Document downloaded from:
http://hdl.handle.net/10251/34812

This paper must be cited as:

Domenech, J.; De La Ossa Perez, BA.; Sahuquillo Borréas, J.; Gil Salinas, JA.; Pont
Sanjuan, A. (2012). A taxonomy of web prediction algorithms. Expert Systems with
Applications. 39(9):8496-8502. doi:10.1016/j.eswa.2012.01.140.

The final publication is available at

http://dx.doi.org/10.1016/j.eswa.2012.01.140

C ight
opyng Elsevier

A taxonomy of web prediction algorithms

Josep Domenech, Bernardo de la Ossa, Julio Sahuquillo,
Jose A. Gil and Ana Pont
Universitat Politecnica de Valencia.
Cami de Vera, s/n. 46022 Valencia (Spain)
jdomenech@upvnet.upv.es; berospe@Qdoctor.upv.es;
{jsahuqui,jagil,apont } @disca.upv.es

November 10, 2011

Abstract

Web prefetching techniques are an attractive solution to reduce the
user-perceived latency. These techniques are driven by a prediction en-
gine or algorithm that guesses following actions of web users. A large
amount of prediction algorithms has been proposed since the first pre-
fetching approach was published, although it is only over the last two or
three years when they have begun to be successfully implemented in com-
mercial products. These algorithms can be implemented in any element
of the web architecture and can use a wide variety of information as input.
This affects their structure, data system, computational resources and ac-
curacy. The knowledge of the input information and the understanding of
how it can be handled to make predictions can help to improve the design
of current prediction engines, and consequently prefetching techniques.

This paper analyzes fifty of the most relevant algorithms proposed
along 15 years of prefetching research and proposes a taxonomy where
the algorithms are classified according to the input data they use. For
each group, the main advantages and shortcomings are highlighted.

1 Introduction

Web prediction algorithms pursue to discover patterns that permit them to
foresee subsequent web user demands. Applications of these predictions include
recommendation systems [11], e-commerce [1], content personalization [34], and
reduction of user-perceived latencies by means of web prefetching [36] and cache
prevalidation [17]. Since the goals of these applications are completely different,
prediction algorithms have different requirements when used for each of them.
For instance, prediction algorithms for web prefetching might work at object-
level granularity because prefetching one object might reduce the user-perceived
latency. However, recommendation systems focus on page-level granularity since
users expect that the system recommends a page, not a single object composing
a page.

This paper focuses on prediction algorithms applied to web prefetching. Web
prefetching is a technique aimed at reducing user-perceived latencies by process-
ing (usually downloading) user requests before they actually demand them. For

example, if a user is likely to visit page B after visiting page A, the browser
can download and cache page B just after requesting page A, i.e., while the
user is reading page A. In this case, when the user actually requests page B,
this is displayed without network latency since it is already in cache. Accurate
predictions are required because, on misprediction, prefetched objects waste
client, server and/or network resources, and this could degrade the overall sys-
tem performance. For this reason, the prediction algorithm is the core of web
prefetching.

A wide range of prediction algorithms for web prefetching have been pro-
posed in the literature over the last 15 years. Although early proposals focused
on exploiting the object popularity to determine the objects that are more
likely to be requested in the near future, the most explored option is to predict
subsequent requests from past sequences of requests. However, over the last
years, other data sources beyond the sequence of accesses, such as the site link
structure, the HTTP headers or the page contents, are being included in the
prediction algorithms.

Understanding and identifying advantages and shortcomings of prediction
algorithms is a hard task even for an experienced researcher in this field because
of the large amount of proposals that work according to different rules. This
means that selecting the best approach or developing a new one for a given
environment represents an arduous task.

Few attempts classifying prediction algorithms have been published and
they mainly focus on how sequences of accesses are analyzed. Rabinovich and
Spatscheck [41] classify different approaches depending on how predictions are
made. They differentiate three categories of Markov models depending on how
many previous accesses are used. Other category includes algorithms based on
the popularity that web objects exhibit, and another one is dedicated to those
algorithms exploiting the structure of the web. The last classification published,
presented by Davison [15], divides the prediction algorithms into five categories
according to how the sequence of accesses is analyzed. Although it is mentioned
that more objects can be predicted if extra information sources are used (e.g.,
web page content), this is not analyzed in depth.

Unfortunately, the complexity of prediction algorithms published in the liter-
ature from Davison’s classification has noticeably increased. As a consequence,
many of these proposals do not fit well in any of the previously identified cate-
gories. Therefore, a new effort is required to order and clarify them to provide
a sound understanding of their advantages, progresses and real possibilities of
use.

In this paper, we propose a prediction algorithm taxonomy in which the
algorithms are classified by the type of information they use to make predictions.
The algorithms are organized in four main categories depending on whether they
take as input the object characteristics, the sequence of requests, the HTTP
headers and/or the content of web pages. This classification is proposed because
the input of the predictors determine what kind of accesses can be predicted
and how complex the analysis is. For instance, a recently added link can be
predicted by an algorithm using as input the sequence of requests only if at
least one user has already followed that link.

