

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/article/10.1007%2Fs10462-011-9224-z

http://hdl.handle.net/10251/34793

Springer Verlag

García Hernández, MDG.; Ruiz Pinales, J.; Onaindia De La Rivaherrera, E.; Aviña
Cervantes, JG.; Ledesma Orozco, S.; Alvarado Mendez, E.; Reyes Ballesteros, A. (2012).
New prioritized value iteration for Markov decision processes. Artificial Intelligence Review.
37(2):157-167. doi:10.1007/s10462-011-9224-z.

1

New Prioritized Value Iteration for Markov
Decision Processes

Ma.de Guadalupe Garcia-Hernandez1, Jose Ruiz-Pinales1, Eva Onaindia2, Alberto
Reyes-Ballesteros3, J. Gabriel Aviña-Cervantes1, Sergio Ledesma-Orozco1, Edgar

Alvarado-Mendez1
1 University of Guanajuato, Comunidad de Palo Blanco s/n, Salamanca,

Guanajuato, Mexico, tel. 52 464 6479940
{garciag,pinales,avina,selo,ealvarad}@salamanca.ugto.mx

2 Universitat Politècnica de València, DSIC, Camino de Vera s/n, 46022, Valencia,
España, tel. 34 963877000, onaindia@dsic.upv.es

3 Electrical Research Institute, Reforma 113, 62490, Temixco, Morelos, Mexico,
tel. 52 7773623811, areyes@iie.org.mx

Abstract: The problem of solving large Markov decision processes accurately and quickly is
challenging. Since the computational effort incurred is considerable, current research focuses on
finding superior acceleration techniques. For instance, the convergence properties of current
solution methods depend, to a great extent, on the order of backup operations. On one hand,
algorithms such as topological sorting are able to find good orderings but their overhead is usually
high. On the other hand, shortest path methods, such as Dijkstra’s algorithm which is based on
priority queues, have been applied successfully to the solution of deterministic shortest-path
Markov decision processes. Here, we propose an improved value iteration algorithm based on
Dijkstra’s algorithm for solving shortest path Markov decision processes. The experimental results
on a stochastic shortest-path problem show the feasibility of our approach.

Keywords: Markov decision processes, priority queues, Dijkstra’s algorithm.

1. Introduction
In planning under uncertainty, the planner’s objective is to find a policy that

optimizes some expected utility. Most approaches for finding such policies are
based on decision-theoretic planning (Boutilier 1999) (Bellman 1954) (Puterman
1994). Among these, Markov decision processes (MDPs) constitute a
mathematical framework for modeling and deriving optimal policies. Value
iteration is a dynamic programming algorithm (Bellman 1957) for solving MDPs,
but it is usually not considered because of its slow convergence (Littman 1995).
This is because its speed of convergence depends strongly on the order of the
computations (or backups).

The slow convergence of value iteration for solving large MDPs is usually

tackled up by using one of two approaches (Dai 2007a): heuristic search (Hansen
2001) (Bhuma 2003) (Bonet 2003a,b, 2006), or prioritization (Moore 1993)
(Ferguson 2004) (Dai 2007b) (Wingate 2005). In the first case, heuristic search
(combined with dynamic programming) is used to reduce the number of relevant
states as well as the number of search expansions. Hansen et al. (Hansen 2001)
considered only part of the state space by constructing a partial solution graph,
searching implicitly from the initial state towards the goal state, and expanding
the most promising branch of an MDP according to a heuristic function. Bhuma et

