
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 3 (2011) pp. 514-521

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Interactive 3D Visualization of a Large University

Campus over the Web

Eduardo Vendrell
1
 and Carlos Sánchez

2

1 Instituto de Automática e Informática Industrial, Universitat Politècnica de València,

Avenida de los Narajnos, s/n, Valencia 46021, Spain

even@upv.es

2 Instituto de Automática e Informática Industrial, Universitat Politècnica de València,

Avenida de los Narajnos, s/n, Valencia 46021, Spain

carsanb1@posgrado.upv.es

Abstract: Nowadays, with the rise and generalized use of web

applications and graphical hardware evolution, one of the most

interesting problems deals with realistic real-time visualization of

virtual environments on web browsers. This paper shows an

on-line application to dynamically visualize a large campus on

the World Wide Web. The application focuses on a smooth walk

through a large 3D environment in real-time as an alternative

way to index geographically related information. This way,

contents are continuously filtered based on viewpoint’s position.

This can be made thanks to the availability of different models

corresponding to different levels of detail (LOD) for each

modeled building. A server storage model has been purposed

including all models, compound of meshes, textures and

information. The technique is based on an algorithm that

performs a progressive refining of the models, according to the

distance from the viewpoint.

Keywords: Web3D, Visualization, Graphics, Real-time rendering,

Interactive.

I. Introduction

Internet growing technology, together with the increasing

performance of low-cost home computers, makes possible

web-based applications including real-time visualization of

large virtual environments. In fact, this is an interesting and

current problem with different approaches ranging from

simulation of natural phenomena [1][2], to visualization of

medical images [3].

When talking about web visualization, there are two

important factors to consider: the amount of information to be

displayed, and the client-server architecture. The first one is

important as, typically, geometric 3D models are large files to

be stored, downloaded, and displayed. The second one is

related both, to the computer system designed to support a

web application, and the performance of the client computer.

Some approaches considering these factors can be seen at

[4][5][6].

Most visualization techniques of 3D data and virtual

environments are based on level of detail (LOD) models,

including pre-computed lightmaps and progressive refining.

Current researches focus their goal in generating optimal

geometric models [7][8] and fast rendering algorithms

[9][10][11]. Most of these techniques are intended for off-line

applications, where time delays for model and texture loadings

are minimal.

There are some web-based applications to display 3D

models of large environments as GIS developments. These

approaches [12][13][14] tend to use VRML a high level

objected-oriented language intended to describe scenes and

behaviors of 3D objects. In this application, VRML has not

been used due to lacks in current players to create a complex

and realistic simulation. Instead, the application has been

generated under Virtools [15], a software platform intended

for game application.

This paper shows the implementation of a web application to

display a large campus as a virtual environment, using on-line

real-time rendering. The application is based on an algorithm

that executes a progressive refining of 3D models of the

campus‟ buildings, stored on a server. The algorithm optimizes

resources by running an asynchronous request for information

while the user moves through the virtual environment. In this

way, we obtain 3D web visualization, considering restrictions

of the user's computer, within a reasonable response time.

II. Terminology and data storage model

A. Terminology

The object of the application described in this paper is

displaying 3D objects as a part of a complete University

Campus model. This Campus has to be represented as a large

environment on a web browser, including linked information to

all graphical elements of the simulation.

We consider that objects compose a 3D environment. Each

object represents a single building or urbanistic elements such

as streets, urban furniture, plants… and stores the basic

properties of them. Meshes define the 3D topology of objects.

Every object has to be linked with one or more meshes.

Differentiating between objects and meshes allows the

application to implement the LOD technique, originally

 515

introduced in [16]. This method is widely used in virtual reality

[17] and allows to control, in real-time, the visualization

quality of the 3D models. It automatically changes the

complexity of the mesh and the resolution of textures

according to the distance between the viewpoint and the

viewed objects. By employing this technique, a great amount

of 3D data can be dealt in real-time over a common network

environment, such as DSL.

