Document downloaded from:

http://hdl.handle.net/10251/35335

This paper must be cited as:

Fanjul Peyro, L.; Ruiz Garcia, R. (2012). Scheduling unrelated parallel machines with
optional machines and jobs selection. Computers and Operations Research. 39(7):1745-
1753. doi:10.1016/j.cor.2011.10.012.

The final publication is available at

http://dx.doi.org/10.1016/].cor.2011.10.012

C ight
opyng Elsevier

Scheduling unrelated parallel machines with optional

machines and jobs selection

Luis Fanjul-Peyro, Rubén Ruiz*

Grupo de Sistemas de Optimizacion Aplicada, Instituto Tecnologico de Informatica,
Ciudad Politécnica de la Innovacion, Edificio 8G. Acceso B. Universitat Politécnica de Valéncia,

Camino de Vera s/n, 46022 Valencia, Spain, {lfpeyro,rruiz}@eio.upv.es

October 11, 2011

Abstract

In this paper we study two generalizations of the well known unrelated parallel
machines scheduling problem under makespan (Cihax) minimization. First, a situa-
tion in which not every available parallel machine should be used and it is desirable
to employ only a subset of the parallel machines. This is referred to as “Not all Ma-
chines” or NAM in short. This environment applies frequently in production shops
where capacity exceeds demand or when production capacity can be lent to third
companies. Also, NAM can be used to increase production capacity and it is not
clear how many additional machines should be acquired. The second studied gener-
alization has been referred to as “Not All Jobs” or NAJ. Here, there is no obligation
to process all available jobs. We propose Mixed Integer Programming mathematical
formulations for both NAM and NAJ, and it is shown that the latter can be effec-
tively solved with modern commercial solvers. We also present three algorithms to
solve the NAM problem. These algorithms are compared with the proposed MIP for-
mulation when solved with IBM ILOG CPLEX 12.1. Comprehensive computational
and statistical experiments prove that our proposed algorithms significantly improve

the results given by the solver.

Keywords: unrelated parallel machines, makespan, optional machines, not all machines, job

selection, not all jobs

*Corresponding author. Tel: 434 96 387 70 07, ext: 74946. Fax: 434 96 387 74 99

1 Introduction

There is a set M of m machines that are arranged in parallel. Each job from a set N
of n jobs has to be processed by exactly one machine. Each machine cannot process
more than one job at the same time. Furthermore, preemption of jobs is not allowed and
when a job begins its processing, it cannot be stopped until its completion. The previous
problem is known as parallel machine scheduling and is divided into three different cases,
which depend on the nature of the available parallel machines. The simplest scenario is
when all parallel machines are identical. In this case, each job j, j € N needs a fixed,
non-negative, and known in advance processing time, denoted as p;. Once started in the
assigned machine, this machine will be busy processing job j during p; time units. The
particularity in the identical parallel machines scheduling case is that the processing time
for each job j is the same for all machines. A more general case is the uniform parallel ma-
chines scheduling problem. Here, the processing time of a job j depends on the machine 7,
1 € M to which it is assigned. However, this dependence follows a strict speed-up factor s;
that varies from machine to machine. Therefore, processing times follow the relationship
pij = pj/s;. Higher s; values indicate “faster” machines and this speed-up factor is fixed
for each machine. The most general situation is referred to as unrelated parallel machines
scheduling. In this case, each machine processes each job at a different speed and p;;
denotes the processing time of each job 7 which depends on the machine i to which it is
assigned.

This paper deals with this last and most general production scheduling scenario. The opti-
mization criterion considered is the minimization of the maximum completion time, com-
monly referred to as makespan and denoted by C\,.x. This scheduling problem is denoted
by R//Ciax, following the well known three-field notation /5 /v of 7. While the R//Clax
is classified as a scheduling problem, the job sequence followed at each machine has no
influence over the final C,., value. The whole setting reduces to an assignment problem.
This is easily explained as follows: J; denotes the subset of jobs (J; C N, Vi € M) that have
been assigned to machine 7. Therefore, if we assume that machine ¢ is available from time
0, it will be busy during C; = ZVkEJi pir units of time. Given all J;, Vi € M, the makespan
is easily defined as the time at which the last machine is free or Cy.c = max;ep {C;}. Tt
is straightforward to see that the order in which jobs assigned to machine ¢ (J;) are pro-
cessed has no influence over C; and therefore, the C\,., value depends solely on the job
to machine assignments. Note that this result applies only to the makespan optimization
criterion. Given all possible assignments, the cardinality of the feasible solution set is no

less than m™. In fact, the R//Cyax problem is an NP-Hard problem in the strong sense,

after 7 demonstrated the special case with identical machines (P//Cpax) to be N'P-Hard.
Additionally, even before, ? demonstrated that the two machine version, or P2//C\ax,
was already N'P-Hard.

The R//Cmax problem has many potential applications. Mass production lines usually
contain more than one machine for each production task. As mass production lines are
ubiquitous, parallel machines scheduling settings are equally frequent in practice. Other
examples are multiprocessor computers, landing lanes at airports or even operating rooms
in hospitals, which can also be seen as parallel machine shops. Many other examples and

applications can be obtained from general scheduling textbooks such as 7, 7, or 7.

The R//Chax problem has been comprehensively studied since the first paper of 7.
Some general parallel machines scheduling review papers have been published, like those
of 7 and 7. 7 recently presented an updated short review on state-of-the-art methods.
Also recently, ? proposed simple but highly effective methods providing average devia-
tions of just 0.63% with respect to tight lower bounds in as little as 15 seconds of CPU
time. These results were obtained for large benchmark sets of 1400 instances, spread over
7 groups with different intervals of processing times and with sizes up to 1000 jobs and
50 machines. After such small deviations from lower bounds in such small CPU times, it
is safe to state that, as regards practical applications, the R//Cy.x problem is quite well
solved nowadays. This is not to say that it is a solved problem, of course, since it belongs
to the N"P-Hard complexity class. For even larger problems, good solutions might still

prove challenging to obtain.

