i=1 µiAi(x̂k) + B(uk) − L[yk − C(x̂k)], analyzes
the above LM-D obtained linear gain with the actual fuzzy polynomial
model (Theorem 6.2 with fixed Li(yk, x̂k) = L). This yields a posteri-
ori guaranteed performance in all operating region.

• [TS-8GD]: x̂k+1 =
∑8

i=1 µi(Aix̂k−Li[yk−Cx̂k])+Buk, optimal LMI
design with fuzzy Takagi-Sugeno model (Corollary 6.1) and 8 fuzzy ob-
server gainsLi. Guaranteed a priori performance in all operating region.

4Actually, quite a few other values for those matrices were tested, but they are not reported
because results are very similar to the ones presented (once the suitable Pareto-front decay-rate
tuning is accounted for).
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• [TS-1GD]: x̂k+1 =
∑8

i=1 µi(Aix̂k − L[yk − Cx̂k]) + Buk, optimal
LMI design with fuzzy TS model (Corollary 6.1) and one observer gain
Li = L. Guaranteed a priori performance in all operating region.

• [TS-1GA]: x̂k+1 =
∑2

i=1 µiAi(x̂k) + B(uk) − L[yk − C(x̂k)], ana-
lyzes the above obtained single-gain observer with the fuzzy polynomial
model (Theorem 6.2 with fixed Li(yk, x̂k) = L). A posteriori guaran-
teed performance in the operating region.

• [SOS-2G]: x̂k+1 =
∑2

i=1 µi(Pi(x̂k) − Li[yk − C(x̂k)]) + B(uk), op-
timal SOS design with fuzzy polynomial model (Theorem 6.2), and 2
non-polynomial5 observer gains. Guaranteed a priori performance in
all operating region.

Computational cost. In the off-line gain computation, with the chosen quadro-
tor case, Table 8.2 shows the demanded computational resources on a machine
with Windows R© XP, Intel Pentium R©III at 640 MHz and 512 Mb of RAM.
Only the two more demanding alternatives (TS-8GD and SOS-2G with degree
of multipliers s, q equal to 2) are shown for brevity. The results were obtained
using MATLAB R© 6.5 R13, YALMIP R20110318 and SeDuMi 1.21.

HH
HHHH

Problem size RAM
YALMIP

time
Solver
time

SOS-2G 10262×1180 140 Mb 31.48 s 20.05 s
TS-8GD 11596×168 4 Mb 2.17 s 13.02 s

Table 8.2: Approximate computational resources for design.

8.4.1 Pareto-front results

The results for the six different strategies are shown in Table 8.3. The cor-
responding Pareto fronts for each design strategy are depicted in Figure 8.4a
and their corresponding guaranteed performance on the whole operating re-
gion are depicted in Figure 8.4b. Basically, looking at the latter figure, the

5Polynomial techniques presented in Section 8.2 allow us to design polynomial observer
gains Li(y, x̂). However, in this quadrotor particular case the use of polynomial terms in
observer gains didn’t seem to obtain better results than those with constant gains Li, above
reported.
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H
HHH

HH

α 1.5 6 10 14 18 22

LM-D 1.628 6.45 11.06 15.89 20.9 26.09
TS-8GD 13.94 30.64 50.23 73.95 102.87 138.65
TS-1GD 14.89 32.63 52.87 77.35 107.25 144.46
SOS-2G 5.986 9.915 14.36 19.18 24.26 29.57
LM-A 22.37 39.44 31.34 30.64 33.07 36.93

TS-1GA 9.708 22.3 35.3 49.71 65.65 83.21

Table 8.3: Set of optimal solutions in the Pareto-front sense with different
approaches (rows 1-4). Rows 5-6: a posteriori analysis results of designs in
rows 1 and 3.

overall conclusion is that the fuzzy-polynomial approach dominates the linear
and TS alternatives in both performance criteria.

For better clarity, let us discuss in detail the meaning of all the data in the
referred table and figures:

• LM-D performances (row 1) assume that the process is linear, valid
when the operation region is infinitesimal. Hence, they are meaning-
less, overly optimistic. LM-A (row 5) evaluates the design (a posteriori)
in the non-infinitesimal region of study with polynomial models, and re-
sults are more meaningful (markedly worse, as expected). The blue line
in Figure 8.4a depicts the meaningless linear performance, whereas the
same line in Fig. 8.4b depicts the results in row 5.

• Performances obtained with the TS model and 8 fuzzy gains (TS-8GD,
row 2) dominate those obtained with single gain (TS-1GD, row 3) in the
Pareto sense, as intuitively expected (the table data appear in Figure 8.4a
with green and purple lines, respectively). However the improvement
of using fuzzy observer gains is not very significant, so the choice of
using a single gain appears to be justified in the present application: a
posteriori evaluation is carried out only for TS-1GD as TS-8GD gives
very similar results.

• Valid TS designs (TS-8GD, TS-1GD) are very conservative due to the
need of fulfilling the Lipschitz condition (8.12). This can be noted by
comparing them with the fuzzy polynomial design results (SOS-2G, row
4 in Table 8.3 and orange lines in Figure 8.4), even in an a posteriori
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Figure 8.4: Representation of results in Table 8.3.

analysis (TS-1GA). Indeed, the purple TS-1GA line in Figure 8.4b is
dominated by the orange SOS-2G one.

• A posteriori performance of TS designs outperform linear ones for low
decay requirements, as comparing rows 5 and 6 in Table 8.3 and its cor-
responding (blue and purple) curves in Figure 8.4b illustrates. However,
for high decays, the need of ensuring Lyapunov constraints with the Lip-
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schitz bound (8.12) seems to make the TS design very conservative.

• Using the SOS-2G design (row 4), the worst-case disturbance attenu-
ation is always better than the obtained with all other LMI strategies
which ensure guaranteed performance for the same decays (i.e., rows
2 and 3), also better than the polynomial analysis of LM and TS-1G
in rows 5 and 6. Hence, the theoretical solutions of the SOS strategy
dominate linear and TS ones (see Figure 8.4b), as intuitively expected.

Based on the above considerations, the best chosen design will be the fuzzy
polynomial model and SOS observer design approach (Table 8.3, SOS-2G),
as clearly shown in Figure 8.4b. The theoretical results must, however, be
confronted to actual experimental performance, as done next.

8.4.2 Evaluation of final design

Considering the above compromises, this section presents the final chosen ob-
server striking a good performance/robustness balance for this application and
evaluates it on the experimental platform.

8.4.2.1 Data generation.

With the objective of validating the SOS proposed approach, the system has
been subjected to an excitation achieving large enough angular speeds for the
nonlinear terms to be significant. Hence, a sinusoidal excitation was intro-
duced in ψ from second 5 till 60 and a reference in θ and φ changes every
30 seconds from 10 to −10 degrees to an underlying low-gain stabilizing PI
controller, providing excitation in these degrees of freedom. The collected
input-output data appear in Figures 8.5 and 8.6.

The initial conditions were close to the linearization point, and in the first 5
seconds no input excitation has been applied. The set of data has been obtained
during a device maneuver using a direct low-noise encoder. This data confirms
that the system states satisfy the bounds from Section 8.1.

The objective is to check performance of observer designs in a demanding
environment (otherwise, everything works perfectly if sensors are very good).
In order to do that, the encoder signals have been intentionally corrupted with
random noise (variance 0.001 rad) plus a chirp sinusoidal signal (amplitude
8 · 10−4 rad and frequency varying between 0.01 and 10 Hz in cycles of 5 sec)
simulating a deterministic decalibration.
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Figure 8.5: Measurements

8.4.2.2 Evaluation of observer performance

Given the Pareto-front designs in Table 8.3, the problem now is selecting one of
them as the chosen design for the application. Let us follow the methodology
in Section 8.3. In order to evaluate observer performance, a “precise” state
trajectory is required. With that trajectory, actual observer performance will
be evaluated in terms of integral square error (ISE).

The direct low-noise encoder measurements have been used for that task.
The position estimates are precise, but, as there is no direct access to the speed
state variables, a noncausal zero-phase filter (filtfilt in MATLABr with
0.5/(1−0.5z−1) in forward and reverse time, plus further noncausal numerical
differentiation (z−z−1)/(2Ts) in the speed coordinates) has been used to com-
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Figure 8.6: Excitations

pute (Merry, de Molengraft and Steinbuch, 2010) (off-line) a target “actual”
value of speeds from clean position measurements (data in Figure 8.5). The
resulting data have been assumed to be the “true” speeds to which observers
should converge (note that observers are under the constraints of dealing with
noise and being causal).

Evaluating the observer ISE, we finally selected the options with decay
rate of α = 18: it offered a good enough response from tracking point of view
and a reduced ISE compared to other Pareto-front candidate solutions.

8.4.2.3 Adopted solution

Let us compare the LM-A option (designed with linearised model) which, in
theory, gives guaranteed performance (α = 18,H∞ = 33.07), with the fuzzy
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TS single-gain design TS-1GA (α = 18,H∞ = 65.65) and the polynomial
SOS-2G design (α = 18,H∞ = 24.264). Note that, thanks to the polyno-
mial techniques, the SOS designs are more robust than the linear or TS ones
from a theoretical point of view (lower H∞ bound for the same decay rate).
The selected observer designs are tested and compared on the quadrotor. The
obtained gains are:

LLM−A =


0.713 0 0
11.253 0 0

0 0.713 0
0 11.253 0
0 0 0.713
0 0 11.253



LTS−1GA =


1.163 0 0
52.013 0 0

0 1.163 0
0 52.013 0
0 0 1.191
0 0 53.61



L(1)SOS−2G =


0.73 −0.062 0
12.51 −0.889 0
0.062 0.73 0
0.889 12.51 0

0 0 0.82
0 0 14.238



L(2)SOS−2G =


0.73 0.062 0
12.51 0.889 0
−0.062 0.73 0
−0.889 12.51 0

0 0 0.82
0 0 14.238


The following evaluates how the theoretical advantage translates into ex-

perimental behaviour.
The accumulated integral square errors (ISE) are shown in Figure 8.7. The

LM-A and TS-1GA observers have the same decay rate performance as the
optimal SOS-2G. However, the improvement of the SOS polynomial design
with respect to the alternatives is confirmed in this experiment (12.5% less
ISE than LM-A and, roughly, less than half than TS-1GA). Note that the non-
measurable premise TS-1GA setup (σ = 0.003) results in an overly conserva-
tive setup whose theoretical performance and experimental ISE are far higher
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than the other setups6.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Time (s)

IS
E

 

 

SOS−2G
LM−A
TS−1GA

(a) Pitch speed ISE

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

Time (s)
IS

E

 

 

LM−A
SOS−2G
TS−1GA

(b) Yaw speed ISE

Figure 8.7: Experimental ISE computation

In summary, the results show that:

• The polynomial methodology clearly outperforms the TS design with
unmeasurable premises TS-1GA.