A mesh is composed by polygons and vertices. A vertex

represents a point in the space, and defines a position along

with other information. A polygon is a set of three different

vertices, defining a triangle in the space, and its appearance is

described by a material, composed by a shader and textures.

A shader is a low-level computer program executed in the

GPU that determines the final surface appearance of a polygon.

It performs several calculations for each vertex and pixel

rendered, and establishes the way textures are combined. A

texture is a bi-dimensional image that represents the intensity

distribution of a component over the polygons‟ surface. It is

characterized by its resolution and the number of bits assigned

to each sample. The relationship between a texture and the way

it is applied on a polygon is called texture mapping. Texture

mapping information is stored in vertices and, by allowing

multiple mapping channels per vertex, different textures can be

applied to the surface with different criteria.

In order to optimize graphical memory usage, textures are

supposed to be squared, and their resolution has always to be a

power of two. Also, for the user to be able to decide the

visualization quality based on its computer/network

performance, and to improve simulation frame rate with the

refining algorithm, textures will have 3 different levels of

detail: 128x128 pixels, 256x256 pixels and 512x512 pixels.

Two main components have to be defined for each material:

the diffuse channel and the lightmap channel. The first one

indicates the surface color and the second one stores the

lighting information for each polygon that uses the material.

Additional components can be added in order to represent

specific surface properties, like reflecting, shiny, or transparent

zones. Figure 1 illustrates the effect of blending different

texture channels in the same model.

Lightmap importance resides on the simulation‟s visual

richness: lighting calculation is mandatory in order to create a

realistic environment. However, the computational cost of

realistic lighting simulation can compromise the application

performance. To solve this problem, lighting information is

pre-calculated for each model, and stored in a single texture

[18] that defines how dark or bright the surface of each

polygon will be. Lightning information can also be stored in

mesh vertices, but this technique presents problems due to

geometry subdivision [19].

Separating textures and shaders in materials is very

important in order to optimize network and graphic memory

usage: too many textures can produce memory overflows and

seriously affect the performance. To minimize the number of

textures requested to the server and loaded in memory, generic

diffuse textures will be used. Thus, once a building and its

textures are loaded into the application, the next building to be

downloaded can share previously loaded textures, so it will not

need to consume new resources. The larger the environment is,

the higher number of textures will be shared. Notice that

lightmap textures cannot be shared, since they store specific

information for each polygon.

Figure 1. Incremental results when blending additional

components. (a) Only diffuse component. (b) Addition of a

pre-calculated sky reflection and reflection masks. (c) Addition

of the specular component and specular masks. (d) Addition of

a second channel pre-calculated lightmap.

Since the goal of the application is providing information

related to the environment simulated, one last element has to

be introduced: the „Point Of Information‟ (POI). Points of

information are intended to be visual entries of information,

distributed along the environment, and hierarchically sorted in

a navigation menu. By clicking them, users can have a quick

access to detailed information about the place they are in.

Basically, a point of information is defined by its position in the

environment, a short text that identifies it, and a texture to

represent it as an icon in the simulation.

Additionally, in order to filter information and differentiate

the importance of each point of interest, their visibility and size

in the simulation is determined by their distance to the

viewpoint. This way, only information related to the place the

user is visiting will be shown, and the most important POI will

be bigger and more visible in long distances.

B. Data storage model

Once the main elements of the 3D simulation and their

relationships have been introduced, it is necessary to define the

way to store them, and how the information will be linked in

order to create an information-oriented 3D simulation.

Established relationships have to be considered when defining

an architecture to store all models, and query responses have to

be deterministic in the sense that results cannot be ambiguous.

Moreover, data storage has to support on-demand streaming

transfers, respecting proposed LOD technique, in which

meshes and textures are independent from objects and

materials respectively.

To achieve this, meshes (with vertex, polygon and material

definitions) are stored in binary compressed files. In a

simulation with n different levels of detail for each object, there

will be n independent mesh files.

