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referència a l’hora de formar-me com a investigador. En especial als meus di-
rectors de tesi, Paco i Alberto, i al que ho va ser en una etapa inicial, Carlos,
pel seu suport al llarg dels anys. Ells varen confiar en mi i em donar l’oportu-
nitat de entrar en este món tan apassionant. També voldria agrair a Alfons i
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whose work has been a great inspiration for many of the work carried out in
this thesis.
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Gràcies a Neus, Stella, Maite, Vero i Miriam per escoltar les meues penes, i per
l’afecte que m’han donat. A German, Jorge, Guillem i la resta del laboratori
per compartir les rises i els bugs del compilador. Més endavant, vaig acabar a
l’ITI junt a alguns companys com Vero i German. Alĺı vaig obrir una nova etapa
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neixement transversal, i per la seua professionalitat. Voldria tornar a agrair a
Vero pel seu continuat suport i per compartir el humor i el cant a dos veus.
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Abstract

This thesis presents scientific contributions to the field of multimodal interac-
tive structured prediction (MISP). The aim of MISP is to reduce the human
effort required to supervise an automatic output, in an efficient and ergonomic
way. Hence, this thesis focuses on the two aspects of MISP systems. The first
aspect, which refers to the interactive part of MISP, is the study of strate-
gies for efficient human–computer collaboration to produce error-free outputs.
Multimodality, the second aspect, deals with other more ergonomic modalities
of communication with the computer rather than keyboard and mouse.

To begin with, in sequential interaction the user is assumed to supervise the
output from left-to-right so that errors are corrected in sequential order. We
study the problem under the decision theory framework and define an optimum
decoding algorithm. The optimum algorithm is compared to the usually ap-
plied, standard approach. Experimental results on several tasks suggests that
the optimum algorithm is slightly better than the standard algorithm.

In contrast to sequential interaction, in active interaction it is the system that
decides what should be given to the user for supervision. On the one hand, user
supervision can be reduced if the user is required to supervise only the outputs
that the system expects to be erroneous. In this respect, we define a strategy
that retrieves first the outputs with highest expected error first. Moreover, we
prove that this strategy is optimum under certain conditions, which is validated
by experimental results. On the other hand, if the goal is to reduce the number
of corrections, active interaction works by selecting elements, one by one, e.g.,
words of a given output to be supervised by the user. For this case, several
strategies are compared. Unlike the previous case, the strategy that performs
better is to choose the element with highest confidence, which coincides with
the findings of the optimum algorithm for sequential interaction. However, this
also suggests that minimizing effort and supervision are contradictory goals.

With respect to the multimodality aspect, this thesis delves into techniques to
make multimodal systems more robust. To achieve that, multimodal systems
are improved by providing contextual information of the application at hand.
First, we study how to integrate e-pen interaction in a machine translation
task. We contribute to the state-of-the-art by leveraging the information from
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the source sentence. Several strategies are compared basically grouped into two
approaches: inspired by word-based translation models and n-grams generated
from a phrase-based system. The experiments show that the former outper-
forms the latter for this task. Furthermore, the results present remarkable
improvements against not using contextual information. Second, similar ex-
periments are conducted on a speech-enabled interface for interactive machine
translation. The improvements over the baseline are also noticeable. However,
in this case, phrase-based models perform much better than word-based mod-
els. We attribute that to the fact that acoustic models are poorer estimations
than handwritten morphologic models and, thus, they benefit more from the
language model. Finally, similar techniques are proposed for dictation of hand-
written documents. The results show that speech and handwritten recognition
can be combined in an effective way.

Finally, an evaluation with real users is carried out to compare an interactive
machine translation prototype with a post-editing prototype. The results of
the study reveal that users are very sensitive to the usability aspects of the
user interface. Therefore, usability is a crucial aspect to consider in an human
evaluation that can hinder the real benefits of the technology being evaluated.
Hopefully, once usability problems are fixed, the evaluation indicates that users
are more favorable to work with the interactive machine translation system than
to the post-editing system.
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Resumen

Esta tesis presenta una serie de contribuciones cient́ıficas en el campo del reco-
nocimiento de formas interactivo y multimodal (MISP, del inglés “multimodal
interactive structured prediction”). El objetivo de MISP es reducir el esfuerzo
humano necesario para corregir la salida de un sistema automático, de forma
eficaz y ergonómica. La tesis se centra en los dos aspectos principales de MISP:
interacción y multimodalidad. El objetivo de la interacción es el estudio de es-
trategias de colaboración hombre-máquina para producir resultados sin errores.
La multimodalidad trata de cómo utilizar modalidades de comunicación con la
máquina más ergonómicas que las tradicionales (teclado y ratón).

En la interacción secuencial (de izquierda a derecha), el usuario supervisa la
salida automática secuencialmente, de forma que los errores son corregidos en
orden de aparición. En esta tesis, el problema de la interacción secuencial se
estudia bajo el marco de la Teoŕıa de la Decisión, bajo la cual se define un
algoritmo óptimo. Los resultados experimentales sobre varias tareas sugieren
que el algoritmo óptimo consigue mejores resultados que el algoritmo estándar.

En comparación con la interacción secuencial, donde el usuario toma la inicia-
tiva, en la interacción activa es el sistema quien decide lo que el usuario tiene
que supervisar. Por un lado, se puede reducir el esfuerzo pidiendo al usuario
que revise sólo las salidas automáticas susceptibles de tener errores. Para ello,
se define una estrategia que pide las salidas con un mayor error esperado en
primer lugar. A continuación, se demuestra y valida experimentalmente que es-
ta estrategia es óptima bajo ciertas condiciones. Por otro lado, si el objetivo es
reducir el número de correcciones, la interacción activa funciona seleccionando,
elemento a elemento, qué elemento de la salida tendŕıa que ser supervisada por
el usuario, por ejemplo, una palabra. En este caso, se comparan diversas estra-
tegias. Al contrario que en el caso anterior, la estrategia que funciona mejor
aqúı es la de escoger el elemento en el que tenemos una confianza mayor, lo que
coincide con los resultados del algoritmo óptimo para la interacción secuencial.
Esto sugiere que minimizar el esfuerzo y la supervisión son objetivos que van
en dirección opuesta.

Con respecto a la multimodalidad, esta tesis profundiza en técnicas para conse-
guir sistemas multimodales más robustos. Para ello, los sistemas multimodales
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se mejoran de forma que puedan aceptar información contextual de la aplica-
ción que se está utilizando. En primer lugar, se estudia cómo integrar el lápiz
electrónico en una tarea de traducción automática. Los modelos de lenguaje se
mejoran aprovechando la información de la frase origen. Se comparan varias es-
trategias que se pueden agrupar en las siguientes aproximaciones: una inspirada
en los modelos de traducción basados en palabras y otra basada en sistemas de
traducción basados en segmentos. Los resultados demuestran una mejoŕıa nota-
ble respecto a las estrategias habituales que no utilizan información contextual.
La voz también puede ser una modalidad de entrada interesante, dado que deja
las manos libres para otras tareas. En este sentido, se prueban experimentos
similares a los del lápiz electrónico pero para una interfaz que permite interac-
cionar con la voz. Las mejoras sobre la aproximación estándar son importantes.
Cuando se compara con las estrategias del lápiz electrónico, los modelos basa-
dos en frases consiguen mejor rendimiento que modelos basados en palabras.
Este hecho es atribuible a que los modelos acústicos están probablemente peor
estimados que los modelos morfológicos de escritura y, por eso, se benefician
más del modelo de lenguaje. Finalmente, se proponen técnicas similares para el
dictado de documentos manuscritos. Los resultados demuestran que el recono-
cimiento de voz y el reconocimiento de textos manuscritos se pueden combinar
de una forma eficaz.

Por último, la tesis presenta una evaluación con usuarios reales de un prototipo
de traducción interactiva que se compara con un sistema de post-edición de la
traducción. Los resultados del estudio revelan que los usuarios son muy sensibles
a aspectos de usabilidad de la interfaz de usuario. Por tanto, la usabilidad es un
aspecto crucial a considerar en una evaluación humana ya que puede impedir
que los usuarios aprecien los beneficios reales de la tecnoloǵıa. Por suerte, si se
corrigen los problemas de usabilidad, el estudio indica que los usuarios prefieren
trabajar con el sistema de traducción interactivo a usar el sistema de post-
edición.
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Resum

Esta tesi presenta una sèrie de contribucions cient́ıfiques al camp del reco-
neixement de formes interactiu i multimodal (MISP, de l’anglès “multimodal
interactive structured prediction”). L’objectiu de MISP és reduir l’esforç humà
necessari per corregir l’eixida d’un sistema automàtic, de manera eficaç i er-
gonòmica. La tesi es centra en els dos aspectes principals de MISP: interac-
ció i multimodalitat. L’objectiu de la interacció és l’estudi d’estratègies de
col·laboració home-màquina per tal de produir resultats sense errors. La mul-
timodalitat tracta de com utilitzar modalitats de comunicació amb la màquina
més ergonòmiques que les tradicionals (teclat i ratoĺı).

En la interacció seqüencial (d’esquerra a dreta), l’usuari supervisa l’eixida au-
tomàtica seqüencialment, de manera que els errors són corregits en l’ordre
d’aparició. En esta tesi, el problema de la interacció seqüencial s’estudia baix
el marc de la Teoria de la Decisió, baix la qual es defineix un algoritme òptim.
Els resultats experimentals sobre diverses tasques suggereixen que l’algoritme
òptim aconsegueix millors resultats que l’algoritme estàndard.

En comparació amb la interacció seqüencial, on l’usuari pren la iniciativa, en
la interacció activa és el sistema qui decideix el que l’usuari ha de supervisar.
D’una banda, es pot reduir l’esforç demanant a l’usuari que revise només les
eixides automàtiques susceptibles de tindre errors. Per a això, es defineix una
estratègia que demana, en primer lloc, les eixides amb un major error esperat.
A continuació, es demostra i valida experimentalment que esta estratègia és
òptima baix certes condicions. D’altra banda, si l’objectiu és reduir el nombre
de correccions, la interacció activa funciona seleccionant, element a element,
quin element de la eixida hauria de ser supervisada per l’usuari, per exemple,
una paraula. En este cas, es comparen diverses estratègies. Al contrari que
en el cas anterior, l’estratègia que funciona millor aćı és la d’escollir l’element
amb el qual tenim una major confiança, cosa que coincideix amb els resultats de
l’algoritme òptim per a la interacció seqüencial. Això suggereix que minimitzar
l’esforç i la supervisió són objectius que van en direcció oposada.

Respecte a la multimodalitat, esta tesi aprofundeix en tècniques per aconse-
guir sistemes multimodals més robustos. Per això, els sistemes multimodals es
milloren de manera que puguen acceptar informació contextual de l’aplicació
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que s’està utilitzant. En primer lloc, s’estudia com integrar el llapis electrònic
en una tasca de traducció automàtica. Els models de llenguatge es milloren
aprofitant la informació de la frase origen. Es comparen diverses estratègies que
es poden agrupar en les següents aproximacions: una inspirada en els models
de traducció basats en paraules i una altra basada en sistemes de traducció
basats en segments. Els resultats demostren una millora notable respecte a les
estratègies habituals que no utilitzen informació contextual. La veu també pot
ser una modalitat d’entrada interessant, atès que deixa les mans lliures per a
altres tasques . En este sentit, es proven experiments similars als del llapis
electrònic però per a una interf́ıcie que permet interaccionar amb la veu. Les
millores sobre l’aproximació estàndard són importants. Quan es compara amb
les estratègies del llapis electrònic, els models basats en frases aconsegueixen
millor rendiment que models basats en paraules. Este fet és atribüıble a que els
models acústics estan probablement pitjor estimats que els models morfològics
d’escriptura i, per això, es beneficien més del model de llenguatge. Finalment,
es proposen tècniques similars per al dictat de documents manuscrits. Els
resultats demostren que el reconeixement de veu i el reconeixement de texts
manuscrits es poden combinar d’una manera eficaç.

Finalment, la tesi presenta una avaluació amb usuaris reals d’un prototip de
traducció interactiva que es compara amb un sistema de post-edició de la tra-
ducció. Els resultats de l’estudi revelen que els usuaris són molt sensibles als
aspectes d’usabilitat de la interf́ıcie d’usuari. Per tant, la usabilitat és un as-
pecte crucial a considerar en una avaluació humana ja que pot impedir que els
usuaris aprecien els beneficis reals de la tecnologia. Per sort, si es corregeixen
els problemes d’usabilitat, l’estudi indica que els usuaris prefereixen treballar
amb el sistema de traducció interactiu a utilitzar el sistema de post-edició.

x VAG-DSIC-UPV



Preface

Structured prediction (SP) is a classification problem in which the output con-
sists of structured labels (as opposed to independent labels), i.e. the labels in
the output have dependencies among them. Examples of structured outputs
are natural language, DNA sequences or an XML describing the layout analy-
sis of a web page. Traditionally, SP has been approached as a fully automated
procedure. The automatic SP scenario can be described as follows: an input is
presented to a SP system. Then the SP system produces an output, which will
typically contains some errors. Finally, if a “perfect” or a high-quality result is
desired, it is convenient for a human expert to revise the system output. The
purpose of the expert is to amend the errors to produce the final output (or
reference). This process is known as post-editing (PE).

The previous scheme has been adopted for many SP problems, to the point
that SP algorithms have specialized in minimizing the number of errors pro-
duced. Nevertheless, in PE all the effort in correcting the output is delegated
to the user, which is not desirable as human labor is expensive. Then, how can
we increase the productivity of the human responsible of ensuring a high qual-
ity output? As in the manufacturing industry, where machines perform heavy
duty tasks and humans fill the gap of what machines cannot yet do, in in-
teractive structured prediction (ISP), systems are responsible for efficiency and
productivity, whereas the human user must deal with correctness and quality
control.

In this thesis we tackle this problem from two perspectives: how the interaction
can be performed efficiently and the way interaction can be approached. For
the former, we can consider to cases: passive interaction, where the user takes
the initiative to supervise and correct the system output; and active interaction,
where it is the system that decides what output should be supervised and how.
For the latter, the interaction can be achieved by means of the keyboard and
mouse, in a classical set-up, or by means of other arguably more efficient or
ergonomic modalities such as speech or hand-writing.

Typically, search algorithms for passive ISP problems have been based on the
algorithms for fully-automatic SP systems. However, the decision rule applied
should not be considered as optimal since the goal in ISP is to reduce human
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effort instead of output errors. To this respect, this work aims to give insight
into the optimal decision rule for ISP problems, find efficient algorithms and
asses the proposed methods with real world natural language processing tasks.

In the previous interaction scheme, the user must revise the whole output to
achieve the desired level of quality. Nonetheless, in the case that the amount
of data is so vast that a thorough supervision becomes prohibitive, the user
can rely on the system to retrieve the outputs that are likely to have more
errors. Then, the effort can be directed to supervise only a subset of the data
worthwhile supervising, with the goal to minimize the residual error. We call
this active interaction.

Additionally, since the breakout of tactile smartphones, the number of devices
featuring a touch-screen has been increasing at a fast pace. The success of
tactile smartphones has fostered a new kind of keyboardless technology which
was latent until then: the tablet computers. They have been presented as
a substitute of paper notebooks, as they have a similar size. Nevertheless,
the possibilities this new technology may provide are still to be unveiled. In
that context, on-line handwritten text recognition (HTR) plays a crucial role.
First, because to input text in such devices using a virtual keyboard is far from
the efficiency of regular keyboards. Secondly, handwriting is a natural way to
communicate. Withal, a HTR interface can commit recognition errors. Thus,
if the HTR system is not robust enough, user experience could be negatively
affected hindering its use.

The problem of integrating speech in interactive systems is similar to that of
integrating e-pen. Interacting with speech may seem not as useful as with e-
pen, since the speech error rates are a bit higher and it is difficult to picture, for
instance, a professional translator/transcriptor speaking the whole corrections
aloud. However, speech interaction is still an interest approach. That is the
case of persons with disabilities, that cannot perform their work in the usual
way, as they have trouble using their hands. Instead, they can still perform
their duties using speech. Another interesting case is when speech can be used
along with the keyboard or the e-pen. Here, speech allows the user not to
lose the focus on her work and allows her to keep the hands in the keyboard.
Finally, it is not difficult to imagine, for instance, a paleographer reading aloud
a handwritten ancient book just for fun or to illustrate others. This reading
could be leveraged to perform or improve the transcription of such texts.

Thus, the scientific goals of this thesis can be summarized in the following
contributions:

1. Algorithms for passive interaction (Chapter 3). First, it is de-
scribed as a decision theory problem from which a general analytical for-
mulation of the optimum algorithm is derived. Then, it is compared
with the standard formulation to establish under which conditions the
standard algorithm should perform similarly to the optimal algorithm.
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2. Algorithms for active interaction (Chapter 4). In addition, an
active interactive scenario is studied, in which it is the machine that
proposes a structure or label to correct. The first attempts to reduce the
number of supervisions whereas the second aims at reducing the number
of correction the user needs to make. Based on active learning techniques,
several search algorithms are explored and compared.

3. E-pen interaction (Chapter 5). In the second part of this work we
research on how to integrate alternative modalities for interacting with
structured prediction systems. On the one hand, current technology for
on-line handwriting text recognition (HTR) is far from developing error-
free systems. Consequently, its use in many applications is limited. To
this respect, we have developed an on-line HTR system that leverages
the information in interactive machine translation (IMT). Empirical ex-
perimentation suggests that this information can be used efficiently to
improve the robustness of the on-line HTR system, achieving remarkable
results.

4. Speech interaction (Chapter 6). On the other hand, we present a
new approach to perform speech interaction in a way that translation
and speech inputs are tightly fused. This integration is performed early
in the speech recognition step. Thus, the information from the transla-
tion models allows the speech recognition system to recover from errors
that otherwise would be impossible to amend. In addition, this technique
allows to use currently available speech recognition technology. The pro-
posed system achieves an important boost in performance with respect
to previous approaches.

5. Design and evaluation of a web-based prototype (Appendix A).
Finally, we present a multi-user web-based prototype for IMT which has
been assessed by human evaluators. We report the lessons learned from
two user evaluations. Our results can provide researchers and practi-
tioners with several guidelines towards the design of on-line IMT tools.
In addition, the results suggest in which direction future research efforts
should be driven.
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Chapter 1. Preliminaries

1.1 Preamble

Today, in the Information Age, a vast amount of data is generated on daily
basis. According to Google’s CEO Eric Schmidt “every two days now (2010)
we create as much information as we did from the dawn of civilization up
until 2003”1. The amount of data generated is so vast that traditional manual
methods cannot be used to analyze the data efficiently and make sense of it.
First, because processing the data with human labor would be very expensive.
Second, because some tasks can be performed more efficient when machines
come into play, as it was observed during the Industrial Revolution [Wells,
1899]. Thus, computers can be a huge asset to this respect by converting
data into usable information. However, these data often come in a form that
cannot be directly addressed by the computer. This is the case when the data
is extracted from sensory signals, as the result of a digitalization of a physical
process, e.g., images, audio or video [Gorman, 2003]. In other occasions, the
data is already in a more computer-friendly representation, such as blog entries,
short messages. Even so, these data are the product of a natural human process
and it is not the kind of the structured unambiguous data that computers
are able to manage efficiently, i.e., natural human processes are riddled with
ambiguities.

1.1.1 Statistical pattern recognition

As it was defined in Liu et al. [2006], the fundamental role of pattern recognition
(PR) is “executing the tasks like human being on computers”. Hence, PR has
become very valuable since it allows automatic interpretation of the input data.
This is achieved by assigning a label or set of labels to the input data. In
supervised PR, the labels are predefined, and thus, the meaning of the labels is
known. Hence, the interpretation of the input is achieved by the interpretation
of the labels. In supervised statistical PR [Jain et al., 2000], which is the
approach that we will use in this thesis, the decoding of ambiguous data into
labels is treated as a stochastic problem. We can identify three principal stages:

Data acquisition and preprocessing. The data is converted into a format
that the computer can understand while trying to preserve the critical
information necessary to interpret the input. Typically, a set of features
that are considered to be relevant to the problem at hand are extracted
from the data.

Data representation and learning. In order to represent the data, an ap-
propriate statistical model must be chosen. The models are defined by a
set of statistical parameters that are estimated based on a set of training
(labeled) data.

1 http://techcrunch.com/2010/08/04/schmidt-data/
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Chapter 1. Preliminaries

Decision making. When a new input is observed, a classification algorithm
is used to decide which output labels are to be assigned, on the basis of
the statistical parameters obtained in training.

Typically, researchers have focused on improving any of these stages, since they
all are equally important to design a robust and accurate PR system. Unfor-
tunately, although PR has shown to achieve good results on many tasks, the
accuracy of such systems is usually not good enough to mimic human perfor-
mance. Thus, full automation is still not possible when human-like accuracy
is desired. In that case, human operators are needed to supervise the system’s
output and to amend possible errors. This process is typically carried out sep-
arately from the PR process, just as a manual work, and as such, it can be
deemed as inefficient, expensive, and tedious.

Multimodal interactive PR [Toselli et al., 2011] is a paradigm for PR where
a human operator takes part in the decision making stage by giving some
feedback to guide the system towards a high quality solution. This process is
performed iteratively until the human operator agrees with the final quality of
the output. Three aspects are crucial for this paradigm to succeed:

Feedback is related to how the human–computer interaction is performed
effectively and efficiently to increase the productivity in the generation
of correct solutions.

Multimodality deals with how computer and humans communicate, that is,
which modalities can be used to perform the interaction more ergonomi-
cally and how they are used.

Adaptation relates to how systems can learn from data derived from user
interactions to improve the system response in the future, and tune it to
the user behavior and the specific task considered.

This thesis is devoted to the study of the feedback and multimodality as-
pects of multimodal interaction. On the one hand, we aim at finding algorithms
that can perform such interaction optimally. On the other hand, we will explore
different alternatives to integrate ambiguous modalities, such as handwriting
and speech, into the interactive system. Finally, we will validate our assump-
tions regarding the interaction protocols by testing an interactive system with
real users.

Nevertheless, it is out of the scope of this thesis to cover the adaptation as-
pect of multimodal interaction. The interested reader is referred to [Nepveu
et al., 2004; Rodŕıguez-Ruiz, 2010] for short term adaptation and to [Mart́ınez-
Gómez et al., 2011; Ortiz-Mart́ınez, 2011] for long term adaptation for interac-
tive systems. For a general overview of the multimodal interaction paradigm
see [Toselli et al., 2011].

VAG-DSIC-UPV 3
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1.1.2 Human–computer interaction in PR

Coined by Carlisle [1976] and popularized by Card et al. [1980] in the eighties,
human–computer interaction (HCI) [Dix et al., 2004; Jacko and Sears, 2007]
is a term used to describe the study, planning, and design of the interaction
between users and computers. The goal of HCI is to improve the interaction
between humans and computers by designing interfaces, developing new inter-
action techniques and evaluating them to prove their effectiveness. This broad
definition of HCI is the umbrella for many research communities. Particularly,
the interests of this thesis regarding HCI are focused on how to improve user
productivity and output quality of a PR system by leveraging human–computer
interaction.

HCI and PR have a long history in common. Unsurprisingly, machine trans-
lation (MT) was one of the first problems to adopt interactive technologies,
as it is a very difficult problem that can benefit much from user’s feedback.
The first studies date back to 1970, where Kay and Martins [1970] proposed
a question/answer interface in which the user’s role was to determine word
sense, phrasal attachments, etc. in the source text. The information gath-
ered was used to improve the translation quality. That work was followed by
others [Brown and Nirenburg, 1990; Whitelock et al., 1986], but the method
proved to require well trained experts, and therefore it was not very practi-
cal. In addition, the user was not in control of the translation process, but
she was only queried regarding some aspects of the source text. It was not
until the TransType project that Foster et al. [1996] proposed that the in-
teraction should shift from focusing on the source text meaning to address
directly the final target translation. The goal was to put the user in control of
the production of the translation, instead of a manual review and correction
of a draft translation. The system helped the user by providing useful word
auto-completion that was sensitive to the source text. Later on, that work was
extended to provide auto-completion of several words. Furthermore, a follow-
up project TransType2 [Esteban et al., 2004] came with several technological
enhancements that improved the prediction capabilities and usability of the
interfaces [Barrachina et al., 2009]. A representation of a TransType2 kind
of interaction is shown in Figure 1.1. In this illustration, the user translates
the sentence “Para imprimir una lista de fuentes postscript:” in Spanish into
the sentence “To print a list of postscript fonts:” in English. Each time the
user fixes the translation by changing a word, the system responds with a suffix
sentence as in auto-completion. This is one of the interactive scenarios that we
will study throughout this thesis.

The work carried out in TransType2 fostered a new kind of predictive tech-
nologies (in the sense of auto-completion) for other PR problems, namely, tran-
scription of text images [Toselli et al., 2010], predictive parsing [Sánchez-Sáez
et al., 2009], speech transcription [Rodŕıguez et al., 2007] and text genera-
tion [Rodŕıguez et al., 2010]. A slightly different approach for interaction
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source text:

desired translation:

Para imprimir una lista de fuentes postscript:

To print a list of postscript fonts:

To print a postscript font list:

To print a postscript font list:

To print a list postscript font list:

|

|

To print a postscript font list:

To print a list

To print a list postscript font list:

the system produces an
initial translation

the user spots the first
error

the user positions the
cursor

the user types the correct
word

the system invalidates an
inconsistent suffix

the system proposes a
new consistent suffix

|

|

Ê

Ë

Ì

Í

Î

Ï of postscript fonts:

Figure 1.1: Example of a TransType2 kind of interaction for translating “Para imprimir
una lista de fuentes postscript:” in Spanish into “To print a list of postscript fonts:” in
English. As the user does not like the first system translation, she positions the cursor
to introduce the changes. Then, the system takes into account the user’s suggestion to
produce a suffix that is more consistent with the new information provided. The interaction
is conceived as an auto-complete feature.

with MT systems was studied in [Koehn, 2009], where the translation interface
supported not only translation auto-completions but also presented selectable
phrase translation options. Alternatively, Culotta et al. [2006] studied how user
feedback could be used to correct the prediction of conditional random fields
to solve problems like named-entity recognition. While they named their tech-
nique corrective feedback, the concepts were quite similar to what was proposed
in TransType2.

Another related, but less PR centric, approach is what Horvitz [1999] called
mixed-initiative user interfaces. In that work, a set of principles are described
on how intelligent agents should interact with users. In their opinion, user
interfaces should enhance users’ abilities to directly manipulate objects. In-
stead of providing full automation, the interfaces should provide mechanisms
for user-computer collaboration to refine the results. The automation provided
by the computer should also add significant value. As it can be observed, the
shift in the paradigm proposed by TransType fits in the definition of Horvitz
mixed-initiative user interfaces: the user interacts with the system by manipu-
lating directly the output whereas the system enhances user productivity with

VAG-DSIC-UPV 5
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smart auto-completion. Afterwards, Shilman et al. [2006] connected Horvitz
[1999] ideas with the work performed in [Culotta et al., 2006]. They designed
an interface that allowed users to correct on-line handwritten text by directly
transforming the recognized text. The interaction technique was very similar
to that derived from TransType2.

In all those techniques, it is the user who takes the initiative in proposing a
correction. However, the system can also take the initiative and ask the user
for a specific feedback. This kind of scenario is especially valuable since it al-
lows the user to avoid supervising the whole output. Instead, the user is given
hints of what may need supervision. Therefore, if the system is precise enough
the user saves effort and, at the same time, the quality of the output improves.
This type of active interaction between humans and PR systems is related to
active learning (AL)2 [Settles, 2010], where a great deal of research effort has
been addressed. The goal of AL systems is to ask the user to label data so as to
generate training samples. By doing this, AL aims to build better models with
less data, i.e., to achieve more accurate models requiring less user effort in la-
beling the data. Note that, although related, AL and active interaction aim at
different purposes. In active interaction, our interests focus on how to produce
high-quality output from state-of-the-art PR systems. Thus, we will assume
that we already have state-of-the-art feature extraction, and that we possess
enough training data to appropriately train our models. Hence, we expect that
the accuracy of the PR system has little to improve from more training data,
except for out-of-domain data. Fortunately, interaction techniques similar to
what AL proposes can be adapted to our particular problem. For instance,
Oncina and Vidal [2011] used an active interaction technique to improve the
output of a chromosome classification problem. In the active interaction sce-
nario, the system proposed what labels to correct, achieving less corrections
than in a classical interaction scheme. In [Culotta et al., 2006], active interac-
tion was also evaluated, where the user was asked to fix the lest confident label
instead of letting the user select a random label. However, in their experiments
the active version did not obtain significant improvements. Moreover, another
kind of active interaction is Serrano et al. [2010] and González-Rubio et al.
[2010] approach for balancing error and supervision effort. In those works, the
word confidences were used to direct user’s attention towards the parts of the
sentence that needed corrections. The results were quite encouraging since user
effort could be reduced significantly while the transcription or translation error
was kept in a reasonable level.

Many other works deal with some sort of interaction with PR systems. For
instance, spam classification is a popular feature in e-mail applications. They
usually implement uncomplicated interaction techniques to correct the system
prediction: a button to tell if an e-mail was actually spam or not [Ramachan-
dran et al., 2011]. As spam detection is a binary classification problem, cor-
recting the output consists simply in choosing the right label. The same can

2Also known as query-based learning.
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be applied to many classification problems, especially those with a small num-
ber of classes. Consequently, as Culotta et al. [2006] rightfully pointed out,
in order for the system to take full advantage of the user’s feedback, the out-
put of the PR problem must have an underlying structure. This way, the user
only needs to give partial feedback for the system to provide a useful solution
by leveraging structural dependencies. For this reason, this thesis is entitled
multimodal interactive structured prediction instead of multimodal interactive
pattern recognition to state that difference explicitly.

1.1.3 Multimodal interaction

In the beginning of HCI, the interaction with the computer was performed with
keyboard and mouse [Card et al., 1980]. These interaction devices provide the
convenience that the interpretation of the actions is deterministic. However,
they can arguably be less natural for humans to communicate their intentions.
On the other hand, speech, handwriting, touch, or gaze3 are much more natural
modalities of interaction for human beings. The downside of these modalities
is that they are ambiguous by nature. Then, it is necessary a PR system to
decipher the intentions of the user, e.g., an automatic speech recognition (ASR)
is necessary to decode speech commands or user’s dictations. As we have previ-
ously explained, PR systems are prone to errors. If the system fails to recognize
user intentions, then the user may try to repeat the interaction. This may lead
to error spirals [Oviatt and VanGent, 1996], in which the user tries on with
the same modality until finally desists in favor of a more deterministic way
of interaction. Also, the user will probably avoid using the non-deterministic
modality in future interactions. For instance, Shilman et al. [2006] presented
an interactive application where handwriting could be used to correct a text
on a tactile tablet. They mentioned that in an unpublished internal survey,
“many expert users quickly started skipping the correction mechanisms that
entailed rewriting and could lead to ambiguous corrections. Instead they re-
sorted to retyping the entire word using the more certain, but less efficient, soft
keyboard”. Hence, obtaining a high accuracy on these ambiguous modalities
is key to user acceptability. Actually, modalities with error rates up to 3%
can be considered acceptable, whereas error rates below 1% are considered to
be excellent [LaLomia, 1994]. However, users may accept error rates between
5% and 20% if “there is a substantial payoff in terms of achieving task goals”
[Frankish et al., 1995].

Hence, we know that there are different modalities that allow a more natural
interaction, but what do we understand as multimodal interaction? Jacko and
Sears [2007] defined multimodal systems in the following way:

3 The gaze, although it is not usually used consciously to communicate a message, can be
also used to obtain practical interaction information with an eye-tracker device. In addition,
explicitly gaze interaction can be also interesting for people with physical disabilities.
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Multimodal systems process two or more combined user input modes
– such as speech, pen, touch, manual gestures, gaze, and head and body
movements – in a coordinated manner with multimedia system output.

It is broadly accepted that multimodality is the combination of input modali-
ties. Nonetheless, when interacting with PR systems to correct the output, it is
more natural to think of alternative modalities rather than simultaneous. That
is, user interfaces may provide several interaction modalities but the user in-
teracts with just one at a time. As Oviatt and VanGent [1996] observed, when
allowing speech and pen modalities to correct text, only 0.7% of the corrections
were simultaneously spoken and written. Then, there is no evidence that users
make use of redundancy of input to clarify error resolution. Withal, our view
of multimodality is closer to [Suhm et al., 2001]: the challenge of multimodal
interfaces is to face the combination of the context of the application to improve
the accuracy of the PR system for that modality. It is important to mention
that, frequently, this challenge is similar to that of combining simultaneous
modalities. For instance, when correcting the output of a speech recognizer
with handwriting, the problem that emerges is similar to that of combining
speech and pen user input as in the definition of Jacko and Sears [2007].

We can find in the literature several attempts at developing multimodal inter-
faces in this sense. Particularly, in the nineties there was a huge interest in
using pen and spoken interaction to correct texts [Cohen et al., 1998; Frankish
et al., 1995; Huerst et al., 1998; LaLomia, 1994; Oviatt and VanGent, 1996].
Nevertheless, in those works, PR systems were used as a black box so they
did not take advantage of contextual information; neither they used the user’s
feedback to refine the system output further than the correction given by the
user. It was Suhm et al. [2001] who proposed a multimodal dictation system
that leveraged contextual information from the task. In that work, the user
could correct speech recognition mistakes by respeaking, spelling or handwrit-
ing. Suhm et al. [2001] used pre-context and post-context information from the
word being corrected and also added a bias towards frequently misrecognized
words. Pre-context influence in accuracy was statistically significant, whereas
post-context was not. The explanation for that was that post-context was
frequently incorrect since users did not “select maximally contiguous regions
of errors”. On the other hand, the bias showed significant improvements in
handwriting and spelling, but not in respeaking. Finally, Shilman et al. [2006]
described a user interface where handwriting and pen gestures were used to as
a feedback for a smart auto-completion capability. Thus, user interaction was
not only used to amend the proposed correction but other mistakes in the text
as well.

Although earlier work was carried out in [Brousseau et al., 1995] to enable dic-
tation in MT, to our knowledge, the first study of a speech-enabled interactive
system was Vidal et al. [2006]. In that work, an interactive MT system was de-
scribed following our definition of multimodal and interactive at the same time.

8 VAG-DSIC-UPV
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Then, several scenarios were proposed where the user was expected to speak
aloud parts of the current hypothesis and possibly one or more corrections. The
technique consisted on rescoring the language model with the probabilities of
word-based translation models [Brown et al., 1993]. Latter, several methods
were proposed in [Khadivi and Ney, 2008] that took advantage of context infor-
mation. The output from speech and translation was combined in a late-fusion
approach, to improve the recognition of the user’s feedback. More recently,
Toselli et al. [2010] explored the use of the e-pen for interactive transcription
of text images. In that work, the authors took advantage of the erroneously
predicted word and the previous one to improve the robustness of the on-line
handwritten text recognition (HTR) system. In addition, the feedback was used
to improve the prediction of subsequent words.

Finally, eye-tracking can also be used as an input modality. For instance,
[Hyrskykari et al., 2003] used gaze fixations to pop up translations when the
user had difficulties to read a text in another language. More recently, the
‘Speech & Eye-Tracking Enabled CAT’ (Seecat)4 workshop aims at providing
sight translation, where the user speaks the translation aloud instead of typ-
ing it. The major difference with previous attempts is that Seecat intends
to use the eye-tracking information in a combined way with the speech signal
to improve the final speech recognition accuracy. Although the eye-tracking
modality is an interesting way of acquiring implicit information from user’s
intention, the technology is not quite widespread and cheap enough to be con-
sidered a real alternative at this moment. Nonetheless, we hope that in a near
future cheaper eye-tracking technologies emerge, such as economic eye-tracking
devices or webcam based eye-trackers [Skovsgaard et al., 2011], that will allow
us to build interesting interaction techniques.

1.2 Decision making in PR

In this section, we will review the decision theory framework as a brief re-
minder/introduction to the decision making problem. Decision making in PR
is related to how to assign labels for a given input. In a probabilistic approach,
this problem is well understood by the Bayes decision theory [Bishop et al.,
2006; Duda et al., 2001], which aims at finding a decision rule with minimum
classification error (MCE)5. In order to introduce the basics of MCE, we will
give a glimpse to the decision problem in classification, where MCE can be
seen in its simplest form. Basically, classification consists in, given an object
or input x ∈ X , assigning a class c ∈ C to x from a finite (and typically small)
set of classes C. We measure the loss or cost of each misclassification with the

4http://bridge.cbs.dk/platform/?q=SEECAT
5Also known as minimum Bayes risk (MBR).
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loss function6 λ(c, c∗), being c∗ the real class7 of x. Hence, we would like to
classify x with the minimum conditional risk (also known as expected loss)
with respect to a probability distribution RPr(c|x)(c | x),

ĉ = arg min
c∈C

RPr(c|x)(c | x) (1.1)

For the sake of clarity, we will omit the Pr(c | x) subscript in the future. In
addition, the conditional risk can be also expressed as

R(c | x) = E (λ(c, c′) | x) =
∑
c′∈C

λ(c, c′) Pr(c′ | x) (1.2)

For classification tasks, λ is the so called zero-one loss function, z(c, c∗) = [c 6=
c∗], that is 1 if c 6= c∗ and 0 otherwise. In other words, we could say that a
misclassification costs 1 unit of effort to correct the outcome or it represents 1
unit of loss (i.e., financial loss). Then, by applying the zero-one loss function
to Equation (1.1),

ĉ = arg min
c∈C

R(c | x) (1.3)

= arg min
c∈C

∑
c′∈C

[c 6= c′] Pr(c′ | x) (1.4)

= arg min
c∈C

1− Pr(c | x) (1.5)

= arg max
c∈C

Pr(c | x) (1.6)

which results in the well known maximum-a-posteriori (MAP) decision rule
used by default in most classification problems.

1.3 Structured prediction

Although classification is a very useful approach, it is not appropriate to prob-
lems where the output cannot be expressed in a finite (and reduced) number of
classes. If the output consists of a set of variables correlated by some structure,
then the direct modeling of the class posterior probability becomes impractical,
since the number of output classes can be exponential. Therefore, it is neces-
sary to apply some kind of search algorithm over the hypothesis space. These
problems are known as structured prediction (SP)8 [Parker et al., 2009; Taskar
et al., 2005], in which the output consists of structured labels (as opposed to in-
dependent labels in classification). Examples of structured outputs are natural

6The loss function can be also defined as conditioned on x [Ferrer, 2010]. However, that
is usually not the case in a typical loss function. Therefore, we will omit x for the rest of the
document.

7True state of nature [Duda et al., 2001].
8This was also known as syntactic or structural pattern recognition [Fu, 1982].
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language sentences, DNA sequences or an XML describing the layout analysis
of a web page.

In SP we can reformulate the classification problem to take into account input
and output structured objects. Thus, x ∈ X ∗ becomes x = {x1, x2, . . . , x|x|},
a sequence9 of elements of X , with length |x|. Note that x belongs now to the
Kleene closure of X , that is, x has zero or more elements. Also, there is a,
probably unknown, correlation among the elements in x that establishes the
structure of x. Then, the problem consists in obtaining a structured object
y = {y1, y2, . . . , y|y|} from an output hypothesis space Y∗. The elements in y
are correlated among them, but they are also correlated with the elements in
x. If we want to obtain a y that is represented by x, then we can apply the
MAP decision rule in the following way:

ŷ = arg max
y∈Y∗

Pr(y | x) (1.7)

In many cases, this probability can be difficult to obtain directly and reliably.
Then, it can be useful to apply the noisy-channel approach instead:

ŷ = arg max
y∈Y∗

Pr(x | y) Pr(y)

Pr(x)
(1.8)

= arg max
y∈Y∗

Pr(x | y) Pr(y) (1.9)

where the structure of y can be modeled more easily since now it is expressed
in an explicit form by Pr(y). On the other hand, the relationship between the
elements in x and y is explained by the likelihood probability instead of the
posterior probability.