The main contribution of this paper is to present a comprehensive review
of web prediction algorithms grouped by a novel taxonomy, thus easing the
understanding of how predictors work and the implications of selecting a given

prediction algorithm when designing a new prefetching system. In other words,
this paper is aimed at examining the pros and cons of each group of algorithms
and identifying current and future trends in web prediction engines.

The remainder of the paper is organized as follows. Section 2 describes the
elements that compose the web prefetching architecture, highlighting the func-
tion of the prediction algorithm. Section 3 classifies web prediction algorithms
according to the proposed taxonomy. Finally, Section 4 draws some concluding
remarks.

2 Web prefetching architecture

Web prefetching systems are implemented by extending the generic web archi-
tecture (with clients, servers and proxies) with two extra elements: the predic-
tion and the prefetching engines. The function of the prediction engine is to
guess future client actions, e.g., requests. Its implementation corresponds to a
prediction algorithm whose output is a hint list. In most proposals, this hint
list includes references to the predicted objects, although some few approaches
suggest other type of actions [12]. These predictions (or hints) are usually made
basing on previous experience about user accesses and preferences. These hints
are provided to a prefetching engine, which is aimed at preprocessing (e.g.,
downloading) those objects predicted by the prediction engine. By preprocess-
ing the requests in advance, the user-perceived latency is reduced when these
objects are requested by users.

The amount and scope of the information that can be used by the prediction
engine depends on the element of the Web architecture (the client, the proxy
or the server) at which the prediction engine is located. When the prediction
engine is located at the client, the algorithm can only use access patterns, con-
tents seen and preferences coming from one single user. Consequently, those
predictions are only useful for this user. If the prediction engine is located at a
proxy server, it can take advantage of the multi-user and multi-server informa-
tion gathered at this element to perform the predictions. When the predictor is
located at the server side (origin server or replica in the context of Content Dis-
tribution Networks (CDN)), it makes predictions based on multi-user accesses
and preferences to the same web site. This option has been the most explored
in the research literature because of the accuracy of the predictions made and
its potential use in real scenarios. Finally, in more complex proposals, the pre-
dictions can be performed by several elements in collaboration. This benefits
the accuracy and coverage of the predictions.

The prefetching engine is independent from the predictor and can be located
in any element of the web architecture that receives the hint list. However, the
common trend is to locate it at the client side as it is currently implemented in
Mozilla-based browsers. The prefetched objects are stored in a cache until they
are demanded or evicted.

Therefore, only those objects that can be stored at the web client must be
predicted or prefetched. This is not a drawback because, although a web page
can be the result of a dynamic response, many of the objects composing that
page are usually static and consequently cacheable. Furthermore, a dynamically
generated response can be cached if its headers properly mark the response. As
all the cacheable objects can be prefetched (precached), prefetching techniques

Web prediction algorithms

Object Sequence HTTP Content
Characteristics of Requests Headers |
\ \ \
Pure Hybrid Hyperlinks ~ Semantic ~ Labelled

Figure 1: Web prediction algorithm taxonomy

cover, among other technologies, dynamic web server and application program-
ming, and browser application programming like AJAX, Java, Flash, and other
Rich Internet Applications.

The performance of prediction algorithms is usually measured by means
of metrics that quantify both the efficiency and the efficacy of the proposal.
Although some proposals use some specific indexes, the general trend when
evaluating prediction algorithms is to trade-off Recall and Precision, as main
performance metrics. Recall is defined as the ratio of requested objects that
were previously predicted. As the recall quantifies the weight of the predicted
objects over the amount of objects requested by the user, it can give an idea
about the usefulness or coverage of the predictions. Precision is defined as the
ratio of good predictions to the number of predictions, so it is related to the
quantity of wasted resources.

3 Prediction engine taxonomy

This section presents the proposed taxonomy, which breaks down the prediction
algorithms into four categories according to the information used to make the
predictions.

Earlier proposals simply consider isolated object popularity, while some oth-
ers analyze the sequence of user requests to discover user navigation patterns. To
discover the structure of web pages and the relation between requests, more re-
cent algorithms take into account the HT'TP headers or examine page contents.
Content-based algorithms may involve the analysis of the list of hyperlinks, the
text surrounding hyperlinks or the labels with meta-information included by the
web designer.

This taxonomy, represented in Figure 1, summarizes the prediction algo-
rithms ranging from the earliest works in 1995 to the most recent ones found
in 2010. The algorithms were designed considering the characteristics of their
contemporary web sites and internet technologies. In this sense, this survey
represents a review that covers more than 15 years of research following the
evolution of the Web, from the genesis when static pages had few embedded ob-
jects and hyperlinks to the current web, with dynamic and personalized pages.

3.1 Object characteristics

Most of the algorithms falling in this category were proposed early in the Web.
In those years, more than one decade ago, the Web structure was much simpler
than nowadays. As a consequence, and in the absence of other approaches, the
most intuitive and simplest algorithms were proposed.

These proposals focus on analyzing object characteristics, like temporal lo-
cality and frequency of accesses (i.e., popularity), which were the first aspects
studied in the Web. Algorithms falling in this category usually follow the long-
term approach, where clients are subscribed to proxies storing specific objects,
which are in charge of keeping updated copies of the objects. The opposite is
referred to as the short-term approach, which aims to prefetch those objects
that are likely to be referenced in the near future, given user’s recent accesses.