Vendrell and Sánchez

Each object has an entry on a database, indicating the

location of the files that contain the different LOD meshes, and

some basic information to be displayed in the simulation, like

the name of the building, the color of its zone, the location the

viewpoint should be placed in case the user double-clicks the

building…

Textures are stored in JPEG compressed images, as this

format offers the best compression ratio, having a different file

for each LOD and each channel. Each material has a base-name

assigned in order to reference its texture files. Texture

filenames are compound by a base-name and two suffixes,

intended to differentiate LOD parameters and provide channel

information. This way, a texture file called „wall_512_d.jpg‟ is

used by materials with a base-name „wall‟ when the LOD

algorithm decides that 512x512 pixel textures have to be used,

and the texture represents the diffuse component, because of

the „_d‟ suffix.

The shader to be used by the material to blend textures and

compute the final appearance of objects is determined „on the

fly‟ based on the available channel textures matching the

base-name, and current LOD. This way, there is one different

shader for each possible allowed combination of channels:

diffuse + lightmap, diffuse + lightmap + alpha, diffuse +

lightmap + reflection mask…

Points of interest are stored in a database, indicating the

location of the texture that represents them, their location on

the 3D world, size and visibility parameters, and some basic

information to be displayed during the simulation, as for

instance their label text.

In order to hierarchically organize contents in a navigation

menu, there is a table including one entry for each menu item.

This entry stores information about its label text, the parent

item in the hierarchical tree, a rank to establish the order on its

level, and a link to the POI or building that the menu item

represents. This way, a quick access to contents and locations

in every simulation is provided.

Basic information of interactive objects is stored in their

own database entries. However, extended information is

treated differently: since HTML language capabilities exceeds

3D engine capabilities on displaying text/multimedia contents,

detailed data is stored in an independent database in HTML

format, and is shown on a separate frame in the application,

rendered by the browser as a webpage.

Extended information and simulation interactive objects are

connected through a reference in object and POI entries in the

database. Each time a user asks for related information on

some building or POI, this reference is requested to the

database, and the result is displayed out of the simulation

frame. This way, non-3D contents, can be added or edited by

administrators in a back-end application through a HTML

content editor. Menu items also provide access to extended

information implicitly: when a user clicks a menu item, the

associated POI or model is queried, and the link to the related

information is returned.

Figure 2 illustrates the data storage model purposed that

respects the content structure explained and the implemented

LOD algorithm restrictions.

Figure 2. Data storage model purposed. (a) Conceptual

model. (b) Purposed storage model.

III. Network architecture and communication

process

Since we work in a networked environment, the architecture of

the application is based on a client-server paradigm with a

Software Delivery strategy [20]. There are four main

components that play specific roles [21]:

 Application server: stores 3D data, information and the

application code, and transfers them to the clients. Since it

serves to several clients, it does not provide complex

computations for individuals. Instead of this, the server

sends the application code and the data to the client [20], in

order to generate the real-time simulation. Therefore, the

computational power is provided by the end-user.

 Player server: stores the binary files that perform the web

player installation on client computers. Since this

web-application requires direct access to graphic hardware

in order to perform a fast and complex simulation, clients

have to install a player in their browsers that loads the code

stored in the application server, and performs the

simulation. Differentiating the application code and the

player allows that, with only one installation, clients can

load lots of different applications. Also, multiplatform

compatibility is implemented in the player, making the

application code platform-independent. In addition, bug

fixes and maintenance tasks are simplified with this

architecture.

 Web client: in charge of the real-time rendering, interaction

with the user, and all data requests to the server. First

application run requires a player installation through the

player server.

 Network: responsible for data transfers between client and

server. Because of time delays, interactions between the

user and the 3D environment have to be performed

primarily on the client side, keeping this client-server

communication only for data requests.

Figure 3 illustrates the network architecture purposed.

516Interactive 3D Visualization of a Large University Campus Over the Web

Figure 3. Network architecture

Communication process starts with a client request to the

application server. First data transferred is the application

code. However, if the application server detects that the client

does not have a suitable player, or it needs to be updated,

redirects the client to the player server. After the player has

been correctly installed, the client downloads the application

code.

