

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.amc.2011.01.004

http://hdl.handle.net/10251/34930

Elsevier

Sastre, J.; Ibáñez González, JJ.; Defez Candel, E.; Ruíz Martínez, PA. (2011). Efficient
orthogonal matrix polynomial based method for computing matrix exponential. Applied
Mathematics and Computation. 217(14):6451-6463. doi:10.1016/j.amc.2011.01.004.

Efficient orthogonal matrix polynomial based method

for computing matrix exponential

J. Sastrea,∗, J. Ibáñezb, E. Defezc, P. Ruizb

aInstituto de Telecomunicaciones y Aplicaciones Multimedia,
bInstituto de Instrumentación para Imagen Molecular,

cInstituto de Matemática Multidisciplinar,
Universitat Politècnica de València, Camino de Vera s/n, 46022-Valencia (Spain)

Abstract

The matrix exponential plays a fundamental role in the solution of differ-
ential systems which appear in different science fields. This paper presents
an efficient method for computing matrix exponentials based on Hermite
matrix polynomial expansions. Hermite series truncation together with scal-
ing and squaring and the application of floating point arithmetic bounds to
the intermediate results provide excellent accuracy results compared with
the best acknowledged computational methods. A backward-error analysis
of the approximation in exact arithmetic is given. This analysis is used to
provide a theoretical estimate for the optimal scaling of matrices. Two algo-
rithms based on this method have been implemented as MATLAB functions.
They have been compared with MATLAB functions funm and expm obtain-
ing greater accuracy in the majority of tests. A careful cost comparison
analysis with expm is provided showing that the proposed algorithms have
lower maximum cost for some matrix norm intervals. Numerical tests show
that the application of floating point arithmetic bounds to the intermediate
results may reduce considerably computational costs, reaching in numerical
tests relative higher average costs than expm of only 4.43% for the final Her-
mite selected order, and obtaining better accuracy results in the 77.36% of
the test matrices. The MATLAB implementation of the best Hermite matrix
polynomial based algorithm has been made available online.

Keywords: differential equations, matrix exponential, Hermite matrix

∗Corresponding author
Email address: jorsasma@iteam.upv.es (J. Sastre)

Preprint submitted to Elsevier January 17, 2014

polynomial approximation, matrix polynomial evaluation, error analysis
PACS: 87.64.Aa

1. Introduction

Many engineering processes are described by systems of linear first-order
ordinary differential equations. Solving this kind of systems involves the
evaluation of the exponential of square matrices, and the same occurs with
the partial differential case when using the semi-discretization method [1]–[5].

A survey of methods for computing the exponential matrix was made by
Moler and Van Loan in [4], which was updated in [6]. This paper and recent
researches [7, 8] show that probably one of the more promising methods is
the scaling and squaring technique, which is also the most widely used. This
technique exploits the relation exp(A) = (exp(2−sA))

2s
, for a square matrix

A and a nonnegative integer scaling parameter s. Most approximations to the
exponential of the scaled matrix exp(2−sA) are based on Padé expansions.
[7] provides a scaling and squaring Padé method with excellent results of effi-
ciency and accuracy, which is the method implemented in the last MATLAB
versions, and [8] has recently proposed a new scaling and squaring algorithm
that alleviates the overscaling problem for nonnormal matrices.

In this paper we use Hermite matrix polynomial expansions of the matrix
exponential together with scaling and squaring and the application of floating
point arithmetic bounds to the intermediate results in order to perform a
competitive method for computing the matrix exponential. This method has
the advantage that it does not need the solution of multiple linear systems
or the computation of matrix inversions. Moreover, adapting the analysis
made in [7] to the Hermite matrix series, a backward-error bound in exact
arithmetic has been provided to find the optimal matrix scaling, i.e. the
optimal value of scaling parameter s. A careful theoretical cost comparison
with the method in [7] has been provided, showing that Hermite method has
lower cost for some matrix norm intervals.

This paper is organized as follows. Section 2 summarizes notation and
previous results about Hermite matrix polynomials and includes the Hermite
series expansion of the matrix exponential to be considered. Section 3 deals
with the approximation error analysis and optimal scaling. Section 4 is ad-
dressed to study the cost of the method, and to present numerical tests in
order to check the method accuracy performance. Finally conclusions are
given in Section 5.

2

2. Hermite matrix polynomial series expansions of matrix expo-
nential

Throughout this paper, for a complex number z, �(z) and �(z) denote
its real and imaginary parts, respectively, and ‖·‖ denotes any subordinate
matrix norm. Rr×r and Cr×r denote the set of real and complex matrices of
size r×r, respectively, and I denotes the identity matrix for these sets. For a
matrixA ∈ Cr×r, its spectrum σ(A) denotes the set of all the eigenvalues ofA.
If f(z) and g(z) are holomorphic functions of the complex variable z, which
are defined in an open set Ω of the complex plane, and B is a matrix in Cr×r

with σ(B) ⊂ Ω, then from the properties of the matrix functional calculus
[9, p. 558], it follows that f(B)g(B) = g(B)f(B). If D0 is the complex plane
cut along the negative real axis and log(z) denotes the principal logarithm

of z, [10, p. 72], then z
1
2 represents exp

(
1
2
log(z)

)
. If B is a matrix with

σ(B) ⊂ D0, then B
1
2 =
√
B denotes the image by z

1
2 of the matrix functional

calculus acting on the matrix B. We say that matrix A in Cr×r is a positive
stable matrix if Re(z) > 0 for all z ∈ σ(A). [x] denotes the entire part of
x, �x	 denotes the least integer not less than x and
x� denotes the greatest
integer not exceeding x.

For the sake of clarity in the presentation of the next results we recall
some properties and results about Hermite matrix polynomials that have
been established in [11] and [12]. If B is a positive stable matrix in Cr×r, the
nth Hermite matrix polynomial is defined in (3.4) of [12, p. 25] by

Hn(x,B) = n!

[n
2
]∑

k=0

(−1)k
(
x
√
2B

)n−2k

k!(n− 2k)!
, (1)

and from (3.1) and (3.2) of [12, p. 24] one gets its generating function

G(x, t) = ext
√
2B−t2I =

∑
n≥0

Hn(x,B)tn/n!, |t| <∞, (2)

where x ∈ C and t ∈ C. Taking A =
√
2B, y = tx and λ = 1/t in (2) it

follows that

eAy = e
1
λ2

∑
n≥0

1

λnn!
Hn

(
λy,

1

2
A2

)
, λ ∈ C, y ∈ C, A ∈ C

r×r, (3)

3

without restrictions on σ(A). From (1) one gets

Hn(λy, A
2/2) = n!