Given the previous recent developments, it is quite natural to extend the R//Ciax
problem into new directions. In this paper we deal with two generalizations of the un-
related parallel machines problem. In the first we have that not all machines in the set
M can be used and some machines have to be left out. More specifically, among the m
available machines, a number Z of them cannot be used. This seemingly straightforward
extension, has not been, to the best of our knowledge, and as we will later show, studied
up to date as regards the R//Ciax specific problem. We have referred to this generaliza-
tion as the “Not All Machines” or NAM problem. It is very common to find workshops
where an excessive production capacity exists and a tactical decision arises as to which
machines should be stopped from set M. Unrelated parallel machines process each job
at a different speed and deciding which machine or machines have to be stopped goes
way beyond simply stopping the slowest ones. Other potential applications of the NAM

problem appear if one considers the symmetric problem, i.e., there is a lack of production

capacity and more machines need to be purchased and/or subcontracted. A large set of
potentially new machines can be added with the constraint of just using a given number
of additional machines. Again the question is which new machines are to be used. Prob-
lems similar to NAM appear in the literature, for example where machines are subject to
known unavailability periods. However, the problem in which, let us say, a workshop with
10 parallel machines are available and when it has been decided that 4 machines should
be stopped has not been approached in the literature. The closest references that we have
been able to identify in the literature are the papers of ?, 7 or 7. However, these studies
deal with identical machines or jobs with unitary/identical processing times and with dif-
ferent objectives or restrictions. Other studies, like the one of ? consider a cost function,
together with job tardiness in a weighted objective function, and simultaneously select
machines and optimize tardiness values. More recently, 7 studied regular performance
measures and machine cost (and selection) considerations but for the more specific case of
identical parallel machines. The reader is referred to this more recent paper for additional

references.

The second generalization studied in this paper is when not all jobs in the set N need
to be processed. We have dubbed this extension as “Not All Jobs” or NAJ. In details,
we have a total of n jobs and only H, H < n, jobs have to be processed, discarding the
remaining n — H jobs in the process. NAJ-like settings have been thoroughly studied at
a more production planning stage under various names like order acceptance, due date
setting or even Just In Time (JIT) scheduling. Good reviews of due date setting and
JIT scheduling are given by ? and 7, respectively. However, and again to the best of
the knowledge of the authors, it has not been studied together with the parallel machines
production scheduling problem. The NAJ problem appears quite frequently at companies
where there is the possibility of not accepting —or not producing in the current produc-
tion planning horizon— a given subset of jobs. The possible benefits and applications of
NAJ are manifold. Selecting only profitable products or products that employ a given
under-utilized machinery are common examples. Note that NAJ is very similar to other
studied settings just as the already mentioned JIT. Nevertheless, there are basic differ-
ences between these scenarios. For example, in JIT problems, jobs are usually assigned
a deadline and after the scheduling algorithm is applied, jobs not able to finish by their
deadline are usually discarded. In the NAJ setting there are no deadlines and the idea is

to select a subset of jobs not worth doing or likewise, to select a set of jobs worth producing.

? and ? showed that powerful commercial solvers such as IBM ILOG CPLEX versions

11.0 and 11.1 obtain excellent solutions for the unrelated parallel machines scheduling
problem, much better than the methods that were considered state-of-art at the time.
As a result, it is reasonable to start first with mathematical programming models for
NAM and NAJ, which are developed in Section 2l After the formulation we present three
algorithms to solve the NAM setting along with computational and statistical analyses of
performance in Section [Bl The performance of existing solvers, in this paper IBM ILOG
CPLEX 12.1, is also checked. In section [d] we study the NAJ setting. Finally, conclusions

and further research opportunities are presented in Section [Gl

2 Mathematical programming formulation

We begin with a straightforward Mixed Integer Linear Programming (MILP) formulation
for the R//Ciax which is as follows:

min Clax (1)
Zpij * L4 S Cmaxa \4) eM (2)
j=1
Zl’ij = 1, VJ eN (3)
=1

where x;; is a binary variable which takes value 1 if job j is assigned to machine ¢ and
0 otherwise. The set of restrictions (2]) assign the Cp,.« value which can not be lower than
C; for each machine. Constraints in the set (B]) ensure that all jobs are assigned to exactly

one machine.

The modifications for the NAM setting are simply to add the following sets of con-

straints:

J=1

S u<m- 7)
=1

where z; is a new binary variable which takes value 1 if machine ¢ is used and 0 oth-

erwise. Note that in constraint set (4) the maximum number of assigned jobs to any

machine is n but only if the machine is used (z; = 1). The single constraint () limits the
maximum number of machines to be used to m — Z, where Z denotes the machines to
be left out unused, as already stated. In total we need m additional binary variables and

m + 1 additional constraints for modeling the NAM problem.

The NAJ modifications involve the following sets of constraints:

Zl’i]’ = hj, VJ eN (6)

i=1

Zn:hj > H (7)

where h; is a new binary variable which takes value 1 if job j is processed and 0 oth-
erwise. The set of restrictions (6] replace the previous set ([B). Again we have a single

constraint (7)) that sets the minimum number of jobs to be processed to H.

Note that the NAM and NAJ generalizations are not necessarily tied to makespan

minimization.

