
PARALLEL
PERFORMANCE
IMPROVEMENT IN
MRGENESIS AND
RATPENAT

Carmen Aloy Torás
Astronomy and Astrophysics. University of Valencia.

1

OUTLOOK

★Efficiency in relativistic hydrodynamics codes is a
key part of the implementation as it allows
obtaining results faster.

★ The parallelization of these codes improves
efficiency.

★RATPENAT and MRGENESIS codes were
developed by members of the Relativistic
Astrophysics Group. The parallelization of these
codes is implemented to improve efficiency in
terms of execution times.

2

MRGENESIS
The code MRGENESIS employs a finite volume approach in order to evolve the
Relativistic Euler equations in presence of dynamically relevant magnetic fields.
This is combined with a Constrained Transport scheme to account for the divergence
free evolution of the magnetic field.

Incorporates:
★Approximate Riemann

Solvers
★Inter-cell reconstruction

techniques
★A method of lines based

on a To ta l Va r i a t i on
Diminishing technique to
provide up to third order
accuracy both in time and
in space.

The code can also be used with the SPEV code, which can account for the evolution of non-thermal
particles using finite difference methods which are implicit or semi-implicit. (See talk of Petar Mimica for
details of SPEV)

3

RATPENAT
★ Relativistic jets are a common feature of radio-loud Active Galactic Nuclei and X-

ray Binary Star Systems. We investigate the physics of extragalactic relativistic jets
in several different contexts.

★ We focus on the evolution of relativistic flows and their interaction with their
environments.

★ For this, we need three-dimensional simulations with the largest possible
resolution. Thus, we need to test the upgraded version of Ratpenat, which includes
3D parallelization.

★ We will perform different tests of scalability of the new code and will try to check
the optimal resolution needed to study this problem.

4

implementation

★ MRGENESIS and RATPENAT are implemented in Fortran 90

★ Parallel I/O is obtained by using the Hierarchical Data Format (HDF5).

★ Parallelized with a hybrid MPI / OpenMP model.

MPI is a Message Passing Interface
which is used widely on parallel
machines with distributed memory.

OpenMP is an Application Program
Interface (API), is used on parallel
machines with shared memory.

5

DATA FLOW DIAGRAM

The red
nodes are
modules of

the
application
exclusively
added to

parallelize
the code

Read input
parameters

MPI
Initialization

Division of
work among
dimensions

Compute
Grid

Boundaries
Exchange

INITIALIZATION

MAIN LOOP

RUNGE
KUTTA LOOP

Boundaries
Exchange

SWEEPS

GETPRFQ

TSTEP

MPI
Finalization

MAIN PROGRAM

6

Parallelization

! MPI initialization
 call MPI_INIT(ierr)

! create a Cartesian MPI world
 call MPI_CART_CREATE(MPI_COMM_WORLD, maxDims, &
 mpi_dims(1:maxDims), periods(1:maxDims), .true., &
 CART_WORLD, ierr)

! get Cartesian rank
 call MPI_COMM_RANK(CART_WORLD, cartrank, ierr)

! get Cartesian coordinates
 call MPI_CART_COORDS(CART_WORLD, cartrank, maxDims, &
 mpi_coords, ierr)

! get the rank of the neighbors
 call MPI_CART_SHIFT(CART_WORLD, 0, 1, xleft, xright, ierr)
 call MPI_CART_SHIFT(CART_WORLD, 1, 1, yleft, yright, ierr)
 call MPI_CART_SHIFT(CART_WORLD, 2, 1, zleft, zright, ierr)

nx = nx / xCPUs
ny = ny / yCPUs
nz = nz / zCPUs

MPI initialization

Domain decomposition

7

Parallelization

subroutine reparto_trabajo(longitud(1), longitud(2), longitud(3), ...)