[n
2
]∑

k=0

(−1)k(λyA)n−2k

k!(n− 2k)!
, (4)

also without restrictions on σ(A). Denoting by hm(λy, A) the m−th partial
sum of series (3), one gets

hm(λy, A) = e
1
λ2

m∑
n=0

1

λnn!
Hn

(
λy,

1

2
A2

)
≈ eAy, λ , y ∈ C, A ∈ C

r×r. (5)

This expansion is the one to be used in the method for computing the matrix
exponential, and we will refer to m as the order of the approximation. Using
(4) and (5) by induction it is easy to show that

hm(λy,A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
1
λ2

[
E

m−1
2

0 (I +Ay) + E
m−1

2
−1

0

(
(Ay)2

2! + (Ay)3

3!

)
+ · · ·

· · · + E1
0

(
(Ay)m−3

(m−3)! + (Ay)m−2

(m−2)!

)
+ (Ay)m−1

(m−1)! + (Ay)m

m!

]
, odd m ,

e
1
λ2

[
E

m
2
0 I + E

m
2
−1

0

(
Ay + (Ay)2

2!

)
+ E

m
2
−2

0

(
(Ay)3

3! + (Ay)4

4!

)
+ · · ·

· · · + E1
0

(
(Ay)m−3

(m−3)! + (Ay)m−2

(m−2)!

)
+ (Ay)m−1

(m−1)! + (Ay)m

m!

]
, even m ,

(6)

where

Ej
i =

j∑
k=i

(− 1
λ2

)k
k!

, i, j ∈ N, j ≥ i . (7)

Note that for |λ| → ∞, e
1
λ2 = 1, Ej

0 = 1, and hm(λy, A) tends to the Taylor
series of order m of matrix exponential eAy.

3. Error analysis.

Using (6) with y = 1 and taking into account Taylor series of exp
(− 1

λ2

)
,

for odd m it follows that

eA − hm(λ,A) = lim
M→∞

(hM (λ,A) − hm(λ,A))

= e
1
λ2

⎡⎣ ∑
k≥m+1

2

(− 1
λ2

)k
k!

(I +A) +
∑

k≥m−1
2

(− 1
λ2

)k
k!

(
A2

2!
+

A3

3!

)
+ · · ·

· · ·+
∑
k≥1

(− 1
λ2

)k
k!

(
Am−1

(m− 1)!
+

Am

m!

)
+

∑
k≥0

(− 1
λ2

)k
k!

∑
j≥m+1

Aj

j!

⎤⎦
4

= e
1
λ2

⎡⎣ ∑
k≥m+1

2

(− 1
λ2

)k
k!

eA + E
m−1

2
m−1

2

(
A2

2!
+

A3

3!

)
+

+E
m−1

2
m−3

2

(
A4

4!
+

A5

5!

)
+ · · ·+ E

m−1
2

1

(
Am−1

(m− 1)!
+

Am

m!

)
+ E

m−1
2

0

∑
j≥m+1

Aj

j!

⎤⎦
=
(
1− e

1
λ2 E

m−1
2

0

)
eA + e

1
λ2

[
E

m−1
2

m−1
2

(
A2

2!
+

A3

3!

)
+ E

m−1
2

m−3
2

(
A4

4!
+

A5

5!

)
+ · · ·

· · ·+ E
m−1

2
1

(
Am−1

(m− 1)!
+

Am

m!

)
+ E

m−1
2

0

∑
j≥m+1

Aj

j!

⎤⎦ . (8)

Analogously, using (6), for even m one gets

eA − hm(λ,A) =
(
1− e

1
λ2E

m
2
0

)
eA+ e

1
λ2

[
E

m
2
m
2

(
A+

A2

2!

)
+ E

m
2
m
2
−1

(
A3

3!
+
A4

4!

)
+ · · ·+ E

m
2
1

(
Am−1

(m− 1)!
+

Am

m!

)
+ E

m
2
0

∑
j≥m+1

Aj

j!

]
. (9)

In a similar way to the demonstration of Theorem 2.1 of [7, p. 1182] we
have the following result:

Theorem 3.1. Assume that the matrix exponential Hermite approximation
hm(λ,A) of (5) satisfies

e−2−sAhm(λ, 2
−sA) = I +G , (10)

where ‖G‖ < 1. Then there exists a matrix E that commutes with A such
that

[hm(λ, 2
−sA)]2

s

= eA+E , (11)

and ‖E‖
‖A‖ ≤

− log(1− ‖G‖)
‖2−sA‖ . (12)

We seek to bound the norm of G in (10) in terms of ‖2−sA‖. Define the
function

ρ(λ,A) = e−Ahm(λ,A)− I, (13)

and note that using (8), (9) and (13) one gets

ρ(λ,A) = −e−A(eA − hm(λ,A)) (14)

5

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
e

1
λ2 E

m−1
2

0 − 1

)
I − e−Ae

1
λ2

[
E

m−1
2

m−1
2

(
A2

2!
+

A3

3!

)
+E

m−1
2

m−3
2

(
A4

4!
+

A5

5!

)
+

+ · · · + E
m−1

2
1

(
Am−1

(m− 1)!
+

Am

m!

)
+ E

m−1
2

0

∑
j≥m+1

Aj

j!

⎤⎦ , odd m

(
e

1
λ2E

m
2
0 − 1

)
I − e−Ae

1
λ2

[
E

m
2
m
2

(
A+

A2

2!

)
+ E

m
2
m
2
−1

(
A3

3!
+

A4

4!

)
+

+ · · ·+ E
m
2
1

(
Am−1

(m− 1)!
+

Am

m!

)
+ E

m
2
0

∑
j≥m+1

Aj

j!

⎤⎦ , even m

(15)

Hence, taking into account (15), and using Taylor series of e−A one gets

∥∥ρ(λ, 2−sA)
∥∥ ≤

⎧⎪⎪⎨⎪⎪⎩
∣∣∣e 1

λ2E
m−1

2
0 − 1

∣∣∣ + e�(
1
λ2
)
∑
j≥2

|cj| θj , odd m∣∣∣e 1
λ2E

m
2
0 − 1

∣∣∣+ e�(
1
λ2
)
∑
j≥1

∣∣c′j∣∣ θj , even m
(16)

where θ = ‖2−sA‖. Note that using (15) for |λ| → ∞ it follows that

‖ρ(λ,A)‖ =
∥∥∥∥∥−e−A

∑
j≥m+1

Aj

j!

