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Abstract

In this communication computational methods that facilitate finite element
analysis of density functional computations are developed. They are: (i) ~—adaptive
grid refinement techniques that reduce the total number of degrees of freedom in
the real space grid while improving on the approximate resolution of the wanted
solution; and (ii) subspace recycling of the approximate solution in self-consistent
cycles with the aim of improving the performance of the generalized eigenprob-
lem solver. These techniques are shown to give a convincing speed-up in the com-
putation process by alleviating the overhead normally associated with computing
systems with many degrees-of-freedom.
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1. Introduction

Density Functional Theory (DFT) [1, 2] is a first-principles framework used
in theoretical and computational physics for determination of the ground-state
properties of multi-reference systems, and has far-reaching applicability in nu-
clear, atomic, and solid-state physics. DFT-based simulations of electronic struc-
ture are usually facilitated by means of self-consistent iterations between a pair
of coupled equations: (i) Schrédinger’s wave equation that describes the wave-
like properties of quantum objects; and (ii) Poisson’s equation that describes the
charge density as a functional of the relative charges of the N-electron system. In
R?, a d-dimensional real space, the coupled Schrodinger-Poisson equation set can
be solved by the use of a variety of real space grid techniques [3]. One technique
that is under expansive research as a basis for quantum mechanical problems, is
the adaptive finite element method.

The cost of solving DFT-based problems in the finite element basis is directly
related to the choice of finite element basis functions (order and type), the choice
of representation of the grid (geometry, refinement), and the number of itera-
tions required to obtain self-consistency (tolerance). In this paper, computational
methods that deal with improving the representation of the underlying real space
grid and methods that improve on finding eigenvectors that solve the generalized
Schrodinger-like eigenproblem are developed. In that context, it will be shown
that our line of research is along similar lines to that of Napoli et al. [4].

To date, much of the work whose goal is to solve electronic structure problems
on an adaptive finite element grid relies on improving the underlying polynomial
interpolation between grid points on which the computation is performed (so-
called p-adaptivity). See for example Ref. [5, 6, 7]. An alternative to improving on
the polynomial interpolation of the finite element approximation is to focus on the
grid on which computations are performed, i.e., h-adaptivity. This is achievable by
making use of non-regular grids based on geometric (logarithmic) considerations
to locally control the resolution of calculations of electronic structure [8, 9, 10].
The underlying motivation there, was that the space grid needs refinement near
to the locality of the nucleus, where the potential is steeply changing and where
the solution vectors are varying most rapidly. Based on similar considerations, a
strategy of h-adaptivity is developed here with the aim of reducing the number of
degrees-of-freedom to consider while improving on the accuracy of the computed
result.



A computationally inhibiting factor that affects the cost of iterative solutions
toward self-consistency, is the number of eigenvalue problems that need to be
solved in the process. The solver that addresses the computation of some eigen-
pairs of the Schrodinger equation should converge fast and deal with degeneracies
and eigenvalue clustering. This makes the problem challenging. Preconditioned
conjugate gradient methods have been usually proposed to handle this task, how-
ever Davidson methods have been recently demonstrated as being faster and more
robust in many cases, e.g., [11]. An efficient solver for the associated algebraic
eigenproblem is therefore employed in this work. Here, efficiency is understood in
various ways: (1) the ability to exploit the sparsity of matrices; (i1) expedient con-
vergence to a small number of wanted eigenvalues; and (iii) parallel capabilities
to address large-scale problems associated with real space grid computations.

This paper is divided into four further sections. In the next section the theoret-
ical framework of DFT in the finite element basis is laid out and the computational
toolkits that were extended and adapted for density functional computations are
acknowledged. In Section 3 methods for handling error estimates are discussed,
in particular, a method that derives an error estimate based on a posteriori knowl-
edge of the physical system at hand is developed. Numerical experiments are
performed that demonstrate their effectiveness to atomic systems. In Section 4 a
computational approach for large-scale eigenvalue problems is described in some
detail. Numerical experiments are performed, hand-in-hand with the adaptive grid
methods of the previous section, that exploit subspace recycling and paralleliza-
tion to obtain the eigenfunctions of light atoms in an efficient way. Finally, in
Section 5, this contribution is summarised and future developments are outlined.

