Contents

List of Figures xlv

List of Tables xix

Abbreviations and Acronyms xxix

1 Introduction 1
 1.1 Thesis Contributions .. 4
 1.2 Thesis Outline ... 6

2 Background and Related Work 9
 2.1 The Cache Hierarchy ... 10
 2.1.1 Cache Coherence Protocols 11
 2.1.1.1 Invalidation-based vs Update-based Protocols 11
 2.1.1.2 Steady States at L1 Cache Controllers 12
 2.1.1.3 Snoopy and Directory Protocols 16
 2.1.1.4 Directory Implementation 18
 2.1.2 Block Mapping Policies in Shared Banked LLCs 23
 2.1.3 Power Implications .. 25
 2.2 The Network-on-Chip ... 26
 2.2.1 NoCs Topology .. 27
 2.2.2 The Switch ... 28
 2.2.3 Data Units ... 29
 2.2.4 Switching ... 30
 2.2.5 Flow Control ... 32
 2.2.6 Arbitration ... 33
 2.2.7 Routing .. 33
 2.2.7.1 Implementation of a Routing Algorithm 34
 2.2.7.2 Unicast, Multicast and Broadcast Messages 36
 2.2.8 NoC and Cache Coherence 38
 2.3 Evaluation Platform ... 39
 2.3.1 gMemNoCsim .. 39
 2.3.2 Graphite ... 41
 2.3.3 Sniper .. 41
 2.3.4 CACTI .. 42
 2.3.5 Orion-2 ... 42
 2.3.6 Xilinx ISE ... 42
3 Network-Level Optimizations

3.1 Introduction .. 44
3.2 The Gather Network 46
 3.2.1 Description of a Logic Block 47
 3.2.2 GN Wiring Layout 49
 3.2.3 Implementation Analysis 50
 3.2.4 Sequential Implementation of the Gather Network . 52
3.3 GN Applied to Hammer Protocol 54
 3.3.1 Reseting The GN Wires 55
3.4 GN Applied to Directory Protocol 56
 3.4.1 Reseting the GN Wires 57
 3.4.2 Protocol Modifications 58
3.5 GN Performance Evaluation 59
 3.5.1 Directory Protocol with GN 60
 3.5.2 Hammer Protocol with GN 62
 3.5.3 Sequential Gather Network 67
3.6 Conclusions ... 70

4 Runtime Home Mapping

4.1 Introduction 74
4.2 Runtime Home Mapping 78
 4.2.1 Avoiding Multiple LLC Misses 83
 4.2.2 Adapting the GN Module to Support RHM 84
 4.2.3 Mapping Algorithm 88
 4.2.4 Replacements in L1 Cache 91
4.3 Optimizations to RHM 92
 4.3.1 Block Migration 92
 4.3.2 Block Replication 94
 4.3.3 RHM and Broadcast-based Coherence Protocols 98
 4.3.3.1 Broadcast Network 99
 4.3.4 Merging Hammer Protocol and RHM 99
 4.3.5 Parallel Tag Access 102
4.4 Evaluation .. 104
 4.4.1 Performance 105
 4.4.2 Performance Conclusions 107
 4.4.3 Energy ... 109
 4.4.4 Parallel Tag Access 110
4.5 Conclusions .. 111

5 pNC: Partitioned NoC and Cache Hierarchy

5.1 Introduction 114
5.2 NoC and Cache Hierarchy Substrate 116
 5.2.1 pNC: LBDR and RHM Support to Virtualization 116
 5.2.2 LBDR Regions 120
 5.2.3 Memory Controller Design 121
 5.2.4 Mapping Algorithm 122
5.3 Evaluation .. 123
6 Heterogeneous LLC Design

6.1 Motivation ... 132
6.2 Dynamic L2 Cache Line Allocation 134
 6.2.1 Replacement Policy .. 137
 6.2.2 Dynamic Power Techniques 138
6.3 Performance Evaluation ... 140
 6.3.1 Benefits when Using MOESI Protocol 143
6.4 Conclusions .. 145

7 Conclusions ... 146

A Coherence Protocols ... 152
 A.1 Directory (MESI) ... 152
 A.2 Hammer ... 155
 A.3 Directory + RHM with Block Migration and Replication 157
 A.4 Hammer + RHM ... 163