∥∥∥∥∥ =

∥∥∥∥∥e−A
m∑
j=0

Aj

j!
− I

∥∥∥∥∥ , |λ| → ∞ , (17)

which is the corresponding bound for Taylor series approximation of matrix
exponential. Using (10), (15) and (16) it follows that

‖G‖ = ∥∥ρ(λ, 2−sA)
∥∥ ≤ fm(λ, θ) , (18)

where fm(λ, θ) is given by the expressions on the right hand side of (16)
depending on m being odd or even. Note that taking |λ| → ∞, using (17),
(18) and Taylor expansion of e−A, it follows that

‖G‖ = ∥∥ρ(λ, 2−sA)
∥∥ ≤ fm(|λ| → ∞, θ) (19)

where
fm(|λ| → ∞, θ) =

∑
j≥m+1

∣∣c′′j ∣∣ θj , (20)

which is the corresponding bound for Taylor approximation of matrix expo-
nential. Combining (12) with (18) one gets

‖E‖
‖A‖ ≤

− log(1− fm(λ, θ))

θ
. (21)

6

m 1 2 3 4 5 6 7 8
θ∞m 2.220e-16 2.581e-8 1.386e-5 3.397e-4 2.401e-3 9.066e-3 2.384e-2 4.991e-2

m 9 10 11 12 13 14 15 16
θ∞m 8.958e-2 1.448e-1 2.142e-1 2.996e-1 3.998e-1 5.139e-1 6.411e-1 7.803e-1

m 17 18 19 20 21 22 23 24
θ∞m 9.305e-1 1.091 1.260 1.438 1.624 1.816 2.015 2.219

m 25 26 27 28 29 30
θ∞m 2.429 2.643 2.861 3.084 3.310 3.540

Table 1: Maximal values θ∞m of ‖2−sA‖ such that the backward error bound (21) does not
exceed u = 2−53 for |λ| → ∞, i.e. Taylor expansion of matrix exponential.

0 2 4 6 8 10 12 14 16 18 20

10
−16

λ

−
lo

g(
1−

f(
λ,

θ)
)/

θ,
 θ

=
θ m∞

m=24

m=25

m=26

m=27

m=28
m=29

m=30

m=31

m=32

u=2−53 m=23

m=22

m=33

Figure 1: Bound (21) for m = 22, 23, . . . , 33 and θ = θ∞m , vs. parameter λ.

Using MATLAB’s Symbolic Math Toolbox we have evaluated fm(λ, θ) for
(18) and (20), in 250 decimal digit arithmetic, summing the first 150 series
terms in both expressions, where the coefficients cj, c′j and c′′j have been
obtained symbolically, cj, c

′
j being functions of parameter λ.

For m = 1, 2, . . . , 30 we have used a zero-finder to determine the largest
value of θ, denoted by θ∞m , such that the backward error bound (21) for
|λ| → ∞ does not exceed the unit roundoff u in IEEE double precision
arithmetic, u = 2−53. These values correspond to Taylor approximation of
matrix exponential. Table 1 presents the results with 4 significant digits.

Substituting these values in (21) and varying parameter λ, experimen-

7

m 22 23 24 25 26 27 28 29 30
θm 1.816 2.020 2.229 2.441 2.659 2.884 3.113 3.342 3.579
λ 26.904 15.311 15.986 16.661 11.074 10.009 10.381 10.753 7.596

Table 2: Maximal values θm of ‖2−sA‖ such that the backward error bound (21) does not
exceed u = 2−53 and values of λ for which this is accomplished.

m hm(λ,A)
4 (F 0

0 /4!A
2 + F 0

0 /3!A+ F 1
0 /2I)A

2 + F 1
0A+ F 2

0 I

6
((F 0

0 /6!A
2 + F 0

0 /5!A+ F 1
0 /4!I)A

2 + F 1
0 /3!A+ F 2

0 /2I)A
2+

F 2
0A+ F 3

0 I

9
((F 0

0 /9!A
3 + F 0

0 /8!A
2 + F 1

0 /7!A+ F 1
0 /6!I)A

3 + F 2
0 /5!A

2+
F 2
0 /4!A+ F 3

0 /3!I)A
3 + F 3

0 /2A
2 + F 4

0 (A+ I)

Table 3: Evaluation of hm(λ,A), where Fn
0 = e

1
λ2 En

0 . Set e
1
λ2 = 1 and Fn

0 = 1 to obtain
the Taylor approximation.

tally the bound (21) is monotonically decreasing to u for λ > 0 and m =
1, 2, . . . , 21, and it has minima lower than u for 6 < λ < 27 and m =
22, 23, . . . , 30, see figure 1. So it is possible to determine θm > θ∞m for m ≥ 22
searching for those minima. We have used an iterative process and a mini-
mum finder to obtain the new maximum values of θm, m = 22, 23, . . . , 30,
and the minima of λ > 0 for which the backward error bound (21) does
not exceed u. Table 2 presents the results for the new θm values with 4 sig-
nificant digits. Therefore, we will consider Taylor approximation of matrix
exponential for m ≤ 21 and Hermite approximation for m ≥ 22.

From pages 73-74 and Table 4.1 of [14, p. 74], using Horner’s and
Paterson-Stockmeyer’s methods [13], we can evaluate a matrix polynomial
of degree m

Pm(A) =
m∑
k=0

pkA
k , (22)

maximizing the degree of the polynomial for a given number of matrix
product evaluations, for m∗ = {1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, . . .}, i.e. for
m = k2, k = 1, 2, 3, . . ., and m = k2 − k, k = 2, 3, . . ., using next evaluation

8

formula

Pm(A) =
(· · · (Aqpm + Aq−1pm−1 + · · ·+ Apm−q+1 + Ipm−q

)
× Aq + Aq−1pm−q−1 + Aq−2pm−q−2 + · · ·+ Apm−2q+1 + Ipm−2q

)
· · · · · ·

× Aq + Aq−1pq−1 + Aq−2pq−2 + · · ·+ Ap1 + Ip0, (23)

calculating and saving previously the matrix powers A2, A3, . . . , Aq, where
one can take q = �√m	 or q =
√m�. The even matrix powers can be calcu-
lated as A2 = AA, A4 = A2A2, A6 = A4A2, . . ., and the odd matrix powers
as A2k+1 = AA2k, k = 1, 2, . . . Using (6), (7) and (23), Table 3 presents the
evaluation formula of hm(λ,A) for some m ∈ m∗, where we use the coeffi-

cients F n
0 = e

1
λ2En

0 and we selected q =
√m� to minimize the number of
matrix powers in memory. Note that one can obtain Taylor approximation

from this table setting e
1
λ2 = 1 and F n

0 = 1. On the other hand, given
parameter λ, the coefficients of the matrix powers in the approximations
hm(λ,A) can be evaluated only once in 250 digit precision arithmetic before
being rounded to IEEE double precision arithmetic. Evaluating hm(λ,A) for
the rest of values of m in a similar way, we determine the cost of evaluating
hm (λ,A), in terms of matrix products. Selecting the optimal scaling param-
eter as s = �log2 ||A||/θm	 if ||A|| ≥ θm, and s = 0 otherwise, the cost of the
algorithm in matrix multiplications is

πm + s = πm +max(�log2 ||A|| − log2 θm	, 0) , (24)

where πm denotes the number of matrix products evaluated to obtain Taylor
or Hermite matrix polynomial approximations. It is important to note that
the lower the θm values are, the larger the number of final squaring steps are
necessary. Considering ||A|| ≥ θm and ignoring the constant shift ||A|| we
have to minimize

Cm = πm − log2 θm , (25)

in order to obtain the best choice for m in the Hermite approximation, see
[7, p. 1184]. Considering Taylor approximation of matrix exponential for
m < 22 and therefore θm = θ∞m , m < 22, table 4 presents the values Cm and
πm for m = 1, 2, . . . , 30.