2. Theoretical background

2.1. Physical framework in the finite element approach

Density functional methods are based on the solution of Schrédinger’s wave
equation ﬁl//u = €.y, determined by a Hamiltonian operator H that contains a
kinetic energy term and an effective potential energy term V[n] that functionally
depends on the single-particle density n(r). The so-called Kohn-Sham equation



set in atomic units (¢ = m, = h = 1) is written:

N 1
Hy,(r) = (_EA + V(r)) () = €, (1a)
)= ] 1sus<N, (1b)

u
V(r) = Veo(r) + fVH(r, rYdr’ + Vxc[nl(r), (1c)
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where the eigenmodes (wave-functions) are normalised such that the condition
f:,b,,tp,,dr = Oy » (1d)

holds and thus defines the inner product (¥, ¥,) = ¢,,. The wave-functions ¥,
that solve Schrodinger’s wave equation (la) for an N-particle system together
compose a single-particle density (1b), that is used to determine the effective po-
tential V in (1a). The effective potential cf. Eqn. (1c) is itself composed of three
parts: the classical nuclear-atomic Coulomb potential V¢, a Hartree term Vy that
describes interactions between N electrons, and the exchange-correlation poten-
tial energy Vxc. The Hartree potential term is determined by evaluating Poisson’s
equation: AVy = —4nn(r). The exchange-correlation term Vxc is ignored, reduc-
ing the complexity of the ground state for the computational scheme. The finite el-
ement method is employed to find a numerical solution to Schrodinger’s equation
(1a), where piecewise trilinear functions are used to represent the wave-functions
Y. After discretization Eqn. (1a) becomes

1
Z ((§V¢i’ Vo) +(V(ny, ‘;Dj>) Vi = EZj:(‘Pi, eV, (2a)

J

where ¢ are a set of functions and v are a set of expansion coeflicients; and is
supplemented with the boundary condition

wi=0, Vionl. (2b)

In vector-matrix notation Eqn. (2a) is written as a generalised eigenvalue problem,
Av = eBv, the numerical solution to which is discussed in detail in Section 4.



Using the same finite element approach, Poisson’s equation with n(r) calcu-
lated from Eqn. (1b), is expressed as

D (Ve V) vy = =4 > (pjn(r), (3)
J J

which can be written in vector-matrix notation as Av = f, and has the same Dirich-
let boundary conditions (2b).

In this work, scalar Lagrange finite elements of polynomial order one are em-
ployed. This results in eight-node finite elements where in each Cartesian direc-
tion two quadrature points are chosen for numerical evaluation of Eqn. (2,3).

2.2. Computational toolkit

The computational toolkit sketched out below has been used in some of our
previous work [12]. Here, it has been adapted for parallel finite element DFT
computations exploiting grid refinement and subspace recycling. (i) deal.II, an
acronym for the Differential Equations Analysis Library [13] is written in tem-
plated C++, provides an abstract set of base tools for computations with adap-
tive finite elements. Additionally grid management over distributed memory is
handled through an interface to the p4est library, which facilitates the dynamic
management of a collection of “adaptive octrees” [14]. (ii) SLEPc, the Scalable
Library for Eigenvalue Problem computations [15], is a software package for the
solution of large-scale eigenvalue problems on parallel computers. SLEPc is built
on top of PETSc (Portable, Extensible Toolkit for Scientific computation, [16]),
a parallel framework for the numerical solution of partial differential equations,
whose approach is to encapsulate mathematical algorithms using object-oriented
programming techniques to manage the complexity of numerical message-passing
codes. SLEPc provides a collection of eigensolvers, including several Davidson-
type methods, see Section 4. (iii) “namespace ewalena” is a library package [17]
developed with this work. The library is written in templated C++ and provides
an extensible collection of tools for computational physics; in particular, atomic
potentials (and their transforms) and provision of a database of physical constants.

3. Management of the computational grid

The most common application of error estimates is based on examination of
the quality of the computed solution that is then used to flag finite element cells
for refinement in regions where the quality is expected to be low. The equations
are assembled on a locally refined grid and the refined solution is recomputed.
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3.1. Kelly error estimate

A tool for estimating the errors in sets of linear partial differential equations is
the a priori error estimate of Kelly et al. [18]. It is based on estimating errors to
the Laplace equation, A¢ = 0, but has been extended to encompass more involved
systems [19]. The basic idea is to examine the solution vector(s) of a system of
equations and determine local regions on the grid where the solution is inaccurate.
The algorithm for determining the error estimate per finite element cell is: (i)
compute the second-order derivative (Hessian) of the solution vector at each point
on the grid; (ii) integrate the discontinuity between cell faces; and (iii) assign an
error estimate based on the measure of the discontinuity to that finite element cell.
The greater the discontinuity between cell faces, the greater the error estimate. In
other words, it is anticipated that an improvement on the continuity of the gradient
of the solution, corresponds to an improvement on the quality of the solution.