3 Methods for solving the “Not All Machines” (NAM)

generalization

Two parts can be distinguished in the NAM problem. The first one is to decide which ma-
chines will not be used and the second is to solve the resulting parallel machines scheduling
problem without these machines. In the case of unrelated parallel machines, the decision
of which machines should be left out is not an easy task since the processing time of each
job depends on the machine and there are no machines that are consistently slower or
faster for all jobs (this would be the less general case of uniform parallel machines). As a
result of this, if one aims to optimally solve this problem, it would be necessary to find the
best possible combination of machines to be employed. This is a combinatorial problem
where all possible combinations of m — Z machines that are selected for use (not using
Z machines) must be chosen among the total m machines. For example, in a problem
with 10 machines, if we only want to use 7 of these machines, we would have a number of
combinations without repetition with 10 machines taken 7 at a time to select the machines
that are used or, equivalently, 10 elements taken 3 at a time to select the machines not to

be used. The result is (170) = (13?) = 120 possible combinations. Each combination results

in a different R//Cpax problem that should be solved to optimality. Obviously, this is
a problem of significant dimensions, since for a more realistic example with a workshop
of 50 parallel machines where we wish not to use 10 of them we would have a total of
10,272,278,170 possible combinations. Given the impossibility of solving this problem op-
timally, we propose a heuristic approach that arises from decomposing the NAM problem

into three phases:

1. Analyze the processing times and rank the most promising machines.
2. Selection of machines according to the ranking.

3. Solve the resulting R//Ciax problem.

The last two phases can be iteratively applied until a given stopping criterion is reached,
since different machine selections will result in different R//Ciax problems.
Once we have solved the resulting problem, we must take into account that perhaps the
selected machines were not the best ones. Therefore, we must follow a certain criterion for
not only making a first selection of machines, but also to make successive selections in the
hope that better solutions may be found. For example, if we have a problem with 100 jobs
and 10 machines on which only eight of them must be used, maybe our best first option
is not to use machines 1 and 2. After solving the resulting unrelated parallel machines
problem with 100 jobs and 8 machines, we can select two different machines, for example
1 and 3 in the ranking. With this new set of machines we solve the problem again. Each
time we minimize the makespan of the resulting problem.
The three phases of the NAM generalization solution procedure are explained in the fol-

lowing sections in more detail.

3.1 Machine ranking procedure

As a first step, we devise a procedure to rank machines to identify which ones are po-
tentially interesting. The obvious first ranking choice is to solve m problems, each one of
them with m —1 machines after removing each potential machine. One less machine forces
the other machines to have higher work loads and therefore the makespan will increase.
The worst makespan obtained among the m problems gives an indication of a machine
that should not have been removed. Conversely, the lowest makespan obtained indicates a
machine that is not that much needed. After this removal, we have only m — 1 remaining
machines. Repeating the process by removing another machine and solving m — 1 prob-

lems with m — 2 machines each results in another machine candidate. After repeating

this process Z times —which means solving no less than Z -m — Z(z-1)

unrelated parallel
machines problems— we might have a good ranking of machines to be removed. However,
this process, apart from being extremely slow, gives very bad results since machines are
being removed in a greedy way one at a time instead of considering them all together.

Therefore, a more efficient and effective procedure for ranking machines is recommended.

? observed that good solutions for the R//C\,.x problem contain job-machine assign-
ments where most of the time jobs are assigned to the first, second or third machine with
the lowest processing time. Following the same idea we propose a simple ranking. We
extract the three lowest values of processing times p;; for each job j, i.e., i}, t3; and ¢3;. To
each one of these three values we subtract the fourth lowest one (iy; = min;enr/i, o is; Pij)-
The result is a negative value. In general, negative results give us an indication of how
much faster it is to process a job in the first three machines when compared to the fourth.
Note that the fourth machine is just a reference machine and similar rankings could be
obtained using the fifth or subsequent machines. This is calculated for each job. Finally,
for each machine, we add the values resulting from each subtraction. Machines are sorted
in ascending order of this amount, where ties are broken arbitrarily. The first machine in
the ranking is, in general, the machine which has, on average, shorter processing times for
all jobs. Note that this procedure is an implicit weighting scheme. The higher the differ-
ences between the considered processing times, the higher the difference and the higher
the machine will be ranked. Notice that a machine may not have any of the first three
minimum processing times for any job. In these cases, instead of adding the previous

subtractions, we add all the original processing times of all jobs.

Let us illustrate the machine ranking procedure by means of an example. Table [
contains the processing times of a 10 job, 5 machine R//C\,.x example. For each job, the
three lowest processing times have been highlighted in italics whereas the fourth lowest

processing time is marked in bold.

JL J2 J3 J4 J5 J6 Jv J8 J9 JI10

M1 4 5 5 5 5 4 5 5 4 5
M2 1 3 4 5 1 1 5 2 & 1
M3 3 38 1 1 2 2 4 4 5 4
M4 1 8 1 4 3 3 2 3 1 2
Mb> 1 4 1 3% 2 2 4 2 1 2

Table 1: R//Ciax example problem. Processing times p;; for a problem with 10 jobs
(columns) and 5 machines (rows). The three lowest processing times for each job in italics
and the fourth in bold.

Now we proceed to subtract the fourth lowest processing time from each one of the
three lowest processing times. This is shown in Table 2l The C; column contains sum
of the values thus obtained for each machine. C, equals C; in the case that C; is not a
zero. If Cj is zero, then Cj, is equal to the sum of all original p;; values for machine 7 from
Table [l Following the example, the ranking would be {M5, M4, M2, M3, M1}. This
means that machine M5 is the “most needed” machine as regards makespan minimization

whereas machine M1 is the most expendable one.

J1. J2 J3 J4 J5 J6 Jr J8 J9 JIo C; C,

M1 0 47
M2 -2 -1 -2 -2 -2 -1 -3 -13 -13
M3 -1 3 4 -1 -1 -1 -11 -11
M4 -2 -1 -3 -1 -3 -1 -3 -2 -16 -16
M5 -2 3 -2 -1 -1 -1 -2 -3 -2 -17 -17

Table 2: Difference between the three lowest processing times for each job and the fourth
lowest one, total sums and corrected sums.

3.2 Machine selection

Once the ranking for the machines has been calculated, we proceed to make a selection of
the machines to use. After each selection, we solve the resulting problem with the selected

machines.