mailto:onaindia@dsic.upv.es�

2

al. (Bhuma 2003) extended this approach by using a bidirectional heuristic search
algorithm. Bonet et al. (Bonet 2003a,b) proposed two other heuristic algorithms
that use a clever labeling technique to mark irrelevant states. Later on, they
explored depth-first search for the solution of MDPs (Bonet 2006). In the second
case, prioritization methods are based on the observation that, in each iteration,
the value function usually changes only for a reduced set of states. So, they
prioritize each backup in order to reduce the number of evaluations (Moore 1993)
(Dai 2007b). Ferguson et al. (Ferguson 2004) proposed another prioritization
method called focused dynamic programming, where priorities are calculated in a
different way than in prioritized sweeping. Dai et al. (Dai 2007a) extended Bhuma
et al.’s idea (Bhuma 2003) by using concurrently different starting points. In
addition, they also proposed (Dai 2007b) a topological value iteration algorithm,
which groups states that are mutually and causally related together in a meta-state
for the case of strongly connected states (or MDPs with cyclic graphs). Likewise,
other approaches such as topological sorting (Wingate 2005) and shortest path
methods (McMahan 2005a,b) have been proposed. On the first hand, topological
sorting algorithms can be used to find good backup orderings but their
computational cost is usually high (Wingate 2005). On the other hand, shortest
path methods have been applied to the solution of MDPs with some success
(McMahan 2005a,b).

We consider the problem of finding an optimal policy in a class of positive

MDPs with absorbing terminal states, which are equivalent to stochastic-shortest-
path problems (Bertsekas 1995). McMahan et al. (McMahan 2005a) proposed a
method called improved prioritized sweeping (IPS) for solving single goal
stochastic-shortest-path problems based on the Dijkstra’s algorithm. The
advantages of this method are the reduction to Dijkstra’s algorithm for the case of
Markov chains (or acyclic deterministic MDPs), and the improvement in speed
when compared with other methods such as prioritized sweeping (Moore 1993)
and focused dynamic programming (Dai 2007b). Unfortunately, IPS has no
guaranteed convergence to the optimal policy for the case of stochastic shortest
path MDPs (Dai 2007a,b) (Li 2009). Thus, in this work we propose a new
prioritized value iteration algorithm based on Dijkstra’s algorithm which has
guaranteed convergence for the case of stochastic-shortest-path problems in
addition that it can deal with multiple goal and start states.

This paper is organized as follows: first we present a brief introduction to

MDPs as well as solution methods, then we describe the prioritized sweeping
approaches, after that, we describe our algorithm and present experimental results.
Finally, we present the conclusions.

2. Markov Decision Processes
Markov decision processes (MDPs) provide a mathematical framework for

modeling sequential decision problems in uncertain dynamic environments
(Bellman 1957) (Puterman 2005).

Formally, a MDP is a four-tuple (, , ,)S A P R , where S is a finite set of states

1{ , , }ns sK , A is a finite set of actions 1{ , , }na aK , : 0,1P S A S é ù´ ´ ® ë û is the
transition probability function, which associates a set of probable next states to a

3

given action in the current state. (, ,)P a s s¢ denotes the transition-probability to
reach state s¢, if one applies action a in state s . (,)R s a denotes the reward
obtained if one applies action a in state s . ()sp denotes a policy (or strategy), it
yields an action for each state, it is a rule that specifies which action should be
taken in each state. The Markovian property guarantees that s′ only depends on
the pair (,)s a . The core problem of MDPs is to find the optimal policy to
maximize the expected total reward (Puterman 2005). The value function, which
is the expected reward (or utility) when starting at state s and following policy
p , is given by:

0() (, ())t
t t

t
V s E R s s s sp g p

é ù
ê ú= =ê úë û
å . (1)

where [0,1]g Î is a discount factor, which may be used for decreasing
exponentially future rewards. For the case of discounted MDPs (0 1g< <), the
utility of an infinite state sequence is always finite. So, the discount factor
expresses that future rewards have less value than current rewards (Russell 2004).
For the case of additive MDPs (1g =) and infinite horizon, the expected total
reward may be infinite and the agent must be guaranteed to end up in a terminal
state.

Let * ()V s be the optimal value function given by:

* () max ()V s V sp
p

= . (2)

The optimal value function satisfies the Bellman equation (Bellman 1954)
(Puterman 2005) that is given by:

* *
1() max (,) (, ,) ()t ta s

V s R s a P a s s V sg +
¢

ì üï ïï ï¢ ¢= +í ýï ïï ïî þ
å . (3)

Value iteration, policy iteration and linear programming are three of the most
well known techniques for finding the optimal value function * ()V s and the
optimal policy *p for infinite horizon problems (Chang 2007). However, policy
iteration and linear programming are computationally expensive techniques when
dealing with problems with large state spaces because they both require solving
several linear systems (of equations) of the same size as the state space. In
contrast, value iteration avoids this problem by using a recursive approach
typically used in dynamic programming (Chang 2007).