• The polynomial setup obtains the best theoretically guaranteed worst-
caseH∞ bound (both in the a priori formal design and in the a posteriori
stability analysis step), see Table 8.3.

• In actual-case performance the linear-only and polynomial observer se-
tups achieve similar performance, beating the TS observer7. Note also
that this experiment is likely not the “worst case” situation.

After the above confirmation that fuzzy polynomial techniques outperform
TS and linear results, a detail of the time response with the finally chosen so-
lution is shown in Figure 8.8, where roll dynamics has been omitted because

6Note, however, that TS-1GA and the SOS-2G are able to ensure validity of the design a
priori: the underlying assumptions in the linear case do not actually hold in the experimental
setting and its validity must be proved a posteriori (LM-A), as discussed before, so linearised
theoretical and actual performance are a matter of "pure chance".

7In Lendek et al. (2011) the TS σ = 0.003 observer outperformed the linear observer;
however, that was due to the fact that the actual implementation of the linear observer used the
linearized model both in the "prediction" step xk+1 = Axk + Buk and in the correction one
L[yk−Cx̂k]. In the work presented here, the full nonlinear model xk+1 = f(xk, uk) has been
used in the prediction step, avoiding the unnecessary introduction of such linearization error.
This produces, a much accurate linear observer performance than in Lendek et al. (2011).
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Figure 8.8: Speed estimation with causal observer versus noncausal filter.

there exists symmetry with pitch and, therefore, results are similar. The tempo-
ral evolution shows that the SOS-2G observer design can follow the real states
without a high noise amplitude.

8.5 Conclusions

In this chapter, a discrete-time polynomial observer design for state estimation
of an electromechanical plant (fixed quadrotor) with fuzzy polynomial model
is presented. The design setting is multiobjective: both decay rate and H∞
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conditions are used. Fuzzy TS designs (and, of course, linearized time invari-
ant ones) can be considered as particular cases of the proposed methodology.

The obtained observer has been implemented and checked in an experi-
mental quadrotor platform, comparing with the fuzzy TS and classical linear
designs. The results clearly show that a mixedH∞/decay design is needed, in
order to achieve observers which are both fast and have reasonable worst-case
attenuation guarantees. Furthermore, it is shown that linear and TS approaches
have worse theoretical performance guarantees in a polynomial system. Ob-
viously, the possible improvements of polynomial approaches need a model
accurate enough so that the linearization errors (which polynomials avoid) con-
tribute significantly to the overall uncertainty.

In actual experimental data, polynomial-based designs achieved a similar
behaviour to the linear ones when close to the linearization point and a 12%
lower integral square error when operating in high-speed trajectories away
from it. However, the amount of conservatism introduced in the TS design with
non-measurable premises makes its performance decrease, being even worse
than that obtained by the linear observer. Importantly, the proposed techniques
allow for theoretical guarantee of performance, which is not the case in the
naive extrapolation of linearised designs far from the equilibrium point.



Chapter 9

Parameter Estimation in the
Air Path of a TCSI Engine

Aerodynamics is for losers who can’t build
good engines.

Enzo Ferrari

ABSTRACT: This chapter deals with the nonlinear dynamics of the air
system in a turbocharged spark ignited (TCSI) engine and proposes a
preliminary strategy based on fuzzy polynomial techniques. The main
goal is applying some theoretical developments of this thesis in order
to design an observer for parameter estimation, which are unknown a
priori and very important for further control strategies. The adopted
framework handles easily the high nonlinearities and facilitates consid-
erably the stability analysis of the whole turbocharged air system. The
proposed design strategy considers, not only estimation error stability,
but also a trade-off between speed convergence performance and distur-
bance rejection.

Nowadays, environmental constraints and custormer’s high demands in
terms of efficiency and performance make vehicle design and manufacturing
a big challenge. Combined technology of turbocharging with downsizing in
IC engines is fully exploited only with an efficient air path management sys-
tem. In this context, the knowledge of the dynamics in the manifold (mass
flow and pressure) is essential to improve control tasks, which translates into

191
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better engine efficiency/performance and, therefore, meeting the new demand
requirements.

Modelling of the air path and control in such kind of applications for
IC engines have been recently considered using fuzzy TS approaches (Khiar,
Lauber, Floquet, Colin, Guerra and Chamaillard, 2007; Khiar, Lauber, Guerra,
Floquet, Colin and Chamaillard, 2008; Leroy, Chauvin and Petit, 2009). This
chapter proposes an alternative way to do it by using fuzzy polynomial tech-
niques.

The bench platform is a turbocharged spark ignition engine (TCSI) mounted
in actual cars from the manufacturer Renault. The goal of the experiments
presented in this chapter is showing the usefulness of fuzzy polynomial tech-
niques to deal with the nonlinear modelling and observer design for the air
path. Moreover, dealing with unknown parameters as new state variables is
easier by polynomial techniques: indeed products of parameters and states are
just polynomials. This fact allows reducing complexity in the modelling and
further design phases, in comparison to classical TS designs.

In a similar way to the application presented in Chapter 8, a combinedH∞
attenuation and decay-rate performance is used at the design phase in order to
obtain a successful practical solution. The concrete goals are:

1. Designing a fuzzy polynomial observer in order to estimate the air mass
flow and pressure in the manifold plus the unknown coefficients corre-
sponding to the loss of charge in air dynamics.

2. Checking the designed observer with the experimental engine in differ-
ent working regimes and discussing if the proposed on-line coefficient
estimation can improve observation and further control tasks.

The approach presented on this chapter is still in a preliminary stage and
further refinements will be addressed on future work. Therefore, the results
presented here are still not published.

The chapter layout is as follows: Section 9.1 describes the test TCSI en-
gine, Section 9.1 deals with the fuzzy polynomial modelling of the air path
dynamics, Section 9.3 discusses the user-defined parameters and presents the
proposed design to obtain a suitable observer in practice, the experimental tests
carried out with the IC engine are presented on Section 9.4, including a discus-
sion on the obtained results and, finally, Section 9.5 provides the conclusions
of the work.
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9.1 System description

In turbocharged engines, the exhaust gases provide recovered energy to com-
press the fresh air in the intake manifold and thus increasing the mass-flow rate
entering the cylinders. A schematic of a 4-cylinders TCSI engine is depicted
in Figure 9.1.

Figure 9.1: Schematic of a turbocharged gasoline engine.

The engine must operate at stoichiometric ratio due to pollution constraints.
This leads to a tight connection between the torque response and the intake
manifold pressure (Pman). The goal of the air path management is controlling
this pressure. At high load, since pumping losses are minimized (throttle is
fully open), the manifold pressure is similar to the boost one coming from the
turbocharger (Pint ≈ Pman) and it is controlled by the wastegate. However, at
low load the throttle is activated to control the intake manifold pressure. This
strategy results in a switching controller requirement.

There exist many recent studies focused on the control issue of the tur-
bocharged air system. However, most of them propose linearizations around
nominal points (Santillo and Karnik, 2013) which present some unavoidable
drawbacks like achieving performance/robustness throughout the wide operat-
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ing range and spending a lot of effort in tunning for each operating point. To
overcome those drawbacks, fuzzy strategies provide a simpler way to analyze
and design controllers. Furthermore, all variables needed for the controller
must be measured or estimated.

On the following, the model of the air flow is presented for later use in
observer design. Only the main important equations governing the air sys-
tem behaviour are recalled. For more details the reader is referred to Eriks-
son, Nielsen, Brugård, Bergström, Pettersson and Andersson (2002); Eriksson
(2007).

The pressure dynamics in the intake manifold (Pman in Pa) is derived from
the ideal gas relationship (Heywood, 1988):

Ṗman =
R0Tman
Vman

(Dthr −Dcyl) (9.1)

Where Vman = 8 · 10−4 m3 is the manifold volume, R0 = 287.058 J/Kg◦K
is the perfect gas constant and Dthr, Dcyl are the air flow through the throttle
and into the cylinders in Kg/s respectively. The manifold pressure Pman and
temperature Tman ≈ 303 ◦K are measured.

The mass flow rate across the throttle (Dthr) is modeled based on the fol-
lowing adiabatic orifice flow (Heywood, 1988):

Dthr = β1
Pint√
R0Tatm

f

(
Pman
Pint

)
g(φthr) (9.2)

Where φthr is the throttle butterfly valve-opening angle in radians (0 ÷ π/2),
Pint is the boost pressure provided by the turbocharger in (1.2÷ 1.8 · 105 Pa)
and the temperature before the throttle is supposed to be close to the ambient
one (Tamb = 293◦K). The nonlinear function g(φthr), jointly with the loss-
of-charge coefficient β1, expresses the geometric flow characteristics for the
throttle. The differential pressure function f

(
Pman
Pint

)
is defined by:

f

(
Pman
Pint

)
=


√

2γ
γ−1r

1
γ

√
1− r

γ−1
γ if r >

(
2

γ+1

) γ
γ−1

√
γ
(

2
γ+1

) γ+1
2(γ−1)

if r ≤
(

2
γ+1

) γ
γ−1

(9.3)

Where γ = 1.4 is the adiabatic constant and r = Pman
Pint

is the pressure ratio
between the boost and the manifold. The geometric flow characteristics across
the throttle valve are modelled as a nonlinear function of the valve lift (char-
acterized by the maximum surface opening), the intake valve open timing, the
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maximum lift and the intake valve opening duration:

g(φthr) = a1(1− cos(a2φthr + a3)) + a4 (9.4)

The coefficients a1 = 0.0464, a2 = 1.3793, a3 = 1.6702 · 10−6 and a4 =
0.0052 are problem data obtained by experimental least squares (LS) iden-
tification with data taken at sample-time Ts = 10 ms, collected in separate
experiments for several engine-speed operating regimes. For details on the
modelling and identification procedure see Khiar (2007).