 DO i=1,3
 bsize = longitud(i) / mpi_dims(i)

 if (bsize < 5) then
 call ERROR(...)
 endif

 iniTramo(i,0) = 1
 finTramo(i,0) = bsize
 sizeTramo(i,0) = bsize

 do pp= 1, mpi_dims(i)-1
 iniTramo(i,pp) = finTramo(i,pp-1) + 1
 finTramo(i,pp) = finTramo(i,pp-1) + bsize
 sizeTramo(i,pp) = bsize

 enddo

 sizeTotal(i) = longitud(i)
 longitud(i) = sizeTramo(i,mpi_coords(i))

 ENDDO
(...)
END subroutine reparto_trabajo

Division of work among dimensions

★ longitud: vector of 3
elements with the size of the
grid by dimension

★mpi_dims: vector of 3
elements with the number of
threads by dimension

★ iniTramo: matrix with the
index of the first element of
the grid by thread by
dimension

★finTramo: matrix with the
index of the last element of
the grid by thread by
dimension

★sizeTramo: matrix with the
size of the grid by thread by
dimension

8

Boundaries exchange

Parallelization

★P: MPI thread
★ index i, j: dimension X, Y in cartesian

coordinates of the communicator.
★Each Pi,j computes the operations

for each element inside of the
square.

★To compute de boundaries of the
squares, Pi,j needs to know the
value of the neighbors (5 cells):
★ i-1
★ i+1
★ j-1
★ j+1

★Solution: Send to neighbors the 5
first cells and receive from them
this “halo”, store them into the
“gosth cells” and then compute the
operations.

9

Boundaries exchange

! Initialize
 lon = 5*4
 req_cnt = 0

! Exchange right side
! Exchange xzn/dx right side
 if (mpi_coords(1).ne.mpi_dims(1) - 1) then
 do ii= -4, 0
 boundsXaux(ii)%xzn = xzn(nx+ii)
 boundsXaux(ii)%xznl = xznl(nx+ii)
 boundsXaux(ii)%xznr = xznr(nx+ii)
 boundsXaux(ii)%dx = xznl(nx+ii+1) - xznl(nx+ii)
 enddo
 req_cnt = req_cnt + 1

 call MPI_ISEND(boundsXaux(-4), lon, MPI_DOUBLE_PRECISION, xright, &
 tagxright, CART_WORLD, arr_request(req_cnt), ierr)
 req_cnt = req_cnt + 1

 call MPI_IRECV(boundsX(1), lon, MPI_DOUBLE_PRECISION, xright, &
 tagxleft, CART_WORLD, arr_request(req_cnt), ierr)
 endif

 ! Exchange yzn/dx right side
 if (mpi_coords(2).ne.mpi_dims(2) - 1) then
 (...)
 endif

! Exchange zzn/dx right side
 if (mpi_coords(3).ne.mpi_dims(3) - 1) then
 (...)
 endif

Parallelization

10

! Exchange left side
! Exchange xzn/dx left side
 if (mpi_coords(1).ne.0) then
 do ii= 1, 5
 boundsXaux(ii)%xzn = xzn(ii)
 boundsXaux(ii)%xznl = xznl(ii)
 boundsXaux(ii)%xznr = xznr(ii)
 boundsXaux(ii)%dx = xznl(ii+1) - xznl(ii)
 enddo
 req_cnt = req_cnt + 1
 call MPI_ISEND(boundsXaux(1), lon, MPI_DOUBLE_PRECISION, xleft, tagxleft, CART_WORLD, &
 arr_request(req_cnt), ierr)
 req_cnt = req_cnt + 1
 call MPI_IRECV(boundsX(-4), lon, MPI_DOUBLE_PRECISION, xleft, tagxright, CART_WORLD, &
 arr_request(req_cnt), ierr)
 endif

! Exchange yzn/dx left side
 if (mpi_coords(2).ne.0) then
 (...)
 endif

! Exchange zzn/dx right side
 if (mpi_coords(3).ne.0) then
 (...)
 endif

! wait for all communication to finish

 call MPI_WAITALL(req_cnt, arr_request, arr_status, ierr)

Boundaries exchange

Parallelization

11

How to compare sequential
and parallel codes?