Starting from an initial value function, value iteration applies successive

updates to the value function for each s SÎ by using:

ˆ () max (,) (, ,) ()
a s

V s R s a P a s s V sg
¢

ì üï ïï ï¢ ¢= +í ýï ïï ïî þ
å . (4)

Let { | 0,1, }nV n = K be the sequence of value functions obtained by value
iteration. Then, it can be shown that every value function obtained by value
iteration satisfies * *

0| | | |n
nV V V Vg- £ - . Thus, from the Banach fixed point

4

theorem, it can be inferred that value iteration converges to the optimal value
function * ()V s . One advantage of value iteration comes from the fact that the
value functions obtained can be used as bounds for the optimal value function
(Tijms 2003).

The computational complexity of one update of value iteration is
2(| | | |)O S A . However, the number of required iterations can be very large.

Fortunately, it has been shown in (Littman 1995) that an upper bound for the
number of iterations required by value iteration to reach an e -optimal solution is
given by:

1 1
1

log() log() 1

1it

b
n e g

g
-

+ + +
£

-
 (5)

where 0 1g< < , b is the number of bits used to encode rewards and state
transition probabilities, and e is the threshold of the Bellman error (Puterman
2005) given by:

() max (,) (, ,) () ()t t t
a A s S

B s R s a P a s s V s V sg
Î ¢Î

ì üï ïï ï¢ ¢= + -í ýï ïï ïî þ
å . (6)

The convergence of value iteration may be quite slow for g close to one. For this
reason, several improvements to value iteration have been proposed (Puterman
2005). For instance, common techniques may improve convergence rate, reduce
the time taken per iteration and/or use better stopping criteria.

One of the easiest ways to improve convergence rate is to update the value

functions as soon as they become available (also known as asynchronous
updates). For instance, Gauss-Seidel value iteration uses the following update
equation (Puterman 2005):

1() max (,) (, ,) () (, ,) ()t t t
a s s s s

V s R s a P a s s V s P a s s V sg g -

¢ ¢< ³

ì üï ïï ï¢ ¢ ¢ ¢= + +í ýï ïï ïî þ
å å . (7)

It is well known that policy iteration converges in less number of iterations

than value iteration does, but it is more expensive per iteration because it requires
solving a system of linear equations at each one of the iterations. In contrast, value
iteration does not require the solution of any linear system of equations. A
combined approach (modified policy iteration) can exploit the advantages of both.
Thus, modified policy iteration uses a partial policy evaluation step based on
value iteration (Puterman 2005).

Other way of improving the convergence rate as well as the iteration time is
using prioritization and partitioning (Wingate 2005). Generally, prioritization
methods are based on the observation that, at each iteration, the value function
usually changes only for a reduced set of states. Thus, by restricting the
computation to only those states, a reduction of the iteration time is expected. It
has been outlined that for acyclic problems the ordering of the states, where the

5

transition matrix becomes triangular may result in a significant reduction in time
(Wingate 2005).

Another method to reduce the iteration time is to identify and eliminate

suboptimal actions (Puterman 2005). For instance, bounds of the optimal value
function can be used to eliminate suboptimal actions. The advantage of this
approach is that the action set is progressively reduced with the consequent
reduction in time.

On the other hand, the number of iterations can be slightly reduced by using
improved stopping criteria based on tighter bounds of the Bellman error (see Eq.
(6)) (Puterman 2005). For instance, a stopping criterion would be to stop value
iteration when the span of the Bellman error falls below a certain threshold
(Puterman 2005).

Last, for the case of large MDPs with sparse transition matrices, memory

savings can be obtained by using a sparse representation (Agrawal 2002) where
only non-zero transition probabilities are stored. In this way, it is possible to
handle larger problems than the ones that can be solved otherwise (mainly in
highly sparse MDPs). For instance, an adjacency list containing all the state
transitions with non-zero probability can be built.