The mass-flow rate into the cylinders is modelled as an average nonlinear
function depending on the engine speed Ne and the manifold pressure:

Dcyl = β2
Vd

120R0Tman
(s1Pman + s2)Ne (9.5)

Where β2 is a parameter expressing the loss of charge throughout the exhaust
manifold, Vd = 6 · 10−4 m3 is the total engine cylinder capacity, Ne is the
engine speed regime (1500 ÷ 4000 rpm) and coefficients s1 = 0.4643, s2 =
−15259 are again obtained by a previous LS identification from sampled data
collected in separate experiments.

The idea is to design an observer in order to estimate both loss-of-charge
coefficients β1 and β2. This observer will be based on the measurement of
the air-mass flow provided by a hot wire anemometer and on the measurement
of the manifold pressure provided by a piezoelectric sensor located after the
throttle.

The dynamics of the air-mass flow sensor is considered to be first order

τ1Ḋthrm = Dthr −Dthrm (9.6)

where Dthrm is the sensor state, Dthr is the actual air mass flow through the
throttle and τ1 = 40 ms is the time constant of the sensor.

The dynamics of the pressure sensor is also considered first order:

τ2Ṗmanm = Pman − Pmanm (9.7)

where Pmanm is the sensor state and τ2 = 20 ms is the time constant of the
piezoelectric sensor.

Finally, putting together all dynamics, the computed nonlinear system for
the air path is

ẋ1 = 25x2u1f

(
x3

u1

)(
1.2725 · 10−4(1− (cos(1.3793u2+

1.6702 · 10−6))) + 1.9313 · 10−5
)
− 25x1
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ẋ2 = 0

ẋ3 = x2u1f

(
x3

u1

)(
1.2725 · 10−4(1− (cos(1.3793u2 + 1.6702 · 10−6)))

+1.9313 · 10−5
)
− x5(0.0029x3 − 95.366)u3

ẋ4 = 50(x3 − x4)

ẋ5 = 0

where x = (x1, x2, x3, x4, x5) = (Dthrm , β1, Pman, Pmanm , β2) is the con-
sidered state vector, u = (u1, u2, u3) = (Pint, φthr, Ne) are measured input
signals and the parameters β1 and β2 have been considered constant (zero dy-
namics).

9.2 Fuzzy polynomial modelling of the air path system

From the above continuous-time system, an Euler-discretized nonlinear system
can be stated at sample time Ts = 0.01:

x1k+1
= 0.75x1k + 0.25x2ku1kf

(
x3k

u1k

)(
1.2725 · 10−4(1− (cos(1.3793u2

+1.6702 · 10−6))) + 1.9313 · 10−5
)

x2k+1
= x2k

x3k+1
= x3k + 0.01(x2ku1kf

(
x3k

u1k

)
(1.2725 · 10−4(1− (cos(1.3793u2k+

1.6702 · 10−6))) + 1.9313 · 10−5)− x5k(0.0029x3k − 95.366)u3k)
x4k+1

= 0.5(x4k + x3k)
x5k+1

= x5k
(9.8)

There exists previous literature using TS fuzzy models in order to deal
with a similar observer problem for the above air-path dynamics (see Kerkeni,
Lauber and Guerra (2010)). However, results in the cited reference were de-
veloped for an atmospheric engine, i.e., without turbocharger (Pint = Patm),
and only the lower constant part of equation (9.3) was considered. Here, poly-
nomial techniques allow to deal with the on-line parameter estimation without
the requirement of a high number of fuzzy rules. This is due to the fact that
the products of the parameters with states are just polynomials, which do not
need further conservative modelling in opposition to TS modelling.

Given the nonlinear model (9.8), a four-rules fuzzy polynomial model (6.2)
can be computed as follows:
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• Computing the maximum and minimum of the nonlinear term Ψ =

u1f
(
x3
u1

)
g(u2), which can be done because the nonlinear functions f ,

g are bounded and also the turbocharger pressure is between an operative
range:

Ψ = P intf

(
x3

u1

)
g(u2), Ψ = P intf

(
x3

u1

)
g(u2),

withP int = 1.8·105, P int = 1.2·105, f
(
x3
u1

)
= 0.647, f

(
x3
u1

)
= 0.05,

g(u2) = 2.1797 · 10−4 and g(u2) = 1.9313 · 10−5 as extreme values1.

• Bounding the engine speed u3 between its expected operation range
N e = 4000, N e = 1050.

Then, with those bounds, the computed polynomial vertex models are:

P1(xk) =


0.75x1k + 2.3157x2k

x2k

x3k − 0.11608x3kx5k + 0.68584x2k + 0.037648x5k

0.5x4k + 0.5x3k

x5k



P2(xk) =


0.75x1k + 0.009989x2k

x2k

x3k − 0.11608x3kx5k + 2.0429 · 10−5x2k + 0.037648x5k

0.5x4k + 0.5x3k

x5k



P3(xk) =


0.75x1k + 2.3157x2k

x2k

x3k − 0.030471x3kx5k + 0.68584x2k + 0.0098825x5k

0.5x4k + 0.5x3k

x5k


1Note that, from the air-path dynamics considered in Section 9.1, the value f(x3) should

be zero. However, in that extreme situation (Pman = Pint), the parameter β1 becomes unob-
servable. As the objective of this application is to give a parameter estimation during normal
operation, f(x3) has been set to a minimum nonzero value (r = 0.9985 instead of r = 1)
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P4(xk) =


0.75x1k + 0.009989x2k

x2k

x3k − 0.030471x3kx5k + 2.0429 · 10−5x2k + 0.0098825x5k

0.5x4k + 0.5x3k

x5k


in which the manifold pressure x3 and its dynamics have been rescaled to be
in Atm instead of Pa.

The corresponding membership functions µi(x, u) are constructed by:

µ1(x3, u) = M1(Ψ)N1(u3) µ2(x3, u) = M1(Ψ)N2(u3)

µ3(x3, u) = M2(Ψ)N1(u3) µ4(x3, u) = M2(Ψ)N2(u3)

with

M1(Ψ) =


u1g(u2)−P intg(u2)

P intg(u2)−P intg(u2)
if r ≤ 0.5283

Ψ(x3,u1,u2)−Ψ

Ψ−Ψ
if 0.5283 < r < 1

M2(Ψ) = 1−M1(Ψ)

N1(u3) =
u3 −N e

N e −N e

N2(u3) = 1−N1(u3)

9.3 Observer design

The objective of the observer design will be estimating β1, β2 in order to see
which values are needed to obtain a good estimate of the manifold pressure
and air flow from its measurements. The on-line parameter estimation should
improve the prediction step, adapting the model to deal with the unmodelled
dynamics. Thus, it also will give us an idea about the lack of accuracy made
by using a simple nonlinear model of the air path.

In order to carry out polynomial observer design, the observer error ek =
xk − x̂k follows the equation (6.20). The manifold pressure Pman and the
parameter β2 (the ones which enter polynomially in the fuzzy model) and their
estimated values are assumed to lie between their respective expected ranges:

Ωx = {0.34 ≤ x3 ≤ 1.8, 0.1 ≤ x5 ≤ 1.1}
Ωx̂ = {0.34 ≤ x̂3 ≤ 1.8, 0.1 ≤ x̂5 ≤ 1.1} (9.9)
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Choice of disturbance-size parameters. External disturbances, process miss-
modeling and sensor noises are taken into account in the fuzzy polynomial
model (6.2) by variables w, ν, weighted with suitable power matrices E , R.

The process disturbances in ẋ1 and ẋ3 are mainly introduced by the mea-
surement noise present in the boost-pressure sensor (Pint). In order to estimate
those weights, the 3σ level (being σ the standard deviation) of the noise dis-
tribution has been computed from a set of measured data taken in steady state.
The obtained value is σ = 6.6735 · 103. Then, the worst-case disturbance-
weighting values for that 3σ level are computed as follows:

E1 =
Ts
τ1

(
3σ√
R0Tatm

f(x3k)g(u2k)

)
= 0.0026

E3 =
TsR0Tman
Vman

(
3σ√
R0Tatm

f(x3k)g(u2k)

)
= 0.0763

The process disturbance on pressure sensor dynamics is set arbitrarily to
E4 = 0.001 because it has been considered to be much smaller than the rest of
engine process noise inputs. Finally, the weighting matrix E is given by:

E =


E1 0 0 0 0
0 0 0 0 0
0 0 E3 0 0
0 0 0 E4 0
0 0 0 0 0


Sensor power noises for the manifold pressure and air flow have been estimated
from the experimental data. Again the standard deviation has been computed
for both measurements but in this case the 6σ level has been computed in
order to give the worst-case values for the H∞ design. Thus, the values of the
weighting matrix R are:

R =

[
0.0016 0

0 0.441

]
Note. In this case, the membership functions depend on the “unknown” state
Pman, so the observer-model mismatch should fulfill a Lipschitz-like bound
(6.14). Note however that the manifold pressure is measured by the sensor, so
the difference between the state Pman and the measurement should be small.
Therefore, as the inclusion of a Lipschitz constraint makes the design problem
too conservative, the sensor measurement has been used as premise for the
memberships instead of Pman.
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Setting a discrete decay-rate of α = 0.99994 (Section 6.3.1), the equiv-
alent of a continuous-time decay αc = 0.003 (α = e−2Tsαc), an acceptable
enough robust/fast compromise is achieved on this application. For details see
a discussion about design compromises in practice on Section 8.3. The con-
stant weighting matrix D in (6.26) is chosen as:

D = diag(2, 0.001, 0.01, 0.01, 0.001);

Those values have been set by taking into account the different units of
each state. Thus, multiplying by 200 the estimation of the air flow e1 = x1 −
x̂1, which is in Kg/s, gives comparable values2 to the estimation error of the
pressure e3 = x3 − x̂3, e4 = x4 − x̂4, in Atm. In addition, the weight for
estimation error on the loss-of-charge coefficients is set to 0.001, because the
objective is finding some values for the coefficients which make the estimation
of the physical states as good as possible. Therefore, e1, e3, e4 must contribute
more than e2, e5 to the performance index.