1.3.1 Correcting the output of a SP system

Equation (1.7) and Equation (1.9) are the fundamental equations for statistical
SP. They provide a means to obtain an output that is most likely to be the
representation of the input. However, as we have seen in the preliminaries,
SP systems are not perfect. Then, when the quality of the output is critical,
it is often necessary to make a human operator correct the predicted output
structure so as to meet the quality standards. We can identify three alternatives
to how the output of SP systems can be enhanced.

9There exists other representations for structured objects that are not sequences, e.g.,
trees. However, as the problems we will deal with in this thesis can all be represented as
sequences, we will assume this structure for simplicity.
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Post-editing. Traditionally, SP has been approached as a fully automated
procedure. The automatic SP scenario, depicted in Figure 1.2, can be described
as follows: an input (x) is presented to a SP system. Then the SP system
produces an output (ŷ), which will typically contains some errors. Finally,
a human expert revises the system output. The purpose of the expert is to
amend the errors to produce the final output (or reference), r. The corrections
are done without additional computer aid10, e.g., by using a conventional text
editor. From here on, we will refer to this process as post-editing (PE).

SP system

r

ŷ

user

x

Figure 1.2: Diagram of the post-editing process. The system processes the input x to
produce an output ŷ. Then, the user, who knows how to obtain the desired output given
x, modifies ŷ to create the final output r.

Passive interaction. The interactive structured prediction (ISP)11 frame-
work was introduced in [Vidal et al., 2007] to alleviate the cost of correcting
an automatically generated output, as a generalization of the TransType2
findings. In ISP, the user is introduced in the core of a SP system so that the
system and the user interact with each other to minimize the effort in producing
a satisfactory output. ISP is considered passive interaction since it is the user
who takes the initiative and the system behaves in a reactive (passive) way.
Figure 1.3 represents the ISP interaction scheme. An input x is given to the
system, which outputs a possible hypothesis ŷ. Then, the user analyzes this
output and provides feedback f regarding some of the errors committed. Now,
the system can benefit from the feedback to propose a new improved hypothe-
sis. This process is repeated until the user finds a satisfactory solution, r, and
the process ends. Note the loop in Figure 1.3. It indicates that for each user
interaction the system has to output a new hypothesis (though it may coincide
partially or totally with the previous one), and that several interactions can be
performed until a satisfactory solution is found.

Active interaction. In passive interaction, the user takes the initiative when
supervising the system output. Although that approach may help to reduce

10The user could use the computer to help her task, but the computer does not react
intelligently the user’s actions.

11Also known as interactive pattern recognition [Toselli et al., 2011] and closely related to
corrective feedback [Culotta et al., 2006].
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ISP system
r

ŷ

user

x

f

Figure 1.3: Diagram of an passive interactive structured prediction process. The system
processes the input x to produce an initial output ŷ. Then, the user analyses the output
and proposes a correction by some feedback f . Now, the system proposes a new hypothesis
ŷ. This process is repeated until the desired solution r is obtained.

the human effort, the user still has to supervise the entire collection of system
outputs. This can be a waste of effort, especially for the outputs that are
very likely to be correct. In this context, active interaction [Oncina and Vidal,
2011; Toselli et al., 2011] can be very beneficial. As we mentioned in the
introduction, active interaction is close in concept to active learning [Settles,
2010] in the sense that the system takes the initiative to propose a sample for
the user to correct or annotate. However, in contrast to active learning, the
goal of active interaction is to minimize the effort in obtaining an error-free (or
a certain degree of error) output. Figure 1.4 is a representation of a typical
active system. In each iteration, the system outputs a hypothesis and asks the
user to supervise a particular element of the output. Then, the user accepts if
the label is correct or rejects it, providing in this case the correct label.

In these three scenarios, we would like to find a decision rule that allows us to
obtain the final solution with less user effort. Hence, the zero-one loss function
used to obtain Equation (1.7) and Equation (1.9) may not longer be optimal.

1.4 Decision making in post-editing

It is well known that the MAP decision rule optimizes the zero-one loss function,
which assign 1 to an incorrect output regardless of how many errors have been
produced, i.e., an output that fails to predict one element is considered just
as wrong as a sentence that mispredicts each and every element. The zero-
one loss function may be still of interest for many SP tasks. For instance, an
automatic postal code classifier puts letters on different boxes depending on
their postal code. It has the same cost associated to outcomes that have one
or more mistakes, since they all go to the wrong box. On the other hand, in
the recognition of a text book, we would like to have the less character errors
as possible, and thus, the zero-one loss function may not be so appropriate in
this case.
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is ŷî
OK?

ŷ

ŷ, î

user

x

REJECT ŷî,
PROVIDE f

ACCEPT ŷî

active
ISP system

x

Figure 1.4: Diagram of an active interactive structured prediction process. The system
processes the input x to produce an initial output ŷ. Then, the system selects an element
of the output structure in position i, (ŷi), and asks the user to correct it. The user analyzes
the query and, in case there is an error, proposes a correction with some feedback f . Now,
the system updates the hypothesis ŷ given user’s feedback and asks for a new correction.
This process is repeated until the system decides that there should be no more errors; or
if the user has surpassed a given quota of interactions. Thus, the final result might be
different from the expected result r.

There are several means to define a loss function for SP problems. Most of
them measure the accuracy or error at element level. However, in this thesis
we are interested in measuring the PE effort, i.e., the effort that is needed to fix
the erroneous output elements to obtain the correct or expected output. For
our purposes, we can differentiate two kinds of SP problems: sequence labeling
problems and problems with an unknown number of output elements.

1.4.1 Sequence labeling

The sequence labeling problem is characterized by the fact that the output
object y has the same length than the input object x. Besides, the corre-
spondence between the elements in x and y is one-to-one and, frequently, they
are monotonically related, i.e., xn is related to yn for each n. Problems that
fall under this category are optical character recognition (OCR), part-of-speech
tagging and the assignment problem. The post-editing loss function in this case
can be modeled with the Hamming distance [Hamming, 1950] that computes
the number of positions at which the corresponding symbols are different, i.e.,

h(y,y∗) =
∑|y|
i=1[yi 6= y∗i ]. In terms of PE, the Hamming distance computes the

number of substitutions that are needed to obtain the correct solution. There-
fore, an optimum decision rule can be obtained by minimizing the conditional
risk in Equation (1.1) for the Hamming distance:
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ŷ = arg min
y∈Y∗

∑
y′∈Y∗

h(y,y′) Pr(y′ | x) (1.10)

= arg min
y∈Y∗

∑
y′∈Y∗

|x|∑
i=1

[yi 6= y′i] Pr(y′ | x) (1.11)

= arg min
y∈Y∗

|x|∑
i=1

 ∑
y′∈Y∗

[yi 6= y′i] Pr(y′ | x)

 (1.12)

Then, minimizing the risk for each position is a sufficient condition to minimize
the sample risk:

ŷi = arg min
yi∈Y

∑
y′∈Y∗

[yi 6= y′i] Pr(y′ | x) (1.13)

= arg max
yi∈Y

∑
y′∈Y∗:yi=y′i

Pr(y′ | x) (1.14)

= arg max
yi∈Y

Pr(yi | i,x) (1.15)

The last equation is the so-called position posterior probability that usually
can be computed efficiently using a forward-backward-like algorithm [Chelba
and Acero, 2005]. It is important to note that a decision rule that follows
MCE for a specific cost function, does not necessarily always obtain the best
result, but the best result in average. In addition, MCE decision rules may
generate solutions that are not correct with respect to the structure constraints.
For instance, when performing English OCR with Equation (1.15), the output
generated by the decision rule could be a sequence of characters that does not
form a word in English. Figure 1.5 illustrates this problem. In this case, x
is a sequence of handwritten characters representing the word ‘MONK’. The
three top hypothesis (y′,y′′,y′′′) along their respective posterior probabilities
are shown below. At the bottom, there is the result given by Equation (1.15).
We can see that hypotheses y′′ and y′′′ agree in position 1. As a result, the
position posterior probability of ‘M’ in position 1 is higher than that of ‘H’.
The resulting word is not an English word. Whereas the MAP solution, y′,
has two errors, ŷ has only one, and thus the PE effort is lower. The rationale
behind it is that by forcing an output with a correct structure more errors can
be introduced. However, by obtaining the best element at each position we
ensure that the number of corrections to be made are minimum, although the
structure of the output is not correct. And that is precisely the goal we pursuit
in MCE for PE.
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M O W N
. . .

0.3

0.2

0.11

M O W K

Pr(y | x)
x =

y′ =

y′′ =

y′′′ =

Pr(‘H’ | 1,x) = 0.3}

} Pr(‘M’ | 1,x) = 0.2 + 0.11

= 0.31

ŷ =

H O W K

NM O K

Figure 1.5: OCR example for the handwritten word ‘MONK’. The hypothesis given by
a MAP approach has two errors. However, the MCE approach, which accumulates the
probability of several hypotheses, has only one error. Note that the MCE hypothesis is
not an English word but needs less corrections.

1.4.2 Unknown alignment and output size

In the aforementioned OCR problem, we know that the output character yi
is produced as the transcription of character image xi. Thus, we say that
yi is aligned to xi since xi is the responsible for producing yi, or vice versa,
yi explains xi. Accordingly, the alignment of the input/output elements in
sequence labeling is, by definition, established by its position. In contrast, there
is a kind of SP problems in which the alignment is unknown. In such cases,
the position of an output element does not determine what input elements
produced it. Often, such correlation needs to be expressed and modeled in
the form of hidden (unobserved) variables that define these alignments. In
addition, these problems usually present the difficulty that the output size is
also unknown. Hence, we also must take into account the output hypothesis
being shorter or longer than the input. Therefore, the Hamming distance
cannot be applied as a function to measure the PE effort. Consequently, two
additional operations must be introduced: deletion of elements that are not
in the correct solution, and insertion of elements that are not in the system
hypothesis. These operations, together with the substitution operation in the
Hamming distance conform a basic set of edit operations12. Note that, if the
edit distance is properly normalized by the number of words in the reference,
the resulting function is the word error rate (WER) function that is used to
evaluate many natural language problems. In consequence, a loss function to
estimate PE human effort can be obtained by the minimum number of edit

12 The Hamming distance can be seen as a particular case of the edit distance where only
substitutions are allowed. In fact, Schlüter et al. [2010] established that the Hamming risk
is an upper bound to the edit distance risk, which in practice leads to an algorithm that is
locally optimal w.r.t. the edit distance risk [Stolcke et al., 2000].
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operations necessary to convert the system output into the correct solution.
This can be obtained with the edit distance [Levenshtein, 1966], e(y,y∗). Note
that this estimation of the PE effort is optimistic, since a user is not likely to
perform the actual minimum number of operations. Instead, she will try to
spend less time doing the task, but with no guaranties of optimality. Taking
that into consideration, the optimal rule can be obtained by:

ŷ = arg min
y∈Y

∑
y′∈Y

e(y,y′) Pr(y′ | x) (1.16)

This equation cannot be decomposed into smaller terms, and there are no
known efficient exact solutions to it. However, approximate decoding algo-
rithms exist which are based on confusion networks (CN) [Mangu et al., 1999]
and lattice segmentation [Goel et al., 2004]. Note that these decoding strate-
gies favor solutions with less errors and, hence, they are cheaper to amend.
Instead, the zero-one loss function does not distinguish between a solution with
just one error or a completely wrong solution. Unfortunately, [Schlüter et al.,
2012] analytical results conclude that, for integer-valued metric cost functions,
the MAP class often dominates the Bayes decision rule. As a result, limited
improvements can be expected from using the optimal decision rule, especially
for tasks with low error rate. Nevertheless, the study of optimal decision rules
is still an interesting and challenging problem that provides insight of the task
at hand.

1.5 Passive interaction

In the SP community, the majority of attempts to improve the quality of the
output have been focused on developing systems that produce less “errors”,
for instance by improving the decision rule as has been shown in the previous
sections. In that sense, the scheme in Figure 1.2 has been implicitly adopted: a
system with less “errors” would allow a manual PE of the system output with
less effort. However, PE delegates all the effort to the user. So, what can we
do to reduce the effort needed to correct the output?

Consider the PE of the SP example in Figure 1.6 which depicts an OCR problem
of handwritten text in a form. The structure of this form is the following: the
four first fields are digits, while the fifth field is an error-detecting code. This
code is an ASCII character which position in the ASCII table can be computed
as the sum of the numbers of the four first fields modulo 26 plus 65. This
condition poses a strong restriction on the structure of the output. In this case
of Figure 1.6, the real transcription of the image is 3527R and the last field is
computed as chr(65 + 3 + 5 + 2 + 7) =‘R’. Note that the third field is a ‘3’ with
a superimposed bold ‘2’ which can be easily confused by a ‘8’. In addition,
the fourth field can be confused with a ‘1’. Let us assume that ‘R’ is correctly
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recognized. Hence, a system could mistakenly recognize the whole sequence as
3581R, since the error-detecting code is also ‘R’.

Figure 1.6: Example of handwritten text on a form. The transcription is 3527R. The
last field is an error-detecting code that can be computed as the ASCII character at the
position 65 plus the numbers in the previous fields (chr(65 + 3 + 5 + 2 + 7) =‘R’).

In such example where the system has output 3581R, would PE be an optimal
strategy to fix the system’s output? PE takes two actions to correct the output.
First, ‘8’ can be substituted by ‘2’, and then, ‘1’ by ‘7’. Note the use of the
Hamming distance since this is a sequence labeling PE problem. However,
given that the system may have some knowledge of the underlying structure
of the output, this process can be performed more efficiently. Suppose that
the user substitutes ‘8’ by ‘2’. Suppose as well that the system has strong
evidence (i.e., the position posterior probability is one) that the first, second
and last fields are correct, i.e. the system believes that 3, 5, and R are the
correct labels. Then, it is most likely that the fourth field is a ‘7’, and not ‘1’,
so that the error-detecting code adds up. Hence, the system can automatically
replace ‘1’ by ‘7’ in the fourth field, obtaining the correct solution with just one
substitution. In this simplified scenario, such a system would reduce the user
effort in correcting the initial output. This process can be defined as interactive
since the user and the system have collaborated to produce the final output. On
the one hand, the user participates by controlling the generation of the output,
i.e., the user amends parts of the output. On the other hand, the system takes
user’s amendments into consideration to predict a new improved solution.

1.5.1 Sequential passive interaction

A particular instance of ISP is when the user corrects the elements in the output
in a left-to-right fashion. Thus, y can be split into a prefix, yp, that the user
has validated (and therefore is correct), and suffix, ys, that may contain some
errors. Consequently, the output is the concatenation of the prefix and the
suffix, y = yp·ys. With the superscript (i) we will indicate that the variable
was produced in the iteration number i between the user and the system. Thus,
in each user interaction, the user gives a feedback as a substitution of the first
erroneous word in the suffix by the correct word in position k (of the reference

r), f (i) = rk. The validated prefix and the user feedback are concatenated to

form the new prefix y
(i)
p . Then, the ISP system uses a decision rule to obtain a

new suffix in which the correction introduced by the user is taken into account.

Typically, ISP systems have used an extension of the MAP decision rule. The
underlying loss function for this decision rule assigns a loss of 1 if the suffix
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has one or more errors and 0 if the suffix is completely correct. Thus, at each
interaction (i) a new hypothesis is obtained conditioned on the feedbacks from
previous interactions, which are encoded in yp as part of the validated and
corrected prefix:

ŷ(i)
s = arg max

ys

Pr(ys | x,y(i)
p ) (1.17)

The MAP decision rule has been successfully applied to several SP tasks [Toselli
et al., 2011], namely interactive machine translation [Barrachina et al., 2009],
interactive transcription of text images [Toselli et al., 2010], interactive pre-
dictive parsing [Sánchez-Sáez et al., 2009], interactive speech transcription
[Rodŕıguez et al., 2007] and interactive text generation [Rodŕıguez et al., 2010].
However, the effort of correcting an output in ISP is measured as the number
of corrections (or interactions) needed to obtain the correct solution. As it was
the case in PE, we will see in Chapter 3 why the MAP decision rule is not
optimal to minimize the number of corrections, and how to derive the MCE
decision rule for sequential ISP.

1.6 Active interaction

While passive interaction can be helpful in producing the correct output, it is
also worth noticing that the user is expected to supervise the whole system
output. This does not seem a big problem when dealing with the example
in Figure 1.6, but it can be a real drawback when transcribing the national
identification numbers of several thousands of handwritten forms. In the latter
case, there might be just a few errors located unevenly throughout the form
transcriptions. Then, it seems natural to let the system decide what should
be supervised, on the basis of the confidence the system has regarding the
correctness of the solution. Ideally, that way would allow the allocation human
resources only on the labels that need correction, but not on the solutions that
can be deemed as acceptable.

As we have seen in Figure 1.4, in active learning we aim at finding a decision
rule that can choose output labels for the user to supervise in a way that the
effort is minimized. Thus, we can say that, after each user feedback, we obtain
the acceptance of the system’s proposal or a correction of it, as the position
and correct label. Let h(i−1) = {(k(1), y(1)), (k(2), y(2)), . . . , (k(i−1), y(i−1))} be
the history of positions and corrections given by the user up to iteration (i).
A decision rule, S, that chooses the next output label to supervise at iteration
(i) should comply to the following expression:

(k̂(i), ŷ(i)) = S(x,h(i−1)) (1.18)

where k̂(i) is an output position in the hypothesis ŷ(i). Expressed in a more

compact way, S decides which ŷ
(i)

k̂
the user should correct conditioned to the
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input and the history of user feedbacks. Active interaction can be also be per-
formed at structure level. In this case, the system goal is to retrieve structures
or objects from a pool in such a way that already correct or almost correct
structures are left unsupervised.13 In PE and ISP, the selection of the loss
function, although not ideal, was quite a natural choice. However, in active
interaction, we can define at least two loss functions depending on the nature
of the problem.

Reducing the number of supervisions. Here, we assume that supervision
has a high cost, even if the output is correct. For instance, in the case of having
a thousand handwritten forms, the whole collection should be supervised in
order to achieve an overall high quality result. The supervision of a form that
is already correct has, indeed, a high cost. In fact, the human operator needs
at least to solve the problem mentally to check if the output is correct. Thus, it
can be very resource consuming to check all the forms. That is especially true
for the kind of systems that can achieve very good accuracy. In those cases,
the error is concentrated in the output of some specific inputs that are much
harder to decode. Then, it would be very helpful to have a system that only
queries the user for outputs containing errors. This kind of active interaction
can be understood as a quality estimation problem, as it is approached in the
machine translation community [Callison-Burch et al., 2012].

Minimizing the number of corrections. In this second approach, the
goal is to query the user for specific output labels that need to be accepted
or corrected in order to minimize the user effort when correcting labels, but
not necessarily reduce the number of supervisions. Thus, we assume that the
effort in correcting a label is much higher than the effort in accepting a correct
label. This may seem not to hold true for the example in Figure 1.6, since the
effort in typing the correct character with a keyboard is the same as the effort
needed to accept the correct label, a single keypress. In addition, the cognitive
effort to decide if the label of a tainted handwritten character is correct or not,
also gives as a by-product the correct label. Thus, in this case the assumption
would not be true. Nevertheless, there are cases where the effort in correcting
the output can be higher, e.g., correct complete words in handwritten text
recognition. Examples of a kind of interaction scenario similar to this one are
[Serrano et al., 2010] and [González-Rubio et al., 2010], for handwritten text
recognition and machine translation respectively. However, those works did not
leveraged the user feedback to propagate the corrections so that the suggestion
in the next iteration could be improved.

Although both loss functions may seem much alike, there is a major difference
that can make them incompatible. In the second case, supervising a correct
label has negligible cost. Thus, the decision rule may decide to query the user

13In a streaming scenario, where structures are being constantly received and they cannot
or should not be stored, an active interactive system indicates if a received structure should
be amended or passed on unsupervised to the next stage.
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to supervise many correct labels. However, this would be against the goals of
the first approach. In Chapter 4, we will analyze both loss functions and, for
each of them, we will compare a series of decision rules.

1.7 Multimodal interaction

Typically, the way the feedback is introduced to the system is by means of
the keyboard or, in a more advanced scenario, implicit mouse actions [Sanchis-
Trilles et al., 2008]. Additionally, other feedback modalities can be found to
be more productive, as speech [Dragsted et al., 2011], or more ergonomics, as
handwriting [Toselli et al., 2010] especially in tactile devices. However, in the
former the feedback can be determined in a deterministic manner, whereas the
latter are non deterministic modalities. As such, a SP system must be build to
interpret the feedback signal, which can result in erroneous interpretations. If
the feedback in iteration (i), f (i), is decoded into a sequence of elements, d(i),
by a completely decoupled black-box system, then we can apply the following
decision rule:

d̂
(i)

= arg max
d

Pr(d | f (i)) (1.19)

Non-determinism poses a problem to these modalities with respect to the de-
terministic ones. Since the interpretation may be wrong the use of the modality
might be hindered [Shilman et al., 2006]. Hence, it is necessary to make such
systems more robust. We can make this by two different means. First, we
can make Equation (1.19) context-aware so that the input, x, and all previous

feedbacks, h(i), are considered,

d̂
(i)

= arg max
d

Pr(d | x,h(i),f (i)) (1.20)

This way, x and h(i) can be seen as constraints to the search of x given f (i) in
the classical maximization problem in Equation (1.19).

Second, the decoding of the feedback can be integrated directly into the system
prediction. Thus, Equation (1.17) can be modified to take into account all the
possible decodings d of the feedback signal:

ŷ(i) = arg max
y

∑
d

Pr(y,d | x,h(i),f (i)) (1.21)

However, d must be a subsegment of y by definition, and thus, d must be
consistent with y. Furthermore, in the scenarios that we will study, the position
of d in y is known. Then, if d should be placed in position k, we are restricted
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to outputs where d
|d|
1 = y

k+|d|
k . Hence, Equation (1.21) can be rewritten as

ŷ(i) = arg max
y:d
|d|
1 =y

k+|d|
k

Pr(y,d | x,h(i),f (i)) (1.22)

since only one d can be consistent with y.

In Chapter 5 and Chapter 6, we will explain in more detail how these strategies
can be done for HTR and ASR, respectively.

1.8 Objectives of the thesis

The objective of this thesis is two folded: on the one hand, it aims to provide a
theoretical and empirical study of decision rules for interactive structured pre-
diction; on the other hand, this thesis aims to find algorithms that can integrate
non-deterministic input modalities, such as speech or on-line handwriting, in
a robust and efficient manner. Finally, the design and evaluation of a working
prototype is described. More precisely, the scientific contributions to this thesis
and the resulting publications are:

1. Optimum decision rule for passive interaction. [Alabau et al.,
2012c] Traditionally, the systems that require PE follow a strategy to
minimize output errors. However, this strategy is not optimum for ISP
since the strategy should be formalized in terms of minimizing user inter-
actions. To this respect, this work aims to give insight into the optimal
decision rule for ISP, find efficient algorithms and asses the proposed
methods with real world SP problems. Here, inspired by [Oncina, 2009;
Oncina and Vidal, 2011], we have delved into an optimum decision rule
for ISP which covers a broader range of common ISP problems, and where
the output depends on a structured input. We analyze the strategy from
a theoretical perspective and also develop a practical decoding algorithm
that can be used straightforwardly in many SP problems. In addition,
we show that the traditional decision rule that has been used for ISP so
far is a good approximation to the optimum for ISP, which is confirmed
by the experiments.

2. Decision rules for active interaction. Active interaction differs from
passive interaction in that it is the computer that takes the initiative and
selects an object or element for the user to label. We describe active
interaction as a different yet related problem to active learning, and take
advantage of the taxonomy of active learning solutions to adapt them to
the active interaction scenario. We analyze two active interaction scenar-
ios. In the first one, the system asks the user to correct a specific object
from a collection of objects, with the intention to avoid the supervision of
correct outputs. In the second one, the system asks the user to correct an
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element of an object, so as to diminish the number of interactions needed
to obtain the correct solution.

3. Interaction with an electronic pen. [Alabau and Casacuberta,
2012; Alabau et al., 2010, 2011c, 2013] Currently, tactile devices
are almost ubiquitous. With a screen roughly the size of an A5 paper,
some of those devices seem ideal to use handwriting as a means of in-
troducing and amending text. However, handwriting recognizers commit
enough errors to hinder its use. In this thesis we aim at providing a more
robust handwriting recognition by leveraging contextual information. In
particular, we focus our efforts towards an interactive machine transla-
tion scenario. We combine information from the handwriting signal, the
source sentence, and previous user interactions to improve recognition
accuracy. Besides, we present an extended and detailed analysis of the
experimentation process, which identifies that major source of recogni-
tion errors. Finally, we propose a method to recover from HTR errors,
which can reduce the number of characters introduced to a quarter.

4. Speech interaction and dictation. [Alabau et al., 2011a,b, 2012b]
An alternative to use the keyboard and the mouse to interact with the
system is by issuing commands with the voice. Interacting with speech
is a difficult problem, since the speech error rates can be high. This
part of the thesis is devoted to exploring new techniques for fusing the
translation/transcription and speech inputs to provide a more reliable
speech-enabled input interface that can lead to a real multimodal system.
We take on the work from Vidal et al. [2006] in speech interaction with
interactive MT systems to performing a better integration. In addition,
we extend the work to speech dictation in HTR. We propose a technique,
based on word graphs, that allows a context aware decoding. In MT,
compared to word-based translation models, this technique exhibits an
important increase in recognition performance. With respect to HTR,
we compare the use of speech dictation to transcribe handwritten text
documents against the direct use of text recognition.

5. Prototype design and evaluation. [Alabau et al., 2012a] Recent
developments in search algorithms and software architecture have enabled
multi-user web-based prototypes for interactive systems. Surprisingly,
formal human evaluations of these prototypes are highly scarce in the
literature. During the last years, we have developed several interactive
web prototypes, which are accessible worldwide, that need to be validated
in the field. To this regard, we aim to asses the web prototypes. On
the one hand, we would like to know if the casual visitor notices the
advantages of the interactive prototype. On the other hand, we want
to leverage the evaluation to see if the perception was really represented
by actual performance. Two rounds of evaluations have been performed
on the interactive MT prototype, comparing it to a PE prototype (an
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interactive MT one but with disabled interaction capabilities). These
evaluations have given some insights on the current technology as well as
discovered in which areas future research efforts should be addressed.
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Chapter 2. Representation, Applications and Corpora

In this chapter, we will introduce the corpora that will be used in the remainder
of this thesis. First, we will use a unified representation of the search space,
the word graph (WG). In Section 2.2, the corpora for the interactive techniques
will be described. Along with the description of each task, we will give an
explanation of how to interpret the WGs for the specific problem. Finally,
the evaluation metrics for interaction will be defined. On the other hand,
Section 2.3 will show the corpora used as input modalities in the multimodal
experiments. The evaluation metrics for multimodal interaction will also be
defined.

2.1 Unified representation for SP

In Section 1.3, we introduced Equation (1.7) as the fundamental equation to
SP, upon which other approaches to SP are built (e.g., Equation (1.9)). Equa-
tion (1.7) relies on the computation of the posterior probability. However,
the direct computation of this probability is impractical to model in the most
interesting problems. Hence, several strategies have been devised to work at
element level rather than at structure level [Brown et al., 1993; Rabiner, 1989;
Toselli et al., 2010; Zens et al., 2002]. In these approaches, the search algo-
rithm obtains the structured output by exploring a search space constituted
from output elements. Here, for the sake of convenience, we will adopt the
WGs as a common representation to such search space. WGs can store effi-
ciently the output search space, and there is a sound theoretical framework
and algorithms for them. To our advantage, the WGs can be obtained just as
a by-product of the traditional search algorithms for each of the problems we
tackle in this thesis.

Usually, search algorithms avoid the computation of constants that can be
safely ignored from Equation (1.7) thanks to the arg max. For that reason,
at this point we will speak of scores instead of probabilities. Consequently, as
they are obtained by the search algorithms, WGs represent a score that is pro-
portional to the posterior probability distribution over the output hypothesis
space, for a given input variable x of an input space X ∗. Formally, G(x) is
a WG represented as a directed, acyclic, weighted graph defined by the tuple
G(x) = (Q, qI , qF , tx,Y, A, Fx) where:

• Q is a set of nodes being qI the initial node and qF the final node1.

• tx (u, v) : Q×Q→ X ∗ where tx (u, v) is the set2 of elements in x covered
from nodes u to v.

1We will assume, without loss of generality, that there is a single initial node and a single
final node. In addition, for convenience, we will assume that the nodes are ordered following
a topological order.

2In the case that the input-output relation is monotonous the set tx (u, v) can be defined
as the start and end indices of a subsequence of x. In this case, the start index would be
associated to node u whereas the end node would be associated to node v.
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• Y is the set of possible output labels.

• A : Y ×Q×Q is a set of edges, e = (y, u, v), where y is an output label
that is generated from a start node u to an end node v3. Consequently,
y is responsible for explaining the subset of x given by tx (u, v). We say
that y is aligned to tx (u, v).

• Fx (e) : A → R is a score function that evaluates how likely is y to be
generated by tx (u, v) in the context of nodes u and v.

A path e = (e1, . . . , ek, . . . , eK) with ek = (yk, uk, vk) is a sequence of connected
edges that represents a complete output hypothesis. Hence, a path must meet
the following condition:

u1 = qI ∧ ∀k, 1 < k ≤ K : vk−1 = uk ∧ vK = qF

Also, the input coverage of the edges in a path must not present overlapping
and they must cover the whole input x. Therefore, a WG must also accomplish
the following conditions:

a) ∀(ei, ej) ∈ e, ei 6= ej : tx(ui, vi) ∩ tx(uj , vj) = ∅
b) ∪ek∈e tx(uk, vk) = x

Finally, the score of a path can be obtained as the product of the edge scores
along the path,

Fx (e) =

K∏
k=1

Fx (ek) (2.1)

A detail of a WG for a handwritten text recognition problem is shown in
Figure 2.1. The figure represents the search space for the handwritten text
‘Hospital esta’. In addition, some of the variables that define the WG are
instantiated in the left part of the figure. Two paths have been highlighted: in
bold, the most likely path; in dashed, the correct path.

With Equation (2.1), we can apply the MAP decision rules for SP and ISP.
However, in the way that search algorithms generally work, Fx (e) is not an
actual probability, but a score. In this thesis we find it convenient to convert
these scores into probabilities, though this is not strictly necessary to apply the
MAP decision rule. Hence, the posterior probability of a path in a WG can be
computed as

p(e | x) =
Fx (e)∑
e′

Fx (e′)
(2.2)

3We will assume, without loss of generality, that edges only hypothesize one label. A more
general definition of an edge would allow more than one label. However, that representation
can be easily transformed to use only one label by splitting the edge in multiple edges.
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Q = {qI , q1, q2, q3, q4, qF }

tx(qI , q4) = {x1, . . . , x356}
tx(q4, qF ) = {x357, . . . , x467}

A = {e1, e2, . . . , e8}
e5 = (‘HOSPITAL′, qI , q4)

e8 = (‘ESTA′, q4, qF )

Fx(e5) = 0.03

Fx(e8) = 0.35

Fx(e
∗ = {e5, e8}) = 0.01050.03
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Figure 2.1: Example of a WG for a handwritten text recognition problem. Above, the
digitized and preprocessed text image for the handwritten text ‘Hospital esta’, that is
represented by a feature vector x with 467 input elements. The vertical dotted lines are
used to align the start and end of each edge with the corresponding segment of x, where
the indices of the vector are indicated by the numbers on top of the vertical lines. The
WG consists of 8 nodes and 6 edges. Each edge ek also displays, the output label and
the score Fx (ek). The most likely path, ê = {e2, e4, e7} is represented by the bold edges,
whereas the correct path, e∗ = {e5, e8}, is displayed with dashed edges.

where the denominator accounts for probability mass of all the paths in the WG.
Equation (2.2) can be efficiently computed based on the well-known forward-
backward-like algorithm [Wessel et al., 2001].

Now that we have the probability of a path, we can compute the probability
of a sequence of words. Given that WGs can be ambiguous4, in general, there
may be more than one path associated with the same output sequence y. Let
w(e) be the sequence of labels associated with e. The probability of the word
sequence y is computed as:

p(y | x) =
∑

e:w(e)=y

p(e | x) (2.3)

Then, in the MAP decision rule for the SP problem, the word sequence with
maximum probability can be obtained as:

ŷ = arg max
y

p(y | x) = arg max
y

∑
e:w(e)=y

p(e | x) (2.4)

This maximization problem can be solved by determinizing the WG, which is
exponential in the worst case (although in many practical cases the real cost
is admissible) [Mohri, 2009]. Nevertheless, typically an adequate solution is to

4From the same node several nodes can be reached with the same y.
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approximate the sum by its dominant addend, which happens to be the path
with highest probability:

ŷ ≈ arg max
y

max
e:w(e)=y

p(e | x) (2.5)

Equation (2.5) can be solved more efficiently than Equation (2.4) by means
of dynamic programing search algorithms [Bellman, 2003; Jelinek, 1997]. Note
that the normalization in Equation (2.2) is not necessary, since the denominator
can be canceled out by the max in Equation (2.4) or Equation (2.5).

In the same way, the most probable suffix using the MAP decision rule for ISP
can be obtained as:

ŷs ≈ arg max
ys

max
e:w(e)=yp·ys

p(e | x,yp) (2.6)

where the restriction e : w(e) = yp·ys means that the path e must be con-
sistent with the given prefix. It should be mentioned that, in practice, it is
not always possible to find a path in the WG that meets this condition with
probability larger than 0. For this reason, the restriction is typically relaxed to
find the path with shorter edit distance with respect to the prefix [Barrachina
et al., 2009; Koehn, 2009].

Although ideally a WG can represent the whole set of possible outputs, in
practice it is frequently not possible to compute or to store the whole search
space. Still, WGs are useful for characterizing a subset of the most likely
solutions from the hypothesis space. First, WG can encode hypotheses in a
much more compact way than traditional n-bests lists. Second, there exists
a reasonable collection of well-defined and well-known efficient algorithms for
them [Mohri, 2009; Vidal et al., 2005a,b], as they can be seen as a particular case
of weighted finite-state machines (FSM). The hypotheses encoded in the WG
are those whose probability is large enough, according to the search algorithm
used to decode the input signal [Liu and Soong, 2006; Ortmanns et al., 1997;
Toselli et al., 2011; Ueffing et al., 2002].

2.2 Structured prediction tasks

2.2.1 Optical character recognition

OCR is the conversion of scanned images of handwritten or printed charac-
ters into actual computer characters. Typically these characters can be easily
isolated so the problem is transformed in a sequence labeling problem. Many
algorithms have been used to solve the problem of isolated character recognition
effectively5. Similarly to the example in Section 1.5, the OCR problem consid-
ered for this thesis consists in a series of digits and a control code: the Spanish

5See http://yann.lecun.com/exdb/mnist/ for a list of techniques.
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national identification number. The corpus is a compilation of handwritten
national identification numbers (DNI, from Spanish documento nacional de
identidad) from real paper forms acquired by the RIVA group in the Institut
Tecnològic d’Informàtica6. The training is composed by 1.8M handwritten
characters for training, and a separate set of 10k DNIs, 5k for validation and
5k for test. See Table 2.1 for more detailed statistics.

Number of samples Baseline error rate

DNI 5, 262 22.2
Digits 42, 096 2.10
Letters 5, 262 10.05
Total chars 47, 358 2.86

No. errors in DNI 0 1 2 3 4 5 6 7 8
No. DNIs 4, 094 972 162 28 3 0 2 1 0

Table 2.1: Some statistics regarding the OCR DNI corpus.

Each handwritten DNI number, x = {x1, . . . , x9}, is a series of 9 images of
handwritten characters. The images correspond, one-to-one, to the characters
of a DNI, y = {d1, . . . , d8, c}, which consists of 8 digits d1 . . . d8 plus a letter
c from a list of control characters C, c ∈ C. The control character can be
computed from the digits using Algorithm 1.

Algorithm 1: Algorithm to obtain the error code for a given number for Spanish DNI

numbers.

Input: d1 . . . d8
Output: c
C ← “TRWAGMYFPDXBNJZSQVHLCKE”;
return C[d1 . . . d8 mod 23]

As we explained in Equation (1.9), the noisy channel approach allows us to
model explicitly the output structure and the relationship between x and y.
In the DNI problem, Pr(y) can be modeled as finite state machine (FSM) that
computes the modulo of a number. In that FSM, for a given base B and
modulo M , we can reach state v from a state u with y if v = (u ∗ B + y)
mod M (see Figure 2.2 for a FSM with B = 10, M = 2 and C = “AB”).
The language model probability can be then obtained by the product of the
transition probabilities the model passes through. The transition probability
from state u to state v, p(v | u), follows a uniform probability distribution.
In the DNI case, as we use digits B = 10 and M = 23 since we have 23
control characters. As each of the character image representation in x can be
considered as independent from each other, Pr(x|y) can be modeled with a

6https://prhlt.iti.upv.es/w/isl
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Figure 2.2: An example of a DNI language model with B = 10, M = 2 and C = “AB”.
In each state, v indicates the modulo for the processed digits, where v = 0 means the
number is even and v = 1 means that it is odd. Thus, in this simple example, even
numbers go to state v = 0 and odd numbers to the state v = 1. Then, when the control
code arrives it only accepts ‘A’ if the number is even and ‘B’ if it is odd.

naive Bayes assumption as
∏|x|
i=1 Pr(xi|yi). Pr(xi|yi) can be, after some simple

probability transformations, approximated by the posterior probability, p(yk |
xk), of a k nearest neighbor (kNN) classifier [Goldberger et al., 2004]. Since
the language model probability is uniform, the posterior probability and the
likelihood are proportional. In summary, the score for an edge in this problem
can be defined as

Fx ((yk, uk, vk)) = p(yk | tx(uk, vk)) (2.7)

where the FSM transition probabilities can be ignored since they are constant,
and tx(uk, vk) = xk.