Since communication is always started by the client, and

data is downloaded on demand, first thing a client needs to

know are the available resources stored in the application

server. A query to the database has to be made in order to find

out which objects conform the simulation, and texture

filenames have to be parsed to be able to decide, in real time,

which shaders to apply to different materials.

Once resources are located, simulation can start. In our

approach, considering a large environment, first, client has to

download the lowest LOD of all objects, or a reduced set

compound by the closest ones to the viewpoint. Notice that

closest objects can be estimated without additional downloads,

since this information is stored in object‟s database entries.

Depending on viewer‟s position, objects will be sorted

according to the distance, in order to request additional data,

to progressively refine the meshes and textures of the closest

objects. Also, high detailed buildings that are too far from

viewpoint have to be simplified with a lower detail LOD to

prevent graphic memory overflows or low frame rates.

The need for getting continuously distances between the

viewpoint and objects can seriously affect performance if the

process is not simplified: exact point-object distance

calculation is extremely inefficient, since it is necessary to

intersect a ray with each polygon for each object loaded in the

scene. An alternative would be to assume that the distance

could be approximated as the Euclidean distance between the

viewpoint and the barycenter of the studied object, obtaining a

minimum computational cost in the sorting operation. The

problem with this technique is that, due to disparity in size and

shape of objects, big measuring errors will be committed that

will lead to a bad visibility order.

As a compromise, trying to balance computational

performance and quality of results, distances are approximated

by using ray-cube intersections (assuming a cube as the

bounding box that contains an object). Using this method, each

time the distance between the viewpoint and an object is

calculated, a ray from the barycenter of the object towards the

viewpoint is created, and then intersected with the bounding

box of the studied object. Point-object distance is

approximated as the Euclidean distance between the computed

intersection point and the viewpoint position. This technique

considerably reduces computational costs from the first

proposal, and minimizes the error committed in the second

proposal. Figure 4 illustrates the purposed technique.

Figure 4. Distance calculation. (left) viewpoint/barycenter

distance. (right) viewpoint/bounding-box distance.

Object re-sorting is not necessary every frame: it can be

assumed that, in a single frame, the viewpoint will not change

significantly. Thus, by introducing a new parameter to control

the necessary displacement of the viewpoint in order to

re-order the objects, processor‟s usage will be considerably

reduced. Once objects are sorted, a downloading list is

generated considering closest objects to the viewpoint with a

greater priority. Because of low transfer rates of the network,

all objects cannot be downloaded while sorting. Instead of this,

n downloading threads are created when the application starts.

These threads are in charge of downloading and processing in

parallel only high priority objects from the sorted list. The

maximum number of high-detail objects is established as a

parameter, while the number of downloading threads can be

estimated according to a compromise between models to be

loaded and network time latency.

As the viewpoint is continuously changing its position, the

sorted list is re-computed and some active downloading

threads can lose its priority. In this case, the process is not

interrupted because otherwise we could face a situation in

which no object download will conclude. Instead of this, active

downloading threads always finish their process, so non-used

downloaded objects will remain in system cache memory.

The complete communication process is illustrated in

figure 5 from client perspective.

Figure 5. Network architecture

 517 Vendrell and Sánchez

IV. Evaluation

In order to demonstrate the feasibility of the purposed

technique, several traces have been made. Measures have been

taken while the camera moves around the environment within a

fixed trajectory, considering different quality settings. The

main goal is getting information about the usage of hardware

resources during the camera movement. As long as the

complete model of the campus is not yet finished, a subset of

40 buildings has been chosen. As results will show, this does

not invalidate the test, since new buildings will not affect

significantly performance.

In order to provide realistic estimations, and considering

the use of the application on domestic environments, a three

year old desktop computer has been used: AMD Athlon 64

Dual Core 4200+ 2.21GHz, with 3 GB of RAM, and a

GeForce 8600 GTS with 512 MB of VRAM under Microsoft

Windows XP SP3. Network access is performed through a

standard 4 Mbit cable connection.