Then, by considering the above particular operating regions (9.9) and pro-
cess disturbance and measurement noise weights, a fuzzy polynomial observer
(6.4) can be designed by Theorem 6.2. The computed fuzzy observer gains
are:

L1 =


1.3764 0
0.2728 0
0.6348 0.9847
0.3957 1.0805
0.0795 −0.0599

 L2 =


0.7575 −0.0001
0.2726 0
0.4519 0.9854
0.3984 1.0812
0.0794 −0.0599



L3 =


1.3763 −0.0001
0.2729 0
0.6134 1.0637
0.3603 0.985
0.0807 −0.0643

 L4 =


0.7575 0
0.2726 0
0.4316 1.056
0.345 0.9788
0.0804 −0.064



(9.10)

which give a theoretical H∞ disturbance-rejection bound
√
γ = 0.049. The

2Note that the H∞ design is minimizing γ such that eTDTDe ≤ γWTW (Section 6.3.1)
so, if e1 << ei, i : 2, . . . , 5, then minimizing such γ barely contributes to minimize e1.
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found Lyapunov function V (e) = eTQe proving those results is:

Q =


5.9114 −6.9281 −0.0052 0.0054 −0.0006
−6.9281 25.5387 0 −0.0001 −0.0111
−0.0052 0 0.0171 −0.0164 0.002
0.0054 −0.0001 −0.0164 0.0228 0.0001
−0.0006 −0.0111 0.0020 0.0001 0.034


Table (9.1) shows the demanded computational resources for the design

phase. Feasible solutions were obtained with software SOSOPT (Balas, Packard,
Seiler and Topcu, 2012; Seiler, Zheng and Balas, 2013) plus SeDuMi 1.3, ex-
ecuted in an Intel R© CoreTM2 Duo CPU P8600 2.4GHz, 4 Gb DDR3 RAM
machine running Windows 7 (64 Bit) and MATLAB R2011b.

Problem size RAM Parser time Solver time
21007×3437 860 Mb 186.12 s 41.76 s

Table 9.1: Approximate computational resources for design.

9.4 Experimental evaluation

This section evaluates the computed observer on the experimental platform
and gives a discussion on the obtained results. The test bench is a 600 cc gaso-
line engine developed by Renault for using in hybrid vehicles and develops a
maximum power of 70 CV.

Data generation. The objective of the experiment is obtaining a represen-
tative set of data in which the engine nonlinearities were significant enough.
In this way, a controlled electrical drive is coupled to the engine crankshaft in
order to produce external load to the engine.

The test starts at steady state: low-regime speed, no external load. At
the first second no input excitation has been applied to the throttle. Then,
the IC engine has been excited with a low-amplitude reference throttle signal
changing randomly each 3 seconds during 35 seconds. Afterwards, the throttle
reference signal was applied with a higher amplitude until the end of the exper-
iment, set in 100 seconds. Meanwhile, the engine speed was limited manually
to several values with the objective of forcing the engine to produce (or receive)
torque, simulating road slopes. Figure 9.2 shows the collected input signals to
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Figure 9.2: Collected input data.

the observer: the throttle opening given by a potentiometer, the pressure given
by the turbocharger and the engine speed measured by an encoder.

Experimental results. Once fuzzy observer gains (9.10) are on place, the
following evaluates how the theoretical observer design translates into exper-
imental behaviour. In the work presented here, the full nonlinear model (9.8)
has been used in the prediction step, avoiding the unnecessary introduction
of error with the use of membership functions µ depending on the pressure
measurement instead of the state Pman.

In order to obtain acceptable estimates of the physical states, the observer
had to change the coefficients β1 and β2 following the temporal evolution
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shown in Figure 9.3.
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Figure 9.3: Evolution of the estimated coefficients during the experiment.

A detail of the time response with the computed observer is shown in Fig-
ures 9.4 and 9.5. The temporal evolution shows that the fuzzy polynomial
observer gives an estimate of the manifold air flow and pressure close to the
measurements (indeed, pretty close in the manifold pressure). Note also that
estimated air flow achieve a larger amplitude than the measurement. This fact
was quite expectable because the actual engine dynamics is very fast (the four-
stroke cycle in each cylinder is not considered on (9.5), but only the mean) and
sensors act as low-pass filters, specially the hot-wire anemometer with a time
constant of 0.04 seconds.

Looking at the obtained responses, three main conclusions can be stated:

1. After the first seconds, when no excitation input is applied to the engine,
the designed observer is able to estimate physical states and coefficients
with a fast decay in normal operation.

2. The considered region of study (9.9) for observer design is fulfilled dur-
ing the experiment. Note that, even being β1 > 1, the observer holds
stability, as the theoretical design guarantees.

3. The coefficients were supposed to be almost constant and lie between 0
and 1. However, the observer estimates β1 ≥ 1 in order to fit Dthrm .
This suggest that the considered model for the air path is not precise
enough.
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Figure 9.4: Evolution of the air flow through the throttle given by sensor
(black) and the observer (red).

9.5 Conclusions

In this chapter, the application of fuzzy polynomial techniques has been demon-
strated to be valid for dealing with state and parameter estimation. The prelim-
inary experimental results confirm a good observer response.

In comparison with existent TS observer literature for this application, the
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Figure 9.5: Evolution of the manifold pressure given by sensor (black) and the
observer: Pmanm (red), Pman (blue).

fuzzy polynomial methodology allows designing an observer with less con-
siderable number of fuzzy rules. The advantage is getting benefit from the
fact that products of states with parameters are just polynomials and can be
introduced directly to SOS programing packages.

Less conservative results can be achieved by approximating the nonlinear
part of (9.3) by a polynomial (or a set of them) instead of two constants. How-
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ever, required computational resources increase considerably as Positivstellen-
satz multipliers need to fit the same degree as the Lyapunov function discrete
increment.

The experimental results show that the observer had to change the loss-of-
charge coefficients from their initial values (considerably in the case of β2),
in order to better adapt the estimates of pressure and air flow in each oper-
ating regime. This suggests that the on-line knowledge of those coefficients
may improve control performance. However, although the designed observer
achieved an acceptable response in practice, the obtained evolution of the co-
efficient estimation suggests a deeper study in the nonlinear modelling phase:
further refinements on the air flow dynamics, testing in different conditions,
identifying possible patterns and evaluating the need or not of using such ob-
server for future control tasks. Such issues will be addressed in future work,
as this application is still in preliminary phases.



Conclusions of the thesis

This thesis presented ideas and methodologies in order to improve, or par-
tially overcome, some existent drawbacks in present fuzzy polynomial litera-
ture for analysis and control of nonlinear systems. The main contributions of
this work where summarized on the introduction and a particular conclusion
section closes each chapter. Here, general conclusions and future-work lines
are discussed.

• The iterative methodology for improving the domain of attraction
estimation, presented on Chapter 4, allows a better fitting of the real
shape of the nonlinear system’s DA. Moreover, it combines nicely with
other DA estimation techniques by being able to use such results as ini-
tial “seed” estimates for the algorithm. The procedure has its own limita-
tions: a polynomial curve of prefixed degree cannot keep obtaining bet-
ter estimates forever, i.e., improvements diminish as iterations progress.
In addition, limited numerical accuracy of computers may cause the ac-
cumulation of numerical errors in each new iteration of the algorithm,
forcing finally the stop criterion due to numerical problems. In addi-
tion, it has limitations derived from the Taylor-series fuzzy modelling:
the polynomial vertex models separate fast with the distance to the ori-
gin, depending on the disregarded high-degree terms of the Taylor-series
developments.

• The stability analysis under disturbances has been addressed in Chap-
ter 5 with a systematic methodology even for persistent disturbances,
with bounded power in every time period T . The analysis allows com-
puting minimum reachable sets (final regions) and also transitory or in-
escapable regions, given an initial region and performing an exploration
in a decay-rate parameter. However the advantages of the methodology
vanish when initial condition regions are large: the problem is noncon-

207
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vex and requires both exploration in the decay rate and in a region-size
parameter.

The stabilization under nonvanishing disturbances poses further caveats,
because only the case when initial conditions are assumed zero is com-
putationally tractable and even that requires additional assumptions on
the modelling-region constraints: the polynomial boundaries need to be
of even degree and must be expressed as products of a vector of mono-
mials z(x), a matrix N(x) and its corresponding transpose, in order to
apply Schur complement. This, obviously, reduces generality on the ob-
tained results.

• Fuzzy-polynomial observers for nonlinear systems with bounded dis-
turbances have been designed in Chapter 6 for both inescapable-set
and H∞ settings, making a link between the different preliminary ap-
proaches in previous polynomial observer literature. In addition, the
implementation issues of such observers in discrete time has been con-
sidered since the design phase: additional constrains have been intro-
duced to the SOS H∞ optimization problems in order to ensure accept-
able behaviours in practice, both in pure discrete-time design such as
discretized continuous-time one. The presented approach, however, re-
quires further study of the different settings in Chapter 5 and the com-
putational complexity/cost.

