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Abstract

Railway scheduling has been a significant issue in the railway industry. Over the
last few years, numerous approaches and tools have been developed to compute
railway scheduling. However, robust solutions are necessary to absorb short
disruptions. In this paper, we present the robustness problem from the point of
view of railway operators and we propose analytical and simulation methods to
measure robustness in a single railway line. In the analytical approach, we have
developed some formulas to measure robustness based on the study of railway
line infrastructure topology and buffer times. In the simulation approach, we
have developed a software tool to assess the robustness for a given schedule.
These methods have been inserted in MOM1, which is a project in collaboration
with the Spanish Railway Infrastructure Manager (ADIF).
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1. Introduction

It is well known that solving a scheduling problem is a difficult and time-
consuming task. The main goal of researchers is to develop algorithms that
satisfy the following properties: correctness, optimality and efficiency. However,
in many real problems, the quality of the solution obtained (robustness) is very
valuable . Robustness is best understood not as a property of a problem solver,
but rather of the solutions that it produces. It is not that an algorithm is robust,
but that an algorithm produces robust solutions.

In many decision processes, it is necessary to offer solutions with a certain
level of robustness in order to maintain their feasibility in frameworks with
incomplete or imprecise data. These data can be:

1More information can be found at the MOM web page
http://www.dsic.upv.es/users/ia/gps/MOM
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• Actual data or knowledge about the problem, which cannot be known
with the desired detail or level of certainty at the moment of making a
decision.

• Future data, in a dynamic problem, since the evolution of the problem is
not exactly known in advance.

The term ”robust” refers to the ability to resist ”imprecision”.
The idea of robust schedules consists of solutions that can tolerate a cer-

tain degree of uncertainty during execution. In other words, they should be
able to absorb dynamic variations in the problem due to both external reasons
(exogenous events) and internal reasons (false definitions in the problem) [32].

In the context of railway scheduling, traffic operators not only need to op-
timize the use of railway infrastructures [36] but also maintain robustness in
railway timetabling. Thanks to developments in computer science and advances
in the fields of optimization and intelligent resource management, railway man-
agers can optimize the use of available infrastructures and study important
railway features such as robust timetables and railway capacity.

Our aim is to obtain a measure of robustness in railway timetabling. A time-
table can have characteristics that can mean that delayed trains lead to consid-
erable knock-on effects, whereas another configuration of the timetable may be
able to absorb such effects more readily. Ensuring that the service can recover
quickly when one train is delayed not only makes traveling more reliable, but it
also means that train operators can, in some cases, avoid substantial penalties.
To this end, we have identified the main parameters that are directly related
to robustness. Some of them have been identified by railway operators based
on their experience. These parameters have been considered in our analytical
methods to give us a measure of robustness. Furthermore, these methods have
been compared with a simulation method to verify the measurements obtained.
Figure 1 shows our study of robustness in railway timetabling. Given a real
timetable, we obtain analytical measures of robustness. These measures give us
a model of robustness that we can use to identify new criteria in optimization
processes. Furthermore, we insert random delays in the real timetable in order
to replan and study a simulation measure of robustness. Both analytical and
simulation measures will be checked in order to verify the proposed analytical
methods. This study gives us the degree of robustness of the real timetable.

In this paper, we present two different ways of measuring robustness in
railway timetabling: analytical measures, and simulation measures. In section
2, we present some definitions of robustness in general scheduling; section 3
shows some works related to robustness in railway scheduling. In section 4, we
present some factors that are directly related to robustness in railway schedul-
ing. To measure robustness, we briefly present in section 5 some methods such as
stochastic programming, analytical methods and simulation methods. Section
6 presents analytical approaches to measure robustness in four different envi-
ronments: with homogeneous and heterogeneous trains, in which overtaking is
or is not allowed. In section 7, we present our simulation tool for measuring ro-
bustness. Section 8 shows the evaluation obtained from both, the analytical and
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Figure 1: Degree of robustness in railway timetabling by checking analytical and simulation
methods.

the simulation approaches. Finally in section 9, some conclusions and further
works are presented.

2. Robustness in Scheduling

Research efforts aimed at generating solutions and quality robust schedules
in combination with an effective reactive scheduling mechanism are still in a
burn-in phase.

Even though different approaches have been pursued so far, the concept of
robustness for scheduling solutions, as well as in other areas, remains vague and
is not well defined. In fact, stability and robustness are two different concepts
[22]. It is possible to note different definitions of robustness in scheduling with
respect to the different aspects that are taken into account. Some of these
definitions have emphasized the ability to preserve some level of solution quality.
For instance, in [26], the robustness of a solution is defined with respect to its
ability to preserve the solution quality, that is, the completion time or makespan.

An intuitive approach to obtain robust schedules consists of adding redun-
dancy to the solution. A first example is represented by [26] where a genetic
algorithm for producing robust schedules in the case of the job shop problem is
described. The authors define an evaluation function, which is used in the al-
gorithm to synthesize robust solutions, according to the actual makespan of the
schedule during the execution and the schedule delay. A typical technique from
general scheduling theory consists of introducing time slacks in the execution of
the tasks [10]. Another alternative is to build an explicit set of complementary
solutions and at each moment to use the most suitable solution according to the
current state [11]. The method proposed in [35] and [34] consists of the creation
of a partial order schedule which provides a certain degree of robustness due to
the fact that it maintains temporal flexibility.
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Nicola in [32] aims to increase robustness by introducing flexibility in the
scheduling generation phase. Flexible solutions consist of a set of possible sched-
ules that can be followed during the execution and that at the same time guar-
antee the easy and fast recovery of the current situation if necessary. In fact,
they are concerned with the generation of schedules that offer some degree of
robustness in the face of a dynamic and uncertain execution environment.

In [37], the authors provide a distinction of robustness according to the
following two characteristics: quality robustness and solution robustness. The
first is a property of a solution whose quality does not change much when small
changes in the problem occur. The latter occurs when, in the same situation
(small changes), a solution does not deviate much. Thus, the authors conclude
that the two robustness concepts can be viewed in two different spaces: the
objective function space and solution space, respectively, for quality and solution
robustness.

3. Robustness in Railway Timetabling

In the last few years many researchers have focused their attention in railway
timetabling [5],[19],[30] and in the robustness for railway timetables [9], [27], [12].

As we pointed out above, there are some definitions of robustness in schedul-
ing and also robustness in railway timetabling, which are understood in many
different ways. Robustness (in [24]) means that conflicting train routes are
spread in time as much as possible. Norio in [38] gives another definition of
robustness: ”A timetable is robust if we can cope with unexpected troubles
without significant modifications”. Furthermore, this author considers several
robustness indexes for each level (see Figure 2). In most cases, the main dis-
ruptions occur in level 0 due to small disruptions. Higher levels do not occur
frequently, and they require railway re-scheduling.

Several methods have already been proposed to evaluate timetable stabil-
ity on railway networks, mainly for cyclic timetables. Many of these methods
are based on Petri nets and max-plus algebra ([14]). In [15], Goverde deals
with general higher-order max-plus linear systems to model periodic railway
timetables as scheduled max-plus linear systems and develops a generic max-
plus system analysis theory that has been proved valuable in evaluating railway
timetables on stability and robustness. This approach has been implemented in
the analytical tool PETER [16] to evaluate timetable stability.

In [6], Carey and Carville describe various heuristic measures of stability that
can be employed at early planning stages. In [7], Carey and Carville present
a simulation model that is used for testing schedule performance regarding the
probability distribution of so-called secondary delays (knock-on effects) caused
by the primary delays, given the occurrence of these and a schedule. The model
is used for evaluating schedules with respect to the ability to absorb delays.
The super-models were introduced in [13] as a scheme to measure the degree of
stability of a solution. This idea is extended to constraint satisfaction problems
in [17] with the super-solution concept.
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Figure 2: The main levels of robustness.

Nevertheless, due to the fuzzy definition of robustness in scheduling in gen-
eral and in railway timetabling in particular, some simulation studies have been
generated to evaluate robustness. In [41], Vromans, Dekker and Kroon present
concepts of reliability in public railway systems. Using simulations, they test
the effect of homogenizing lines and the number of stops in timetables. Matts-
son [28] presents a literature study on how secondary delays are related to
the amount of primary delay and the capacity utilization of the rail network.
Hooghiemstra and Tunisse [20] present a prototype of a simulator used for study-
ing the robustness of timetables on the Dutch railway network. The simulation
prototype is called the DONS-simulator and is used for generating timetables.
Then, Middelkoop and Bouwman [29] present SIMONE which is linked to the
DONS-simulator in order to generate simulation models of national networks
and timetables in an automated way. SIMONE is used for analyzing timetable
robustness. It simulates a complete network and is used to identify bottlenecks.

