

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.cor.2011.10.012

http://hdl.handle.net/10251/35335

Elsevier

Fanjul Peyró, L.; Ruiz García, R. (2012). Scheduling unrelated parallel machines with
optional machines and jobs selection. Computers and Operations Research. 39(7):1745-
1753. doi:10.1016/j.cor.2011.10.012.

S
heduling unrelated parallel ma
hines with optionalma
hines and jobs sele
tionLuis Fanjul-Peyro, Rubén Ruiz∗Grupo de Sistemas de Optimiza
ión Apli
ada, Instituto Te
nológi
o de Informáti
a,Ciudad Polité
ni
a de la Innova
ión, Edi�
io 8G. A

eso B. Universitat Politè
ni
a de Valèn
ia,Camino de Vera s/n, 46022 Valen
ia, Spain, {lfpeyro,rruiz}�eio.upv.esO
tober 11, 2011
Abstra
tIn this paper we study two generalizations of the well known unrelated parallelma
hines s
heduling problem under makespan (Cmax) minimization. First, a situa-tion in whi
h not every available parallel ma
hine should be used and it is desirableto employ only a subset of the parallel ma
hines. This is referred to as �Not all Ma-
hines� or NAM in short. This environment applies frequently in produ
tion shopswhere
apa
ity ex
eeds demand or when produ
tion
apa
ity
an be lent to third
ompanies. Also, NAM
an be used to in
rease produ
tion
apa
ity and it is not
lear how many additional ma
hines should be a
quired. The se
ond studied gener-alization has been referred to as �Not All Jobs� or NAJ. Here, there is no obligationto pro
ess all available jobs. We propose Mixed Integer Programming mathemati
alformulations for both NAM and NAJ, and it is shown that the latter
an be e�e
-tively solved with modern
ommer
ial solvers. We also present three algorithms tosolve the NAM problem. These algorithms are
ompared with the proposed MIP for-mulation when solved with IBM ILOG CPLEX 12.1. Comprehensive
omputationaland statisti
al experiments prove that our proposed algorithms signi�
antly improvethe results given by the solver.Keywords: unrelated parallel ma
hines, makespan, optional ma
hines, not all ma
hines, jobsele
tion, not all jobs

∗Corresponding author. Tel: +34 96 387 70 07, ext: 74946. Fax: +34 96 387 74 991

1 Introdu
tionThere is a set M of m ma
hines that are arranged in parallel. Ea
h job from a set Nof n jobs has to be pro
essed by exa
tly one ma
hine. Ea
h ma
hine
annot pro
essmore than one job at the same time. Furthermore, preemption of jobs is not allowed andwhen a job begins its pro
essing, it
annot be stopped until its
ompletion. The previousproblem is known as parallel ma
hine s
heduling and is divided into three di�erent
ases,whi
h depend on the nature of the available parallel ma
hines. The simplest s
enario iswhen all parallel ma
hines are identi
al. In this
ase, ea
h job j, j ∈ N needs a �xed,non-negative, and known in advan
e pro
essing time, denoted as pj. On
e started in theassigned ma
hine, this ma
hine will be busy pro
essing job j during pj time units. Theparti
ularity in the identi
al parallel ma
hines s
heduling
ase is that the pro
essing timefor ea
h job j is the same for all ma
hines. A more general
ase is the uniform parallel ma-
hines s
heduling problem. Here, the pro
essing time of a job j depends on the ma
hine i,
i ∈ M to whi
h it is assigned. However, this dependen
e follows a stri
t speed-up fa
tor sithat varies from ma
hine to ma
hine. Therefore, pro
essing times follow the relationship
pij = pj/si. Higher si values indi
ate �faster� ma
hines and this speed-up fa
tor is �xedfor ea
h ma
hine. The most general situation is referred to as unrelated parallel ma
hiness
heduling. In this
ase, ea
h ma
hine pro
esses ea
h job at a di�erent speed and pijdenotes the pro
essing time of ea
h job j whi
h depends on the ma
hine i to whi
h it isassigned.This paper deals with this last and most general produ
tion s
heduling s
enario. The opti-mization
riterion
onsidered is the minimization of the maximum
ompletion time,
om-monly referred to as makespan and denoted by Cmax. This s
heduling problem is denotedby R//Cmax, following the well known three-�eld notation α/β/γ of ?. While the R//Cmaxis
lassi�ed as a s
heduling problem, the job sequen
e followed at ea
h ma
hine has noin�uen
e over the �nal Cmax value. The whole setting redu
es to an assignment problem.This is easily explained as follows: Ji denotes the subset of jobs (Ji ⊆ N, ∀i ∈ M) that havebeen assigned to ma
hine i. Therefore, if we assume that ma
hine i is available from time0, it will be busy during Ci =

∑

∀k∈Ji
pik units of time. Given all Ji, ∀i ∈ M , the makespanis easily de�ned as the time at whi
h the last ma
hine is free or Cmax = maxi∈M{Ci}. Itis straightforward to see that the order in whi
h jobs assigned to ma
hine i (Ji) are pro-
essed has no in�uen
e over Ci and therefore, the Cmax value depends solely on the jobto ma
hine assignments. Note that this result applies only to the makespan optimization
riterion. Given all possible assignments, the
ardinality of the feasible solution set is noless than mn. In fa
t, the R//Cmax problem is an NP-Hard problem in the strong sense,2

after ? demonstrated the spe
ial
ase with identi
al ma
hines (P//Cmax) to be NP-Hard.Additionally, even before, ? demonstrated that the two ma
hine version, or P2//Cmax,was already NP-Hard.The R//Cmax problem has many potential appli
ations. Mass produ
tion lines usually
ontain more than one ma
hine for ea
h produ
tion task. As mass produ
tion lines areubiquitous, parallel ma
hines s
heduling settings are equally frequent in pra
ti
e. Otherexamples are multipro
essor
omputers, landing lanes at airports or even operating roomsin hospitals, whi
h
an also be seen as parallel ma
hine shops. Many other examples andappli
ations
an be obtained from general s
heduling textbooks su
h as ?, ?, or ?.The R//Cmax problem has been
omprehensively studied sin
e the �rst paper of ?.Some general parallel ma
hines s
heduling review papers have been published, like thoseof ? and ?. ? re
ently presented an updated short review on state-of-the-art methods.Also re
ently, ? proposed simple but highly e�e
tive methods providing average devia-tions of just 0.63% with respe
t to tight lower bounds in as little as 15 se
onds of CPUtime. These results were obtained for large ben
hmark sets of 1400 instan
es, spread over7 groups with di�erent intervals of pro
essing times and with sizes up to 1000 jobs and50 ma
hines. After su
h small deviations from lower bounds in su
h small CPU times, itis safe to state that, as regards pra
ti
al appli
ations, the R//Cmax problem is quite wellsolved nowadays. This is not to say that it is a solved problem, of
ourse, sin
e it belongsto the NP-Hard
omplexity
lass. For even larger problems, good solutions might stillprove
hallenging to obtain.Given the previous re
ent developments, it is quite natural to extend the R//Cmaxproblem into new dire
tions. In this paper we deal with two generalizations of the un-related parallel ma
hines problem. In the �rst we have that not all ma
hines in the set
M
an be used and some ma
hines have to be left out. More spe
i�
ally, among the mavailable ma
hines, a number Z of them
annot be used. This seemingly straightforwardextension, has not been, to the best of our knowledge, and as we will later show, studiedup to date as regards the R//Cmax spe
i�
 problem. We have referred to this generaliza-tion as the �Not All Ma
hines� or NAM problem. It is very
ommon to �nd workshopswhere an ex
essive produ
tion
apa
ity exists and a ta
ti
al de
ision arises as to whi
hma
hines should be stopped from set M . Unrelated parallel ma
hines pro
ess ea
h jobat a di�erent speed and de
iding whi
h ma
hine or ma
hines have to be stopped goesway beyond simply stopping the slowest ones. Other potential appli
ations of the NAMproblem appear if one
onsiders the symmetri
 problem, i.e., there is a la
k of produ
tion3