• Polynomial controller synthesis for nonlinear systems leads in gen-
eral to a nonconvex problem, which only can be cast as a convex one
by making some conservative assumptions and changes of variable. Af-
ter those changes, the local information about regions in the state space
is only introduced partially and desired domains of attraction are diffi-
cult to ensure. Thus, the advantages of having more degrees of freedom
by using polynomial controller gains and polynomial Lyapunov func-
tions become weak when putting the problem in convex form. In Chap-
ter 7 a methodology for polynomial systems was presented in discrete
time in order to remove some of this conservativeness by using full-
delayed state Lyapunov functions and introducing existent information
about past and present states, provided by the input saturations. The
methodology was proven to overcome existent literature at the price of
more computationally effort. However, although the idea can be ex-
tended to a more general class of nonlinear systems by using fuzzy poly-
nomial modelling, more conservative assumptions are required, which
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make the proposal lose a bit of its initial power. Further work is required
to remove those conservative assumptions and also to develop similar
ideas for the continuous-time case.

• Two experimental application of fuzzy-polynomial observer design
demonstrated the applicability of the polynomial techniques in prac-
tice with successful results. Fuzzy-polynomial methodologies arise as
a good alternative to Takagi-Sugeno ones for some real applications: the
approaches presented in this thesis overcame classical TS ones in the
tested benchmarks, both by reducing the required number of fuzzy rules
(Chapter 9) and by obtaining better performance bounds (Chapter 8).

The above review of the obtained results presents some open issues which
need a further study and can lead to new research lines.

There exist many works in literature, apart from this thesis, dealing with
the stability analysis and domain of attraction estimation. However, the anal-
ysis in presence of disturbances is still very scarcely developed for nonlinear
systems. Chapter 5 has focused the problem and may serve as preliminary
guidelines for a future thesis in the topic. Generalizing the results in Chapter
4 to the disturbance case and exploring its connections to other BMI proposals
for DA estimation might prove interesting.

Furthermore, computation of inescapable or disturbance-invariant sets in
observer design is also a very important problem in fuzzy systems: distur-
bances must not push the system out of the modelling region Ω and ensuring
it with guaranteed regions is still an open problem, as Chapters 5 and 6 dis-
cuss. The combination of observer and controller design (output feedback) for
fuzzy polynomial systems with the above inescapability and DA issues may be
also an interesting problem, although it seems that only resorting to BMI-like
results might be an option.

Or course, further testing of the developed techniques in the presented ap-
plications (as well as in other possible situations) is needed. In practical prob-
lems, the choice of design parameters, computational cost, and performance
evaluation useful to the customer are important issues for which this thesis
only provides preliminary discussions.
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Appendix A

Semidefinite and SOS
Programming

Semidefinite programming is a branch of convex optimization which is en-
charged of minimizing a linear objective function over the intersection of the
cone formed by positive semidefinite matrices with an affine space. In partic-
ular, in the automatic control framework, SDP is used in order to solve Linear
Matrix Inequalities (LMI). Indeed, the SDP problems are a special case of
conic programming and can be efficiently solved by numerical methods and
software (Boyd, Ghaoui, Feron and Balakrishnan, 1994).

A sum-of-squares problem is an optimization problem with a linear cost
and a particular type of constraint on the decision variables. At the end,
these constraints are polynomials with decision-variable coefficients, which
must fulfill the sum-of-squares property. If the polynomial constraints are
affine in decision variables, the SOS optimization problem can be recasted
as a semidefinite-programming one (Lasserre, 2001).

A.1 Linear Matrix Inequalities

Definition A.1. Denote by Sn the space formed by all the n×n real symmetric
matrices. A symmetric matrix A is positive semidefinite if all its eigenvalues
are not negative and is denoted as A � 0. In a similar way, A � 0 means A is
positive definite, where all its eigenvalues are strictly positive and the opposite
for negative semidefinite an definite.

Definition A.2. A Linear Matrix Inequality (LMI) is an expression in the form
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F (x) = F0 +
m∑
i=1

xiFi > 0 (A.1)

where x ∈ Rm is the decision variable and the symmetric matrices Fi = F Ti ∈
Rn×n, i = 0, . . . ,m, are given (Boyd, Ghaoui, Feron and Balakrishnan, 1994,
cap. 2).

The LMI (A.1) seems to be in a special form. However, it can represent a
wide variety of convex constraints in x. In particular, the Lyapunov stability
constraints (common in control theory) where the variables are matrices can
be cast as LMI’s. For example:

ATP + PA ≺ 0

where A ∈ Rn×n is a given matrix and P = P T is the decision variable of
the LMI. Of course, the above inequality can be expressed in the form (A.1) as
follows; if P1, ..., Pm is a basis of n×n symmetric matrices (m = n(n+1)/2),
then F0 = 0, Fi = −ATPi − PiA are taken.

There exist two kinds of LMI problems:

1. Feasibility problem. This problem only requires the existence of, at
least, one solution satisfying the set of constraints. This problem is
widely used in the stability analysis and also in the synthesis problem,
when only a controller stabilizing the system (or fulfilling some prede-
fined performance criteria) is required.

2. Optimization problem. In this case, not only a feasible solution is to
be found but, in addition, such solution must optimize some objective
function over the set of feasible solutions. Obviously, the optimization
problem is an implicit feasibility problem.

On the following, important definitions an properties in LMI framework
are summarized.

A.1.1 Schur complement

Some nonconvex matrix-inequality problems can be recast as LMI using the
well-known Schur complement result.

By Schur complement, the set of nonlinear matrix inequalities

R(x) > 0, Q(x)− S(x)TR(x)−1S(x) > 0 (A.2)
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where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) are affine in x, is equivalent
to the following LMI:

M(x) =

[
Q(x) S(x)T

S(x) R(x)

]
> 0 (A.3)

A.1.2 S-procedure

The constraint of requiring positiveness (or negativeness) for some quadratic
function when other quadratic ones are, is very often in control problems. This
constraint can be expressed as LMI, sometimes in a conservative way, by using
the S-procedure detailed below:

If there exist p quadratic functions in the variable ζ ∈ Rn in the form

Fi(ζ) = ζTTiζ + 2uTi ζ + vi, i = 0, . . . , p,

where Ti = T Ti , the following condition is considered:

F0(ζ) ≥ 0 ∀ ζ | Fi(ζ) ≥ 0, i = 1, . . . , p, (A.4)

Obviously, if there exist τ1 ≥ 0, . . . , τp ≥ 0 such that for all ζ

F0(ζ)−
p∑
i=1

τiFi(ζ) ≥ 0, (A.5)

is fulfilled, then (A.4) holds.
In the particular case of having quadratic forms and strict inequalities, the

procedure results as follows:
Given T0, . . . , Tp ∈ Rn×n symmetric matrices and considering the follow-

ing condition

ζTT0ζ > 0 ∀ ζ 6= 0 | ζTTiζ ≥ 0, i = 1, ..., p. (A.6)

If there exist τ1 ≥ 0, ..., τp ≥ 0 such that

T0 −
p∑
i=1

τiTi > 0, (A.7)

then (A.6) holds too.
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A.1.3 Finsler’s lemma

Let x ∈ Rn, Q ∈ Sn and B ∈ Rm×n such that rank(B) < n. Then, the
following statements are equivalent:

1. xTQx < 0,∀Bx = 0, x 6= 0

2. B⊥
T
QB⊥ ≺ 0

3. ∃µ ∈ R : Q− µBTB ≺ 0

4. ∃X ∈ Rn×m : Q+XB +BTXT ≺ 0

A.1.4 Nonconvex matrix inequality problems

In general, when the problem won’t be convex neither be recast as a convex
one, obtaining solutions require global optimization methods (for instance, ge-
netic algorithms). Those methods usually lead to a complex and slow process
without a complete guarantee of reaching the optimum. However there ex-
ist some particular cases which are still computationally tractable by iterative
LMI methods (ILMI), i.e., iterating by changing decision variables under some
improvement criteria and solving a convex subproblem in each iteration.

A.1.4.1 Generalized Eigenvalue Problem (GEVP)

A GEVP tries to minimize the largest generalized eigenvalue of a pair of ma-
trices which depend on a variable in an affine way, subject to a LMI-type con-
straint. The general form of a GEVP is:

minimize λ
subject to :

λB(x)−A(x) > 0, B(x) > 0, C(x) > 0
(A.8)

where A, B and C are symmetric matrices which are affine functions in x.
This can be expressed in the following way:

minimize λmax(A(x), B(x))
subject to :

B(x) > 0, C(x) > 0
(A.9)

where λmax(X,Y ) is the largest generalized eigenvalue of λY −X with
Y > 0, i.e., the largest eigenvalue of the matrix Y −1/2XY −1/2. Therefore, a
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GEVP is a quasiconvex optimization problem (Seiler and Balas, 2010; Boyd,
Ghaoui, Feron and Balakrishnan, 1994) because the constraint is convex but
the objective λmax(X,Y ) is not.

The minimum objective in those kind of problems can be obtained by
solving ILMI methods like bisection search o similar. When the matrices
are all diagonal and A(x), B(x) are scalar, this problem reduces to a general
linear-fractional programming one. Furthermore, many quasiconvex nonlinear
functions can be represented as GEVP’s with appropriate A, B and C (Boyd,
Ghaoui, Feron and Balakrishnan, 1994).

A.1.4.2 Bilinear Matrix Inequalities (BMI)

Another particular case of nonlinear matrix inequalities are the bilinear (second
order) ones whose general expression is:

F00 +

px∑
i=1

xiFi0 +

py∑
i=1

yiGi0 +

px∑
i=1

py∑
j=1

xiyjHi0 < 0 (A.10)

This kind of problem can still be addressed (without guarantees of reaching the
optimum) by ILMI methods. The most used methods in literature are; [1] the
V-K iterative procedure, based on fixing a decision variable V, solving for an
suboptimal K and then fixing that value and solving for V (Banjerdpongchai,
1997), and [2] the Cone Complementary Linearization (CCL), based on adding
N additional constraints XiXj = I , where (Xi, Xj) are some matrix decision
variables, and minimizing iteratively the cost J =

∑N
p=1 Trace(XiXj) until

obtaining a feasible X fulfilling the original constraints (El Ghaoui, Oustry
and AitRami, 1997).