From table 4, Cm has an absolute minimum for m = 16, and local minima
for m = 9, 12, 20, 25, 30, which correspond with optimal values in terms of
number of matrix products. Thus, considering this analysis the optimal

9

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πm 0 1 2 2 3 3 4 4 4 5 5 5 6 6 6
Cm 52.00 26.21 18.14 13.52 11.70 9.79 9.39 8.32 7.48 7.79 7.22 6.74 7.32 6.96 6.64

m 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
πm 6 7 7 7 7 8 8 8 8 8 9 9 9 9 9
Cm 6.36 7.10 6.87 6.67 6.48 7.30 7.14 6.99 6.84 6.71 7.59 7.47 7.36 7.26 7.16

Table 4: Number of matrix multiplications, πm. Measure of overall cost Cm.

Hermite Padé
m θm λ πm m θ′m π′

m

4 3.397168839976962e-4 − 2 3 1.495585217958292e-2 2
6 9.065656407595101e-3 − 3 5 2.539398330063230e-1 3
9 8.957760203223343e-2 − 4 7 9.504178996162932e-1 4
12 2.996158913811581e-1 − 5 9 2.097847961257068 5
16 7.802874256626574e-1 − 6 13 5.371920351148152 6
20 1.438252596804337 − 7
25 2.441356829252848 16.66121324200387 8
30 3.578700513755017 7.596210771817034 9

Table 5: Theoretical optimal values of θm for Hermite method (m = order of approxima-
tion, πm = number of matrix products). For m ≤ 20, θm = θ∞m , i.e. the values relating to
Taylor approximation. For m = 25, 30, θm have been obtained for the Hermite approx-
imation, with the corresponding optimal values of λ. Parameter comparison with Padé
expm method.

order, meaning with minimal cost, would be m = 16. Table 5 presents
the corresponding values of θm in IEEE double precision arithmetic and a
comparison with the same values for Padé method proposed in [7]. From
Table 5 one gets that θ20 < 2θ16. Thus, if m = 20 and the resulting scaling
parameter is s ≥ 1 then there exist matrices such that θ20/2 < ||A/2s|| ≤
θ16, and for such matrices one can use order m = 16 instead of 20 in the
approximation, saving one matrix product. The same occurs with orders
m = 25 and 20, and m = 30 and 25 and we will take this into account
in the Hermite based algorithms. We will show in section 4 that with this
modification the optimal maximum order is m = 20 instead of m = 16.

With respect to rounding errors, we rule out m = 1 and 2 as maximum
orders, as Taylor approximation can suffer from loss of significance in floating
point arithmetic for those orders taking into account the values of θ∞1 and
θ∞2 from Table 1, see [7, p. 1184].

10

The effect of rounding errors on the evaluation of the matrix polynomial
hm(λ,A) can be bounded analogously to the numerator of Padé approxi-
mants in [7, p. 1185]. Using Theorem 2.2 of [7, p. 1184], taking into account
that ‖A‖1 ≤ θm, e

−||A|| ≤ ||eA||, and noting that hm(λ,A) has all positive
coefficients for λ ≥ 1, it follows that∥∥∥hm(λ,A)−ĥm(λ,A)

∥∥∥
1
≤ γ̃mnhm (λ, ‖A‖1) ≈ γ̃mne

‖A‖1 ≤ γ̃mn

∥∥eA∥∥
1
e2‖A‖1

� γ̃mn ‖hm(λ,A)‖1 e2‖A‖1≤ γ̃mn ‖hm(λ,A)‖1 e2θm, (26)

where A ∈ Cn×n, ĥm(λ,A) is the computed Hermite approximation using
explicit formation of matrix powers as in (23), and γ̃k = cku/(1 − cku)
with c a small integer constant [15]. Hence, the relative error is bounded
approximately by γ̃mne

2θm , which is a satisfactory bound taking into account
the values of θm given in Tables 1 and 2. Analogously, a similar bound can
be obtained for Taylor matrix polynomial.

We have implemented two algorithms for computing the matrix expo-
nential by the Hermite method presented in this paper. The first algorithm
(dgeexfher) computes, for double precision general matrices, the exponential
function by a Hermite approximation using the classical Horner’s and Paterson-
Stockmeyer methods [13], [16, p. 568], [14, p. 73].

The second algorithm saves computational cost taking into account the
relative accuracy bounds in IEEE double precision arithmetic. The underly-
ing idea is that if the contribution of the highest degree terms of the Hermites
series to the exponential of the scaled matrix is negligible taking into account
floating point arithmetic bounds, then we can save the evaluation of matrix
products without substantial changes in the final result. For example, for
m = 9, let

F = p9A
3 + p8A

2 + p7A, (27)

where pi, i = 0, 1, · · · , 9, are the coefficients of the matrix powers Ai of the
corresponding Hermite expansion in Table 3. Since

‖p9A9 + p8A
8 + p7A

7‖
‖eA‖ ≤ ‖F‖ ‖A

3‖2
e−‖A‖ , (28)

if
min{‖F‖ , ‖F + p6I‖}‖A3‖2

e−‖A‖ < u, (29)

11

or
‖F‖ < |p6|u, (30)

then matrix F or matrix F+p6I can be neglected saving one matrix product.
This is likely to occur for instance if the norm of matrix A was only slightly
greater than θ6. Similar tests can be devised and applied recursively, elimi-
nating sets of 3 terms each time. It is important to note that if the condition
is accomplished more than once or twice in the evaluation of hm(λ,A) for a
scaled matrix A, it might be a sign of overscaling.