An example of WG for a DNI with B = 10, M = 2 and C = “AB” is shown
in Figure 2.3. Each state represents the state of the search up to this point.
The boxes are highlighted if the correspondent character has been processed.
Furthermore, each state has the current state of the module for the processed
digits, where v = 0 means the the number is even and v = 1 means that it is
odd.
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qI

v = 1

v = 0
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v = 0

v = 1

v = 0

1 / 0.01

3 / 0.05

5 / 0.02

7 / 0.06

9 / 0.01

0 / 0.83

2 / 0.00

4 / 0.00

6 / 0.01

8 / 0.01

1 / 0.08

3 / 0.06

5 / 0.05

7 / 0.05

9 / 0.10

0 / 0.02

2 / 0.08

4 / 0.04

6 / 0.03

8 / 0.49

1 / 0.01

3 / 0.05

5 / 0.06

7 / 0.02

9 / 0.62

0 / 0.00

2 / 0.01

4 / 0.10

6 / 0.04

8 / 0.08

B / 0.25

1 / 0.08

3 / 0.06

5 / 0.05

7 / 0.05

9 / 0.10

0 / 0.02

2 / 0.08

4 / 0.04

6 / 0.03

8 / 0.49

1 / 0.01

3 / 0.05

5 / 0.06

7 / 0.02

9 / 0.62

0 / 0.00

2 / 0.01

4 / 0.10

6 / 0.04

8 / 0.08

A / 0.74

Figure 2.3: An example of WG for a DNI with B = 10, M = 2 and C = “AB”. Each
state represents the state of the search up to this point. The gray boxes imply that the
correspondent character has been processed. v indicates the current state of the module
for the processed digits, where v = 0 means the the number is even and v = 1 means that
it is odd.
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2.2.2 The assignment problem

The assignment problem is one of the fundamental combinatorial problems in
optimization. It consists in assigning the elements from x = {x1, x2, . . . , xN},
one-to-one, to the elements in y = {y1, y2, . . . , yN}. In particular, we will con-
sider a simplification of the problem of recognizing human karyotypes [Mart́ınez
et al., 2007; Ritter et al., 1995]. A karyotype is the number and appearance
of chromosomes in the nucleus of a eukaryote cell. Normal human karyotypes
contain 22 pairs of autosomal chromosomes and one pair of sex chromosomes.
Normal karyotypes for females contain two X chromosomes, whereas males have
both an X and a Y chromosomes. Any variation from the standard karyotype
may lead to developmental abnormalities. The chromosomes are depicted (by
rearranging a microphotograph, see Figure 2.4) in a standard format known as
a karyogram or idiogram: in pairs, ordered by size and position of centromere
for chromosomes of the same size. Each chromosome is assigned a label from
{‘1′, . . . , ‘22′, ‘X ′, ‘Y ′}, according with its position in the karyogram.

x1

x2

x3 x4

x5

x6 x7 x8
x9 x10

x11 x12

x13

x14

x15

x16 x17

x18

x19 x20

x21
x22

(a) Unsorted chromosomes.

y1 y2 y3 y4 y5 y6

y7 y8 y9 y10 y11 y12

y13 y14 y15 y16 y17 y18

y19 y20 y21 y22

(b) Chromosomes assigned to their re-
spective classes.

Figure 2.4: To the left the unsorted chromosomes. To the right the chromosomes already
classified

Here, we use the “Copenhagen database” [Lundsteen et al., 1980]. For the
sake of simplicity, we ignored the initial image segmentation task and assumed
that each of the 46 chromosomes in a normal unsorted karyotype is already
represented as an individual image. Note that, in this simplification, individ-
ual, rather than paired chromosomes are considered and sex chromosomes ‘X ′

and ‘Y ′ are ignored. Moreover, we do not take into account some advances in
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karyotype analysis, such as fluorescent dye based spectral karyotyping [Schröck
et al., 1996], which allow obtaining colored chromosome images and may sig-
nificantly simplify the real human karyotyping problem. Then, the problem
consists in, given the unsorted karyotype (see Figure 2.4a), obtain the sorted
karyotype by assigning the images to the type of chromosome (see Figure 2.4b).
The corpus consists of two data sets of 100 karyotypes each (2, 200 images
in total per each data set) for which the likelihoods p(tx(u, v)|y), obtained
from hidden Markov models7 [Mart́ınez et al., 2003], are already given8. Al-
though the optimal assignment can be obtained in O(|x|3) by the Hungarian
algorithm [Edmonds and Karp, 1972], here we are interested in obtaining a
WG representing a set of hypothesis. Therefore, we solved the problem with
a dynamic programming algorithm with hypothesis pruning. As in the DNI
problem, the language model follows a uniform probability distribution. In
this case, however, the nodes of the WG represent which input and output
elements have already been assigned. The score for an edge can be defined as
in Equation (2.7):

Fx ((y, u, v)) = p(tx(u, v)|y) (2.8)

where tx(u, v) is the element in x assigned to y.

An example of WGs for this tasks is shown in Figure 2.5, where only three
images and classes are considered to allow a clearer display. Each label rep-
resents the probability of assigning the chromosome to the label. In addition,
each node represents the state of coverage of images and chromosome classes:
two rows of bit vectors are shown where the boxes in gray indicate that the
image (top) or chromosome class (bottom) has already been assigned.

y1 ← /0.05

y1 ← /0.02

y2 ← /0.08

y2 ← /0.87

y2 ← /0.05

y2 ← /0.08

y2 ← /0.05
y2 ← /0.87 y3 ← /0.01

y3 ← /0.25y1 ← /0.93

y3 ← /0.74

x2

x1 x3

Figure 2.5: Example of WGs for the karyotype problem, where only three images and
classes are considered to allow a clearer display. Each label represents the probability of
assigning the chromosome to the label. In addition, in each node represents the state of
coverage of images and chromosome classes: two rows of bit vectors are shown where the
boxes in gray indicate that the image (top) or chromosome class (bottom) has already
been assigned.

7See Section 2.2.3 for further information regarding hidden Markov models.
8https://prhlt.iti.upv.es/w/karyo
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2.2.3 Automatic speech and handwritten text
recognition

Both automatic speech recognition (ASR) [Rabiner, 1989] and handwritten text
recognition (HTR) [Toselli et al., 2004] are typically modeled in the same way.
According to Equation (1.9), they can be formulated as the problem of find-
ing the most likely word sequence, y = (y1, y2, . . . , y|y|), for a feature vector
sequence x = (x1, x2, . . . , x|x|) describing a text image or speech signal along
its corresponding horizontal or time axis. Pr(y) is approximated by a word
language model, usually back-off n-grams [Jelinek, 1997], whereas Pr(x|y) is
approximated by concatenated HMM phoneme/character models.

n-gram language models

The assumption beyond an n-gram language model is that the conditional prob-
ability Pr(yk | yk−11 ) (from a Bayes decomposition of Pr(y)) can be modeled
using only the history of the last n−1 words. However, as the history becomes
bigger, their probabilities become also sparser. Thus, it is often the case that a
sequence of n words has not been observed in the training phase, and then its
probability is zero. Therefore, it is necessary to apply some sort of smoothing
technique, where backing-off to lower order models is most successful [Katz,
1987]. As a result, the back-off probability for the language model can be
modeled as

pbo(yk | yk−1k−n+1) =

ε(y
k
k−n+1) p(yk | yk−1k−n+1) if C(ykk−n+1) > t

ϑ(yk−1k−n+1) pbo(yk | yk−1k−n+2) otherwise
(2.9)

where p(·) is the frequentist probability and ε(·) is a discount factor for the
probability of the n-gram in the case that the counts C(ykk−n+1) surpass a
certain threshold t. On the other hand, ϑ(·) is a back-off weight for the n-grams
that do not surpass such threshold. All these quantities can be estimated using
various techniques, among which interpolated Kneser-Ney [Kneser and Ney,
1995] is one of the most popular and top performing approaches [Chen and
Goodman, 1996].

Hidden Markov models

Hidden Markov modes (HMMs) are consolidated statistical models for obser-
vations with temporal dependences. The systems being modeled by HMMs
are assumed to be a Markov process9 with unobserved (hidden) states10. The
relationship between the input and the output is monotonic but, at least in the

9More specifically first-order Markov process, i.e., the next state depends only on the
current state and not on the sequence of events that preceded it.

10The sequence of states of the model the observation passes through is unknown. How-
ever, the parameters of the model are known.
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problems we will deal with, the input is typically much longer than the output.
Moreover, the segmentation (the segment of input elements that corresponds
to an output) is unknown. Let q ∈ Q be a sequence of HMM states linked to
x, such as each input vector has an associated state, q =

{
q1, . . . , q|x|

}
. Let

τ ∈ T , τ =
{
τ1, . . . , τ|y|

}
a sequence of states that represent the alignment

between the words in y and the vectors in x, so that y1 is aligned to xτ10 , y2 is
aligned to xτ2τ1+1, etc. We can sum up over all possible sequences of states and
segments,

Pr(x|y) =
∑
τ∈T

∑
q∈Q

Pr(x, q, τ | y) (2.10)

Now, we expand Pr(x, q, τ | y) using the chain rule and apply the Markov
assumptions. Then, we can approximate Equation (2.10) by

Pr(x|y) ≈
∑
τ∈T

∑
q∈Q

|y|∏
n=1

p(xτnτn−1+1, q
τn
τn−1+1 | yn) (2.11)

where p(xτnτn−1+1, q
τn
τn−1+1 | yn) can be decomposed by assuming again that

p(xm | qm1 , yn) is Markovian and does not depend on yn

p(xτnτn−1+1, q
τn
τn−1+1 | yn) ≈

τn∏
m=τn−1+1

p(qm | qm−1, yn) p(xm | qm) (2.12)

Now, p(qm | qm−1, yn) is the transition probability from state qm−1 to state
qm from the lexical model of word yn. Each lexical word is modeled by a
probabilistic FSM, which represents all possible concatenations of individual
phonemes/character to compose the actual word. The lexical HMM is ob-
tained by composition of the phoneme/character HMMs into the edges of this
automaton. Next, in each phoneme/character a Gaussian mixture per state
is used to model p(xm | qm). This mixture serves as a probabilistic law to
the emission of feature vectors on each model state. The optimum number of
HMM states and Gaussian densities per state are tuned empirically.

The model parameters can be easily trained from samples (handwritten text
image or speech utterance) accompanied by the transcription of these samples
into the corresponding sequence of phonemes/characters. This training pro-
cess is carried out by using a well known instance of the EM algorithm called
forward-backward or Baum-Welch [Baum et al., 1970]. In this thesis we have
used the HTK software [Young et al., 2006] to train HMMs. The principal
difference between ASR and HTR lays in the type of feature vectors: while in
the case of ASR they are acoustic data, the input sequences for off-line HTR
represent line-image features. Figure 2.7 shows an example of how a HMM
models two feature vector subsequences pertaining to the phoneme “a” and
the character “a”.

42 VAG-DSIC-UPV



Chapter 2. Representation, Applications and Corpora

Once all the phoneme/character, word and language models are available,
recognition of new test sentences can be performed. Thanks to the homo-
geneous finite-state nature of all these models, they can be easily integrated
into a single global model on which a search process is performed for decod-
ing the input feature vectors sequence. An example of WG for HTR, which
has a more visual representation, is shown in Figure 2.6. In this case, a word
2-gram was used as a language model. Thus, each state is represented by the
word preceding it, and the index of the input vector where the next word to
be decoded starts. Scores have been omitted for simplicity.

CRISTO DE LA AGONIA PROCEDENTE

DEI

DEL

BATA

OTTRAS

ALTOS

HOSPITAL

OSTENTABA

MITAD

MITAD

ESTA

ESTE

ESTA

0 307 424 610 847 1168 1282 1387 1450 1638 1749

ESTA

Figure 2.6: Word graph for the handwritten sentence ‘Cristo de la Agońıa procedente
del Hospital está’. Each state is represented by the word preceding it (2-gram), and the
index of the input vector where the next word to be decoded starts. Scores have been
omitted for simplicity.

In HMMs, the score is defined at word level by using the probability in Equa-
tion (2.11) as a logarithm,

Fx ((yk, uk, vk)) = exp
[
α log p (tx(uk, vk) | yk)

+ β log pbo(yk | yk−1k−n+1) + ρ
]

(2.13)

where tx(u, v) = (xτnτn−1+1, q
τn
τn−1+1). The parameter α, which is usually set to

1, is used to scale the likelihood. On the other hand, β scales the probability of
the language model, so as to help to compensate the differences in accuracy and
description power of both probabilities. In addition, β is also used to cope with
the difference in range of the quantities, since the language model probability
needs to be scaled to match the dynamic range of the likelihood. Finally,
the last term,11 ρ, is the word insertion penalty or word deletion penalty,
depending on the sign. It is used to control the length of the final output.
These parameters (α, β, and ρ) are empirically tuned to optimize accuracy on
a development set.

11Named where it is used as word insertion penalty or word deletion penalty, depending
on the sign.
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Automatic Speech Recognition

In ASR, each input vector x represents a speech signal, typically a spoken sen-
tence. First, the speech signal is digitized by means of a analog-to-digital con-
verter from a computer microphone. Next, the digitalized signal is transformed
into x by extracting a series of features from it. The feature extraction of the
ASR system is based on the Mel cepstral coefficients [Rabiner, 1989]. Speech
preprocessing reproduces the standard steps for speech recognition. The audio
signal is captured from a microphone at 16kHz and digitalized. A sliding win-
dow with overlapping is passed over the signal. For each window the following
procedure is carried out. First, in the pre-emphasis step, a high-pass filter
is used to compensate the differences between high and low frequencies. Sec-
ond, a Hamming window is applied to smooth out the borders of the window.
Next, the signal is converted from the time domain to the frequency domain by
means of a discrete Fourier transform. To mimic the mechanism of the human
ear, the Mel scale is used to group the energy of frequencies that are indistin-
guishable to humans. Then, volume normalization is carried out by applying
a logarithmic transformation. Now, a discrete cosine transform is performed,
resulting in the so-called cepstral coefficients. The frame energy is added as an
extra element. This value is a global measure for the frame and it is computed
as the first element of the discrete cosine transform. Finally, first and second
derivatives are added to the final feature vector. Figure 2.7a shows an example
of ASR feature vectors for the word “saca”, and how they can be aligned with
the HMM states for the phoneme “a”.

0.3

0.9

0.1

0.5

0.5

0.7

(a) HMM-ASR

0.3

0.9

0.1

0.8

0.2

0.8

0.2

0.7

0.3

0.7

(b) HMM-HTR

Figure 2.7: Example of 3-states HMM for ASR (left) and 5-states HMM for HTR (right)
modeling (sequences of feature vectors) instances of the phoneme “a” and the charac-
ter “a”, respectively, within the Spanish word “saca”. The states are shared among all
instances of phonemes/characters of the same class.
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The experiments were performed using the Wall Street Journal (WSJ) cor-
pus [Pallett et al., 1994]. The ARPA WSJ corpus consists of samples of read
texts drawn from WSJ publications recorded under high-quality conditions.
Up to 81 hours of training material (WSJ0+WSJ1 partitions) were used to
train speaker independent HMMs with HTK. HMMs were word-internal tri-
phones and gender independent. They were composed of three emitting states
(24 gaussians per state) and a left-to-right topology with self loops. Silence
and inter-word silence models were trained. The test was composed of 213
sentences and 3.4k running words with a perplexity of 168. The recognition
was performed with the open vocabulary setup (64k words). Still, the test set
contained 314 OOVs. A summary of this corpus can be found in Table 2.2.

Training

Sentences 37, 394
Speakers 284

Triphones 11, 889
Tied-states 5, 602

Densities 134, 502

(a) Training.

Dev Test

Sentences 403 213
Running words 6, 721 3, 446

Speakers 10 10
OOV (%) 3.9 1.7
Perplexity 150 149

(b) Test and development.

Table 2.2: Summary of statistics of the WSJ corpus.

Handwritten Text Recognition

The HTR problem is formulated and modeled in a very similar fashion to the
ASR problem. In this case, however, x represents a line of digitized manuscript.
The HTR system used here follows the classical architecture composed of three
main modules: document image preprocessing, line image feature extraction
and HMM training/decoding [Toselli et al., 2004]. The following steps take
place in the preprocessing module. First, the skew of each page is corrected;
we understand “skew” as the angle between the horizontal direction and the di-
rection of the lines on which the writer aligned the words. Then, a conventional
noise reduction method is applied on the whole document image, whose output
is then fed to the text line extraction process which divides it into separate
text lines images. Finally, slant correction and size normalization are applied
on each separated line. A more detailed description of the feature extraction
can be found in [Toselli et al., 2004] and [Romero et al., 2007].

As our HTR system is based on HMMs, each preprocessed line image is rep-
resented as a sequence of feature vectors. To do this, the feature extraction
module applies a grid to divide the text line image into N×M squared cells.
From each cell, three features are calculated: normalized gray level, horizontal
gray level derivative and vertical gray level derivative. The way these three
features are determined is described in [Toselli et al., 2004]. Columns of cells
or frames are processed from left to right and a feature vector is constructed
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for each frame by stacking the three features computed in its constituent cells.
Hence, at the end of this process, a sequence of M 3N -dimensional feature vec-
tors is obtained. In Figure 2.7b an example of the sequence of feature vectors
for the word “saca” is shown graphically.

HTR experiments were conducted on the “Cristo-Salvador” corpus [Romero
et al., 2007]. This corpus was compiled from the legacy handwriting document
from the XIX century, which was kindly provided by the Biblioteca Valenciana
Digital (BIVALDI)12. This is a rather small document composed of 53 color
images of text pages. Some of these page images are shown in Figure 2.8. In the
page version of this corpus, the test set is formed by 491 samples corresponding
to the last ten lines of each document page (4.5k running words), whereas the
training set is composed of the 681 remaining samples (6.4k running words).
The experiments were run on a closed vocabulary containing 3.4k words. Note
that the small training ratio, 2.8 training words per lexicon entry in average,
results in a high test perplexity of 360 for a 2-gram language model. All the
information related with page partitions is summarized in Table 2.3.

Figure 2.8: Examples of corpus “Cristo-Salvador”

Number of: Training Test Total Lexicon OOV (%) Tr. Ratio

Pages 53 53 53 — — —
Text lines 681 491 1, 172 — — −−
Words 6, 435 4, 483 10, 918 2, 277 16 2.8
Characters 36, 729 25, 487 62, 216 78 0 470

Table 2.3: Basic statistics of the partition page of the database Cristo-Salvador

12http://bv2.gva.es
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2.2.4 Machine Translation

Machine translation (MT) essentially consists on, given a sentence in a source
language x, to obtain a sentence in a target language y that is a translation
of x. When applying Equation (1.9) to statistical MT, Pr(y) is modeled as
an n-gram language model, whereas Pr(x|y) can be approximated by word-
based models [Brown et al., 1993]. On the other hand, log-linear phrase-based
models [Koehn et al., 2003; Tomás and Casacuberta, 2001; Zens et al., 2002],
which are built upon word-based models, follow Equation (1.7). The former
are good for obtaining the alignments between source and target words, but
they are rather limited concerning translation quality since they cannot model
contextual information properly. In contrast, phrase-based models may achieve
good levels of quality for many translation tasks.

Brown et al. [1993] approached the problem of word-based MT from a statistical
point of view, by introducing a hidden variable, a ⊆ {1, . . . , |x|}×{1, . . . , |y|},
where aj,i = 1 indicates that the source word xj is aligned to the target word
yi, and aj,i = 0 indicates the contrary (see Figure 2.9a for a visual illustration).
This alignment matrix allows all possible alignment patterns. Nevertheless, the
huge number of possibilities, 2|x||y|, makes this approach impractical. Thus,
Brown et al. [1993] decided to constrain the alignments for their word-based
models to a : {1, . . . , |x|} → {0, . . . , |y|}. Here, aj = i represents the source
word xj is aligned to the target word yi, and aj = 0 means that xj is not
aligned to any target word (a visual representation in Figure 2.9b). Formally,
we can marginalize over the set of all possible alignments between the words
in x and the words in y,

Pr(x | y) =
∑
a

Pr(x,a | y) (2.14)

atascos

de

papel

pa
pe

r

ja
m

s

atascos
atascos de

de papel
papel

atascos de papel

jams
jams
paper
paper
paper jams

(a) Display of the alignment matrix and extrac-
tion of consistent segments. A � indicates that the
source and target words are aligned. Normal and
dashed boxes constitute phrases extracted from co-
herent alignments, which are explicitly represented to
the right.

atascos1 de2 papel3

∅0 paper1 jams2

x =

y =

a = {2, 0, 1}
(b) Representation of the align-
ment variable in word-based
models. Subscripts indicate
word position whereas ∅0 is the
null alignments, i.e., the source
word is not aligned to any out-
put word.

Figure 2.9: Different visualization of alignments in MT.
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Then, Pr(x,a|y) can be decomposed using the chain rule,

Pr(x,a | y) = Pr(|x| | y)

|x|∏
j=1

[
Pr(aj | aj−11 , xj−11 , |x|,y)

Pr(xj | aj1, xj−11 , |x|,y)
]

(2.15)

where the first term models the length of x, the second one models the align-
ment probability, and the third one the translation probability.

The different word alignment-based models 1, 2 and HMM are built upon Equa-
tion (2.15) by making different assumptions about the distribution probabili-
ties, specially regarding alignment probability. The goal is to make model esti-
mation and search tractable. Fertility-based word models 3, 4 and 5 introduce
additional concepts like fertility and distortion but their introduction is out of
the scope of this section. In word alignment-based models, first, Pr(|x| | y) is
approximated by p(|x| | |y|). Then, Pr(xj | aj1, xj−11 , |x|,y) is approximated
by a word-by-word statistical translation dictionary p(xj |yaj ). Nonetheless, it
is in the alignment probability where the alignment models differentiate. For
instance, in Model 1 the alignment probability is modeled by a uniform proba-
bility, (|s|+ 1)−1. Model 2 goes a step further and assumes that the alignment
probability is conditioned on the length of source and target sentences, and
the source position, p (aj |j, |x|, |y|). Finally, in HMM models, the alignment
probability is assumed to be a Markov process so the alignment depends on
the previous alignment but not on the source position, p (aj |aj−1, |x|, |y|).
With respect to parameter estimation, the translation probability is essentially
the relative frequency of word xj being aligned with yaj . On the other hand,
the alignment probability, in Model 2 for instance, can be approximated by
the relative frequency of position j in the source sentence to be aligned with
position aj in the target sentence for the given sentence lengths. Nonethe-
less, these frequencies cannot be estimated directly since the real alignments
are unknown. Thus, the EM algorithm is needed to reliably estimate these
probabilities [Brown et al., 1993].

As stated before, word-based MT does not achieve good translation quality. As
they assume that a source word can only generate one target word, the context
where the translation takes place cannot be modeled properly. Phrase-based
models aim at solving this issue by working at phrase level instead of word level.
In phrase-based models the basic units are phrases instead of words. However,
we do not know neither the number of phrases nor how they are segmented,
as it is not a deterministic problem. Thus, first we need to marginalize over
all possible number of phrases K : K ≤ min(|x|, |y|). Then, we uncover the
segmentation of y in K phrases as µK1 , and the segmentation of x in K phrases
as γK1 . Finally, in a similar way to Equation (2.14), the alignments between the
phrases are explained by αK1 , which are defined as a but at phrase level. Then,
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the likelihood in Equation (1.9) can be approximated in a way that resembles
very much that of HMM word-based models:

Pr(x | y) ≈
∑
K

∑
µK1

∑
γK1

p(|x| | |y|)∑
αK1

K∏
k=1

p(αk | αk−1)p(x
γαk
γαk−1

| yµkµk−1
)


(2.16)

Note that the bracketed part of Equation (2.16) is equivalent to the HMM
instantiation of Equation (2.14) if we replace words by phrases. Nevertheless,
as in this case, the number of phrases and the source and target segmentations
are unknown, we first need to split x and y into phrases.

The estimation of the probabilities in Equation (2.16) can be carried out by
the EM algorithm [Andrés-Ferrer and Juan, 2009]. However, in practice an
heuristic approach can be used with good results:

1. Word-based MT systems are estimated in both directions.

2. The alignments from both directions are combined to form an alignment
matrix.

3. All coherent phrases are extracted from the alignment matrix up to a
certain phrase length.

4. The translation probabilities are obtained by the relative frequencies.

Figure 2.9a is an example of how coherent phrases are extracted from the
alignment matrix. Regarding the alignment probability, phrases already sup-
port intra-phrase reordering. In consequence, for language pairs that usually
do not present long reorderings, a monotonous approach can be followed. In
this case, the alignments are known so the alignment variable can be canceled
out from Equation (2.16).

Finally, the translation probability can be combined with the inverse transla-
tion probability, the language model, and other phrase features in a log-linear
manner to model the posterior probability in Equation (1.7):

Pr(x | y) ≈
exp

(∑
f λfhf (x,y)

)
Z(x)

(2.17)

where hf are feature functions (the translation log-probabilities and the log-
probabilities of the language model among others), λf are the scaling factors for
each feature function, and Z(x) is a normalization factor. The scaling factors
are typically obtained with a development set to optimize the loss function of
interest. The normalization factor is a constant that can be canceled out in the
MAP decision rule. Therefore, the score of an edge in log-linear phrase-based
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models can be expressed as

Fx ((yk, uk, vk)) = exp

∑
f

λfhf (tx(uk, vk), yk)

 (2.18)

For more details on learning and searching in phrase based models see [Koehn,
2010].

The experiments on MT were conducted on the Xerox corpus [Esteban et al.,
2004], since it has been extensively used in the literature to obtain IMT re-
sults. The Xerox corpus is a collection of technical manuals in English, Spanish,
French, and German. The English version is the original document, while the
others are professional translations of the original. The English and Spanish
documents were used in this work. The corpus features approximately 0.7M
running words for training and 90k running words for test. Language model
perplexities for test are 48 for English and 33 for Spanish. Examples of sentence
pairs are shown in Figure 2.10 and some statistics are summarized in Table 2.4.
In addition, publicly available log-linear decoders, such as Moses [Koehn et al.,
2007] and Thot [Ortiz et al., 2005], are able to produce word graphs (see Fig-
ure 2.11 for an example).

English Spanish

if a particular capability is not avail-
able in your network environment ,
the option will not appear in the di-
alog .

si alguna de las funciones no se en-
cuentra disponible en su entorno de
red , no aparecerá en el cuadro de
diálogo .

use this button to expand the search
for xerox devices .

use este botón para ampliar la
búsqueda de dispositivos xerox .

the search may be expanded to in-
clude additional snmp community
names that have been added to your
network .

la búsqueda puede ampliarse para
incluir otros nombres de comu-
nidades de snmp que se han agre-
gado a la red .

show devices enables you to limit
the number of document centres dis-
played in the list .

mostrar dispositivos permite limi-
tar el número de sistemas document
centre que se muestran en la lista .

Figure 2.10: Examples of sentence pairs for the Xerox corpus
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English Spanish

Training

Sentences 55, 761 55, 761
Running words 665, 400 752, 607
Vocabulary 7, 957 11, 051
Perplexity 14.37 13.63

Test

Sentences 1, 125 1, 125
Running words 8, 370 10, 106
OOVs (%) 3.9 5.9
Perplexity 48.28 32.92

Table 2.4: Statistics for the Xerox corpus

paperpaper/0.01

paper jams/0.076

jams/0.0029

jam/0.0015

from/0.034

of/0.025

of/0.13

of/0.14

jam/0.25

jams/0.26

jams/0.29

jam/0.41

paper/0.28

x = atascos1 de2 papel3
from

of

of

jams

jam

Figure 2.11: Example of translation WG for the Spanish source sentence “atascos de
papel”. Each state is defined by the previous 2-gram history and the source coverage
vector, which identifies what input words have been translated up to the given state.

2.3 Corpora for multimodal interaction

2.3.1 On-line handwritten text for IMT

On-line HTR consists in recognizing handwritten text from pen strokes (or ink)
in lieu of scanned images. The on-line HTR problem can be formulated just like
the off-line HTR problem. Nevertheless, in on-line HTR the feature vectors are
obtained differently. In this work, we follow the feature extraction approach
from Pastor et al. [2005]. First, the strokes are preprocessed by eliminating pen-
up point and consecutively repeated points. Then, a low pass filter is applied
to reduce noise. From the resulting trajectory, 6 features are extracted:

1. The vertical position is normalized by scaling and translating it to [0, 100]
keeping aspect ratio.
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2. The first and second derivatives for the vertical and horizontal position.

3. The curvature, which is the inverse of the radius of the curve in each
point.

Regarding the on-line HTR data, the UNIPEN corpus [Guyon et al., 1994] was
used. The training data was composed of symbols, digits and the 1, 000 most
frequent English and Spanish words. The words were generated by concate-
nating different instances of characters from the same writer, with a total of
17 different writers. Overall, 68 character classes and a total of 23.5k unique
character instances were used to generate all the 43.8k training samples. These
samples were used to train the morphological models, which were represented
by continuous density left-to-right character HMMs with Gaussian mixtures
and variable number of states per character.

The required word instances that would have to be handwritten by the user in
the multimodal interaction process were generated by concatenating random
character instances from three categories: digits, lower case letters and symbols.
The simulation of user interaction was performed in the following way. First,
we ran an off-line simulation for keyboard-based IMT. As a result, a list of
words which the system failed to predict was obtained. Supposedly, this would
be the list of words that the user would correct with handwriting. Then,
from UNIPEN corpus, three users were separated from the training process to
produce the concatenated words for the development and test sets. For each
user, the handwritten words were generated by concatenating random character
instances from the user’s data to form a single stroke. A summary of this corpus
is shown in Table 2.5. Finally, the generated handwritten words were decoded
using the proposed systems with iAtros [Luján-Mares et al., 2008]13 decoder.
Development 3-gram perplexities are 205 for Spanish and 242 for English while
test perplexities are 226 and 366, respectively. Examples of generated words
are shown in Figure 2.12.

English Spanish
dev test dev test

Complete sentences 510 434 576 414
Erroneous running words 2726 2248 2398 2102
Perplexity of erroneous words 242 336 205 226
Number of erroneous segments 896 1130 941 1268
Average length of erroneous segments 2.12 2.35 2.18 2.39

Table 2.5: Basic statistics of the Xerox on-line HTR corpus for English and Spanish.

13http://prhlt.iti.upv.es/w/iatros
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English Spanish
another recursos

User 1

User 2

User 3

Figure 2.12: Examples of pen strokes from the UNIPEN database used for the simulation
of HTR for English and Spanish. The words were obtained by concatenating random
character instances from the corresponding user.

2.3.2 Speech interaction for IMT

The data set for speech interaction consists of utterances of fragments of target-
language (Spanish) sentences, extracted from the test part of the original Xerox
corpus [Vidal et al., 2006]. These utterances are used as a test set to simulate
real interactions of the IMT system with human translators. All the speech data
was acquired using high quality microphones and 16KHz sampling frequency.
A summary of relevant features of this corpus is shown in Table 2.6.

Text Original complete sentences 128
Different sentence fragments uttered 485
Average prefix length 4.5
Running words 1, 138
Running characters 7, 320

Speech Number of speakers 10
Number of utterances 5, 337
Running words 13, 998

Table 2.6: Spanish speech test utterances (from the Xerox corpus)

The set of test utterances was obtained as follows. First a subset of 128 sen-
tence pairs was selected from the text partition of the Xerox text corpus. For
the target (Spanish) sentence of each of these pairs, several segmentations into
prefixes and suffixes were randomly performed and, for each generated suffix,
a set of prefixes was randomly derived. All the prefixes of suffixes generated in
this way constitute the set of sentence fragments uttered by several speakers.
In order to approach real IMT user interactions as much as possible, this gen-
eration process was performed in such a way that the lengths of the generated
fragments were similar to the lengths of accepted parts of system suggestions
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observed in text-only experiments with a real IMT system applied to the orig-
inal set of 128 sentence pairs.

The speech models are HMM with three states, with left-to-right topology with
loops and 128 Gaussians per state. Each speech model represents a phonet-
ically context-independent unit (monophone). These models were estimated
using the data of the Albayzin Spanish speech corpus [Moreno et al., 1993],
a phonetically balanced corpus with 42k running words (4 hours of speech)
and 164 different speakers. Lexical models consist of stochastic finite-state
machines, representing all the possible concatenations of individual characters
or phonemes to compose the word. Finally, Kneser and Ney [1995] back-off
smoothed 3-gram models were used as language models in all the experiments.

2.3.3 Dictation of historical documents

This corpus comprises a series of dictations of handwritten sentences of histori-
cal documents. More specifically, the experiments were carried out by dictating
parts of the “Cristo-Salvador” corpus. It is important to remark that this cor-
pus has quite a small training ratio (around 2.8 training running words per
lexicon-entry). This is expected to result in undertrained (n-gram) language
models, which will clearly increase the difficulty of the recognition task.

In order to assess the speech dictation systems five different users dictated a
selected page from the Cristo Salvador corpus, line by line. That page was
selected on the basis that the average WER for this page was closest to the
average WER for the whole test set. It resulted in a test data-set composed
by 120 dictated lines. Some basic details are shown in Table 2.7. The acoustic
HMMs needed in the speech recognition system were trained on the same corpus
than for the speech-enabled IMT, the Albayzin corpus (cf. Section 2.3.2). The
baseline language model for text lines is a 2-grams with Kneser and Ney [1995]
back-off smoothing directly estimated from the training transcriptions of the
text line images.

Speakers 5
Sentences 120
Running words 222
Running characters 1, 239
Length (seconds) 454

Table 2.7: Basic statistics of the speech dictation test.

2.4 Evaluation metrics

The metrics used to evaluate interactive systems are based on the human ef-
fort needed to produce a correct output or reference. These metrics often
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come from the normalization of the loss function at stake. Therefore, the post-
editing effort in non-interactive systems has traditionally been measured by
the word error rate (WER), as the ratio between the number of editions (sub-
stitutions, deletions and insertions) necessary to transform the hypothesis into
the reference, and the number of words in the reference. A specific case is
the Hamming distance, where only substitutions are needed since there is a
one-to-one correspondence between the input and the output. Accordingly, in
the case of classification or sequence labeling problems we will only account for
substitutions. We will call this metric classification error rate (CER).

Arguably, the edit distance is a simplistic approach to assess PE effort. On the
one hand, it is optimistic regarding the number of operations to make, since
a human will hardly ever perform the operations with the minimum number
of operations, especially in complex problems. On the other hand, the edit
distance assigns the same cost to all the operations, regardless of the complex-
ity of the problem and the cognitive effort needed to perform them. On the
positive side, the edit distance provides an automatic and intuitive measure.
Consequently, it has been widely adopted for many NLP tasks as the PE cost.

With respect to interactive measures, the word stroke ratio (WSR) measures
the human error in correcting in a (passive) interactive scenario following a
sequential order. It can be computed as the ratio between the number of
interactions (corrected words) in the interactive system and the number of
words in the reference. On the other hand, in the active interactive case we
will measure the number of supervisions made, the number of corrections, and
the residual error after the corrections.

Analogously, in ISP systems, the cost of interactively correcting a system out-
put can be computed as the number of corrections (substitutions) needed to
obtain the reference. Note that this is not equivalent to the Hamming distance
since the part on the right of the output may change after each user correction.
In this case, the cognitive effort is also neglected and the substitution cost is
the same for all corrections. Besides, system suggestions may influence human
corrections, since a good proposal could change a user’s opinion regarding what
the correct solution is. In this sense, using a unique reference can be deemed
as a pessimistic approach in problems with multiple correct solutions. Fur-
thermore, ISP systems may work at character level (key stroke ratio (KSR)),
as opposed to word level. In character level ISP, the suffixes are computed on
each user key press, instead of predicting a suffix after signaling the end of a
word by pressing the space key. It is not clear whether KSR or WSR correlate
better with actual human effort. However, during this thesis we will assume
that KSR is, somehow, more related to the mechanical effort of typing, whereas
WSR is more related to the cognitive effort. Hence, word edit distance seems
a more intuitive measure. Thus, we will use word level measures throughout
all this thesis. Notwithstanding some of the shortcomings presented, WSR can
be considered to be a reasonably valid approximation to the human effort in
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an interaction scenario.

The performance of the on-line HTR system was assessed with CER for isolated
word recognition whereas WER was used in the continuous recognition exper-
iments. In addition, in order to evaluate the improvements in the language
modeling capabilities of different context-aware language modeling techniques,
perplexity was employed [Rosenfeld, 2000]. Perplexity, measured for a text
with respect to a language model, is a function of the likelihood of that text
being produced by repeated application of the model. Similarly, oracle WER
(OWER) is the best WER that can be obtained from the word graph result-
ing from the decoding process. OWER was used to evaluate lattice quality,
since we expect that applying contextual information before the decoding of
the input modality will result in a better lattice quality.

Finally, significance of our results, where used, were assessed by the paired
bootstrap resampling method, described in [Bisani and Ney, 2004]. This tech-
nique compares two systems and finds out whether one of them significantly
outperforms the other one.
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Chapter 3. Passive Interactive Structured Prediction

3.1 Introduction

As we have seen in Chapter 1, the interactive structured prediction (ISP) frame-
work (also known as interactive pattern recognition [Toselli et al., 2011]) was
introduced in [Vidal et al., 2007] to reduce the cost of correcting the automati-
cally generated output. In ISP, the user is introduced in the core of a SP system
so that the system and the user can interact with each other to minimize the
effort required to produce a satisfactory output (Figure 3.1 represents the ISP
interaction scheme). In ISP, an input x is given to the system, which outputs
a possible hypothesis ŷ. Then, the user analyzes ŷ and provides feedback f
regarding some of the errors committed. Now, the system can benefit from the
feedback to propose a new improved hypothesis. This process is repeated until
the user finds a satisfactory solution, r, and the process ends.

ISP system
r

ŷ

user

x

f

Figure 3.1: Diagram of an passive interactive structured prediction process. The system
processes the input x to produce an initial output ŷ. Then, the user analyses the output
and proposes a correction by some feedback f . Now, the system proposes a new hypothesis
ŷ. This process is repeated until the desired solution r is obtained.

Traditionally, ISP systems are designed following a decision rule to minimize
output errors. However, this is not optimal for ISP since the decision rule should
be formalized in terms of minimizing user interactions. Indeed, this fact was
proved in [Oncina, 2009], where an alternative strategy is applied to a specific
case of ISP (i.e., text prediction). Inspired by that work, here we provide an
optimal decision rule for ISP which covers a broader range of common ISP
problems in which the output depends on a structured input x. This strategy
is analyzed from a theoretical perspective and a practical decoding algorithm
is developed to be used straightforwardly in many ISP tasks. In addition, we
propose theoretically and empirically that the algorithm that has been used for
ISP until now is a good approximation to the optimum for ISP.

3.2 Sequential Interactive Structured
Prediction

Sequential interactive structured prediction (SISP) is a specific case of ISP where
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the user validates and/or corrects the system output in sequential order (typ-
ically left-to-right). This is especially interesting for many natural language
processing (NLP) tasks, since humans usually listen, read, write, and talk in
sequential order. Other non-sequential protocols may seem more natural in
some scenarios, for example in interactive predictive parsing. Nonetheless,
even in this case, the SISP protocol has been proven to be useful [Sánchez-Sáez
et al., 2009].

Let y(i) be a sequence of labels (e.g., words) that represents a hypothesis at
iteration (i). We can define y(i) as the concatenation1 of a correct prefix

y
(i)
p , that matches a prefix of the solution r, and a suffix hypothesis y

(i)
s , so

that y(i) = y
(i)
p ·y(i)

s . Then, the protocol that rules SISP to obtain r can be
formulated in the following steps:

0. Initially (i = 0), the correct prefix is the empty string, y
(0)
p = λ, and the

system proposes a complete hypothesis ŷ(0)
s .

1. At iteration (i ≥ 1), the user finds the longest prefix a(i) of ŷ(i−1)
s that is

error-free and corrects the first error in the suffix, which, let us assume,
is at position k, with rk.

2. A new extended prefix y
(i)
p is produced as a concatenation of the correct

prefix, the new error-free segment of the suffix and the new introduced

word y
(i−1)
p ·a(i)· rk.

3. Then, the system proposes a suffix hypothesis ŷ(i)
s that follows the prefix

y
(i)
p established in the previous step.

4. Steps 1, 2 and 3 are iterated until, at some iteration i = I with I ≤ |r|,
a correct solution is obtained, ŷ(I) = r.

Figure 3.2 shows an example of this SISP protocol for MT. Initially, the system
starts with an empty prefix and a full hypothesis is proposed. The user finds
the first error, ‘cannot’, and amends it with the correct word ‘is’. Since the user

validates sequentially from left to right, the system assumes that the prefix y
(1)
p

‘if any feature is’ is correct. Based on this validated prefix, the system produces

a new suffix y
(1)
s , in which the words ‘be found on’ have been automatically

corrected by ‘not available at’. Similarly, at iteration 2, by introducing r7 =‘in’
the system corrects ‘web’ at the end of the sentence. Finally, the system sug-

gests a new suffix y
(2)
s that is correct and the user ends the process. Note that

in a PE system, the user would have needed to make five corrections whereas
just two corrections are needed in SIPS.