A.1.5 Numerical resolution

The standard problems presented in the above section can be solved efficiently
in polynomial time. By solving the problem we understand: determining if the
problem is feasible or not and, in case it will be, computing a feasible point
with the objective function that exceeds the global minimum only a prefixed
precision.

There exist several software packages which are exclusive for those con-
vex minimization problems. For instance, some programming languages like
YALMIP (Löfberg, 2004) or CVX can be used with several convex minimiza-
tion solvers, say SeDuMi (Self-Dual Minimization) (Sturm, 1999) or SDPT3
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(Semidefinite Programming Tool) (Toh, Todd and Tütüncü, 1998). On the fol-
lowing, a simple example is shown in order to introduce the use of those tools
for solving optimization problems. The code has been programmed in MAT-
LAB using YALMIP plus SeDuMi.

Example A.1.1. Check global stability, in the Lyapunov sense, of the follow-
ing linear system

ẋ = Ax =

 0 1 0
9.8 0 1
0 −10 −10

x
is a LMI problem which is stated as:

Find P � 0
subject to :

V̇ (x) < 0, where V̇ (x) = xTPx (Lyapunov function)

This can be implemented in MATLAB by the following code:

A=[0,1,0;9.8,0,1;0,-10,-10];
P=sdpvar(3); % Lyapunov matrix
lmis=[P>eye(3)]; % Constraint P>0
lmis=[lmis,A’*P+P*A<0]; %Constraint $d(V)/dt<0
solvesdp(lmis)
% Solutions
Lyap=double(P) % Matrix proving stability

A.2 Sum Of Squares

The general SOS problem is checking the non-negativity of a polynomial f(x) :
Rn → R, defined by powers of x and its associated coefficients. The idea is
replacing the non-negativity by the sufficient condition of being SOS polyno-
mials and searching for such decomposition. The basic ideas of the approach
and main results are now summarized.

A.2.1 Positive polynomials: an outline
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Sum Of Squares polynomials. The key idea in the SOS approach is trying
to find an expression of a polynomial as the sum of squares of simpler polyno-
mials.

Definition A.3. The set of Sum Of Squares (SOS) polynomials in the variables
“z”, denoted as Σz , is the set defined by

Σz =

{
p ∈ Rz|p =

t∑
i=1

f2
i , fi ∈ Rz

}
(A.11)

with t ∈ Z+.

It is very related (in fact, equivalent) to finding some matrix elements in
order to make such matrix positive semidefinite. Indeed, an even-degree poly-
nomial p(z) is SOS if and only if there exist a vector of monomials m(z) and
a constant positive-definite matrix H such that p(z) = m(z)THm(z); in this
way, SOS problems can be solved via SDP tools searching for such an H (see
Section A.1). If the SDP problem is feasible, we will say that p(z) is SOS. See
Section A.2.4 for details.

Example A.2.1. For instance, existent SOS software (see Section A.2.5) find
that polynomial

p(z) = z4
1 − 4z3

1z2 + 2z3
1 + 4z2

1z
2
2 − 12z2

1z2 + z2
1 + 16z1z

2
2 − 8z1z2 + 16z2

2

can be written as:

p(z) =
[
z1 z2 z1z2 z2

1

]
1 −4 −2 1
−4 16 8 −4
−2 8 4 −2
1 −4 −2 1




z1

z2

z1z2

z2
1


and, as the matrix is positive definite, the Cholesky factor gives the SOS de-
composition p(z) = (z1 − 4z2 − 2z1z2 + z2

1)2, so p(z) ∈ Σz . The reader is
referred to Section A.2.6 for MATLAB R© code details.

Evidently, all SOS polynomials are non-negative, but the converse is not
true. There exist positive polynomials which are not sum of squares (Reznick,
2000; Blekherman, 2006). In general there exist only three combinations of
degree d and number of variables n for which SOS polynomials are equivalent
to the set of positive ones: n = 2, d = 2 and n = 3 with d = 4.

Unfortunately, polynomials resulting from Lyapunov stability conditions
are not SOS in general. However, most of them are positive definite on a small
enough range of their variables. Thus, local positivity of polynomials can be
proven by using the well-known Positivstellensatz theorem, recalled next.
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A.2.2 Positivstellensatz

This section recalls a central theorem from real algebraic geometry, the Posi-
tivstellensatz.

Definition A.4. First, three main concepts are defined:

• Given polynomials {g1, ..., gt} ∈ Rz , the Multiplicative Monoid is the
finite set of all products involving gj ′s including 1 (empty product) and
it will be denoted byM(g1, ..., gt).

• Given polynomials {f1, ..., fr} ∈ Rz , the Cone is the set generated by
the fi ′s in the form:

P(f1, ..., fr) :=

{
s0 +

l∑
i=1

sibi|l ∈ Z+, si ∈ Σz, bi ∈M(f1, ..., fr)

}
.

If the polynomials si ∈ Σz and fi ∈ Rz , then f2
i si ∈ Σz . This allows

expressing a cone of {f1, ..., fr} as a sum of 2r terms.

• Given polynomials {h1, ..., hu} ∈ Rz , the Ideal is the set generated by
hk
′s in the form:

I(h1, ..., hu) :=

{
u∑
k=1

hkpk|pk ∈ Rz

}
.

With those geometric definitions, the “Positivstellensatz” theorems is stated.

Theorem A.1 (Stengle (1974)). Given polynomials {f1, ..., fr}, {g1, ..., gt}
and {h1, ..., hu} ∈ Rz , the following statements are equivalent:

1. The set z ∈ Rn
∣∣∣∣∣∣
f1(z) ≥ 0, ..., fr(z) ≥ 0
g1(z) 6= 0, ..., gt(z) 6= 0
h1(z) = 0, ..., hu(z) = 0


is the empty set.

2. There exist polynomials f ∈ P(f1, ..., fr), g ∈ M(g1, ..., gt), h ∈
I(h1, ..., hu) such that:

f + g2 + h = 0
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This theorem is a powerful result which generalizes many well-known re-
sults like the S-procedure (Section A.1.2) and Finsler’s lemma (Section A.1.3)
to the polynomial case, by carefully choosing some SOS and arbitrary polyno-
mial multipliers (Jarvis-Wloszek, Feeley, Tan, Sun and Packard, 2005, Pags.
4-7). In this way, many control problems within the polynomial framework can
be addressed by combining the SOS optimization tools with the Positivstellen-
satz theorem. For instance, consider a region Ω defined by polynomial bound-
aries as follows:

Ω = {z : g1(z) > 0, . . . , gmg(z) > 0, h1(z) = 0, . . . , hmh(z) = 0} (A.12)

Corollary A.1. If SOS polynomials si(z) ∈ Σz and arbitrary ones rj(z) ∈ Rz
can be found fulfilling:

p(z)− ε(z)−
mg∑
i=1

si(z)gi(z) +

mh∑
j=1

rj(z)hj(z) ∈ Σz (A.13)

then p(z) is locally greater or equal than ε(z) in the region Ω.

Proof. Indeed, note that, in the region Ω, the term
∑

i si(z)gi(z) is positive
and

∑
j rj(z)hi(z) is zero, so p(z) − ε(z) ≥

∑
i si(z)gi(z) ≥ 0 for all z ∈

Ω.

The polynomials (si(z), rj(z)) are denoted as Positivstellensatz multipli-
ers, analogous to Lagrange and KKT ones in constrained optimization (Bert-
sekas, 1999).

The above corollary is a simplified version of the original Positivstellen-
satz result, in which less conservative expressions can be stated by setting
higher degree multipliers (si, ri), products of p(z) with new multipliers or
by adding more terms involving products of the (p(z), gi(z), hj(z)) belong-
ing to the respective cone and ideal. However, more complex statements are
avoided in practice because some of them lead to nonconvex problems and also
the computational complexity increases considerably (Jarvis-Wloszek, Feeley,
Tan, Sun and Packard, 2005).

Example A.2.2. The polynomial p(x) = 1−x3 is non-negative in the interval
region of interest Ω = −0.5 ≤ x ≤ 0.5. Indeed, let us first describe Ω = {x :
0.25 − x2 > 0}. If we execute the code included in Section A.2.6, we obtain
that the quadratic multiplier s(x) = 1.4076x2 fulfills

1− x3 − s(x)(0.25− x2) = (−0.61313x2 + 1)2+

(−0.53472x2 + 0.93508x)2 + (0.86357x2)2 ∈ Σx (A.14)
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so we proved 1− x3 > 0 ∀x ∈ Ω.

A.2.3 SOS matrices

The propositions below will allow to use SOS programming to check positive-
definiteness of matrices whose elements are polynomials.

Proposition A.1 (Prajna et al. (2004b)). Let L(x) be an N × N symmetric
polynomial matrix of degree 2d in x ∈ Rn. Furthermore, let z(x) be a column
vector whose entries are all monomials in x with degree no greater than d, and
consider the following conditions:

1. L(x) ≥ 0 ∀x ∈ Rn

2. vTL(x)v is SOS, where v ∈ Rn

3. There exists a positive semidefinite matrix Q such that

vTL(x)v = (v ⊗ z(x))T Q (v ⊗ z(x))

where ⊗ denotes the Kronecker product.

Then (1)⇐ (2) and (2)⇔ (3).

The proof of this proposition is based on the Cholesky decomposition
(Higham, 1990) and the eigenvalue decomposition (Parrilo, 2000). In this way,
the classical linear matrix inequality framework (positive-definiteness of ma-
trices with linear expressions as elements (Boyd, Ghaoui, Feron and Balakr-
ishnan, 1994)) is extended to the polynomial case.