apa
ity and more ma
hines need to be pur
hased and/or sub
ontra
ted. A large set ofpotentially new ma
hines
an be added with the
onstraint of just using a given numberof additional ma
hines. Again the question is whi
h new ma
hines are to be used. Prob-lems similar to NAM appear in the literature, for example where ma
hines are subje
t toknown unavailability periods. However, the problem in whi
h, let us say, a workshop with10 parallel ma
hines are available and when it has been de
ided that 4 ma
hines shouldbe stopped has not been approa
hed in the literature. The
losest referen
es that we havebeen able to identify in the literature are the papers of ?, ? or ?. However, these studiesdeal with identi
al ma
hines or jobs with unitary/identi
al pro
essing times and with dif-ferent obje
tives or restri
tions. Other studies, like the one of ?
onsider a
ost fun
tion,together with job tardiness in a weighted obje
tive fun
tion, and simultaneously sele
tma
hines and optimize tardiness values. More re
ently, ? studied regular performan
emeasures and ma
hine
ost (and sele
tion)
onsiderations but for the more spe
i�

ase ofidenti
al parallel ma
hines. The reader is referred to this more re
ent paper for additionalreferen
es.The se
ond generalization studied in this paper is when not all jobs in the set N needto be pro
essed. We have dubbed this extension as �Not All Jobs� or NAJ. In details,we have a total of n jobs and only H , H < n, jobs have to be pro
essed, dis
arding theremaining n −H jobs in the pro
ess. NAJ-like settings have been thoroughly studied ata more produ
tion planning stage under various names like order a

eptan
e, due datesetting or even Just In Time (JIT) s
heduling. Good reviews of due date setting andJIT s
heduling are given by ? and ?, respe
tively. However, and again to the best ofthe knowledge of the authors, it has not been studied together with the parallel ma
hinesprodu
tion s
heduling problem. The NAJ problem appears quite frequently at
ompanieswhere there is the possibility of not a

epting �or not produ
ing in the
urrent produ
-tion planning horizon� a given subset of jobs. The possible bene�ts and appli
ations ofNAJ are manifold. Sele
ting only pro�table produ
ts or produ
ts that employ a givenunder-utilized ma
hinery are
ommon examples. Note that NAJ is very similar to otherstudied settings just as the already mentioned JIT. Nevertheless, there are basi
 di�er-en
es between these s
enarios. For example, in JIT problems, jobs are usually assigneda deadline and after the s
heduling algorithm is applied, jobs not able to �nish by theirdeadline are usually dis
arded. In the NAJ setting there are no deadlines and the idea isto sele
t a subset of jobs not worth doing or likewise, to sele
t a set of jobs worth produ
ing.? and ? showed that powerful
ommer
ial solvers su
h as IBM ILOG CPLEX versions4

11.0 and 11.1 obtain ex
ellent solutions for the unrelated parallel ma
hines s
hedulingproblem, mu
h better than the methods that were
onsidered state-of-art at the time.As a result, it is reasonable to start �rst with mathemati
al programming models forNAM and NAJ, whi
h are developed in Se
tion 2. After the formulation we present threealgorithms to solve the NAM setting along with
omputational and statisti
al analyses ofperforman
e in Se
tion 3. The performan
e of existing solvers, in this paper IBM ILOGCPLEX 12.1, is also
he
ked. In se
tion 4 we study the NAJ setting. Finally,
on
lusionsand further resear
h opportunities are presented in Se
tion 5.2 Mathemati
al programming formulationWe begin with a straightforward Mixed Integer Linear Programming (MILP) formulationfor the R//Cmax whi
h is as follows:
min Cmax (1)

n
∑

j=1

pij · xij ≤ Cmax, ∀i ∈ M (2)
m
∑

i=1

xij = 1, ∀j ∈ N (3)where xij is a binary variable whi
h takes value 1 if job j is assigned to ma
hine i and0 otherwise. The set of restri
tions (2) assign the Cmax value whi
h
an not be lower than
Ci for ea
h ma
hine. Constraints in the set (3) ensure that all jobs are assigned to exa
tlyone ma
hine.The modi�
ations for the NAM setting are simply to add the following sets of
on-straints:

n
∑

j=1

xij ≤ n · zi, ∀i ∈ M (4)
m
∑

i=1

zi ≤ m− Z (5)where zi is a new binary variable whi
h takes value 1 if ma
hine i is used and 0 oth-erwise. Note that in
onstraint set (4) the maximum number of assigned jobs to any5

ma
hine is n but only if the ma
hine is used (zi = 1). The single
onstraint (5) limits themaximum number of ma
hines to be used to m − Z, where Z denotes the ma
hines tobe left out unused, as already stated. In total we need m additional binary variables and
m+ 1 additional
onstraints for modeling the NAM problem.The NAJ modi�
ations involve the following sets of
onstraints:

m
∑

i=1

xij = hj, ∀j ∈ N (6)
n

∑

j=1

hj ≥ H (7)where hj is a new binary variable whi
h takes value 1 if job j is pro
essed and 0 oth-erwise. The set of restri
tions (6) repla
e the previous set (3). Again we have a single
onstraint (7) that sets the minimum number of jobs to be pro
essed to H .Note that the NAM and NAJ generalizations are not ne
essarily tied to makespanminimization.3 Methods for solving the �Not All Ma
hines� (NAM)generalizationTwo parts
an be distinguished in the NAM problem. The �rst one is to de
ide whi
h ma-
hines will not be used and the se
ond is to solve the resulting parallel ma
hines s
hedulingproblem without these ma
hines. In the
ase of unrelated parallel ma
hines, the de
isionof whi
h ma
hines should be left out is not an easy task sin
e the pro
essing time of ea
hjob depends on the ma
hine and there are no ma
hines that are
onsistently slower orfaster for all jobs (this would be the less general
ase of uniform parallel ma
hines). As aresult of this, if one aims to optimally solve this problem, it would be ne
essary to �nd thebest possible
ombination of ma
hines to be employed. This is a
ombinatorial problemwhere all possible
ombinations of m − Z ma
hines that are sele
ted for use (not using
Z ma
hines) must be
hosen among the total m ma
hines. For example, in a problemwith 10 ma
hines, if we only want to use 7 of these ma
hines, we would have a number of
ombinations without repetition with 10 ma
hines taken 7 at a time to sele
t the ma
hinesthat are used or, equivalently, 10 elements taken 3 at a time to sele
t the ma
hines not tobe used. The result is (10