With respect to the computational cost of the bound test, if we denote
B the original unscaled matrix, then A = B/2s. Therefore, when doing
the tests, the norm of the original unscaled matrix and the matrix power
A3 are already obtained. Hence, making the recursive tests only involves in
practice to evaluate once at the beginning the norm of A3, the expression
ue−||A||1 = ue−||B||1/2s , and two matrix norms for each test. The cost of these
operations for r × r matrices is of order O(r2), negligible when compared to
a matrix product, whose cost is of order O(r3).

Similar tests can be applied to the evaluation of Taylor approximation of
orders m = 4, 6, 9, 16, 20, and hm(λ,A) with m = 25, 30, giving Algorithm
2 (dgeexfhrp) which computes, for double precision general matrices, the
exponential function by scaling-squaring Hermites approximation reducing
the number of matrix products when possible. This algorithm has essen-
tially the same stages as Algorithm 1, checking the tests when needed and
potentially saving matrix products. Numerical tests will show that in prac-
tically the 100% of the test matrices the savings are obtained with the same
accuracy in double precision arithmetic. Both algorithms 1 and 2 do not
consider orders m = 1 and 2 because ||A|| should be very small to use those
orders, given the low values of θ∞1 and θ∞2 , see Table 1.

Algorithm 1 can be divided into the following stages (algorithm 2 can be
divided in analogous stages):

1. Preprocessing of matrix A using the techniques proposed by Ward in
[17] (steps 1-4). Note that in numerical tests we did not use preprocess-
ing because turning it on provided similar comparison results to those
turning it off.

2. After preprocessing, the optimal value of the scaling parameter s is
calculated (steps 5-20).

3. In steps 17 and 35-37 the matrix scaling and the squaring of the ap-
proximation is done, respectively.

12

4. Finally in step 38 the postprocessing is applied. In the same way as
preprocessing, this step has not been applied in numerical tests.

We have made available online a MATLAB sequential version of the complete
algorithm dgeexfhrp at

http://personales.upv.es/∼jorsasma/dgeexfhrp.zip,

which implements the rest of cases m = 9, 12, . . . , 30 from lines 31 − 34 of
the algorithm, and offers the possibility to select the maximum order m.

4. Numerical examples

The main objective of this section is to compare MATLAB implementa-
tions of the algorithms developed in Section 3 with other efficient algorithms
implemented in MATLAB that compute matrix exponential. MATLAB 7.7
(R2008b) implementations were tested on an Intel Core 2 Duo processor at
2.52 GHz with 4 GB main memory. In the comparative the following MAT-
LAB functions were used:

• Expm is a MATLAB function that uses Padé approximants of exponen-
tial function with scaling and squaring proposed by Higham in [7].

• Funm is a built-in MATLAB 7.7 function that enables computation of
general matrix functions at square matrices. The matrix function must
have a Taylor series with an infinite radius of convergence, except for
the matrix logarithm, which is treated as a special case. The exponen-
tial, cosine, sine, hyperbolic sine, hyperbolic cosine and the logarithm
of a matrix are all allowed. This function implements the Schur-Parlett
algorithm of Davies and Higham [18].

Algorithm accuracy was tested by computing the relative error

E =
‖eA − Ỹ ‖1
‖eA‖1

,

where Ỹ is the computed solution and eA the exact solution.
As it is mentioned above, in the tests we did not use any preprocessing/post-

processing in the Hermite implemented algorithms. Analogously to the ex-
periments in [7], we found that turning on preprocessing in this algorithm

13

Algorithm 1 computes the exponential of a matrix by Hermite series with
scaling and squaring and maximum order m = 30.

Function F = dgeexfher(A)
Input: Matrix A ∈ Cr×r Output: Matrix F ∼= eA ∈ Cr×r

1: μ = trace(A)/r
2: A← A− μI
3: Determine a diagonal matrix D and a permutation matrix P such that D−1PTAPD

is balanced
4: A← D−1PTAPD � Preprocessing of A
5: Initialize θ with values of Tables 5, and coefficients pi for each approximation order

m = 4, 6, 9, · · · , 30.
6: normA = ||A||1
7: for m = [4 6 9 12 16 20 25 30] do
8: if normA ≤ θm then
9: break
10: end if
11: end for
12: if normA > θ30 then
13: s = �log2(normA/θ30)	
14: if normA/2s ≤ θ25 then � This condition can occur because θ30/2 < θ25
15: m = 25
16: end if
17: A← A/2s � Scaling Phase: matrix A is scaled
18: else
19: s = 0
20: end if
21: A2 = A2

22: if m == 4 then � Taylor approximation for m = 4, 6, 9, 12, 16, 20
23: F = (p4A2 + p3A+ p2I)A2 + p1A+ p0I
24: else if m == 6 then
25: F = ((p6A2 + p5A+ p4I)A2 + p3A+ p2I)A2 + p1A+ p0I
26: else if m == 9 then
27: A3 = A ·A2

28: F = ((p9A3 + p8A2 + p7A+ p6I)A3 + p5A2 + p4A+ p3I)A3 + p2A2 + p1A+ p0I
29: else if m == 12 then
30:
31:
32: else if m == 30 then
33:
34: end if
35: for k = 1 : s do � Squaring Phase: Repeated squaring of matrix F
36: F = F 2

37: end for
38: F ← eμPDFD−1PT � Postprocessing of F

14

Algorithm 2 computes the exponential of a matrix by scaling and squaring
Hermite approach with maximum order m = 30 reducing the number of
matrix products when possible.

Function F = dgeexfhrp(A)
Input: Matrix A ∈ Cr×r Output: Matrix F ∼= eA ∈ Cr×r

1: Same as dgeexfher(A) lines 1-21
2: u = 2−53

3: LowBound = ue−normA/2s

4: if m == 4 then
5: F = p4A2 + p3A
6: aux = ||F ||1
7: F = F + p2I
8: if (aux ≤ |p2|u) or (min{aux, ||F ||1} · ||A2||1 ≤ LowBound) then
9: F = p2A2 + p1A+ p0I � One matrix product is saved
10: else
11: F = F · A2 + p1A+ p0I
12: end if
13: else if m == 6 then
14: normA2 = ||A2||1
15: F = p6A2 + p5A
16: aux = ||F ||1
17: F = F + p4I
18: if (aux ≤ |p4|u) or (min{aux, ||F ||1} · ||A2||21 ≤ LowBound) then
19: F = p4A2 + p3A � One matrix product is saved
20: else
21: F = F · A2 + p3A
22: end if
23: aux = ||F ||1
24: F = F + p2I
25: if (aux ≤ |p2|u) or (min{aux, ||F ||1} · ||A2||1 ≤ LowBound) then
26: F = p2A2 + p1A+ p0I � One matrix product is saved
27: else
28: F = F · A2 + p1A+ p0I
29: end if
30: else if m == 9 then
31:
32:
33: else if m == 30 then
34:
35: end if
36: Same as dgeexfher(A) lines 35-38

15

provided similar results to those presented in this section without prepro-
cessing.