Railway timetabling is one of the main stages in railway management (see
Figure 3), where many feedback loops may be necessary:

Specifically, the timetable generation phase has two interrelated steps:

1. Operator phase: This process is performed by railway operators in or-
der to obtain optimal timetables for their own trains with the objectives
of: minimizing waiting times among passenger connections, optimizing
rolling-stock and crew scheduling, optimizing customer requirements, etc.
This is user-oriented timetabling.

2. Infrastructure manager phase: The request of all operators should be op-
timized thus satisfying robustness, and operational and traffic constraints.

The concept of robustness should be considered in relation to each one of
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Figure 3: Main railway management phases

the above phases. In general, there are two approaches to prevent and manage
the disruptions that can occur in the execution phase of any plan:

1. Proactive: it is directly related to the concept of robustness [18]. The goal
is to obtain robust plans. A commonly accepted definition of robustness is:
”A robust plan is a plan that, given typical incidences in the environment,
maintains its feasibility and, as much as possible, the optimality of the
initial solution, at least with few meaningful changes”. However, due to
the fuzzy definition, some questions are straightforward:

• What are ’typical incidents’? According to railway manager experi-
ence, it is very difficult to characterize causes of incidents and dis-
ruptions, except for the fact that the most common disruptions are
between 1 and 5 minutes long.

• What are ’few meaningful changes’? They are changes that are nec-
essary for restoring the plan to the initial plan. So, possible measures
of robustness could be the required time interval until the initial plan
is restored, or how many trains are affected, or the average delay of
the trains.

2. Reactive: usually performed on-line when incidents can not be absorbed by
a robust plan. Therefore, the goal of this approach is the re-planning of the
previous plan according to the incidents in order to minimize the effects
of incidents such as secondary delays, and the recovery of the normal
plan/operation as soon as possible. Thus, the reactive approach is related
to the on-line re-planning and delay management concepts.

4. How to Obtain Robust Timetables

Several methods can be applied in order to obtain robust timetables. Fol-
lowing, we present four influencing parameters that are related to each other.
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These parameters affect the robustness of a timetable. Figure 5 shows these
parameters as related axes. If we increase one of the parameters, we must de-
crease some of the others. For instance, decreasing speed or heterogeneity both
influence capacity and robustness, and increasing optimality means decreasing
robustness and heterogeneity, etc.

1. Adding recovery time

The robustness of the timetable against small disturbances can be im-
proved by optimally allocating time supplements and buffer times in the
timetable. This is a common method to add time supplements to the
travel times of each train in each section of track along its journey and
buffer times to increase the minimum headway time. For instance, Figure
4 shows a real timetable for a train.

Estations

Estation 1

Estation 2

Estation 3

Estation 4

Estation 5

Estation 6

Estation 7

Estation 8

Estation 9

Estation 10

Estation 11

Estation 12

Estation 13

Figure 4: Real timetable.

The columns are:

• Dis (in kilometers) is the distance for each section of track.

• Tmin (in mmss) is the minimum travel time for each section of
track (obtained from physical data and dynamic models of tracks
and trains).

• Ttip (in mmss) is the basic travel time. Ttip introduces a user-defined
slack (obtained from manager’s experience) for robustness purposes.
Infrastructure managers call it the ’security margin’.

• Toc (mss) is an extra-time for current maintenance operations in
tracks.

• Tco (in mms) is the final rounded travel time for the train on the
track (in this example, operational constraints require travel times
rounded to 30”).

The added slacks in Ttip give some robustness R(x) to the timetable x.
However, these slacks increase the global travel time F (x). Thus, there is
a direct relation between the global travel time to be optimized and the
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timetable robustness R(x) [4]: robustness is increased R(x)−R(x∗) at the
expense of a loss of optimality F (x∗)− F (x).

Currently, slacks are introduced according to the historical experience of
the infrastructure manager. Therefore, some questions are:

• Where should the slacks be placed in order to maximize R(x)−R(x∗)
versus F (x∗)− F (x)?

• Should they be placed uniformly?

• What relation exists between R(x) and F (x) in each timetable x?,
etc.

2. Decreasing capacity for a given traffic pattern

Robustness is obtained by decreasing the capacity of the infrastructure
for a fixed traffic pattern. It is especially useful in the case of double
tracks. Decreasing capacity is also a common method applied by railway
infrastructure managers and is used in the UIC (Union Internationale des
Chemins de Fer) methods proposed by the International Union of Rail-
ways [40],[39]. Decreasing theoretical capacity for a given traffic pattern is
related to the previous point due to the fact that it implies adding buffer
time to minimum headways.

Railway managers know that scheduling as many trains as the theoretical
capacity indicates is not viable. However, they have to make the best use
of the expensive railway infrastructures. Trade-off between capacity and
reliability/robustness, in other words, between the ’physical maximum’
level of capacity and the ’economically optimal’ level of capacity is a key
point in operational management contexts [1].

For instance, Figure 5 extends a well-known graph for railway managers.
Clearly, the greater the capacity, the greater the risk of secondary delays
due to incidents. Thus, the idea is not to use the infrastructure at the
maximum level of capacity (theoretical capacity), but within a practical
capacity limit. Thus, Robustness is increased R(x)−R(x∗) at the expense
of a loss of capacity C(x∗)− C(x).

However, there are no clear standards about how this trade-off can be
modeled. For this purpose, the application of simulation methods seems
to be an appropriate way to evaluate the trade-off between capacity and
reliability. A stochastic model relating delays and capacity can be found
in [21].

3. Decreasing heterogeneity

Railway traffic is considered homogeneous if all trains have similar char-
acteristics, especially the same average speed per track segment, resulting
from the running times and the stopping times. However, for large railway
networks, railway traffic cannot be fully homogeneous as freight and pas-
senger trains share the same infrastructure. If there are large differences
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in the timetable characteristics of the trains on the same track, then the
railway traffic is called heterogeneous [41]. Due to heterogeneous trains
sharing the same infrastructure over large distances, timetabling becomes
very complicated. Heterogeneity usually leads to many small headway
times, which may increase delay propagation in the operations so that
robustness decreases. It is generally accepted in practice that the het-
erogeneity resulting from the line plan and the timetable has a negative
influence on the punctuality and the reliability of a railway system (UIC,
2004). Thus, homogeneous trains increase robustness and heterogeneous
trains decrease robustness.

4. Decreasing average speed It is well known in any human-managed
transportation system (without external help) that as the average speed
increases, the headway time between two consecutive vehicles also in-
creases, due to the fact that more time is needed to react/adapt to the
system. For instance, when two cars are running at 5 km/h on a congested
road, the headway time between them is reduced to a few meters, and this
solution is robust due to the fact that a short disruption of the first car can
be absorbed by the system. However, if the congestion disappears and the
cars accelerate, the headway time must increase. If the headway time is
not increased, this solution is not robust and a short disruption of the first
car will not be adsorbed by the system and both cars will crash. Thus,
in railway timetabling, this analogy with road traffic would be possible
if there was not any signalling system, so the speed in inversely propor-
tional to robustness. However, a direct relationship between train speed
and minimum headway only holds for optimized signal distances with re-
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spect to the allowed speed, and this in turn only works for homogeneous
traffic.

Thus, according to the points made above, there is a clear trade-off between
optimality/capacity and robustness, as the known price of robustness [4][9]. All
these parameters: robustness, capacity, optimality and also heterogeneity are
directly related (see Figure 5). As we have pointed out, robustness can be
increased by decreasing capacity, optimality and heterogeneity.

Furthermore, different timetables with near-to-optimal travel times can be
obtained due to the existence of many traffic operations (commercial stops,
overtaking, crossings, replacements, etc.) which are responsible for generating
different timetables. Thus, we should choose the most robust timetable among
alternative timetables with similar and near-to-optimal travel times. Here, we
need some analytical or simulation functions to characterize the robustness of
each timetable. The goal is to obtain a better configuration of timetables,
without penalizing the travel time of trains.