B Implementation of the Target CMP in an FPGA Board 167

References .. 175
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Baseline CMP system</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Contributions of this thesis</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Final CMP system</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Baseline tile-based CMP system</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Simplified FSM for the MSI protocol</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Simplified FSM for the MOESI protocol</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Simplified FSM for the MESI protocol</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Snoopy protocol example</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Directory protocol example</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Simplified FSM for the LLC</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Requests for a private block in full-map directory protocols</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Requests for a shared block in full-map directory protocols</td>
<td>22</td>
</tr>
<tr>
<td>2.10</td>
<td>Write request management in broadcast-based protocols</td>
<td>22</td>
</tr>
<tr>
<td>2.11</td>
<td>A general overview of a network architecture</td>
<td>26</td>
</tr>
<tr>
<td>2.12</td>
<td>A 4 × 4 2-dimensional mesh</td>
<td>28</td>
</tr>
<tr>
<td>2.13</td>
<td>General structure of a VC-less switch</td>
<td>29</td>
</tr>
<tr>
<td>2.14</td>
<td>Data units</td>
<td>30</td>
</tr>
<tr>
<td>2.15</td>
<td>LBDR logic and configuration bits for east output port</td>
<td>35</td>
</tr>
<tr>
<td>2.16</td>
<td>Structure of gMemNoCsim</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>Write request for a shared block in a Directory protocol</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Format of a short coherence message</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>Gather Network (subnetwork for Tile 0)</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Gathering ACKs in a broadcast-based protocol</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>Logic block at Tile 5</td>
<td>48</td>
</tr>
<tr>
<td>3.6</td>
<td>Control signals distribution (XY layout)</td>
<td>49</td>
</tr>
<tr>
<td>3.7</td>
<td>Control signals distribution (mixed layout)</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>Structure of a sequential GN module</td>
<td>54</td>
</tr>
<tr>
<td>3.9</td>
<td>Logic at the inputs of each AND gate when the system implements Hammer coherence protocol</td>
<td>55</td>
</tr>
<tr>
<td>3.10</td>
<td>Configuration of the Gather Network</td>
<td>57</td>
</tr>
<tr>
<td>3.11</td>
<td>Logic at the inputs of each AND gate when the system implements Directory coherence protocol</td>
<td>57</td>
</tr>
<tr>
<td>3.12</td>
<td>First alternative to let the GN work with directory-based protocols: acknowledgements are sent to the home L2</td>
<td>58</td>
</tr>
<tr>
<td>3.13</td>
<td>Second alternative to let the GN work with directory-based protocols: the L1 invalidates the sharers</td>
<td>59</td>
</tr>
</tbody>
</table>
3.14 Normalized execution time (SPLASH-2 applications). .. 61
3.15 Evaluation results with synthetic access traces. .. 62
3.16 Breakdown of network messages in Hammer protocol. ... 63
3.17 Normalized execution time (Hammer). .. 64
3.18 Normalized number of injected messages (GN signals are not included). 64
3.19 Normalized store miss latency (Hammer). ... 65
3.20 Normalized load miss latency (Hammer). .. 65
3.21 Normalized NoC dynamic energy. ... 66
3.22 Normalized execution time with different GN delays. ... 66
3.23 Normalized execution time compared to a NoC with an high priority VC for the ACKs. ... 67
3.24 Normalized execution time with the two implementations of the Gather Network. .. 68
3.25 Number of conflicts per gather message received at destination node. 68
3.26 Average GN latency (sequential implementation). .. 69