★ Perform validation tests: Check that the results are the same up to the
truncation error of the algorithm.
★ it is possible that the parallel and sequential codes have different algorithms,

which should converge to the same order of accuracy.
★ roundoff errors accumulate in the numerical solution differently in parallel and

sequential codes (because of, e.g., the difference in the order of the operations).

★ Perform scalability tests: how to perform them?, what to compare?
★ Weak scaling
★ Strong scaling
★ Mixture of both (our approach).

12

MRGENESIS
VALIDATION TESTS

Tests to check that the parallel code obtains the same results as sequential code:

! 1)! Local comparison: confront the analytical and the numerical solution of selected test beds.

-0,4 -0,2 0 0,2 0,4
0

2

4

6

8

10

Analytical
Numerical. 2 MPI - 2 OMP
Numerical. 2 MPI - 4 OMP
Numerical. 4 MPI - 2 OMP
Numerical. 4 MPI - 4 OMP
Numerical. 8 MPI - 2 OMP
Numerical. 8 MPI - 4 OMP
Numerical. 16 MPI - 2 OMP

1D - NX 8192

13

MRGENESIS
VALIDATION TESTS

Tests to check that the parallel code obtains the same results as sequential code:
! 2)!Global comparison: Calculating the integral and getting the relative error between analytical and numerical solutions.
!

HYBRID CODE MPI-OMP: CALCULATE RELATIVE ERROR BETWEEN ANALYITIC
AND NUMERICAL SOLUTION FOR NX = 1000

Analytic integral: 4.9377868599999255

Numerical integral (2 MPI x 4 OpenMP): 4.9376604109999951
RELATIVE ERROR: 2.370E-002 😊

Numerical integral (4 MPI x 2 OpenMP): 4.9376584239999932
RELATIVE ERROR: 2.376E-002 😊
Variations among different partitions (OpenMP-MPI) originate from the differences
in the roundoff errors, which account for the differences in the relative errors. 😞

The results are the same up to truncation error! 😊
14

MRGENESIS
VALIDATION TESTS

Tests to check that the parallel code obtains the same results as sequential code:

! 3)! Computing the order of the method from the numerical results with progressively finer grids.

HYBRID CODE MPI-OMP: CALCULATE THE ORDER OF THE METHOD

EXPECTED ORDER 1 (due to the presence of shocks in the solution)

Relative error (2 MPI x 4 OpenMP, 1000 points): 2.370E-002
Relative error (2 MPI x 4 OpenMP, 2000 points): 1.247E-002
ORDER: 0.92691682464452296 😊
Relative error (4 MPI x 2 OpenMP, 1000 points): 2.376E-002
Relative error (4 MPI x 2 OpenMP, 2000 points): 1.250E-002
ORDER: 0.92632524106233094 😊

15

SCALABILITY TESTS
ON MARE NOSTRUM (BSC)
★ MareNostrum has 31 racks with 6 Blade Centers per rack.
★ A Blade Center has 14 Server Blade JS21, which has 2 dual-core processors

PowerPC 970MP@2.3 GHz with 1 MB of L2 cache.
★ Blade nodes JS21 are interconnected through Myrinet.

see talk of David Vicente

16

STRONG SCALING TESTS:
Run a fixed-size problem on a varying number
of processors to see how the timing of the
computation scales with the number of processors.

Tells us how the parallel overhead
behaves as the number of cores grows.

SCALABILITY TESTS

WEAK SCALING TESTS:

Fixes the amount of work per processor and
compares the execution time over number of
processors. Since each processor has the same
amount to do, in the ideal case the execution time
should remain constant.

Tells us whether the parallel overhead
varies faster or slower than the amount
of work.

One Processor

One Processor

Many Processors

Many Processors

17

STRONG SCALING TESTS:
We ran a standard hydrodynamic problem (the interaction of stellar winds) with
different numbers of processors and combinations of MPI and OpenMP threads. This is
a real case of use frequently executed in production environments.

SCALABILITY TESTS
ON MARE NOSTRUM (BSC)

TEST SET UP (MEDIUM SIZED PROBLEM)
GRID: 2880 x 2880
Compiler: IBM XLF90
Optimization options: -O3 -qstrict -q64 -
qtune=ppc970 -qarch=ppc970
-qcache=auto
Iterations: 200
SpeedUp relative to 16 CPUs.