3. Priority-based methods for solving MDPs
Although value iteration is a powerful algorithm for solving MDPs, it has some

potential problems. First, some backups are useless because not all states change
in a given iteration (Dai 2007b). Second, backups are not performed in an optimal
order. Priority-based methods such as prioritized sweeping (PS) (Moore 1993)
avoid these problems by ordering and performing backups so as to perform the
least number of backups (Dai 2007b). To be more precise, PS maintains a priority
queue for ordering backups intelligently. This priority queue is updated as the
algorithm sweeps through the state space. PS can begin by inserting the goal state
in the priority queue when it is used in an offline dynamic programming
algorithm, such as value iteration. At each step, PS pops a state s from the queue
with the highest priority and performs a Bellman backup of that state. If the
Bellman residual of state s is greater than some threshold value ε or if s is the
goal state, then PS inserts its predecessors into the queue according to their
priority (Dai 2007b). Unfortunately, the use of a priority queue for all the states of
the model may result in an excessive overhead for real-world problems (Wingate
2005), especially for cyclic MDPs.

Focused dynamic programming (Ferguson 2004) is another variant of

prioritized sweeping that exploits the knowledge of the start state to focus its
computation on states that are reachable from that state. To do this, focused
dynamic programming uses a priority metric that it is defined using two heuristic
functions: an admissible estimate of the expected cost for reaching the current
state from the start state and an estimate of the expected cost for reaching the goal
state from the current state. In contrast to other forms of prioritized sweeping, this
approach removes the state with the lowest priority value from the priority queue,

6

instead of removing the state with the highest priority value, since it is interested
in states through which the shortest path passes.

Dibangoye et al. (Dibangoye 2008) proposed an improved topological value

iteration algorithm (iTVI) which uses a static backup order. Instead of minimizing
the number of backups per iteration or eliminating useless updates, this algorithm
attempts to minimize the number of iterations by using a good backup order (a
topological order). First, depth-first-search is used to collect all reachable states
from the start state. Next, breadth-first-search is used to build a metric d(s), which
is defined as the distance from the start state to state s. A static backup order is
built from the resulting metric in such a way that states that are closer to the start
state be updated first. The algorithm is guaranteed to converge to the optimal
value function because it updates all states recursively in the same way as value
iteration does.

Meuleau et al. (Meuleau 2006) solved stochastic over-subscription planning

problems (SOSPs) by means of a two-level hierarchical model. They exploit this
hierarchy by solving a number of smaller factored MDPs. Shani et al. (Shani
2008) extended the use prioritization to partially observable Markov Decision
processes. In this case, backups are prioritized by using the Bellman error as a
priority metric and no priority queue is used.

In contrast with the above methods, it is worth to mention a prioritization

method that does not require a priority queue (Dai 2007c), instead, it uses a FIFO
(first input, first output) queue if the backwards traversal of the policy graph is
breadth-first (forwards value iteration), or a LIFO (last input, first output) queue if
the backwards traversal is depth-first (backwards value iteration). In both cases,
unnecessary backups can be avoided by using a labeling technique (Bonet
2003a,b) and the decomposition of the state space into a number of strongly
connected components. Unfortunately, it has been shown that the backup order
induced by these algorithms is not optimal (Dai 2007c).

Since the performance of PS depends on the priority metric that it is used to

order states in the priority queue, several researchers have investigated alternative
priority metrics. For instance, IPS (McMahan 2005a,b) uses a combination of
priority metrics (a value change metric, and an upper bound metric). In fact, it has
been shown that IPS may outperform other prioritized sweeping algorithms (Dai
2007a,b).

