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OUTLOOK

★Efficiency in relativistic hydrodynamics codes is a 
key part of the implementation as it allows 
obtaining  results faster. 

★ The parallelization of these codes improves 
efficiency. 

★RATPENAT and MRGENESIS codes were 
developed by members of the Relativistic 
Astrophysics Group. The parallelization of these 
codes is implemented to improve efficiency in 
terms of execution times.
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MRGENESIS
The code MRGENESIS employs a finite volume approach in order to evolve the 
Relativistic Euler equations in presence of dynamically relevant magnetic fields.
This is combined with a Constrained Transport scheme to account for the divergence 
free evolution of the magnetic field. 

Incorporates:
★Approximate Riemann 

Solvers
★Inter-cell reconstruction 

techniques
★A method of lines based 

on a To ta l Va r i a t i on 
Diminishing technique to 
provide up to third order 
accuracy both in time and 
in space. 

The code can also be used with the SPEV code, which can account for the evolution of non-thermal 
particles using finite difference methods which are implicit or semi-implicit. (See talk of Petar Mimica for 
details of SPEV)
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RATPENAT
★ Relativistic jets are a common feature of radio-loud Active Galactic Nuclei and X-

ray Binary Star Systems. We investigate the physics of extragalactic relativistic jets 
in several different contexts.

★ We focus on the evolution of relativistic flows and their interaction with their 
environments.

★ For this, we need three-dimensional simulations with the largest possible 
resolution. Thus, we need to test the upgraded version of Ratpenat, which includes 
3D parallelization. 

★ We will perform different tests of scalability of the new code and will try to check 
the optimal resolution needed to study this problem.
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implementation

★ MRGENESIS and RATPENAT are implemented in Fortran 90

★ Parallel I/O is obtained by using the Hierarchical Data Format (HDF5). 

★ Parallelized with a hybrid MPI / OpenMP model.

MPI  is a Message Passing Interface 
which is used widely on parallel 
machines with distributed memory.

OpenMP is an Application Program 
Interface (API),  is used on parallel 
machines with shared memory.
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Parallelization

!   MPI initialization
    call MPI_INIT( ierr )

!   create a Cartesian MPI world
    call MPI_CART_CREATE(MPI_COMM_WORLD, maxDims, &
    mpi_dims(1:maxDims), periods(1:maxDims), .true.,  &
    CART_WORLD, ierr)
      
!   get Cartesian rank 
    call MPI_COMM_RANK(CART_WORLD, cartrank, ierr)

!   get Cartesian coordinates
    call MPI_CART_COORDS(CART_WORLD, cartrank, maxDims, &
    mpi_coords, ierr)
      
!   get the rank of the neighbors              
    call MPI_CART_SHIFT( CART_WORLD, 0, 1, xleft, xright, ierr )      
    call MPI_CART_SHIFT( CART_WORLD, 1, 1, yleft, yright, ierr )
    call MPI_CART_SHIFT( CART_WORLD, 2, 1, zleft, zright, ierr )

nx = nx / xCPUs
ny = ny / yCPUs
nz = nz / zCPUs

MPI initialization

Domain decomposition
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Parallelization

subroutine reparto_trabajo( longitud(1), longitud(2), longitud(3), ...)

  DO i=1,3
         bsize = longitud(i) / mpi_dims(i)
     
         if (bsize < 5) then 
            call ERROR( ... )
         endif

         iniTramo(i,0)  = 1
         finTramo(i,0)  = bsize
         sizeTramo(i,0) = bsize

         do pp= 1, mpi_dims(i)-1
            iniTramo(i,pp)  = finTramo(i,pp-1) + 1
            finTramo(i,pp)  = finTramo(i,pp-1) + bsize
            sizeTramo(i,pp) = bsize

          enddo

         sizeTotal(i) = longitud(i)
         longitud(i)  = sizeTramo(i,mpi_coords(i))

    ENDDO
(...)
END subroutine reparto_trabajo

Division of work among dimensions

★ longitud: vector of 3 
elements with the size of the 
grid by dimension

★mpi_dims: vector of 3 
elements with the number of 
threads by dimension

★ iniTramo: matrix with the 
index of the first element of 
the grid by thread by 
dimension

★finTramo: matrix with the 
index of the last element of 
the grid by thread by 
dimension

★sizeTramo: matrix with the 
size of the grid by thread by 
dimension
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Boundaries exchange

Parallelization

★P: MPI thread
★ index i, j: dimension X, Y in cartesian 

coordinates of the communicator.
★Each Pi,j computes the operations 

for each element inside of the 
square.