5. How to measure Robustness?

As was pointed out, a clear trade-off among capacity, optimality and robust-
ness exists. We can obtain the theoretical capacity of a rail network C(x), as
well as the used capacity of a given solution. However,

• How can the robustness of a solution R(x) be measured?

• How can we quantify the robustness of timetables?

• How can we ensure that one timetable is more robust than another?

We can point out several ways to do this:

1. Stochastic programming models

Stochastic programming is an approach for modeling optimization prob-
lems that involve uncertainty. Whereas deterministic optimization prob-
lems are formulated with known parameters, real world problems almost
invariably include parameters that are unknown at the time a decision
should be made. Stochastic programming models are similar in style but
try to take advantage of the fact that probability distributions governing
the data are known or can be estimated.

In railway timetabling, it is assumed that the process times, in the time-
table generation phase, are deterministic. However, delays of trains occur
since real-time railway operations are subject to external stochastic dis-
turbances. For instance, in [25], the authors describe a Stochastic Opti-
mization Model that can be used to allocate the time supplements and the
buffer times in a given timetable in such a way that the timetable becomes
maximally robust against stochastic disturbances. However, difficulties of
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the stochastic programming method, in railway timetabling, are pointed
out in [21]. Although it can be applied in simpler contexts, we consider
it very difficult to obtain a model and apply stochastic programming to
periodic and no-periodic timetables with very complex capacity and traffic
constraints.

2. Analytical methods

These consist of measuring ‘certain characteristics’ of timetables to eval-
uate their robustness.

There are several analytical methods for evaluating robustness in general
scheduling problems. These methods require metrics that characterize
the robustness of solutions. In [2], a metric is proposed for counting the
number of activity pairs that are not directly related; In [8] a metric that
measures the roominess associated to each activity is defined; Nicola et
al. [33] give a metric to measure the impact caused by an incident; etc.

Although these analytical methods could provide a quicker way to mea-
sure robustness, they are not valid in a railway context and they do not
correctly describe the robustness of a railway timetable.

In a more specific railway context, analytical measures such as SSHR and
SAHR have been developed to evaluate the homogeneity of a timetable,
assuming the relation between this factor and the propagation of delays
due to interdependencies between trains [41]. In [15], a linear system
description of a railway timetable in max-plus algebra is presented; in [31],
Joern presents microscopic models based on blocking time theory. Carey
[6] proposes the use of dispersion measures of the inequality of headway
times. These measures of robustness are especially useful in the case of
double track lines. However, additional measures have to be developed to
allow for cases of overtaking and single track lines. They must be based
on the existing slack time with respect to the minimum reception time
between two crossing trains.

3. Simulation methods

This method is related to “what-if” analysis. The method consists of
simulating incidents in a timetable, then re-planning and evaluating the
effect on the final timetable (as the difference with the initial one). Some
simulation models of railway processes are described in [29], [3] and [42].

There are basically two different simulation models: Microscopic and
macroscopic simulation models.

• Microscopic simulation models which are related to a detailed topo-
logical level including train dynamics, signalling logic, etc. These
simulation models are very accurate and they are very realistic and
close to the real timetable. Microscopic operational simulation en-
ables the railway operator to determine the consequences of infras-
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tructure or operational changes in railway systems before investing
funds or putting an unfeasible timetable into operation.

• Macroscopic simulation tools generalize network operations. Macro-
scopic simulation is focused on a level of stations, connecting tracks
with simplified running time calculations, minimum headways in-
stead of signal logic modeling, etc. These simulation methods lose
accuracy, but they are more time-efficient.

Nevertheless, some works are based in the integration of both models,
which would give several advantages for railway companies. In [23], the
infrastructure data has to be maintained only once in the microscopic
model and can be effectively reused in the macroscopic one. In order to
be able to reuse the data of the microscopic model, the generation of the
macroscopic network has to be automated.

5.1. Parameters for measuring robustness

In this subsection, we will identify the main parameters that will be taken
into consideration to measure robustness in railway timetabling. A part of the
time-distance diagram is shown in Figure 6. A time-distance diagram is a train
diagram where a set of trains are scheduled. The vertical axis represents the
space (locations). The horizontal axis represents the time. Horizontal dotted
lines represent halts or junctions, while solid lines represent stations. It can be
observed that the trains go from left-top to right-bottom. In Figure 6 (center),
we shows the departure of train Ti from location lj and arrival to location lj+1.
Figure 6 (right) shows the actual journey of this train, which stops in location
lj , departs from this location, accelerates to achieve the travel speed, and finally
brakes to stop in location lj+1. For simplicity, we will draw a straight line to
represent this journey. This figure points out some of the parameters that will
be used in the rest of the paper.

• Incident (I). The incident is the amount of time that a train wastes due
to a disruption on the train, at the station, etc. This time I includes the
braking time, the disruption time, and the acceleration time to achieve
the travel speed. Figure 6 (center-bottom) shows that the incident I is
the sum of the braking time plus the disruption time and the acceleration
time. This time is called primary delay. If the incident is propagated to
other trains, the amount of time that these trains waste is called secondary
delay.

• Point of the incident (p) is the point at the track at which the incident
occurs. This point will be relevant for studying robustness in some cases,
and irrelevant in other cases. In Figure 6, this point corresponds to the
location lk.

• Interval Time (IT ime) is the established time in which two contiguous
trains are separated (see Figure 6). This time is split into two different
parameters:

12



Cumbria, June 7, 2006 

)( xtime

)
(
y

lo
ca
ti
o
n
s

jl

1+jl

j
idep

j
iarr

Interval Time (ITime)

)(xtime

)
(
y

lo
ca
ti
o
n
s

kl

I

Braking time

Disruption time

Acceleration time

Minimum Headway Time

Tracks Trains

)(xtime

)
(
y

lo
ca
ti
o
n
s

Acceleration time

Braking time

Actual travel

Our travel 

representation

iT

)(xtime

)
(
y

lo
ca
ti
o
n
s

Figure 6: Example of a time-distance diagram.

(a) Minimum Headway Time (MHWT ) is the minimum time needed
between two contiguous trains to guarantee traffic operations.

(b) Buffer Time is the additional time included in the interval time
between each pair of trains. This time is added to the minimum
headway time to absorb short incidents.

• Time Supplements is the additional time assigned to the travel times
of each train in each track along its journey.

• Number of trains. In highly loaded timetables, where capacity utiliza-
tion is high, a disruption may be propagated to the rest of the trains
in the timetable. Indeed, capacity utilization and robustness are oppos-
ing terms, so that a lower capacity utilization (smaller number of trains)
implies higher robustness.

6. Analytical Methods for Measuring Robustness in Railway Time-
tabling

In this section, we present some analytical methods for estimating the ro-
bustness of single-line railway timetables on double-tracks. The Robustness of
a timetable will be estimated by means of the primary and secondary delay that
a disruption produces. For simplicity, we consider that the minimum headway
time between two trains is constant throughout the journey, and the angle of
each train is the average angle (pondered by distance) of all tracks.
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A timetable A will be more robust than a timetable B if the estimated total
delay of timetable A, due to an incident, is lower than the estimated total delay
of timetable B.

In this section, we study the total delay generated in a timetable due to a
disruption. We classify four types of timetable:

• Homogenous trains where overtaking is not allowed.

• Homogenous trains where overtaking is allowed.

• Heterogeneous trains where overtaking is not allowed.

• Heterogeneous trains where overtaking is allowed.

By homogeneous trains, we means trains with the same speed, meanwhile
heterogeneous trains is related to trains with different speeds. In all of these
cases, we will study the dependence of all above parameters. For instance, we
will see that in some cases, the total delay is not dependent on the point of the
incident. It is obvious that the time supplement is crucial for the robustness of
a timetable.

6.1. Homogenous trains where overtaking is not allowed

In this subsection, we study the total primary and secondary delay in ho-
mogeneous trains where overtaking is not allowed. Due to the fact that all of
the trains are of the same type, we consider them to be uniformly distributed
along the planning horizon. Thus, the minimum headway time between any two
trains is the same.

)
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Figure 7: The incident generates primary and secondary delays due to the fact that overtaking
is not allowed.

If a train Ti has an incident I at point p, secondary delays will affect k
successive trains until the difference between their interval time and minimum

14
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We know that I − (k + 1)BT ≤ 0 (see Table 1) ⇒ (k + 1)BT ≥ I ⇒ k + 1 ≥ I
BT

→ k ≥ I
BT

− 1

If we replace k in the former equation:
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By simplifying the formula
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Figure 8: Equations to calculate the sum of delays generated by the incident I.