4. Proposed Algorithm
Dijkstra’s algorithm is an efficient greedy algorithm for solving the single-

source shortest path problem in a weighted acyclic graph. This algorithm is a
special case of the A* algorithm but unlike the A* algorithm, Dijkstra’s algorithm
is not goal oriented. This is because Dijkstra’s algorithm computes all shortest
paths from a single source node to all nodes and thus solves the one-to-all shortest
path problem. In fact it has been shown that Dijkstra’s algorithm is a successive
approximation method to solve the dynamic programming equation for the
shortest path problem (Sniedovich 2006, 2010) and therefore it is based on the
Bellman’s optimality principle. The main difference between Dijkstra’s algorithm

7

and other dynamic programming methods for the shortest path problem is the
particular order in which it processes states; it processes states according to a
greedy best first rule. More precisely, Dijkstra’s algorithm chooses the next state
to be processed as the one having the smallest value of the dynamic programming
functional. One implication for the solution of MDPs is that, instead of a
topological order, a more suitable update order may be to choose the next state to
be updated as the one having the highest value function. For that reason, in our
algorithm we use the current value function as a priority metric.

One of the advantages of value iteration and its variants (in particular PS) is
that their convergence to the optimal value function is guaranteed for the case of
discounted MDPs and for the case of additive MDPs with absorbing states
(Bertsekas 1995) (Li 2009). This is because successive applications of the
Bellman equation guarantee convergence to the optimal value function. For that
reason, in our algorithm (Improved Prioritized Value Iteration, IPVI) we update
all predecessors of the best state (having the highest value function) by using the
Bellman equation.

Let ()tV s be the expected cost at time t to reach a goal state starting from a

state s S∈ , ()t sπ be the best policy or action at time t and state s , (,)R s a be
the reward for action a A∈ in state s , {(, , ,) | (| ,) 0}k k k k k k k kL s s a p p P s s a′ ′= = ≠
be the set of all the possible state transitions, G be the set of goal states, g be the
discount factor and e be the maximum error. Basically, our method performs an
initialization step followed by successive prioritized removals of each state in the
queue with an update of its predecessors by using the Bellman equation until the
queue is empty.

As shown in Algorithm 1, for each state s S∈ , we make 0 () 1sπ = − , then if

s G∉ then we assign a very large positive constant M to 0 ()V s otherwise we set
its value to zero. Next, we push each goal state s G∈ into the priority queue
according to its priority 0 ()V s . Then, we repeat the following procedure until the
priority queue is empty. We pop the state s with the highest priority out from the
queue, and then, we update all its predecessors ()y pred s∈ . For every update of
a predecessor ()y pred s∈ of state s , we compute the Bellman equation

1

(, , ,)
() max (,) ()

k k k k

t t
k ka s y s a a p L

V y R y a p V sγ+

′∀ = = ∈

  ′= + 
  

∑ , (8)

and if 1() ()t tV y V y ε+ − > then we push state y into the queue according to its

priority 1()tV y+ , if state y is already in the queue, then its priority is only
updated.

 [Insert Algorithm 1 about here]

8

5. Description of Experiments
For the validation of the proposed algorithm, we chose the sailing strategies

problem (Vanderbei 1996, 2008), which is a finite state-action-space stochastic-
shortest-path problem, in which a sailboat has to find the shortest path between
two points of a lake under fluctuating wind conditions.

The details of the problem are as follows: the sailboat’s position is represented
as a pair of coordinates on a grid of finite size. The sailor has eight actions giving
the direction to a neighboring grid position. Each action has a cost (required time)
depending on the direction of the boat’s heading and the wind. For the action
whose direction is just the opposite of the direction of the wind, the respective
cost must be high. For example, if the wind is at 45 degrees measured from the
boat’s heading (upwind tack), it requires four seconds to sail from one waypoint to
one of the nearest neighbors. But, if the wind is at 90 degrees from the boat’s
heading (crosswind tack), the boat moves faster through the water and can reach
the next waypoint in only three seconds. If the wind is a quartering tailwind
(downwind tack), it requires just two seconds. Finally, if the boat is sailing
directly downwind (away tack), it requires only one second. Otherwise, the wind
can hit the left or right side of the boat (a port or a starboard tack, respectively).
When changing from a port to a starboard tack (or vice versa), it wastes three
seconds (delay) for every such change of tack. To keep our model simple, we
assume that the wind intensity is constant but its direction may change at any
time. The wind could come from one of three directions: either from the same
direction as the old wind or from 45 degrees to the left or to the right of the old
wind. Table 1 shows the probabilities of a change on the wind direction used in all
the experiments. When the heading is along one of the diagonal directions, the
time is multiplied by 2 to account for the somewhat longer distance that must
be traveled. Each state s of the MDP corresponds to a position of the boat (,)x y ,
a tack {0,1,2}t∈ and a wind direction {0,1, ,7}w∈  .