There are two main system loads to measure: the initial

preload of low-poly models, and the walkthrough. The first

one is common to all quality settings, and is intended to

provide a fast environment preview, while the second one

depends strongly on quality settings and provides an

interactive realistic simulation. Network usage during the

preload of the environment is shown in Chart 1. Final video

memory usage, after all models are loaded and displayed, is 28

MB (including GUI textures). No frame rate drop has been

observed while loading the model. Notice that only 18 MB of

VRAM are used to display low-poly buildings.

Chart 1. Transferred data during the preload.

To measure hardware usage during the walkthrough, four

quality presets have been used depending on texture/lightmap

resolution. Table 1 illustrates different texture sizes available,

while quality presets are shown in Table 2.

Kind of texture
Resolution

(pixels)

Average file

size (KB)

 128x128 3.09

Diffuse/Alpha/Mask 256x256

512x512

10.63

78.81

 512x512 88.32

Lightmap 1024x1024 258.56

 2048x2048 784.23

Table 1. Available textures, and average file size.

Name
Diffuse resolution

(pixels)

Light resolution

(pixels)

Low 128x128 512x512

Medium 256x256 1024x1024

High 256x256 2048x2048

Ultra 512x512 2048x2048

Ultra cached 512x512 2048x2048

Table 2. Quality presets.

The camera trajectory during the walkthrough has been

defined in order to create a worst-case condition: camera

moves continuously towards not loaded buildings, starts in a

heterogeneous building zone where no textures can be reused,

and with no object loaded. The moving speed is 11 km/h (while

average running speed in a marathon in 10.32 km/h) and the

trajectory length is 1 km. During the walkthrough, the eight

closest buildings are always displayed with high-detailed

meshes, and the rest of them are in low level of detail. This

way, simulation looks realistic, and mesh refinement does not

interfere with visualization.

Network usage during the walkthrough can be seen in

Chart 2. Notice how Low and Medium presets have a lot of idle

periods, while High preset has only a couple of them. Ultra

preset is downloading data continuously. This means that

building refinement will be delayed in a continuous worst-case

camera movement. To improve this result, user movement

speed could be limited, models could be simplified, or Ultra

preset could be disabled. However, the commented situation

will happen just once: Ultra Cached preset shows the network

usages with Ultra preset, when models have been visited

previously. Each time a model and textures are downloaded,

web browser stores downloaded files in cache memory. While

user does not delete cache files, transferences will be only to

check if files have changed in the server. This way, future

executions will no longer need such a high bandwidth usage.

Chart 2. Network transferred data during the walkthrough.

To evaluate the quality settings effect on graphical

hardware, video memory usage (VRAM) and frame rate have

been measured during the purposed walkthrough. Chart 3

illustrates VRAM usage, while Chart 4 illustrates the average

number of frames per second.

518Interactive 3D Visualization of a Large University Campus Over the Web

Chart 3. Memory usage during the walkthrough.

Notice how memory is released after object‟s visibility test

fails. This way it can be assured that memory usage will be

limited: if all high-detailed objects were hidden, only 28 MB of

VRAM will be used. It is also important to point out that Ultra

preset memory usage is lower than Ultra Cached, because not

all objects could be loaded during walkthrough due to the

network bottleneck.

Chart 4. Framerate during the walkthrough.

Observing Chart 4 it can be appreciated that frame-rate

keeps almost all the time in closer values to its hardware limit

(60 frames per second), and only a few times is below 25

frames per second. This means that the GPU load is

reasonable, and can be handled by the processor.

It is important to remark that the first third of the

walkthrough is a very special case, since no object is already

downloaded and eight models have to be requested. Also, as

we intended to simulate the worst case execution scheme, the

camera starts moving in the most complex zone of the campus,

where buildings have more polygons and no textures can be

reused (as illustrated in Chart 3). On the other hand, final third

of the walkthrough is also in a complex polygon environment,

but buildings are more homogeneous, lots of textures have

been downloaded, and so lots of them can be shared. This way,

memory usage and simulation speed show a remarkable

improvement. The larger the environment, and the longer the

user navigates through it, the better the results achieved.