RtotalHomWO(I, i) =

i+k∑
j=i

Rj =


I

⌊
I

ITime−MHWT

⌋
= 0

⌈
I·(I+(ITime−MHWT ))

2·(ITime−MHWT )

⌉ ⌊
I

ITime−MHWT

⌋
> 0

(1)

headway time absorbs the incident at point p. Figure 7 shows an example
in which train Ti has an incident I (primary delay) and it is propagated to
train Ti+1 and Ti+2 (secondary delays) until the disruption is absorbed in point
p. In general, the disruption of each train is presented in Table 1. The first
train (disrupted train) is delayed I time units, the second one is delayed in
I − (IT ime −MHWT ) time units, the third one is delayed in I − 2(IT ime −
MHWT ) time units, and so on, until the disruption is absorbed. The sum of
disruptions generated for each train is developed in Figure 8. For simplicity, we
denote the buffer time BT = IT ime−MHWT .

Thus, the amount of primary and secondary delay generated by incident I
in train Ti is given by equation (1).

Note that the global delay does not depend on the position along the train
journey where the disruption occurs.

6.2. Homogenous trains where overtaking is allowed

If an incident occurs in a homogeneous train where overtaking is allowed,
this incident is not propagated directly to the following trains in the initial
timetable, but the secondary delay will affect the next trains once the incident
has finished. Figure 9 shows an example in which train Ti has an incident.
As overtaking is allowed, this incident does not affect train Ti+1 and train
Ti+2. The main problem is allocating the disrupted train (Ti) between two
consecutive trains (Ti+2 and Ti+3), so train Ti+3 and the following trains may
be affected by this incident. As in the previous case, we consider them to
be homogeneously distributed by the same interval time. Thus, the minimum
headway time between any two trains is equal.

Table 1: Propagation of the incident I

Ri Ri+1 Ri+2 Ri+3 ... Ri+k Ri+k+1
I I-(ITime-MHWT) I-2(ITime-MHWT) I-3(ITime-MHWT) ... I-k(ITime-MHWT) I-(k+1)(ITime-MHWT)≤ 0
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RtotalHomO(I, i) =


RtotalHomWO(I, i)

⌊
I

ITime

⌋
= 0⌊

I
ITime

⌋
· ITime + RtotalHomWO(MHWT, i) I%ITime < MHWT⌊

I
ITime

⌋
· ITime + RtotalHomWO(I%ITime, i) I%ITime ≥ MHWT

(2)
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Figure 9: The incident may not affect some of the following trains when overtaking is allowed
in homogeneous trains.

To study the total delay, given an incident I in train Ti, we must calculate the
number of trains that the incident will not affect. This number is nonaffec =
⌊I/IT ime⌋. Thus, nonaffec trains, following train Ti will not been affected by
the incident. If nonaffec = 0, then we can use the formulas of the above section
(see equation 2, first case). Otherwise, we must study two possible alternatives
1) and 2), which are represented in Figure 10.

1) The train Ti has been delayed I seconds in point p, but this train finishes
its disruption too close to train Ti+2, so we must extend the delay to
guarantee minimum headway time between train Ti+2 and train Ti. Thus,
we can apply the formulas of the previous section to study the rest of
delays generated by the incident (see equation 2, second case).

2) The train Ti has been delayed I seconds in point p, but this train finishes its
disruption far enough from train Ti+2, (more than the minimum headway
time), so we must only apply the formula of the previous section to study
the rest of the delays generated by the incident (see equation 2, third
case).

Thus, the total delay in homogenous trains when overtaking is allowed can
be obtained by using equation (2), where I%IT ime is the modulo between I
and IT ime, that is I%IT ime = I − IT ime⌊I/IT ime⌋.

Note that the total delay is also independent of the point of disruption in
the timetable.
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Figure 10: Two different cases of secondary delays in homogeneous trains.

6.3. Heterogeneous trains where overtaking is not allowed

In this case, we study the total primary and secondary delay in heterogonous
trains where overtaking is not allowed. To this end, we must calculate the
minimum headway time between every two trains at each point of the track.
We introduce the use of angles of each train-track in the time-distance diagrams.
The angle of a train is calculated taking into account the minimum travel time
plus the time supplement given by the railway operators. Angles α1 and α2

are shown in Figure 11. It can be observed that the shorter the angle is, the
faster the train goes. Thus, the angle measures the time needed to travel a given
distance.

We can distinguish two different cases:

• The angle of the first train is smaller than the angle of the second train
(α1 < α2). Thus, the first train is faster than the second train.

• The angle of the first train is larger than the angle of the second train
(α1 > α2). Thus, the first train is slower than the second train.

Note that, if α1 = α2, the trains are homogeneous and the following two
formulas can be applied. Let’s study both cases.

Case 1 (α1 < α2).
The temporal distance between train (T1) and train (T2) in point p (Dist12(p)),

when α1 < α2, must be calculated as follows:

Dist12(p) = IT ime12 + p · tanα2 − p · tanα1

≡ IT ime12 +
p

tan(π2 − α2)
− p

tan(π2 − α1)
(3)
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Figure 11: Two different cases in heterogenous trains where overtaking is not allowed.
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Figure 12: The angle of the first train is smaller than the angle of the second train (α1 < α2).

Figure 12 shows how Dist12(p) is obtained. This temporal distance can
be obtained by means of α1 and α2 or by the complementary angles (π/2 −
α1, π/2− α2).

Case 2 (α1 > α2).
The temporal distance between train (T1) and train (T2) in point p (Dist12(p)),

when α1 > α2, must be calculated as follows:
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Dist12(p)       (T-p)*tanα1+(ITime12-(T-p)*tanα2) 

(T-p)*tanα2α1
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Figure 13: The angle of the first train is larger than the angle of the second train (α1 > α2).

Dist12(p) = IT ime12 + (T − p) · tanα1 − (T − p) · tanα2

≡ IT ime12 +
(T − p)

tan(π2 − α2)
− (T − p)

tan(π2 − α2)
(4)

Figure 13 shows how Dist12(p) is obtained. This temporal distance is di-
rectly related to the metric distance between the point p and the end of the
track (T ). This temporal distance can be obtained by means of α1 and α2 or
by the complementary angles (π/2− α1, π/2− α2).

We study the amount of delay generated by an incident, when no overtaking
is to be carried out. Without loss of generality, we consider that the incident is
generated in train T0. Given an incident I, the size of primary delay is I. Thus
Rt0 = I. Due to the heterogeneous nature of the train, we must study whether
the following train is faster or slower than the disrupted train.

1. If the following train is faster (see Figure 14), then the delay of the second
train in point p could be:

Rt1(p) = Rt0(p)− IT ime01 +MHWT01 (5)

Note that it is possible to measure the secondary delay without taking into
account the temporal distance between both trains in point p due to the
fact that in the previous formula Rt0(p) = I. So, we can conclude that the
secondary delay in a sequence of slower-train faster-train is independent
of the point of incident.

However Rt0(p) could be very small and then Rt1 may be lower than 0.
To this end, the general formula will follow the following criteria:
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Figure 14: Secondary delay when the next train is faster.

Rt1(p) = max{Rt1(p), 0} (6)

2. If the following train is slower (see Figure 15), then the delay of the second
train could be:

Rt1(p) = Rt0(p)−Dist01(p) +MHWT01 (7)

It can observed that the secondary delay in a sequence of faster-train
slower-train depends on the point of incident p. Figure 16 shows that
the same incident generated in different stations, generates different sec-
ondary delays. This incident only generates primary delay in point p′

(Figure 16 right) due to the fact that the temporal distance between both
trains can absorb the incident, whereas this incident generates primary
and secondary delays in point p (Figure 16 left). Thus, depending on the
disruption point, the incident may be directly absorbed (primary delays)
or not (secondary delay).

Thus, given an incident I in a train Ti at station p, the total amount of delay
in heterogeneous trains where overtaking is not allowed is given by the following
formula:

RtotalHWO(p, I, i) =
h∑

j=i

max{Rtj(p), 0} (8)

where:

Rti(p) = I; (9)
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Figure 16: Secondary delay when the next train is slower.
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Rtj(p) = Rtj−1(p)− βj · (IT imej−1,j −MHWTj−1,j)− (1− βj) ·
·(Distj−1,j(p)−MHWTj−1,j) ∀j > i (10)

βj =

{
0 αj−1 < αj

1 αj−1 ≥ αj
(11)

Thus, the delay of each train depends on the delay of the previous train
minus a convex combination between each type of sequence of trains.