[Insert Table 1 about here]

All the experiments were performed on a 2.66 GHz Pentium D computer with

2 GB RAM running Windows XP. All the tested algorithms were implemented
using the Java language. The initial and maximum size of the stack of the Java
virtual machine was set to 1024 MB and 1536 MB, respectively. For all the
experiments, we set 710ε −= and 1γ = . So, we are dealing with an additive MDP,
where convergence is not guaranteed by the Banach fixed point theorem
(Blackwell 1965). Fortunately, the presence of absorbing states (states with zero
reward and 100% probability of staying in the same state) may allow the
algorithm to converge (Hinderer 2003). The lake size was varied from 50 50´ to
260 260× and the resulting number of states varied from 55296 to 1597536 ,
respectively (without the bounding beaches). We repeated each run 10 times and
then we calculated the mean and standard deviation of the solution time.

9

6. Experimental Results
We tested our approach (IPVI) and several variants of value iteration

including different acceleration techniques (Puterman 2005): Gauss-Seidel Value
Iteration (GSVI); Gauss-Seidel Value Iteration with updates of only those states
(as well as their neighbors) whose value function changed in the previous iteration
(GSVI2); and Gauss-Seidel Value Iteration with the same acceleration procedures
as GSVI2 plus static reordering of the states in decreasing order of maximum
reward (GSVI3), Policy Iteration (PI), and Modified Policy Iteration (MPI). Also
other two algorithms were tested: a dynamic programming approach (VDP)
(Vanderbei 1996, 2008) and the improved topological value iteration (iTVI)
(Dibangoye 2008). We also tested ITVI with different priority metrics but it
converged to the optimal policy only for the priority metric suggested by
Dijkstra’s algorithm.

Figure 1 shows the solution time for all tested algorithms as a function of the

number of states. As we can see, IPVI yielded the lowest solution time whereas
VDP yielded the highest solution time. For instance, for 525696 states, our
algorithm took 29.9 seconds, whereas GSVI3 took 173.6 seconds, GSVI2 took
203.3 seconds, GSVI took 303.6 seconds and VDP took 589.5 seconds. In this
case, our algorithm was 5.8 times faster than GSVI3, 6.8 times faster than
GSVI2, 10.2 times faster than GSVI, and 19.7 times faster than VDP. For
940896 states, our algorithm took 57.4 seconds, whereas GSVI3 took 412
seconds, GSVI2 took 486.5 seconds, GSVI took 755.1 seconds and VDP took
1376.6 seconds. In this case, our algorithm was 7.2 times faster than GSVI3, 8.5
times faster than GSVI2, 13.2 times faster than GSVI, and 24 times faster than
VDP. For 1359456 states, our algorithm took 81.5 seconds. As we can see, iTVI
(Dibangoye 2008) was not tested for more than 400000 states because it
exhausted the memory resources.

[Insert Figure 1 about here]

Figure 2 shows a closer look of the solution time as a function of the number

of states for IPVI, VI with asynchronous updates (GSVI) and iTVI. For instance,
for 393216 states, our algorithm took 22.2 seconds, whereas GSVI took 195.4
seconds and iTVI took 347.6 seconds. In this case, our algorithm was 8.8 times
faster than GSVI and 15.7 times faster than iTVI.

[Insert Figure 2 about here]

7. Conclusions
In this paper we have proposed and tested a new prioritized value iteration

algorithm based on Dijkstra’s algorithm for solving stochastic shortest path
MDPs. Unlike other prioritized approaches such as IPS, our approach can deal
with multiple start and goal states, and since it successively updates each state by
using the Bellman equation, it has guaranteed convergence to the optimal
solution. In addition, our algorithm uses the current value function as a priority
metric since Dijkstra’s algorithm suggests that a more suitable update order is
given by the value of the dynamic programming functional.