4.1 Average distance of L2 banks to their L1 requestors for different mapping policies. .. 75
4.2 RHM example (block is mapped on requestor’s tile). .. 75
4.3 Runtime Home Mapping. Different scenarios. ... 76
4.4 Home search phase. ... 77
4.5 RHM global overview. From processor access to MC access. 79
4.6 RHM coherence actions (read request). ... 81
4.7 RHM coherence actions (write request). ... 82
4.8 Control info required for each version of RHM. .. 83
4.9 Switch with a GN module adapted to RHM. ... 85
4.10 GN input logic adapted to RHM. ... 86
4.11 GN central logic adapted to RHM. ... 87
4.12 GN output logic adapted to RHM. ... 88
4.13 GCN Mapping of IDs. ... 89
4.14 GN message format. .. 89
4.15 Mapping algorithm performed by the MC. .. 90
4.16 Block migration process. .. 93
4.17 Block replication. ... 95
4.18 Block replication process. .. 96
4.19 BN implementation. .. 99
4.20 Read request for a shared block in case of hit (left) or miss (right) in the local L2 bank. .. 100
4.21 Request hit in the local L2 bank. .. 101
4.22 Request miss in the local L2 bank. ... 102
4.23 Parallel Tag Access: motivation and implementation. 103
4.24 4-stages (left) and 3-stages (right) switches modified to allow parallel tag access. ... 104
4.25 Avg hop distance between L1 requestors and the tile where the data is found. ... 106
4.26 Percentage of hits in the L2 bank located in the tile’s requestor. 106
4.27 Execution time normalized to the S-NUCA case. .. 107
4.28 Average load and store latency, normalized to the S-NUCA case. 108
4.29 NoC’s energy consumption. 109
4.30 LLC’s energy consumption. 110
4.31 Normalized reduction in broadcasts and execution time when using PTA. 111
5.1 Partitioned CMP system. 114
5.2 Virtualized CMP system to three applications. Resources are assigned to different applications. 115
5.3 Baseline system for the pNC approach. 117
5.4 GN signals in a virtualized environments. 117
5.5 pNC switch design. 118
5.6 Example of GCN connected with LBDR bits. 119
5.7 Processor Partitions and Home Partitions example. 121
5.8 PP, HP and faulty tables at the MC. 121
5.9 Mapping algorithm performed by the MC in pNC. 123
5.10 Normalized execution time. 125
5.11 Normalized L2 misses. 125
5.12 Home stealing configuration. 126
5.13 Normalized execution time and L2 misses (mixed applications). 127
5.14 Normalized execution time for each application of the three sets. 127
5.15 Normalized execution time and L2 misses (mixed applications) with faulty LLC banks. 128
6.1 Breakdown of actions performed by the LLC when an L1 request is received. 132
6.2 Percentage of stale and valid blocks replaced at the LLC. 133
6.3 LLC finite state machine (MESI protocol). 135
6.4 Different LLC configurations by changing the number of sets and the associativity of the L2 and directory structures. 136
6.5 Example of LLC reorganization. 137
6.6 Replacement policy. 138
6.7 Evolution of a block when dynamic power-off techniques are used. 139
6.8 Normalized execution time. MESI protocol with L2 banks with 512 sets. 141
6.9 Normalized execution time. MESI protocol with L2 banks with 256 sets. 141
6.10 Normalized LLC area occupancy. 142
6.11 Normalized L2 leakage. MESI protocol. 142
6.12 Normalized L2 leakage. MESI with sleep transistors. 143
6.13 Simplified FSM for the L2 cache (MOESI protocol). 144
6.14 Normalized execution time. MOESI (for 1:x ratio proposals) and MESI (for baseline). 144
6.15 Normalized L2 leakage. MOESI with sleep transistors (for 1:x ratio proposals) and MESI (for baseline). 145
B.1 Target system. 167
B.2 Tiled CMP overview. 168
B.3 Structure of a tile. 169
B.4 Structure of a cache module. 169
B.5 Caches/NI interface. 170
B.6 Breakdown of FPGA resources required by a tile. 171
B.7 Breakdown of FPGA resources required by L1 data cache. 172
B.8 Breakdown of FPGA resources required by an L2 bank. 172
List of Tables

3.1 Area and delay for the switch modules 51
3.2 Conventional 2D mesh critical path. 51
3.3 GN critical path. .. 52
3.4 Area and latency results of the sequential GN module. 54
3.5 Network and cache parameters (GN with Directory protocol). . 61
3.6 Network and cache parameters (GN with Hammer protocol). .. 64
4.1 Network and cache parameters (RHM evaluation). 105
5.1 Network parameters (pNC evaluation). 124
5.2 Sets of applications executed in the CMP. 127
B.1 FPGA resource occupancy of a single tile. 172