★To compute de boundaries of the 
squares, Pi,j needs  to know the 
value of the neighbors (5 cells):
★ i-1
★ i+1
★ j-1
★ j+1

★Solution: Send to neighbors the 5 
first cells and receive from them 
this “halo”, store them into the 
“gosth cells” and then compute the 
operations.
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Boundaries exchange

! Initialize
    lon = 5*4
    req_cnt = 0    

! Exchange right side    
! Exchange xzn/dx right side
      if (mpi_coords(1).ne.mpi_dims(1) - 1) then
         do ii= -4, 0        
            boundsXaux(ii)%xzn  = xzn(nx+ii)
            boundsXaux(ii)%xznl = xznl(nx+ii)
            boundsXaux(ii)%xznr = xznr(nx+ii)
            boundsXaux(ii)%dx   = xznl(nx+ii+1) - xznl(nx+ii)       
         enddo 
         req_cnt = req_cnt + 1

         call MPI_ISEND( boundsXaux(-4), lon, MPI_DOUBLE_PRECISION, xright, &
       tagxright, CART_WORLD, arr_request(req_cnt), ierr )
         req_cnt = req_cnt + 1

         call MPI_IRECV( boundsX(1), lon, MPI_DOUBLE_PRECISION, xright, &
       tagxleft, CART_WORLD, arr_request(req_cnt), ierr )                
      endif

 ! Exchange yzn/dx right side
      if (mpi_coords(2).ne.mpi_dims(2) - 1) then
        (...)       
      endif

! Exchange zzn/dx right side
      if (mpi_coords(3).ne.mpi_dims(3) - 1) then
        (...)       
      endif

Parallelization
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! Exchange left side
! Exchange xzn/dx left side
   if (mpi_coords(1).ne.0) then
      do ii= 1, 5
         boundsXaux(ii)%xzn  = xzn(ii)
         boundsXaux(ii)%xznl = xznl(ii)
         boundsXaux(ii)%xznr = xznr(ii)
         boundsXaux(ii)%dx   = xznl(ii+1) - xznl(ii)
      enddo
      req_cnt = req_cnt + 1
      call MPI_ISEND( boundsXaux(1), lon, MPI_DOUBLE_PRECISION, xleft, tagxleft, CART_WORLD, &
      arr_request(req_cnt), ierr )
      req_cnt = req_cnt + 1 
      call MPI_IRECV( boundsX(-4), lon, MPI_DOUBLE_PRECISION, xleft, tagxright, CART_WORLD, &
      arr_request(req_cnt), ierr )         
   endif
    
! Exchange yzn/dx left side
   if (mpi_coords(2).ne.0) then
        (...)       
   endif
     
! Exchange zzn/dx right side
   if (mpi_coords(3).ne.0) then
       (...)       
   endif

! wait for all communication to finish

  call MPI_WAITALL(req_cnt, arr_request, arr_status, ierr)

Boundaries exchange

Parallelization
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How to compare sequential 
and parallel codes?

★ Perform validation tests: Check that the results are the same up to the 
truncation error of the algorithm.
★ it is possible that the parallel and sequential codes have different algorithms, 

which should converge to the same order of accuracy.
★ roundoff errors accumulate in the numerical solution differently in parallel and 

sequential codes (because of, e.g., the difference in the order of the operations).

★ Perform scalability tests: how to perform them?, what to compare?
★ Weak scaling
★ Strong scaling
★ Mixture of both (our approach).
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MRGENESIS 
VALIDATION TESTS

Tests to check that the parallel code obtains the same results as sequential code:

! 1)! Local comparison: confront the analytical and the numerical solution of selected test beds.
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Numerical. 2 MPI - 2 OMP
Numerical. 2 MPI - 4 OMP
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Numerical. 16 MPI - 2 OMP

1D - NX 8192
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MRGENESIS 
VALIDATION TESTS

Tests to check that the parallel code obtains the same results as sequential code:
! 2)!Global comparison: Calculating the integral and getting the relative error between analytical and numerical solutions.
!

HYBRID CODE MPI-OMP: CALCULATE RELATIVE ERROR BETWEEN ANALYITIC 
AND NUMERICAL SOLUTION FOR NX = 1000 

Analytic integral: 4.9377868599999255 

Numerical integral (2 MPI x 4 OpenMP): 4.9376604109999951 
RELATIVE ERROR: 2.370E-002  😊

Numerical integral (4 MPI x 2 OpenMP): 4.9376584239999932 
RELATIVE ERROR: 2.376E-002 😊
Variations among different partitions (OpenMP-MPI) originate from the differences 
in the roundoff errors, which account for the differences in the relative errors. 😞  

The results are the same up to truncation error! 😊
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MRGENESIS 
VALIDATION TESTS

Tests to check that the parallel code obtains the same results as sequential code:

! 3)! Computing the order of the method from the numerical results with progressively finer grids.