There are m machines and we want to select only m — Z, where Z is the number
of machines that will not be used in the workshop. The previous ranking is already

calculated. We propose the following selections:

1. The first selection contains the m — Z first machines of the ranking.

2. In the second selection, we choose the machine in position m — Z 4+ 1 from the
ranking, i.e., the first unselected machine, and exchange it with the last selected

machine, which is located in position m — Z from the ranking.

3. For the third selection, with respect to the first selection, we exchange the first
unselected machine again, in position m — Z + 1, with the machine in position

m — Z — 1 of the ranking.

4. The process continues until the first unselected machine has been exchanged with

all selected machines of the first selection.

5. The above process is repeated again but this time exchanging the second unselected
machine, i.e., the machine that occupies the position m — Z + 2 of the ranking, with
all machines selected in the first selection. Afterwards we proceed with the third

unselected machine and so on until all unselected machines have been tested.

The previous list is very detailed in order to have a clear description of the selections.
However, the selection is carried out in two nested loops and, in fact, these steps are easier
described as in a cycle k, where £ = 1,2,..., 7, machine m — Z + k in the ranking is

selected and swapped in turn with each one of the first m — Z machines.

In total, there are (m — Z) - Z + 1 selections or different sets of machines. All these
sets are potentially good sets as a result from the machine ranking procedure. Note that
each selection generates a different R//Ciax problem that needs to be solved. As already
commented, and as we will later show, the proposed algorithms first carry out a selection
according to the previous list and then solve the problem. The next selection is carried
out and the problem is solved again. If all previous selections are calculated and there is
still time left for carrying over, successive selections are just made of random machines
uniformly selected. Basically, we need this random machine selection phase for the only
reason of not having the algorithm stop before a predefined CPU time, but our results
(to be discussed later) indicate that there are little to no gains with this last random

machine selection. Additionally, the limited allotted CPU time results in random machine

10

selections only for instances with a small number of machines.

Let us follow the previous example. Recall that the machine ranking was { M5, M4, M2, M3, M1}.
We have that 40% of the machines in the shop have to be stopped (Z = 2), which means
that we have to select the m — Z = 5 —2 = 3 best machines. The first ranking is therefore
{M5, M4, M2}. Notice that these machines are the three most promising ones according
to the ranking. Once this three machine problem is solved and a makespan value obtained,
a second selection is carried out. We take the first unselected machine according to the
ranking, machine M3, and exchange it with the last selected machine, M?2. This means
that the machines to use in the second selection are { M5, M4, M3}. After solving this new
problem we exchange again the first unselected machine with the second selected machine,
i.e., M3 with M4, and the machines selected in this case are { M5, M3, M2}. The follow-
ing selection should be {M3, M4, M2}. At this point, where the first unselected machine
has been exchanged with all machines selected in the first selection, we proceed to take the
next unselected machine, M 1. So, the next combination to try would be {M5, M4, M1},
then {M5, M1, M2}, and finally {M1, M4, M2}. If time permits after completing these

selections, we continue with a random selection of machines.

3.3 “Not All Machines” algorithms

The first method to consider is the simple solution of the MIP mathematical model formed
by the objective function ([Il) and constraint sets (2]), ([B]), (@) and (&) with a modern com-
mercial solver. We use the IBM ILOG CPLEX solver, in its last version 12.1 available at
the time of the writing of this paper. We denote this solver as CPLEX in short.

A second straightforward method is to use CPLEX as a R//Ciax solver, i.e., first
carrying out the ranking and selection procedures and just using CPLEX to solve the
unrelated parallel machines scheduling problem where some machines have been already
removed. This means that each time we make a selection, the resulting reduced MIP
mathematical model is solved with CPLEX. Since this reduced model is much smaller, it
is expected to be solved much quicker. We set a maximum CPU time for each CPLEX
run so that we can re-solve with a new set of machines provided by the machine selection
procedure. The rationale behind stopping CPLEX before the current integer solution has
been proven to be optimal is to avoid a possibly long span of time where CPLEX is just
closing the search tree without improving results. Thus, a restart of CPLEX with a new
selection of machines and providing the best result so far as a bound, allows CPLEX to
usually find better solutions quickly. We refer to this second method as NAM+CPLEX

11

in short.

The third proposed algorithm also uses the machine ranking and selection procedures,
but instead of using CPLEX as a solver for the resulting R//Ci,.x problems; we use two
heuristics. First we employ fast simple local search algorithm as a seed solution, which
is later fed into a state-of-the-art method. The first heuristic is an insertion local search
followed by an interchange local search, both iteratively applied in a loop until a local
optimum is reached. This first heuristic is denoted as ST and interested readers can find
complete explanations in the recent paper of ?. Since this process is very fast, we can
repeat ST a number of times (controlled by a maximum elapsed CPU time), each time
with a different machine selection. This permits a fast heuristically found selection of good
machines, along with a reasonable job-to-machine assignment.

The second heuristic is a more elaborate iterated greedy search method, called NVST-IG+
and proposed in 7, which was later denoted in brief as DIG in 7. Contrary to ST, DIG
does not work over different machine selections. It is merely used the same way as CPLEX
is used in NAM+CPLEX, i.e., only to work over the R//C,.x problem.

This third method is denoted as NAM-+ST-+DIG. Notice that this method does not need

any commercial solver for its application.

The fourth and last proposed method is NAM+ST+CPLEX. In this case, instead of
launching CPLEX after the ranking and machine selection procedures, we first apply a
fast local search in order to initialize CPLEX with a good seed solution. As we can see,

all proposed methods are simple and easily reproducible.

3.4 Computational and statistical performance analysis

? proposed a comprehensive benchmark of no less than 1400 instances for the R//Ciax
problem. Instances are grouped into seven processing time distributions used to gen-
erate the processing times p;; and, as the authors have shown, the different intervals
have a profound effect on the results. All intervals employ discrete uniform distribu-
tions like intervals U(1, 100), U(10, 100), correlated jobs, correlated machines, U(100, 200),
U(100,120) and U(1000,1100). At each interval there are 10 instances for each combi-
nation of n = {100, 200, 500, 1000} and m = {10, 20, 30,40,50}. Note the sheer size of
the largest instances at 1000 jobs and 50 machines. In instances with correlated jobs,
processing times are determined by the following expression: p;; = b; + d;; where b; and
d;; are uniformly distributed values (also discrete) in the ranges U(1,100) and U(1,20),

respectively. In the case of correlated machines, processing times obtained in a similar

12

way: p;; = a; + ¢;; where a; and ¢;; are uniformly distributed in U(1,100) and U(1, 20),
respectively.