1The symbol · will be used to denote the concatenation of two or more variables.
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SOURCE (x): si alguna función no se encuentra disponible en su red
REFERENCE (r): if any feature is not available in your network

i = 0 y
(0)
p

ŷ(0)
s if any feature cannot be found on your web

ŷ(0) if any feature cannot be found on your web

i = 1 a(1) if any feature
r4 if any feature is

y
(1)
p if any feature is

ŷ(1)
s if any feature is not available at your web

ŷ(1) if any feature is not available at your web

i = 2 a(2) if any feature is not available
r7 if any feature is not available in

y
(2)
p if any feature is not available in

ŷ(2)
s if any feature is not available in your network

ŷ(2) if any feature is not available in your network

I = 2 y(2) = r if any feature is not available in your network

Figure 3.2: Example of a SISP session for a MT task from Spanish to English. The
source sentence is the input x while the reference r is the result that the user has in

mind. At each iteration (i), ŷ
(i)
s is the suffix proposed by the system. a(i) (in italics) is

the longest correct prefix of ŷ
(i−1)
s . Finally, rk (in boldface) is the word introduced by

the user to amend the error, which results in a new validated prefix y
(i)
p . Note that only

two user corrections have been needed to produce a correct solution whereas five edition
operations would have been necessary with PE.

3.3 Optimal Decision Rule for SISP

Ideally, when building a SISP system, we would like to devise a system which
allows the human expert to amend the system output with less effort. As we ex-
plained in Chapter 1, following the minimum classification error (MCE) [Duda
et al., 2001], the optimum decision rule is the one that minimizes the average
probability of loss (conditional risk) over a probability distribution Pr(·). In
classification problems, the human effort can be approximated by a cost 0 if
the output is correct and a cost 1 if the user has to amend an erroneously
classified sample by assigning the correct label. This function is known as the
zero-one loss function and leads to the maximum-a-posteriori (MAP) decision
rule [Duda et al., 2001]:

ŷ = arg max
y

Pr(y|x) (3.1)

Typically, SISP systems have used an extension of MAP which has been suc-
cessfully applied to several NLP tasks [Toselli et al., 2011], namely interactive
machine translation [Barrachina et al., 2009], interactive transcription of text
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images [Toselli et al., 2010], interactive predictive parsing [Sánchez-Sáez et al.,
2009], interactive speech transcription [Rodŕıguez et al., 2007] and interactive
text generation [Rodŕıguez et al., 2010]. Thus, at steps 0 and 3 of the SIPS pro-

tocol, a suffix hypothesis ŷ(i)
s that continues a validated prefix y

(i)
p is generated

using the following equation:

ŷ(i)
s = arg max

ys

Pr(ys|x,y(i)
p ) (3.2)

where the output in the interaction (i) is ŷ(i) = y
(i)
p · ŷ(i)

s . Nevertheless, the
MAP rule seeks solutions with zero errors, whereas we would prefer a hypothesis
that minimizes the number of human corrections.

3.3.1 The Cost of Interactively Correcting the Output

In Section 2.4, we introduced word stroke ratio (WSR) as the metric for SIPS.
We also explained that key stroke ratio (KSR) could be also a valid metric,
although WSR seemed more appropriate to represent user’s cognitive effort.
Both metrics express the ratio of corrections with respect to the total number
of label. However, in WSR the corrections will represent word corrections,
whereas in KSR they will represent character corrections. Mathematically, we
can use the same expression for both cases to define the cost of interaction by
counting the number of corrections.

Definition 3.1. The SISP protocol has an associated cost function C(y(i), j, r)
that computes the cost of sequentially producing a reference r from the label at
position j of the hypothesis y(i) at iteration (i). Using the abbreviated notation,

C
(i)
j , the cost can be described as:

C
(i)
j = δ̄

(i)
j

(
1 + C

(i+1)
j+1

)
+ δ

(i)
j C

(i)
j+1 (3.3)

where δ
(i)
l = δ(y

(i)
l , rl) is a Kronecker delta function that is 1 if y

(i)
l = rl and 0

otherwise, whereas δ̄
(i)
l is the negation of δ

(i)
l .

It is worth of noting that Equation (3.3) is different from the cost defined by
the Hamming function for post-editing sequence labeling problems (cf. Sec-
tion 1.4.1). Although both costs count the number of corrections by perform-
ing substitutions, in Equation (3.3) the system is dynamic, meaning that the
hypotheses and problem constraints change over time, as a product of user’s in-
teraction. Conversely, in post-editing of sequence labeling problems the system
is static.

As a remainder, we should remark that we will denote with yk the k-th element

in y and with y
(i)
j..k−1 the substring from j to k − 1 of y(i).
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Proposition 3.1. Let Pr(ys|x,y(i)
p ) be a posterior probability over the suffixes

that continue y
(i)
p = (y

(i)
1 , . . . , y

(i)
j−1). A suffix ŷ(i)

s = (ŷ
(i)
j , . . . , ŷ

(i)
k , . . . , ŷ

(i)

Î
)

with the last symbol at position Î, which minimizes the conditional risk of the
number of interactions, can be obtained following this decision rule:

ŷ
(i)
k = arg max

yk

∑
y′s

Pr(yk·y′s|x,y(i)
p · ŷ(i)j..k−1)

for k = j . . . Î ∧ ŷ(i)
Î+1

= $ (3.4)

where y′s is a possible suffix for y
(i)
p · ŷ(i)j..k−1· yk and $ is a special symbol that

means the end of the hypothesis.

Proof. Following the MCE approach, an optimum algorithm for SIPS is one

that minimizes the conditional expected value (E ((|·))) of C
(i)
j :

(ŷ
(i)
j , . . . , ŷ

(i)

Î
) = arg min

(yj ,...,yI)

min
I

E
(
C

(i)
j

∣∣∣x,y(i)
p

)
(3.5)

As the expected value is a linear operator, and after simple transformations,
Equation (3.5) becomes:

E
(
C

(i)
j

∣∣∣x,y(i)
p

)
= E

(
δ̄
(i)
j

∣∣∣x,y(i)
p

)
+ E

(
δ̄
(i)
j C

(i+1)
j+1

∣∣∣x,y(i)
p

)
+ E

(
δ
(i)
j C

(i)
j+1

∣∣∣x,y(i)
p

)
= 1−

∑
y′s

Pr(y
(i)
j ·y′s|x,y(i)

p ) +
∑
w 6=y(i)j

E
(
C

(i+1)
j+1

∣∣∣x,y(i)
p ·w

)
+ E

(
C

(i)
j+1

∣∣∣x,y(i)
p · y(i)j

)
(3.6)

First, note that the sum of the expected values of C
(i)
j+1 and C

(i+1)
j+1 in Equa-

tion (3.6) covers all possible suffixes of y
(i)
p . Hence, this sum is constant for

every possible value of yj and the minimization can be done independently.
Then,

ŷ
(i)
j = arg min

yj

1−
∑
y′s

Pr(yj ·y′s|x,y(i)
p )


= arg max

yj

∑
y′s

Pr(yj ·y′s|x,y(i)
p ) (3.7)
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Consequently, ŷ
(i)
j must form part of the optimum hypothesis. The minimiza-

tion for subsequent elements can be rewritten as

(ŷ
(i)
j , . . . , ŷ

(i)

Î
) = arg min

(yj ,...,yI):yj=ŷ
(i)
j

min
I

E
(
C

(i)
j

∣∣∣x,y(i)
p

)
(3.8)

Since all but the last term in Equation (3.6) are constant now that ŷ
(i)
j has

been fixed,

(ŷ
(i)
j , . . . , ŷ

(i)

Î
) = arg min

(yj ,...,yI):yj=ŷ
(i)
j

min
I

E
(
C

(i)
j+1

∣∣∣x,y(i)
p · ŷ(i)j

)
(3.9)

Similarly to Equation (3.7), we can obtain ŷ
(i)
j+1. Now, by induction it is trivial

to prove that, if Equation (3.9) holds for ŷ
(i)
j..k−1, it also holds for ŷ

(i)
k , using the

same reasoning. That concludes the proof of Proposition 3.1.

The algorithm in Proposition 3.1 works by constructing the output incremen-
tally, by appending individual labels from left to right. The decision of ap-
pending a new label is conditioned to previous labels, but it is independent of
future decisions. The idea behind this is that, if the user amends a label at

position l, ŷ
(i)
l , all of the following labels in ŷ(i) (i.e., ŷ

(i)

l+1..Î
) will be discarded

in favor of a new suffix, ŷ(i+1)
s . Hence, they are not relevant for the decision

process.

It must be noted that the proof assumes that the process is stationary, i.e., the
posterior probability does not change during the computation of the decision
rule. Therefore, if an incremental learning algorithm is used after each user
interaction, then Pr(·) may change. As a result, the sum of the expected values

of C
(i)
j+1 and C

(i+1)
j+1 in Equation (3.6) cannot be considered a constant since the

probability distribution of the expected value can be different, and thus, the
expected value itself. However, if on-line learning were used after the sentence
had been completely corrected, then Proposition 3.1 would still be an optimum
algorithm.

3.3.2 Relation with the MAP Decision Rule

It has been mentioned that the MAP decision rule (Equation (3.2)) has been
extensively used for SISP. Although Equation (3.2) is known to minimize the
zero-one loss function for hypothesis suffixes, it would be interesting to analyze
how it behaves with respect to Equation (3.4).
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Proposition 3.2. The MAP decision rule is equivalent to a maximum approx-
imation to the optimal decision rule for SISP,

ŷ
(i)
k = arg max

yk

max
y′s

Pr(yk·y′s|x,y(i)
p · ŷ(i)j..k−1)

for k = j . . . Î ∧ ŷ(i)
Î+1

= $ (3.10)

Proof. For k = j, Equation (3.2) and Equation (3.10) are obviously equivalent.
Obtaining yj from Equation (3.2),

ŷ
(i)
j

(3.2)
= arg max

yj

max
yj+1..I

Pr(yj..I |x,y(i)
p ) = arg max

yj

max
yj+1..I

Pr(yj · yj+1..I |x,y(i)
p )

(3.11)

for ys = yj+1..I .

Then, by induction, if both decision rules are equivalent for ŷ
(i)
j..k−1, then they

are also equivalent for ŷ
(i)
k ,

ŷ
(i)
k

(3.2)
= arg max

yk

max
yj..k−1,yk+1..I

Pr(yj..I |x,y(i)
p )

= arg max
yk

max
yj..k−1,yk+1..I

Pr(yj..k−1|x,y(i)
p ) Pr(yk· yk+1..I |x,y(i)

p · yj..k−1)

(3.12)

Since ŷ
(i)
j..k−1 are known to be the optimum values, the first term of the product

is constant in Equation (3.12) finally reaching

ŷ
(i)
k

(3.2)
= arg max

yk

max
yk+1..I

Pr(yk· yk+1..I |x,y(i)
p · ŷj..k−1) (3.13)

for ys = yk+1..I . Therefore, both decision rules are equivalent.

Proposition 3.2 has two main implications. Firstly, it provides a formalism for
the traditional MAP approach as it can be seen as a maximum approximation
to the optimum. That is especially convenient for models where Equation (3.4)
cannot be computed efficiently (exponential number of suffixes). Secondly,
on non-smooth probability distributions where the mass probability is con-
centrated around the maximum, MAP performs almost as accurately as the
optimum algorithm.

Strictly speaking, MAP is not an admissible rule under a decision theory per-
spective. We say that a decision rule is inadmissible if there is another decision
rule that dominates it, i.e. there is a rule for which the risk is always better or
equal for a given loss function.
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Corollary 3.1. The MAP decision rule is an inadmissible decision rule for
the interactive cost function.

Proof. It is simple to prove that optimum decision rule always dominates the
MAP rule, since the latter is a maximum approximation of a sum of positive
elements, an thus always equal or better.

Nonetheless, MAP continues to be a pragmatic and interesting approach to
SISP. The relation of MAP and the decision rule to minimize the edit distance
was studied in [Schlüter et al., 2005, 2010, 2012], for non-interactive systems. In
those papers it was shown that both decision rules coincide under certain con-
ditions when the cost function is an integer-valued metric. In practice, Schlüter
et al. [2010] experiments showed that, for some ASR tasks, between 73.5% and
95.8% of the sentences resulted in the same hypothesis for an optimum and
MAP decision rules. Although the cost function for SISP is not a metric by
itself, some of these conditions could also hold for SISP problems.

Corollary 3.2. (Loss-Independence of the Bayes Decision Rule for Large Pos-
terior Probability [Schlüter et al., 2005]) Assume a maximum posterior proba-

bility ≥ 1
2 and a loss function defined by C

(i)
j . Then the posterior maximizing

class also maximizes the Bayes risk.

Proof. This proposition was defined for metric loss functions but it is also true
for SISP. First, the sum of the posteriors for all possible suffixes must be 1,∑

yj

∑
y′s

Pr(yj ·y′s|x,y(i)
p ) = 1 (3.14)

Thus, if yj
+ is the hypothesis with maximum posterior probability, and this

probability is ≥ 1
2 , then the remaining probability mass is ≤ 1

2 . Hence, there
cannot be a yj 6= yj

+ for which the sum in Proposition 3.1 is ≥ 1
2 . By induction,

it is trivial to prove that this is also true ∀k : j < j ≤ I.

In addition, Schlüter et al. [2010] established the Hamming risk as an upper
bound of the risk to the edit distance risk. The intuition points out that this
will also be true for SISP, although we do not present a prove in this thesis.

3.3.3 Relation with the greedy algorithm

The proof provided for Proposition 3.1 is inspired in previous work by Oncina
[2009], who reached a similar algorithm. In fact, it is possible to integrate the
summation for all suffixes y′s, producing the optimum algorithm in [Oncina,
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2009] where x is shown explicitly,

ŷ
(i)
k = arg max

yk

Pr(yk|x,y(i)
p · ŷ(i)j..k−1)

for k = j . . . Î ∧ ŷ(i)
Î+1

= $ (3.15)

However, Oncina [2009] deduced that the decision of a label in the output did
not depend on the rest of the labels that followed it. As a result, the opti-
mum decision rule was deemed as greedy in the sense that decisions could be
taken locally. That is, the probability in Equation (3.15) models only the next
label, whereas in Equation (3.4) it models whole suffixes. Probably, this deduc-
tion was due to the fact that, in his algorithm, Oncina [2009] ignored x from
the formulation since x would not change between interactions, and thus, this
particular problem was hindered. Unfortunately, a greedy algorithm is not a
solution when dealing with problems with an structured input, especially if the
original problem is best solved by an algorithm that takes global decisions. In
those cases, such as the problems we defined in Chapter 2, the directly mod-
eling the “local” posterior probability in Equation (3.15) is still an unresolved
problem, especially those with latent variables. There exist approaches using
incremental models [Daumé III et al., 2009; Maes et al., 2009] (as opposite
to global models), that could be used to estimate such posterior probabilities
directly. However, they are typically used for sequence labeling tasks, where
the output is the same length as the input. Therefore, it is necessary to rely on
the global models used in Equation (3.4) and perform the sum explicitly over
a (potentially) exponential number of suffixes.

3.4 Practical decoding algorithm

The algorithm described in Proposition 3.1 has the difficulty that the sum
over all possible suffixes must be done explicitly. In practice, this may be a
major problem, since SP outputs are combinatorial by nature. Hence, to list
all possible suffixes can be a hard problem. To deal with this problem, we
propose a general practical algorithm for optimal decoding. The whole set of
hypotheses (search space) will be represented by a word graph.

Given the input x, the posterior probability for a specific edge e can be com-
puted by summing up the posterior probabilities of all hypotheses of the word
graph containing e. These posterior probabilities (here we use small p to denote
models instead of true probabilities) can be efficiently computed based on the
well-known forward-backward algorithm [Wessel et al., 2001],

p(e|x) = p((y, u, v)|x) =
Φ(u)Fx (e) Ψ(v)

Φ(qf )
(3.16)
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if:1 any:1

feature:0.4

feature:0.6

cannot:0.4 be:0.4 found:0.4 on:0.4 your:0.4 web:0.4

is:0.24

is:0.15

is:0.21

not:0.24

not:0.15

not:0.21

available:0.24

available:0.15

available:0.21

at:0.24

in:0.15

in:0.21

your:0.24

your:0.15

your:0.21

web:0.24

web:0.15

network:0.21

Figure 3.3: Word graph obtained as the translation of the input sentence in Figure 3.2.
Edges show the hypothesized word and its posterior probability.

where the forward score Φ(u) for node u is the sum of all possible paths from
the initial node qi to u. Similarly, the backward score Ψ(v) for node v is the sum
of all possible paths from v to the final node qf . Figure 5.3 shows a (pruned)
word graph obtained as the result of the translation of the input sentence for
the example in Figure 3.2, after the word posterior probabilities have been
computed.

Now, we can conveniently introduce the dependency on the prefix y
(i)
p in Equa-

tion (3.16):

p(e|x,y(i)
p ) = p((y, u, v)|x,y(i)

p ) =
Φ
y
(i)
p

(u)Fx (e) Ψ(v)

Z
y
(i)
p

(3.17)

Note that the prefix dependency affects the forward score Φ
y
(i)
p

. In this case,

Equation (3.17) is restricted to the sum of all paths from the initial node qi to u

for which the sequence of labels matches the prefix y
(i)
p . Also, the normalization

factor Z
y
(i)
p

now only takes into account the mass probability of all the paths

that have y
(i)
p as a prefix.

Then, Equation (3.4) can be easily computed by marginalizing over all of the

edges with the word y that follow y
(i)
p :∑

y′s

Pr(y·y′s|x,y(i)
p ) ' p(y|x,y(i)

p ) =
∑
u

∑
v

p((y, u, v)|x,y(i)
p ) (3.18)

Figure 3.4 exemplifies how the state of the optimum algorithm changes when
predicting the word at position j = 4 in iteration (i = 0) for the example in
Figure 3.2. Note that an error is committed by the MAP approach (Figure 3.4a)
since it relies on the edge with the highest probability. In contrast, the optimum
algorithm selects the set of edges with the same word whose sum is maximum,
allowing the correct solution to be chosen.

Proposition 3.3. If the word graph is a deterministic probabilistic finite-state
machine (normalized as in [Sánchez et al., 2012]) then a greedy algorithm is
optimum w.r.t. the cost of interaction.
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if:1 any:1
feature:0.4

feature:0.6

cannot:0.4 be:0.4 found:0.4 on:0.4 your:0.4 web:0.4

is:0.24

is:0.15
is:0.21

not:0.24

not:0.15

not:0.21

available:0.24

available:0.15

available:0.21

at:0.24

in:0.15

in:0.21

your:0.24

your:0.15

your:0.21

web:0.24

web:0.15
network:0.21

(a) State of the optimum algorithm at iteration (i = 0) when obtaining j = 4. The dashed
edges suggest the paths to be chosen by the optimum algorithm, whereas the dotted edge
suggests the path to be chosen by the maximum approach.

if:1 any:1
feature:0

feature:1

cannot:0 be:0 found:0 on:0 your:0 web:0

is:0.4

is:0.25
is:0.35

not:0.4

not:0.25

not:0.35

available:0.4

available:0.25

available:0.35

at:0.4

in:0.25

in:0.35

your:0.4

your:0.25

your:0.35

web:0.4

web:0.25
network:0.35

(b) State of the optimum algorithm at iteration (i = 0) after obtaining j = 4. Note that the
posterior probabilities have been renormalized to contain only the paths with the prefix ‘if
any feature is’. Dotted edges display unreachable paths, for which the posterior probability
is 0. All the paths that are compatible with the prefix are eligible candidates. Note that,
based on the optimum algorithm, the correct output is produced at iteration (i = 0).

Figure 3.4: Word graphs for the example in Fig. 3.2 for the optimum algorithm. This
figure exemplifies how the state of the algorithm changes when predicting the word at
position j = 4 in iteration (i = 0). Edges show the hypothesized words and the posterior
probabilities as in Eq. (3.18). Bold edges show current compatible prefixes.

Proof. First, note that if the WG is deterministic, the double summation in
Equation (3.18) is made over a single element, since by definition of determinism
from a node only one edge can exit with the same label. Then,

p(y|x,y(i)
p ) = p((y, u, v)|x,y(i)

p ) =
Φ
y
(i)
p

(u)Fx (e) Ψ(v)

Φ
y
(i)
p

(u)Ψ(u)
(3.19)

=
Fx (e) Ψ(v)

Ψ(u)
(3.20)

which is the normalization solution in [Sánchez et al., 2012].

A practical implication of Proposition 3.3 is that SIPS decoding can be per-
formed in linear time if the WG determinization is precomputed. Note that the
general algorithm for automata determinization does not guarantee termina-
tion. However, any acyclic weighted automaton over a zero-sum-free semiring
is determinizable [Mohri, 2009]. Hopefully, WGs are such kind of automata,
either they work in the tropical semiring, the probability semiring, or the log
semiring.

3.5 Experimentation

In order to assess under what conditions the optimal decision rule outper-
formed the classical approach, we first designed a simulated scenario. This
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way, we could control the peakedness of the distribution. This parameter is
critical for the optimum approach to outperform the classical approach since
in peaky distributions, the maximum value dominates the sum, hence, both
approaches become equivalent. Furthermore, we wanted to evaluate the tech-
niques under different error rate conditions as tasks with more error rate would
need a smoother distribution to allow the sum good solutions take over the
maximum value. For this purpose, we obtained the references from the Wall
Street Journal (WSJ) database [Pallett et al., 1994]. Then, for each reference
we built a WG with 1000 hypotheses generated by introducing uniformly dis-
tributed random errors on the reference, with an ε error rate. In consequence,
for each ε we generated a test set with WGs that represented a recognition
process with ε errors distributed uniformly (in average). Next, we assigned
a score for each hypothesis assuming that the posterior probability followed
an exponential distribution, λe−λn, where n is the number of hypotheses and
λ ≥ 0 controls the peakedness of the distribution (the bigger the peakier).

In addition to the simulated experiment, five real world NLP tasks were se-
lected: DNI recognition, karyotype classification, machine translation, hand-
written text recognition, and automatic speech recognition. These tasks were
explained in Section 2.2. It must be mentioned that, as a result of the combi-
natorial nature of the search space for these tasks, the search algorithms used
were not able to obtain the whole search space, except for the DNI recognition
task. Instead, the search algorithms used heuristics to prune the space and to
reduce computational costs. Consequently, the WGs contain a set of the most
likely hypotheses but not all of them. In addition, as it was commented in
Section 2.1, the WGs represent the unnormalized posterior distribution, which
in these cases is represented in logarithmic form. Hence, we need to redefine
the posterior probability of a path in a WG (Equation (2.2)) as

p(e | x) =
exp(Fx (e) /η)∑
e′

exp(Fx (e′) /η)
(3.21)

where η is the posterior scale that is used to control the peakedness of the
posterior distribution which is needed to balance the scores of the competing
hypotheses. High values of η will make the posterior probability distribution
smoother, whereas low values will make it sharper. In practice, this scaling
factor adjusts the difference in probability between the first and runner up
hypotheses. Finally, η are usually estimated empirically on a held data set to
optimize the loss function.

It is important to note that, in the way Equation (2.5) and Equation (2.6) are
defined, the result of these decision rules is invariant to the value of η. That is,
η is used to modify the difference (sharpness) between the probabilities of the
hypotheses, but it does not change their rank (order). Thus, the first hypothesis
will be the same regardless of η. Nonetheless, η will be crucial for decision rules
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where different hypotheses are summed up, as in Equation (3.18).

3.5.1 Results

We will denote the traditional MAP approach to SISP as SISP-MAP and the
proposed approach as SISP-OPT. Figure 3.5 shows the evolution of the SISP-
OPT decision rule as λ approaches one. It can be seen that, in this ideal sce-
nario, when the distribution is smooth, the sum of different suffix hypotheses
averages to obtain a much better result. However, as λ reaches one the dis-
tribution becomes so peaky that SISP-OPT is equal to SISP-MAP from that
point on. This is especially important for the experiments with higher error
rates since, as we anticipated, higher error rates require smoother distribution
probabilities so that the sum of good hypotheses take over the maximum value.
From Figure 3.5 we could deduce that we should always reduce the peakedness
to the minimum. Unfortunately, this is an effect of the errors in the experiment
being uniformly distributed. Conversely, in a real task, flat distributions would
result in bad hypotheses taking over good ones, as a consequence of the noisy
nature of the WG. Hence, optimization of the peakedness of the distribution is
crucial for the optimum approach to succeed.
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Figure 3.5: WSR as peakedness increases for different error rates ε in the simulated
experiments from the WSJ corpus. The thick lines represent the WSR for SISP-OPT,
whereas the thin lines represent that of SISP-MAP

The results for real tasks are presented in Table 3.1. It can be seen that
the two SISP systems outperform their PE counterparts. With regard to the
comparison between both SISP approaches, SISP-OPT always performs equal
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to or better than SISP-MAP. For the DNI task, SISP-OPT outperforms SISP-
MAP, with a probability of improvement (poi) of 99% using the confidence
estimation technique proposed in [Bisani and Ney, 2004]. In this particular
case, the WGs contain the complete search space so the decision rule is exact.
With the karyotype tasks we can also see some improvements, although this
time they are not statistically significant. As explained in Section 3.3.2, SISP-
MAP should be close or match SISP-OPT performance for peaky probability
distributions, i.e., the probability mass is concentrated around the maximum.
HMMs for HTR are known to have very high ‘peaks’. In fact, as there is
only one possible transcription, the true probability distribution would give
probability one to the reference and zero to the rest, resulting in the ‘peakiest’
distribution. This is reflected in the fact that SISP-MAP and SISP-OPT obtain
the same exact result. SMT models are also ‘peaky’. However, unlike HTR,
there may exist several perfectly correct translation references for a given source
sentence. This could explain why SISP-OPT manages to improve an absolute
0.1 for the Xerox English-Spanish corpus. With respect to the ASR results,
statistically significant improvements can be also observed. The reason for this
may be that we were able obtain more dense word lattices and, consequently,
the summation in Equation (3.4) was made over a large set of suffixes.

The results for the real tasks have shown improvements on some of the tasks,
while both SIPS approaches obtain the same results in the rest. This fact
was already anticipated in Proposition 3.2, but the results are also supported
by Schlüter et al. [2005, 2010, 2012], which concludes that the use of optimal
decision rules for task-related cost functions has a limited impact.

Table 3.1: Results for real tasks. PE represents the post-editing error in a non-interactive
scenario. SISP-MAP is the error of the traditional approach to SISP and SISP-OPT is
the error of the optimum approach.

DNI Karyo Xerox CS WSJ
System – – en-es es-en es en

PE (WER%) 1.74 3.05 24.0 27.0 33.6 15.5

SISP-MAP (WSR%) 1.15 1.41 23.3 26.3 29.6 13.2
SISP-OPT (WSR%) 0.98a 1.36 23.2 26.3 29.6 13.0a

aStatistically significant (poi > 99%)

3.6 Summary of contributions

In this chapter, we have presented an optimal decision rule for sequential inter-
active structured prediction (SISP) that generalizes the work on text prediction
by Oncina [2009] to SISP problems that depend on a structured input. Our ap-
proach extends previous work by allowing full suffix prediction instead of single
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symbols. This can be considered to be a relevant contribution since they repre-
sent the most frequent problems in SP. In addition, the maximum-a-posteriori
approach was described as a maximum approximation to the optimal decision
rule. Furthermore, a practical and general decoding algorithm was developed
over word graphs. Experiments on different NLP tasks have shown that the
MAP decision rule performs very similarly to the optimal one for non-smooth
probability distributions, as was expected. However, the optimum strategy has
still been able to obtain improvements.

Further work should delve into the analysis of the optimal decision rule be-
havior. Directly implementing the optimal decision rule instead of using word
graphs would probably lead to better improvements, since the sum is made over
a wider range of hypotheses. It would also be interesting to test the results on
other NLP tasks. Further research should especially concentrate on finding real
tasks with smooth probability distributions so that the behavior of the optimal
decision rule under more favorable conditions could be analyzed. Finally, the
theoretical properties of the algorithm should also be studied further. Hope-
fully, that would allow determining under what conditions it is worthwhile to
use the optimal decision rule. Thus, if improvements are not expected, then
the use of non-optimal algorithms would be completely justified, given that, in
practice, MAP algorithms are easier to compute.

The majority of this work lead to a publication in:

• V. Alabau, A. Sanchis, and F. Casacuberta. On the Optimal Decision
Rule for Sequential Interactive Structured Prediction. Pattern Recogni-
tion Letters, 33(6):2226–2231, 2012.
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R. Schlüter, M. Nußbaum-Thom, and H. Ney. On the relation of Bayes Risk, Word Error,
and Word Posteriors in ASR. In Proc. of the 11th Annual Conference of the International
Speech Communication Association (Interspeech’10), pp. 230–233, 2010.
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Chapter 4. Active Interaction for Structured Prediction

4.1 Introduction

We saw in Chapter 3 that passive interaction may help to reduce the human
effort in correcting the system output. Whereas this can improve the produc-
tivity of users performing their tasks, they still have to supervise the whole data
set to ensure a high level of quality. That might be prohibitive in some sce-
narios where the company needs a small turnaround time or when the budget
is limited. Fortunately, automatic systems may have information of whether
their output is correct or not, and thus, direct the user towards the parts of
the output where the system is not confident enough. As in this case the sys-
tem takes the initiative to propose what output elements need to be corrected,
we call this problem active interaction [Oncina and Vidal, 2011; Toselli et al.,
2011], or more specifically, active interaction for structured prediction (AISP).

We can differentiate between two levels of AISP. First, we refer to structure
level AISP when the system retrieves a full structure (object) for the user to
supervise. This kind of AISP is especially valuable since it allows the user to
avoid supervising the whole set of structures. Instead, the user is given hints
of what structures may need supervision. Therefore, if the system is precise
enough the user can save effort and, at the same time, the quality of the
output improves. When working at structure level, AISP can be understood as
a quality estimation (QE) problem. For example, in machine translation, QE
is used to identify the translations that probably need to be post-edited by the
professional translator [Callison-Burch et al., 2012].

On the other hand, in element level AISP, we depart from a given structure1.
Then, the system retrieves an element (label) of the output structure and asks
the user to accept it or amend it. In this case, the system can leverage structural
properties of the output structure to propagate the correction to other elements
of the same structure, in a similar way to the sequential interactive structured
prediction (SISP) systems in Chapter 3.

For instance, Oncina and Vidal [2011] used an AISP technique to improve the
output of the chromosome classification problem described in Section 2.2.2.
The proposed strategy retrieved first to be supervised the most confident la-
bel, i.e., the output label with maximum posterior probability. However, they
approximated the posterior probability by conditioning only on the input im-
age that was assigned to it instead of the whole input structure. In the end,
their approach required less corrections than would be necessary in the post-
editing and SISP approaches. By contrast, [Culotta et al., 2006] the user was
asked to amend the least confident element instead of the most confident ap-
proach by [Oncina and Vidal, 2011]. Unexpectedly, in their experiments the
AISP strategy did not obtain significant improvements when compared to a
random strategy. Later on in the same paper they admitted that correcting

1 This structure can be retrieved sequentially, by using structure level AISP, or by other
means, depending of which strategy is more appropriate.
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low confidence elements are not likely to propagate corrections to other ele-
ments with high confidence, since they do not provide enough ‘intertia’ for
the propagation. Conversely, correcting an element for which the system has
high confidence makes the system reformulate its confidence with respect to
the other elements, which facilitates correction propagation.

Other works that are also considered interactive at element level are [Serrano
et al., 2010] and [González-Rubio et al., 2010]. for handwritten text recognition
and machine translation, respectively, they used the least confident strategy to
direct user’s attention towards the parts of the sentence that needed corrections.
These works did not leverage correction propagation, but used AISP instead to
limit the supervision effort. After a batch of structures was post-edited by the
user, these post-edited sentences were used to retrain the statistical models to
improve the accuracy of the system. The results were quite encouraging since
user effort could be reduced significantly while the transcription and translation
error was kept in a reasonable level.

In this chapter we contribute to AISP in the following aspects. First, we de-
fine an optimum strategy for structure level AISP under the decision theory
framework. In addition, we borrow other well-motivated strategies from active
learning and compare the results against a diverse set of structured prediction
tasks. Regarding element level AISP, we focus on reducing the number of cor-
rections, instead of reducing supervision, by leveraging correction propagation.
Here, we propose a set of strategies based on active learning ones and use the
strategy in [Oncina and Vidal, 2011] without the approximation. Moreover,
we compare these strategies with other ones from [Culotta et al., 2006]. As
a result, we provide further evidence that, in order to propagate the feedback
correction, we should aim to retrieve elements with high confidence first. All
these strategies can be computed over word graphs. Finally, we report the
element level experiments on the sequential labeling problems.

4.1.1 Active interaction is not active learning

The insightful reader would have noticed that active interaction is related to
active learning [Settles, 2010] in that the system is able to propose a sample for
the user to correct. However, there are some major differences. First, whereas
in active learning the goal is to obtain better models, in active interaction
the goal is to minimize the effort to obtain a predefined degree of error or to
maximize the accuracy in a given amount of time. In other words, active learn-
ing assumes a scenario where there exist bad models and abundant unlabeled
data. As the labeling of training data is expensive, active learning aims to train
better models with less samples, with the final goal to minimize classification
error. Conversely, active interaction assumes the existence of reasonably good
but imperfect models that cannot be improved merely by using a few more
data. In this case, the problem is an abundant quantity of test data, for which
a high quality labeling is desired. However, it is expensive to revise and amend
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the output of automatic systems so the ultimate goal of active interaction is to
reduce error in the output with less effort for the human operator. In summary,
the former aims at learning better models whereas the latter’s goal is to reduce
post-editing effort without updating the models. Note that both strategies can
be compatible, i.e., we could aim at a high quality output and leverage user
interactions to train better models.
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Figure 4.1: Learning curve of a handwritten digit recognition task using a k-NN classi-
fier. The plot displays the evolution of the classification error rate for an independent test
set as the number of training samples increases. Additionally, a zoomed box shows the
details of the curve when adding training samples from 400000 to 410000. We can observe
a non-statistically significant increase in CER.

Still, it could be argued that active learning could also achieve the goal of
active interaction. As Turchi et al. [2012] noticed, the quality of the models
in machine translation increases logarithmically with the amount of training
data to a certain point where performance starts to decay. Simply put, the
translation quality improved ‘just’ slightly when the training data doubled in
size. The same can be observed in our DNI recognition task2 in Figure 4.1.
Each point in the curve represents classification error of an independent test
for n training samples. We used a k-NN classifier trained with the digits of
the DNI task. In the big picture, it can be observed that the curve rapidly
stabilizes around 300000 training samples. After that point, many training
samples are needed just to improve a little bit the classification error. In fact,
suppose that we have a system trained with 400000 samples, and we receive
an order to transcribe 10000 handwritten digits. We can see from the zoom in
Figure 4.1 that error rate is practically stable, though it presents a minor, not

2The DNI task is an OCR problem for recognizing handwritten national identity card
numbers (cf. Section 2.2.1).

82 VAG-DSIC-UPV



Chapter 4. Active Interaction for Structured Prediction

statistical significant, increase of error, and not decrease as one should expect,
by adding such samples to the model. In this situation, active learning cannot
help building better models, an thus, there is no guarantees that by using active
learning it will require less effort to reach a high quality output. In contrast,
active interaction aims precisely at what we want to achieve.

Therefore, we believe that active interaction has its own purpose and deserves
more attention. Nevertheless, we acknowledge that active interaction can lever-
age the knowledge learned in active learning to meet its goals. Hence, through-
out this chapter we will analyze different strategies for AISP borrowed from
active learning. Finally, we will present results on several AISP tasks.

4.2 Taxonomy of active interaction

Settles [2010] presented a survey of active learning methods, where the active
learning techniques were grouped following a taxonomy. In Figure 4.2, that
taxonomy has been adapted to the active interaction scenario. We can consider
three aspects:

Query level: what is the object of the query. We can differentiate into struc-
ture queries, which aim to retrieve full objects (y) or element queries,
which aim to retrieve a single element (yk) from a given structure (y).

Scenario: the conditions in which the data can be accessed by the system,
e.g., the system can inspect any structure of a set of structures or it is
restrained to follow sequential order. In the pool-based selection scenario,
all the samples are accessible at any moment, so the system should de-
cide which samples need to be amended first. On the other hand, in the
stream-based selection scenario the samples arrive sequentially to the sys-
tem which needs to decide if the sample requires user intervention or has
enough quality to pass unsupervised. Finally, in membership query syn-
thesis, the samples presented to the user are synthesized. While this can
be a sound technique for active learning, in active interaction it makes
little sense since we want the user to label a given dataset.

Query strategy: how the system makes the decision regarding which struc-
tures or elements are to be amended by the human operator. The strate-
gies can be motivated by statistical decision theory, information theory,
by agreement of a committee of experts, or by estimated error reduction
among others. Note that not all strategies are well suited for the SP
problem we deal with this thesis. Thus, although they can probably be
useful for other tasks, such strategies have been crossed-out in Figure 4.2
and will not be evaluated.

The following sections are devoted to study the two major groups that can be
derived from the taxonomy. On the one hand, Section 4.3 delves into structure
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Figure 4.2: Taxonomy of active learning built upon the information in [Settles, 2010].
The techniques that have been crossed-out have not been considered in this work but they
could also be used for active interaction.

level AISP, which can be either stream-based or pool-based. An optimal strategy
is described and compared to other strategies. On the other hand, Section 4.4
deals with pool-based element level AISP. In this case, we will adapt a wider
variety of strategies based on active learning. These strategies will be compared
both maximizing and minimizing.

4.3 Active interaction at structure level

Often, the most sensible way to amend the labels of structured output problems
is to do it at structure level, i.e., all the elements of the structure should be
corrected before attempting to amend another structure. For instance, when
post-editing machine translation output, one would expect the translator to
pick a sentence and post-edit it completely. It would be unusual that the
translator jumped from one sentence to another, post-editing only pieces of the
sentences, just to come back later to finish the remaining errors. Thus, in a
structured level AISP, the system would select an input and the corresponding
output structure, and would ask a user to supervise it and correct it if necessary.
When the user validates the corrections, the user receives another structure to
amend from the system, until the budget limit B is reached. The budget limit
can be understood as a maximum number of structures to supervise or as a
limit for the turnaround time, among other possible restrictions. In one way or
the other, the budget can be defined, in the end, as the number of structures to
supervise. Henceforth, we will assume this definition for the sake of simplicity.

Let D be a collection of structures, such that D = {(x1, ŷ1), (x2, ŷ2), . . . ,
(xn, ŷn), . . . , (xN , ŷN )}, i.i.d. according to Pr(x,y). Typically, ŷn has been
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obtained by an automatic system3 like those explained in Section 1.3 and thus
may contain errors. As we would like to obtain output structures with high
quality, we should use expert users to amend the outputs, which can be quite
costly. Unfortunately, our budget only allows us to supervise a subset of B ∈ N
structures. Thus, we say that B constitutes our budget limitation. Hence, the
problem is to obtain AB = {(x1,y1), . . . , (xb,yb), . . . , (xB ,yB)} with AB ⊆ D.

In AISP at structure level, we can identify two groups of structures: the group
that should be amended by the user, limited by the budget, and the group
that will have been processed only automatically, that is, the user will not
supervise them. We will assume that the first group will have zero errors after
user correction, whereas the second group may have errors produced by the
automatic system. We will call the errors of the second group residual errors.
For each group of structures we can define a loss function, λa that accounts
for the cost of amending the first group, and λe that accounts for the cost of
leaving the remaining structures unsupervised. Then, the final loss function can
be explained by a linear combination of both loss functions, i.e., λ = λa + λe.
Given that the samples in D are independent by definition, the decision problem
can be expressed as:

ÂB = arg min
AB⊆D

 ∑
(x,ŷ)∈AB

Ra(ŷ | x) +
∑

(x,ŷ)∈D−AB

Re(ŷ | x)

 (4.1)

where Ra is the risk for the structures that will be amended and Re the risk
for the ones that will not be supervised.