In our application, the implementation of the Kelly error estimate is directly
taken from the “KellyErrorEstimate” class in the deal.II library, where the
solution vector corresponds to the electrostatic potential determined from Eqn. (3).
Further details are found in the class documentation [13].

3.2. Potential-based error estimate

Recall that the solution to the Kohn-Sham equation set is composed of self-
consistent iterations of Eqns. (1). The self-consistent procedure can be initiated
by making an initial guess of the effective potential, say V = V¢ in Eqn. (1a),
after which corrections to the effective potential V = V¢ + 6V are computed via
Eqns. (1b) and (1c). It is given, that if deviations of the effective potential from
the Coulomb potential are small, then ¢V is small and modifications of the wave-
functions oy are also small. This relation between the solution vectors i; and the
underlying potential V, leads the thought that the effective potential expressed in
the Schrodinger part (1a) of the Kohn-Sham equation set can be effectively used
as a basis on which to form an error estimate. This is in contrast to basing an
error estimate on a computed solution. The main considerations that make this
scheme of work are: (i) the corrections to the effective potential 6V are specified
by corrections to the wave-functions 6y; through Eqn. (1b); (ii) the wave-functions
; drop-off exponentially as they extend far from the potential barrier (core), and;
(i11) a linear shift in the potential function V does not affect the form of the wave-
functions, but the eigenvalues ¢; only.

Let the function from which an error estimate will be determined be written as
a function of the Coulomb potential

F(r) e f(Ve(r), “4)
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where r denotes the radial distance from the nucleus located at the origin. A
generalisation of the following discussion to one in which the nucleus is located
elsewhere and/or to multi-atom systems is straightforward.

The energy of the vacuum Ej is subtracted from the function F of Eqn. (4), as
only changes in energy are important, and the proportionality symbol is replaced
by a constant: F — n-|f(Vc— Ey)|. This is rewritten as an exponential in f giving:
F(r) — exp[—n-|f]] — 1, where a shift (minus one) normalises the values of F(r),
as discussed below. The result is the function

Z
g
r

F() = 1= exp|-7 | 5)
where 7 is a proportionality value (set to unity = 1), and Z is the effective
charge of the nucleus. Eqn. (5) has some satisfying properties: (i) the function
F is differentiable where lim,_.o F(r) = 1, and convergent as r — =+o0; i.e.,
has values in the normalised range F € [0, 1]; and (ii) it is independent of the
reference to the vacuum energy. Furthermore, the exponential function (5) can
easily be expanded in a power series for the computation of errors to any desired
numerical accuracy; though that facet of the method is not considered here.

Following the discussion above in Section 3.1, the discontinuity of the poten-
tial function (5) is evaluated by the normal derivative d/dn on the boundary of
each finite element cell K, and the error estimate

e

is thus determined, where D is the diameter of the cubic finite element cell. In
other words, it is anticipated that an improvement on the continuity of the pro-
jected representation of the underlying potential (5), corresponds to an improve-
ment on the quality of the solution vectors to Schrodinger’s equation (1a).

oF

on

2 2
dFK) ; (6)

3.3. Numerical experiments

The function F and the estimated error of Eqn. (6) are plotted together in Fig. 1
where the error estimate has been determined per finite element cell. The ini-
tial coarse grid gives the expected poor approximation of the solution: where
max[é“‘éo)] ~ 0.25. Subsequent application of local refinement with a fixed re-
finement fraction k = 1/d> = 1/4, leads to a reduction of the overall error to
max[éal((z)] ~ 0.06 after two levels of refinement and max[é"l(f)] ~ 0.006 after four
levels of refinement — a 76% and 98% reduction in the maximal error estimate
respectively.



(a) Projected potential function F(r)

N

Figure 1: Results for (a) projected potential function (5); and (b) the resultant error estimate &.
From left to right: the globally-refined coarse grid starting from a single cell, G = 2 cycles; the
same grid adaptively-refined by A = 2 cycles; and again after A = 4 cycles of adaptive refinement.
Note the use of a log-scale to visualize the estimated error.