We use a set of 12 PC/AT computers with Intel Core 2 Duo E6600 processors running
at 2.4 GHz and 2 GB of RAM memory under the Windows XP SP3 operating system.
No parallel processing is carried out with the 12 computers, we just simply divide the
computational work over the 12 computers. Tests are conducted for different percentages
of unused machines, i.e., for 20%, 50% and 80%. The stopping criteria for all methods is
a maximum elapsed CPU time, which is accurately measured and has been set to 60 and
300 seconds. We have profusely used the Design of Experiments (DOE, ?) methodology
and the Analysis of Variance (ANOVA) statistical tool for drawing meaningful and sound
conclusions. We check the three main hypotheses of the parametric ANOVA: normal-
ity, homoscedasticity and independence of the residuals. The tabulated results for each

method will be presented as the relative percentage deviation from the best solution found

as follows:
Cmax) — Ch J
Relative Percentage Deviation (RPD) = (é) (,)ma"(z) - 100 (8)
max (¢

where C}, (7) is the aforementioned best solution found and Ci,.x(7) is the value ob-
tained by a given algorithm and instance 7. All instances, together with the best solutions
known are available at http://soa.iti.es. Note that comparing against the optimum so-
lution is not viable since optimum solutions for the instances proposed could not be found
in all cases. We will discuss later about comparisons against some optimum solutions or
strong lower bounds.

Some of the proposed methods have some simple parameters that were calibrated.
Basically, these are the times at which the different parts of the methods start and/or
the maximum time allowed for each part. Table [3] shows this information and calibrated

values according to the two elapsed CPU time stopping points.

13

http://soa.iti.es

Stopping time

Algorithm Factor 60 300
NAM+CPLEX Restart time for CPLEX 10 60
NAM+ST+DIG Time given to ST 10 60
Time given to DIG o0 240
NAM+ST+CPLEX Time given to ST 20 100

Time given to CPLEX 40 200
Restart time for CPLEX 10 60

Table 3: Calibrated values for the different tested methods. Values in seconds.

We show the average results for each of the methods tested in the 1400 instances
with the two stopping criteria and the three percentages of unused machines. Later, we
show some statistical analyses of variance which represent the statistical significance of the
observed differences between the various algorithms, their interactions and Tukey Honestly
Significant Difference (HSD) confidence intervals with a 95% confidence level.

The results for 20% of unused machines, for elapsed CPU times stopping criteria of 60
and 300 seconds are reported in Tables [and Bl respectively. Similar tables, but for 50%
and 80% of unused machines are reported in Tables [@] to QL

Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(l, 100) 241 1.24 1.95 5.24
U(10,100) 2.10 0.75 0.58 2.89
Job Corre 1.76 0.66 0.21 1.29
Mach Corre 0.73 0.25 0.55 1.66
U (100, 200) 0.84 0.30 0.17 0.69
U(100, 120) 1.63 0.07 0.04 0.16
U (1000, 1100) 0.10 0.04 0.02 0.08
Average 1.37 0.47 0.50 1.72

Table 4: Average relative percentage deviations for the “Not All Machines” algorithms
with 20% of unused machines and 60 seconds elapsed CPU time stopping criterion.

14

Interval CPLEX NAM+CPLEX NAM<+ST+DIG NAM+ST+CPLEX

U(1,100) 0.54 0.69 1.51 5.00
U(10,100) 0.68 0.18 0.39 2.78
Job Corre 0.69 0.31 0.06 1.02
Mach Corre 0.13 0.03 0.48 1.63
U (100, 200) 0.27 0.08 0.11 0.66
U (100, 120) 0.06 0.02 0.03 0.15
U (1000, 1100) 0.02 0.01 0.02 0.08
Average 0.34 0.19 0.37 1.62

Table 5: Average relative percentage deviations for the “Not All Machines” algorithms
with 20% of unused machines and 300 seconds elapsed CPU time stopping criterion.

Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(l, 100) 12.87 2.64 1.68 1.04
U(10,100) 10.29 0.98 0.57 0.52
Job Corre 11.90 0.34 0.14 0.32
Mach Corre 3.73 0.29 0.74 0.20
U (100, 200) 12.88 0.33 0.27 0.26
U (100, 120) 14.20 0.07 0.06 0.07
U (1000, 1100) 1.94 0.04 0.02 0.03
Average 9.69 0.67 0.50 0.35

Table 6: Average relative percentage deviations for the “Not All Machines” algorithms
with 50% of unused machines and 60 seconds elapsed CPU time stopping criterion.

Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 5.11 1.05 1.68 0.34
U(10, 100) 2.94 0.49 0.41 0.10
Job Corre 3.65 0.16 0.05 0.32
Mach Corre 1.25 0.01 0.64 0.06
U (100, 200) 3.32 0.10 0.21 0.08
U (100, 120) 4.40 0.03 0.05 0.02
U (1000, 1100) 0.18 0.02 0.01 0.01
Average 2.98 0.27 0.44 0.13

Table 7: Average relative percentage deviations for the “Not All Machines” algorithms
with 50% of unused machines and 300 seconds elapsed CPU time stopping criterion.