If train Tj is faster that train Tj−1, then case 1 occurs and then βj = 1 and
so (1− βj) = 0; thus the above formula is reduced to:

Rtj(p) = Rtj−1(p)− (IT imej−1,j −MHWTj−1,j) (12)

If train Tj is slower that train Tj−1, then case 2 occurs and then βj = 0 and
so (1− βj) = 1; thus the above formula is reduced to:

Rtj(p) = Rtj−1(p)− (Distj−1,j(p)−MHWTj−1,j) (13)

6.4. Heterogeneous trains where overtaking is allowed

In this section, we study the amount of primary and secondary delay in het-
erogonous trains where overtaking is allowed. To this end, we must calculate the
minimum headway time between every two consecutive trains at the disruption
point of the track. Thus, we use the formula of the previous section to calculate
these temporal distances. Figure 17 shows an example in which Train T0 has an
incident in point p. In this figure, we have included three types of disruptions
(a), (b) and (c).

• In case (a), the incident of train Ti is lower than the temporal distance
between Ti and Ti+1. Thus, this case can be considered as a disruption in
heterogeneous trains where overtaking is not allowed.

• In cases (b) and (c), the incident of train Ti (see Figure 17) is greater
than the sum of temporal distance between train Ti and train Ti+1, train
Ti+1 and train Ti+2, ..., train Tj−1 and train Tj . Thus, this case must be
studied recursively in order to achieve the base case: the disrupted train
Ti does not overtake the train Tj+1 (see Figure 17). We must take into
account that case (b) is different to case (a) in the recursive study due to
the fact that in case (b) train Ti must satisfy at least minimum headway
time with train Tj (see Figure 17). Meanwhile, in case (a), train Ti does
not have to satisfy any constraint except its own incident.

The recursive function RecRtotalHO(p, I, i) is presented in formula 15,
meanwhile the base case BCHO(p,R, j) of this recursive function is pre-
sented in formula 16. Nevertheless, both cases (b) and (c) in the base case
of the recursive study must be treated in a different way. Let’s suppose
that R is the remaining time between I and the arrival time of train Tj

at station p. Four different alternatives can be classified (see Figure 18):
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Figure 17: Three types of disruptions in heterogenous trains with overtaking.

1. The remaining time R is lower than the minimum headway time
MHWTj,i and furthermore, the angle of train Ti is larger than
the angle of train Tj (αi ≥ αj). The base case is MHWTj,i +
RtotalHWO(p, MHWTj,i, j), that is, the minimum headway time
plus the consequence of this delay in the case where no overtaking is
allowed.

2. The remaining time R is not enough for train Ti to arrive at its desti-
nation with the minimummargin (minimum headway time (MHWTj,i)),
and, furthermore, the angle of train Ti is smaller than the angle of
train Tj (αi < αj). The base case is composed of R plus the necessary
additional time to arrive at its destination with the minimum margin
plus the consequence of this delay in the case where overtaking is not
allowed. To obtain the necessary additional time (Extraj,i(p)), we
use the formula Dist12(p) (see Figure 13) to adapt to our context.

Thus, Extraj,i(p) = MHWTj,i+((T −p)tanαj−R)−(T −p)tanαi).

3. The remaining time R is greater than the minimum headway time
MHWTj,i, and, furthermore, the angle of train Ti is larger than the
angle of train Tj (αi ≥ αj). The base case is RtotalHWO(p,R, j),
that is, the consequence of this delay in the case where no overtaking
is allowed.

4. The remaining time R is enough for train Ti to arrive at its desti-
nation by satisfying the minimum margin (minimum headway time
(MHWTj,i)), and, furthermore, the angle of train Ti is smaller than
the angle of train Tj (αi < αj). The base case isRtotalHWO(p,R, j),
that is, the consequence of this delay in the case where no overtaking
is allowed.
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Figure 18: Four different alternatives for the base case for heterogeneous trains where over-
taking is allowed.

Thus, given an incident I in a train Ti at station p, the total amount of delay
in heterogeneous trains where overtaking is allowed is given by the formulas (14),
(15) and (16).

7. A Simulation Approach for Robust Timetabling

In this section, we present a simulation approach to assess robustness of
railway timetables. The approach consists of simulating disruptions to a given
timetable, rescheduling it in order to repair conflicts that appear due to primary
and secondary delays, and measuring the overall final delay obtained. This final
delay allows us to assess the robustness of the initial timetable.

RtotalHO(p, I, i) =

{
RecRtotalHO(p, I, i) I − Disti,i+1(p) > 0

RtotalHWO(p, I, i) I − Disti,i+1(p) ≤ 0
(14)

RecRtotalHO(p, I, i) =

{
Disti,i+1(p) + RecRtotalHO(p, I − Disti,i+1(p), i + 1) I − Disti,i+1(p) > 0

BCHO(p,Disti,i+1(p) − I, i) I − Disti,i+1(p) ≤ 0

(15)

BCHO(p, R, j) =


MHWTj,i + RtotalHWO(p,MHWTj,i, j) (R < MHWTj,i) ∧ (αi ≥ αj)

Extraj,i(p) + RtotalHWO(p, R + Extraj,i(p), j) (Extraj,i(p) > 0) ∧ (αi < αj)

RtotalHWO(p, R, j) (R ≥ MHWTj,i) ∧ (αi ≥ αj)

RtotalHWO(p, R, j) (Extraj,i(p) < 0) ∧ (αi < αj)

(16)
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In this section, we describe the underlying processes of the computer-based
tool we have developed to implement this alternative approach.

7.1. Re-scheduling - Repairing timetables from disruptions

In practice, incidents occur and affect any initial optimized timetable. Thus,
a robust timetable should be able to deal with the minor delays that occur in
real time.

Incidents can occur anywhere, at anytime, and in any size. Technical failures,
human factors, weather disturbances, etc., may influence the running times,
dwelling events and departing events, thus causing primary delays. Due to
the interaction between trains, these delays may be propagated as secondary
delays to other trains in the network. A partial modification (re-scheduling)
of the timetable may then be required during operation. Hence, managing
railway traffic in real time requires re-scheduling train movements throughout
the network, minimizing secondary delays and ensuring the feasibility of the
resulting plan of operations. A real-time conflict resolution system aims to
support the dispatchers in restoring the feasibility of the schedules given the
real-time positions of the trains. In fact, in order to repair the timetable, only
the part of the journey scheduled after the time disruption is considered.

We have developed a re-scheduling tool that is able to cope with disruptions
and restore timetabling feasibility. This re-scheduling process searches for a
feasible and optimized timetable that is as close as possible to the original
timetable. Thus, the objective function for the re-scheduling process may be
either (i) to minimize the sum of delays in destination arrival times or (ii) to
minimize the sum of delays in departure times for each station with dwell time.

Optimality Criteria during the re-scheduling process

Given that:

• ωi is the weight assigned to train Ti,

• ârr
i
j/d̂ep

i

j is the original arrival time/departure time of train Ti in station
j,

• arrij/dep
i
j is the arrival time/departure time of train Ti in station j after

the re-scheduling process,

• S is the initial timetable obtained as a solution,

• ni is the number of stations with stopover in the journey of train Ti,

• N is the number of trains whose timetables have been rescheduled,

the objective function (i) is defined as f(S) =
N∑
i=1

ωi × (arrini
− ârr

i
ni
), and the

objective function (ii) is defined as f(S) =
N∑
i=1

ωi ×
ni∑
j=1

(depij − d̂ep
i

j)
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Weights included in the objective function will allow different priorities to be
assigned to different train types and to be considered when solving the conflicts
generated by the delay propagation. The weighting is taken into account when
the objective function is assessed, so that the process searches for the solution
that minimizes the delays of trains whose weight is greater than the others. In
this way, a priority order is specified among trains whose timetables have to be
replanned.

Recovery Strategies are another important aspect in a re-scheduling pro-
cedure. Some of the most commonly used are: (i) reducing dwell times to a
minimum, (ii) reducing headway to a minimum, (iii) reducing running times
to a minimum, (iv) allowing overtaking in stations with available tracks, (v)
cancelation of entire train lines (in case of severe disruptions).