Example A.2.3. According to the above result, testing if there exist coeffi-
cients a, b, such that the matrix

L(x) =

(
1− x2 0.1x+ b

0.1x+ b 3− 0.1x3 + ax2

)
is positive semi-definite for all x such that {x ∈ R : x2 ≤ 0.9}, can be done
using Corollary A.1 by proving that the polynomial H(x, v) below is SOS in
the (augmented) set of variables (x, v):

H(x, v) = (1−x2)v2
1+2(0.1x+b)v1v2+(3−0.1x3+ax2)v2

2+s(x, v)(0.9−x2)
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In this way, by setting a multiplier with arbitrary user-defined structure, say

s(x, v) = m1v
2
2x

2 +m2v1v2x
2 +m3v1v2x+m4v

2
2 +m5v

2
1x+m6v

2
1,

we must search for feasible a, b, m1, . . . , m6 such that both H(x, v) and
s(x, v) are SOS.

The obtained solution for this problem using SOSOPT is:

a = 0.5819, b = −0.00030273,
m1 = 1.1185, m2 = 0, m3 = 0.03929,
m4 = 1.1366, m5 = 0, m6 = 1.0524

See next section for details on the solving procedure.
Moreover, the more terms and higher degree in s(x, v) are, the less con-

servative the test is, at the expense of higher computational cost.

The above proposition increases the complexity due to the introduction of
the auxiliary variables v. It is well-known that there exist better ways to deal
with polynomial SOS matrices, from a computationally point of view:

Proposition A.2 (Scherer and Hol (2006)). Let F (x) be an N ×N symmetric
polynomial matrix of degree 2d in x ∈ Rn. F (x) is a SOS polynomial matrix
if and only if there exist a constant matrix Q � 0 satisfying

F (x) = (I ⊗ z(x))TQ(I ⊗ z(x)) ∀x ∈ Rn (A.15)

with z(x(t)) being a column vector whose entries are all monomials in x(t)
with degree no greater than d.

Nevertheless, both results are mathematically equivalent.

A.2.4 SOS problems

On the following, basic formulation of the main SOS optimization problems is
stated.

A.2.4.1 SOS Feasibility problem

The problem of feasibility is finding u such that

pi(x, c) ∈ Σx, i = 1, 2, ..., N (A.16)
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where c ∈ Rm are decision variables (the “unknown” polynomial coeffi-
cients) and the polynomials pi are given as part of the problem data and they
are affine in c, i.e., they are of the form:

pi(x, c) := pi0(x) + pi1(x)c1 + · · ·+ pim(x)cm

In this way, a solution belonging to the set of feasible polynomials fulfilling
the constraints is found.

A.2.4.2 SOS Optimization problem

A SOS optimization problem is:
Minimize the linear objective function dT c subject to

pi(x, c) ∈ Σx, i = 1, 2, ..., N (A.17)

where c and pi are the same as above and d is a weighting vector given as
problem data.

Obviously the same problem can be also stated in terms of equality-only
constraints, by introducing some extra SOS polynomials as dummy variables
(Prajna, Papachristodoulou, Seiler and Parrilo, 2004a).

A.2.4.3 Generalized SOS problem

Similarly to GEVP’s (Appendix A.1.4), SOS problems can be extended to al-
low one decision variable to enter bilinearly in the polynomial constraints. A
generalized SOS problem is an optimization of the form:

Minimize λ subject to:

λsi(x, c)− pi(x, c) ∈ Σx, i : 1, . . . , N (A.18)

si(x, c) ∈ Σx, i : 1, . . . , N (A.19)

qi(x, c) ∈ Σx, i : 1, . . . ,M (A.20)

where λ ∈ R and c ∈ Rm are decision variables. The polynomials pi, si and qi
are given data and are affine in c. The optimization cost is linear in the decision
variables and the constraints si(x, c) ∈ Σx and qi(x, c) ∈ Σx are standard SOS
constraints.

Note that this is not a convex SOS problem because the constraints λsi(x, c)
−pi(x, c) ∈ Σx are bilinear in the decision variables λ and c. However, the
generalized SOS program is quasiconvex. The proof is omitted for brevity,
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see Seiler and Balas (2010). In consequence, the global minimum of a gen-
eralized SOS program can be computed via bisection on λ. Each step of the
bisection involves holding λ fixed and solving for c such that satisfies the SOS
constraints. This can be converted to a feasibility problem at each step of the
bisection.

A.2.5 Numerical resolution

There exist software available to perform the conversion from SOS programs to
SDP’s. For instance, SOSOPT (Balas, Packard, Seiler and Topcu, 2012), SOS-
TOOLS (Prajna, Papachristodoulou, Seiler and Parrilo, 2004a), and YALMIP
(Löfberg, 2009) are freely available MATLAB toolboxes for solving SOS op-
timizations. These packages allow the user to specify polynomial constraints
using a symbolic or polynomial toolbox. The toolboxes convert the SOS op-
timization into an SDP which is solved with a freely available solver (say Se-
DuMi or SDPT3). Finally, these toolboxes convert the SDP solution back to a
polynomial solution (Fig. A.1).

Figure A.1: Process of solving a SOS problem.

The following states the general steps in order to define and solve a SOS
problem:

1. Initialize the problem.
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2. Declare the problem variables: independent and decision variables plus
polynomials on them.

3. Define sum-of-squares and polynomial constraints.

4. Specify the objective function (only for optimization problems).

5. Call the solver.

6. Obtain the solutions.

The main drawback is that size of resulting SDP grows very fast in both,
the number of variables and degrees of the polynomials in the SOS optimiza-
tion. While various techniques can be used to exploit problem structure (Gater-
mann and Parrilo, 2004; Seiler, Zheng and Balas, 2013), this computational
growth is a generic trend in SOS optimizations. This roughly limits SOS
methods to nonlinear analysis problems with at most 8-10 states and poly-
nomial models with degree of at most 4-5, at least with up-to-date common
computers.

Strictly-feasible solutions. Some complex SOS optimization problems may
give solutions with numerical problems, meaning than the SDP solver has
reached some minimum tolerances and accuracy on the computation is not
totally guaranteed. In those cases, the problem has been solved by adding an
additional constraint in order to force the solver to return a strict-feasible so-
lution (certificate of positivity). This was done by following the techniques in
Löfberg (2009), where optimization problems are reformulated as feasibility
ones: in this case, if the optimization results in a optimal norm-bound γ∗, a
strictly-feasible solution is obtained by posing a feasibility problem with the
same constraints plus γ < 1.001γ∗ (see the cited reference for details).

The above procedure is very related to solving the so-called “generalized
SOS problems” by bisection. Indeed all bisection iterations in such optimiza-
tions are just feasibility problems.

A.2.6 Code of examples

On the following, the MATLAB code for solving some simple examples pre-
sented in this thesis is shown:
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Example YALMIPSOS:

Check if a polynomial p(x, y, z) is SOS within the region defined by {−1 <
x < 1, −1 < y < 1}.

%Define problem variables and the polynomial p:

x = sdpvar(1,1);
y = sdpvar(1,1);
z = sdpvar(1,1);
p = 12+y^2-2*x^3*y+2*y*z^2+x^6-2*x^3*z^2+z^4+x^2*y^2;

%Constraints:

g = [1-x;1+x;1-y;1+y];

%Define four parametric polynomials to act as Psatz
multipliers, quadratic for instance:

[s1,c1] = polynomial([x y],2);
[s2,c2] = polynomial([x y],2);
[s3,c3] = polynomial([x y],2);
[s4,c4] = polynomial([x y],2);

%Apply Positivstellensatz:

F=sos(p-[s1 s2 s3 s4]*g);
F=[F,sos(s1),sos(s2),sos(s3),sos(s4)];

%Call the solver with the necessary data:

options=sdpsettings(’sos.model’,2);
[sol,v,Q]=solvesos(F,[c1;c2;c3;c4],options);

%Obtaining solutions: V is the found SOS
decomposition and S1 is the first found
multiplier with its C1 coefficients.

S1=sdisplay(s1)
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C1=double(c1)
monomials=sdisplay(v{1})
V=sdisplay(v{ 1}’*Q{1}*v{1})}

Example SOSTOOLS:

Find a Lyapunov function for the following polynomial system:

ẋ =

 −x3
1 − x1x

2
3

−x2 − x2
1x2

−x3 + 3x2
1x3 − 3x3

(x23+1)


% Define problem variables

pvar x1 x2 x3;
vars = [x1; x2; x3];

% Define the system dx/dt = f

f=[-x1^3-x1*x3^2;-x2-x1^2*x2;-x3+3*x1^2*x3
-3*x3/(x3^2+1)];

% Initialize the SOS program:

prog = sosprogram(vars);

% Define the Lyapunov function structure
V(x1^2,x2^2,x3^2):

[prog,V] = sospolyvar(prog,[x1^2; x2^2; x3^2]);

% Define SOS constraints:

% Constr 1 : V(x)-epsilon(x1^2+x2^2+x3^2)>=0
prog = sosineq(prog,V-(x1^2+x2^2+x3^2));

% Constr 2: -dV/dx*(x3^2+1)*f>=0
expr=-(diff(V,x1)*f(1)+diff(V,x2)*f(2)

+diff(V,x3)*f(3))*(x3^2+1);
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prog = sosineq(prog,expr);

% Call the solver:
prog = sossolve(prog);

% Show the found Lyapunov function:
SOLV = sosgetsol(prog,V)

Code of Example A.2.1 using SOSTOOLS.

pvar z1 z2 %Independent variable definition

p=z1^4-4*z1^3*z2+2*z1^3+4*z1^2*z2^2-12*z1^2*z2+z1^2
+16*z1*z2^2+16*z2^2-8*z1*z2; %Defines the polynomial

[H,m]=findsos(p) %Calls solver to check if p is SOS
H = 16.0000 -4.0000 8.0000 -4.0000

-4.0000 1.0000 -2.0000 1.0000
8.0000 -2.0000 4.0000 -2.0000
-4.0000 1.0000 -2.0000 1.0000

m = [ z2] % SeDuMi finds the definite positive
[ z1] % matrix H and the vector of monomials
[z1*z2] % m is shown
[ z1^2]

Code of Example A.2.2 using YALMIPSOS.

sdpvar x %Define independent variables

%Create the Psatz multiplier x^2

[s,coef,monom]=polynomial(x,2,2);

%Define SOS constraints

constr=[sos(1-x^3-s*(0.25-x^2)),sos(s)];

obj=[]; %No objective to minimize
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sol=solvesos(constr,obj,[],coef) %Solve SOS problem

%Display solution (the found Psatz multiplier)

disp(’S=’), sdisplay(double(coef)*monom)
S = ’1.4076*x^2’

Code of Example 3.2.2 using YALMIPSOS.