15

Interval CPLEX NAM+CPLEX NAM<+ST+DIG NAM+ST+CPLEX

U(1,100) 23.17 2.04 1.47 1.94
U(10,100) 13.97 1.19 0.55 0.99
Job Corre 5.65 0.12 0.11 0.24
Mach Corre 56.64 0.04 0.44 1.33
U(100,200) 7.72 0.24 0.15 0.38
U (100, 120) 7.23 0.07 0.07 0.14
U(1000, 1100) 5.47 0.04 0.03 0.06
Average 17.12 0.53 0.40 0.73

Table 8: Average relative percentage deviations for the “Not All Machines” algorithms
with 80% of unused machines and 60 seconds elapsed CPU time stopping criterion.

Interval CPLEX NAM-+CPLEX NAM-+ST+DIG NAM+ST+CPLEX
U(1,100) 12.95 0.67 0.63 1.19
U(10,100) 7.90 0.47 0.29 0.70
Job Corre 2.45 0.07 0.06 0.19
Mach Corre 30.33 0.00 0.39 1.03
U(100,200) 3.95 0.13 0.08 0.32
U (100, 120) 4.19 0.02 0.05 0.13
U (1000, 1100) 2.76 0.02 0.02 0.05
Average 9.22 0.20 0.22 0.52

Table 9: Average relative percentage deviations for the “Not All Machines” algorithms
with 80% of unused machines and 300 seconds elapsed CPU time stopping criterion.

As we can see, the results of the proposed methods that employ our presented machine
ranking and selection methods provide, for almost all cases of elapsed CPU time stopping
criteria, percentage of unused machines and processing times intervals, significantly lower
average relative percentage deviations from best known solutions. Some differences are
striking, for example, we can see in Table [that solving the MIP mathematical model
with CPLEX and stopping after 60 seconds of elapsed CPU time, and with 80% of unused
machines, the last available version of CPLEX yields no less than a 23.17% average relative
deviation, calculated for the 200 instances in the interval U(1,100). Comparatively, the
proposed method NAM-ST+DIG, which does not use CPLEX at all, provides a meager
1.47% deviation from the best known solutions. Differences between CPLEX and the
three proposed methods are much less marked when 300 seconds of elapsed CPU time are

allowed. This is an expected result and, furthermore, with even more allowed CPU time,

16

eventually most methods would converge to the optimum solution.

It is interesting to observe that CPLEX behaves very well for just 20% of unused machines,
beating two of the proposed methods for 300 seconds (Table [)). However, the results
are much worse for 50% unused machines and specially, as commented, for 80% unused
machines.

Table [I0 presents the overall averages of all tested methods. Note that each cell contains
the average results of 1400 instances. Among the presented methods, NAM-+ST-+CPLEX
does not improve the results of NAM+CPLEX. Yet, under the situation where only 50% of
the machines are considered — under both 60 and 300 seconds CPU time stopping criterion
~ NAM+ST+CPLEX is marginally better than NAM+CPLEX. However, NAM+CPLEX
and NAM-+ST+CPLEX improve the results of CPLEX in a significant way. This alone
demonstrates that our presented machine ranking and selection procedures actually help
when solving this interesting R//Ch.x problem generalization. Lastly, NAM+ST+DIG
is the best method for 60 seconds and the second best for 300 seconds. In our humble
opinion, this is a noteworthy result since NAM+ST+DIG does not make use of CPLEX.

CPLEX NAM-+CPLEX NAM+ST+DIG NAM+ST+CPLEX

M.20% and 60 sec. 1.37 0.47 0.50 1.72
M.20% and 300 sec. 0.34 0.19 0.37 1.62
M.50% and 60 sec. 9.69 0.67 0.50 0.35
M.50% and 300 sec. 2.98 0.27 0.44 0.13
M.80% and 60 sec. 17.12 0.53 0.40 0.73
M.80% and 300 sec. 9.22 0.20 0.22 0.52
Average 60 sec. 9.39 0.56 0.47 0.93
Average 300 sec. 4.18 0.22 0.34 0.76

Table 10: Summary of relative percentage deviations from the best solutions know for the
four “Not All Machines” methods tested in all intervals and stopping criteria.

As previously stated, all results are fed into a multifactor ANOVA where the different
algorithms, intervals, percentage of unused machines, stopping time, number of machines
and number of jobs are controlled factors. The response variable is the relative percentage
deviation. Note that the total number of treatments is 1400 - 6 - 4 = 33,600 (3,360
if the instance replicate is not studied as a witness factor) so the statistical power of
the experiment is very high. Most significant factors have p-values that approach zero.
Therefore, instead of comparing p-values, means plots with confidence intervals resulting
from the ANOVA constitute a more practical approach. Some means plots are given in
Figures [l and 2L

17

percentage

T 1T

L1

15

TTT[
|

11

I
|

RPD
~
TTT[TTT
I B

w
T

|

T T T
L1

1 b -
CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX

Figure 1: Relative percentage deviation means plot with Tukey HSD intervals at a 95%
confidence level for the interaction between all four “Not All Machines” methods tested
and all percentages of unused machines. 60 seconds elapsed CPU time stopping criterion.

19 3

- percentage .

e — 80]

i --- 50]

E 1 - — Y j
o i ~]]
7 time = 300 sec. —

3 R N]

1 b |
CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX

Figure 2: Relative percentage deviation means plot with Tukey HSD intervals at a 95%
confidence level for the interaction between all four “Not All Machines” methods tested
and all percentages of unused machines. 300 seconds elapsed CPU time stopping criterion.

As we can see, CPLEX produces average percentage deviations with differences that
are statistically significant. Note that overlapping Tukey HSD intervals between two
plotted means imply that the differences between the overlapped means are not statis-
tically significant. In both cases, with 60 and 300 seconds elapsed CPU time stopping
criterion both the percentage of unused machines and the algorithms factors, as well
as the interaction between the two, resulted in p-values very close to zero. However,
there are many non-statistically significant differences among the other tested methods.
Statistical testing is, as we can see, necessary. From the overall averages given in Ta-
ble [I0, we conclude that much of the observed differences in average performance between
NAM-+CPLEX, NAM+ST+DIG and NAM-+ST+CPLEX are not statistically significant.