Regarding memory issues, it is important to note that Algorithm 1 needs
the same matrices in memory as expm when both methods use their maximum
orders, m = 30 and m = 13 respectively: A,A2, . . . , A5 plus one to perform
the calculation for Hermite method, and A,A2, A4, A6 plus two for the nu-
merator and denominator for Padé method, taking into account that the final
rational approximation can be performed re-using the memory allocated for
the power of A involved in the numerator and denominator computation.

Regarding computational cost, from Table 4 and Table 2.3 of [7], Table
5 presents the orders of the approximation, the θm and θ′m values and the
number of matrix products πm and π′

m required for Hermite dgeexfher func-
tion, and Padé expm function, respectively. Note that the number of matrix
products for dgeexfher is a maximum bound of the matrix products for
dgeexfhrp. Then, using (24), for matrices with ||A|| > θ′13 = 5.37 (showing
three significant digits), the cost of dgeexfher in terms of matrix products,
denoted by CH

m , and representing the maximum cost of dgeexfhrp, is

CH
30 = 9+sH = 9+�log2 ||A||−log2(3.58)	, if

||A||
2sH

> 2.44, (31)

CH
25 = 8+sH = 8+�log2 ||A||−log2(3.58)	, if

||A||
2sH
≤ 2.44, (32)

where sH denotes the scaling in Hermite methods. On the other hand, the
cost of expm Padé method, denoted by CP

m, is

CP
13 = 6 + CLS + sP = 6 + CLS + �log2 ||A|| − log2(5.37)	 , (33)

where
sP = �log2 ||A|| − log2(5.37)	, (34)

denotes the scaling in expm and CLS denotes the cost of solving the multiple
right-hand sides linear system in Padé method, in terms of matrix products.
From [19] the cost of the matrix product in R

r×r and the solution of the
multiple right-hand sides of the same size with Padé approximants is 2r3−r2

and 8r3

3
− r2

2
+ 5r

6
flops, respectively. Therefore, asymptotically CLS ≈ 4/3.

Taking into account that θ30 for Hermite methods is greater than θ′13/2 for
Padé method [7, p. 1186], taking expm’s matrix scaling by 2sP , for matrices
with

θ′13/2 = 2.68 <
||A||
2sP

≤ 3.58, (35)

16

Hermite methods use m = 30 and sH = sP , therefore dgeexfhrp needs a
maximum of 3 − CLS more matrix products than expm, which results in a
maximum relative higher cost of (1 + 2/3)/(7 + 1/3 + sP) × 100% ≤ 20%
in matrix products, which decreases with the matrix norm because of the
increasing scaling. For matrices such that

3.58 <
||A||
2sP

≤ 2× θ25 = 4.88, (36)

Hermite methods use m = 25 and sH = sP +1, therefore dgeexfhrp needs a
maximum of 3−CLS more matrix products than expm again, resulting in the
same relative higher cost (1 + 2/3)/(7 + 1/3 + sP)× 100% ≤ 20% in matrix
products, decreasing with the matrix norm. In fact, using (35) and (36), for
instance for matrices with norm

343.80 < ||A|| ≤ 624.98, (37)

it follows that sP = 7 and the maximum relative higher cost of dgeexfhrp
decreases to 11.63%. Finally, for matrices such that

4.88 <
||A||
2sP

≤ 5.37, (38)

Hermite methods use m = 30 and sH = sP + 1, therefore dgeexfhrp needs
a maximum of 4 − CLS more matrix products than expm, resulting in a
maximum relative higher cost of (2 + 2/3)/(7 + 1/3 + sP)× 100% ≤ 32% in
matrix products. Note that this norm interval represents only the 18.21% of
the total interval considered in the three cases (35), (36) and (38).

The cost comparison for matrices with ||A|| ≤ 5.37 is presented in Table
6, where the θm values are presented with three significant digits, and CH

m

represents a bound on the maximum cost of dgeexfhrp. Note that there are
some cases where the maximum cost for dgeexfhrp is lower than the cost
for expm, i.e. 2.53e− 1 < ||A|| ≤ 2.99e− 1, 1.49e− 2 < ||A|| ≤ 8.95e− 2 and
||A|| ≤ 9.06e−3, reaching relative efficiency gains from 6.25% up to 40%. For
matrices satisfying 4.88 ≤ ||A|| ≤ 5.37 the maximum cost of dgeexfhrp is
36.36% higher and in the rest of cases dgeexfhrp maximum cost exceeds expm
cost in 2/3 or 1+2/3 matrix products. Once again the interval where the cost
difference is higher is a small part of all the interval considered, representing
only the 9.11% of the total. One more final squaring step than in expm is
required for matrices satisfying 3.58 < ||A||/2sP ≤ 5.37 with ||A|| > 5.37, and
3.58 < ||A|| ≤ 5.37. This might be a possible source of error, especially if A

17

dgeexfhrp expm

Norm ranges m sH CH
m m sP CP

m
CH

m−CP
m

CP
m

%

||A|| ≤ 3.39e− 4 4 0 2 3 0 2+CLS -40
3.39e− 4 < ||A|| ≤ 9.06e− 3 6 0 3 3 0 2+CLS -10
9.06e− 3 < ||A|| ≤ 1.49e− 2 9 0 4 3 0 2+CLS 20
1.49e− 2 < ||A|| ≤ 8.95e− 2 9 0 4 5 0 3+CLS -7.69
8.95e− 2 < ||A|| ≤ 2.53e− 1 12 0 5 5 0 3+CLS 15.38
2.53e− 1 < ||A|| ≤ 2.99e− 1 12 0 5 7 0 4+CLS -6.25
2.99e− 1 < ||A|| ≤ 7.80e− 1 16 0 6 7 0 4+CLS 12.50
7.80e− 1 < ||A|| ≤ 9.50e− 1 20 0 7 7 0 4+CLS 31.25

9.50e− 1 < ||A|| ≤ 1.43 20 0 7 9 0 5+CLS 10.53
1.43 < ||A|| ≤ 2.09 25 0 8 9 0 5+CLS 26.32
2.09 < ||A|| ≤ 2.44 25 0 8 13 0 6+CLS 9.09
2.44 < ||A|| ≤ 3.58 30 0 9 13 0 6+CLS 22.73

3.58 < ||A|| ≤ 2× 2.44 25 1 9 13 0 6+CLS 22.73
2× 2.44 < ||A|| ≤ 5.37 30 1 10 13 0 6+CLS 36.36

Table 6: Comparison of maximum theoretical cost CH
m in terms of matrix products for

dgeexfhrp with maximum order m = 30, and cost CP
m for expm, for ||A|| ≤ 5.37.

is ill-conditioned. However, Hermite methods with maximum order m = 30
obtained better accuracy than expm in a high percentage of cases in numerical
tests (see Table 8).