The work by Bestavros et al. [5] provides an overview of the performance
benefits of propagating information from servers to proxies that are closer to
their clients. No algorithm is described but only some ideas on which the al-
gorithm should be based. The suggested algorithm takes as input the rate of
transferred bytes among clients and proxies and the cumulative distribution of
accesses to the objects as well. This idea was deeply worked in other work
by the same author [6], which explores the performance gains of propagating
information from servers to proxies. That is, the information is replicated at
proxies which are closer to the final users. The level of propagation is based
on the popularity of the objects and on the expected reduction in traffic. This
approach exploits the properties of temporal and geographical locality of ref-
erences, which, unlike the previous proposals, require a large community (e.g.,
thousands) of users.

The Top-10 approach proposed by Markatos and Chronaki [33], also pub-
lished in the last century, is one of the first attempts to exploit the web doc-
uments’ popularity for prefetching purposes. Additional information obtained
from the client side is also used to adapt prefetching to different client profiles.
In this approach, the web server publishes a list of the most popular objects
and this information is complemented with client access preferences to predict
future user accesses. This approach has been included in this category since the
main idea of the proposal is the use of the object popularity to predict future
accesses, although client profile information is also used to control and adapt
prefetching.

In [26], Jian et al. propose an algorithm based on prefetching objects exhibit-
ing a given characteristic. In this work, three main characteristics are explored
and quantified: object lifetime, probability of being accessed, and user request
arrival rate. The algorithm prefetches those objects where the estimated val-
ues for a given characteristic exceed an specific threshold. The proposal works
among clients and, either proxies or servers. The server collects information
characterizing the objects and makes it available to the prefetching engine as
well.

Wu et al. [47] propose an algorithm aimed at improving a given performance
metric, e.g., hit ratio, bandwidth consumption, or a ratio of both (H/B). De-
pending on the target metric, the algorithm prefetches objects showing some
particular characteristic (e.g., popularity, longer update intervals or a mix of
both). The best performance is achieved by the algorithm which maximizes the
H/B metric. The approach assumes that web servers push fresh copies into web

caches (assuming unlimited cache size) or proxy servers whenever such copies
are updated.

In [46], Venkataramani et al. propose a long-term approach where proxy
caches are subscribed to those popular objects that are updated with low fre-
quency. This approach is aimed at being used in the last level caches of a CDN
hierarchical structure while the typical prefetching (i.e., short-term approach)
should remain in the lower level caches. In [30], Lau and Ng propose a prefet-
ching algorithm that analyzes the browser’s cache according to the long-term
approach. The algorithm predicts and prefetches Web documents and their
linked documents as well. Two main characteristics are analyzed for each ob-
ject: its access rate and the last time it was accessed. As in [26], those objects
whose characteristic exceeds a given threshold are prefetched. The algorithm
uses the detection theory to determine the threshold value. In addition, users
can take an active part in the prefetching engine by using a graphic user interface
where they can modify any computed prefetching schedule.

The work by Rangarajan et al. [42] can be characterized as a short-term
approach. This paper presents a technique that dynamically groups users based
on their frequency of access to each object. In this way, the server structure
can be reorganized according to the needs of each group of users. To avoid
overloading the network, the proposal predicts in a cluster-based fashion instead
of predicting for each single user; that is, whenever a host connects to the server
or a proxy, the prefetching strategy returns the URIs predicted for the cluster
to which the host belongs.

Unlike the previous proposals, in the work by Duchamp [21], servers manage
not only statistics about the objects they store but also about objects in other
servers. All this information is then summarized and a probability of being used
is estimated. The prediction algorithm takes information both from the server
and client sides. Once the prediction is received, the client side can interact to
decide whether or not to prefetch the hinted hyperlinks according to some local
parameters.

Algorithms in this category made sense when they were proposed (i.e., early
in the Web), since the Web was simple and static regarding the object’s point
of view as well as its lifetime. Nowadays, this approach fits better to CDNs,
which control both the origin and replica contents.

3.2 Sequence of requests

Most of the web prediction algorithms proposed in the literature lie in the anal-
ysis of the paths followed by each client, that is, in the sequence of requests.
By comparing the user’s recent accesses to the paths previously recorded, algo-
rithms are able to predict future accesses.

Algorithms falling into this category require to distinguish which client is
issuing the request in order to keep track of the right sequence of accesses. Al-
though solving this issue is trivial when the prediction engine is implemented in
the web browser, it becomes more complex when it is implemented in the proxy
(keeping track of the clients IP could be enough) or in the server (frequently
requiring the use of cookies).

The element of the web architecture (i.e., client, proxy or server) in which
the prediction engine is implemented is also a performance limiting factor for
prediction engines of this type [19, 29]. This is because predictors falling in this

category cannot predict accesses to those resources that have not been requested
before to the element where the predictor is placed (first-seen resources). As
expected, the ratio of first-seen resources is low when predictors are located at
the server but high when located at the client [19]. However, this limitation can
be overcome if additional sources of information are provided to the prediction
engine. Therefore, algorithms in this category have been divided into pure
and hybrid, depending on whether the predictor considers only the sequence of
requests or also takes into account additional information to refine predictions.