18

NAM-+ST+CPLEX is statistically worse than all other proposed methods for 300 seconds
and 20% of unused machines. CPLEX is statistically equivalent to all other methods only
for the case of 20% of unused machines. Although NAM+CPLEX and NAM-+ST+DIG
have similar results, we want focus on the fact than NAM+ST+DIG does not use any
commercial solver. Commercial solvers are very expensive for industries and therefore, we
prefer the simpler and “solver-less” NAM+ST+DIG method.

Comparing against the best known solution gives us relatively little information about
the ultimate effectiveness of either CPLEX or the other tested methods. Comparing
against true optimum solutions is a preferable option. However, the proposed MIP for-
mulation, when solved with IBM ILOG CPLEX 12.1., is not able to solve all instances
optimally, as the previous results have shown. In any case, we have carried out additional
testing. Among all of our results with 20, 50 and 80% of unused machines and 300 sec-
onds elapsed CPU time stopping criterion, we have calculated for how many instances the
optimum solution could be obtained with CPLEX. Additionally, we also calculated for
how many instances a gap of less than 1% between the lower bound and the best integer
solution found is known (not including the previous optimally solved instances). Overall,
there are 12.07% of instances with a known optimum and 7.67% of instances with a gap
of less than 1%. We report the average relative deviations from these two sets of instances
of the NAM+ST+DIG algorithm, run during 60 seconds in Table [Tl

19

20% unused mach 50% unused mach 80% unused mach
gap < 1% optimum gap < 1% optimum gap < 1% optimum

U(1,100) % instances 8 31.5 1.5 12 0 15.5
Average deviation 0.31 2.54 0.04 0.05 0.00 0.19
U(10,100) % instances 9.5 10.5 1 9.5 0 15.5
Average deviation 0.30 0.83 0.14 0.13 0.00 0.21
JobCorre % instances 13.5 1 5.5 4.5 0.5 14.5
Average deviation 0.33 0.05 0.21 0.26 0.27 0.22
MachCorre % instances 37.5 39 16.5 26.5 3.5 19.5
Average deviation 0.94 0.42 0.91 0.54 0.39 0.20
U (100, 200) % instances 14.5 1 8 2 1.5 13.5
Average deviation (.54 0.16 0.28 0.25 0.36 0.08
U(100,120) % instances 3.5 12.5 6 4 1.5 10.5
Average deviation 0.35 0.03 0.12 0.05 0.09 0.05
U(1000,1100) % instances 16 0.5 10 0.5 3 9.5
Average deviation ~ 0.25 0.00 0.05 0.00 0.06 0.04
Total % instances 14.64 13.71 6.93 8.43 1.43 14.07
Average deviation ~ 0.43 0.58 0.25 0.18 0.17 0.14

Table 11: Average relative percentage deviations of the NAM-+ST-+DIG algorithm run for

60 seconds with respect to optimum solutions or lower bounds for instances with a gap

of less than 1% obtained using CPLEX 12.1 during 300 seconds. 20%, 50% and 80% of
unused machines.

As shown, when comparing against the instances for which the optimum or very good
lower bound is known, NAM+ST+DIG reports results of less than 0.29% average relative
deviation (across all instances). This means that when the method works it works very
well. However, there is a large percentage of instances for which no good lower bounds are
known. Most presented methods, including CPLEX, provide solutions that are not as far
apart as the gap values indicate. Therefore, all points out to a poor lower bound inside
CPLEX (which basically depends on the linear relaxation of the solved MIP model).
We already observe from Table [[1] that increasing the percentage of unused machines
decreases the number of optimal solutions found by CPLEX. The way processing times
are distributed also affects the optimality rate. For example, for correlated machines and
20% unused machines, the optimum is known for 39% of the instances. Comparatively,
only a 0.5% of the U(1000,1100) instances have a known optimum. Apart from that, a
close analysis of all the experimental data did not yield any further interesting conclusions

as regards which factors affect the large gaps.

20

4 The “Not All Jobs” (NAJ) problem

As with the previous NAM R//Ci.x generalization, the first step is to test the MIP
mathematical model composed of the objective function ([I), followed by constraint sets (2)),
(@) and (). This MIP model is solved as a first step with CPLEX with a stopping elapsed
CPU time of 300 seconds with the condition that just 50% of jobs must be processed. The
results are shown in Table Each cell represents the average of the 200 instances of each
processing time interval. However, in this case the relative deviation has been calculated
with respect to the lower bound given by CPLEX at the time limit of 300 seconds or with
respect to the optimum solution whenever CPLEX was able to solve instances optimally.
We also present the average gap between the reported solution and the mentioned lower

bound. The maximum deviation is also given.

Interval Maximum deviation Average deviation Average gap
U(1,100) 0.00 0.00 0.00
U(10, 100) 2.26 0.17 1.28
Job Corre 12.28 1.94 2.36
Mach Corre 1.13 0.01 0.48
U (100, 200) 3.28 0.11 0.49
U (100, 120) 0.08 0.00 0.05
U (1000, 1100) 8.34 1.01 1.87
Average 3.91 0.46 0.93

Table 12: Maximum and average deviations from the lower bound or optimum solution,

together with the gap for CPLEX MIP mathematical model solution for the “Not All

Jobs” problem. 50% of jobs to be processed and 300 seconds elapsed CPU time stopping
criterion. All results in percentages.

It can be seen that CPLEX alone provides very good values which are, in average,
below 0.5%. Some intervals, like U(1,100) result in the optimum solution for all 200
instances tested. However, for some other intervals, like correlated jobs, we observe a
maximum deviation of 12.28% but still the average deviations, and above all, average gap,
are very small. This last result is not surprising, when jobs are correlated (some jobs are
faster and some others are slower on all machines) it is more difficult to decide which jobs
to eliminate. The slower jobs are easy to rule out but once all slow jobs have been elimi-
nated, a hair splitting process is needed to finish off with a 50% processed jobs because of
the inherent relationship between jobs. However, the average deviation in this case is still
below 2%.

