Table of contents

1. **INTRODUCTION**
 1.1 Preliminary issues
 1.2 Research goals
 1.3 Outline of the Ph.D. Thesis

2. **STATE OF ART ANALYSIS**
 2.1 Introduction
 2.2 UHPFRC concepts
 2.2.1 What is UHPC-UHPFRC?
 2.2.2 Basic principles
 2.2.3 UHPFRC technology nowadays
 2.2.4 UHPFRC manufacturers and applications
 2.3 State of art analysis
 2.3.1 HPFRC-UHPFRC types, commercial dosages
 2.3.2 Database of dosages
 2.3.3 Analysis of the database dosages designs
 2.3.4 How to design a UHPFRC dosage?
 2.4 Mixing and casting
 2.4.1 Mixers
 2.4.2 Mixing process
 2.4.3 Casting
 2.4.4 Curing system
 2.4.5 Reasons to precast
 2.5 Properties
 2.5.1 Rheological properties
 2.5.2 Hardened state
 2.6 Design methods
 2.6.1 Recommendations
 2.6.2 From bending tests to constitutive law
 2.7 Connections where UHPFRC takes part
 2.7.1 Introduction
 2.7.2 Shear keys
 2.7.3 Cast in place joints
 2.7.4 Bolted joints
3. MATERIALS AND METHODOLOGY

3.1 INTRODUCTION

3.2 COMPONENTS USED

3.3 MIXERS

3.3.1 1 LITER MORTAR MIXER

3.3.2 30 LITER TILTING DRUM MIXER

3.3.3 50 LITER ROTATING PAN MIXER

3.3.4 75 LITER INTENSIVE MIXER

3.3.5 110 LITER PLANETARY MIXER

3.3.6 1 m³ INDUSTRIAL MIXER

3.3.7 2 m³ INDUSTRIAL MIXER

3.4 RHEOLOGICAL TESTS

3.4.1 MINI-SLUMP CONE TEST

3.4.2 SLUMP FLOW TEST

3.4.3 RHEOMETER

3.5 CASTING PROCESS

3.6 CURING PROCESS

3.7 HARDENED STATE TESTS

3.7.1 COMPRESSIVE TESTS

3.7.2 ELASTIC MODULUS

3.7.3 FLEXURAL TESTS

3.7.4 MICROSCOPY

3.8 COMPUTATIONAL PROCESSES

3.8.1 BACK ANALYSIS

4. ON THE INFLUENCE OF SEVERAL VARIABLES IN THE UHPFRC DOSAGE

4.1 INTRODUCTION AND MOTIVATIONS

4.2 OBJECTIVES AND STRUCTURE

4.3 UHPC BINDER PROPORTION ANALYSIS

4.3.1 MOTIVATION AND OBJECTIVES

4.3.2 EXPERIMENTAL PROGRAM

4.3.3 RESULTS AND DISCUSSION

4.3.4 CONCLUSIONS OF THE UHPC BINDER ANALYSIS

4.4 INFLUENCE OF THE W/B RATIO ON THE RHEOLOGY AND HARDENED STATE
4.4.1 Effect of W/B on the hardened state: Experimental program 123
4.4.2 Results of the effect of W/B on the hardened state 124
4.4.3 Influence on the rheology: The critical slump flow 127
4.4.4 Conclusions of the W/B ratio effect 129
4.5 Active addition effect 129
4.5.1 Experimental program 130
4.5.2 Results 131
4.5.3 Conclusions of the active addition effect 137
4.6 Limestone coarse aggregate effect 137
4.6.1 Experimental program 138
4.6.2 Results 140
4.6.3 Conclusions of the limestone coarse aggregate effect 144
4.7 Particle packing theory effect 144
4.7.1 Definition of the dosage criteria 145
4.7.2 Experimental program 147
4.7.3 Results 147
4.7.4 Conclusions of the particle packing theory effect 150
4.8 Mixer effects 151
4.8.1 Experimental program 151
4.8.2 Results 153
4.8.3 Conclusions of the mixer effect 158
4.9 Statistical analysis of the influence of the parameters 158
4.9.1 Experimental program 158
4.9.2 Results 161
4.10 General recommendations for VHPFRC-UHPFRC: Dosage, mixing and pouring 163
4.10.1 Dosage components 163
4.10.2 Dosage rheology 165
4.10.3 Mixing process 166
4.10.4 Pouring of the concrete 167
4.11 Implementation of the previous concepts: Dosages for different requirements 168
4.11.1 Objectives 168
4.11.2 Definition of the dosages 169
4.12 Summary and final remarks 177

5. UHPFRC bolted connections 179
5.1 Introduction 181
5.2 UHPFRC bolted joints. Failure modes 182
5.3 Preliminary tests for bolted connections 186
5.3.1 Test set up 186