The main strategies for allowing recovery in case of incidents are to increase
headway or to consume the time supplement in the network. The re-scheduling
procedure developed here reduces running times and headway and also allows
overtaking in stations with available tracks.

Specifically, the re-scheduling process considers two values as the possible
running time for each train and track section of its journey, rtij and cut rtij ,
where:

• The first value (rtij) is the sum of: (i) the running time resulting from
the dynamic model of train velocities, plus (ii) the temporal margin that
human planners consider necessary for the train and track section char-
acteristics, and (iii) time supplement that the railway manager adds for
other security reasons and robust issues.

• The second value (cut rtij) is the same as the first without the time sup-
plement.

The running time cut rtij is used by the re-scheduling process only if the
train Ti is delayed in its arrival time to station j + 1.

We show an example in Figure 19. Figure 19.a shows a timetable as was
originally planned. Suppose that train Ti suffers a disruption that causes a
primary delay to its arrival at station j. This delay affects train Ti+1 because
the minimum headway time is not satisfied between these trains at station j.
In this case, the re-scheduling process decides to delay train Ti+1 until there
exists the minimum headway time required between both trains. That is, the
arrival time of Ti+1 to station j is delayed until headway with respect to Ti

holds. If the process uses the running times with the time supplements (rtij),
the rescheduled timetables are the ones shown in Figure 19.b. If the user allows
recovery journey time, the process tries to reduce delays by using the allowed
time suplements, and, therefore, chooses to use the running time without time
supplements (cut running time) as the running time for both trains in the track
section considered. The rescheduled timetables are shown in Figure 19.c.

Another additional constraint that is considered during the re-scheduling
process is related to the departure time of trains from stations with dwell time.
In such cases, the train cannot leave the station at a time that is earlier than
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Figure 19: Cutting running times to reduce primary and secondary delays
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the original scheduled departure time. This constraint prevents passengers from
missing the train because of a premature departure. Thus, the use of time
supplements will never allow a train to leave/arrive from/to a station before
originally planned.

7.2. Disruption Simulator

In this section, we show the disruption simulator tool that was developed
to assess the robustness of a given timetable. This tool introduces random
incidents on a given timetable, performs a re-scheduling process and evaluates
the primary and secondary delays that are caused.

The disruption simulator can be used in two main ways:

1. For assessing the robustness of real-world or user-defined timetables. Re-
lated timetable data are directly acquired by the disruption simulator from
a database.

2. For evaluating the effects of several timetable parameters. In this way, the
simulator is joined with a timetable generator, where several parameters
can be varied, such as speed, heterogeneity, buffer times, time supplements
and used capacity of generated timetables. Therefore, by using these gen-
erated timetables in the simulator, the effects of these factors on timetable
robustness can be evaluated.

Figures 20, 21 and 22 show several examples of the timetables generated by
way 2:

• The timetable in Figure 20 shows a homogeneous timetable where all trains
belong to the same type and are uniformly distributed in the scheduling
time horizon.

• Figure 21 represents a timetable of heterogeneous trains, where overtaking
is possible in the configuration of initial departure time. The process that
generates the initial timetable will verify that trains avoid overtaking in
track sections.

• Additionally, heterogeneous trains can be grouped by sequences: Fast -
Slow; Slow - Slow - Fast; Fast-Fast-Slow; etc. In Figure 22, a sequence of
heterogeneous trains Fast-Slow is shown with a proposed departure time
that avoids overtaking in track sections.

In the following, we describe the main stages of the disruption simulator,
namely the disruption generation and the re-scheduling processes2 (Figure 25).

2More information about the developed disruption simulator tool, functionalities and ex-
ample cases can be found at: http://www.dsic.upv.es/grupos/gps/MOM/
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Disruption Generation

The simulation process assesses the robustness of a given railway timetable
by evaluating the overall delay that an unexpected disruption causes. Let’s
assume that the initial disruption occurs on one train. Consequently, the time-
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Figure 23: Selection of Disruption Time in the Time Horizon of Scheduling

table is re-scheduled and the primary delay is propagated to the subsequent
trains of the timetable (secondary delays).

In real situations, disruptions may occur at any time and they may affect
any train. Therefore, the process performs a set of sampling of disruptions over
the timetable. In each sampling step, a single disruption occurs at time ti on
train Trainj (primary delay); the disruption is propagated; the timetable is re-
scheduled; and the overall (primary and secondary) delay for all affected trains
is measured.

In each sampling step, the time when the initial disruption occurs, ti, and
the affected train, Trainj , are selected so that, at the end of the all sampling
processes, trains in the timetable and sections of their journeys are uniformly
chosen. At the end of all sampling processes, the final delay is returned as the
average delay of the measured delays in each sampling step.

The main issues in each sampling step are: When does the incident occur?
Which train is affected and at what point in its journey? Moreover, how many
sampling steps should be performed in order to obtain a representative average
delay?

Following, we describe the sampling process in more detail.
The planning horizon, H = [t0; te], is uniformly split into ns subintervals,

where ns is parameterized by the user. Each subintervali has f = H/ns time
units and is defined as si = [t0i; tei]. Figure 23 shows a timetable where the
planning horizon is [00 : 00, 08 : 00], ns = 8, so that each subinterval is equal to
one hour.

Once the subintervals have been defined, for each si = 1..ns subinterval, the
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process iteratively: (i) inserts one disruption in the subinterval, (ii) re-schedules
the timetable, and (iii) measures the overall delay.

In the first step, the time within the subinterval si in which the initial
disruption is inserted, the train affected, and the size of the primary delay are
randomly chosen according to the procedure described in Figure 24:

1. The time ti, when the disruption occurs, is randomly chosen in interval
si = [t0i; tei].

2. The size delayi of the primary delay is randomly chosen within a delay range
[min delay..max delay] defined by the user. Otherwise, a fixed user-
defined primary delay can be used (for instance 1’, 2’, ...5’).

3. At this step, the disruption time (ti) and the size of delay (delayi) are
known, but it is necessary to know which train is the target of this dis-
ruption. The function Get Can− didates Primary Delay identifies the
train set (T ) that are circulating at the time ti when the disruption occurs.
Then, the two trains from the set T whose delay affects the greatest/lowest
number of following trains are the trains in the most initial/final part of
its journey. The process randomly chooses one of these two worst/best
case trains.

4. Once the affected train is chosen, the part of its journey that is running
at time ti is identified:

(a) If the disruption occurs when the train is between stations k and k+1
of its journey, then its arrival to the station k + 1 is delayed.

(b) On the other hand, if the disruption occurs when the train is stopped
(for instance, in a commercial stop) at station k, then the delay is
applied to its departure from this station k.

In both cases, the sections of the train journey to be considered in the
re-scheduling process begin from the station k. Likewise, as described in
subsection 7.1, only the part of the timetable scheduled after the time
when the initial disruption occurs should be considered. Therefore, the
part of the timetable to be re-scheduled begins at time ti, station k.

When the process Put Disruption has been finished, the re-scheduling pro-
cess begins, and the overall delay for all trains in the timetable is saved. Then,
a new iteration of the sampling process on the initial timetable is performed.
This loop continues until all subintervals (ns) have been scanned over the given
timetable. The final result is the average delay of all the overall delays obtained
for each subinterval in which a disruption was inserted.

Description of the Re-scheduling Procedure

When a disruption occurs (Put Disruption), it causes a primary delay in the
planned timetable so the original schedule may already not be feasible. For this
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Algorithm 7.1: Put Disruption(Timetable, si =
[t0i, tei], delay range = [min delay,max delay])

t← Rand(t0i, tei)
delay ← Rand(min delay,max delay)
Trains← Get Candidates Primary Delay(Timetable, t)
trainA ← Get Worst Candidate(T, t)
trainB ← Get Best Candidate(T, t)
affectedTrain← Rand(trainA, trainB)
if affectedTrain depk < t and t ≤ affectedTrain arrk+1

then (Case 4.a)
affectedTrain arrk+1 ← affectedTrain arrk+1 + delay
if affectedTrain arrk < t and t ≤ affectedTrain depk
then (Case 4.b)

affectedTrain depk ← affectedTrain depk + delay

Figure 24: Procedure to simulate a disruption over a given railway timetable

reason, a re-scheduling procedure becomes necessary. It must detect and repair
the conflicts that appear as a consequence of the unexpected disruption. Next,
we describe the re-scheduling process that is performed at each iteration of the
sampling process, after the Put Disruption function inserts the disruption:

1. Propagate the primary delay to the rest of the affected train journey.

2. Generate an ordered list where each nodej is a pair [Ti; lk]. Each pair
refers to a train in the timetable and a track section of its journey. The
nodes are ordered according to the departure time of each train Ti from
the corresponding station lk. The first node in the list for the re-scheduling
process is the earliest [train, track section] departure that is after the time
of the incident. The following steps start with the first node in the list
(j = 1).