3.2.1 Pure predictors

There is a large number of proposals specifically addressed to predict subse-
quent accesses from the sequence of requests that a web server receives. Some
variations of Markov models are often used to predict and hint resources that
other element of the web architecture (i.e., the proxy or the clients) will prefetch
[36, 13, 4, 38]. The dependency graph (DG) proposed by Padmanabhan and
Mogul [36] is usually taken as baseline for performance comparisons. The graph
has a node for every object that has ever been accessed. There is an arc from
node A to B if and only if at some point in time a client accessed B within w
accesses after A, where w is the lookahead window size. The weight of the arc is
the ratio of the number of accesses to B within a window after A to the number
of accesses to A itself.

Some other algorithms [43, 31] use the predictions to preprocess resources at
the server side. Schechter et al. [43] use session paths to make predictions for
generating some dynamic content in advance. In the context of a distributed web
server cluster, the proposal of Lee et al. [31] combines a prediction algorithm
with a workload distribution algorithm to prefetch objects from disk in each
web server.

Kim et al. [28] propose a predictor that takes into account the sequence of
requests from the client perspective. This sequence is used to predict the most
likely link in the current page that the user will follow. Analyzing the sequence
of requests at the client side has as main advantage that no accesses are hidden
due to the effects of caching. However, since it considers single user information,
it can only predict previously followed links, but not accesses to new content.

Focusing on the proxy perspective, Fan et al. [22] employ the well-known
prediction by partial matching (PPM) algorithm in such a way that it aggregates
all users data to make predictions for each single user in a client-proxy context.
The joint benefits of caching and prefetching are also analyzed by Teng et al.
[45] in a proxy-server context. Its prediction algorithm is based on rules, each
one with a confidence level, in which the next requested object depends on the
sequence of objects recently requested. In contrast, in the proposal of Huang et
al. [25], the prediction engine tries to make a prediction from the same user’s
previous accesses. Only if it is not possible, the algorithm uses the aggregate
information of other users.

Since the range of accesses that are recorded is high, an important issue when
the prediction engine is located at the proxy is to reduce the resource consump-
tion. To deal with this concern, Yang et al. [49] propose a data structure to
record web sessions in which it is possible to apply any data mining algorithm.
The proposed algorithm works in two steps: first, user sessions are clustered;
second, transition probabilities between pages in the same cluster are computed.

In a similar way, the algorithm proposed by Pallis et al. [37] identifies clusters
of pages whose accesses are correlated as its first step to make predictions.

Other approaches take into account the sequence of requests from several
points of view to complement the sequences perceived in one element. In this
context, requests that hit in a proxy cache are hidden for the origin server. This
fact distorts the sequence of requests at the server and prevents the server from
making a prediction for that request. Chen et al. [9] deal with this problem by
proposing an algorithm that coordinates servers and proxies to make predictions.
Another coordinated approach is taken by Pons [39] in the context of a web
application, but considering coordination between proxies and clients. In this
proposal, the proxy builds a generic prediction model that each client receives
and adapts according to its own patterns.

Some other prediction algorithms use the sequence of accesses as the only
input, but they are not proposed to work in a specific element of the architecture.
To improve PPM prediction accuracy, Ban et al. [3] propose to include extra
data in the model to describe a node prediction capability. Chen and Zhang
[8] propose a memory-efficient version of a PPM algorithm whose prediction
tree branches have different height depending on the root object popularity.
A similar algorithm, using Markov models of different orders, is proposed by
Dongshan and Junyi [20] to deal with the scalability of the prediction engine.
The model presented by Gunduz and Ozsu [24] compare session similarities to
make predictions. Sessions are modeled taking into account the sequence of user
requests and the time spent in each page.

The work by Bonino et al. [7] describes an initial set of predictors (repre-
sented as finite-state machines) that evolve according to genetic operators. One
of these predictors is selected every time a request is received in order to make a
prediction. The graph representing user sessions is different from those usually
employed in Markov models, since requests are represented by edges, and nodes
represent predictions instead of objects.

3.2.2 Hybrid predictors

Predictors falling into this subcategory are those that complement the sequence
of requests with another source of information, e.g., the HT'TP headers or page
contents. The main reasons to take into account extra sources are usually either
to increase the prediction accuracy or to control the computational complexity
of the algorithms.

Three of the prediction algorithms analyzed by Zukerman et al. [50] are
based on Markov models that employ the sequence of requests at the server as
the main source. One of them, the Linked Space-Time Markov model, com-
bines the sequence of accesses with the referrer information found in the HTTP
headers. In a later work [2], they combine all the models to build a single
predictor.

The Double Dependency Graph (DDG) prediction algorithm (see Section 3.3)
proposed by Domenech et al. [18] employs the sequence of user accesses to build
a request dependency graph similar to the DG algorithm proposed in [36]. This
predictor also requires to analyze response headers to distinguish container from
embedded objects.