HYBRID CODE MPI-OMP: CALCULATE THE ORDER OF THE METHOD

EXPECTED ORDER 1 (due to the presence of shocks in the solution)

Relative error (2 MPI x 4 OpenMP, 1000 points): 2.370E-002
Relative error (2 MPI x 4 OpenMP, 2000 points): 1.247E-002
ORDER: 0.92691682464452296   😊
Relative error (4 MPI x 2 OpenMP, 1000 points): 2.376E-002
Relative error (4 MPI x 2 OpenMP, 2000 points): 1.250E-002
ORDER: 0.92632524106233094   😊
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SCALABILITY TESTS
ON MARE NOSTRUM (BSC)
★ MareNostrum has 31 racks with 6 Blade Centers per rack. 
★ A Blade Center has 14 Server Blade JS21, which has 2 dual-core processors 

PowerPC 970MP@2.3 GHz with 1 MB of L2 cache.  
★ Blade nodes JS21 are interconnected through Myrinet.

see talk of David Vicente
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STRONG SCALING TESTS:
Run a fixed-size problem on a varying number 
of processors to see how the timing of the 
computation scales with the number of processors. 

Tells us how the parallel overhead 
behaves as the number of cores grows.

SCALABILITY TESTS

WEAK SCALING TESTS: 

Fixes the amount of work per processor and 
compares the execution time over number of 
processors. Since each processor has the same 
amount to do, in the ideal case the execution time 
should remain constant. 

Tells us whether the parallel overhead 
varies faster or slower than the amount 
of work.

One Processor

One Processor

Many Processors

Many Processors
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STRONG SCALING TESTS:
We ran a standard hydrodynamic problem (the interaction of stellar winds) with 
different numbers of processors and combinations of MPI and OpenMP threads. This is 
a real case of use frequently executed in production environments.

SCALABILITY TESTS
ON MARE NOSTRUM (BSC)

TEST SET UP (MEDIUM SIZED PROBLEM)
GRID: 2880 x 2880
Compiler: IBM XLF90
Optimization options: -O3 -qstrict -q64 -
qtune=ppc970 -qarch=ppc970 
-qcache=auto
Iterations: 200
SpeedUp relative to 16 CPUs.

TEST SET UP (LARGE PROBLEM)
GRID: 8640 x 8640
Compiler: IBM XLF90
Optimization options: -O3 -qstrict -q64 -
qtune=ppc970 -qarch=ppc970 -
qcache=auto
Iterations: 600
SpeedUp relative to 64 CPUs.
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RESULTS OF MEDIUM SIZED PROBLEM
• The pure MPI model runs faster because the 

latency introduced by the management of 
OpenMP threads is greater than the latency 
for MPI on a small number of processors.

• However, when the number of processors 
increases, the message passing latency 
grows and penalizes significantly the 
execution time compared to the hybrid model.

• The hybrid model saturates with more 
processors, 1920 processors, while the pure 
MPI model saturates with 512.
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RESULTS OF LARGE PROBLEM
• The mesh size has a significant impact 

on scalability. 

• A larger mesh size increases the work-
per-core, reduces the ratio number of 
numerical zones to be communicated 
across domains to number of zones in 
each domain.

• The hybrid code keeps scaling 
(though sub-linearly) up to 7200 
processors.
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★Paraver is part of the CEPBA-Tools toolkit
★Goal: a qualitative global perception of the application behavior by 

visual inspection and then to be able to focus on the detailed 
quantitative analysis of the problems

★Steps to configure the traces that Paraver needs to analyze the 
execution:

ANALYSIS WITH THE 
HPC TOOL PARAVER

<counters enabled="yes">
  <cpu enabled="yes">

<set enabled="yes" domain="all"> 
PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L1_DCM
</set>
<set enabled="yes" domain="all">
PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L3_DCM
</set>   

  </cpu>
</counters> 

★ Compile the code linking with trace libraries: 
lmpitracef, lpapi

★ Write mpitrace.xml
★ Make a shellscript trace.sh several exports of 

environment variables and call it from the 
script used to launch the jobs on the Mare 
Nostrum queues.

★ Join the traces

★ Run Paraver!!  😊
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ANALYSIS WITH THE 
HPC TOOL PARAVER

Analysis of communications 
with 128 MPI

% Time in MPI Calls 
vs 

% time doing operations

92% of Avg/max: 8% of time in 
communications
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ANALYSIS WITH THE HPC 
TOOL PARAVER

The code efficiency is maintained even 
increasing the number of threads.
    
Average of IPC is 1.01 in both ecutions.

 

Analysis of communications:
 IPC comparison between 128 MPI and 32 MPI threads

23



CONCLUSIONS

★ Due to complexity of relativistic hydrodynamics codes and of their parallel 
implementation, the collaboration between astrophysicists and computer 
scientists is needed in order to get the best efficiency and be able to run realistic 
problems on the fastest supercomputers.

★ The results obtained with the hybrid OpenMP/MPI parallelization of 
MRGENESIS, indicate a significant improvement of efficiency that allows us 
run the code optimally up to 7200 processors.

★ ON GOING: We will perform different tests of scalability of the new RATPENAT 
code and will try to check the optimal resolution needed to study 3D problems.

 

24



THANKS FOR YOUR ATTENTION!!
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