A stronger test of the effectiveness of the error estimate is to examine the
convergence rate of the total energy of the system with respect to the number of
active cells in the grid and the number of degrees-of-freedom. Starting from a
single three-dimensional finite element cell refined globally, G € {2,4, 6} times,
three coarse grids were obtained with 64, 4096, and 262144 active cells respec-
tively. From one of the coarse grids, iterative cycle of error (A € N*) estimation
begins. For each test, the single-particle energy is computed for benchmarking
purposes only — this is strictly not necessary in order for the refinement process to
work. The lowest energy estimated in the tests is £ = —0.4987, and Fig. 2 plots
the relative distance of the estimated energy E to E’ after successive refinements.
We observe that the estimated energy E of the sequence of grids for any value of
G converges to some value close to E’. However greater values of G produce grids
with up to 10 times more degrees-of-freedom for similar values of E.

Finally, the grid refinement patterns obtained using the scheme investigated
above and the Kelly error estimate based on computation of the single-particle
density Eqn. (1b) are given in Fig.3 as a projection through the xy-plane of a
three-dimensional grid centered on the point, (x,y,z) = 0. At first sight the two
error estimates seem to produce very similar results. The refinement is clustered
around the core of the atom and extends outward. A closer inspection of the grids
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Figure 2: Evolution of both the estimated energy with respect to the best value obtained E’ =

—0.4987 and the number of degrees-of-freedom of grids after 2, 4, and 6 global refinements (G) of

a single finite element cell and followed by projected potential refinements with a refinement frac-

tion k = 1/4. In the case of global refinement, the calculations stop when the memory allocation
for the next cycle of adaptivity exceeds that of the machine (12 GB).
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Figure 3: Images of the three-dimensional finite element grid plotted through z = 0 showing
three cycles of grid refinement (left-to-right) starting from a coarse grid (G = 3) and using a
fixed fraction: kK = 1/d = 1/9. Error estimates are based on the Coulomb potential V¢ (top) and
single-particle density n(r) (bottom).



reveal one peculiar difference between refinement schemes, and that is, that the
potential based error estimate partially misses the core region. The explanation
for this, is that the function constructed in Eqn. (5) is flatter in the core region than
the single-particle density function (1b), leading to a spuriously low error estimate
in that region. That can be remedied by choosing a higher refinement fraction k
(not shown), or by choosing n # 1 in Eqn. (5). The latter option is left open to
future experimentation.

4. Large-scale eigenvalue problems

In this paper, we are primarily concerned with eigensolutions to the real gen-
eralized symmetric-definite eigenvalue problem,

Ax = ABx (7

where A, B € R, A € R (eigenvalue) and x € R” (eigenvector). A is symmetric
and B is symmetric positive-definite. In the methodology described in previous
sections, the matrices corresponding to the eigenvalue problem derived by equa-
tions (2a) and (2b) fit the above formulation.

Let us focus on projection methods for the above eigenproblem that are appro-
priate when the matrices A and B are large but their action on a vector is relatively
cheap (e.g., they are sparse) and only part of the spectrum is required. Projection
methods rely on two main stages: (i) building a subspace basis; and (ii) extracting
approximations from that subspace. These computations are carried out itera-
tively, where the extracted approximations are used to improve the subspace and
extract better approximations, until the computed approximations are sufficiently
accurate. For background material on projection methods, the reader is referred
to [20, 21] and references therein.

4.1. Subspace extraction and expansion

Consider the computation of k eigenpairs, (4;, x;), i = 1,...,k, usually with
k < n. The basic principle of projection methods is to find the best approxima-
tions to the eigenvectors in a given subspace of small dimension. Let V be an
n X m matrix, with k < m < n, whose columns v; constitute an B-orthonormal
basis of a given subspace V, i.e., VI BV = I,,, where I is the identity matrix and
span{vy, va,...,v,} = V. Then the eigenvalues of the so-called Rayleigh quotient
matrix H = VT AV approximate eigenvalues of (7). More precisely, if Hy; = 6;y;
then the eigenpair approximations are A; = 6; and ¥; = Vy;. These approximate
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eigenvectors belong to subspace V and are the best possible approximations in
that subspace.

The method outlined above is referred to as the Rayleigh-Ritz procedure, and
provides m Ritz approximations (1;, ¥;). This routine can be viewed as an orthog-
onal projection satisfying the Galerkin condition that the residuals are orthogonal
to the subspace,

ri=A%-ABX% LV . )

The quality of the eigenpair approximation (A;, %;) depends on how the sub-
space V is built. A popular choice is to use Krylov subspaces of increasing di-
mension, since they contain increasingly good approximations of eigenvectors
of extreme eigenvalues. Computing a B-orthogonal basis of the Krylov sub-
space associated with matrix C = B™'A and a given initial vector v;, K,,(Cv;) =
span{v;, Cv;,C?vy,...,C" v}, can be done with the Lanczos or Arnoldi algo-
rithms, which basically consist in B-orthogonalizing the vector Cv; with respect
to the previous basis vectors.