As happened with VRAM usage, Ultra preset results are

not representative, since not all objects could be loaded during

the walkthrough. Ultra Cached preset provides more accurate

results.

Chart 5 shows how textures are reused while the camera

moves around the environment. Notice how first buildings

cannot reuse previously downloaded textures, but how the

next ones gradually increase the percentage of shared textures.

Chart 5. Texture sharing between models.

Figure 6 shows achieved results using Medium quality

settings. Notice the highly detailed models and textures, and

the realism achieved.

Figure 6. Achieved results using Medium quality preset.

The use of resources when generating these images is

minimum, and can be handled by almost every home computer:

maximum video memory never reaches 100 MB, average

frame-rate values are between 60 and 35 frames per second,

and bandwidth usage is acceptable (with lots of idle periods)

 519 Vendrell and Sánchez

even in first run, where all models and textures have to be

downloaded. Lower hardware requirements can be achieved

by using Low quality settings or by displaying less high-quality

LOD buildings. On the other hand, higher quality results can be

obtained by using High or Ultra quality presets, allowing faster

computers to create a more realistic simulation.

V. Conclusion

In this paper we have presented a feasible technique to

visualize large environments in a web browser application

embedded. From server storage to communications, all the

process is oriented to a progressive refinement of the models

based on the viewpoint position. A low cost algorithm to sort

objects and demand data to the server has been introduced in

order to reduce performance impact of intermediate

calculations.

Evaluation results show the scalability of the technique due

to a limited resource usage, independent of the complexity and

size of the environment. Even in the worst case, the results are

significantly acceptable.

Also, quality customization options introduced, allow the

application to adapt simulation requirements to hardware

restrictions by increasing/decreasing texture resolution and

amount of high LOD buildings displayed. This way, powerful

computers will provide an extremely detailed simulation, whilst

low-power computers will provide proper results, allowing

users to browse the entire campus.

The main bottleneck has been located in data transfers but,

by using browser‟s cache memories, performance has been

considerably improved, reducing transfers to a simple check of

file changes in the server, after first execution.

Because of time restrictions, only two levels of detail have

been used for buildings. Adding a third one will reduce

considerably resources usage, and more accurate simulations

could be performed. The next improvement of the technique

will be focused on getting a multi-level LOD.

Acknowledgment

The authors want to thank the Vice-Rector for Information

and Communications Technologies, the Information Area, and

the Information Systems and Communications Area (ASIC) of

the UPV, and, in particular, to Carlos Turró, for their kindly

support.

References

[1] P. Heinzlreiter, G. Kurka, J. Volkert, “Real-time

Visualization of Clouds”, Proc. WSCG'2002, pp. 43-51,

2002.

[2] W. Lifeng, L. Zhouchen, F. Tian, Y. Xu, Y. Xuan, K.

Sing Bing, “Real-time Rendering of Realistic Rain”,

ACM SIGGRAPH 2006 Sketches, Article No. 156, 2006.

[3] A. Poliakovet al, “Server-based Approach to Web

Visualization of Integrated Three-dimensional Brain

Imaging Data”, Journal of the American Medical

Informatics Association, Vol. 12, 2, 2005.

[4] S. Rusinkiewicz, M. Levoy, “Streaming QSplat: a viewer

for networked visualization of large, dense models”,

Proceedings of the 2001 Symposium on Interactive 3D

Graphics, pp. 63-68, 2001.

[5] P. Morillo, M. Fernández, N. Pelechano, “A Grid

Representation for Distributed Virtual Environments”,

Grid Computing, Lecture Notes in Computer Science

Vol. 2970/2004, Springer-Verlag, pp. 182-189, 2004.

[6] L. Chittaro, R. Ranon, “Adaptive 3D Web Sites”, P.

Brusilovsky, A. Kobsa, W. Nejdl (eds.), The Adaptive

Web - Methods and Strategies of Web Personalization,

Lecture Notes in Computer Science, Vol. 4321, pp.

433-464, 2007.