%Define independent variables

sdpvar x1 x2 x3 sg1 sg2

% Defining system derivatives

dx1=-(sg1^2+sg2^2)*(x1^3)-(sg1^2+0.05*sg2^2)*x1*x3^2;
dx2=-sg1^2*x2-2*sg2^2*x2-(sg1^2+sg2^2)*x1^2*x2;
dx3=(sg1^2+sg2^2)*(3*x1^2*x3-4*x3);

% Tolerance epsilon and Lyapunov function

eps1=0.01*(x1^4+x2^4+x3^4);
eps2=0.01*(x1^4+x2^4+x3^4)*(sg1^2+sg2^2);
[V,coef,monom]=polynomial([x1,x2,x3],4,2);

% Define SOS constraints

dV=jacobian(V,x1)*dx1+jacobian(V,x2)*dx2
+jacobian(V,x3)*dx3;

Constr=[sos(V-eps1),sos(-dV-eps2)];

obj=[]; %Minimization objective is not relevant

%Solve SOS problem

sol=solvesos(Constr,obj,[],coef)

%Display solution
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disp(’V=’),sdisplay(clean(double(coef)’*monom,1e-7))

Code of Example 3.2.3 using SOSTOOLS.

pvar x1 x2 sg1 sg2 %Define independent variables

%Fuzzy polynomial model

dx1=(-3*x1+0.5*x2)*(sg1^2+sg2^2);
dx2=-2*x2*(sg1^2+sg2^2)+3*sg2^2*x1*x2;

alp=0.272; %Decay rate to prove

%Initialize SOS optimization program

SOSP=sosprogram([x1,x2,sg1,sg2]);

%Create a vector with the 2-degree monomials of x
m=monomials([x1,x2],2);
%Same but all the 2-degree monomials of [x,sg]
z=monomials([x1,x2,sg1,sg2],[2]);

%Define Lyapunov function and Psatz multipliers

[SOSP,V]=sospolyvar(SOSP,m);
[SOSP,s1]=sossosvar(SOSP,z); %s1 is defined SOS
[SOSP,s2]=sossosvar(SOSP,z); %s2 is defined SOS

%-dV/dx with decay rate

Q=-diff(V,x1)*dx1-diff(V,x2)*dx2
-2*alp*V*(sg1^2+sg2^2);

%Define SOS constraints

SOSP=sosineq(SOSP,V-0.01*(x1^2+x2^2));
SOSP=sosineq(SOSP,Q-s1*(pi^2-x1^2)-s2*(pi^2-x2^2));

%Solve SOS problem and obtaining solutions
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SOSP=sossolve(SOSP);
v=sosgetsol(SOSP,V)



Appendix B

Proofs

B.1 Proof of Proposition 2.1

Proof. Suppose a quadratic candidate Lyapunov function V (x) = xTPx for
system (2.5). By condition (2.27), V (x) > 0∀x 6= 0.

Then consider the following inequality for all t:

V̇ (x(t)) + yT (t)y(t)− γuT (t)u(t) ≤ 0 (B.1)

By integrating (B.1) from 0 to T and assuming that x(0) = 0, we obtain

V (x(T )) +

∫ T

0
(yT (t)y(t)− γuT (t)u(t))dt ≤ 0.

Since V (x(T )) ≥ 0 by (2.27), ensuring (B.1) implies ‖y‖2‖u‖2
≤ √γ.

Now, developing (B.1) (notation of time t is omitted for clarity) we have

r∑
i=1

r∑
j=1

µi(z)µj(z)x
T (ATi P + PAi + CTi Cj)x

+ xTPBiu+ uTBTPx− γuTu =

r∑
i=1

r∑
j=1

µiµj [x
TuT ]

[
ATi P + PAi + CTi Cj PBi

BT
i P −γI

] [
x
u

]
< 0

which by Schur complement and the convex sum property of µi leads to the r
LMI conditions (2.28).

249
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B.2 Proof of Lemma 3.1

Proof. Denote the Taylor approximations as:

fn(x) :=

n−1∑
i=0

f [i](0)

(i)!
xi (B.2)

For later developments, denoting f0(x) = 0, denote

Tn(x) :=
f(x)− fn(x)

xn
=
f [n](ψ(x))

n!
(B.3)

so the Taylor remainder is f(x)− fn(x) = Tn(x)xn.
In the region of interest Ω, Tn(x) is bounded because f [n](x) is continuous

in Ω, as assumed in the lemma.
Denoting:

ψ1 := sup
x∈Ω

Tn(x), ψ2 := inf
x∈Ω

Tn(x), (B.4)

we may write:
Tn(x) = (µ(x)ψ1 + (1− µ(x))ψ2)

with:

µ(x) :=
Tn(x)− ψ2

ψ1 − ψ2
(B.5)

Hence, as f(x) = fn(x) + Tn(x)xn, it can be expressed as:

f(x) = fn(x) + (µ(x)ψ1 + (1− µ(x))ψ2)xn (B.6)

so the polynomial consequent p1 in (3.4) is given by p1(x) = fn(x) + ψ1x
n,

and p2(x) = fn(x) + ψ2x
n.

B.3 Proof of Theorem 3.1

Proof. Conditions (3.38) and (3.39) together mean (3.21) after carrying out
some operations with the change of variable ρ = P (x̃)z(x), X(x̃) = P (x̃)−1

and the evident fact of

P (x̃)X(x̃) = I,
dP (x̃)

dx
X(x̃) + P (x̃)

dX(x̃)

dx
= 0.

So, jointly with (3.37), they make V (x) to be a Lyapunov function for system
(3.33), with controller (3.35), locally in Ω by Lemma 3.2 and Lemma A.1. The
use of X(x̃) instead of X(x) allows conditions (3.38)-(3.39) to be convex due
to the fact that term vT dX(x̃)

dx (Bi(x)Kj(x)z(x))v = 0 in V̇ (x).
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B.4 Proof of Theorem 6.3

Proof. Let’s do the following change based on Euler discretization

ek+1 =
2∑
i=1

µi(P̄i(xk, x̂k)−Li(x̂k, yk)C̄(xk, x̂k)+Eiwk−Li(x̂k, yk)Rηk)

∼=
2∑
i=1

µi(e(t) + Ts(p̄i(x(t), x̂(t))− Li(x̂(t), y(t))C̄(x(t), x̂(t)))

+ TsEiw(t)− TsLi(x̂(t), y(t))Rη(t)) (B.7)

where Ts is the considered sample time.
In order to prove LyapunovH∞ stability, the following condition has to be

fulfilled:

V̇ (t) + e(t)TDTDe(t)− γW (t)TW (t) ∼=
Vk+1 − Vk

Ts
+ e(t)TDTDe(t)− γW (t)TW (t) < 0 (B.8)

Then, using a quadratic candidate Lyapunov function and substituting (B.7)
into (B.8), it leads to

2∑
i=1

µi
(
(∗)TQ

(
Ts(p̄i(x, x̂)− Li(x̂, y)C̄(x, x̂) + Eiw − Li(x̂, y)Rη) + e

))
− eTQe+ Ts(e

TDTDe− γW TW ) = 2Tse
TQ

2∑
i=1

µi (p̄i(x, x̂)−

Li(x̂, y)C̄(x, x̂) + Eiw − Li(x̂, y)Rη
)

+ eTDTDe− γW TW
)

+

T 2
s

2∑
i=1

µi
(
(∗)TQ

(
p̄i(x, x̂)− Li(x̂, y)C̄(x, x̂) + Eiw − Li(x̂, y)Rη

))
< 0

(B.9)

This requires again a Schur complement on Q−1 (in the term which multi-
plies T 2

s ) in order to obtain a convex constraint, equivalent to (6.28). However,
if Ts is small enough, the nonconvex term on T 2

s can be disregarded without
making a large error. Then, if the convex-sum property is used and local infor-
mation is added to (B.8) by using Positivstellensatz multipliers s1i following
Theorem A.1, constraints (6.39) are obtained.
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If continuous decay-rate condition is added, a similar development can be
done by substituting

ek+1 =

2∑
i=1

µi(P̄i(xk, x̂k)− Li(x̂k, C(xk))C̄(xk, x̂k)) ∼=

e(t) +

2∑
i=1

µi((p̄i(x(t), x̂(t))− Li(x̂(t), C(x(t)))C̄(x(t), x̂(t))))Ts (B.10)

into
V̇ (t) + 2αe(t)TQe(t) ∼=

Vk+1 − Vk
Ts

+ 2αe(t)TQe(t) < 0

and again disregarding term on T 2
s plus adding locality with Theorem A.1, it

leads to conditions (6.40) (details omitted for brevity).
Finally conditions (6.41) say dV

dt ≥ −
2
Ts
V locally in Ωx,Ωe by adding

again multipliers s3i. Its meaning, in the linear case, would be forcing the
real part of the state poles to be greater than − 1

Ts
(Boyd, Ghaoui, Feron and

Balakrishnan, 1994).
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