10

We compared the performance of our method with other state-of-the-art

algorithms including different acceleration techniques. At least in the sailing
strategies problem, our approach was the fastest algorithm in addition that it has
guaranteed convergence to the optimal value function.

References
Agrawal, S. and Roth, D. (2002). Learning a Sparse Representation for Object Detection.
Proceedings of the 7th European Conference on Computer Vision, pp 1-15, Copenhagen, Denmark.

Bellman, R. E. (1954). The Theory of Dynamic Programming. Bull. Amer. Math. Soc., 60: 503-
516.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, N. J., USA.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Athena Scientific,
Massachusetts, USA.

Bhuma, K. and Goldsmith, J. (2003). Bidirectional LAO* Algorithm. Proceedings of Indian
International Conferences on Artificial Intelligence, pp 980-992.

Blackwell, D. (1965). Discounted dynamic programming. Annals of Mathematical Statistics, 36:
226-235.

Bonet, B. and Geffner, H. (2003a). Faster Heuristic Search Algorithms for Planning with
uncertainty and full feedback. Proceedings of the 18th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, Acapulco, México, pp 1233-1238.

Bonet, B. and Geffner, H. (2003b). Labeled RTDP: Improving the Convergence of Real-Time
Dynamic Programming. Proceedings of the International Conference on Automated Planning and
Scheduling, pp 12-21, Trento, Italy.

Bonet, B. and Geffner, H. (2006). Learning depth-first search: A unified approach to heuristic
search in deterministic and non-deterministic settings and its application to MDP. Proceedings of
the 16th International Conference on Automated Planning and Scheduling, Cumbria, UK.

Boutilier, C., Dean, T. and Hanks, S. (1999). Decision-Theoretic Planning: Structural Assumptions
and Computational Leverage. Journal of Artificial Intelligence Research, 11: 1-94.

Chang, I. and Soo, H. (2007). Simulation-based algorithms for Markov decision processes.
Communications and Control Engineering, Springer Verlag London Limited.

Dai, P. and Goldsmith, J. (2007a). Faster Dynamic Programming for Markov Decision Processes.
Technical Report, Doctoral Consortium, Department of Computer Science and Engineering,
University of Washington.

Dai, P. and Goldsmith, J. (2007b). Topological Value Iteration Algorithm for Markov Decision
Processes. Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp
1860-1865, Hyderabad, India.

Dai, P. and Hansen, E. A. (2007c). Prioritizing Bellman Backups without a Priority Queue.
Proceedings of the 17th International Conference on Automated Planning and Scheduling,
Association for the Advancement of Artificial Intelligence, pp 113-119, Rhode Island, USA.

Dibangoye, J. S., Chaib-draa, B. and Mouaddib A. (2008). A Novel Prioritization Technique for
Solving Markov Decision Processes. Proceedings of the 21st International FLAIRS (The Florida
Artificial Intelligence Research Society) Conference, Association for the Advancement of
Artificial Intelligence, Florida, USA.

11

Ferguson, D. and Stentz, A. (2004). Focused Propagation of MDPs for Path Planning. Proceedings
of the 16th IEEE International Conference on Tools with Artificial Intelligence, pp 310-317.

Hansen, E. A. and Zilberstein, S. (2001). LAO: A Heuristic Search Algorithm that finds solutions
with Loops. Artificial Intelligence, 129: 35-62.

Hinderer, K. and Waldmann, K. H. (2003). The critical discount factor for Finite Markovian
Decision Processes with an absorbing set. Mathematical Methods of Operations Research,
Springer Verlag, 57: 1-19.

Li, L. (2009). A Unifying Framework for Computational Reinforcement Learning Theory. PhD
Thesis, The State University of New Jersey, New Brunswick, NJ, USA, October.

Littman, M. L. and Dean, T. L. and Kaelbling, L. P. (1995). On the Complexity of Solving
Markov Decision Problems. Proceedings of the 11th International Conference on Uncertainty in
Artificial Intelligence, pp 394-402, Montreal, Quebec.