An alternative to Krylov methods, which require the accurate factorisation
of B, are Davidson-type methods such as Generalized Davidson (GD) or Jacobi-
Davidson (JD). The main characteristic of this class of methods is that they ex-
pand the subspace with a so-called correction vector ¢, which is computed from
the residual vector r associated with the most wanted eigenpair with the aim of
improving it further. This new vector can be computed by simply preconditioning
the residual,

t=K'r , )

as in the GD method [22], or by solving the correction equation,
(I - Bix") (A - AB)(I - %X'B)t = —r (10)

as in the JD method [23]. As in (9), a preconditioner K can also be introduced in
(10). K is usually a rough approximation of A — 7B in case of seeking the closest
eigenvalues to 7, or of B in case of seeking eigenvalues in the periphery of the
spectrum.

In many contexts, especially when computing interior eigenvalues in difficult
non-symmetric problems, JD can be the most competitive method, and even more
so if a good, cheap preconditioner is available. However, for symmetric problems
where only extreme eigenvalues are to be sought, the high cost of the correc-
tion equation does not usually compensate. In this paper, we focus on the Olsen
expansion [24], a variant of GD that constrains the correction ¢ in order to be

11



B-orthogonal against the approximate eigenvector X,

-1

As a result, Olsen’s variant avoids the stagnation occurring when the computed
corrections are almost collinear to X, that can be produced by the standard GD
expansion when K is too close to A — A;B.

4.2. Subspace Recycling

A drawback of Krylov methods is that they start building the subspace from
a single vector vy. If one has an a priori knowledge of a rough approximation of
the solution, e.g., from a previous iteration of the self-consistent loop, then this
knowledge cannot be exploited. In contrast, Davidson methods can benefit from
using a rough approximation of the solution as initial guess, and thus, improve
convergence considerably with the corresponding reduction of the overall cost.

In our application, the eigenvalue computation at a given self-consistent itera-
tion is started with an initial guess V° coming from the solution computed in the
previous iteration. In order to further improve the convergence, this initial sub-
space can be enriched with a block Krylov subspace generated by the operator
K~'(A — 7B) acting on the initial guess.

4.3. Numerical experiments with the combined scheme

The following discussion evaluates the performance of our implementation in
terms of energy convergence and scalability to a large number of processes. The
application code was executed on Tirant, a machine consisting of 256 JS20 blade
computing nodes, each with two 64-bit 2.2 GHz PowerPC g 970+ processors. The
Poisson problem is solved iteratively with PCG accelerated with a Block Jacobi
preconditioner with an incomplete Cholesky factorisation (and a fill level equal
to 5). From the Schrodinger problem as many eigenpairs as electrons are in the
atom are computed approximately, using the Olsen variant described previously
and configured as follows. The search subspace is initialised with 10 vectors
and bounded to 18 vectors. When the subspace is full, the solver restarts with
8 vectors. The preconditioner used is the Block Jacobi approximation of A — 7B
also with an incomplete Cholesky factorisation (level of fill equal to 5). The initial
target value is 7 = —1, and subsequent targets are obtained from the previously
converged eigenvalues.
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Figure 4: Wall-clock times with 16 processes computing the electronic configuration of H without
and with Subspace Recycling (SR) (left), and for various atoms with SR (right). The time is
split between the refinement process and the solution of the Poisson (P) and the Schrodinger (S)
problems.

The methods of grid adaptivity introduced in Section 3 and eigenvector recy-
cling discussed above are used to accelerate the computation. First, the potential-
based error estimate generates an initial grid through a series of A-cycles. Sec-
ond, the Kelly error estimate is applied in K-cycles to the solution of the Poisson
equation, where, for each K the Kohn-Sham equation set is solved to the de-
sired tolerance. A sample computation is given in Table 1, where the number of
degrees-of-freedom and number of iterations spent by the linear solver and the
eigensolver are shown along with the respective convergence of the Hartree en-
ergy. Itis clearly seen that the Hartree energy improves with use of the Kelly error
estimate, and in any given fixed Kelly phase, the energy converges with few self-
consistent iterations due to recycling the eigenvectors computed in the previous
cycle. The observed increase in the number of iterations between Kelly cycles is
with respect to an increase in the number of degrees-of-freedom.