7

)

=
(

10
3

)

= 120 possible
ombinations. Ea
h
ombination results6

in a di�erent R//Cmax problem that should be solved to optimality. Obviously, this isa problem of signi�
ant dimensions, sin
e for a more realisti
 example with a workshopof 50 parallel ma
hines where we wish not to use 10 of them we would have a total of10,272,278,170 possible
ombinations. Given the impossibility of solving this problem op-timally, we propose a heuristi
 approa
h that arises from de
omposing the NAM probleminto three phases:1. Analyze the pro
essing times and rank the most promising ma
hines.2. Sele
tion of ma
hines a

ording to the ranking.3. Solve the resulting R//Cmax problem.The last two phases
an be iteratively applied until a given stopping
riterion is rea
hed,sin
e di�erent ma
hine sele
tions will result in di�erent R//Cmax problems.On
e we have solved the resulting problem, we must take into a

ount that perhaps thesele
ted ma
hines were not the best ones. Therefore, we must follow a
ertain
riterion fornot only making a �rst sele
tion of ma
hines, but also to make su

essive sele
tions in thehope that better solutions may be found. For example, if we have a problem with 100 jobsand 10 ma
hines on whi
h only eight of them must be used, maybe our best �rst optionis not to use ma
hines 1 and 2. After solving the resulting unrelated parallel ma
hinesproblem with 100 jobs and 8 ma
hines, we
an sele
t two di�erent ma
hines, for example1 and 3 in the ranking. With this new set of ma
hines we solve the problem again. Ea
htime we minimize the makespan of the resulting problem.The three phases of the NAM generalization solution pro
edure are explained in the fol-lowing se
tions in more detail.3.1 Ma
hine ranking pro
edureAs a �rst step, we devise a pro
edure to rank ma
hines to identify whi
h ones are po-tentially interesting. The obvious �rst ranking
hoi
e is to solve m problems, ea
h one ofthem with m−1 ma
hines after removing ea
h potential ma
hine. One less ma
hine for
esthe other ma
hines to have higher work loads and therefore the makespan will in
rease.The worst makespan obtained among the m problems gives an indi
ation of a ma
hinethat should not have been removed. Conversely, the lowest makespan obtained indi
ates ama
hine that is not that mu
h needed. After this removal, we have only m− 1 remainingma
hines. Repeating the pro
ess by removing another ma
hine and solving m − 1 prob-lems with m − 2 ma
hines ea
h results in another ma
hine
andidate. After repeating7

this pro
ess Z times �whi
h means solving no less than Z ·m− Z·(Z−1)
2

unrelated parallelma
hines problems� we might have a good ranking of ma
hines to be removed. However,this pro
ess, apart from being extremely slow, gives very bad results sin
e ma
hines arebeing removed in a greedy way one at a time instead of
onsidering them all together.Therefore, a more e�
ient and e�e
tive pro
edure for ranking ma
hines is re
ommended.? observed that good solutions for the R//Cmax problem
ontain job-ma
hine assign-ments where most of the time jobs are assigned to the �rst, se
ond or third ma
hine withthe lowest pro
essing time. Following the same idea we propose a simple ranking. Weextra
t the three lowest values of pro
essing times pij for ea
h job j, i.e., i1j , i2j and i3j . Toea
h one of these three values we subtra
t the fourth lowest one (i4j = mini∈M/i1j ,i2j ,i3j pij).The result is a negative value. In general, negative results give us an indi
ation of howmu
h faster it is to pro
ess a job in the �rst three ma
hines when
ompared to the fourth.Note that the fourth ma
hine is just a referen
e ma
hine and similar rankings
ould beobtained using the �fth or subsequent ma
hines. This is
al
ulated for ea
h job. Finally,for ea
h ma
hine, we add the values resulting from ea
h subtra
tion. Ma
hines are sortedin as
ending order of this amount, where ties are broken arbitrarily. The �rst ma
hine inthe ranking is, in general, the ma
hine whi
h has, on average, shorter pro
essing times forall jobs. Note that this pro
edure is an impli
it weighting s
heme. The higher the di�er-en
es between the
onsidered pro
essing times, the higher the di�eren
e and the higherthe ma
hine will be ranked. Noti
e that a ma
hine may not have any of the �rst threeminimum pro
essing times for any job. In these
ases, instead of adding the previoussubtra
tions, we add all the original pro
essing times of all jobs.Let us illustrate the ma
hine ranking pro
edure by means of an example. Table 1
ontains the pro
essing times of a 10 job, 5 ma
hine R//Cmax example. For ea
h job, thethree lowest pro
essing times have been highlighted in itali
s whereas the fourth lowestpro
essing time is marked in bold.

8

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10M1 4 5 5 5 5 4 5 5 4 5M2 1 3 4 5 1 1 5 2 3 1M3 3 3 1 1 2 2 4 4 5 4M4 1 3 1 4 3 3 2 3 1 2M5 1 4 1 3 2 2 4 2 1 2Table 1: R//Cmax example problem. Pro
essing times pij for a problem with 10 jobs(
olumns) and 5 ma
hines (rows). The three lowest pro
essing times for ea
h job in itali
sand the fourth in bold.Now we pro
eed to subtra
t the fourth lowest pro
essing time from ea
h one of thethree lowest pro
essing times. This is shown in Table 2. The Ci
olumn
ontains sumof the values thus obtained for ea
h ma
hine. Co equals Ci in the
ase that Ci is not azero. If Ci is zero, then Co is equal to the sum of all original pij values for ma
hine i fromTable 1. Following the example, the ranking would be {M5,M4,M2,M3,M1}. Thismeans that ma
hine M5 is the �most needed� ma
hine as regards makespan minimizationwhereas ma
hine M1 is the most expendable one.J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 Ci CoM1 0 47M2 -2 -1 -2 -2 -2 -1 -3 -13 -13M3 -1 -3 -4 -1 -1 -1 -11 -11M4 -2 -1 -3 -1 -3 -1 -3 -2 -16 -16M5 -2 -3 -2 -1 -1 -1 -2 -3 -2 -17 -17Table 2: Di�eren
e between the three lowest pro
essing times for ea
h job and the fourthlowest one, total sums and
orre
ted sums.3.2 Ma
hine sele
tionOn
e the ranking for the ma
hines has been
al
ulated, we pro
eed to make a sele
tion ofthe ma
hines to use. After ea
h sele
tion, we solve the resulting problem with the sele
tedma
hines.
9