3. Verify the timetable corresponding to train and track section defined by
the pair that occupies position j in the ordered list. If no conflict is
detected, increase position j in one and repeat this step. Otherwise, repair
it according the following rules:

(a) If the two trains have the same running time in the track section,
then the train with the greater departure time is delayed in order to
satisfy the constraint. This criterion will obtain the minimum overall
delay for both trains.
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Figure 26: Conflict between trains with different running time in the track section

(b) In the other case, the train that produces the minimum delay with
respect its original timetable is delayed.

The technical stop that is added to the departure time of the selected
train to be delayed in order to satisfy the constraint being verified is
called secondary delay.

4. Propagate the secondary delay assigned to the selected train in the previ-
ous steps to the rest of its journey.

5. Reorder the list of pairs (train, track section) according to the departure
time of each train. Go to step 3, until the end of the list is reached.

6. End of re-scheduling procedure.

In step 3 of the above procedure, when a conflict between two trains appears,
the process decides which of the two trains will be delayed to repair the conflict3.
Figures 26 and 27 show the cases where the rules (a) and (b) are applied,
respectively.

• In the first case of Figure 26 (upper left), a headway conflict appears
at destination: the slower Train Tk is delayed in track section li → li+1

3A weighted re-scheduling process could be applied, such that the weight assigned to each
train type on the railway line is considered: trains with higher weight (higher priority) will
be prioritized (like fast trains) in the re-scheduling process respect to the lower weight trains
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Figure 27: Conflict between trains with the same running time in the track section

such that a conflict with the faster train Tj appears at location li+1. In
this case, the train Tj will be delayed at li in order to hold the headway
constraint with respect to Tk at location li+1. The process computes the
delay of each train with respect to its original timetable if it was delayed.
If Tj was delayed the difference with respect its original timetable would
be minor than if the train Tk was delayed. Then, Tj is delayed.

• In the second case of Figure 26 (upper right), a headway conflict appears at
origin: the faster train Tj is delayed with respect to its original departure
time of li (as case 4.b of the Put Disruption procedure) such that a
conflict with the slower train Tk appears at location li. Thus, the departure
time of Tk from li should be delayed in order to hold the headway time
with respect to Tj at location li.

• The third case of Figure 26 (lower center), is similar to the first case, if
we consider the headway time at destination to be a negative value. The
slower train Tk is delayed from li to li+1 such that a conflict with the faster
Tj appears during the journey from li to li+1 (as a negative headway time
at destination). As the first case, the process computes the delay of each
train with respect to its original timetable if it was delayed. If Tj was
delayed the difference with respect its original timetable would be minor
than if the train Tk was delayed. Then, Tj is delayed.

We will describe each step of the re-scheduling procedure in more detail
with an example. Figure 28 shows a timetable that has been planned for the
circulation of trains Tk, Tk+1, Tk+2, and Tk+3. The minimum headway time that
there must be between consecutive trains is given by the Minimum Headway
Time (MHWT ).

Let’s suppose that a primary delay affects the train Tk+1, producing a de-
lay (primary delay) in its departure time from the station li+1. This delay is
propagated to the rest of its journey (Figure 29). At this point, a re-scheduling
procedure is necessary because the timetable of one of the trains in the original
timetable has been modified. We need to check if this delay produces a conflict
with the rest of the trains in the original timetable.

The first step of the re-scheduling procedure consists of propagating the pri-
mary delay of the affected train to the rest of its journey. In the case of the

35



3+kT1+kT 2+kTkT
(MHWT) TimeHeadway  Minimumil 1+il 2+il 3+il 4+il )(xtime

)(ylocations
Figure 28: Original Timetable in Circulation

3+kT1+kT 2+kT
il 1+il 2+il 3+il 4+il )(xtime

)(ylocations delayPrimary kT
 timedisruption meheadway tint Insufficie

Figure 29: Primary delay is propagated to the rest of the train journey
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affected train Tk+1, the dotted line indicates the original timetable, and the
continuous line indicates the possible new timetable for Tk+1 after the disrup-
tion occurs. Once we obtain a new possible timetable for train Tk+1, a list of
pairs (train, track section) is generated in step 2. For each train and for each
track section of its journey considered by the re-scheduling (i.e., after the time,
when the primary delay occurs), a node is added to the list. The pairs are
ordered according to the departure time of the train from the station where the
corresponding track section of the pair begins. The ordered list corresponding
to Figure 29 is shown in Figure 30.

The timetable is verified considering each node of the list in the same order
that it appears in the list. The verification starts with the node in position j = 1
(in the example, the node [Tk; li+2]). Here, we verify that the train Tk has no
conflict with any other train in the track section li+2 → li+3. Therefore (step 3),
j is increased by one unit in order to repeat the constraint verification with the
node in position j = 2. When this node is checked, a conflict with train Tk+2 is
detected (see Figure 31). In this case, the procedure has to decide which of the
two trains, Tk+1 or Tk+2, must delay its departure time from li+1, in such a way
that the minimum headway time between the two trains is held. The procedure
applies the rule (a) (step 3) of the algorithm assigning a technical stop to train
tk+1 because its running time in track section li+1 → li+2 is greater than the
running time of Tk+2.

31, ++ ik lt1 2 3 4 5 6 7 8 9101112132, +ik lT 11, ++ ik lT ik lT ,2+ 12, ++ ik lT ik lT ,3+ 3, +ik lT 21, ++ ik lT 22, ++ ik lT 13, ++ ik lT32, ++ ik lT23, ++ ik lT33, ++ ik lT
Figure 30: Ordered list of pairs [train, track-section]

Once the conflict is repaired by adding a technical stop to the selected train
(Tk+1), it is necessary to propagate this secondary delay to the rest of the
selected train journey (step 4), and the list is reordered because departure times
have been modified (step 5). The position j = 2 in the ordered list is not
modified, so the next node to be verified will be [Tk+2; li]. Figure 32 shows the
state of the schedule after the first repair has been made.

When the end of the ordered list is reached, the re-scheduling procedure
ends, and a new feasible schedule, which should be the closest possible to the
original one, is obtained.

Time Supplements in Running Times: Recovery

The process of re-scheduling only changes the timetables of those trains
whose departure times have been modified in order to repair conflicts that ap-
pear. When the departure time of a train from a station of its journey has been
delayed with respect to the original one, the re-scheduling process projects a
new arrival time to the next station. As pointed out in subsection 7.1, the re-
scheduling process can use the minimum feasible running time given for trains for
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Figure 31: Verification of the timetable assigned to train Tk+1, in the track section li+1 → li+2
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Figure 32: Repair of conflict and Reordering of [train,track-section] list

traveling track sections. In this way, if the original timetable has been planned
considering rtij as running time (the minimum feasible value plus a time supple-
ment), it would be possible to decrease the delay or to recover the punctuality
in the following arrival time. However, if the projection performed with the
minimum feasible running time (without the time supplement) indicates that
the train will arrive at the next station earlier than its original arrival time, the
running time will be increased until the new arrival time is, at least, equal to
the original one. In this case the train has been able to absorb the disruption
and return to its original timetable. However, a train without scheduled stops
during the rest of its journey could be re-scheduled such that it could arrive at
destination before the arrival planned time. For instance, in Figure 33, it can
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Figure 33: Example about use of buffer time by the re-scheduling process

be observed that trains can recover even more time than the disruption time
(see the curve behind the disruption linear line). However, this is not the usual
case. Trains only recover time whereas it is necessary to absorb the incident,
and it returns as soon as possible to the original timetable.