Fig. 4 compares the time spent by the different parts of the solution process
for the computation laid out in Table 1. This highlights the effectiveness of the
time spent by the GD solver (left) and an evaluation of the time spent in the vari-
ous solvers when applied to a sample of light atoms (right). Initialising the solver
subspace with the eigenvectors computed in the previous iteration (subspace recy-
cling) is found to have a positive impact on the solution time for the Schrodinger
part; that is, more than four times faster with eigenvector recycling. The time
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Table 1: A sample computation making use of grid refinement A and K. The number of active cells
(Act. cells), the number of degrees-of-freedom (Dofs), the number of iterations spent by the linear
system solver (Poi.) and the eigenproblem solver (Schr.), the Hartree energy (E’), and the energy
difference (AE = |E"~! — E'|). Note, that no convergence data is given for the adaptive cycles (A)
based on the projected potential, as it was not required to solve the generalized eigenvalue problem
in those stages of the computation.

Phase | Act. cells Dofs | Poi. Schr. E AE
A=4 116012 148749 | 56 36 | -0.497505
K=1 207152 241837 | 53 54 8.27 107%
53 1.34 10710
53 1.00 10712
53 -0.498332 < 1078
K=2 370175 415072 | 43 69 1.57 107*
43 1 3.20 107!
43 1 6.00 1072
43 -0.498489 1.00 10713
K=3 660052 713196 | 76 85 7.45107%
76 1 5.10 1071
76 1 1.10 107
76 1 | -0.498563 3.00 1072
K=4| 1175609 1246510 | 76 104 5261073
76 1 5.80 1071
76 1 9.00 10712
76 1 |-0.498618 3.00107'2
K=5| 2091727 2194572 | 40 129 3.29 107
40 1 1.16 10710
40 1 1.40 1071
40 1 |-0.498648 2.00 1072
K =6 | 3744049 3926380 1 159 1.59 107
1 1 23410710
1 1 3.30 1071
1 1 | -0.498667 9.00 10~'2
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Figure 5: Speedup computing the electronic configuration of H.

taken for the other parts of the solution process are not affected by eigenvector re-
cycling, which is an intuitive result. The crucial observation here, is that recycling
the subspace in the GD solver puts the time taken for solution of the eigenvalue
problem on a par with the other parts of the solution process, i.e., significantly
more so than without subspace recycling. The proposed scheme has been tested
successfully to compute the electronic configuration of atoms and ions with up to
4 protons; see right panel of Fig. 4. For heavier atoms, difficulties arise in terms
of convergence, so other preconditioning strategies should be employed. These
subtleties can be addressed in an implementation that targets large or multi-atom
systems.

Fig.5 gives the comparative scaling of the time spent by different parts of
the solution process with respect to the number of processes. The scalability of
four main components of the application are considered: (i) global refinement,
(i1) adaptive refinement, and the solution to (iii) Poisson’s and (iv) Schrodinger’s
equations. It turns out that the refinement process is the least scalable part, being
far from the rest of the components that exhibit good performance close to linear
scaling. Because of that, the weight of the refinement in the total time becomes
larger when increasing the number of processes (19% with 4 processes, 21% with
16 processes, and up to 31% with 256 processes). Despite that, the whole appli-
cation presents competitive scalability results up to 256 processes.
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5. Summary and outlook

In this contribution, a computational method for DFT computations was de-
veloped that makes use of grid adaptivity and eigenvector recycling. The method
of grid adaptivity presented here uses a representation of the underlying Coulomb
potential to locally refine the grid in places where the potential is badly repre-
sented. In successive self-consistent iterations the solution vectors from the previ-
ous iteration was given to the GD solver as a starting space for computation of the
current configuration (subspace recycling). The overall result of employing both
techniques to the Kohn-Sham equations of DFT, was to improve the converge of
Hartree energy of the system with a reduction in the computational overhead. The
direction of research taken here is similar to that of Napoli et al. [4], in that meth-
ods have been introduced that systematically improve on the algorithmic realisa-
tion of the model on which computational simulations are based. The schemes
used here are applicable to a wide range of problems and it is not restricted to fi-
nite element methods. This is in contrast to many recent studies that seek specific
enhancements or specialisations to better the quality of the solution, the effect of
which is to narrow the range of applicability. For our implementation to go fur-
ther beyond conventional methods of atomic simulations, a need is identified for
its optimisation and deployment to heavy and multi-atom systems.
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