There are m ma
hines and we want to sele
t only m − Z, where Z is the numberof ma
hines that will not be used in the workshop. The previous ranking is already
al
ulated. We propose the following sele
tions:1. The �rst sele
tion
ontains the m− Z �rst ma
hines of the ranking.2. In the se
ond sele
tion, we
hoose the ma
hine in position m − Z + 1 from theranking, i.e., the �rst unsele
ted ma
hine, and ex
hange it with the last sele
tedma
hine, whi
h is lo
ated in position m− Z from the ranking.3. For the third sele
tion, with respe
t to the �rst sele
tion, we ex
hange the �rstunsele
ted ma
hine again, in position m − Z + 1, with the ma
hine in position
m− Z − 1 of the ranking.4. The pro
ess
ontinues until the �rst unsele
ted ma
hine has been ex
hanged withall sele
ted ma
hines of the �rst sele
tion.5. The above pro
ess is repeated again but this time ex
hanging the se
ond unsele
tedma
hine, i.e., the ma
hine that o

upies the position m−Z +2 of the ranking, withall ma
hines sele
ted in the �rst sele
tion. Afterwards we pro
eed with the thirdunsele
ted ma
hine and so on until all unsele
ted ma
hines have been tested.The previous list is very detailed in order to have a
lear des
ription of the sele
tions.However, the sele
tion is
arried out in two nested loops and, in fa
t, these steps are easierdes
ribed as in a
y
le k, where k = 1, 2, . . . , Z, ma
hine m − Z + k in the ranking issele
ted and swapped in turn with ea
h one of the �rst m− Z ma
hines.In total, there are (m − Z) · Z + 1 sele
tions or di�erent sets of ma
hines. All thesesets are potentially good sets as a result from the ma
hine ranking pro
edure. Note thatea
h sele
tion generates a di�erent R//Cmax problem that needs to be solved. As already
ommented, and as we will later show, the proposed algorithms �rst
arry out a sele
tiona

ording to the previous list and then solve the problem. The next sele
tion is
arriedout and the problem is solved again. If all previous sele
tions are
al
ulated and there isstill time left for
arrying over, su

essive sele
tions are just made of random ma
hinesuniformly sele
ted. Basi
ally, we need this random ma
hine sele
tion phase for the onlyreason of not having the algorithm stop before a prede�ned CPU time, but our results(to be dis
ussed later) indi
ate that there are little to no gains with this last randomma
hine sele
tion. Additionally, the limited allotted CPU time results in random ma
hine10

sele
tions only for instan
es with a small number of ma
hines.Let us follow the previous example. Re
all that the ma
hine ranking was {M5,M4,M2,M3,M1}.We have that 40% of the ma
hines in the shop have to be stopped (Z = 2), whi
h meansthat we have to sele
t the m−Z = 5−2 = 3 best ma
hines. The �rst ranking is therefore
{M5,M4,M2}. Noti
e that these ma
hines are the three most promising ones a

ordingto the ranking. On
e this three ma
hine problem is solved and a makespan value obtained,a se
ond sele
tion is
arried out. We take the �rst unsele
ted ma
hine a

ording to theranking, ma
hine M3, and ex
hange it with the last sele
ted ma
hine, M2. This meansthat the ma
hines to use in the se
ond sele
tion are {M5,M4,M3}. After solving this newproblem we ex
hange again the �rst unsele
ted ma
hine with the se
ond sele
ted ma
hine,i.e., M3 with M4, and the ma
hines sele
ted in this
ase are {M5,M3,M2}. The follow-ing sele
tion should be {M3,M4,M2}. At this point, where the �rst unsele
ted ma
hinehas been ex
hanged with all ma
hines sele
ted in the �rst sele
tion, we pro
eed to take thenext unsele
ted ma
hine, M1. So, the next
ombination to try would be {M5,M4,M1},then {M5,M1,M2}, and �nally {M1,M4,M2}. If time permits after
ompleting thesesele
tions, we
ontinue with a random sele
tion of ma
hines.3.3 �Not All Ma
hines� algorithmsThe �rst method to
onsider is the simple solution of the MIP mathemati
al model formedby the obje
tive fun
tion (1) and
onstraint sets (2), (3), (4) and (5) with a modern
om-mer
ial solver. We use the IBM ILOG CPLEX solver, in its last version 12.1 available atthe time of the writing of this paper. We denote this solver as CPLEX in short.A se
ond straightforward method is to use CPLEX as a R//Cmax solver, i.e., �rst
arrying out the ranking and sele
tion pro
edures and just using CPLEX to solve theunrelated parallel ma
hines s
heduling problem where some ma
hines have been alreadyremoved. This means that ea
h time we make a sele
tion, the resulting redu
ed MIPmathemati
al model is solved with CPLEX. Sin
e this redu
ed model is mu
h smaller, itis expe
ted to be solved mu
h qui
ker. We set a maximum CPU time for ea
h CPLEXrun so that we
an re-solve with a new set of ma
hines provided by the ma
hine sele
tionpro
edure. The rationale behind stopping CPLEX before the
urrent integer solution hasbeen proven to be optimal is to avoid a possibly long span of time where CPLEX is just
losing the sear
h tree without improving results. Thus, a restart of CPLEX with a newsele
tion of ma
hines and providing the best result so far as a bound, allows CPLEX tousually �nd better solutions qui
kly. We refer to this se
ond method as NAM+CPLEX11