The prediction engine proposed by Georgakis and Li in [23] (described in
Section 3.4) also takes as input the sequence of requests received by the server.

However, it is more interested in the sequence of content read than in the path
followed by the user.

Nanopoulos et al. [35] propose an algorithm that builds association rules
from the sequence of accesses, allowing only those page transitions found in the
link structure of the web site. In a similar way, the proposal by Mabroukeh and
Ezeife [32] builds a Markov model to make the predictions. However, in this
case, the prediction tree is pruned by using the concept of semantic distance. To
compute this distance, a domain ontology, which is provided during the design
of the web site, is required.

3.3 HTTP headers

This category includes those prediction algorithms that use the HTTP headers
either as the only input or in combination with other inputs.

Web client requests are issued by sending HTTP requests, which contain
several headers providing information about request details, besides the URI.
One of the most used request headers is the “Referer”. Although this request
header is optional in the standard protocol, the most popular web browsers
always provide it in their requests. A prediction algorithm can discover first-
order dependences by only observing (Requested Object URI, Referrer URI)
pairs.

Together with the requested object, the web server returns some HTTP
response headers. By looking at the response headers, a prediction algorithm
can take some features of the requested objects as input. Response headers
used in prediction algorithms include “Content-Type” and “Content-Length”
headers.

Zukerman et al. [50] compare several Markov-based prediction models that
take into account different factors: the sequence of documents requests, the web
site structure inferred by using the “Referer” request header, and a combina-
tion of both. Their results show that the model that combines all these factors
in the Markov model yields the best predictive power, in terms of time and
space consumption. The same authors propose, in a later work [2], the max-
Hybrid prediction algorithm, which uses as input the sequence of accesses with
timestamp, the “Referer” request header, and the “Content-Length” response
header.

The DDG algorithm [18], classified and introduced in the previous section,
employs the “Content-Type” response header to distinguish between container
and embedded objects. Container objects are those that the user demand ex-
plicitly, while secondary objects are those embedded in the page and requested
automatically by the web browser. This allows DDG to differentiate the depen-
dences of objects of the same page and objects of different pages. Thus, DDG
represents the structure of the web site more faithfully than DG.

The Referrer Graph (RG) prediction algorithm proposed by Ossa et al. [16]
is based on DDG. Both algorithms use the “Content-Type” response header
to classify objects as primary (container) and secondary (embedded) objects.
However, unlike DDG, which uses the temporal sequence of accesses, RG uses
the URI and the “Referrer” request header provided in each individual object
request to build the arcs in the graph. In this way, RG builds arcs only between
objects that are really linked with hyper references in the web site, and not

between objects that have been requested sequentially by a web browser. This
allows RG to represent the structure of a web site more faithfully than DDG.

HTTP headers can be considered accurate since they are provided explicitly
by the web client and server. In other words, there is no derived guessing that
might be erroneously interpreted as happens in the sequence of requets category.

As it is unnecessary to access the full object content, these algorithms allow
shorter processing time and are less intrusive than those in the content category.
The headers are provided continually, and this allows the algorithms to actively
capture user accesses.

3.4 Content

Prediction algorithms that use the information extracted from the content of the
web pages as main input are included in this category. These prediction engines
use the current web page to make predictions of future accesses, usually without
requiring history information. The algorithms in this category are specially
designed to deal with objects that are newly created or never visited before,
and with dynamic sites where a URL could have time-dependent contents.
Despite the wide variety of proposals falling into this category, we have
identified three trends when using page content as main input information.

3.4.1 Using hyperlinks

The first approach proposed only used the references to objects found when
parsing the current web page, without any further analysis. Chinen and Ya-
maguchi [10] designed and implemented a prefetching proxy server called the
WWW Collector (Wcol) by using this idea. This proxy prefetches and stores
referenced pages, and also shares prefetched objects with its other clients.

Cohen and Kaplan describe in [12] three simple prefetching techniques (pre-
resolving host-names, pre-connecting and pre-warming) that can be used with
non-prefetchable URLs. Predictions are performed by extracting URLs from
anchor links of previously visited pages. The study considers two classes of
requests. The first class includes pages linked in the results page of a search
engine or web portal, whereas the second class contains all requests that were
not preceded by a request to the server in the last 60 seconds.

More recently, in the context of CDNs, Sidiropoulos et al. [44] identify clus-
ters of “correlated” web pages in a site (web site communities), and make these
communities the basic outsourcing unit of content to be prefetched. The ap-
proach is based only on the hyperlink information, since they assume that two
pages are “similar” or “correlated” if there exists a link between them.

The algorithm by Nanopoulos et al. [35], described in Section 3.2, also falls
into this category because it complements the prediction model obtained with
the sequence of requests with the hyperlink graph of the web site. This graph
is applied to the prediction model to allow only those page transitions that are
included in it.

3.4.2 Semantic approaches

Algorithms in this subcategory tend to capture the user surfing interest from
semantic characteristics of visited pages.