In a similar way, it is easy to show that, for any matrix A ∈ Cr×r, the
maximum cost of using dgeexfhrp with maximum order m = 16 is the same
as using m = 20. Thus, maximum order m = 20 should be used instead of
16 because taking into account that θ20 > θ16, the scaling parameter s with
m = 20 is lower in the majority of matrix norm intervals, and the squaring
process might be a possible source of error. Analogously, it is also easy to
check that if we use maximum orders m = 20 or 25 then dgeexfhrp presents
a maximum higher cost than expm of 1+ 2/3 matrix multiplications, instead
of 2 + 2/3 that dgeexfhrp presented with m = 30. On the other hand,
dgeexfhrp with maximum orders m = 20 and 25 presents lower maximum
cost than expm for the same matrix norms as dgeexfhrp with m = 30.

It is important to note that all the costs of dgeexfhrp presented in this
analysis are maximum costs and, as we will see in tests, they may decrease
considerably in practice.

For tests, 105 matrices were used: 49 matrices from the Matrix Compu-
tation Toolbox [20], 24 matrices from the Eigtool MATLAB package [21], 18

18

Table 7: Relative error comparison (%) between dgeexfher and dgeexfhrp.

maximum order m=16 m=20 m=25 m=30
Edgeexfher < Edgeexfhrp 3.77 0 0 0
Edgeexfher = Edgeexfhrp 95.28 99.06 100.00 100.00
Edgeexfher > Edgeexfhrp 0.94 0.94 0.00 0.00
Pdgeexfher/Pdgeexfhrp 105.52 108.43 108.58 109.91

matrices from papers of the state-of-the-art of matrix functions [6, 17, 18,
22, 23, 24, 25, 26], and 14 special matrices such as matrices of Vandermonde,
Hankel, Toeplitz, Wilkinson, symmetric matrices, defective matrices and non
defective matrices.

In the examples the matrix exponentials were calculated analytically,
when it was possible, or by using [33/33] diagonal Padé method with scaling
and squaring with 1000-digit precision in an iterative way: different increas-
ing scalings starting from that provided in [7] for expm were used, until the
norm of the relative difference between the approximations converted to IEEE
double precision arithmetic was zero in four iterations. The [33/33] diagonal
Padé approximation was evaluated with matrix power aggregation similar to
that proposed in [7, p. 1183].

Table 7 shows a comparative between the implementations dgeexfher

and dgeexfhrp. The three first rows contain the percentage of times that
relative error of a function is lower, equal or greater than relative error of the
other function. The last row of Table 7 contains the ratio of the total number
of matrix products evaluated for the two functions over all test matrices,
denoted by Pdgeexfher and Pdgeexfhrp. Both functions presented practically
the same accuracy, however the total number of matrix products evaluated
for dgeexfhrp is lower than those for dgeexfher.

Table 8 presents the relative error and matrix product comparison of
dgeexfhrp and dgeexfher with expm. dgeexfher obtained the same com-
parative results of accuracy as dgeexfhrp at a higher cost, see the last two
rows. dgeexfhrp relative error is lower than expm relative error for m ≥ 20
(68.87%-77.36%), with a slightly higher cost, varying the ratio of matrix
products between 103.76% and 104.43% for m = 20, 25, 30.

In Table 9 the relative errors of dgeexfhrp and dgeexfher are compared
to funm. As shown in these tables, once again dgeexfher and dgeexfhrp ob-
tained the same comparative results of accuracy, and in general their relative

19

Table 8: Comparison of relative error and total number of matrix products (%) between
dgeexfhrp and expm. The error comparison results were exactly the same with dgeexfher

at a greater cost (see last table row).

maximum order m=16 m=20 m=25 m=30
Edgeexfhrp < Eexpm 44.34 68.87 77.36 77.36
Edgeexfhrp = Eexpm 1.89 2.83 1.89 1.89
Edgeexfhrp > Eexpm 53.77 28.30 20.75 20.75
Pdgeexfhrp/Pexpm 106.62 103.76 104.01 104.43
Pdgeexfher/Pexpm 112.51 112.51 112.93 114.78

Table 9: Relative error comparison between dgeexfhrp and funm. The results were exactly
the same with dgeexfher.

maximum order m=16 m=20 m=25 m=30
Edgeexfhrp < Efunm 71.70 77.36 79.25 80.19
Edgeexfhrp = Efunm 0.94 0 0 0
Edgeexfhrp > Efunm 28.30 22.64 20.75 19.81

errors were lower than the relative errors of funm (71.70%-80.19%).
Figure 2a presents the normwise relative errors of dgeexfhrp, expm and

funm (a similar figure is obtained when dgeexfher is used). This figure
shows the relative error of all implementations sorted in decreasing order,
and a solid line that represents the unit roundoff multiplied by the relative
condition number of the exponential function at X [14, p. 56],

condexp(X) = lim
ε→0

sup
‖E‖≤ε

∥∥eX+E − eX
∥∥

ε

‖X‖
‖eX‖ .

Relative condition number was computed using the MATLAB function expm cond.
This function is incorporated into the Matrix Function Toolbox developed
by Higham [14, Appendix D] and available at
http://www.ma.man.ac.uk/∼higham/mftoolbox.

For a method to perform in a backward and forward stable manner, its
error should lie not far above this line on the graph [7, p. 1188]. Figure 2a
shows that all functions perform in a numerically stable way on this test,
even for matrices 64-70 where there were overscaling problems [26].

20

0 20 40 60 80 100

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Test matrix

E
r

cond*u
funm
expm(13)
expm(17)
expm(21)
dgeexfhrp(16)
dgeexfhrp(20)
dgeexfhrp(25)
dgeexfhrp(30)

(a) Normwise relative errors

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 α

 p

funm
expm(13)
expm(17)
expm(21)
dgeexfhrp(16)
dgeexfhrp(20)
dgeexfhrp(25)
dgeexfhrp(30)

(b) Performance profile

Figure 2: Comparative of dgeexfhrp, expm and funm.

Performance profile [27] is presented in Figure 2b. This figure shows the
performances of the compared functions, where α coordinate varies between
1 and 5 in steps equal to 0.1, and p coordinate is the probability that the con-
sidered function has a relative error lower or equal than α-times the smallest
error over all the methods. The probabilities are defined over all matrices
considered in the tests. As shown in this figure, dgeexfhrp with maximum
order m = 30 is the most accurate function, and it was achieved with very
similar cost to dgeexfhrp with maximum orders m = 16, 20 or 25. Hence,
we consider m = 30 as the best choice of maximum order for dgeexfhrp.