in short.The third proposed algorithm also uses the ma
hine ranking and sele
tion pro
edures,but instead of using CPLEX as a solver for the resulting R//Cmax problems, we use twoheuristi
s. First we employ fast simple lo
al sear
h algorithm as a seed solution, whi
his later fed into a state-of-the-art method. The �rst heuristi
 is an insertion lo
al sear
hfollowed by an inter
hange lo
al sear
h, both iteratively applied in a loop until a lo
aloptimum is rea
hed. This �rst heuristi
 is denoted as ST and interested readers
an �nd
omplete explanations in the re
ent paper of ?. Sin
e this pro
ess is very fast, we
anrepeat ST a number of times (
ontrolled by a maximum elapsed CPU time), ea
h timewith a di�erent ma
hine sele
tion. This permits a fast heuristi
ally found sele
tion of goodma
hines, along with a reasonable job-to-ma
hine assignment.The se
ond heuristi
 is a more elaborate iterated greedy sear
h method,
alled NVST-IG+and proposed in ?, whi
h was later denoted in brief as DIG in ?. Contrary to ST, DIGdoes not work over di�erent ma
hine sele
tions. It is merely used the same way as CPLEXis used in NAM+CPLEX, i.e., only to work over the R//Cmax problem.This third method is denoted as NAM+ST+DIG. Noti
e that this method does not needany
ommer
ial solver for its appli
ation.The fourth and last proposed method is NAM+ST+CPLEX. In this
ase, instead oflaun
hing CPLEX after the ranking and ma
hine sele
tion pro
edures, we �rst apply afast lo
al sear
h in order to initialize CPLEX with a good seed solution. As we
an see,all proposed methods are simple and easily reprodu
ible.3.4 Computational and statisti
al performan
e analysis? proposed a
omprehensive ben
hmark of no less than 1400 instan
es for the R//Cmaxproblem. Instan
es are grouped into seven pro
essing time distributions used to gen-erate the pro
essing times pij and, as the authors have shown, the di�erent intervalshave a profound e�e
t on the results. All intervals employ dis
rete uniform distribu-tions like intervals U(1, 100), U(10, 100),
orrelated jobs,
orrelated ma
hines, U(100, 200),
U(100, 120) and U(1000, 1100). At ea
h interval there are 10 instan
es for ea
h
ombi-nation of n = {100, 200, 500, 1000} and m = {10, 20, 30, 40, 50}. Note the sheer size ofthe largest instan
es at 1000 jobs and 50 ma
hines. In instan
es with
orrelated jobs,pro
essing times are determined by the following expression: pij = bj + dij where bj and
dij are uniformly distributed values (also dis
rete) in the ranges U(1, 100) and U(1, 20),respe
tively. In the
ase of
orrelated ma
hines, pro
essing times obtained in a similar12

way: pij = ai + cij where ai and cij are uniformly distributed in U(1, 100) and U(1, 20),respe
tively.We use a set of 12 PC/AT
omputers with Intel Core 2 Duo E6600 pro
essors runningat 2.4 GHz and 2 GB of RAM memory under the Windows XP SP3 operating system.No parallel pro
essing is
arried out with the 12
omputers, we just simply divide the
omputational work over the 12
omputers. Tests are
ondu
ted for di�erent per
entagesof unused ma
hines, i.e., for 20%, 50% and 80%. The stopping
riteria for all methods isa maximum elapsed CPU time, whi
h is a

urately measured and has been set to 60 and300 se
onds. We have profusely used the Design of Experiments (DOE, ?) methodologyand the Analysis of Varian
e (ANOVA) statisti
al tool for drawing meaningful and sound
on
lusions. We
he
k the three main hypotheses of the parametri
 ANOVA: normal-ity, homos
edasti
ity and independen
e of the residuals. The tabulated results for ea
hmethod will be presented as the relative per
entage deviation from the best solution foundas follows: Relative Per
entage Deviation (RPD) =
Cmax(i)− C∗

max(i)

C∗
max(i)

· 100 (8)where C∗
max(i) is the aforementioned best solution found and Cmax(i) is the value ob-tained by a given algorithm and instan
e i. All instan
es, together with the best solutionsknown are available at http://soa.iti.es. Note that
omparing against the optimum so-lution is not viable sin
e optimum solutions for the instan
es proposed
ould not be foundin all
ases. We will dis
uss later about
omparisons against some optimum solutions orstrong lower bounds.Some of the proposed methods have some simple parameters that were
alibrated.Basi
ally, these are the times at whi
h the di�erent parts of the methods start and/orthe maximum time allowed for ea
h part. Table 3 shows this information and
alibratedvalues a

ording to the two elapsed CPU time stopping points.

13

http://soa.iti.es

Stopping timeAlgorithm Fa
tor 60 300NAM+CPLEX Restart time for CPLEX 10 60NAM+ST+DIG Time given to ST 10 60Time given to DIG 50 240NAM+ST+CPLEX Time given to ST 20 100Time given to CPLEX 40 200Restart time for CPLEX 10 60Table 3: Calibrated values for the di�erent tested methods. Values in se
onds.We show the average results for ea
h of the methods tested in the 1400 instan
eswith the two stopping
riteria and the three per
entages of unused ma
hines. Later, weshow some statisti
al analyses of varian
e whi
h represent the statisti
al signi�
an
e of theobserved di�eren
es between the various algorithms, their intera
tions and Tukey HonestlySigni�
ant Di�eren
e (HSD)
on�den
e intervals with a 95%
on�den
e level.The results for 20% of unused ma
hines, for elapsed CPU times stopping
riteria of 60and 300 se
onds are reported in Tables 4 and 5, respe
tively. Similar tables, but for 50%and 80% of unused ma
hines are reported in Tables 6 to 9.Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 2.41 1.24 1.95 5.24
U(10, 100) 2.10 0.75 0.58 2.89Job Corre 1.76 0.66 0.21 1.29Ma
h Corre 0.73 0.25 0.55 1.66
U(100, 200) 0.84 0.30 0.17 0.69
U(100, 120) 1.63 0.07 0.04 0.16
U(1000, 1100) 0.10 0.04 0.02 0.08Average 1.37 0.47 0.50 1.72Table 4: Average relative per
entage deviations for the �Not All Ma
hines� algorithmswith 20% of unused ma
hines and 60 se
onds elapsed CPU time stopping
riterion.

14

Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 0.54 0.69 1.51 5.00
U(10, 100) 0.68 0.18 0.39 2.78Job Corre 0.69 0.31 0.06 1.02Ma
h Corre 0.13 0.03 0.48 1.63
U(100, 200) 0.27 0.08 0.11 0.66
U(100, 120) 0.06 0.02 0.03 0.15
U(1000, 1100) 0.02 0.01 0.02 0.08Average 0.34 0.19 0.37 1.62Table 5: Average relative per
entage deviations for the �Not All Ma
hines� algorithmswith 20% of unused ma
hines and 300 se
onds elapsed CPU time stopping
riterion.
Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 12.87 2.64 1.68 1.04
U(10, 100) 10.29 0.98 0.57 0.52Job Corre 11.90 0.34 0.14 0.32Ma
h Corre 3.73 0.29 0.74 0.20
U(100, 200) 12.88 0.33 0.27 0.26
U(100, 120) 14.20 0.07 0.06 0.07
U(1000, 1100) 1.94 0.04 0.02 0.03Average 9.69 0.67 0.50 0.35Table 6: Average relative per
entage deviations for the �Not All Ma
hines� algorithmswith 50% of unused ma
hines and 60 se
onds elapsed CPU time stopping
riterion.
Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 5.11 1.05 1.68 0.34
U(10, 100) 2.94 0.49 0.41 0.10Job Corre 3.65 0.16 0.05 0.32Ma
h Corre 1.25 0.01 0.64 0.06
U(100, 200) 3.32 0.10 0.21 0.08
U(100, 120) 4.40 0.03 0.05 0.02
U(1000, 1100) 0.18 0.02 0.01 0.01Average 2.98 0.27 0.44 0.13Table 7: Average relative per
entage deviations for the �Not All Ma
hines� algorithmswith 50% of unused ma
hines and 300 se
onds elapsed CPU time stopping
riterion.15

Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 23.17 2.04 1.47 1.94
U(10, 100) 13.97 1.19 0.55 0.99Job Corre 5.65 0.12 0.11 0.24Ma
h Corre 56.64 0.04 0.44 1.33
U(100, 200) 7.72 0.24 0.15 0.38
U(100, 120) 7.23 0.07 0.07 0.14
U(1000, 1100) 5.47 0.04 0.03 0.06Average 17.12 0.53 0.40 0.73Table 8: Average relative per
entage deviations for the �Not All Ma
hines� algorithmswith 80% of unused ma
hines and 60 se
onds elapsed CPU time stopping
riterion.
Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 12.95 0.67 0.63 1.19
U(10, 100) 7.90 0.47 0.29 0.70Job Corre 2.45 0.07 0.06 0.19Ma
h Corre 30.33 0.00 0.39 1.03
U(100, 200) 3.95 0.13 0.08 0.32
U(100, 120) 4.19 0.02 0.05 0.13
U(1000, 1100) 2.76 0.02 0.02 0.05Average 9.22 0.20 0.22 0.52Table 9: Average relative per
entage deviations for the �Not All Ma
hines� algorithmswith 80% of unused ma
hines and 300 se
onds elapsed CPU time stopping
riterion.As we
an see, the results of the proposed methods that employ our presented ma
hineranking and sele
tion methods provide, for almost all
ases of elapsed CPU time stopping
riteria, per
entage of unused ma
hines and pro
essing times intervals, signi�
antly loweraverage relative per
entage deviations from best known solutions. Some di�eren
es arestriking, for example, we
an see in Table 8 that solving the MIP mathemati
al modelwith CPLEX and stopping after 60 se
onds of elapsed CPU time, and with 80% of unusedma
hines, the last available version of CPLEX yields no less than a 23.17% average relativedeviation,
al
ulated for the 200 instan
es in the interval U(1, 100). Comparatively, theproposed method NAM+ST+DIG, whi
h does not use CPLEX at all, provides a meager1.47% deviation from the best known solutions. Di�eren
es between CPLEX and thethree proposed methods are mu
h less marked when 300 se
onds of elapsed CPU time areallowed. This is an expe
ted result and, furthermore, with even more allowed CPU time,16

eventually most methods would
onverge to the optimum solution.It is interesting to observe that CPLEX behaves very well for just 20% of unused ma
hines,beating two of the proposed methods for 300 se
onds (Table 5). However, the resultsare mu
h worse for 50% unused ma
hines and spe
ially, as
ommented, for 80% unusedma
hines.Table 10 presents the overall averages of all tested methods. Note that ea
h
ell
ontainsthe average results of 1400 instan
es. Among the presented methods, NAM+ST+CPLEXdoes not improve the results of NAM+CPLEX. Yet, under the situation where only 50% ofthe ma
hines are
onsidered � under both 60 and 300 se
onds CPU time stopping
riterion� NAM+ST+CPLEX is marginally better than NAM+CPLEX. However, NAM+CPLEXand NAM+ST+CPLEX improve the results of CPLEX in a signi�
ant way. This alonedemonstrates that our presented ma
hine ranking and sele
tion pro
edures a
tually helpwhen solving this interesting R//Cmax problem generalization. Lastly, NAM+ST+DIGis the best method for 60 se
onds and the se
ond best for 300 se
onds. In our humbleopinion, this is a noteworthy result sin
e NAM+ST+DIG does not make use of CPLEX.CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEXM.20% and 60 se
. 1.37 0.47 0.50 1.72M.20% and 300 se
. 0.34 0.19 0.37 1.62M.50% and 60 se
. 9.69 0.67 0.50 0.35M.50% and 300 se
. 2.98 0.27 0.44 0.13M.80% and 60 se
. 17.12 0.53 0.40 0.73M.80% and 300 se
. 9.22 0.20 0.22 0.52Average 60 se
. 9.39 0.56 0.47 0.93Average 300 se
. 4.18 0.22 0.34 0.76Table 10: Summary of relative per
entage deviations from the best solutions know for thefour �Not All Ma
hines� methods tested in all intervals and stopping
riteria.As previously stated, all results are fed into a multifa
tor ANOVA where the di�erentalgorithms, intervals, per
entage of unused ma
hines, stopping time, number of ma
hinesand number of jobs are
ontrolled fa
tors. The response variable is the relative per
entagedeviation. Note that the total number of treatments is 1400 · 6 · 4 = 33, 600 (3,360if the instan
e repli
ate is not studied as a witness fa
tor) so the statisti
al power ofthe experiment is very high. Most signi�
ant fa
tors have p-values that approa
h zero.Therefore, instead of
omparing p-values, means plots with
on�den
e intervals resultingfrom the ANOVA
onstitute a more pra
ti
al approa
h. Some means plots are given inFigures 1 and 2. 17

R
P

D

-1

3

7

11

15

19

percentage

20

50

80

time = 60 sec.

CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEXFigure 1: Relative per
entage deviation means plot with Tukey HSD intervals at a 95%
on�den
e level for the intera
tion between all four �Not All Ma
hines� methods testedand all per
entages of unused ma
hines. 60 se
onds elapsed CPU time stopping
riterion.

R
P

D

percentage

20

50

80

-1

3

7

11

15

19

CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX

time = 300 sec.