TEST SET UP (LARGE PROBLEM)
GRID: 8640 x 8640
Compiler: IBM XLF90
Optimization options: -O3 -qstrict -q64 -
qtune=ppc970 -qarch=ppc970 -
qcache=auto
Iterations: 600
SpeedUp relative to 64 CPUs.

18

RESULTS OF MEDIUM SIZED PROBLEM
• The pure MPI model runs faster because the

latency introduced by the management of
OpenMP threads is greater than the latency
for MPI on a small number of processors.

• However, when the number of processors
increases, the message passing latency
grows and penalizes significantly the
execution time compared to the hybrid model.

• The hybrid model saturates with more
processors, 1920 processors, while the pure
MPI model saturates with 512.

0,00#

10,00#

20,00#

30,00#

40,00#

50,00#

60,00#

70,00#

32# 64# 128# 256# 512# 1024# 1920# 3600# 7200#

SP
EE
D
%U
P%

CORES%

SPEED%UP%MPI%vs%MPI.OPENMP%
NO%HDF%

MPI#

MPI0OMP#

SCALABILITY TESTS
ON MARE NOSTRUM (BSC)

19

0,00#

20,00#

40,00#

60,00#

80,00#

100,00#

120,00#

64# 128# 256# 512# 1024# 1920# 3600# 7200#

SP
EE
D
%U
P%

CORES%

SPEED%UP%MPI%vs%MPI.OPENMP%
NO%HDF%

MPI#

MPI0OMP#

SCALABILITY TESTS
ON MARE NOSTRUM (BSC)

RESULTS OF LARGE PROBLEM
• The mesh size has a significant impact

on scalability.

• A larger mesh size increases the work-
per-core, reduces the ratio number of
numerical zones to be communicated
across domains to number of zones in
each domain.

• The hybrid code keeps scaling
(though sub-linearly) up to 7200
processors.

20

★Paraver is part of the CEPBA-Tools toolkit
★Goal: a qualitative global perception of the application behavior by

visual inspection and then to be able to focus on the detailed
quantitative analysis of the problems

★Steps to configure the traces that Paraver needs to analyze the
execution:

ANALYSIS WITH THE
HPC TOOL PARAVER

<counters enabled="yes">
 <cpu enabled="yes">

<set enabled="yes" domain="all">
PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L1_DCM
</set>
<set enabled="yes" domain="all">
PAPI_TOT_INS,PAPI_TOT_CYC,PAPI_L3_DCM
</set>

 </cpu>
</counters>

★ Compile the code linking with trace libraries:
lmpitracef, lpapi

★ Write mpitrace.xml
★ Make a shellscript trace.sh several exports of

environment variables and call it from the
script used to launch the jobs on the Mare
Nostrum queues.

★ Join the traces

★ Run Paraver!! 😊

21

ANALYSIS WITH THE
HPC TOOL PARAVER

Analysis of communications
with 128 MPI

% Time in MPI Calls
vs

% time doing operations

92% of Avg/max: 8% of time in
communications

22

ANALYSIS WITH THE HPC
TOOL PARAVER

The code efficiency is maintained even
increasing the number of threads.

Average of IPC is 1.01 in both ecutions.

Analysis of communications:
 IPC comparison between 128 MPI and 32 MPI threads

23

CONCLUSIONS

★ Due to complexity of relativistic hydrodynamics codes and of their parallel
implementation, the collaboration between astrophysicists and computer
scientists is needed in order to get the best efficiency and be able to run realistic
problems on the fastest supercomputers.

★ The results obtained with the hybrid OpenMP/MPI parallelization of
MRGENESIS, indicate a significant improvement of efficiency that allows us
run the code optimally up to 7200 processors.

★ ON GOING: We will perform different tests of scalability of the new RATPENAT
code and will try to check the optimal resolution needed to study 3D problems.

24

THANKS FOR YOUR ATTENTION!!

25