[7] O. Devillers, P.M. Gandoin, “Geometric compression for

interactive transmission”, Proc. of the Conference on

Visualization'00, pp. 319-326, 2000.

[8] R. Estkowski, J.S.B. Mitchell, X. Xinyu, “Optimal

Decomposition of Polygonal Models into Triangle

Strips”, Proc. of the 18th annual symposium on

Computational Geometry (SoCG‟02), pp. 254-263,

2002.

[9] S. Guthe, et al, “Interactive Rendering of Large Volume

Data Sets”, Proceedings of the Conference on

Visualization’02, pp. 53-60, 2002.

[10] L. Ming et al, “Online Accelerate Rendering of Visual

Hulls in Real Scenes”, Journal of WSCG,Vol 11, pp.

290-297, 2003.

[11] N. Tamuraet al, “A Practical and Fast Rendering

Algorithm for Dynamic Scenes Using Adaptive Shadow

Fields”, The Visual Computer: International Journal of

Computer Graphics, Vol. 22, Issue 9, pp. 702-712, 2006.

[12] J. Zara, “Virtual Reality and Cultural Heritage on the

Web”, Proceedings of the 7
th

 International Conference

on computer Graphics and Artificial Inteligence.

Limognes, France, pp. 101-112, 2004.

[13] J. Zara, “A Scaleable Approach to Visualization of Large

Virtual Cities”, Fifth International Conference on

Information Visualization. London, UK, 2001.

[14] L. Thomas, “Spacing Out: Web 3D and the

Reconstruction of Archaeological Sites”, Ancient Studies

– New Technology and Scholarly Research, Newport,

2000.

[15] DASSAULT SYSTEMES. 3DVIA Virtools.

http://a2.media.3ds.com/products/3dvia/3dvia-virtools.

[16] C. RIKK, B. GAVIN, M. CHRIS, “The Virtual Reality

Modeling Language Specification”, The VRML

Consortium Incorporated, 1997.

[17] Y. Takase et al, “A Development of 3D Urban

Information System On Web”, Proceedings of the

International Workshop on Processing and Visualization

using High-Resolution Images, ISPRS, 2004.

[18] R. Bastos, M. Goslin, H. Zhang, “Efficient Radiosity

Rendering using Textures and Bicubic Reconstruction”,

Proc. of the 1997 symposium on Interactive 3D

Graphics, pp. 77-ff, 1997.

[19] N. Ray et al, “Generation of Radiosity Texture Atlas for

Realistic Real-Time Rendering”, Eurographics 2003,

2003.

520Interactive 3D Visualization of a Large University Campus Over the Web

[20] K. Brodlie, “Visualization over the World Wide Web”,

Scientific Visualization (Dagstuhl ’97 proc.), IEEE

Computer Society Press, pp.23-29, 2000.

[21] J. Zara, “Web-Based Historical City Walks: Advances

and Bottlenecks”, PRESENCE: Teleoperators and

Virtual Environments. Vol. 15, No. 3, pp. 262-277,

2006.

Author Biographies

Eduardo Vendrell was born in Carlet (Spain), 1967. He

has a Ph.D on Computer Science from the Universitat

Politècnica de València, UPV (2001). From 1991, he is

teaching at UPV in the field of Robotics and CAD/CAM.

Currently, he is associate professor in the School of

Computer Science. His research interest is related to

CAD/CAM and geometric modeling, having published

different papers on international conferences and journals.

He is member of the Institute of Control Systems and

Industrial Computing (ai2), UPV. From 2009 he is also

the Dean of the School of Computer Science.

Carlos Sánchez was born in Valencia (Spain) on

February 22nd, 1981. He was graduated as I.T. engineer

with “Industrial Computing” specialization in the

Universitat Politècnica de València (UPV), Spain in

2009. He completed his Master‟s degree in robotics in the

University Institute of Control Systems and Industrial

Computing (ai2) in the same university in 2010.

Currently, he is a Ph.D student, working in graphics

programming research.

 521 Vendrell and Sánchez