10

A keyword-based semantic prefetching approach is proposed by Xu and
Ibrahim [48]. This algorithm lies in the fact that client surfing is often guided
by some keywords in the text that surrounds hyperlink definitions (hrefs) in
web pages. Therefore, this approach predicts future requests based on semantic
preferences of past retrieved objects. To do so, the algorithm ranks the links of
the last visited page according to the similarity of the keywords found in their
“anchor text” to those in the previously accessed links.

More recently, Georgakis and Li [23] propose an algorithm that also considers
the anchored text around each of the outbound hyperlinks. To assign a weight to
each of these links, the algorithm keeps counters of the frequencies of appearance
of bigrams for visited and non-visited links.

Davison [14] proposes an algorithm that predicts the user’s next web page
request by conducting an analysis of the text of his/her recently requested web
pages. The algorithm compares the text in and around the hypertext anchors
of the current page to the text contained in previously visited pages.

3.4.3 Labeled approaches

This subcategory includes all those proposals where the web designer is in-
volved in the prediction process by including extra information that will be
later used to predict future accesses. The common advantage of these specific
and designer-dependent proposals is that they exhibit interesting results for the
environments where they are tested, that is, those for which the proposals have
been developed. This is also their main disadvantage, because they are not
generic solutions that could be easily adapted to general and real scenarios.

Khan and Tao identify in [27] four dominant patterns in hyperlink structure
(Chain, Tree, Complete Graph, and Tree with Complete Core). Their pro-
posal consists on labeling links with this kind of information to develop smarter
prefetching techniques when the structure of webspace is also brought into con-
sideration.

Pons [40] proposes to conduct web prefetching by using semantic links. That
is, semantic information explicitly embedded during the web design and associ-
ated with each web page link. A semantic link is different from a hyperlink, since
the semantic link represents a pointer with a type or meaning directed from the
predecessor web page to the successor web page. Examples of semantic link
types are sequential, similar-to, cause-effective, implication, etc.

The proposal of Mabroukeh [32] has been previously classified into the group
of algorithms using the sequence of request as input because this is the main
information used for prediction. Nevertheless, it is actually a hybrid algorithm
that also employs semantic information to prune the Markov model according
to a computed semantic distance. This proposal assumes that the semantic
information is available in the form of domain ontology, provided during the
design of the web site.

4 Conclusions
Since the inception of web prefetching, the proposals of prediction algorithms

have adapted to the increasing complexity of the web content. Thus, the com-
plexity of the predictors has increased, too. In this paper, we have summarized

11

Table 1: Surveyed papers by category and year

| CATEGORY [1995-2000 | 2001-2005 | 2006-2010 |
Obj. characteristics [6, 5, 33, 21] (26, 46, 30, 42] | [47]
pure || [4, 36, 43, 13, [[8, 20, 7, 24, | [31, 3, 37]
Seq. requests 22, 38] 28, 49, 9, 25,
39, 45]
hybrid || 2, 50] [35] [23, 32, 18]
HTTP headers [2, 50] [16, 18]
Content [10] [12, 14, 27, 35, | [23, 40, 44, 32]
48]

and categorized more than 15 years of research in prediction algorithms ap-
plied to web prefetching techniques. To this end, a new taxonomy based on
the input information used by the prediction algorithms has been proposed and
successfully applied. Through the proposed taxonomy, the pros and cons of each
category of algorithms have been discussed.

Table 1 summarizes the classification of the surveyed papers according to
the taxonomy proposed in this work and the year of publication. This table
permits us to identify trends in algorithm design. As one can observe, dur-
ing the first period of five years, most of the proposed algorithms dealt only
with object characteristics or sequence of requests to make predictions. In the
next five-year period, the predominant choice was to use only the sequence of
accesses as input of the prediction algorithms, although the number of content-
based proposals also increased. Finally, during the last five years, researchers
have moved towards more sophisticated inputs. Algorithms considering several
input types as well as predictors that analyze web page contents or require the
collaboration of the web page designer are gaining relative importance in the
current trend. Furthermore, it has also been observed the increasing concern
for the computational costs of the algorithms.

Despite of this, there are several gaps in the design space of prediction algo-
rithms that remain unexplored. Few papers, i.e., [21, 9, 39], analyze several web
architecture points of view simultaneously, and none of them combine different
input categories. Besides, the use of HTTP headers has not been intensively
explored and no algorithm combining header and content analysis has been
proposed.

As for future work, we plan to classify other aspects of web prefetching
systems: proposals of prefetching engines according to its location in the web
architecture; and proposals of web prefetching architectures according to how
prediction and prefetching engines are coordinated, thus providing a complete
study about web prefetching techniques from its beginnings to current days.

Acknowledgments
This work has been partially supported by Spanish Ministry of Science and

Innovation under grant TIN2009-08201, Generalitat Valenciana under grant
GV/2011/002 and Universitat Politecnica de Valencia under grant PAID-06-

12

10/2424.

References

[1]

Silvana Vanesa Aciar, Christian Serarols-Tarres, Marcelo Royo-Vela, and
Josep Lluis de la Rosa i Esteva. Increasing effectiveness in e-commerce: rec-
ommendations applying intelligent agents. International Journal of Busi-
ness and Systems Research, 1(1):81-97, 2007.