Proposition 4.1. Given a budget B, an optimal subset of structures to super-
vise, AB, can be retrieving by obtaining the bottom B samples sorted with the
following criteria:

S(x, ŷ) = Ra(ŷ | x)− Re(ŷ | x) (4.2)

That is, we can obtain AB using the following rules:

Â0 = ∅ (4.3)

Ân+1 = Ân ∪ arg min
(x,ŷ)∈D−Ân

Ra(y | x)− Re(y | x) (4.4)

Proof. The proof is by induction on B. The proposition is obviously true for
B = 0. Then, if we assume that Equation (4.4) holds for B = n, we can prove

3 ŷn could also had been generated by humans, e.g., with a crowdsourcing tool or by
amateur users that need supervision.
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by induction that it also holds for B = n+ 1,

Ân+1 = arg min
(x,ŷ)∈An+1

∑
(x,ŷ)∈An+1

Ra(y | x) +
∑

(x′,ŷ′)∈D−An+1

Re(ŷ
′ | x′) (4.5)

= arg min
(x,ŷ)∈An+1

Ra(ŷ | x) +
∑

(x′′,ŷ′′)∈Ân

Ra(ŷ′′ | x′′)

+
∑

(x′,ŷ′)∈D−An+1

Re(ŷ
′ | x′) (4.6)

By definition, Ân has the minimum risk for the first n structures, then we can
extract it from the arg min:

Ân+1 = Ân ∪ arg min
(x,ŷ)∈D−Ân

Ra(ŷ | x) +
∑

(x′,ŷ′)∈D−An+1

Re(ŷ
′ | x′) (4.7)

= Ân ∪ arg min
(x,ŷ)∈D−Ân

Ra(ŷ | x)− Re(ŷ | x)

+
∑

(x′,ŷ′)∈D−Ân

Re(ŷ
′ | x′) (4.8)

As the last term of Equation (4.8) is constant for every (x,y) we reach Equa-
tion (4.3).

A nice property of Proposition 4.1 is that we do not need to predefine a budget.
Since structures can be chosen one by one, the user could decide when to stop
supervising structures on the run, or she could specify time constraints and
supervise as many structures as possible in such amount of time. Even in this
case, Proposition 4.1 guarantees that each structure is chosen by means of an
optimal decision.

Also note that this approach is only possible in the pool-based selection sce-
nario. Since we need to sort D, we need to have access to the whole set of
structures in D. On the other hand, the stream-based selection scenario can
be regarded as a problem of trade-off between recognition error and rejec-
tion [Chow, 1970]. That problem consists in identifying which samples have
errors so they should be rejected. In our case, instead of rejecting the samples
they should be sent to the user for supervision, but theoretically both problems
can be treated in the same way. Thus, as Chow [1970] proved, the optimal de-
cision rule when including rejection in the classification problem is to establish
a threshold over the posterior probability. In this thesis, for stream-based se-
lection we will establish a threshold for each one of the strategies. Precisely,
one of them will be the posterior probability.
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4.3.1 Optimal decision in AISP at structure level

Defining the loss functions λa and λe for AISP is more involving than it was
for post-editing and SISP, especially since both loss functions measure different
kinds of costs. While λa should measure the cost of supervising and amending
the output, λe should measure the costs incurred by leaving errors in the output.
For instance, let us suppose that we have a company that produces subtitles
for videolectures. For λa we can have the intuition that it is a matter of how
much money we are willing to spend to perform the supervision. However,
for λe, how can we measure the cost incurred by a user reading a text that
has some words wrongly transcribed? In a real-life company, eventually this
will be measured as an economic cost: the cost produced by the customer or
consumer being convinced of the quality of the service, and thus, paying the
services provided. Unluckily, to compute such sort of cost function we would
need data annotated with real costs [Settles et al., 2008], which is not often
the case. Anyway, here we need to make similar assumptions regarding the
loss function than we made in Section 1.3. That is, if a structure is equally
wrong regardless of the individual errors committed, then the zero-one loss
function could be used. Conversely, if a structure with more individual errors
is regarded as more erroneous than a structure with few individual errors, then
the post-editing loss functions (Hamming or edit distance) could be used.

In principle, it seems reasonable to assume the same loss function for λa and
λe, since a similar effort should be made to amend a structure than to use an
erroneous structure. Note, however, that by following Proposition 4.1 if both
rules are the same, then S(x, ŷ) is zero for all (x, ŷ) ∈ D.4 As a result, it would
be indifferent what (x, ŷ) is chosen. Nevertheless, unlike the passive scenario
where all structures were expected to be corrected, in the active scenario we
have a limited budget for the number of structures that the user can supervise.
It seems reasonable to assume that just by preparing to amend a structure
the user has to spend a somehow constant cognitive effort regardless of the
errors committed by the system. This effort can be greater than the effort
to correct an erroneous output if the corrections are easy to perform, e.g.,
when correcting OCR characters. However, the amending effort can dominate
the final cost if the task is more cognitively demanding, as it is the case, for
instance, of correcting machine translation output.

Here, we will assume that if a company has decided to spend a budget to amend
some of the errors, then it values more the λe than λa, say that λa = α · λe for
α < 1.

Proposition 4.2. If λa = α·λe for α < 1, then the optimal subset of structures
to supervise AB is equivalent to obtain the top B samples sorted by the following

4 It should be pointed out that the supervision and correction of AB could be performed
with SISP techniques. In that case, λa and λe would not cancel out each other. Still,
balancing λa and λe would be needed. For now, we will assume that even in this case, λa is
proportional to λe.
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criteria:
S ′(x, ŷ) = Re(ŷ | x) (4.9)

That is, we can obtain AB using the following rules:

Â1 = arg max
(x,ŷ)∈D

Re(ŷ | x) (4.10)

Ân+1 = Ân ∪ arg max
(x,ŷ)∈D−Ân

Re(ŷ | x) (4.11)

Proof. From Proposition 4.1 we have that

Ân+1 = Ân ∪ arg min
(x,ŷ)∈D−Ân

Ra(ŷ | x)− Re(ŷ | x) (4.12)

= Ân ∪ arg min
(x,ŷ)∈D−Ân

α · Re(ŷ | x)− Re(ŷ | x) (4.13)

= Ân ∪ arg min
(x,ŷ)∈D−Ân

(α− 1) · Re(ŷ | x) (4.14)

As α < 1, then (α− 1) is always a negative constant,

Ân+1 = Ân ∪ arg max
(x,ŷ)∈D−Ân

Re(ŷ | x) (4.15)

What Proposition 4.2 indicates is exactly what common sense suggests, i.e.,
if you want to achieve a high quality output but you have a limited budget,
amend the structures that have more errors first.

4.3.2 Strategies for AISP at structure level

The optimum decision rule proposed in Proposition 4.2 is a general decision
rule that must be specified for the loss function of interest for each task. Also,
the active learning strategy has proposed some strategies that can be adapted
to AISP. All these strategies are defined in this section and will be used in the
experimentation.

Optimum strategies Under the assumption that we should use the zero-one
loss function, Proposition 4.2 results in the least confident strategy [Culotta and
McCallum, 2005] identified as the uncertainty strategy in Figure 4.2. Thus, first
we build each (x, ŷ) pair such that

ŷ = arg min
y

R01(y | x) = arg max
y

Pr(y | x) (4.16)
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and then, we find the x for which the classification is least confident following
Equation (4.10),

x̂ = arg max
x∈D

R01(ŷ | x) = arg min
x

Pr(ŷ | x) (4.17)

Similarly, if we use a post-editing loss function, e.g., the Hamming loss,5 we
obtain the estimated error reduction strategy in [Settles, 2010]. First we obtain
the optimum ŷ for each x as in Equation (1.15),

ŷ = arg min
y

RH(y) = arg max
x∈D

|x|∑
i=1

Pr(yi | i,x) (4.18)

and then we retrieve the x with the highest expected error,

x̂ = arg max
x∈D

RH(ŷ | x) = arg min
x∈D

|x|∑
i=1

Pr(ŷi | i,x) (4.19)

Strategies borrowed from active learning Finally, we borrow from active
learning an uncertainty strategy based on entropy [Dagan and Engelson, 1995],

x̂ = arg max
x

H(Y | x) = arg max
x

−
∑
y

Pr(y | x) log
(
Pr(y | x)

)
(4.20)

where H(x) ranges over all possible y. In addition, we can use the smallest
margin strategy [Scheffer et al., 2001],

x̂ = arg max
x

Pr(ŷ | x)− Pr(ȳ | x) (4.21)

where ȳ = arg miny∈{Y−ŷ} Pr(y | x) is the second best decoding of x. In both
cases, ŷ is obtained by minimizing the post-editing effort.

4.3.3 Experimentation

In this section, we carried out a set of experiments to evaluate how user’s effort
could be reduced by limiting the amount of budget for supervision. In order to
do so, we evaluated how the strategies defined in Section 4.3.2 performed with
all tasks presented in Chapter 2. It must be noted that, for the case of the
estimated error reduction strategy, sequence labeling problems and post-editing
problems use different loss functions. The former can be solved efficiently
by minimizing the expected Hamming distance as in Equation (1.15). The
latter was approximated with position specific posterior probabilities [Chelba

5In the case of the edit distance loss we will approximate the risk with the position specific
posterior probabilities [Chelba and Acero, 2005]
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and Acero, 2005] since the computational cost of minimizing the expected edit
distance would be prohibitive. Thus, the estimated error reduction strategy for
these tasks should not be considered as accurate.

All the strategies were implemented to work with word graphs (WG) as a com-
mon representation of the output hypothesis space (cf. Chapter 2). Word
graphs are very convenient since they allow us to concentrate on the algo-
rithms while ignoring the differences in data representation of the evaluated
tasks. However, we need to take some precautions when working with WGs.
First, often the scores in WGs do not represent real probabilities, and thus,
they need to be normalized as we did in Equation (3.21) (Section 3.5). There
we stressed the importance of the posterior scaling factor, η, which was used to
adjust the peakedness of the posterior probabilities in the WGs. This can alter
the results of the strategies that are built by summing up the posterior proba-
bilities of competing hypotheses. Additionally, WGs may not include the whole
search space since typically this grows exponentially with the size of the input
and the size of the input and output vocabularies. Therefore, we also evaluated
how the density of the word graph influences the performance of the strategies.
For that, we pruned the original word graphs to contain only the hypotheses
that were at much π times less likely than the most likely hypothesis. To asses
how the variation of these parameters affect the strategy we computed the area
under the curve (AUC) normalized by the original number of errors times the
number of labels. The AUC is computed as the integral of the residual error
as the structures are supervised. Hence, the normalized AUC is an attempt
to estimate the goodness of a strategy in a single value. This way, a random
strategy should give a normalized AUC around 0.5 and the goal is to obtain
a value as low as possible. Regarding the pruning technique we also counted
the number of paths6 remaining in the word graph after pruning, in percentage
with respect to the original size of the word graph. The parameters η and π
were optimized over the development sets except for the handwritten corpus
which was optimized over the test set, as the development set was not present
in the official corpus partition.

4.3.4 Results

Figure 4.3 shows how the normalized AUC changes as a function of the posterior
scaling factor, for each of the tasks considered. First, we can observe from the
DNI tasks that the optimum posterior scale factors are quite close between the
different strategies. However, this difference is relative, since the range of the
scores in each tasks varies. Thus, we cannot rely on this proximity to establish
the robustness of the posterior scale estimation, which should be optimized for
each strategy independently. Regarding the shape of the curves, we see that
the smallest margin strategy is not affected by the scaling factor, at least in

6 That is, the size of the biggest n-best list that can be generated from the resulting
pruned word graphs
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these ranges that affect the other strategies. On the other hand, we can see
that the rest of strategies present clear optimum value. The exception is the
karyotype classification tasks, where the problem can be attributed to a small
number of samples (100).

With respect to how strategies compare to each other, we can differentiate
sequence labeling problems from post-editing problems. In the DNI task, the
estimated error reduction strategy shows the best performance. This is the
expected result since this strategy is optimum for this case. However, in the
karyotype task, other approaches perform better. This can be attributed to
the smaller size of the corpus and to a set of word graphs with less density.
In fact, the DNI task is ideal in the sense that the word graphs contain the
whole search space. Thus, the estimated error reduction strategy can compute
the exact value. The karyotype task shows a peak around η = 1.5 where the
normalized AUC for the least confident strategy is significantly better that the
rest. On the other hand, in the post-editing tasks the estimated error reduction
strategy lies behind, probably because an approximation was used instead of
the exact algorithm. In these cases, entropy and least confident strategies are
on pair, although the latter performs slightly better. Finally, we observe that
the smallest margin strategy is not competitive in any task.

The pruning results in Figure 4.4 can give us the idea of how important is the
size of the word graph for the different strategies to perform optimally. Two
main effect can be observed in all plots. The first and most important one is
that for the strategies to obtain the best performance, small word graphs are
sufficient. In most of the cases entropy and estimated error reduction suffer
pruning a bit more, since the pruning factor at which these strategies stabilize
is slightly higher. The exception is, as usual, the karyotype task for the reasons
already mentioned. The second effect is that smallest margin strategy is much
more dependent to pruning. This is an unexpected behavior since here we are
only considering the two most likely hypotheses, which are most surely not
changed by the pruning. However, what matters is the relative difference of
the probabilities after pruning which is changed by the renormalization of the
probabilities.

The best results from these experiments were used to obtain the tests results in
Figure 4.5. The plots show two strategies that were not present in the previous
figures. First, the oracle strategy knows the actual number of errors in (x,y).
Thus, oracle is the best that can be obtained. None of strategy can cross to the
area with the line pattern. The other strategy is the random strategy, which
displayed as an area corresponding to 95% of the possible random runs. It
was computed as the mean ± twice the standard deviation obtained from 10
random runs. Intuitively, if a strategy is found inside this area, we could say
that its performance would not be better than random.

As we can observe, all strategies are better than random. The smallest margin
presents usually the worst results, except for the post-editing tasks where es-
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Figure 4.3: Variation of the normalized AUC as a function of the posterior scaling factor
for different tasks.
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timated error reduction achieves worse results where just a few errors remain.
With respect to the other strategies, entropy and least confident perform very
similarly, being entropy slightly better. Furthermore, estimated error reduc-
tion, which is the optimum strategy, is the winner by little in sequence labeling
tasks. Anyway, almost all approaches are closer to oracle than to random in ev-
ery case, which indicate that pool-based AISP can be used effectively to reduce
the supervising effort.

Finally, the results for stream-based AISP are displayed in Figure 4.6. Here the
thresholds were obtained for the development set and applied in test. Hence,
the points in the curve present a shift in the x-axis corresponding to the error
committed when applying the threshold. The curves resemble very much that
of pool-based AISP, indicating that stream-based AISP is also an interesting
approach to save user effort. In particular, entropy seems to be consistently on
pair with the best approaches for each task whereas estimated error reduction
performs well only on sequence labeling tasks and least confident is usually as
good as entropy.

4.4 Active interaction at element level

AISP at element level differs from AISP at structure level in that the system
asks the user to amend single elements from a particular structure rather full
structures. This fact entails significant changes in how the decisions should
be made. Whereas in AISP at structure level the objects were independent
among them, in AISP at element level the elements are correlated. As such, the
elements follow structural properties that make correction propagation possible,
as it was the case of SISP problems. Hence, this problem is well suited to
attempt to minimize user corrections. Additionally, element level AISP does
not assume a left-to-right scenario but the system may propose the user to
correct a label at any position. Therefore, corrections might be propagated to
any element, to the left or to the right, that has not been previously validated
or corrected by the user. Note however that AISP is much more invasive for
the user than SISP. The left-to-right assumption in SISP can be naturally
accepted by users. Although users are expected to correct from left-to-right,
they can actually make corrections in the prefix, e.g., the system simply disables
prediction. Thus, SISP lets the user to correct the output as she wishes. On
the contrary, AISP forces the user to correct a specific element in the output.
Users probably would not like such imposition, particularly in those tasks that
require a global view of the problem (such as translation) and thus demand
an important cognitive effort to know what should be corrected. Nevertheless,
there are other tasks where AISP could be accepted, such as sequence labeling
tasks or handwritten text transcription, where errors are scarce or decisions
can usually be taken quite locally.

A representation of an element level active system is depicted in Figure 4.7. In
each iteration, the system outputs a hypothesis ŷ and asks the user to supervise
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Figure 4.5: Pool-based structure level AISP results for different tasks. The grayed area
represents 95% of the random strategies whereas the area with a line pattern indicates the
oracle strategy and cannot be reached by any other strategy.

VAG-DSIC-UPV 95



Chapter 4. Active Interaction for Structured Prediction

0 20 40 60 80 100

0
0
.5

1
1
.5

supervised structures (%)

re
si

d
u

a
l

er
ro

r
(%

)

(a) DNI

0 2 4

0
.5

1
1
.5

0.6
0.7

0.8
0.9

1.0
1.1

1.21.31.41.51.61.71.81.92

0.6

0.7
0.8

0.9

1.0

1.1
1.21.31.41.51.61.71.81.92

0.6
0.7

0.8

0.9
1.0

1.1

1.21.31.41.51.61.71.81.92

0.6

0.7
0.8

0.9
1.0

1.1

1.21.31.41.51.61.71.81.92

0 20 40 60 80 100

0
1

2

supervised structures (%)

re
si

d
u

a
l

er
ro

r
(%

)

(b) Karyo

0 2 4 6

1
1
.5

2
2
.5

1.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.5

1.21.31.41.51.61.71.81.92.02.12.22.32.42.51.01.1

1.21.31.41.51.61.71.81.92.02.12.22.32.42.51.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.5

0 20 40 60 80 100

0
5

1
0

supervised structures (%)

re
si

d
u

a
l

er
ro

r
(%

)

(c) WSJ

0 2 4 6

6
8

1
0
1
2
1
4

14

1515

13

14
1515

0 20 40 60 80 100

0
1
0

2
0

3
0

supervised structures (%)

re
si

d
u

a
l

er
ro

r
(%

)

(d) CS

0 20 40 60 80

0
1
0

2
0

3
0

23
45

67
89

1011121314151617181920212223242526272829303132333435

23
45

67
89

1011121314151617181920212223242526272829303132333435

34
56

78
910

11121314151617181920212223242526272829303132333435

23
45

67
89

1011121314151617181920212223242526272829303132333435

0 20 40 60 80 100

0
1
0

2
0

supervised structures (%)

re
si

d
u

a
l

er
ro

r
(%

)

(e) Xerox (es-en)

0 10 20 30

1
0

1
5

2
0

2
5

8
9

10
11

12
13

14
15

16
17

18192021222324252627

7
89

10
11

1213
14

15
16

17
18192021222324252627

6
7

8
910

11
12

13
14

15
16

17
18192021222324252627

7
8

910
1112

13
14

15
16

17
18192021222324252627

0 20 40 60 80 100

0
1
0

2
0

supervised structures (%)

re
si

d
u

a
l

er
ro

r
(%

)

(f) Xerox (en-es)

0 10 20 30 40

5
1
0

1
5

2
0

2
5

6
7

89
10

1112
13

1415
16

17
18

192021222324

4
5

6
7

8
9

1011
12

13
14

15
16

17
18

192021222324

4
5

6
7

8
9

10111213
14151617

18
192021222324

4
5

6
7

8
91011

12
13

1415
16

17
18

192021222324

smallest margin entropy estimated error reduction least confident

Figure 4.6: Results for stream-based structure level AISP for different tasks. The plots
show the variation of the residual error as structures are supervised. The zoomed area
presents the details for a set of interesting supervision thresholds.

96 VAG-DSIC-UPV



Chapter 4. Active Interaction for Structured Prediction

a particular element ŷî of the output. Then, the user accepts the labeling if
it is correct, or rejects it proposing the correct labeling with some feedback
f . Now, the system can propose a new hypothesis for the whole structure
leveraging user’s feedback. Hopefully, the new hypothesis will contain less
errors as a result of the constraints imposed by the corrections made by the
user. This process continues until all elements have been supervised or a given
budget is reached.

is ŷî
OK?

ŷ

ŷ, î

user

x

REJECT ŷî,
PROVIDE f

ACCEPT ŷî

active
ISP system

x

Figure 4.7: Diagram of an active interactive structured prediction process at element
level. The system processes the input x to produce an initial output ŷ. Then, the system
selects the î-th element ŷî for the user to analyze. The user can accept the label or reject
it, in which case the correction is proposed by means of some feedback f . Now, the system
proposes a new hypothesis ŷ that is hopefully improved.

AISP at element level is closer to SISP since, as we mentioned, corrections
can propagate to other elements of the structure. Therefore, in the same way
than SISP, we will aim at reducing the number of corrections needed to obtain
the reference. However, instead of assuming a scenario where the user reads
left-to-right and fixes the fist error she encounters, in AISP the system will
provide the user the label to supervise in a particular order given by a strategy
S. Anyhow, the user may have access to the whole output structure in case
she needs to check it to decide which is the correct solution.

Ideally, AISP at element level could be used to retrieve a specific element
for any of the structures in the collection D, as in a global pool of elements.
Nonetheless, minimizing the number of corrections can result in an increase
of the supervision effort, since when accounting for corrections supervision
effort is free (it has cost 0). Furthermore, it must be noted that it does not
seem natural a strategy that jumps from structure to structure correcting one
element at a time since that could cause confusion to the user and, probably, a
loss of context of the task. Arguably, this fact can increase the cognitive effort
in correcting elements and thus reduce user efficiency. Hence, we will adopt an
intermediate strategy. First, AISP at structure level will be used to select the
structure to amend. This way, we minimize the supervision effort at structure
level. Second, AISP at element level will be used to correct the elements in the
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structure. The goal now is to minimize the number of corrections to obtain the
reference structure.

4.4.1 Strategies for AISP at element level

In AISP at element level we can use the same strategies that we used for
AISP at structured level. Nevertheless, AISP algorithms at structure level were
simpler, since the structures are independent among them. Conversely, in AISP
at element level we need to check how a possible correction of the label will
influence future interactions as a result of error propagation. In consequence,
AISP strategies at element level should take into account all future interactions,
typically by computing conditional expectations, i.e., what is the expected value
of our cost function if the value of the element in position i was specified by
the user. That is typically carried out by trying all the possible labels for the
output element in position i. This poses a problem for tasks with large output
vocabularies and for tasks where the output consists in an unknown number
of elements. Hence, for simplicity, we will consider only sequence labeling
problems.7 Again, following the active learning taxonomy in Figure 4.2 we can
find the strategies based on uncertainty, estimated error reduction and expected
model change.

From the first group, the least confident strategy [Culotta et al., 2006] finds
the element whose label was selected with the least likelihood in the structure.
Thus, if we are in a sequence labeling problem and we want to minimize the
labeling error we choose ŷi as

ŷi = arg max
yi

Pr(yi | i,x) (4.22)

and consequently we choose î such that

î = arg min
i

Pr(ŷi | i,x) (4.23)

The other strategy based on uncertainty is entropy. However, as we need to
account for correction propagation effects that would produce a user correction,
we need to retrieve the position i with maximum conditional entropy,

î = arg max
i

H(Y −i | Yi) = arg max
i

∑
y

Pr(y | i,x) H(Y −i | Yi = y) (4.24)

where Y −i represents a random variable of all the elements except the one
in position i and Yi = y means that the random variable Yi, at position i,

7Note that in post-editing problems the position is not a good indicator of where a
element is placed since deletions and insertions may happen before the element as a result
of correction propagation. In addition, this same fact makes it is difficult to guess whether
an element is correct or not by comparing with the reference. For these reasons post-editing
tasks have not been considered in this thesis for AISP at element level.
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has a fixed value y. To compute H(Y −i | Yi = y) in the word graph, we can
simply prune out the paths where Yi 6= y and then compute the entropy of the
resulting graph.

Our experience with the uncertainty strategies for AISP at structure level in-
dicates that they are competitive to reduce the supervision effort. However, as
we explained, this optimization may go against reducing the number of correc-
tions. Therefore, we will consider certainty strategies that are analogous to the
uncertainty ones.

Thus, the most confident strategy [Oncina and Vidal, 2011] can be simply
obtained by changing the arg min by an arg max,

î = arg max
i

Pr(ŷi | i,x) (4.25)

and vice versa for conditional harmony, which is the opposite of conditional
entropy,

î = arg min
i

H(Y −i | Yi) (4.26)

For the estimated error reduction technique we need to compute conditional
expectations. We need to compute the Hamming risk conditioned to a given
position,

î = arg max
i

RH(Y −i | Yi) = arg max
i

∑
y

Pr(y | i,x) RH(Y −i | Yi = y) (4.27)

where RH(Y −i | Yi = y) is obtained by restricting the word graph to the paths
where Yi = y and then computing the Hamming risk for the resulting word
graph.

Finally, [Culotta et al., 2006] introduced two strategies for corrective feedback
based on expected model change. To begin with, mutual information is com-
puted as

î = arg max
i

I(Yi;Y
−i) (4.28)

They also defined the function #(Yi = y) that returns the number of changes
(as in Hamming distance) that are produced by replacing Yi = y in the most
likely hypothesis. Therefore, the expected number of changes strategy looks for
the position that, after being amended by the user, can produce more changes
as a result of correction propagation,

î = arg max
x

E
(
#(Yi)

)
= arg max

x

∑
y

Pr(y | i,x) #(Yi = y) (4.29)
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Note that here, the changes are not necessarily for good, so the strategy could
find a hypothesis where already correct labels had been changed to wrong
labels.

4.4.2 Experimentation

As we said, we restricted the experimentation to sequence labeling problems
since the problem can be reduced to select which is the position the user has to
amend. Hence, we conducted the experiments on the DNI recognition task and
on the karyotype task. To do so, we first used the optimum AISP strategy at
structure level for these tasks, which is the estimated error reduction strategy.
Then, for each structure we applied the proposed element level AISP strategies.
On the one hand, we measured the percentage of user corrections as the user
supervises labels. On the other hand, we computed the residual Hamming error
on the unsupervised labels. We used the best values for the posterior scale and
pruning factor obtained in the AISP at structure level. Furthermore, for a
better comparison, we also added the SISP strategy. It can be considered as a
strategy that gives the elements of the structure in sequential order. For that
reason it will be named sequential.

4.4.3 Results

The results are plotted in Figure 4.8, where the grayed out area represents the
random strategy computed as in Figure 4.5. First, it is worth of note that, as
we hypothesized, uncertainty strategies do not optimize user corrections since
they clearly perform worse than the rest of the strategies. Especially in the
case of DNI, least confident is far above random, suggesting that it is possible
that optimizing supervisions is opposite to optimize corrections. Culotta et al.
[2006] observed a similar behavior in their work:

While this may seem surprising, recall that a field will have low confidence
if the posterior probability of the competing labels is close to the score for
the chosen class. Hence, it only requires a small amount of extra infor-
mation to boost the posterior for one of the other labels and “flip” the
classification. We can imagine a contrived example containing two adja-
cent incorrect fields. In this case, we should correct the more confident
of the two to maximize correction propagation. This is because the field
with lower confidence requires a smaller amount of extra information to
correct its classification, all else being equal.

With respect to the rest of the strategies, all them are better than random for
the DNI task. However, in the karyotype task the only strategy that can be
found to be better that random is most confident. As it was the case of AISP
at structure level, the karyotype task is small. Thus, it can be easier to find a
good strategy by choosing random positions. Nevertheless, the most confident
strategy still has some consistent advantage over random. Moreover, expected
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model change strategies perform alike, almost in pair with most confident. Ad-
ditionally, in contrast with AISP at structure level, conditional harmony and
estimated error reduction do not perform very well with respect to the other
approaches.

Finally, the sequential approach can be considered as a baseline. In the DNI
task, it is on pair with random, although in the upper limit. In the karyotype
task, however, it is on pair with most confident. For what we could investigate,
it appears that the way the karyotypes are labeled in a real scenario seems
to be correlated, by chance, with the difficulty of the classification problem.
In that case, sequential and most confident would be comparable algorithms,
since they always take the most likely label. This opens an avenue to find an
optimum algorithm for AISP at element level since it can be related to the
most confident strategy.

4.5 Summary of contributions

In this chapter we have studied different strategies for AISP at structure and
element level. For AISP at structure level we have proved that an optimum
algorithm can be build by sorting the pool of structures by the expected error,
where the structures with highest expected error are to be amended in the first
place. This strategy performed the best whenever the exact algorithm could
be used. On the contrary, when an approximation was needed the entropy
and least confident strategies achieved the best results. Fortunately, the ex-
periments show that for the strategies to succeed we do not need dense word
graphs. We could say that the word graphs resulting from standard decoding
algorithm with standard pruning values would be just enough to compute ac-
curate probabilities for AISP at structure level. Finally, these techniques can
also be used when we do not have all the structures available, as it is the case
of streaming data. Here, we showed empirically that setting a threshold over
the values of the strategies is almost as effective as sorting the pool.

The second part of the chapter has been devoted to AISP at element level. In
contrast to the first part, AISP at element level aimed to reduce the number
of corrections instead of the number of supervisions. This was motivated by
the fact that the elements in a structure present interdependencies. Therefore,
correction propagation is possible. Although it may seem counter-intuitive, to
reduce the number of corrections we need to find the most confident elements
and not the least confident ones. The reasoning about this is that by using
a zero-one loss function for the corrections, the supervision of a correct label
is free of cost. Intuitively, when the user corrects a label which the system is
very confident about it, the system needs to ‘rethink’ the whole hypothesis.
That can give more information with regard correction propagation than a
low confident label, since the system already knows that the label is probably
wrong and the rest of the hypothesis should not be much affected by a change
of label. Finally, we found that the sequential strategy performs similarly to
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Figure 4.8: Performance different strategies to element level AISP. On the right axis it
is indicated the percentage of user corrections, the lower the better. On the left axis, the
residual error after having supervised and corrected the labels.
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most confident when the elements in the output are sorted by the difficulty
of classification. Therefore, this opens an avenue to analyze possible optimum
algorithms for AISP at element level.

The work developed in this chapter is in preparation for publication.
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Chapter 5. Online Handwritten Interaction for Machine Translation

5.1 Introduction

Since the breakout of tactile smartphones in the third quarter of 2007, the
number of devices featuring a touch-screen has been increasing at a fast pace.
The success of tactile smartphones has fostered a new kind of keyboardless
technology which was latent until then: the tablet computers. They have
been presented as a substitute of paper notebooks, as they have a similar
size. However, the possibilities this new technology may provide are still to
be unveiled. In that context, on-line handwritten text recognition (HTR) plays
a crucial role. First, because to input text in such devices using a virtual
keyboard is far from the efficiency of regular keyboards. Secondly, handwriting
is a natural way to communicate, since it is learned early in the educational
process. Withal, a HTR interface can commit recognition errors. Thus, if the
HTR system is not robust enough, user experience could be negatively affected
hindering its use. In this regard, many works have tried to improve HTR
accuracy, primarily focusing on feature extraction and modeling [Graves et al.,
2009; Jaeger et al., 2001; Liwicki and Bunke, 2006; Pastor et al., 2005].

Other authors have tackled the problem of automatically correcting errors from
the system output in order to provide a more accurate input to higher-level ap-
plications. For instance, Quiniou et al. [2011] propose a technique to improve
the performance of a HTR system by obtaining a consensus hypothesis out of a
n-best lists, and then, characterizing the errors and correcting them. Similarly,
Farooq et al. [2009] use a translation model to conduct an automatically post-
editing. Finally, Shilman et al. [2006] described a user interface where hand-
writing and pen gestures were used as a feedback for a smart auto-completion
capability. However, in this case the contextual information was not used to
improve the accuracy of the HTR system. Nevertheless, those works did not
leverage any contextual information of the specific task at hand, a topic that,
in our opinion, has received little attention.

On the other hand, Suhm et al. [2001] proposed a multimodal dictation system
that allowed the user to correct errors by respeaking, spelling or handwriting.
The recognition system for the alternative modalities leveraged pre-context
and post-context information from the word being corrected. Also, a bias
was added towards frequently misrecognized words. Pre-context influence in
accuracy was statistically significant, whereas post-context was not. The ex-
planation for that was that post-context was frequently incorrect since users
did not “select maximally contiguous regions of errors”. On the other hand,
the bias showed significant improvements in handwriting and spelling, but not
in respeaking. Additionally, Toselli et al. [2010] explored the used of on-line
HTR for interactive transcription of text images. In that work, the user was
expected to correct erroneously recognized words by writing the correction us-
ing a tactile display. The authors took advantage of the erroneously predicted
word and the previous one to improve HTR robustness. Latter on Pastor and
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Paredes [2010] proposed the bimodal benchmark1, where on-line and off-line
HTR signals of isolated words were to be merged to improve the final accuracy.
The participants could not improve the recognition accuracy aside from a late
fusion by log linear combination of the on-line and off-line HTR scores.

One of the post-editing tasks that has received more attention in recent years
is the correction of the output of a machine translation (MT) system, which
has shown to boost translators productivity [Casacuberta et al., 2009; Green
et al., 2013; Koehn and Haddow, 2009; Plitt and Masselot, 2010]. Typically,
the correction of an MT output is performed using a keyboard and, occasion-
ally, a mouse to position the cursor [Sanchis-Trilles et al., 2008]. Professional
translators agree that this approach has been proved to be efficient. However,
the user needs to be in front of a desktop computer which imposes some re-
strictions regarding where and how the work is to be done. Laptop computers
can also be used, although arguably performance could be diminished because
of the use of uncomfortable laptop keyboards and track pads. Thus, although
e-pen interaction may sound impractical for texts that need a large amounts
of corrections, there is a number of circumstances where e-pen interaction can
be more suitable. For example, it can be well suited for amending sentences
with few errors, as the revision of human post-edited sentences, or translations
where the system has a high confidence that the output is of good quality.
Furthermore, it would allow to perform such tasks while commuting, traveling
or sitting comfortably on the couch in the living room.

In this chapter, we address the problem of using an on-line HTR system to
correct the errors in an MT application, either by post-editing the translation
or by interacting with the system. We propose a series of techniques that
allow an early fusion of the MT and the HTR problem. The results show that
important accuracy gains can be achieved due to this MT and HTR fusion.
In addition, we analyze the errors committed by the system and study how a
n-best list can be useful to recover from them with less user effort. Finally, we
describe a series of pen gestures that can complement out HTR system, and
present a preliminary research on the benefits these gestures can bring to a
e-pen enabled MT interface.

5.2 Producing High-Quality Translations

In the last years, machine translation (MT) has become a strategic asset in the
translation industry. MT is used to speed up the translation process since it en-
ables the automatic translation of large amounts of documents. In this context,
MT is approached under a statistical framework, due to the fact that statistical
MT allows companies to build customized, topic-specific MT systems very eco-
nomically. In MT, the problem consists in finding the most likely translation

1https://prhlt.iti.upv.es/page/contests/bimodal2
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ŷ in a target language given a source sentence x in a source language,

ŷ = arg max
y

Pr(y | x) (5.1)

For more information on how MT is modeled refer to Section 2.2.4.

5.2.1 Post-editing a Machine Translation Output

Although leveraging MT can be very convenient, it is usually the case that
the translation quality does not meet the user requirements. Thus, the MT
output must be revised. The process of revising and amending the system
output, known as post-editing (PE), consists in deleting, inserting, substituting
and swapping text from the MT output to achieve the desired quality in the
translation. This is an expensive task, since the users should review the whole
output and correct manually the translation errors. In the cases in which
the automatically produced translations are of low quality, PE can eventually
require more effort than manually translating the source input from the scratch.
Moreover, in PE, the system does not take advantage of the human corrections.

5.2.2 Interactive Machine Translation

The MT paradigm is shifting slowly but steady towards an interactive MT
scenario (IMT). In IMT [Barrachina et al., 2009; Foster et al., 1998; Koehn
and Haddow, 2009] the system goal is not to produce translations in a com-
pletely automatic way and then perform a completely unassisted PE. On the
contrary, IMT aims at building the translation collaboratively with the user
as a professional advisor, so that the effort to produce a satisfactory output
is minimized. In this chapter we will assume a sequential interactive structure
prediction protocol as the one explained in Section 3.2. However, given that
the results for optimum decision rule for our IMT task did not improve signif-
icantly that of the MAP decision rule (Section 3.5.1), we decided to use the
later at each interaction:

ŷs = arg max
ys

Pr(ys|x,yp) (5.2)

where the number of iteration (i) has been omitted for simplicity. Nevertheless,
it should be noted that the approaches that will be explained through out this
chapter can be applied to the optimum decision rule with minor changes.

5.3 Using On-Line HTR to Correct MT
Output

Let us imagine an application devised to translate documents. On the one
hand, there is a text area with the output of an automatic machine translation
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system. As this output may contain errors, the user of the application reads
the output to locate the first error. The reading is performed in a specific
order, left-to-right in most western languages, for instance. Let us also assume
that when the user finds the first error, all the words before it have already
been revised and validated. Thus, they can be regarded as correct. Once the
error has been located, the user introduces the correction with a stylus. As a
result, the system receives a position where the error is located, a word that
is incorrect (the word pointed by the position) and a sequence of pen strokes
that represent the correct word in that position. On the other hand, the source
document to be transcribed is shown to the user. There is a strong relationship
among the words in the source sentence and the words in the target sentence.

Figure 5.1 is a mock-up of a possible application on a tablet device for such
scenario. The screen is divided in two sections. First, the upper part shows
the source document, and probably the source sentence being currently trans-
lated, x, is highlighted appropriately. Second, the lower section contains the
current state of the translation, y. Since we assume that post-editing is usu-
ally performed from left to right, the text which has already been revised and
validated, yp, is shown within a dotted box. On the other hand, the text which
is to be revised, e, is displayed grayed out. From the sentence currently being
translated we can identify three parts: the revised prefix of the sentence, yp,
the error committed by the system, e, and the correction proposed by the user
introducing strokes with a stylus, f .

In a scenario as described above, the HTR subsystem should make few errors to
make the application usable. The aim here is to devise a robust HTR system
that allows a potential user to revise and correct the output of a machine
translation system using an electronic pen. To this regard, we assume that
the user will introduce the corrections by writing over the word or sequences
of words (phrases) she judges to be incorrect. Thus, the problem of on-line
HTR consists in converting a sequence of strokes, f , into a word or phrase in
text format, d. The strokes can be acquired from a stylus, electronic pen or a
touch-screen.

The baseline approach to the problem from a statistical point of view is to
obtain the most likely decoding d given the strokes f ,

d̂ = arg max
d

Pr(d | f) = arg max
d

Pr(d) Pr(f | d) (5.3)

where Pr(d) can be represented by a language model and Pr(f | d) by morpho-
logical models. For more details on how this is modeled refer to Section 2.3.1.

Nevertheless, our purpose is to take advantage of the information available in
the MT application to make on-line HTR more robust. In the remainder of this
section, we will introduce gradually the different methods to make the on-line
HTR system more robust.
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methods

Figure 5.1: Mock-up of an interactive machine translation application on a tablet device.