Meuleau, N., Brafman, R. and Benazera, E. (2006). Stochastic Over-subscription Planning using
Hierarchies of MDPs. Proceedings of the 16th International Conference on Automated Planning
and Scheduling, pp 121-130, Cumbria, UK.

McMahan, H. B. and Gordon, G. (2005a). Fast Exact Planning in Markov Decision Processes.
Proceedings of the 15th International Conference on Automated Planning and Scheduling,
Monterey, CA, USA.

McMahan, H. B. and Gordon, G. (2005b). Generalizing Dijkstra’s Algorithm and Gaussian
Elimination for Solving MDPs. Technical Report, Carnegie Mellon University, Pittsburgh, PA,
USA.

Moore, A. and Atkeson, C. (1993). Prioritized Sweeping: Reinforcement Learning with less data
and less real time. Machine Learning, 13: 103-130.

Puterman, M. L. (1994). Markov Decision Processes. Wiley Editors, New York, USA.

Puterman, M. L. (2005). Markov Decision Processes. Wiley Inter Science Editors, New York,
USA.

Russell, S. (2004). Artificial Intelligence: A Modern Approach. 2nd Edition, Making Complex
Decisions (Ch-17), Pearson Prentice Hill Ed., USA.

Shani, G., Brafman, R. and Shimony, S. (2008). Prioritizing Point-based POMDP Solvers. IEEE
Transactions on Systems, Man. and Cybernetics, Vol. 38, No. 6, pp 1592-1605 December.

Sniedovich, M. (2006). Dijkstra’s algorithm revisited: the dynamic programming connexion.
Control and Cybernetics, Vol.35, pp 599-620.

Sniedovich, M. (2010). Dynamic Programming: Foundations and Principles. Second Edition, Pure
and Applied Mathematics Series, Taylor and Francis Publishers.

Tijms, H. C. (2003). A First Course in Stochastic Models. Wiley Ed., Discrete-Time Markov
Decision Processes (Ch-6), UK.

Vanderbei, R. J. (1996). Optimal Sailing Strategies. Statistics and Operations Research Program,
University of Princeton, USA (http://orfe.princeton.edu/~rvdb/sail/sail.html).

Vanderbei, R. J. (2008). Linear Programming: Foundations and Extensions. Springer Verlag, 3rd
Edition, January.

Wingate, D. and Seppi, K. D. (2005). Prioritization Methods for Accelerating MDP Solvers.
Journal of Machine Learning Research, 6: 851-881.

http://orfe.princeton.edu/~rvdb/sail/sail.html�

12

Algorithm 1 Improved Prioritized Value Iteration (IPVI).

IPVI(, , , ,)R,L S G g e
() ()s S V s M∀ ∈ ←
() () 0s G V s∀ ∈ ←
()queue.enqueue(, ())s G s V s∀ ∈
while (queue.isempty())¬
 queue.pop()s ←
 for all pred()y s∈
 () ()V y V y′ ←

(, , ,)

() max (,) ()
k k k k

k ka s y s a a p L
V y R y a p V sγ

′∀ = = ∈

  ′ ′= + 
  

∑

 if () ()V y V y ε′− > then
 queue.decreasepriority(, ())y V y
 end
 end
end
return

13

Figure 1 Solution time as a function of the number of states for our algorithm (IPVI), three
accelerated variants of the classical VI , VDP (Vanderbei, 2008) and iTVI (Dibangoye, 2008).

14

Figure 2 Closer look of the solution time as a function of the number of states for our algorithm
(IPVI), GSVI and iTVI (Dibangoye, 2008).

15

Table 1 Probability of wind direction change. First column indicates old wind direction and first
row indicates new wind direction.

 N NE E SE S SW W NW
N
NE
E

SE
S

SW
W

NW

0.4
0.4

0.4

0.3
0.3
0.4

0.3
0.3
0.4

0.3
0.3
0.4

0.3
0.2
0.3

0.4
0.3
0.3

0.4
0.3
0.3

0.3

0.4
0.3