5. Conclusions

In this work an efficient method to approximate the matrix exponential
based on Hermite matrix polynomial expansions has been presented. Fol-
lowing the ideas of [7] we have developed an optimal backward error bound
for the scaling and squaring Hermite method in exact arithmetic, which de-
pends on A only through ‖A‖ and enables to obtain the theoretical optimal
scaling for general matrices. The optimal parameter λ of the algorithm has
been obtained for each order m = 21, 22, . . . , 30, providing greater values of
the Hermite scaling parameter θm than Taylor methods for those orders, i.e.
θm > θ∞m , m = 21, 22, . . . , 30, where θ∞m is the scaling parameter for Taylor
methods, see Tables 1 and 2. Based on that result, two mixed Hermite-Taylor
algorithms have been developed in order to evaluate different order matrix

21

polynomial approximations: a Hermite-Taylor series Paterson-Stockmeyer
algorithm, dgeexfher, and a modified algorithm, dgeexfhrp, which taking
into account floating point arithmetic error bounds may reduce the num-
ber of matrix product evaluations. This modification (dgeexfhrp) presented
practically the same accuracy as dgeexfher in numerical tests with a lower
computational cost of up to 9.91%. Both algorithms use Hermite series for
order m > 20 and Taylor series for order m ≤ 20. From experimental re-
sults, we have identified the best choice of maximum degree m of Hermite
approximation in terms of efficiency and accuracy: m = 30.

We have shown that dgeexfhrp with maximum order m = 30 has lower
theoretical maximum cost than expm for some matrix norm intervals, and in
numerical tests the cost of dgeexfhrp was similar to that for expm.

dgeexfhrp stores the same number of matrices in memory as expm when
both functions use their maximum orders, m = 30 and m = 13 respectively,
and does not need the solution of multiple linear systems. [7] shows that
this solution does not introduce large errors in expm. However, dgeexfhrp
obtained higher accuracy than both funm and expm in the majority of test
matrices, i.e. the 80.19% and 77.36% respectively. These results are based on
empirical observations. However, numerical results are promising and further
research on Hermite matrix polynomial series for the matrix exponential is
being carried out to reduce the computational costs.

6. Acknowledgements

This work has been supported by the Programa de Apoyo a la Investi-
gación y el Desarrollo of the Universidad Politécnica de Valencia PAID-05-
09-4338, 2009.

References

[1] R. A. Frazer, W. J. Duncan, A. R. Collar, Elementary Matrix and Some
Applications to Dynamics and Differential Equations, Macmillan, New
York, 1946.

[2] M. W. Hirsch, S. Smale, Differential Equations, Dynamical Systems and
Linear Algebra, Academic Press, New York, 1974.

[3] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

22

[4] C. B. Moler, C. V. Loan, Nineteen dubious ways to compute the expo-
nential of a matrix, SIAM Review 20 (4) (1978) 801–836.

[5] G. D. Smith, Numerical Solution of Partial Differential Equations: Fi-
nite Difference Methods, 3rd Edition, Oxford University Press, 1985.

[6] C. B. Moler, C. V. Loan, Nineteen dubious ways to compute the expo-
nential of a matrix, twenty-five years later, SIAM Rev. 45 (2003) 3–49.

[7] N. J. Higham, The scaling and squaring method for the matrix expo-
nential revisited, SIAM J. Matrix Anal. Appl. 26 (4) (2005) 1179–1193.

[8] A. H. Al-Mohy, N. J. Higham, A new scaling and squaring algorithm
for the matrix exponential, SIAM J. Matrix Anal. Appl. 31 (3) (2009)
970–989.

[9] N. Dunford, J. Schwartz, Linear Operators, Part I., Interscience Pub-
lishers, New York, 1957.

[10] S. Saks, A. Zygmund, Analytic Functions, Elsevier Science Publishers,
Amsterdam, The Netherlands, 1971.

[11] E. Defez, L. Jódar, Some applications of Hermite matrix polynomials
series expansions, J. Comput. Appl. Math. 99 (1998) 105–117.

[12] L. Jódar, R. Company, Hermite matrix polynomials and second order
matrix differential equations, J. Approximation Theory Appl. 12 (2)
(1996) 20–30.

[13] M. S. Paterson, L. J. Stockmeyer, On the number of nonscalar multi-
plications necessary to evaluate polynomials, SIAM J. Comput. 2 (1)
(1973) 60–66.

[14] N. J. Higham, Functions of Matrices: Theory and Computation, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[15] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd
Edition, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2002.

[16] G. H. Golub, C. V. Loan, Matrix Computations, 3rd Ed., Johns Hopkins
Studies in Math. Sci., The Johns Hopkins University Press, 1996.

23

[17] R. C. Ward, Numerical computation of the matrix exponential with
accuracy estimate, SIAM J. Numer. Anal. 14 (4) (1977) 600–610.

[18] P. I. Davies, N. J. Higham, A Schur–Parlett algorithm for computing
matrix functions, SIAM J. Matrix Anal. Appl. 25 (2) (2003) 464–485.

[19] S. Blackford, J. Dongarra, Installation guide for LAPACK, LAPACK
Working Note 411, Department of Computer Science University of
Tenessee (1999).

[20] N. J. Higham, The Test Matrix Toolbox for MATLAB, Numerical Anal-
ysis Report No. 237, Manchester Centre for Computational Mathemat-
ics, Manchester, England (Dec. 1993).

[21] T. G. Wright, Eigtool, version 2.1, (2009)
http://web.comlab.ox.ac.uk/pseudospectra/eigtool/

[22] I. Najfeld, T. F. Havel, Derivatives of the matrix exponential and their
computation, Advances in Appl. Math. 16 (1995) 321–375.

[23] C. S. Kenney, A. J. Laub, A Schur–Fréchet algorithm for computing
the logarithm and exponential of a matrix, SIAM J. Matrix Anal. Appl.
19 (3) (1998) 640–663.

[24] D. Westreich, A practical method for computing the exponential of a
matrix and its integral, Communications in Appl. Numer. Methods 6
(1990) 375–380.

[25] Y. Y. Lu, Computing a matrix function for exponential integrators, J.
Comput. Appl. Math. 161 (2003) 203–216.

[26] L. Dieci, A. Papini, Padé approximation for the exponential of a block
triangular matrix, Linear Algebra Appl. 308 (2000) 183–202.

[27] E. D. Dolan, J. J. Moré, Benchmarking optimization software with per-
formance profiles, Math. Programming 91 (2002) 201–213.

24