5.3.1 Discarding the produced error

In the e-pen enabled interface aforementioned, the user is expected to write
the strokes over the erroneously translated word, and thus, the system knowns
what word the user wants to replace. Therefore, the first and easiest approach
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is to remove the erroneous word e from the list of candidate hypotheses. This
way, Equation (5.3) becomes

d̂ = arg max
d6=e

Pr(d) Pr(f | d) (5.4)

5.3.2 Exploiting information from the revised
translation

The second sensible approach to take is to add information regarding the revised
translation prefix, yp. Again, from Equation (5.3) we can derive an HTR
system that takes into account previously validated words:

d̂ = arg max
d

Pr(d | f ,yp) (5.5)

which, under the assumption that Pr(f | d,yp) does not depend on yp if d is
known, can be computed as

d̂ ≈ arg max
d

Pr(d | yp) Pr(f | d) (5.6)

Here, Pr(d | yp) is a prefix language model, i.e., the probability of d depends
on the left-context. Of course, we can also discard the erroneous word from
Equation (5.6),

d̂ ≈ arg max
d 6=e

Pr(d | yp) Pr(f | d) (5.7)

These techniques can be extrapolated to most post-editing tasks. In fact, Toselli
et al. [2010] was the first to propose the use of the erroneous word and a 2-
gram model to improve the HTR performance for interactive transcription of
text images. In the subsequent sections, we present our contributions to how
the information regarding the translation process can be exploited for further
improved HTR decoding.

5.4 Leveraging information from the source
sentence

A specific source of information that can help to improve robustness in the
MT scenario is, naturally, the sentence in the source language. Since the tar-
get sentence conveys the meaning of the source sentence, x, user corrections
should be restricted somehow to the possible translations of it. Hence, we can
formulate the problem as,

d̂ = arg max
d

Pr(d | f ,yp,x) (5.8)
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Then, assuming that Pr(f | d,yp,x) does not depend on yp and x if d is
known, Equation (5.8) can be rewritten as

d̂ ≈ arg max
d

Pr(d | yp,x) Pr(f | d) (5.9)

Nevertheless, the relationship between the target and the source sentence in
Pr(d | yp,x) is not trivial to establish. We have considered two possibili-
ties to approximate Pr(d | yp,x). First, word-based models are the basis for
modern statistical MT [Brown et al., 1993]. Although they cannot provide a
good performance when translating complete sentences, they offer a smoothed
and reliable probability distribution for word models. In addition, they serve
as initialization for the second kind of models considered: phrase-based mod-
els [Koehn, 2010]. These models improve word-based models since they are able
to translate sequences of words (phrases) and constitute the state-of-the-art in
MT.

5.4.1 Word-based translation models

Brown et al. [1993] approached the problem of MT in Equation (5.1) from a sta-
tistical point of view as a search problem of a translation y (cf. Section 2.2.4).
In this approach a hidden variable a is introduced that represents the alignment
between the words in the source and target sentence. In this way, an alignment
a is defined as a vector of length |y|, in which the i-th element corresponds to
the source position j, i.e., the word xj , to whom yi is aligned. Formally, we can
model the posterior probability of the target sentence y being a translation of
the source sentence x by marginalizing over the set of all possible alignments
between the words in y and the words in x,

Pr(y | x) =
∑
a

Pr(y,a | x) (5.10)

Then, Pr(y,a | x) can be decomposed using the chain rule. After making
some strong assumptions, two distributions are obtained. First, the alignment
model, Pr (j | i, |x|), represents the probability of the target word at position i
to be aligned with the source word at position j for a source sentence of length
|x|. Second, the word translation model, Pr(yi | xj), models the probability
of the target word yi to be a translation of the source word xj . The above
assumptions are necessary to make model estimation tractable and result in
the so-called model 2 (M2) [Brown et al., 1993].

In M2, the alignment probability, Pr (j | i, |x|), can be approximated by the
relative frequency of position j in the source sentence to be aligned with position
i in the target sentence for a source sentence of length |x|. On the other hand,
the translation probability, Pr(yi | xj), can be approximated by a word-to-
word statistical dictionary which essentially is the relative frequency of yi being
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aligned with xj . Nonetheless, these frequencies cannot be estimated directly
since the real alignments are unknown. Thus, the EM algorithm is needed
to reliably estimate these probabilities [Brown et al., 1993]. Model 1 (M1)
is a particular case of word-based models where the alignment probability is
approximated by an uniform probability distribution, Pr (j | i, |x|) ≈ (|x| +
1)−1.

Returning to our original problem, we can approach Pr(d | yp,x) in Equa-
tion (5.9) with word-based translation models with some assumptions. First,
the direct use of M2 models would require to modify the search algorithm of
the HTR decoder, probably increasing its computational complexity. For that
reason, in the case of M2 we will only allow the introduction of one handwrit-
ten word2, and thus, |d| = 1 and d = (d1). Second, from the prefix yp we
can obtain the position of the erroneous word to be corrected (obviously, also
the position of d1), i = |yp| + 1, ignoring the rest of the words in the prefix.
Taking into account both considerations the first term of Equation (5.9) can
be rewritten as,

Pr(d1 | yp,x) ≈ p(d1 | i,x) (5.11)

Then, we can introduce the alignment between d1 and the words from the
source sentence by summing for every possible position j in x,

p(d1 | i,x) =

|x|∑
j=1

p(d1, j | i,x)

=

|x|∑
j=1

p(j | i,x)p(d1 | j, i,x) (5.12)

Finally, if we assume, in a similar way to M2, that p(j | i,x) does not depend
on x but on |x|, and that p(d1 | j, i,x) does not depend on the whole x but just
on the source word xj aligned to d1, then we can approximate Equation (5.12)
as

p(d1 | i,x) ≈
|x|∑
j=1

p(j | i, |x|)p(d1 | xj) (5.13)

where p(j | i, |x|) is an M1 or M2 alignment model and p(d1 | xj) is a statistical
dictionary.

Figure 5.2 reflects the role of the alignments and the dictionary. The source
sentence is shown in the middle, and each word has its corresponding position,
j, as a subscript. Above each word, there is a list of its most probable transla-
tions using the dictionary. Grey levels are proportional to the probability of the
dictionary. On the other hand, in the bottom, there is a possible translation,

2This assumption is not necessary for M1, but we will keep it for simplicity.
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si1 alguna2 función3 no4 se5 encuentra6 disponible7 en8 su9 red10

if1 any2 feature3 not4 is5 available6 on7 your8 network9

if
for
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available
unavailable
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share }

}
translation dictionary. Grey
levels are proportional to the
probability of being a translation
of the source sentence, p (d1|xj).

aligments. The aligments link
source words with the target word
being corrected. Link boldness
is proportional to the alignment
probability, p (j|i, |x|).
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Figure 5.2: Visualization of alignments and translation dictionary.

which has an error in position i = 4. Below that, the user is trying to correct
that mistake by introducing the word . Each link between a source word and
the target word in position 4 represents the alignment probability. The stroke
boldness is proportional to the M2 alignment probability. Note that for an M1
model, all alignments would have had the same thickness.

If we focus on the possible candidate transcriptions of the handwritten word
, we realize that there are two possibilities that could create confusion to

the decoder: ‘if’ and ‘in’ due to the fact that the strokes for ‘is’, ‘if’ and
for ‘in’ can be very similar. Both can compete with the correct transcription
‘is’. The word ‘if’, has a high probability in the dictionary, p(if | si1) = 0.88,
whereas other candidates have lower probabilities. Then, since the M1 model
has a uniform alignment probability, it would assign a higher probability to ‘if’
than to ‘is’. However, ‘si1’ actually has a lower probability of being aligned
with ‘not4’. Therefore, the M2 model is able to solve this shortcoming thanks
to the alignments with high probability to the correct words. In this case,
p(5 | 4, 10) = 0.38 and p(6 | 4, 10) = 0.12, whereas p(1 | 4, 10) = 0.04.

It must be noted that word dictionaries are not symmetric, i.e., p(d1 | xj)
is probably different to p(xj | d1). As the inverse statistical dictionary can be
obtained as a by-product of the standard training procedure of MT systems, we
have decided to leverage the knowledge from the inverse statistical dictionary
as an approximation to p(d1 | xj). By applying the Bayes’ rule,

p(d1 | xj) =
p(d1) p(xj |d1)∑
d′ p(d

′) p(xj |d′)
(5.14)

Arguably, this model can provide a smoother probability, and, as we will see
in the experiments, in practice they can provide a better vocabulary coverage.
Summarizing, we propose four word-based translation models: direct M1 and
M2 models, both having a direct dictionary, and inverse M1 and M2 models
with the inverse dictionary from Equation (5.14).

5.4.2 Phrase-based translation models

Word-based translations provided a basis for MT. However, their performance
regarding translation quality is not sufficient. Their limitation resides in that
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they cannot model properly context information [Zens et al., 2002]. Phrase-
based models aim at reducing this problem by translating phrases (sequences
of words) instead of single words. These models were popularized by Och and
Ney [2002], who established the state-of-the-art phrase-based log-linear models.
Phrase-based models offer a great opportunity to estimate Pr(d | yp,x). How-
ever, we cannot use these models directly, as occurs with word-based models.
One limitation of phrase-based models is that their probabilities are ‘peaky’
and, usually, they cannot model all possible translations. As a result, it would
be possible that Pr(d | yp,x) takes a value 0 for a user established prefix.
Then, it is necessary to smooth theses probabilities. For instance, we can gen-
erate n-gram-like models from the hypotheses in a word graph (WG) of a MT
system [Ueffing et al., 2002] (cf. Section 2.1).

As has been described in Section 2.1, word graphs (WG) contain a set of the
most likely translations of the source sentence. Although one may think that
WGs could be directly used to estimate Pr(d | yp,x), there are some details
that must be taken into account. First, WGs do not contain all the possi-
ble translations since, in practice, many pruning techniques must be used to
generate the translations efficiently. Second, phrase-based models are not good
dealing with long distance alignments due to the introduction of heuristic length
constrains and, thus, WGs do not present sentences with long distance reorder-
ings. In those cases, a user validating a prefix yp that is not contained in the
WG would obtain a zero probability in Pr(d | yp,x). Hence, it is interesting
to smooth the probability distribution encoded in the WGs. To do so, WGs
can be simplified in the way that language modeling is typically approached:
we make each word to depend only on the preceding n − 1 words instead of
depending on the whole prefix. As a result, we can rewrite the constrained
language model as

Pr(d | yp,x) ≈ p(d | pi−1i−n+1,x) (5.15)

where pi−1i−n+1 are the words in the prefix from position i−n+1 to position i−1.

That is, p(d | pi−1i−n+1,x) only takes into account the latest n − 1 words from

the prefix. Note that p(d | pi−1i−n+1,x) is very similar to a n-gram language
model except for the dependency on x. Khadivi and Ney [2008] presented
a closely related approach for ASR as input to MT. In that work, n-gram-
like models were generated from n-bests lists instead of WGs. The advantage
of the n-gram-like prefix modeling assumption is that the models only take
into account a limited size of the history, and thus, can provide a smoother
probability distribution.

What follows is a procedure proposed by Campbell and Richardson [2008] to
generate such n-gram-like models from the sentences in the WG. First, the pos-
terior probabilities for each edge, p(e|x), must be computed as in Section 3.4.
The posterior probability for a node u, p(u|x), accounts for the probability
mass of the hypotheses that pass through u. This probability can be computed
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if:1 any:1
feature:0.4

feature:0.6

cannot:0.4 be:0.4 found:0.4 on:0.4 the:0.4

web:0.62
is:0.24

is:0.15

is:0.21

not:0.24

not:0.15

not:0.21

available:0.24

available:0.15

available:0.21

at:0.24

in:0.15

in:0.21
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network:0.21

N (feature cannot)

N (feature is)

qI

qF
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0.4
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p(u | ~x)

Figure 5.3: Word graph with posterior probabilities. It represents a subset of hypotheses
of the hypothesis space of a state-of-the-art translation model for the source sentence ‘si
alguna función no se encuentra disponible en su red’. On the left, the set of links considered
when computing the average count of the bi-gram ‘feature is’ (below) whereas the link
considered for the bi-gram ‘feature cannot’ (above).

in a similar way to p(e|x) by using the forward Φ(u) and backward Ψ(u) scores,

p(u|x) =
Φ(u)Ψ(u)

Φ(qf )
(5.16)

Then, the average counts of word sequences can be estimated as follows. Let
N (dii−n+1) be a cluster of all the sequences of concatenated edges e = {e1, e2,
. . . , en} in the WG that generate the output dii−n+1. That is, given that ej =
(yj , uj , vj) ∀j : 1 ≤ j ≤ n, e meets the requirement that y1y2 . . . yn = dii−n+1.
Then, for a given n-gram length, the expected count of occurrence of dii−n+1,
C∗(dii−n+1 | x), can be computed as

C∗(dii−n+1 | x) =
∑

e∈N (dii−n+1)

∏n
j=1 p(yj |x)∏n
j=2 p(uj |x)

(5.17)

An example of such N (·) clusters is shown in Figure 5.3 for the 2-grams ‘feature
cannot’ and ‘feature is’. Then, C∗(feature cannot | x) and C∗(feature is | x)
can be computed as

C∗(feature cannot | x) =
0.4 · 0.4

0.4
= 0.4

C∗(feature is | x) =
0.6 · 0.24

0.6
+

0.6 · 0.15

0.6
+

0.6 · 0.21

0.6
= 0.6

That is, ‘feature is’ appears 0.6 times in average in the possible set of transla-
tion, whereas ‘feature cannot’ only appears 0.4 times. Note that if a sequence of
words appears more than once in a sentence, the average counts might exceed
1.
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Now, n-gram-like probabilities from the word posterior WG can be calculated
after a proper normalization:

p(di|di−1i−n+1,x) =
C∗(dii−n+1 | x)

C∗(di−1i−n+1 | x)
(5.18)

Then, Equation (5.18) can be used directly in Equation (5.9) to approximate
Pr(d|yp,x). In other words, given a sequence of words dii−n+1, p(di | di−1i−n+1,x)
can be estimated by summing up the posterior probabilities of all sentences
containing the sequence dii−n+1.

Following the example in Figure 5.3 and being C∗(feature|x) = 1,

p(cannot|feature,x) =
0.4

1
= 0.4

p(is|feature,x) =
0.6

1
= 0.6

The estimation in Equation (5.15) presents the problem that usually many n-
grams are not represented in the WG. Then, they will have zero probability, and
the HTR system will fail to recognize them. A common approach is to rely on
simpler models to account for unseen events using back-off models [Katz, 1987].
As the estimated counts are not real counts (they vary from 0 to the number of
times the n-gram occurs in a sentence), typical discount methods cannot be ap-
plied. However, absolute discount can be used [Ney et al., 1995], which consists
in subtracting a constant, ε, from C∗. Although this is a simple discounting
method, it has an interesting interpretation. Word posterior probabilities have
been extensively used for computing word-based confidence measures [Sanchis
et al., 2012; Wessel et al., 2001]. They usually define a threshold over the word
posterior probability to identify correctly recognized words. In the same sense,
ε establishes a threshold over the expected counts. If a count C∗ is bellow ε,
then it is considered to have low confidence and discounted to zero.

Furthermore, only words present in the WG are included into the model (which
implies a high number of out-of-vocabulary words, since WGs only contain the
words of the most likely hypotheses). The out-of-vocabulary (OOV) problem
is solved by distributing the discounted mass from the unigram among the
remaining words of the vocabulary.

Finally, to improve the estimation of unseen events, n-grams from the WG can
be interpolated linearly with the standard n-gram model:

pγ(d|yp,x) = γ p(d|yp,x) + (1− γ) p(d|yp) (5.19)

This way, the words that were not used by the MT engine are assigned a
meaningful probability.
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5.5 Integrated HTR and IMT decoding

Previous models assume a two-step process, in which the strokes are first de-
coded into a word or phrase, and then, the decoded word is used to correct
the output of the IMT system. However, this decoding can be performed in
an integrated way by marginalizing over every possible decoding d in Equa-
tion (5.2):

ŷs = arg max
ys

∑
d

Pr(y,d | yp,f ,x) (5.20)

Then, we can decompose Equation (5.20) using the chain rule. Approximating
the sum by the maximum, and assuming that Pr(ys | yp,f ,d,x) does not
depend on f if d is known,

(ŷs, d̂) ≈ arg max
ys,d

Pr(d | yp,f ,x) Pr(ys | yp,d,x) (5.21)

Note that, though not necessary, we have added d in the arg max since we are
also interested in the result of the online HTR decoding.

The first term in Equation (5.21) can be approximated as in Equation (5.3),
Equation (5.4), Equation (5.6), Equation (5.13) or Equation (5.15). The sec-
ond term is a prefix conditioned translation model as in Equation (5.2). This
probability forces d not just to be a good translation of x but to form part of
a sentence that is good translation of it. Hence, the decoding of d is benefiting
from a new source of information.

5.6 Experiments

In this section, we present a set of experiments to assess the performance of
the HTR systems described in previous sections. Two kinds of experiments
were conducted. First, the word-based experiments assume that the user only
writes one word at a time. Second, in the phrase-based experiments the user
writes a set of consecutive erroneous words. Additionally, two corpora were
generated from the Xerox corpus, one with Spanish phrases from translations
of English sentences and the other one with English phrases from translations
of Spanish sentences. The details of how the two corpora were generated are
given in Section 2.3.1.

In order to make the references easier, we will name the different systems as
follows:

HTR. The baseline HTR system as defined in Equation (5.3).

ERR. The baseline HTR system after removing the erroneous word, Equa-
tion (5.4).
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nPREF. In Equation (5.6), the latest n words of validated prefix in the target
sentence are taken into account.

M1. In Equation (5.13), information regarding the dictionary is used, but the
alignment probabilities are uniform.

M2. In Equation (5.13), the dictionary and the alignment probabilities are
used.

M1-INV. Like M1 but with the inverse dictionary in Equation (5.14).

M2-INV. Like M2 but with the inverse dictionary in Equation (5.14).

nWG. In Equation (5.15), the system uses an n-gram that has been extracted
from the phrase-based translation WG.

Furthermore, if Equation (5.21) is used, it will be marked with +IMT. In
addition, several of the proposed systems can be combined by linear interpo-
lation. For this case, we will add them up with the + symbol. For instance,
ERR+3PREF+M1+IMT is a linear interpolation between a prefix 3-gram
and a M1 model for which the erroneous word has been removed and IMT
has been activated. Besides, in the case that a log-linear combination[Berger
et al., 1996; Och and Ney, 2002; Papineni et al., 1998] is used instead of a linear
interpolation, it will be remarked as so.

In addition, the proposed language models were encoded as n-grams. The
aim of this is two-folded. First, we would like to leverage current HTR sys-
tems without custom software modifications. Second, since the new sources
of information are added early in the HTR system, we expect to reduce the
error cascade produced in post-processing error correcting systems. However,
although all the proposed models can be trivially encoded as 1-grams for the
case of word-based recognition, some of them cannot be encoded efficiently
for n-grams as such and require special search algorithms. As these cases are
out of the scope of the current work, such models will not be evaluated for
phrase recognition. Nevertheless, these models could also be applied in a post-
processing rescoring stage. For instance, both M1 and M2 models can be easily
encoded as a 1-gram for word-based recognition. As there is just one possible
value for i and x, the 1-gram can be build by computing Equation (5.13) for
each word of the vocabulary. In contrast, M2 models cannot be encoded as
n-grams for phrase recognition since the probability depends on the position
i of the hypothesized word, and then, i should be stored in the search algo-
rithm for every word hypothesis. Luckily, M1 models assume independence of
the position i so they can be encoded as a 1-gram even for the case of phrase
recognition. In a similar way, the integration of HTR and IMT cannot be easily
incorporated into a n-gram language model for phrase decoding. Although an
alternative would be to use the IMT model to rescore a list of n-best lists from
the HTR system, this decoupled approach has not been evaluated.
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Finally, as it is typical in modern HTR and IMT models, the different proba-
bility distributions must be scaled. Here, the optimum language model scaling
factor, λ, was chosen to optimize the average CER or WER in the develop-
ment set of the three writers with the downhill simplex method [Nelder and
Mead, 1965]. There were not significant differences in the optimum parameters
obtained separately for each writer. Therefore, the estimation of these parame-
ters seems rather robust to the variability of writers. The linear (or log-linear)
interpolation factors for language model combination were also obtained using
the simplex method over the development set.

5.6.1 Results on isolated words

The first scenario we have considered is to allow only the correction of a word
at a time. Thus, the results must be interpreted as isolated word recogni-
tion. Figure 5.4 shows the test CER for different values of λ for the most
relevant systems when recognizing isolated words. The plots are the true error
curves which were obtained using the convex hull algorithm in a similar way
to [Macherey et al., 2008; Tromble et al., 2008]. Circles (•) indicate the op-
timum development λ. First, it must be noted that the optimum λ from the
development set approximate quite well the test optimum, which is a desirable
feature. The only exception is the 2WG system in Figure 5.4d for which an
extra error reduction of 0.5 points could have been achieved.

Second, we should note the effect of adding ERR to the system on the error
rate. A small improvement can be noticed in Spanish. However, the curves in
English overlap. The explanation for this is a bit involving. Note that Spanish
is a more inflected language than English. For example, both (in English) can
be translated by ambos or ambas (in Spanish), depending on the gender, and
having very similar writings. In contrast, añade (in Spanish) can be translated
by adds (in English). Thus, we can see how translating from a less inflected
language to a more inflected language introduces extra ambiguity. Furthermore,
the possible translations of ’both’ present also a similar spelling. Conversely,
the ambiguity is reduced in the opposite direction. Table 5.1 shows the 5-best
list of the HTR scores for the words ambos and adds. In the first case, ambas
and ambos are the two most likely words in the HTR system, which differ in
just one character and have similar HTR scores. Now, imagine that the IMT
engine mistranslates both to ambas, by changing the gender of the word. Then,
by saying that ambas is not correct with the ERR model, we give the system
the opportunity to amend the error himself. However, in the English case, none
of the words are synonyms of the word to recognize, and thus is more difficult
to find the mistranslated word at the top of the n-best list. As a consequence, it
is very unlikely that ERR achieves much improvement when translating from
Spanish to English.

With respect to the nPREF models, only 4PREF has been displayed in the
plots. The improvement over the baseline is consistent and significant. The
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Figure 5.4: Test CER when modifying the λ scale factor. The x axis represents the
variation of the normalized scale factor λ. The y axis shows the classification error rate
(CER). Circles (•) indicate the optimum λ for the corresponding development sets. In
the upper row, the comparison of the basic models. In the lower row, the most relevant
translation models.
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ambos adds

word HTR score word HTR score

ambas 651.6 aids 137.9
ambos 646.9 cities 105.6

cambios 390.7 cycles 91.6
amplias 384.1 adds 90.7
campos 344.4 circles 85.8

Table 5.1: 5-best list for the words ambos and adds, which have been misrecognised. The
crossed-out word is the word the IMT system mistranslated and the user is amending.

experiments were run on 2PREF, 3PREF and 5PREF as well. However, only
2PREF for English performed slightly worse than 4PREF. Longer prefixes
achieved almost the same performance.

Regarding the systems using the translation models in Figure 5.4c and Fig-
ure 5.4d, we can see that these systems usually outperform the best basic sys-
tem, 4PREF+ERR. The exception for this is 2WG for English, which shows
a small performance degradation with respect to 4PREF+ERR. Still, 2WG
systems do not seem to improve the basic systems significantly. Although sev-
eral nWG systems were tested, any of them showed improvements over 2WG.
On the other hand, M2 systems achieve good improvements, although they
are simpler than 2WG. A reason for that is that M2 models have a smoother
distribution probability and nWG systems need some sort of hypothesis prun-
ing. In fact, the average number of candidates with probability greater than
zero is 292 for M2 and 38 for 4WG. IMT suffer even more from this problem
with 2 candidates average.

A summary of the different alternatives studied for the word-based experiments
is shown in Table 5.2. First, with only the basic information, 4PREF+ERR
clearly outperforms HTR. Second, using translation models we can achieve fur-
ther improvements. Since M2 performs much better than M1 we can deduce
that alignment information is crucial for the translation models. Although in-
verse dictionaries have a better vocabulary coverage (4.7% vs 8.9% in English,
7.4% vs 10.4% in Spanish), they tend to perform worse than their direct dictio-
nary counterparts. Still, inverse word models perform better than the n-grams
alone. On the other hand, nWG performance is worse than word-based trans-
lation models. As it has been explained before, that might be due to the poorly
smoothed probability distribution. Another reason might be that, in the pro-
cess of obtaining n-gram models, information regarding alignments is lost as
a result of the n-gram assumptions. When interpolating with 4PREF, M2
models do not show significant improvements. In fact, for Spanish, the system
presents over-fitting, since performance in development improves but in test de-
creases. However, 4PREF smooths 2WG distribution achieving close results

122 VAG-DSIC-UPV



Chapter 5. Online Handwritten Interaction for Machine Translation

to word-based models. Moreover, a log-linear combination of the models show
a bit of improvement with respect to word models alone. Nevertheless, linear
interpolated models perform better. Other log-linear combinations (including
a combination of all models) were tested. Nevertheless, none of them out-
performed their linear interpolation counterpart. Next, by introducing IMT,
small improvements can be obtained. Not surprisingly, IMT suffers from the
same problems than nWG, but even more prominent. Finally, including all
systems we can observe the best results overall, except for the over-fitting in
the Spanish test set. Thus, 2WG seems to contribute slightly to improve the
final model accuracy.

System Spanish English

dev test dev test

HTR 9.7 11.1 7.9 9.9

ERR 9.6 11.0 7.8 9.8
4PREF 7.9 10.2 6.7 9.5

4PREF+ERR 7.8 9.9 6.6 9.5
2WG+ERR 8.6 9.8 7.7 9.4
M1-INV+ERR 8.4 9.5 7.5 9.2
M2-INV+ERR 7.9 9.1 7.1 9.1
M1+ERR 7.7 9.4 7.3 9.0
M2+ERR 7.1 8.6 5.9 7.7

2WG+4PREF+ERR 7.4 9.2 6.0 7.9
M2+4PREF+ERR (log-linear) 7.0 9.1 6.0 7.9
M2+4PREF+ERR 6.8 9.0 5.7 7.5

2WG+4PREF+ERR+IMT 7.3 9.2 6.0 7.9
M2+4PREF+ERR+IMT 6.7 8.9 5.7 7.5

ALL 6.7 8.9 5.6 7.4

Table 5.2: Summary of CER results for isolated word recognition. In this case, the user
is allowed to amend one error at a time. The results show various language modeling
approaches. In boldface the best systems.

5.6.2 Results on consecutive erroneous words

In contrast to the previous experiments, here we allow the correction of consec-
utive erroneous words. In this case, the decoding is performed as in continuous
handwriting recognition. The results are summarized in Table 5.3. First, it
should be pointed out that a third column has been added, which contains the
best result achievable in the test sets when optimizing the parameters with the
simplex algorithm instead of relying on the parameters from the development
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set. This column is a lower bound of the error we can expect from the proposed
models. It can be seen that the differences with respect to using the optimum
development parameters are small in general. Thus, the estimation of the pa-
rameters is quite robust. First, it must be noted that the results for ERR, M2,
and IMT are not shown, since they would require a different search engine. In
addition, it is worth of mention that the baselines for phrase-based HTR have
almost the double error rate than the word-based baselines. This is caused
primarily because the segmentation for the words in the phrases are unknown.
Then, it is the search algorithm that must find the most likely segmentation.
As a result, segmentation errors are propagated to word errors. If we look at
the results regarding the nWG models, they perform unexpectedly bad when
used alone. However, when interpolated with 3PREF they show a good im-
provement. As in word-based recognition, word-based translation models show
the best results, specially when interpolated with other models.

System Spanish English

dev test test* dev test test*

HTR 15.9 16.8 16.7 13.0 18.6 18.4

3PREF 14.4 16.3 16.3 12.0 18.0 17.8
2WG 15.8 18.9 18.6 14.3 19.7 19.2
M1 14.2 17.0 16.8 12.2 17.4 17.4

2WG+3PREF 13.9 16.2 15.9 11.5 16.6 16.5
M1+3PREF 12.6 15.2 15.1 11.5 15.5 15.1

M1+2WG+3PREF 12.6 15.2 15.1 11.1 15.7 15.3

Table 5.3: Summary of WER results for continuous word recognition. In this case, the
user is allowed to amend one or more consecutive errors in each interaction. The results
show various language modeling approaches for the dev and test sets. Also, test* shows a
lower bound if downhill simplex is used over the test set. In boldface the best systems.

To sum up, all the proposed systems significantly outperform the baseline rec-
ognizer. Basic models obtain a good improvement over the baseline. However,
adding information from the translation may achieve remarkable results. Al-
though more complex translation models suffer from smoothing problems, they
can also contribute when interpolated with the rest of the models.

5.6.3 Error Analysis

An analysis (Table 5.4) of the results for the best word-based model shows that
49.2% to 54.4% of the recognition errors were produced by punctuation and
other symbols. To circumvent this problem, we proposed a contextual menu
in [Alabau et al., 2011]. With such menu, errors would have been reduced
(best test result) to 4.4% in Spanish and 3.5% in English. Out-of-vocabulary
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(OOV) words plus zero probability (P0) words (the words for which the decoder
assigned zero probability or were pruned out) also summed up a big percentage
of the error (40.3% and 28.9%, respectively). Finally, the rest of the errors were
mostly due to one-to-three letter words, which can be basically a problem of
handwriting morphological modeling.

word-based phrase-based
class words es (%) en (%) es (%) en (%)

punct. ., ,, :, ;, *, (, ), — 49.2 54.4 14.0 18.6
1-char a, e, y, o, u 4.1 0.9 8.3 2.3
2-char of, if, la, by, on, is, . . . 1.8 7.1 4.4 3.4
3-char for, off, los, may, . . . 0.0 4.3 2.1 4.9

numbers xxvii, xxvi, xxiii, . . . 2.3 0.9 2.1 2.3
OOV + P0 termina, luz, . . . 40.3 28.7 20.2 13.6

others latin, flash, fsma, . . . 2.3 3.4 20.3 18.6

substitutions 100 100 71.5 63.8
insertions − − 3.0 4.6
deletions − − 25.5 31.6

Table 5.4: Detailed analysis of the word-based and phrase-based recognition errors. Five
classes have been identified to produce the most amount of recognition errors. The second
column shows samples of misrecognized words for these classes. Columns three and four
are the percentage of these classes among the total number of misrecognized words for
Spanish (es) and English (en), respectively. Columns five and six are the percentages for
the phrase-based experiments. In this case, the percentage of substitutions, insertions and
deletions is also shown.

On the other hand, phrase recognition presents a different error distribution.
First, note that two new classes of errors have been introduced: deletions and
insertions. The former account for the words in the reference that have been
omitted, whereas the latter account for words inserted in the output hypothesis
but do not correspond to any word in the reference. Both contribute to generate
hypotheses with lengths different to their respective references, since the HMM
models is not able to perform an accurate segmentation. Then, as a result,
the proportion of recognition errors from the ’others’ category increases from
3 to 20. In contrast, the proportion of errors regarding punctuation symbols
decreases. Finally, it is to be remarked how the errors for short words have
increased, probably because of small insertions or deletions.

5.6.4 Reducing Effort Correcting HTR errors

In case an HTR error is committed, the user may fall back to the virtual
keyboard and type the correct word. The problem with this kind of keyboards
is that typing is slow. To minimize this problem, we propose a contextual menu
with a list of the n-best candidates (excluding the erroneous word). The aim is
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to reduce the number of clicks needed to obtain the correct word with respect
to a conventional virtual keyboard. As a baseline, for each HTR mistake, we
count the number of clicks needed to input the correct word as: one click to
pop up the keyboard, plus the number of characters in the word, plus one click
to close the keyboard. For the Spanish test set, the average number of clicks
per word amounts to 9.3, while for English it is 9.1 for the best word-based
models in Table 5.2. This values can be surprisingly high, since it is known
that the average word length is 4.5, i.e. the average number of clicks per word
6.5. However, it must be noticed that longer words are also more difficult to
recognize. Thus, the average word length in the erroneous words is higher.

If the contextual menu is used, we count: one click for opening the menu plus
one for choosing a word. If the correct word cannot be found in the n-best list,
then we add: one count for the keyboard, plus the number of characters, plus
a closing click. In Figure 5.5, we can see, on the left axis, the CER for a given
size of the n-best list. Clearly, the error almost reduces to a quarter, around
n = 5, with respect to the baseline. Between 10 and 15, the error stabilizes.
Note that from 5 to 10 is still a reasonable amount of candidates to be shown
in a circular menu. For more than 15, the CER almost equals the error for
OOV+P0, since they cannot be found in n-best lists. On the right axis, we
can observe the average number of clicks per word necessary to correct the
mistakes. For n = 1 the number of clicks is reduced to 2.0. A trade-off can be
found at n = 7 with 1.83 (80% relative improvement w.r.t. the baseline) and
1.82 (78% relative improvement), for Spanish and English, whereas the lower
bounds are 1.75 and 1.73, respectively.
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Figure 5.5: Reduction of CER and number of clicks as a function of the n-best list size.
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Figure 5.6: Illustration of the proof reading gestures devised for MT post-editing (marked
as TER), and IMT (which comprises the whole set of gestures).

5.7 E-pen gestures

So far, e-pen interaction has been approached as just introducing the correct
words. However, additional ways of interaction can be achieve by means of
e-pen gestures. For instance, there is already a ‘de facto’ standard for gestures
for proof reading from which we have extracted the most promising gestures
(cf. Figure 5.6). This notation has been successfully used for years, although
now that documentation is managed mainly in digital format, this technique
is becoming obsolete. Nevertheless, we can convert such mature notation into
gestures that can be understood by an interactive system. Then, the set of ges-
tures that fit our post-editing needs are: substitutions, deletions, insertions and,
transpositions. Furthermore, we have added a shift gesture to move phrases
to specific places in the text (i.e., the user circles the phrase and draws an
arrow to the final destination). Then, we have studied two e-pen post-editing
approaches. In the first one, we consider substitutions, deletions, insertions
and, shifts. The number of these operations to obtain a reference can be com-
puted with the translation error rate (TER) [Snover et al., 2006]. In the second
approach, we assume that the user is working with an interactive MT system
(IMT). In this case, we have also considered transpositions.

To know what gestures could be more useful, we have conducted an experi-
ment on the Xerox corpus (cf. Section 2.2.4). The summary of the edit rate
results is displayed in Table 5.5. The edit rate is the number of edit operations
needed to obtain the reference normalized by the number of words. We can
see that the IMT system requires less interactions, especially for Spanish to
English translation. Next, the number of times a particular edit operation has
been applied is shown. We expect the gestures for deletion, insertion, shifting
and transposition to be easy to tell apart for a machine learning algorithm.
However, this will be the subject of future work. In addition, substitutions or
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post-editing IMT
en-es es-en en-es es-en

edit rate (%) 21.3 24.4 21.1 22.8

substitutions 1028 919 1549 1284
insertions 325 461 190 212
deletions 484 302 0 0

transpositions – – 41 56
shifts 319 357 347 354

Table 5.5: Summary of number of edit operations needed to obtain the reference for
post-editing and interactive-predictive machine translation. The edit rate is the ratio
between the number of edit operations and the number of words in the reference. Follows
the number of occurrences for each edit operation. Here, we assume a perfect gesture
recognizer. The gesture recognizer will be developed in future work.

insertions require the user to write the correct word, which can be done with a
virtual keyboard or by handwriting, as we have seen in the previous sections.

5.8 Summary of contributions

In this chapter we have described a task specific on-line HTR system to operate
with an IMT application. We have shown that a tight integration of the HTR
and IMT decoding process can produce significant HTR error reductions. It is
worth of note that all the proposed systems significantly outperform the base-
line recognizer. Basic models obtain a good improvement over the baseline.
However, translation models achieve remarkable results. Although more com-
plex translation models suffer from smoothing problems, they also contribute
when interpolated with the rest of the models. We also have introduced a new
method for correcting HTR mistakes that consists on a contextual menu with
the n-best candidates. The results show that a list with as few as 7 candidates
allows to correct the HTR mistakes with just 1.83 clicks per word. Addition-
ally, we have realized an initial exploration of which post-editing gestures are
more likely to be useful.

On the other hand, the analysis of the results has shown two important is-
sues to be tackled. First, the system should be able to decode unknown words
since they are a clear limitation to system performance. A solution for this
might be to use character language models instead of word language models, a
technique that has achieved promising results in other areas [Zamora-Mart́ınez
et al., 2010]. Second, phrase-based models could benefit from better smooth-
ing methods. Alignment information should be also taken into account more
explicitly in these models. Furthermore, other alternatives could also be ex-
plored, as more advanced word-based translation models (such as HMM) that
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cannot be used as n-grams in phrase-based decoding. These models could be
used instead in the rescoring of the HTR WGs.

The work on HTR and IMT integration has lead to the following publications:

• V. Alabau, A. Sanchis, and F. Casacuberta. Improving On-line Hand-
written Recognition in Interactive Machine Translation. Pattern Recog-
nition, submitted to(–), 2013.

• V. Alabau, A. Sanchis, and F. Casacuberta. Improving On-line Hand-
written Recognition using Translation Models in Multimodal Interactive
Machine Translation. In Proc. of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technologies
(ACL’11), p. 389–394, 2011

• V. Alabau, D. Ortiz-Mart́ınez, A. Sanchis, and F. Casacuberta. Mul-
timodal Interactive Machine Translation. In Proc. of the International
Conference on Multimodal Interfaces (ICMI-MLMI’10), p. 46:1–46:4,
2010.

Additionally, the study of e-pen commands for MT and IMT was published in:

• V. Alabau and F. Casacuberta. Study of Electronic Pen Commands for
Interactive-Predictive Machine Translation. In International Workshop
on Expertise in Translation and Post-editing Research and Application,
2012.
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Chapter 6. Speech Interaction for Translation and Handwritten Text Transcription

6.1 Introduction

In the previous chapter, HTR performance has been improved by using specific
information from the task in which this interaction modality was being ap-
plied. In this chapter, similar ideas are employed to improve automatic speech
recognition (ASR) when used as an interaction modality for translation and
handwritten text transcription.

Speech interaction can be conceived as a natural modality to improve system
ergonomics and productivity. For instance, Dragsted et al. [2011] performed
an study where translators where asked to translate short texts in three condi-
tions: written translation, sight translation without ASR1, and sight transla-
tion with an ASR tool. Although with written translation the quality achieved
was slightly better, sight translation was three times more productive, i.e., it
took the participants a third of the time to complete the task. However, sight
translation with ASR took more than twice the time with respect to plain sight
translation, since the participants had to review and post-edit the ASR output.
Additionally, when consulting informally paleographists on the most comfort-
able method to transcribe a handwritten text document, many of them claim
that a dictation of the words would be an interesting choice. Consequently,
speech interaction with off-line handwritten text recognition (HTR) systems
should also be taken into consideration.

As it happened with e-pen interaction in Chapter 5, the problem to face with
this alternative modality is that it is not deterministic, i.e., speech needs to
be decoded by a specific system which may commit errors. Since the user
would seldom use an error prone system, their utility is conditioned to high
accuracy rates. Thus, one of the most important research problems in this
area is how to take advantage of the information available in the structured
prediction problem being tackled to improve the final ASR accuracy. This leads
to an interesting and challenging fusion problem. The concurrent multimodal
aspects of the interaction process, i.e. how keyboard, mouse and the alternative
modalities could be used simultaneously, will be left apart as they occur in rare
occasions [Oviatt and VanGent, 1996]. On the contrary, it is assumed that
the user will prefer to use the alternative modality as long as the recognition
accuracy is high enough, if she finds the modality to be more productive or
ergonomic. The user will fall back to the keyboard just in case of a decoding
mistake [Shilman et al., 2006].