Figure 2: Relative per
entage deviation means plot with Tukey HSD intervals at a 95%
on�den
e level for the intera
tion between all four �Not All Ma
hines� methods testedand all per
entages of unused ma
hines. 300 se
onds elapsed CPU time stopping
riterion.As we
an see, CPLEX produ
es average per
entage deviations with di�eren
es thatare statisti
ally signi�
ant. Note that overlapping Tukey HSD intervals between twoplotted means imply that the di�eren
es between the overlapped means are not statis-ti
ally signi�
ant. In both
ases, with 60 and 300 se
onds elapsed CPU time stopping
riterion both the per
entage of unused ma
hines and the algorithms fa
tors, as wellas the intera
tion between the two, resulted in p-values very
lose to zero. However,there are many non-statisti
ally signi�
ant di�eren
es among the other tested methods.Statisti
al testing is, as we
an see, ne
essary. From the overall averages given in Ta-ble 10, we
on
lude that mu
h of the observed di�eren
es in average performan
e betweenNAM+CPLEX, NAM+ST+DIG and NAM+ST+CPLEX are not statisti
ally signi�
ant.18

NAM+ST+CPLEX is statisti
ally worse than all other proposed methods for 300 se
ondsand 20% of unused ma
hines. CPLEX is statisti
ally equivalent to all other methods onlyfor the
ase of 20% of unused ma
hines. Although NAM+CPLEX and NAM+ST+DIGhave similar results, we want fo
us on the fa
t than NAM+ST+DIG does not use any
ommer
ial solver. Commer
ial solvers are very expensive for industries and therefore, weprefer the simpler and �solver-less� NAM+ST+DIG method.Comparing against the best known solution gives us relatively little information aboutthe ultimate e�e
tiveness of either CPLEX or the other tested methods. Comparingagainst true optimum solutions is a preferable option. However, the proposed MIP for-mulation, when solved with IBM ILOG CPLEX 12.1., is not able to solve all instan
esoptimally, as the previous results have shown. In any
ase, we have
arried out additionaltesting. Among all of our results with 20, 50 and 80% of unused ma
hines and 300 se
-onds elapsed CPU time stopping
riterion, we have
al
ulated for how many instan
es theoptimum solution
ould be obtained with CPLEX. Additionally, we also
al
ulated forhow many instan
es a gap of less than 1% between the lower bound and the best integersolution found is known (not in
luding the previous optimally solved instan
es). Overall,there are 12.07% of instan
es with a known optimum and 7.67% of instan
es with a gapof less than 1%. We report the average relative deviations from these two sets of instan
esof the NAM+ST+DIG algorithm, run during 60 se
onds in Table 11.

19

20% unused ma
h 50% unused ma
h 80% unused ma
hgap < 1% optimum gap < 1% optimum gap < 1% optimum
U(1, 100) % instan
es 8 31.5 1.5 12 0 15.5Average deviation 0.31 2.54 0.04 0.05 0.00 0.19
U(10, 100) % instan
es 9.5 10.5 1 9.5 0 15.5Average deviation 0.30 0.83 0.14 0.13 0.00 0.21JobCorre % instan
es 13.5 1 5.5 4.5 0.5 14.5Average deviation 0.33 0.05 0.21 0.26 0.27 0.22Ma
hCorre % instan
es 37.5 39 16.5 26.5 3.5 19.5Average deviation 0.94 0.42 0.91 0.54 0.39 0.20
U(100, 200) % instan
es 14.5 1 8 2 1.5 13.5Average deviation 0.54 0.16 0.28 0.25 0.36 0.08
U(100, 120) % instan
es 3.5 12.5 6 4 1.5 10.5Average deviation 0.35 0.03 0.12 0.05 0.09 0.05
U(1000, 1100) % instan
es 16 0.5 10 0.5 3 9.5Average deviation 0.25 0.00 0.05 0.00 0.06 0.04Total % instan
es 14.64 13.71 6.93 8.43 1.43 14.07Average deviation 0.43 0.58 0.25 0.18 0.17 0.14Table 11: Average relative per
entage deviations of the NAM+ST+DIG algorithm run for60 se
onds with respe
t to optimum solutions or lower bounds for instan
es with a gapof less than 1% obtained using CPLEX 12.1 during 300 se
onds. 20%, 50% and 80% ofunused ma
hines.As shown, when
omparing against the instan
es for whi
h the optimum or very goodlower bound is known, NAM+ST+DIG reports results of less than 0.29% average relativedeviation (a
ross all instan
es). This means that when the method works it works verywell. However, there is a large per
entage of instan
es for whi
h no good lower bounds areknown. Most presented methods, in
luding CPLEX, provide solutions that are not as farapart as the gap values indi
ate. Therefore, all points out to a poor lower bound insideCPLEX (whi
h basi
ally depends on the linear relaxation of the solved MIP model).We already observe from Table 11 that in
reasing the per
entage of unused ma
hinesde
reases the number of optimal solutions found by CPLEX. The way pro
essing timesare distributed also a�e
ts the optimality rate. For example, for
orrelated ma
hines and20% unused ma
hines, the optimum is known for 39% of the instan
es. Comparatively,only a 0.5% of the U(1000, 1100) instan
es have a known optimum. Apart from that, a
lose analysis of all the experimental data did not yield any further interesting
on
lusionsas regards whi
h fa
tors a�e
t the large gaps.

20

4 The �Not All Jobs� (NAJ) problemAs with the previous NAM R//Cmax generalization, the �rst step is to test the MIPmathemati
al model
omposed of the obje
tive fun
tion (1), followed by
onstraint sets (2),(6) and (7). This MIP model is solved as a �rst step with CPLEX with a stopping elapsedCPU time of 300 se
onds with the
ondition that just 50% of jobs must be pro
essed. Theresults are shown in Table 12. Ea
h
ell represents the average of the 200 instan
es of ea
hpro
essing time interval. However, in this
ase the relative deviation has been
al
ulatedwith respe
t to the lower bound given by CPLEX at the time limit of 300 se
onds or withrespe
t to the optimum solution whenever CPLEX was able to solve instan
es optimally.We also present the average gap between the reported solution and the mentioned lowerbound. The maximum deviation is also given.Interval Maximum deviation Average deviation Average gap
U(1, 100) 0.00 0.00 0.00
U(10, 100) 2.26 0.17 1.28Job Corre 12.28 1.94 2.36Ma
h Corre 1.13 0.01 0.48
U(100, 200) 3.28 0.11 0.49
U(100, 120) 0.08 0.00 0.05
U(1000, 1100) 8.34 1.01 1.87Average 3.91 0.46 0.93Table 12: Maximum and average deviations from the lower bound or optimum solution,together with the gap for CPLEX MIP mathemati
al model solution for the �Not AllJobs� problem. 50% of jobs to be pro
essed and 300 se
onds elapsed CPU time stopping
riterion. All results in per
entages.It
an be seen that CPLEX alone provides very good values whi
h are, in average,below 0.5%. Some intervals, like U(1, 100) result in the optimum solution for all 200instan
es tested. However, for some other intervals, like
orrelated jobs, we observe amaximum deviation of 12.28% but still the average deviations, and above all, average gap,are very small. This last result is not surprising, when jobs are
orrelated (some jobs arefaster and some others are slower on all ma
hines) it is more di�
ult to de
ide whi
h jobsto eliminate. The slower jobs are easy to rule out but on
e all slow jobs have been elimi-nated, a hair splitting pro
ess is needed to �nish o� with a 50% pro
essed jobs be
ause ofthe inherent relationship between jobs. However, the average deviation in this
ase is stillbelow 2%.We also tested the model where 20% and 80% of jobs were not pro
essed. For 20% of21