David W. Albrecht, Ingrid Zukerman, and Ann E. Nicholson. Pre-sending
documents on the WWW: A comparative study. In Proceedings of the Siz-
teenth International Joint Conference on Artificial Intelligence, Stockholm,

Sweden, 1999.

Zhijie Ban, Zhimin Gu, and Yu Jin. A ppm prediction model based on
stochastic gradient descent for web prefetching. In Proceedings of the IEEE
22nd International Conference on Advanced Information Networking and
Applications (AINA), pages 166-173, Okinawa, Japan, 2008.

Azer Bestavros. Using speculation to reduce server load and service time
on the WWW. In Proceedings of the Jjth ACM International Conference
on Information and Knowledge Management, Baltimore, USA, 1995.

Azer Bestavros. Speculative data dissemination and service to reduce server
load, network traffic and service time in distributed information systems. In
Proceedings of the Twelfth International Conference on Data Engineering,
pages 180-187, New Orleans, USA, 1996.

Azer Bestavros and C. Cunha. Server-initiated document dissemination for
the WWW. IEEFE Data Engineering Bulletin, 1996.

Dario Bonino, Fulvio Corno, and Giovanni Squillero. A real-time evolu-
tionary algorithm for web prediction. In Proceedings of the IEEE/WIC
International Conference on Web Intelligence, Halifax, Canada, 2003.

Xin Chen and Xiaodong Zhang. Popularity-based PPM: An effective web
prefetching technique for high accuracy and low storage. In Proceedings of
the International Conference on Parallel Processing, Vancouver, Canada,
2002.

Xin Chen and Xiaodong Zhang. Coordinated data prefetching for web
contents. Computer Communications, 28:1947-1958, 2005.

K. Chinen and S. Yamaguchi. An interactive prefetching proxy server for
improvement of www latency. Proceedings of Seventh Annual Conference

of the Internet Society (INET’97), 06/1997 1997.

Wei Chu and Seung-Taek Park. Personalized recommendation on dynamic
content using predictive bilinear models. In Proceedings of the 18th Inter-
national Conference on World Wide Web, pages 691-700, Madrid, Spain,
20009.

13

[12]

Edith Cohen and Haim Kaplan. Prefetching the means for document
transfer: a new approach for reducing web latency. Computer Networks,
39(4):437-455, 2002.

Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford. Efficient
algorithms for predicting requests to web servers. In Proceedings of the
IEEE INFOCOM 99 Conference, New York, USA, 1999.

Brian D. Davison. Predicting web actions from HTML content. In Proceed-
ings of the 13th ACM Conference on Hypertext and Hypermedia, College
Park, USA, 2002.

Brian D. Davison. Learning web request patterns. In Web Dynamics -
Adapting to Change in Content, Size, Topology and Use, pages 435-460.
Springer, 2004.

Bernardo de la Ossa, Ana Pont, Julio Sahuquillo, and J. A. Gil. Referrer
graph: a low-cost web prediction algorithm. ACM, 2010.

Josep Domenech, Jose A. Gil, Julio Sahuquillo, and Ana Pont. Speculative
validation of web objects for further reducing the user-perceived latency.
In Proceedings of the 9th International IFIP TC 6 Networking Conference,
Chennai, India, 2010.

Josep Domenech, Jose A. Gil, Julio Sahuquillo, and Ana Pont. Using
current web page structure to improve prefetching performance. Computer
Networks, 54(9):1404 — 1417, 2010.

Josep Domenech, Julio Sahuquillo, José A. Gil, and Ana Pont. The impact
of the web prefetching architecture on the limits of reducing user’s perceived
latency. In Proceedings of the 2006 IEEE / WIC / ACM International
Conference on Web Intelligence, Hong Kong, China, 2006.

Xing Dongshan and Shen Junyi. A new Markov model for web access
prediction. Computing in Science and Engineering, 4(6):34-39, 2002.

Dan Duchamp. Prefetching hyperlinks. In Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Systems, Boulder, USA, 1999.

Li Fan, Pei Cao, Wei Lin, and Quinn Jacobson. Web prefetching between
low-bandwidth clients and proxies: Potential and performance. In Proceed-
ings of the ACM SIGMETRICS Conference on Measurement and Modeling
Of Computer Systems, pages 178-187, Atlanta, USA, 1999.

A Georgakis and H Li. User behavior modeling and content based specu-
lative web page prefetching. Data & Knowledge Engineering, 59:770 — 788,
12/2006 2006.

Sule Gunduz and M. Tamer Zsu. A web page prediction model based on
click-stream tree representation of user behavior. In KDD ’03: Proceed-
ings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 535-540, New York, USA, 2003. ACM
Press.

14

[25]

[28]

[29]

[32]

Yin-Fu Huang and Jhao-Min Hsu. Mining web logs to improve hit ratios of
prefetching and caching. In Proceedings of the 2005 IEEE / WIC / ACM
International Conference on Web Intelligence, Compiegne, France, 2005.

Yingyin Jiang, Min-You Wu, and Wei Shu. Web prefetching: Costs, bene-
fits and performance. In Proceedings of the 7th International Workshop on
Web Content Caching and Content Distribution, Boulder, USA, 2002.