Several techniques for dictating translations were explored in the nineties, for
instance by Brown et al. [1994] and Dymetman et al. [1994], but this topic
has received some attention recently. Paulik et al. [2005] used a cache lan-
guage model with the uni-grams obtained from an MT n-best list. On the

1In sight translation, the translator or interpreter is given a written document in the
source language and is asked to read it aloud in the target language.
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other hand, Reddy and Rose [2010] approached sight dictation by combin-
ing speech and translation at phonetic level using an edit distance algorithm
with a composition of weighted finite-state automata. However, the first study
of a speech-enabled interactive system was Vidal et al. [2006]. There, several
scenarios were proposed, where the user was expected to speak aloud parts of
the current hypothesis and possibly one or more corrections. The technique
consisted on rescoring the language model with the probabilities of word-based
translation models [Brown et al., 1993], which are not aware of the context
of the source and target sentence. Latter, several methods were proposed
in [Khadivi and Ney, 2008] that took advantage of context information. Word
graphs (WGs) from speech and translation were combined in different ways
including speech and translation WG composition using finite-state automata
toolkits and WG rescoring with word-based translation models and posterior
n-grams from m-best lists. However, the approaches presented in that work
has one main drawback: the fusion problem was approached as late fusion as
the ASR WG was generated without taking into account MT information. Re-
garding dictation in HTR, previous attempts in combining handwritten input
and speech input have been done [Liu and Soong, 2009], but most of them
focus on the use of on-line handwritten text.

This chapter is devoted to exploring new techniques to provide a more reliable
speech-enabled input interface that can lead to a real multimodal system. In
particular, we focus on approaches that can be seamlessly integrated with cur-
rent speech recognition technology. The techniques we propose are very similar
to the ones explored in Chapter 5, which allow a context aware decoding. We
have considered two scenarios. The first one is a speech-enabled IMT sys-
tem [Vidal et al., 2006] and the second one could be called sight transcription,
since the user reads aloud the transcription of a handwritten document.

6.2 Speech-enabled IMT

Enabling a speech interface for MT is much in the line of enabling on-line HTR
for MT (cf. Chapter 5). Only that in this case, the variable f represents a
speech signal instead of a sequence of pen strokes. Nevertheless, in speech it
makes less sense to force the user to utter single words. Thus, only the scenario
where multiple words can be spoken will be analyzed. Additionally, we will use
the modeling strategies analogous to those that were used in Chapter 5, with
the goal to find solutions compatible with existing speech technologies and
decoders.

As a reminder, an illustration of a speech-enabled IMT system is shown in
Figure 6.1. To distinguish when keyboard or speech is used, we will denote κ
to represent a word (or sequence of words) introduced by using the keyboard,
and f to represent a speech utterance to be decoded. As the example shows,
the process starts with an empty prefix yp, so the system proposes in the first
iteration a full translation ŷ. This output would be the same of a conventional
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MT system. Then, the user selects the error-free prefix yp and speaks aloud

to correct the first translation error. As the output of the ASR system, d̂, is
wrong, the user falls back to using the keyboard, κ. Then, the system proposes
a new suffix ŷs based on the user feedback. In the second iteration, the user
amends at by uttering the word in and the system reacts by predicting a new
suffix ŷs. Since this suffix is fully correct the process ends. Note that the
speech-enabled IMT approach has allowed to obtain the correct translation
with only two user corrections, whereas more effort would have been required
if the conventional approach, based on fully automatic MT and human post-
editing had been applied.

SOURCE (x): si alguna función no se encuentra disponible en su red
REFERENCE (r): if any feature is not available in your network

ITER-0 (ŷ) if any feature not is available on your network

ITER-1

(yp) if any feature
(f) if any feature

(d̂) if any feature in
(κ) if any feature is

(ŷs) if any feature is not available at your network

ITER-2

(yp) if any feature is not available
(f) if any feature is not available

(d̂) if any feature is not available in
(ŷs) if any feature is not available in your network

FINAL (ŷ = r) if any feature is not available in your network

Figure 6.1: Example of an ASR-enabled IMT session for translating a Spanish sentence
x from the Xerox corpus to an English sentence r. In each iteration, the user selects the
longest error-free prefix yp, e.g., by positioning the mouse cursor. Then the user speaks
aloud the correction, f , which can be composed my one or more words. If the decoding
of the utterance, d̂, is correct, then it is displayed in boldface. On the contrary, if d̂ is
incorrect, it is shown crossed out. In this case, the user amends the error using the virtual
keyboard κ (in typewriter). Finally, the system proposes a new suffix (ŷs) based on the

user’s feedback (d̂ or κ). This process continues until the reference, r, is reached.

The IMT process starts producing a full translation ŷ of the source sentence
x based on conventional statistical MT techniques. Then, according to the
source sentence, the user analyzes ŷ in order to detect some possible translation
errors. Typically, the user reads ŷ from left to right and the first error found
is replaced by some text d̂ resulting from the user’s dictation of the correction.
Then, a validated error-free prefix yp,d̂ is generated. This prefix is used by
the IMT system in the next iteration to produce a new prediction ŷs so that

the concatenation of yp,d̂ and ŷs constitutes a whole translation of the source
sentence. This process is repeated until a completely error-free translation is
achieved. Alternatively, the user can use the keyboard κ.
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In our strategy, the user’s feedback is aimed at introducing a correction after
the correct prefix. However, as opposed to the HTR scenario, the system does
not know where to introduce the result from the feedback. In this work, we
will assume that the user has positioned the cursor in the exact place where
the result is supposed to appear. However, an alternative would be validating
a fragment of the suggestion (prefix selection, yp) by using speech as well.
This should a very easy task since it is restricted to utter a fragment of the
current IMT prediction, and thus, the perplexity would be very low. In fact,
Vidal et al. [2006] achieved word error rates for prefix selection around 1.6% for
the same task analyzed in this chapter. Around 96.4% of the utterances were
perfectly recognized, which suggest that the prefix selection scenario is almost
usable following LaLomia [1994] recommendations. In addition, gaze-tracking
could also be used to set the cursor position. In that case, the user should just
start speaking while looking at the spot where the cursor should be.

This section is organized as follows. First, a brief survey of the techniques
proposed by other authors is presented in Section 6.2.1. Next, Section 6.2.2
describes our contribution for the integration of the MT context in the speech
recognizer. As these techniques are very similar to the ones explored in Chap-
ter 5 we will only make a brief overview. For more details on any of these
techniques, refer to Chapter 5.

6.2.1 Leveraging task-specific context

If we were to use a completely decoupled ASR system to enable speech multi-
modality in MT, the optimal decoding could be obtained as

d̂ = arg max
d

Pr(d | f) = arg max
d

Pr(d) Pr(f | d) (6.1)

where Pr(d) denotes the language model, which deals with the probability of
d being a sequence of words in a specific language. Pr(f | d) is the acoustic
model, which is a representation of the probability distribution for the con-
stituent speech elements (usually phonemes or phoneme sequences) in the input
utterance. For more details regarding how ASR modeled see Section 2.2.3.

This first approximation, referred as DEC in [Vidal et al., 2006], is based on the

use of a conventional ASR system to obtain d̂. Equation (6.1) can be regarded
as a completely independent module (black-box) and, therefore, it could be
adopted to build a speech input interface for any kind of interactive system.
However, in MT, we can benefit from the context provided by the interactive
system itself to introduce speech recognition in such a way that the speech
decoding accuracy can be improved. It is reasonable to assume that the user
will utter something that is both a suitable continuation to the current selected
prefix and a fragment of a correct translation for the source sentence. This fact
can be profitably used to actually improve the ASR performance.
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With this purpose, Vidal et al. [2006] proposed a new alternative by introducing
the prefix yp as a language model constrain in Equation (6.1):

d̂ = arg max
d

Pr(d | f ,yp) (6.2)

Under the assumption that Pr(f | d,yp) does not depend on yp if d is known,
Equation (6.2) can be rewritten as

d̂ ≈ arg max
d

Pr(d | yp) Pr(f | d) (6.3)

Here, the language model is conditioned to the current prefix. Consequently,
the search space in the ASR decoding can be constrained to those hypotheses
that are suitable continuations of yp. Note that Equation (6.3) is the same
approach described for HTR in Equation (5.6).

Similarly, the source sentence can be introduced into the language model in
Equation (6.1) as a constraint:

d̂ = arg max
d

Pr(d | f ,x) (6.4)

and, under the assumption that Pr(f | d,x) does not depend on x if d is
known, we can approximate Equation (6.4) by

d̂ ≈ arg max
d

Pr(d | x) Pr(f | d) (6.5)

Now, this constraint favors decodings of d̂ whose words result from translations
of x. In this case, the information on the target sentence context is not taken
into account.

Clearly, a more interesting and challenging approach is to consider dependencies
on both x and yp:

d̂ = arg max
d

Pr(d | f ,yp,x) (6.6)

If we assume that Pr(f | d,yp,x) does not depend on yp and x if d is known,
then Equation (6.6) can be rewritten as

d̂ ≈ arg max
d

Pr(d | yp,x) Pr(f | d) (6.7)

which is equivalent to the Equation (5.9) used in the case of HTR.

The use of Equation (6.7) has been addressed in previous works [Khadivi and
Ney, 2008; Rodŕıguez-Ruiz, 2010; Vidal et al., 2006]. In [Vidal et al., 2006]
word-based translation models were used to rescore the ASR language model.
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Later, [Rodŕıguez-Ruiz, 2010] rescored n-best list hypotheses from the ASR
output with word-based models. However, in word-based models the word
probabilities of the target sentence are independent from each other, and thus
contextual information is not used. This is a known limitation, since transla-
tion models using contextual information as n-gram-based [Casacuberta et al.,
2005; Mariño et al., 2006] or phrase-based [Och and Ney, 2002] models greatly
outperform word-based models.

Although phrase-based WGs did not improve word-based models in HTR de-
coding in Chapter 5, previous works from other authors indicate that probably
we could obtain bigger benefits in the case of ASR. For instance, the tech-
niques in [Khadivi and Ney, 2008] used a WG from an ASR system, as input to
a series of combinations with word-based and phrase-based translation models.
The results were promising. However, the problem of these approaches is that
the best solution is limited by the quality of the ASR WG. A way of measuring
such quality is by the error rate of the sentence in the WG closest to the refer-
ence, as it is a lower bound on the error rate. Rescoring the ASR WG cannot
recover from errors in the ASR stage. Hence, an early fusion of the translation
models would allow to recover some of these errors otherwise impossible to
amend. Additionally, Khadivi and Ney [2008] experiments were more similar
to the sight translation in [Reddy and Rose, 2010] than to an speech-enabled
IMT scenario.

6.2.2 Speech and translation fusion

Typically, state-of-the-art ASR systems approach the language modeling with
n-gram models [Jelinek, 1998]. Therefore, if the constraints could be encoded
as an n-gram language model, the integration with current state-of-the-art ASR
systems would become trivial. A simple way to do so is to transform word-based
translation models into a n-gram-style language model to model Equation (6.5).
Thus, the probability of the translation model can be decomposed based on a
strong näıve Bayes assumption similar to the assumptions for the word-based
statistical dictionaries [Brown et al., 1993],

Pr(d | x) =
∏
k

Pr(dk | dk−11 ,x) ≈
∏
k

p(dk | x) (6.8)

Then, the probability of a target word being a translation of the source sentence
can be computed similarly to Equation (5.12) by

p(dk | x) =

|x|∑
j=1

p(k | x) p(dk | j,x) (6.9)

where p(j | x) is an alignment model which can be approximated, as in M1, by
1

|x|+1 and, p(dk | j,x) is a dictionary which can be approximated by a statistical
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lexicon p(dk | xj) models [Brown et al., 1993]. Hence, Equation (6.9) can be
approximated by

p(dk | x) ≈
|x|∑
j=1

p(dk | xj)
|x|+ 1

(6.10)

As we explained in Section 5.6, M1 models can be easily encoded as a 1-gram
language model, which is very convenient to integrate the model into a state-
of-the-art ASR system. Unluckily, M2 models cannot be so easily integrated
when the output may consist in more than one word. As that is the case for a
speech-enabled interface, we have decided not to use M2 in this section.

On the other hand, to deal with the application of Equation (6.7), we can
use state-of-the-art phrase-based model [Och and Ney, 2002] to build n-gram
posterior probabilities over WGs generated by such systems (see Section 5.4.2
to see the details of this technique). As a result, a (smoothed) n-gram language
model is obtained that is constrained to the source sentence and the correct
prefix. The resulting language model can be defined as

p(d | yp,x) =
∏
i

p(di | di−1i−n+1,yp,x) (6.11)

which needs to be smoothed to account for words not seen in the WG (cf.
Section 5.4.2). A last approach to avoid poor estimations of p(d | yp,x) is a
linear interpolation with a regular language model,

pγ(d | yp,x) = γ p(d | yp,x) + (1− γ) p(d | yp) (6.12)

where γ is the interpolation factor.

6.2.3 Results of speech-enabled IMT

This section is devoted to analyzing the experimental results of the methods
proposed in Sections 6.2.1 and 6.2.2. The experiments were carried out with the
speech Xerox corpus described in Section 2.3.2. This corpus was obtained by
retrieving consecutive errors from IMT sessions, which constitute the segments
of text that the users would speak aloud. Thus, the results presented in this
section refer to the decoding of such segments of texts, not to full sentences.
In fact, this aspect makes speech interaction a harder problem that plain dic-
tation, as reflected by 3-gram perplexities (163 vs 48, respectively). In order to
build the word-based and phrase-based models required for the experiments,
the publicly available toolkit for IMT, Thot2 [Ortiz-Mart́ınez et al., 2005], was
used. With the word-based models, M1 language models were generated as in
Equation (6.9). In addition, the phrase-based models were used to generate the
translation WGs for each source sentence in the test dataset. These WGs were

2http://sourceforge.net/projects/thot/
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used to estimate the n-gram posterior models (nWG) in Equation (6.11). For
the models needing parameter adjustment, as posterior scale or ε in absolute
discount, a range of parameter values were explored. However, only the most
promising models, in terms of perplexity, were selected for the experiments.
The analysis of this will be shown later in this section. Next, the parameters
of the speech recognizer were estimated based on WER over a held-out de-
velopment dataset for the 3-gram language model. Finally, the baseline and
selected models were used to generate ASR WGs with the publicly available
iATROS3 [Luján-Mares et al., 2008] speech recognition software. The quality
of the models was then assessed by the perplexity of the model, the WER of
the hypothesis with maximum probability, and the OWER, i.e. the hypothesis
in the WG with minimum WER.

As a baseline, two scenarios, shown in Table 6.1, have been considered. The
3GRAM system in Equation (6.1), which uses an unconstrained language
model, obtains a 26.7 of WER and a 12.0 of OWER. The 3PREF system in
Equation (6.3), which is conditioned on yp, obtains 23.1 and 10.4, respectively.
Note that, not only the performance is better, but the quality of the WGs also
improves.

model PPL WER OWER

3GRAM 163 26.7 12.0
3PREF 57 23.1 10.4

Table 6.1: Perplexity, WER and oracle WER (OWER) for the baseline system.

Conversely, Table 6.2 shows the results for the models not depending on yp,
that is, independent of the target language context. The M1 system proposed
in this work is only conditioned on x. Although perplexity results are better
than the previous approaches (34 vs 57 of 3PREF and 163 of 3GRAM), WER
results are quite worse (29.9) and the WG quality is bad. However, M1 has
no contextual information, so it is more similar to a 1GRAM system. In fact,
it is encoded as such. In this comparison, the M1 system outperforms the
1GRAM system. The last system of this category is 1WG. This is actually
the one with more information, since it has been obtained from a phrase-based
model including various sources of information from the log-linear translation
model. Indeed, it shows the best performance compared to 1GRAM and M1.
Moreover, it outperforms 3GRAM and is close to the 3PREF system. When
these systems are combined with a 3PREF model to provide contextual in-
formation the results are comparable or better than the 3PREF model alone
(with interpolation factor γ = 0.6 for M1 and γ = 0.8 for 1WG). It is worthy
of note the OWER results, that improve dramatically compared to non inter-
polated models. With respect to the 3PREF system, which would be the one

3http://prhlt.iti.upv.es/w/iatros
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used in [Khadivi and Ney, 2008], interpolated models improve the WG qual-
ity at least a 27%. Hence, WG rescoring techniques could be able to improve
results when applied to WGs generated using interpolated models.

model PPL WER OWER

1GRAM 455 43.2 37.6

M1 34 29.9 26.2
1WG 27 24.7 21.5

M1 + 3PREF 22 23.2 8.7
1WG + 3PREF 28 22.4 8.5

Table 6.2: Perplexity, WER and oracle WER (OWER) for models independent from tar-
get language context (yp) and respective linear interpolation models. Note that 1GRAM
and 1PREF are the same models since both lack of dependency on yp or x

The posterior scale parameter, that was defined in Equation (3.21), is crucial
in word posterior probability estimation [Ogawa et al., 1998]. Typically, this
parameter must be adjusted to balance the probabilities of the competing hy-
potheses. Figure 6.2 shows the results in perplexity nWG systems of order
from 1 to 5 when varying the posterior scale. Unexpectedly, the best poste-
rior scale is found at 1. However, the explanation for this is rather simple.
The word posterior probabilities have been used mainly on ASR WGs in the
literature. Here, the acoustic score is not actually a probability but a den-
sity. Hence, the scores are very low and the posterior scale is needed to obtain
sensible word posterior probabilities. On the contrary, translation models are
based on counts, and thus, the WGs encode actual probabilities. Then, it is
not necessary to scale the scores to balance the competing hypotheses.

The nWG approach was tested for various orders of n-grams, from 1 to 5. The
results for perplexity and WER are displayed on Figure 6.3. Diamonds (�)
represent nWG models while squares (�) represent nWG models interpolated
with a 3PREF model. First, note that perplexity and WER results overlap.
This has been made on purpose to show the clear correlation in perplexity and
WER for this kind of models. A minimum is obtained at 2WG. Then as the
n-gram order increases, so does the error. This seems a symptom of model
overfitting. However, all the systems outperform significantly the previous
models for orders of 2 or more. Not surprisingly, these models have managed
adequately the integration of the source sentence x and the target context yp.
At last, when interpolating with nPREF models a consistent improvement
is shown. In addition, this smoothing is able to overcome the problems of
overfitting and, now, the performance stabilizes for higher order of n-grams.

Finally, Table 6.3 summarizes the experiments conducted on this chapter. In-
terpolation factors are γ = 0.6 for M1 and γ = 0.8 for 3WG. As it can be
observed, all proposed models outperform previous models in their respective
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Figure 6.2: Perplexity for various posterior n-grams when varying the posterior scale.
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Figure 6.3: WER and perplexity (PPL) results for different orders of posterior n-grams.

categories. Besides, the generated WGs have also greater quality in terms
of OWER improving in 44.2% relative with respect to 3GRAM for the best
model. This would allow WG rescoring techniques to improve their results.
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model PPL WER OWER

3GRAM 163 26.7 12.0
3PREF 57 23.1 10.4

1GRAM 455 43.2 37.6
M1 34 29.9 26.2
1WG 27 24.7 21.5

M1 + 3PREF 22 23.2 8.7
2WG 11 17.7 8.9
3WG + 3PREF 7 15.9 6.7

Table 6.3: Summary of perplexity, WER and oracle WER (OWER) for the different
approaches. Baseline results in the first block. The second block for alternatives not using
yp. In the third block alternatives using yp and x.

6.3 Dictation of handwritten manuscripts

In previous sections, we have seen how HTR and ASR can be used to interact
with an interactive machine translation system. The problem we are dealing
here is a bit different since it is a dictation problem in a more similar way to
the works of Brown et al. [1994] and Reddy and Rose [2010]. In this case,
the original input and the user’s feedback carry the same message, and hence,
the decoding of both signals must coincide. Basically, the problem consists in
obtaining a sequence of words y which is, at the same time, a transcription of
the handwritten text image x (from the HTR problem) and a speech utterance
f = (f1, f2, . . . , f|f |). Statistically, this problem can be formulated as

ŷ = arg max
y

Pr(y | f ,x) = arg max
y

Pr(y | x) Pr(f | x,y) (6.13)

Making the safe assumption that Pr(f | x,y) is independent of x if y is known,
Equation (6.13) can be rewritten as

ŷ ≈ arg max
y

Pr(y | x) Pr(f | y) (6.14)

where Pr(y | x) is a language model conditioned on the handwritten text
image, x, and Pr(f | y) is a conventional acoustic HMM for ASR. Note that if
x is dropped, the language model can be approximated by a standard n-gram
language model. In that case, Equation (6.14) can be decoded with a state-of-
the-art ASR system. However, a more interesting approach would be to take
advantage of the information given by x.

Although in principle an integrated decoding could be possible [Bengio, 2004], it
would require a specific training and decoding. This is especially complicated
since both input signals have different lengths and are not synchronized. A
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possible alternative is based on a semi-coupled approximation, in which Pr(y |
x) can be transformed into a statistical language model that can be used with
current ASR systems. To generate such language model, we can use the same
procedure as in Section 5.4.2 but from a WG generated by a HTR system.

Note that Equation (6.13) could have been decomposed, as well, in the following
way,

ŷ = arg max
y

Pr(y | f ,x) = arg max
y

Pr(y | f) Pr(x | f ,y) (6.15)

By following the same assumptions than in Equation (6.13), we can rewrite
Equation (6.15) as

ŷ ≈ arg max
y

Pr(y | f) Pr(x | y) (6.16)

Obviously, the estimation of Pr(y | f) can be done by means of posterior n-
grams from the ASR WG, as it was done with the HTR WG (cf. Section 5.4.2).
Initially, we can find empirically which alternative of both Equation (6.14) or
Equation (6.16) to use. However, the intuition says that the system with lower
error rate would constitute a better prior for the system with higher error rate.

6.3.1 Iterative decoding

In contrast to our previous approaches to integrate speech and handwriting in
IMT, where the utterances were fragments of the correct translations, in this
case both the handwritten sentence and the utterance convey the very same
text. Thus, as we can use any of the signals to obtain the n-gram models, it
seems logical that an iterative procedure can be applied. Here, HTR and ASR
WGs are used alternatively in order to improve the final result of the system,
in a similar way to a dual optimization problem.

The algorithm for the iterative procedure is represented in Algorithm 2. Note
that we have added a new input to the procedure, I, that represents the maxi-
mum number of iterations. This is necessary since there is no proof for conver-
gence for this algorithm and, in practice, it does not converge in some specific
cases.

6.3.2 Results of dictation of manuscripts

This section is devoted to analyze the experimental results for the “Cristo-
Salvador” corpus defined in Section 2.3.3. We will study the methods proposed
in Section 6.3 and the iterative process described in Section 6.3.1. The results
will be compared against a baseline result which uses only one modality and in
a non-iterative fashion.
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Algorithm 2: Iterative decoding algorithm.

Input: x,f , I
Output: y
i← 0;

ŷs
(0) ← arg maxy p(f | y)p(y | x);

repeat
i← i+ 1;

p(i)(y | f)← n-gram posteriors from WG(f) in iteration i− 1;

ŷx
(i) ← arg maxy p(x | f ,y)p(i)(y | f);

p(i)(y | x)← n-gram posteriors from WG(x) in iteration i;

ŷf
(i) ← arg maxy p(f | x,y)p(i)(y | x);

until ŷs
(i)=ŷs

(i−1) or i=I;

return ŷs
(i)

Baseline results

First of all, it should be noted that, despite being a small corpus to what the
speech community is used to, the corpus used here is a realistic example of
what can be found in transcription of historical documents.

There are some characteristics of this kind of tasks that must be explained. On
the one hand, the topic addressed is a very specific one. Since the training cor-
pus is rather small (6.4k running words), language models are poorly estimated.
This is reflected in the perplexity for the test page (552 for a 2-gram). Higher
order n-gram models cannot improve perplexity since segments longer than 2
words rarely occur more than once. Furthermore, as far as we know, there
are no other electronic texts dealing with the same topic, and consequently no
robust language models can be estimated. Other texts with the writing style
of the nineteenth century are simply too different to be useful, e.g. most of
them are literary texts. As a result, both HTR and ASR baseline systems must
rely more on the good estimation of the HMM models. On the other hand,
each book presents a particular handwriting style which not only depends on
the author, but on the period of the history the book was written. This makes
very complicated to estimate generic book independent HMM models. In fact,
the usual approach is to take part of the book for training and the rest for test.
However, ASR HMMs are usually speaker independent.

Two baseline systems have been considered. The first is to transcribe the page
using a HTR system. To do this the page must be digitized, the noise must be
reduced and the lines segmented. This process is partially manual so it must be
considered when evaluating the convenience of using this approach. A 2-gram
language model was used in the HTR system. As this system was supposed to
run off-line, the WGs were generated without pruning, except that we kept a
maximum on 60 incoming edges per node to limit the final size of the WGs.
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With this approach we could obtain better WGs that otherwise. However, the
computation of such WGs can take several days, what makes it impractical
to use in real time decoding. In the second baseline the test transcription is
read aloud and the transcriptions come from a dictation ASR system. This
system uses the same language model as the HTR system (that is why the
perplexities coincide). Nevertheless, in this case the decoder was set up to
work in a reasonable amount of time. As a result, the WGs are much smaller.
With this conditions, we can expect a better baseline result for HTR than for
ASR, since HMM for HTR fit better to test conditions that HMM for ASR,
while the language model is the same.

The results are summarized in Table 6.4 and show that the HTR system
outperforms the ASR system. The explanation for this comes naturally from
the previous comments. The language model is poorly estimated and the search
process depends greatly on the HMM estimates in both cases. Nevertheless, in
the HTR case the HMMs have been specifically trained for the particularities
of the test (book and writer), whereas the ASR HMMs were trained from a
completely different corpus (distinct speakers). All the results were obtained
in the same conditions: punctuation marks were not considered; initial, final,
and silence/blank symbols were eliminated from the decoder output; all words
were transcribed to capital letters.

model language model γ perplexity WER

HTR 2GRAM — 552 29.2± 8.2

ASR 2GRAM 0.0 552 43.2± 3.3
SHR 3WG 1.0 391 45.8± 4.0
SHRi 3WG+2GRAM 0.2 54 18.6± 2.8

Table 6.4: Summary of perplexity and WER for the different approaches to transcription
of handwritten historical documents.

An intermediate approach is to use information from both the handwritten
text and the speech signal by means of the HTR posterior n-grams of Equa-
tion (6.11). This system, referred to as speech and handwriting recognition
(SHR), follows a dictation scenario, as in ASR, but fusing the information
from a previous HTR recognition. The parameters needed for this model were
estimated using a leaving-one-out scheme over the lines of the page. The result-
ing 3-gram has a perplexity of 391. Although it has quite a better perplexity
than the original 2-gram model, this system achieves worse WER results. Nev-
ertheless, confidence intervals at 95% overlap with the ASR system. This high
WER is mainly due to the poor smoothing for out-of-vocabulary words when
computing the HTR posterior n-grams. HTR lattices contain only a small part
of the vocabulary so the rest of the vocabulary was introduced with equal prob-
ability (see end of Section 5.4.2). Thus, the probabilities for these words are
low and the recognition performance decreases for them.
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To prevent from poor estimations of out-of-vocabulary in the HTR posterior
3-grams, this model has been linearly interpolated with the baseline 2-gram
as in Equation (6.12), and it is referred to as SHRi. Figure 6.4 shows the
results when changing the value of the interpolation factor. The ASR baseline
is represented by γ = 0 while the HTR posterior 3-gram system is γ = 1.
The graph shows the WER with confidence intervals at 95% along with the
oracle WER. The scale factors where estimated in a leaving-one-out scheme
over individual utterances. All the interpolated models improve the baseline
with 100% probability of improvement (POI). It must be noted that almost all
set-ups perform in the same range, although when γ approaches 1, the curve
slowly raises. However, confidence intervals still overlap among interpolated
models. The same behavior can be observed on the oracle WER. Best oracle
WER achieves an 8.5%, which suggests that there is still room for improvement.
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Figure 6.4: WER and oracle WER for dictation systems for different γ values. The first
value is an ASR system (γ = 0), the last a SHR system (γ = 1). The values within are
SHRi systems with γ interpolation factor.

6.3.3 Iterative results

Contrarily to what was assumed in the non-iterative results, here we will assume
that HTR WGs cannot be precomputed since we expect close to real time
decoding. Thus, all the recognition processes were performed by applying the
classical pruning techniques. In consequence, the generated WGs are smaller,
although the WER is almost the same. Recognition parameters were tuned
on the test set to obtain the optimal results. The results obtained by the
iATROS system (including 90% confidence intervals), along with approximated
decoding times per sample and feature (considering as feature each element of
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the feature vectors), are presented in Table 6.5. These results are similar to
those presented in Table 6.4, although HTR results are now obtained applying
pruning techniques.

Modality WER Time per sample Time per feature

HTR 29.7 ± 6.7 224 sec 1.72 msec
ASR 43.2 ± 3.3 25 sec 1.56 msec

Table 6.5: Baseline results for handwritten text and speech modalities, along with average
decoding times for each sample (in seconds) and each feature (in milliseconds). In contrast
with Table 6.4, the HTR results were obtained applying pruning techniques.

As we saw in Table 6.4, HTR results are significantly better than speech results.
The different magnitude of the confidence intervals is caused by the size of the
test set (24 lines for HTR and 120 sentences for ASR). Moreover, decoding
times are an order of magnitude lower for ASR than for HTR, given that the
HTR feature extraction generates approximately ten times more features. In
fact, the time per feature is almost the same for both systems.

The results obtained for the iterative process are presented in Tables 6.6 and 6.7,
for HTR and ASR start conditions, respectively. The process stops when the
hypothesis of the non-starting modality does not change with respect to the
hypothesis in the previous iteration. In any case, the process was limited to
10 iterations. The initial decoding is performed in one of the baseline systems
(HTR or ASR) in Table 6.5. Then, the next step is obtaining the 3WG model
from the recognition WG (according to Equation (6.11)) and perform the inter-
polation with the original 2-gram (Equation (5.19)). The posterior scale and
interpolation parameters were optimized in previous experiments and were kept
with the same value along all the process. The decoding parameters for the
iATROS system were kept to those used in the baseline experiments.

Iterative from initial HTR

Starting from HTR recognition, a large reduction in WER is obtained by only
applying the ASR step on the new language model. The obtained result differs
from that obtained in Table 6.4. This is justified by the fact that the initial
HTR WGs are less dense since the pruning technique has been applied. In
contrast, decoding times are two orders of magnitude lower than that of the
WGs not pruned. In any case, here the differences between baseline HTR and
ASR are also statistically significant, since confidence intervals do not overlap.

In the iterative process which starts with HTR, the distance between confi-
dence intervals of ASR and the baseline HTR gets higher in each iteration
until convergence, although differences are not significant for ASR results from
initial iteration to convergence. This similarity between these results is caused
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Iteration Modality Time per
HTR ASR sample

0 29.7 ± 6.7 20.6 ± 2.4 256 sec.
1 25.8 ± 2.7 20.1 ± 2.4 470 sec.

Convergence 25.4 ± 2.7 19.9 ± 2.4 585 sec.

Table 6.6: WER and time results for the iterative process starting from the HTR process.
In italics, the baseline result. Convergence is assumed when hypothesis of ASR in one
iteration does not change from the hypothesis of the previous iteration.

by the small number of iterations required to obtain convergence: most of the
samples (80%) converge with an only iteration (10% require 2 iterations and
only 2.5% do not converge within a limit of 10 iterations). Consequently, we
can assume that using only one iteration is enough to obtain the good results.
This reduces the time needed for obtaining the final hypothesis.

However, in this iterative process starting with HTR, the iterative HTR results
do not present a statistically significant improvement with respect to baseline.
Moreover, HTR results are always worse than ASR results. In this case, the
cause can be the decoding parameters, that were kept to the same value than
in the baseline HTR experiment without performing an optimization on the
ASR WGs that provided the language model for the iterative HTR decoding.

Error analysis was centered in some special cases that are particular to this
HTR task:

• Hyphenated words: including the first part (with an hyphenation symbol
- at the end) and the second part (that starts in the following line).

• Abbreviations: in this case, the words ‘=’, ‘NTRA’, ‘S’, ‘STA’, and ‘SRA’;
they are pronounced as whole words in ASR but kept as abbreviations in
HTR.

• Numbers: in this case, ‘(16)’, ‘38’, and ‘TREINTA Y CUATRO’; in ASR,
the same lexical model represents different words (e.g., ‘(16)’ and ‘16’).

The comparison between the results of convergence HTR and ASR showed
small differences, that concentrated mainly on abbreviations ‘=’ and ‘STA’,
and on number ‘(16)’. ASR presents a quite lower error rate in these cases
with respect to those obtained by HTR. This can be caused by the scarce
presence of the corresponding symbols (‘=’, numbers) in the training test for
HTR, whereas in ASR the corresponding phones are as usual as those of other
words. This causes a poor estimation of the HMM associated to the symbols,
which explains the differences in this case and the better results of the ASR
variant.
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Iteration Modality Time per
ASR HTR sample

0 43.2 ± 3.3 25.5 ± 2.5 232 sec.
1 18.4 ± 2.6 24.3 ± 2.5 462 sec.

Convergence 18.3 ± 2.4 24.1 ± 2.5 1244 sec.

Table 6.7: WER and time results for the iterative process starting from the ASR process.
In italics, the baseline result. Convergence is assumed when hypothesis of HTR in one
iteration does not change from the hypothesis of the previous iteration.

Iterative from initial ASR

Starting from ASR recognition (Table 6.7), the only application of HTR using
the language model derived from the output WG obtains a dramatical decrease
of WER with respect to baseline ASR results. However, when comparing with
the HTR baseline results, differences are not significant.

When starting with the iterative process, the ASR results become significantly
better than the baseline results for any of the modalities, although HTR results
present a worse WER. This behavior is similar to that presented by the iterative
process starting from HTR, where in each iteration HTR results are far worse
than ASR results. As happened in that previous case, the configuration of the
decoding parameters seem the cause of this result.

Anyway, ASR results in this iterative process are the best results that are ob-
tained with the test set (18.3% of WER with respect to the original baseline
of 29.7% in the HTR baseline). Moreover, although the number of iterations
for convergence is higher that in the iterative process starting from HTR (only
a 44% of the samples converge in one iteration and more than a 28% do not
present convergence), results in first iteration for ASR are very similar to con-
vergence results. Thus, only one iteration is enough for having an accurate
result, which implies a faster process.

Error analysis showed similar conclusions that those of the iterative process
starting from HTR. The lack of convergence in the HTR hypothesis during this
process was caused mainly by the alternative appearance of two very similar
(but different) hypothesis in each step (i.e., hypothesis A appeared in odd
iterations and hypothesis B appeared in even iterations).

6.4 Summary of contributions

In this chapter we have described how to improve speech-enabled systems.
The explored techniques can be encoded in the form of n-grams so they can
be seamlessly integrated in state-of-the-art ASR software. The systems that
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do not take information from the context of the target sentences exhibit an in-
crease in the recognition performance with respect to competing alternatives.
Furthermore, we have shown that if the integration of all the sources of in-
formation is carried out early in the recognition process, the achieved WER
improvements are remarkable. In addition, if this integration is performed in
the ASR step, the generated WGs improve in quality so that techniques using
ASR WGs can benefit from it.

The adoption of the iterative approach in HTR dictation shows a greater im-
provement in the results with respect to the baseline unimodal systems, al-
though not always significantly better than multimodal non-iterative results.
The influence of the initial modality in behavior of the multimodal iterative
approach was studied for the two modalities. Results show that starting from
ASR allows for a better final performance. In all cases of the iterative process,
HTR results present a poorer result that their ASR counterparts, but their
decoding parameters seem not as optimal as the decoding parameters of the
ASR systems.

Although errors are significantly less than those of baseline systems and time
response is appropriate for the transcription task, more work can be done to
improve these two aspects and obtain a better performance in a real system.
On the one hand, HTR decoding needs a better tuning for the recognition pa-
rameters, that can be obtained in a similar way to those obtained for the ASR
decoding; the improvement in the HTR decoding could cause a positive impact
in the final performance of the iterative systems, both in terms of WER and
convergence time. On the other hand, an integrated decoding of HTR and ASR
is a suggestive alternative to the iterative paradigm that can reduce dramati-
cally the final time and obtain better quality in the automatic transcriptions.

However, as results are still far from perfect, the error rate may prevent the
users from effectively using the speech modality. Thus, we should make an
effort to reduce the WER to a point where speech-enabled interfaces are usable.
We could take advantage that the user is in front of the screen to capture
face expressions and lip movement to perform audio-visual speech recognition.
Finally, the multimodal aspects of this problem should be studied, i.e. how
the speech interface and keyboard and mouse can be used alternatively or
simultaneously. Eventually, human evaluation should be carried out to assess
the proposed scenarios in a real-like situation.

The speech-enabled IMT experiments were published in:

• V. Alabau, L. Rodŕıguez-Ruiz, A. Sanchis, P. Mart́ınez-Gómez, and
F. Casacuberta. On multimodal interactive machine translation using
speech recognition. In Proc. of the International Conference on Multi-
modal Interaction (ICMI’11), p. 129–136, 2011.
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On the other hand, the sight transcription system for historical handwritten
documents lead to the following publications:

• V. Alabau, C. D. Mart́ınez-Hinarejos, V. Romero, and A. L. Lagarda.
An iterative multimodal framework for the transcription of handwritten
historical documents. Pattern Recognition Letters, in press:–, 2012.

• V. Alabau, V. Romero, A. L. Lagarda, and C. D. Mart́ınez-Hinarejos. A
Multimodal Approach to Dictation of Handwritten Historical Documents.
In Proc. of Interspeech’11, p. 2245–2248, 2011.
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D. Ortiz-Mart́ınez, I. Garćıa-Varea, and F. Casacuberta. Thot: a Toolkit To Train
Phrase-based Statistical Translation Models. In Proc. of the MT Summit X, p. 141–148.
2005.

S. Oviatt and R. VanGent. Error resolution during multimodal human-computer interac-
tion. In Proc. of the Fourth International Conference on Spoken Language (ICSLP’96),
volume 1, p. 204–207, 1996.

154 VAG-DSIC-UPV



Bibliography
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Chapter 7. Conclusions

Structured prediction systems are becoming pervasive. For instance, almost
any modern mobile device allows to use speech or handwriting to introduce
text; machine translation is a hot topic in translation agencies; OCR has a
long software tradition; and the transcription of historical documents raises
a high interest among historians. Usually, these technologies are not able to
produce results that match high-quality standards. Hence, it is necessary a
human operator to amend the automatic output to obtain the desired result.

The work presented in this thesis has focused on how this interaction between
humans and automatic systems can be carried out. On the one hand, we
have studied how the system and user can collaborate efficiently. On the other
hand, we have delved into which modalities can be used for this collaboration to
happen more comfortably. The following sections are a summary of the main
contributions proposed in this thesis, future work and scientific publications
produced as a result of this work.

7.1 Summary

One of the better-known interaction protocols for structured prediction prob-
lems is a sequential interactive protocol [Vidal et al., 2007]. In Chapter 3, we
questioned the decision rule that was being used in the state-of-the-art and
found an algorithm that produces an optimum decision. Additionally, we es-
tablished a relationship between the optimum algorithm and the standard in
which the latter is a maximum approximation to the former. In practice, both
decision rules showed similar results with respect to user effort. However, the
optimum decision rule outperformed significantly the standard in some of the
tasks.

Left-to-right interaction forces the user to supervise the whole set of outputs.
In this regard, in Chapter 4 we studied techniques to avoid this problem by
allowing the system to propose what outputs the user should amend. We
proved that the optimum decision rule consists in correcting first the structures
that the systems expects to have more errors. This strategy was compared to
other strategies borrowed from active learning. We found that the optimum
decision rule performed better than the rest whenever the exact algorithm
for computing the expected error could be used. In contrast, when using an
approximated algorithm, sorting by entropy was the best strategy. Moreover,
sorting by posterior probability was almost as good as sorting by entropy, with
the advantage that its computation is usually much easier. Additionally, we
observed similar results when these strategies were used in a streaming scenario,
for which the optimum strategy is to establishing a threshold.