non-pro
essed jobs, the average deviations from the lower bound or optimum solution wasa bit higher at 0.51%. For 80% of non-pro
essed jobs the results were even lower at just0.33%. Furthermore, for 80% of non-pro
essed jobs, 5 out of the 7 tested intervals resultedin optimum solutions a
ross all instan
e sizes when run for 300 se
onds of CPU time.Given these results it seems unne
essary to propose spe
i�
 algorithms for this problem,given the ex
ellent performan
e observed with CPLEX, spe
ially if one
onsiders that only�ve minutes of CPU time have been allotted.Despite these good results, we still attempted several adaptations and algorithms. Weemployed job sele
tion methods, similar to the previous ma
hine ranking and sele
tionpro
edures, with the obje
tive of ranking and sele
ting jobs. In a similar way, we apply theST and DIG heuristi
s to obtain an algorithm that we have referred to as NAJ+ST+DIG.These algorithms solve the unrelated parallel ma
hines problem just with the jobs sele
tedafter the rankings. The results were not
ompetitive with those obtained by CPLEX. As anexample we show in Figures 3, 4 and 5 the means plot resulting from an ANOVA analysisfor three di�erent intervals between CPLEX and the proposed NAJ+ST+DIG method.It is
lear that CPLEX is statisti
ally better than the proposed algorithm adapted tothis problem, ex
ept in the
ase of
orrelated jobs, where despite not being statisti
allydi�erent, CPLEX still has a better average. This out
ome is expe
ted as we anti
ipated,given the very good results obtained with CPLEX.

R
P

D

CPLEX NAJ+ST+DIG
-0.2

0.8

1.8

2.8

3.8

Figure 3: Means plot and Tukey HSD intervals at a 95%
on�den
e level with average rel-ative deviations from lower bounds or optimum solutions of CPLEX and NAJ+ST+DIG.50% of jobs to be pro
essed and 300 se
onds elapsed CPU time stopping
riterion forpro
essing time interval U(10, 100).
22

R
P

D

CPLEX NAJ+ST+DIG
-0.2

0.8

1.8

2.8

3.8

Figure 4: Means plot and Tukey HSD intervals at a 95%
on�den
e level with average rel-ative deviations from lower bounds or optimum solutions of CPLEX and NAJ+ST+DIG.50% of jobs to be pro
essed and 300 se
onds elapsed CPU time stopping
riterion forpro
essing time interval of
orrelated jobs.

R
P

D

CPLEX NAJ+ST+DIG
-0.2

0.8

1.8

2.8

3.8

Figure 5: Means plot and Tukey HSD intervals at a 95%
on�den
e level with average rel-ative deviations from lower bounds or optimum solutions of CPLEX and NAJ+ST+DIG.50% of jobs to be pro
essed and 300 se
onds elapsed CPU time stopping
riterion forpro
essing time interval U(100, 200).5 Con
lusions and future resear
hIn this paper we have studied, for the �rst time, and to the best of our knowledge, twogeneralizations of the problem of sequen
ing jobs on unrelated parallel ma
hines with theobje
tive of minimizing the Cmax. These generalizations are the result of in
luding moreta
ti
al or strategi
 de
isions in the s
heduling pro
ess. More spe
i�
ally, we have studied�rst the problem in whi
h not all available parallel ma
hines need to be used and the ad-ditional de
ision is to determine whi
h ma
hines should be ruled out. The se
ond studied23

generalization a�e
ts jobs and the supplemental a
tion is to de
ide whi
h jobs must bepro
essed. Mixed Integer Programming (MIP) mathemati
al models have been presented,along with some additional methods spe
i�
ally tailored for su
h generalizations.For the �Not All Ma
hines� (NAM) problem we have presented a very simple ma
hineranking pro
edure that sorts ma
hines from most promising to less interesting as regards
Cmax minimization. Together with the ranking, we have also devised an equally sim-ple ma
hine sele
tion pro
edure that sele
ts ma
hines in a smart way using the previousranking. These two simple pro
edures have been
oupled with either CPLEX or re
entstate-of-the-art algorithms that have been proven to be very e�e
tive when solving theunrelated parallel ma
hine s
heduling problem. Comprehensive
omputational and statis-ti
al analyses,
arried out over a wide range of 1400 instan
es, with di�erent parametersand stopping time
riteria allow us to
on
lude that the presented ma
hine ranking andsele
tion pro
edures provide solutions that are many times better than those produ
edwith CPLEX.Conversely, CPLEX provides very good solutions for the se
ond studied generalizationof �Not all Jobs� or NAJ. The simple MIP mathemati
al model is solved by CPLEX toalmost optimality with average deviations from lower bounds below 0.5% in under �veminutes of CPU time.In our opinion, many possible further studies stem from the NAM and NAJ generaliza-tions. First of all, these problems
an be naturally extended to a multi-obje
tive settingas wildly di�erent Cmax values are to be expe
tedly obtained for any number of used ma-
hines. Therefore, two obje
tives, namely, Cmax and number of ma
hines used,
an besimultaneously optimized. Makespan is hardly the only possible s
heduling obje
tive andother even more interesting results
ould be obtained by studying due date satisfa
tiontogether with number of ma
hines. NAJ multi-obje
tive settings seem equally interestingas well.Additionally, we have presented in this paper markedly simple methods. Still, solutions
ould be improved by using more elaborate methods and/or advan
ed exa
t methodolo-gies.Finally, parallel ma
hine problems are not the only s
heduling settings where these NAMand NAJ generalizations
an be applied. NAJ
an be a
tively applied to interesting singlema
hine problem variants as those presented in ? or ?, just to name two re
ent exam-ples. NAM
an be applied to every stage of hybrid �owshops that are now being a
tively24

resear
hed like in ? or as the re
ent review paper of ? shows.A
knowledgmentsThe authors would like to thank the anonymous referees for their
areful and detailed
omments whi
h have helped improve this manus
ript
onsiderably. This work is partiallyfunded by the Spanish Ministry of S
ien
e and Innovation, under the proje
t �SMPA -Advan
ed Parallel Multiobje
tive Sequen
ing: Pra
ti
al and Theoreti
al Advan
es� withreferen
e DPI2008-03511/DPI. The authors should also thank the IMPIVA - Institutefor the Small and Medium Valen
ian Enterprise, under the proje
t �OSC� with refer-en
es IMIDIC/2008/137, IMIDIC/2009/198 and IMIDIC/2010/175 and the Polyte
hni
University of Valen
ia, under the proje
t �PPAR - Produ
tion Programming in HighlyConstrained Environments: New Algorithms and Computational Advan
es� with refer-en
e 3147.

25