Javed I. Khan and Qingping Tao. Exploiting webspace organization for ac-
celerating web prefetching. In Proceedings of the IEEE/WIC' International
Conference on Web Intelligence, Halifax, Canada, 2003.

Yuna Kim and Jong Kim. Web prefetching using display-based predic-
tion. In Proceedings of the IEEE/WIC International Conference on Web
Intelligence, Halifax, Canada, 2003.

Thomas M. Kroeger, Darrell D.E. Long, and Jeffrey C. Mogul. Exploring
the bounds of web latency reduction from caching and prefetching. In
Proceedings of the 1st USENIX Symposium on Internet Technologies and
Systems, Monterey, USA, 1997.

Kelvin Lau and Yiu-Kai Ng. A client-based web prefetching manage-
ment system based on detection theory. In Proceedings of the Web Con-
tent Caching and Distribution: 9th International Workshop (WCW 2004),
pages 129-143, Beijing, China, 2004.

Heung Ki Lee, Gopinath Vageesan, Ki Hwan Yum, and Eun Jung Kim.
A proactive request distribution (prord) using web log mining in a cluster-
based web server. In Proceedings of the International Conference on Parallel
Processing (ICPP’06), Columbus, USA, 2006.

Nizar R. Mabroukeh and Christie I. Ezeife. Semantic-rich markov models
for web prefetching. In Proceedings of the IEEE International Conference
on Data Mining Workshops, pages 465 — 470, Miami, FL, USA, 2009. IEEE,
IEEE.

Evangelos Markatos and Catherine Chronaki. A top-10 approach to pre-
fetching on the web. In Proceedings of the INET’ 98, Geneva, Switzerland,
1998.

Bamshad Mobasher. The Adaptive Web, volume LNCS 4321, chapter Data
Mining for Web Personalization, pages 90-135. Springer, 2007.

Alexandros Nanopoulos, Dimitrios Katsaros, and Yannis Manolopoulos.
A data mining algorithm for generalized web prefetching. IEEE Trans.
Knowl. Data Eng., 15(5):1155-1169, 2003.

Venkata N. Padmanabhan and Jeffrey C. Mogul. Using predictive pre-
fetching to improve World Wide Web latency. Computer Communication
Review, 26(3):22-36, 1996.

G Pallis, A Vakali, and J Pokorny. A clustering-based prefetching scheme
on a web cache environment. Computers & FElectrical Engineering, 34:309
- 323, 07/2008 2008.

15

[38]

[39]

Themistoklis Palpanas and Alberto Mendelzon. Web prefetching using par-
tial match prediction. In Proceedings of the 4th International Web Caching
Workshop, San Diego, USA, 1999.

A Pons. Improving the performance of client web object retrieval. Journal
of Systems and Software, 74:303 — 311, 02/2005 2005.

A Pons. Semantic prefetching objects of slower web site pages. Journal of
Systems and Software, 79:1715 — 1724, 12/2006 2006.

Michael Rabinovich and Oliver Spatscheck. Web Caching and Replication.
Addison-Wesley, 2002.

S.K. Rangarajan, V.V. Phoha, K.S. Balagani, R.R. Selmic, and S.S. Iyen-
gar. Adaptive neural network clustering of web users. Computer, 37:34 —
40, 04/2004 2004.

Stuart Schechter, Murali Krishnan, and Michael D. Smith. Using path
profiles to predict http requests. In Proceedings of the 7th International
World Wide Web Conference, Brisbane, Australia, 1998.

Antonis Sidiropoulos, George Pallis, Dimitrios Katsaros, Konstantinos Sta-
mos, Athena Vakali, and Yannis Manolopoulos. Prefetching in content
distribution networks via web communities identification and outsourcing.
World Wide Web, 11:39 — 70, 3/2008 2008.

Wei-Guang Teng, Cheng-Yue Chang, and Ming-Syan Chen. Integrating
web caching and web prefetching in client-side proxies. IEEE Transactions
on Parallel and Distributed Systems, 16(5):444-455, 2005.

Arun Venkataramani, Praveen Yalagandula, Ravindranath Kokku, Sadia
Sharif, and Mike Dahlin. The potential costs and benefits of long-term
prefetching for content distribution. Computer Communications, 25:367—
375, 2002.

Bin Wu and Ajay D. Kshemkalyani. Objective-optimal algorithms for long-
term web prefetching. IEEE Transactions on Computers, 55(1):2-17, 2006.

Cheng-Zhong Xu and T.I. Ibrahim. A keyword-based semantic prefetching
approach in internet news services. IEEE Transactions on Knowledge and
Data Engineering, 16:601 — 611, 05/2004 2004.

Qiang Yang, Joshua Zhexue Huang, and Michael Ng. A data cube model
for prediction-based web prefetching. Journal of Intelligent Information
Systems, 20(1):11-30, 2003.

Ingrid Zukerman, David W. Albrecht, and Ann E. Nicholson. Predict-
ing users’ requests on the WWW. In Proceedings of the 7th International
Conference on User Modeling, Banff, Canada, 1999.

16