On the other hand, in the second part of Chapter 4, we studied an active pro-
tocol for correcting elements of a given structure. For the basic strategy, which
is based on posterior probabilities at element level, the posterior probability
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can be maximized or minimized. When aiming at reducing the number of cor-
rections, maximizing the posterior probability obtained the best results. This
fact was consistent with the findings in the left-to-right protocol, since in that
case the optimum solution was also to maximize the posterior probability of
the element. This opens an avenue to find an optimum decision rule for active
interaction at element level. However, minimizing the posterior probability ob-
tained the worst results. Intuitively, we can draw from this that minimizing
the posterior probability may be useful for minimizing supervision effort, as in
structure level interaction, but not for minimizing the number of corrections.
What is more, we could say that both goals are contradictory.

In the second part of the thesis, several scenarios for multimodal interaction
were studied. To begin with, e-pen was devised as an alternative input modality
to keyboard and mouse for interactive machine translation (cf. Chapter 5). We
developed several strategies to provide a more robust handwriting recognition
by leveraging contextual information. Two main approaches were proposed
based on word-based and phrase-based translation models, respectively. The
experimentation results suggested that using the more reliable and less context-
aware word-based models resulted in better improvements than using phrase-
based models. In the end, word-based models were interpolated with n-gram
prefix models to give more information regarding the context in the target
side, resulting in additional improvements. Next, we studied a mechanism for
recovering from recognition errors by using n-best lists. Encouragingly, within
only the best 5 candidates, the error was reduced to a quarter. Finally, a
study of pen gestures revealed that IMT systems can be built to react to these
gestures in a way that the overall user effort can be further reduced.

Another modality that is natural for humans and suitable for interactive sys-
tems is speech. In this case, we considered two scenarios in Chapter 6. The
first one was an IMT system. The user was supposed to use a pointer to in-
dicate where the corrections should be inserted. Then the user should utter
a correction that could be composed of more than one words. We explored
new techniques for fusing the translation and speech inputs to provide a more
reliable recognizer. The techniques that we used were similar to those used
with e-pen interaction, obtaining noticeable results. However, by contrast with
e-pen interaction, in this case the results showed that by using information
from the phrase-based models the recognition accuracy improved with respect
to word-based models. We hypothesize that this is due to the fact that HTR
morphologic models are more accurate than the ASR ones and, thus, contextual
information of the target side is more critical. The second scenario considered
for speech interaction was sight transcription. There, the user was supposed
to dictate full sentences of a historical document. The output word graph of
the HTR system was used to generate a language model for the ASR system,
and the other way around. Empirical results showed remarkable improvements
with respect to the baseline system in any of each directions. Additionally, we
could observe that using the most accurate system to generate the language
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model for the worse system is significantly better than the contrary. Addition-
ally, an iterative decoding algorithm was proposed which was able to achieve
additional gains.

Finally, we presented an assessment of an IMT prototype with real users in
Appendix A. Two rounds of evaluations were performed comparing the IMT
prototype with a PE prototype (the IMT prototype but with disabled inter-
action capabilities). The conclusions we could draw from the first round was
that the design of user interface, from a technical point of view, is critical for
the users to accept new technologies. In the second round we solved some of
the issues arisen. The results were encouraging, showing that users where more
favorable to use the interactive prototype than the PE prototype. In addition,
we could infer some lines of improvement for future research in interactive sys-
tems. First, a system should propose new hypotheses only if it is sure that
the new suggestions are significantly better than the previous ones. Secondly,
suggestions should not be changed too often since, arguably, it imposes more
cognitive load on the user. Note that this second argument can result from the
first one, i.e., if the system is not sure of what to suggest, it will change its mind
often. Lastly, and most importantly, a system should not change elements that
the user has already validated, which reduces the user’s trust in the system.

7.2 Future work

It is quite common that the research process opens more questions that it
closes. The case of this thesis is not different. During the development of the
contents presented here, several avenues for improvement have arisen.

First, the optimum algorithm for sequential interaction may provide a new way
of understanding search-based structured prediction [Daumé III et al., 2009].
To this regard, the word graphs of the optimum algorithm generated by Propo-
sition 3.3 could be used as a constrained search space where search-based struc-
tured prediction can operate. This would allow to introduce arbitrary features
in the search process that would not be possible otherwise, e.g., gender and
number agreement. In addition, the cost function we used in sequential inter-
action is a rather simplistic since it only takes into account characters or words
being substituted, as an approximation to the actual productivity. This work
should be extended with a more realistic user modeling, in the line of [Foster
et al., 2002], where not only the mechanical effort is considered but also the
cognitive effort.

Second, element level active interaction has left some questions unanswered. In
the first place, the optimum algorithm is still to be unveiled. A starting point is
the most confident strategy since, intuitively, it works with the same principles
than the optimum algorithm for the sequential problem: let the user supervise
an highly confident element since supervision has zero cost; then expect that
corrective feedback is able to correct low confident elements. Nonetheless, it is
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safe to assume that supervision is cheap, whereas correction expensive? This
assumption seems reasonable for sequential interaction since the user needs
to supervise the whole output to find the errors, anyway. However, in active
interaction it should not be compulsory to supervise all the output elements.
Unfortunately, from the experiments in Section 4.4.2 we can deduce that min-
imizing supervision and minimizing corrections are contradictory goals. Thus,
a different cost function should be defined, for instance, assigning cost one to
supervision and cost two to correction. This should change how the different
strategies perform. Probably, as suggested by Culotta et al. [2006], a new pos-
sible strategy would be to amend elements with high confidence which are close
to elements with low confidence. At last, an active interaction protocol should
be devised for problems where the size of the output is not known.

Concerning multi-modal fusion, some experiments have been left for future
work. On the one hand, word-based model M2 was not evaluated when the
user could introduce more than one word, though it achieved the best perfor-
mance in the experiments with isolated words. That was because we could not
codify M2 probabilities in the form of n-grams. Hopefully, our corpus showed
that the average length of the interactions was between 2 and 3 words. This
suggests that M2 probabilities could be computed explicitly for combinations
of words, for instance, up to 3 words, which should be computationally afford-
able. Furthermore, it is still unclear how the size of the word graphs affects
the quality of the fusion. Extensive experiments should be carried out to find a
compromise between the cost of generating a dense graph and the decoding ac-
curacy. On the other hand, other multimodal fusion challenges have appeared
recently [Pastor-i-Gadea et al., 2010]1. That paper presents the biMod-IAM-
PRHLT-2 corpus, a bimodal dataset of on-line and off-line handwritten text.
Previous attempts to integrate these signals have shown that a simple linear
interpolation approach is hard to beat [Pastor-i-Gadea and Paredes, 2010]. Al-
though the techniques developed in this thesis do not seem good approaches for
the biMod-IAM-PRHLT-2 corpus at a first sight, the experience gained may
provide insights to design specific algorithms that could be useful.

Finally, one of the goals of applied research is that research results can be
transferred to real technology. During the evaluation of the prototypes in Ap-
pendix A, we observed that users were very sensitive to the usability aspects
of the UI, which can in turn hinder the benefits of the techniques being evalu-
ated. Also, we noticed that the new features implemented were decided on the
basis of researchers’ interests and not on what may have more impact in the
way user interact with the tools. Both facts contribute to create systems that,
when evaluated in a between-subjects design, do not show significant improve-
ments with respect to the control condition. What is more, in some cases the
new technique performs worse as a result of a bad interaction experience intro-
duced by the complexities of the new technique. Therefore, we must reconsider
how we tackle the human evaluation of the prototypes. One possible approach

1https://prhlt.iti.upv.es/page/contests/bimodal2/index.php
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would be to follow a lean research process, as in lean manufacturing [Womack
and Jones, 2003], lean software development [Poppendieck and Poppendieck,
2003] or lean startup [Ries, 2011], in an attempt to find what are the actual
problems to be solved. For that, it would be ideal to start from a working
product with standard quality and features, and with a significant user base.
Then, we could perform A/B (split) testing [Kohavi et al., 2009] to identify
which problems to research on.

7.3 Scientific publications

The content of this thesis has lead to publications in international workshops,
conferences and journals. Each chapter ends with a relation of publications
resulting from it. Besides, in this section we review these publications but
listed now by their relevance.

To begin with, an article has been submitted to a journal with estimated impact
factor in year 2012 of 2.632:

• V. Alabau, A. Sanchis, and F. Casacuberta. Improving On-line Hand-
written Recognition in Interactive Machine Translation. Pattern Recog-
nition, submitted to(–), 2013.

The article is in the second round of the review process with a favorable review
in the first round.

Second, two articles have been published in a journal with estimated factor of
1.266 in year 2012:

• V. Alabau, C. D. Mart́ınez-Hinarejos, V. Romero, and A. L. Lagarda.
An iterative multimodal framework for the transcription of handwritten
historical documents. Pattern Recognition Letters, in press:–, 2012.

• V. Alabau, A. Sanchis, and F. Casacuberta. On the Optimal Decision
Rule for Sequential Interactive Structured Prediction. Pattern Recogni-
tion Letters, 33(6):2226–2231, 2012.

Moreover, two research papers have been published in international conferences
ranked A by the Computing Research and Education Association of Australasia
(CORE):

• V. Alabau, A. Sanchis, and F. Casacuberta. Improving On-line Hand-
written Recognition using Translation Models in Multimodal Interactive
Machine Translation. In Proc. of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technologies
(ACL’11), p. 389–394, 2011
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• V. Alabau, V. Romero, A. L. Lagarda, and C. D. Mart́ınez-Hinarejos. A
Multimodal Approach to Dictation of Handwritten Historical Documents.
In Proc. of Interspeech’11, p. 2245–2248, 2011.

There have been also some publications indexed as CORE B:

• V. Alabau, L. A. Leiva, D. Ortiz-Mart́ınez, and F. Casacuberta. User
Evaluation of Interactive Machine Translation Systems. In Proc. of
the 16th Annual Conference of the European Association for Machine
Translation (EAMT’12), p. 20–23, 2012.

• V. Alabau, L. Rodŕıguez-Ruiz, A. Sanchis, P. Mart́ınez-Gómez, and
F. Casacuberta. On multimodal interactive machine translation using
speech recognition. In Proc. of the International Conference on Multi-
modal Interaction (ICMI’11), p. 129–136, 2011.

• V. Alabau, D. Ortiz-Mart́ınez, A. Sanchis, and F. Casacuberta. Mul-
timodal Interactive Machine Translation. In Proc. of the International
Conference on Multimodal Interfaces (ICMI-MLMI’10), p. 46:1–46:4,
2010.

On the other hand, the following paper has been published in an non-indexed
workshop:

• V. Alabau and F. Casacuberta. Study of Electronic Pen Commands for
Interactive-Predictive Machine Translation. In International Workshop
on Expertise in Translation and Post-editing Research and Application,
2012.

Additionally, it should be mentioned that the work in active interaction in
Chapter 4 is in preparation for publication.

Finally, during the period of this thesis, further work has been carried out that
is related to the contents presented here. However, these publications have
not been addressed directly in this thesis. It is specially worth of mention
the publications derived from the design and implementation of the prototypes
where the author of this thesis has played an active role, leading in many
cases the design of the architecture and implementation of the prototype. The
publications derived from the prototypes are:

• V. Alabau, R. Bonk, C. Buck, M. Carl, F. Casacuberta, M. Garcia-
Martinez, P. Koehn, L. A. Leiva, B. Mesa-Lao, H. Saint-Amand, C.
Tsou-kala, G. Sanchis-Trilles, D. Ortiz-Mart́ınez, and J. González-Rubio.
Advanced Computer Aided Translation with a Web-Based Workbench.
In Proc. of the MT SUMMIT XIV (MT-SUMMIT’2013), 2013. (CORE
B)
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• V. Romero, L. A. Leiva, and V. Alabau. Multimodal Interactive Hand-
written Text Transcription, chap. A Web-based Demonstrator of Inter-
active Multimodal Transcription. 2012.

• D. Ortiz-Mart́ınez, L. A. Leiva, V. Alabau, I. Garćıa-Varea, and F.
Casacuberta. An Interactive Machine Translation System with Online
Learning. In Proc. of the ACL-HLT: System Demonstrations (ACL’11),
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D. Ortiz-Mart́ınez, L. Rodŕıguez-Ruiz, and N. Serrano. Multimodal In-
teractive Pattern Recognition and Applications, chap. Prototypes and
Demonstrators. 1st edition edition, 2011.

• D. Ortiz-Mart́ınez, L. A. Leiva, V. Alabau, and F. Casacuberta. Inter-
active Machine Translation using a Web-based Architecture. In Proc. of
the International Conference on Intelligent User Interfaces (IUI’10), p.
423–425, 2010. (CORE A)

• V. Alabau, J.-M. Bened́ı, F. Casacuberta, L. A. Leiva, D. Ortiz-Mart́ınez,
V. Romero, J.-A. Sánchez, R. Sánchez-Sáez, A. H. Toselli, and E. Vidal.
CAT-API Framework Prototypes. In Proc. of Database and Expert Sys-
tems Applications (DEXA), 2010 Workshop on Interactive Multimodal
Pattern Recognition in Embedded Systems (IMPRESS 2010), p. 264–265,
2010.

• V. Alabau, F. Casacuberta, L. A. Leiva, D. Ortiz-Mart́ınez, and G.
Sanchis-Trilles. Sistema web para la traducción automática interactiva.
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Abstracts on Human Factors in Computing Systems (CHI’12 EA), p.
2273–2278, 2012. (CORE A)

• V. Alabau, G. Sanchis-Trilles, and L. Rodŕıguez-Ruiz. Multimodal
Interactive Pattern Recognition and Applications, chap. Multi-modality
for Interactive Machine Translation. 1st edition edition, 2011.

• G. Gascó, V. Alabau, J. Andrés-Ferrer, J. González-Rubio, M.-A. Rocha,
G. Sanchis-Trilles, F. Casacuberta, J. González, and J.-A. Sánchez. ITI-
UPV system description for IWSLT 2010. In Proc. of the International
Workshop on Spoken Language Translation (IWSLT’10), 2010.

• M. Luján-Mares, C. D. Mart́ınez-Hinarejos, V. Alabau, and A. Sanchis.
Some issues on the Expectation-Maximisation process for Maximum Like-
lihood Linear Regression. In VI Jornadas en Tecnoloǵıa del Habla and
II Iberian SLTech Workshop (FALA 2010), 2010.
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Statistical Post-Editing of a Rule-Based Machine Translation System.
In Proc. of the North American Chapter of the Association for Com-
putational Linguistics - Human Language Technologies (NAACL’09), p.
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2007.
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Appendix A. Human Evaluation of an Interactive Machine Translation Prototype

A.1 Introduction

Following the SISP paradigm, recent developments in search algorithms and
software architecture have allowed multi-user web-based prototypes. These
systems have grown in features, allowing e.g. advanced multimodal interaction
or confidence estimations on the predicted output. However, these features also
add extra complexity to the prototypes, making imperative to test their effec-
tiveness with respect to technology dissemination. While pure data-driven eval-
uations have already shown that SISP is a promising technology [Barrachina
et al., 2009; Romero et al., 2011], surprisingly, formal human evaluations are
highly scarce in the literature.

Langlais et al. [2002] performed a human evaluation on their IMT prototype.
They emulated a realistic working environment in which the users could obtain
automatic completions for what they were typing. Users reported an improve-
ment in performance; however, raw productivity decreased by 17%, although
the users appreciated the tool and were confident to improve their productivity
after proper training. That work was extended in the TT2 project [Casacu-
berta et al., 2009], where the performance tended to increase as the participants,
over a 18-month period, grew accustomed to the system. A slightly different
approach was studied in [Koehn, 2010]. There, monolingual users evaluated
a translation interface supporting IMT predictions and the so-called ‘transla-
tion options’. When translating from undecipherable languages (as Chinese or
Arabic for an English speaker), richer assistance improved user performance.

In this chapter we do not use any of the optimal decision rules or multimodal
interfaces we have developed during this thesis. Instead, we focus more on the
technology challenges that arise during the development of SISP software, and
how human factors contribute to the success of SISP systems. We describe
our experiences developing and evaluating two IMT prototypes with real users.
On the one hand, an initial, full-featured advanced version that resulted from
the developments of the Multimodal Interaction in Pattern Recognition and
Computer Vision (MIPRCV) project1 which turned out to be cumbersome and
more sensitive to programming errors. On the other hand, a simplified version
of the original prototype that focused on the SISP auto-completion capabilities
that was favorably received. Our results identify important design issues, which
open a discussion regarding how SISP systems should be deployed.

A.2 Learning from previous experiences

In our research group, other SISP prototypes had been developed. For instance,
Lagarda et al. [2003] developed a desktop application for IMT and Romero et al.
[2009] deployed a web application for IHT. However, each of them presented
its own problems that should be addressed. First, regarding the IMT demo

1http://miprcv.iti.upv.es
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in [Lagarda et al., 2003], the interface was tightly coupled with the IMT en-
gine. This made the migration to new versions of the IMT engine difficult.
In addition, the design did not allow to easily add new features, as e-pen or
speech interaction, in addition to keyboard and mouse. Moreover, for a poten-
tial user to try and test the prototype, the application was to be downloaded
and installed, which only worked under Linux, and the models, which could oc-
cupy an extensive amount of space. Second, the demo in [Romero et al., 2009]
was a web based demo available in Internet. This was good for dissemination
purposes since new users could have the hands on the prototype quite quickly.
On the contrary, it was composed of a difficult-to-debug set of shell scripts and
multiple users could not access the prototype at the same time. Finally, and
most importantly, all those prototypes did not allow an easy interchange of
the SISP engine. Thus, different strategies for producing the predictions and
performing the multimodality could not be tested easily.

A crucial aspect of the prototypes, then, should be to serve as a test bed for
new interaction modalities such as speech, or to experiment with other NLP
problems, e.g., speech transcription or text prediction. In addition, it would
also interesting to design of different user interfaces (or views) to approach
same NLP problem in a more ergonomic and comfortable way.

A.3 Defining a multimodal interactive
prototype

Within the MIPRCV project, several multimodal interactive tools for natural
language processing were being developed. Hence, since all the interactive
systems were approached with the sequential ISP protocol (Section 3.2), it
seemed logical to design a prototype that could fit all of them, where the back-
end systems and interfaces could be easily interchanged. The purpose of the
prototypes was not to have a professional finished product but to serve as a
showcase for the multimodal interactive (MI) theory and tools developed within
the MIPRCV project.

A.3.1 Objectives

Therefore, we established the objectives of the prototypes, which can be sum-
marized in the following items:

• Develop a fully functional prototype of a SISP system. Several prototype
interfaces can be created, if necessary, to test and study the usability of
the system.

• Make the prototype appealing and easily accessible to the general public.
In a few clicks, the user should be able to start testing the system, the
interface should be intuitive and help should be at hand. Furthermore,
there should be variety in language pairs and corpora

VAG-DSIC-UPV 171



Appendix A. Human Evaluation of an Interactive Machine Translation Prototype

• Analyze the strengths and weaknesses of the SISP approach in a real-
like scenario. This analysis should lead to the discovery of new ways of
interaction.

A.3.2 Functional requirements

Based on the research carried out within the MIPRCV project, the following
list of the features was identified to be desirable for a SISP prototype:

Suffix prediction. When the user corrects the proposed solution, a new,
hopefully improved suffix should be proposed.

User actions. The interface should allow the user to perform the following
actions on the proposed suffix:
Substitute. Substitute the first word or character of the suffix.

Delete. Delete the first word or character of the suffix.

Insert. Insert a word before the suffix.

Reject. The rejected word must not to appear in the following proposals.

Accept. Validate a whole output, i.e., acknowledge the system that the
output is correct.

Keyboard shortcuts. The user should be able to perform certain actions by
means of keyboard shortcuts.

Mouse gestures. The user should be able to perform certain actions by means
of mouse gestures.

Pen interactivity. The user should be able to correct the words by handwrit-
ing with a digital pen or tablet.

Word and character interaction. : Word level and character level opera-
tions should be allowed.

Confidence measures. Confidence measures should be shown to indicate
which words are considered to be correct and which ones to be incor-
rect.

On-line adaptation. The system should be able to learn from validated trans-
lations to help improve the quality of future translations.

Document visualization. At any time, the user should be able to visualize
the original document, as well as draft of the current decoding in the
proper formating.

Document selection. A list of documents should be presented to the user
so that she can test the prototype under different conditions, i.e. several
corpora and language pairs.

Prediction disabling. The user should be able to disable the predictive sys-
tem and back off to a post-editing system.

Activity logging. A logging system should keep track of every detail of the
user interaction for a later analysis of the results and interaction replay.
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A.4 Architecture Design

As we have mentioned, the two main aspects for the prototype architecture are
accessibility and flexibility. The former is necessary to reach a larger number of
potential users. The latter allows the researches to test different techniques and
interaction protocols reducing the implementation effort. For that reason, an
application programming interface (API) [Alabau et al., 2010a] was developed.
Based on the MI protocol, we extracted a generic subset of primitives for most
common NLP tasks, and designed a client-server API and library that allows
client and server applications to communicate through sockets. Three basic
functions summarize the API:

set source : selects the input to be transcribed or translated.

set prefix : sets the longest error free prefix and the amendment of the first
error as a character string.

set prefix online : sets the longest error free prefix and the amendment of
the first error with pen strokes.

This API allows a neat separation between the client interface and the actual
SISP system by exposing a well-defined set of functions extracted from the
multimodal SISP protocols, and by using a network communication protocol
to link desktop and web interfaces with SISP back-ends. A diagram of the
architecture is shown in Figure A.1.

SISP client

WWW

web server

SISP server models

Figure A.1: Illustration of the MIPRCV client-server architecture for SISP problems.
The web server is a regular web server that provides an HTML user interface to the SISP
client, which in this case is a regular web browser. Moreover, the SISP server deals with
the suffix prediction and other decoding algorithms that nurture from statistical models.

Two client interfaces were developed using the MIPRCV API: an installable
application for IMT and IHT [Alabau et al., 2009] (Figure A.2), and web-
based demos for IMT, IHT and IPP [Alabau et al., 2010b; Ortiz et al., 2010;
Sánchez-Sáez et al., 2010] (Figure A.3). Furthermore, several backends were
also deployed. The backend systems were easily interchanged by just selecting
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a different host name and port. On the web-based demo, the client-server com-
munication is made asynchronously via Ajax, providing thus a richer interactive
experience. The interface was built using HTML, Javascript and Actionscript.
All corrections are stored in plain text logs on the server, so the user can re-
take them in any moment, also allowing other users to help to translate the
full document(s). In the case of the installable application, the interface uses
C as programming language and GTK as graphical toolkit.

Figure A.2: Detail of the web-based interface.

Finally, advanced multimodal capabilities were added to the web based demo.
First, a handwritten text recognition system [Alabau et al., 2010c, 2011], based
on the iAtros system [Luján-Mares et al., 2008] was added to perform e-pen
interaction. Mouse click operations [Sanchis-Trilles et al., 2008a,b] and, inser-
tion and deletion operations were also implemented. Furthermore, the proto-
type can show confidence measures at word level [González-Rubio et al., 2010].
However, it must be studied how to obtain the most profit of them.

A.5 Evaluating the IMT prototype

The MIPRCV project web based demo featured a big amount of these inter-
esting features, namely confidence measures in the translated words, mouse
click operations, and electronic pen interaction. We will refer to this system
as the advanced demonstrator (IMT-AD, Figure A.4a). The addition of such
advanced features conditioned the design of the interface; e.g., the use of a text
field for each word eased dramatically the e-pen interaction, at the expenses
of an unusual text flow, and thus, a keyboard interaction a bit different from
typical text areas.

The goal of the first evaluation was aimed to assess both qualitatively and quan-
titatively IMT-AD, and compare it to a state-of-the-art post-editing (PE) MT

174 VAG-DSIC-UPV



Appendix A. Human Evaluation of an Interactive Machine Translation Prototype

Figure A.3: Screen shot of the installable application when using pen-stroke corrections.

output. Translating from scratch was not considered since it is becoming ob-
solescent in the translation industry except for the case that computer assisted
tools cannot be used. However, PE of MT systems is becoming more prevalent
and it can be found quite frequently in a professional translation workflow [Carl,
2012; SchlumbergerSema S.A. et al., 2001]. Thus, in addition to IMT-AD, a
post-editing version of the demonstrator (PE-AD) was developed to make a
fair comparison with state-of-the-art PE systems. PE-AD used the same in-
terface as IMT-AD, but the IMT engine was replaced by autocompletion-only
capabilities as popular word processors have.

Design

Both systems were evaluated on the basis of the ISO 9241-11 standard (er-
gonomics of human-computer interaction). The following three aspects were
considered: efficiency, effectiveness, and user satisfaction.

Firstly, efficiency should be measured in a way that the translation industry
understands well, e.g., the number of words per hour. However, it would also
be interesting to know the amount of time the user was not interacting with
the system, which can be an indicator of the user’s cognitive effort. Secondly,
the effectiveness measures the quality of the resulting translation. As human
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evaluation of the final translations can be time and budget costly, the automatic
evaluation of the final translations can be measured with the residual error.
Ideally, both human and automatic evaluation should give the same results.
Although it is known that they do not are equivalent, they are correlated to
some extent [Papineni et al., 2002]. However, this is a pessimistic approach
since we have just one reference, but there may be many good translations.
Finally, we need to measure user satisfaction by assessing human judgment of
the proposed systems and measuring system usability, which, in turn, can be
leveraged as a means of feedback to improve the system in future developments.

Hence, we decided to approach these concerns with the following solutions. For
the former, we computed the average time in seconds that took to complete
each translation. For the second, we evaluated the BLEU against the reference
and a crossed multi-BLEU among users’ translations. Finally, we adapted the
system usability scale (SUS) questionnaire to score the user satisfaction, by
asking 10 questions that users would assess in a 1–5 Likert scale (1:strongly
disagree, 5:strongly agree), plus a text area to submit free-form comments.

A form was designed to asses user satisfaction. It consisted of 10 questions in a
likert scale2 plus a text area to fill with personal comments (Figure A.5). The
10 questions were the following:

Q1 I think I would like to use the IMT application frequently

Q2 I found the IMT system unnecessarily complex

Q3 I think that the IMT application is easy to use

Q4 I think I would need technical assistance to use this system

Q5 I find the different features of the IMT application well embedded

Q6 I think that the IMT system presents some inconsistency

Q7 I imagine most people would learn to use the IMT application quickly

Q8 I find the IMT system cumbersome to use

Q9 The use of the IMT system is reliable

Q10 I would need to learn much before using the IMT system

Participants

A group of 10 users (3 females) aged 26–43 from our research group volunteered
to perform the evaluation as non-professional translators. All of them were
proficient in Spanish and had an advanced knowledge of English. Although
none had worked with IMT systems, all knew the basis of the IMT paradigm.

Apparatus

Since participants were Spanish natives, we decided to perform translations
from English to Spanish. We chose a medium-sized corpus, the EU corpus,

2http://core.ecu.edu/psyc/wuenschk/StatHelp/Likert.htm
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Ê

Ë

Figure A.5: Picture of questionnaire for the advanced prototype with the 10 likert
questions Ê and the text area for free comments Ë.

typically used in IMT experiments [Barrachina et al., 2009]. It consists of
documents from the European Union. We built a glossary for each source
word by using the 5-best target words from a word-based translation model
(Figure A.6). We expected this would cover the gap of knowledge for this
particular task of our non-expert translators. In addition, a set of 9 keyboard
shortcuts was designed, aiming to simulate a real translation scenario, where
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the mouse is typically used sparingly. The list of shortcuts is the following:

• insert after current word (CTRL+SPACE)

• insert before current word (CTRL+SHIFT+SPACE)

• delete following word (CTRL+SUPR)

• reject current hypothesis (click or CTRL+UP)

• obtain previous hypothesis (CTRL+DOWN)

• validate current word (ENTER)

• validate the sentence (CTRL+ENTER)

• validate the sentence up to the current word (CTRL+SHIFT+ENTER)

Ê

Figure A.6: Details of the glossary. A glossary is shown as a tooltip box with the 5 best
translations from the statistical dictionary Ê.

Furthermore, autocompletion was added to PE-AD, i.e., words with more than
3 characters were autocompleted using a task-dependent word list. In addition,
IMT-AD was set up to predict at character level interactions. We decided to
disable the e-pen interaction and confidence measures, so that way we could
focus on keyboard-only IMT evaluation.

Procedure

Three disjoint sentence sets (C1, C2, C3) were randomly selected from the test
dataset. Each set consisted of 20 sentence pairs and kept the sequentiality of
the original text. Sentences longer that 40 words were discarded. C3 was used
in a warm up session, where users gained experience with the IMT system (5–
10 min per user on average) before carrying out the actual evaluation. Then,
C1 and C2 were evaluated by two user groups (G1, G2) in a counterbalanced
fashion: G1 evaluated C1 on PE-AD and C2 on IMT-AD, while G2 did C1 on
IMT-AD and C2 in PE-AD.

Results

Although the results were not conclusive (there were no statistical differences),
the results showed some trends for this particular group of users. First, the
time spent (efficiency) in the IMT system (67s per sentence average) was higher
than in PE (62s per sentence average). However, the effectiveness was slightly
higher for IMT in BLEU with respect to the reference (41.5 vs 40.7) and with
respect to a cross-validation with other user translations (78.9 vs 77.4). This
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PE-AD IMT-AD

Avg. time (s) 62 (SD = 51) 67 (SD = 65)

BLEU 40.7 (13.4) 41.5 (13.5)
Crossed BLEU 77.4 (4.5) 78.9 (4.8)

Satisfaction
Q1 2.5(1.1) 2.4(1.0)
Q2 2.2(1.2) 2.5(1.0)
Q3 3.5(1.1) 3.1(1.2)
Q4 1.9(1.0) 1.9(0.9)
Q5 3.2(1.0) 3.1(1.2)
Q6 2.8(1.0) 3.6(0.9)
Q7 3.3(1.1) 3.4(1.0)
Q8 2.8(0.7) 3.5(0.8)
Q9 3.6(0.8) 2.8(0.6)
Q10 1.7(1.0) 1.9(0.9)
Global satisfaction 2.5(1.2) 2.1(1.2)

Table A.1: Summary of the results for the first test.

suggested that the IMT system helped to achieve more consistent and stan-
dardized translations. Finally, the PE system was perceived more satisfactory
than the IMT system. In fact, the global satisfaction score was around 2.5
for PE and 2.1 for IMT on a scale of 5, which suggested that users were not
comfortable with none of the systems, especially with the IMT system. This
result was discouraging. However, it points out the directions to take in order
to improve the usability of the IMT system. In particular, IMT obtained 3.6
in Q6 while PE obtained 2.8, while in Q8 they obtained 3.5 and 2.8 respec-
tively, and in Q9 2.8 and 3.6 respectively. This means that the IMT system
was considered more inconsistent, more cumbersome and less reliable than the
PE system.

This was corroborated by the user comments who complained about too many
shortcuts and edit operations available, some operations not working as ex-
pected, the word-box based interface, and some annoying common mistakes
in the predictions of the IMT engine (e.g., inserting a whitespace instead of
completing a word, which would be interpreted as two different words). One
user stated that the PE system “was much better than the [IMT] predictive
tool”. With respect to the PE system, the users basically complained about
the autocompletion not being useful. A summary of the results can be found
in Table A.1.
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A.5.1 Simplified Web Based Prototype

The results from the first evaluation were quite disappointing. Not only par-
ticipants took more time to complete the evaluation with the IMT system,
but also they perceived that IMT-AD was more cumbersome and unreliable
than PE-AD. However, we still observed that IMT-AD was being beneficial in
some circumstances, and probably the bloated UI was the cause for IMT to
fail. Thus, we decided to develop a simplified version of the original prototype
(Figure A.4b).

Design

In the simplified prototype, the word-box based interface was changed to a
simple text area. Consequently, confidence measures and multimodality are no
longer available. However, this was not a problem since they had been already
disabled in the first evaluation. In addition, the edit operations were simplified
to allow only word substitutions and single-click rejections, which match better
the theoretical IMT protocol established in the automatic evaluation. Besides,
we expected that the simplification of the interface logic would reduce some
of the programming bugs that bothered users in the first evaluation. The PE
interface was simplified in the same way. Furthermore, the autocompletion
feature was improved to support n-grams of arbitrary length.

Participants

Fifteen participants aged 23–34 from university English courses (levels B2 and
C1 from the Common European Framework of Reference for Languages) were
paid to perform the evaluation (5 e each). A special price of 20 e was given
to the participant who would contribute with the most useful comments about
both prototypes. It was found that, following this method, participants were
more verbose in their comments and suggestions.

Apparatus

In this case, a different set of sentences (C1′, C2′, C3′) was randomly extracted
from the EU corpus. The sentences were filtered so that the average complexity
(measured in WSR) was similar to the average complexity of the whole corpus.
Moreover, the sentences with complex formating, like bullets or unusual amount
of non-character symbols, were also filtered out.

Procedure

To avoid the bias regarding which system was being used, sentences were pre-
sented in random order, and the type of system was hidden to the partici-
pants. As a consequence, users could not evaluate each system independently.
Therefore, a reduced questionnaire with just two questions was shown on a
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PE-BD IMT-BD

Avg. time (s) 69 (SD = 42) 55 (SD = 37)

No. interactions 94 (60) 79 (55)
Avg. backward cursor moves 19 (15) 15 (15)

Q1 (Likert scale) 3.1 (1.2) 3.5 (1.1)
Q2 (Likert scale) 2.9 (1.2) 3.1 (1.3)

Table A.2: Summary of results for the second test.

per-sentence basis. Q1 asked if the system suggestions were useful. Q2 asked
if the system was cumbersome to use. A text area for free-form comments was
also included.

Results

Still with no statistical significance, we found that the IMT prototype was
perceived now better than PE for this particular group of users (Table A.2).
First, interacting with IMT was more efficient than with PE on average (55 s
vs. 69 s). The number of interactions was also lower (79 vs. 94). We also ob-
served that users went back to rectify parts of the prefix that had been already
corrected (15 backward cursor moves). Concerning user satisfaction, the IMT
system was perceived as more helpful (3.5 vs. 3.1) but also more cumbersome
(3.1 vs. 2.9). However, in this case the differences were narrower. On the other
hand, we performed a manual sentiment analysis, where IMT received 16 posi-
tive comments whereas PE received only 5. Regarding negative comments, the
counts were 35 (IMT) and 31 (PE). While the number of negative comments
is similar, there was an important difference regarding the positive ones.

Finally, the users complaints of the IMT system can be summarized in the
following items:

1. system suggestions changed too often, offering very different solutions;

2. while correcting one mistake, subsequent words that were correct were
changed by a worse suggestion;

3. system suggestions did not keep gender, number, and time concordance;

4. if the user goes back in the sentence and performs a correction, parts of
the sentence already corrected were not preserved on subsequent system
suggestions.

A.6 Summary of contributions

Our initial UI performed poorly when tested with real users. However, when the
UI design was adapted to the users’ expectations, the results were encouraging.
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Note that in both cases the same IMT engine was evaluated under the hood.
This fact remarks the importance of the UI design when evaluating a highly
interactive system as is IMT.

The literature had reported good experimental results in simulated-user scenar-
ios, where IMT is focused on optimizing some automatic metric. However, user
productivity is strongly related to how the user interacts with the system and
other UI concerns. For instance, a suggestion that changes on every key stroke
might obtain better automatic results, whereas the user productivity decreases
because of the cognitive effort needed to process those changes. Therefore,
a new methodology is required for optimizing interactive systems (like IMT)
towards the user.

As a summary, the following issues need to be addressed in an IMT system:

1. user corrections should not be modified, since that causes frustration;

2. system suggestions should not change dramatically between interactions,
in order to avoid confusing the user;

3. the system should only propose a new suggestion when it is sure that it
improves the previous one.

We hope these considerations will reduce the gap between human translators
and technology, so that future developments can have an impact on the trans-
lation industry.

The results of this evaluation lead to the following publication:

• V. Alabau, L. A. Leiva, D. Ortiz-Mart́ınez, and F. Casacuberta. User
Evaluation of Interactive Machine Translation Systems. In Proc. of
the 16th Annual Conference of the European Association for Machine
Translation (EAMT’12), p. 20–23, 2012.
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In V Jornadas en Tecnoloǵıas del Habla (VJTH’2008), pp. 75–78, 2008.

D. Ortiz, L. A. Leiva, V. Alabau, and F. Casacuberta. Interactive Machine Transla-
tion using a Web-based Architecture. In Procedings of the International Conference on
Intelligent User Interfaces, pp. 423–425. 2010.

184 VAG-DSIC-UPV



Bibliography

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a Method for Automatic Evalu-
ation of Machine Translation. In Proceedings of 40th Annual Meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

V. Romero, L. A. Leiva, A. H. Toselli, and E. Vidal. Interactive Multimodal Transcrip-
tion of Text Images Using a Web-based Demo System. In Procedings of the International
Conference on Intelligent User Interfaces, pp. 477–478, 2009.

V. Romero, A. H. Toselli, and E. Vidal. Multimodal Interactive Handwritten Text Tran-
scription. Series in Machine Perception and Artificial Intelligence (MPAI). World Scientific
Publishing, 2011.
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1.3 Diagram of an passive interactive structured prediction process.
The system processes the input x to produce an initial output ŷ.
Then, the user analyses the output and proposes a correction by
some feedback f . Now, the system proposes a new hypothesis ŷ.
This process is repeated until the desired solution r is obtained. 13

1.4 Diagram of an active interactive structured prediction process.
The system processes the input x to produce an initial output
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1.5 OCR example for the handwritten word ‘MONK’. The hypothe-
sis given by a MAP approach has two errors. However, the MCE
approach, which accumulates the probability of several hypothe-
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Above, the digitized and preprocessed text image for the hand-
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procedente del Hospital está’. Each state is represented by the
word preceding it (2-gram), and the index of the input vector
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omitted for simplicity. 43
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3.4 Word graphs for the example in Fig. 3.2 for the optimum algo-
rithm. This figure exemplifies how the state of the algorithm
changes when predicting the word at position j = 4 in iteration
(i = 0). Edges show the hypothesized words and the posterior
probabilities as in Eq. (3.18). Bold edges show current compat-
ible prefixes. 72

VAG-DSIC-UPV 189



List of Figures

3.5 WSR as peakedness increases for different error rates ε in the
simulated experiments from the WSJ corpus. The thick lines
represent the WSR for SISP-OPT, whereas the thin lines repre-
sent that of SISP-MAP 74

4.1 Learning curve of a handwritten digit recognition task using a k-
NN classifier. The plot displays the evolution of the classification
error rate for an independent test set as the number of training
samples increases. Additionally, a zoomed box shows the de-
tails of the curve when adding training samples from 400000 to
410000. We can observe a non-statistically significant increase
in CER. 82

4.2 Taxonomy of active learning built upon the information in [Set-
tles, 2010]. The techniques that have been crossed-out have not
been considered in this work but they could also be used for
active interaction. 84

4.3 Variation of the normalized AUC as a function of the posterior
scaling factor for different tasks. 92

4.4 Variation of the normalized AUC as a function of the pruning
threshold for different tasks. On the right axis it is indicated the
percentage of paths that remain in the graph after pruning. 93

4.5 Pool-based structure level AISP results for different tasks. The
grayed area represents 95% of the random strategies whereas the
area with a line pattern indicates the oracle strategy and cannot
be reached by any other strategy. 95

4.6 Results for stream-based structure level AISP for different tasks.
The plots show the variation of the residual error as structures
are supervised. The zoomed area presents the details for a set
of interesting supervision thresholds. 96

4.7 Diagram of an active interactive structured prediction process at
element level. The system processes the input x to produce an
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