We also tested the model where 20% and 80% of jobs were not processed. For 20% of

21

non-processed jobs, the average deviations from the lower bound or optimum solution was
a bit higher at 0.51%. For 80% of non-processed jobs the results were even lower at just
0.33%. Furthermore, for 80% of non-processed jobs, 5 out of the 7 tested intervals resulted
in optimum solutions across all instance sizes when run for 300 seconds of CPU time.

Given these results it seems unnecessary to propose specific algorithms for this problem,
given the excellent performance observed with CPLEX, specially if one considers that only

five minutes of CPU time have been allotted.

Despite these good results, we still attempted several adaptations and algorithms. We
employed job selection methods, similar to the previous machine ranking and selection
procedures, with the objective of ranking and selecting jobs. In a similar way, we apply the
ST and DIG heuristics to obtain an algorithm that we have referred to as NAJ-+ST+DIG.
These algorithms solve the unrelated parallel machines problem just with the jobs selected
after the rankings. The results were not competitive with those obtained by CPLEX. As an
example we show in Figures Bl 4 and Bl the means plot resulting from an ANOVA analysis
for three different intervals between CPLEX and the proposed NAJ+ST+DIG method.
It is clear that CPLEX is statistically better than the proposed algorithm adapted to
this problem, except in the case of correlated jobs, where despite not being statistically
different, CPLEX still has a better average. This outcome is expected as we anticipated,

given the very good results obtained with CPLEX.

3.8

1t

2.8

1.8

RPD

0.8

K

CPLEX NAJ+ST+DIG

-0.2

Figure 3: Means plot and Tukey HSD intervals at a 95% confidence level with average rel-

ative deviations from lower bounds or optimum solutions of CPLEX and NAJ-+ST+DIG.

50% of jobs to be processed and 300 seconds elapsed CPU time stopping criterion for
processing time interval U(10, 100).

22

38 F

28 [

RPD
\
\

18 [-

08 [

02 L

CPLEX NAJ+ST+DIG

Figure 4: Means plot and Tukey HSD intervals at a 95% confidence level with average rel-

ative deviations from lower bounds or optimum solutions of CPLEX and NAJ-+ST+DIG.

50% of jobs to be processed and 300 seconds elapsed CPU time stopping criterion for
processing time interval of correlated jobs.

3.8 = =
28 | -
E i]
1.8 L _'
xx i]
0.8 | .
02 L]
CPLEX NAJ+ST+DIG

Figure 5: Means plot and Tukey HSD intervals at a 95% confidence level with average rel-

ative deviations from lower bounds or optimum solutions of CPLEX and NAJ-+ST+DIG.

50% of jobs to be processed and 300 seconds elapsed CPU time stopping criterion for
processing time interval U(100,200).

5 Conclusions and future research

In this paper we have studied, for the first time, and to the best of our knowledge, two
generalizations of the problem of sequencing jobs on unrelated parallel machines with the
objective of minimizing the C,.«. These generalizations are the result of including more
tactical or strategic decisions in the scheduling process. More specifically, we have studied
first the problem in which not all available parallel machines need to be used and the ad-

ditional decision is to determine which machines should be ruled out. The second studied

23

generalization affects jobs and the supplemental action is to decide which jobs must be
processed. Mixed Integer Programming (MIP) mathematical models have been presented,

along with some additional methods specifically tailored for such generalizations.

For the “Not All Machines” (NAM) problem we have presented a very simple machine
ranking procedure that sorts machines from most promising to less interesting as regards
Chax minimization. Together with the ranking, we have also devised an equally sim-
ple machine selection procedure that selects machines in a smart way using the previous
ranking. These two simple procedures have been coupled with either CPLEX or recent
state-of-the-art algorithms that have been proven to be very effective when solving the
unrelated parallel machine scheduling problem. Comprehensive computational and statis-
tical analyses, carried out over a wide range of 1400 instances, with different parameters
and stopping time criteria allow us to conclude that the presented machine ranking and
selection procedures provide solutions that are many times better than those produced
with CPLEX.

Conversely, CPLEX provides very good solutions for the second studied generalization
of “Not all Jobs” or NAJ. The simple MIP mathematical model is solved by CPLEX to
almost optimality with average deviations from lower bounds below 0.5% in under five

minutes of CPU time.

In our opinion, many possible further studies stem from the NAM and NAJ generaliza-
tions. First of all, these problems can be naturally extended to a multi-objective setting
as wildly different C,., values are to be expectedly obtained for any number of used ma-
chines. Therefore, two objectives, namely, Cp,., and number of machines used, can be
simultaneously optimized. Makespan is hardly the only possible scheduling objective and
other even more interesting results could be obtained by studying due date satisfaction
together with number of machines. NAJ multi-objective settings seem equally interesting
as well.

Additionally, we have presented in this paper markedly simple methods. Still, solutions
could be improved by using more elaborate methods and/or advanced exact methodolo-
gies.

Finally, parallel machine problems are not the only scheduling settings where these NAM
and NAJ generalizations can be applied. NAJ can be actively applied to interesting single
machine problem variants as those presented in 7 or 7, just to name two recent exam-

ples. NAM can be applied to every stage of hybrid flowshops that are now being actively

24

researched like in 7 or as the recent review paper of ? shows.

Acknowledgments

The authors would like to thank the anonymous referees for their careful and detailed
comments which have helped improve this manuscript considerably. This work is partially
funded by the Spanish Ministry of Science and Innovation, under the project “SMPA -
Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances” with
reference DP12008-03511/DPI. The authors should also thank the IMPIVA - Institute
for the Small and Medium Valencian Enterprise, under the project “OSC” with refer-
ences IMIDIC/2008/137, IMIDIC/2009/198 and IMIDIC/2010/175 and the Polytechnic
University of Valencia, under the project “PPAR - Production Programming in Highly
Constrained Environments: New Algorithms and Computational Advances” with refer-
ence 3147.

25