Figure 33 shows an example of the possibility of recovering running time
after delays, when time supplements have been added in train journeys. In the
track section specified in the example, the timetable for Ti has been planned
considering the minimum feasible plus a given time supplement as running time.
During the implementation of this scheduling, Ti is affected directly or indirectly
by an unexpected disruption in track section li → li+1. When the re-scheduling
process projects the new timetable for Ti using the same running time that was
used in the original schedule, the delay is maintained and it also appears in
li+2. At this point, the re-scheduling process projects the new timetable of Ti

considering as running time the minimum feasible without the time supplement
considered by the original planning. In this way, it obtains an earlier arrival
time than the original one. For this reason the running time increases until Ti

arrives at the originally planned time at li+2.
At the planning stage, it is very important to decide where and how many

time supplements are added to the minimum running time of trains. It is a
clear trade-off between optimality and robustness. Analysis of this dependency
is not the goal of this article. However, we can see the effects of adding time
supplements in the first, middle or final part of train journeys, depending on the
size of the primary delay (see Figure 34). Obviously, if we only take into account
delays of trains at the final stations of their journeys, the more towards the end
of journeys time supplements are placed, the more useful they will be in case
of delays. Therefore, the schedule would be more robust. It can be observed in
Figure 34 that time supplements in final stations reduce the overall delay due to
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the fact that disruptions along the entire path can be more easily absorbed. It
must be taken into account that this is the case only if we consider the overall
delay of each train at the end of its journey. Moreover, note that this figure
represents a timetable where overtaking is allowed. For this reason, each curve
is similar to the sin function, that is, as the disruption increases, the secondary
delay increases, until the disrupted train is overtaken by the following train. In
this case, the overall delay decreases, and so on.

Other results show that in highly loaded timetables, which usually have
higher secondary delays, the availability of time supplements for delay recovery
becomes more important. Figure 35 shows the different overall delay (with or
without time supplements) depending on whether the timetable is heavily or
lightly loaded. It can be observed that in the interval [00:00, 06:00], the line is
lightly loaded so a disruption can be easily absorbed and secondary delays are
not relevant. However, in the interval [14:00, 20:00], the line is heavily loaded
so any disruption generates higher secondary delays.

Results obtained from the Disruption Simulator

As pointed out, the developed disruption simulator tool performs an itera-
tive set of sampling of disruptions over the timetable planning horizon. In each
one of the ns sampling processes, the three sequential steps of put-disruption,
re-scheduling, and overall delay measurement for all rescheduled trains are per-
formed. These results are obtained in each sampling process:

• (δi) - Average Delay: Overall delay divided by the number of trains whose
timetables are being rescheduled.

• (αi) - Affected Trains: number of affected trains (with delay with respect
to their original timetables).

• (∆i) - Overall Delay: sum of delays for all affected trains.

• (ρi) - Percentage Delay: percentage of delay with respect to the planned
running time of trains.
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Number of Re-
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Av. Delay A. Trains T.Delay Perc. Delay Settling Time

1 δ1 α1 ∆1 ρ1 τ1
...
i δi αi ∆i ρi τi
...
M δM αM ∆M ρM τM

Final Results

M∑
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δi

M
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αi

M

M∑
i=1

∆i

M

M∑
i=1

ρi

M

M∑
i=1

τi

M

Table 2: Response variables obtained from the disruption simulation

• (τi) - Settling Time: time elapsed from the disruption time until all trains
run without delay (i.e. the timetable returns to its initial planned state).

At the end of all ns sampling processes over the given timetable, several
average results are obtained (Table 2).

The described processes do not consume very excessive computational time.
Therefore, in order to obtain representative values, each set of ns sampling
processes can be repeated again several times. In the example shown in Figure
35, the width of intervals was around 30′ − 60′ (ns is around 8 -16, since we
usually restrict the timetable horizon up to 8 hours) and primary delay was in
the range of [1′, 5′]. Typical tested timetables have around 50-80 trains, and
each set of ns sampling processes was repeated M = 1000 times.

This Disruption Simulator is an specific module that is integrated in a
computer-based support system for railway traffic planning that is applied for
generating real-world railway timetables in a commercial Railway Infrastruc-
ture Manager. The Disruption Simulator process takes into account all the
constraints, and all train and infrastructure data that exist in real-world cases.
For instance, the re-schedule process considers real-world running times; re-
quired times for acceleration and braking in delays; number of available tacks in
stations; maintenance track constraints; types, controls and signals in headway
constraints; etc. These details have not been described in this paper for reasons
of simplicity.

8. Evaluation: Results from the Analytical Model vs the Disruption
Simulator

In this section, we present the evaluation obtained from the two methods
presented in the above sections, the analytical and simulation approaches. We
use the same test cases for both methods in order to contrast the results obtained
by each one.

First Test Case : Homogeneous Trains
The first tests were performed on a homogenous railway line with the fol-

lowing characteristics:
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Train i RTotalHomWO RTotalHomO
(I=360,i) (I=360,i)

1 7200 6000
2 6840 5700
3 6480 5400
4 6120 5100
5 5760 4800
6 5400 4500
7 5040 4200
8 4680 3900
9 4320 3600
10 3960 3300
11 3600 3000
12 3240 2700
13 2880 2400
14 2520 2100
15 2160 1800
16 1800 1500
17 1440 1200
18 1080 900
19 720 600
20 360 360
Average 3780 3153
Sum of
Delay

Table 3: Analytical Results for Homogeneous Trains

• Incident (I) = 360 seconds

• Minimum Headway Time (MHWT ) = 300 seconds

• Number of trains = 20

• Interval time (IT ime) = 300 seconds

Table 3 shows the results obtained. Column 2
(RtotalHomWO) shows the total delay for the case where the trains cannot
overtake another train. In column 3 (RTotalHomO), we present the results for
the same trains but when they can overtake another train. Each row of the
table indicates the order number of the train affected by the disruption. This
is the train that has the primary delay. In this test case, the period of time
between the trains is the same as the headway time. For this reason, the pri-
mary delay (I) is not absorbed, and all of the following trains have a secondary
delay. Considering that the disruption can affect any train on this railway line,
the average total delay is shown in the last row of Table 3.
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Figure 36: Results obtained with the simulation tool for a homogeneous railway line with
overtaking
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Figure 36 shows the railway line used by the simulation tool to evaluate the
same schedule used by the analytical method. Represented in this figure is the
original schedule before the disruption occurs and the new schedule after the re-
scheduling process changes the timetables in order avoid future conflicts among
the trains caused by the primary delay in the train Ti. Each row of the table
shown in Figure 36 corresponds to a given period of time between the trains
(different IT ime). The disruption does not produce a secondary delay until
the trains are separated by a period of time of 11 minutes. From this point,
the secondary delays increase until the maximum capacity is reached, when the
period of time between the trains is the same as the headway time. The result
in the last row corresponds to the test case evaluated by the analytical method.
We can observe that the average total delay produced by the simulation tool is
the same as the average total delay obtained from the analytical approach.

Second Test Case : Heterogeneous Trains
We have also contrasted the results obtained in both approaches when the

railway line is composed of heterogeneous trains. In this case, the railway line
is composed of trains with an average speed equal to 100 Km/h and 80 Km/h,
respectively. For the analytical approach, we consider the following:

• angle for the slower trains: 22.6◦

• angle for the faster trains: 14.6◦

• position (p) with respect to the initial point of the railway line, where the
total delay is computed = 162.7 Km

• period of time between consecutive trains (IT ime) = 300 seconds

• Minimum Headway Time (MHWT ) = 250 seconds

The result given by the analytical approach indicates that, in the point
(p) = 162.7Km, the trains have a total delay of 670 seconds. The following
expression indicates the way that the analytical approach obtained this result.

Rt0(162.7) = 360

Rt1(162.7) = Rt0(162.7)− IT ime01 +MHWT01

Rt1(162.7) = 360− 300 + 250 = 310

Rt2(162.7) = Rt1(162.7)−Dist1,2(p) +MHWT1,2

Dist1,2(162.7) = IT ime1,2 + (p× tan(α2))/rel2 − (p× tan(α1))/rel1

Dist1,2(162.7) = 2721.13

Rt2(162.7) = max{310− 2721.13 + 250 , 0} = 0

RtotalHWO = 360 + 310 + 0 = 670

(17)
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Figure 37: Heterogeneous Railway Line used by the simulation and analytical approaches

The values rel1 and rel2 indicate the relation between the expression p×tanα
and the time units (in this case, seconds). The value assigned depends on the
average speed assigned to each train.

When we use a simulation tool with the railway line shown in Figure 37, we
obtain a total delay for these schedule in point (p) equal to 720 seconds. This
difference is due to the fact that the simulation tool computes the total delay
for each train at point (p) and not at destination. If we desire to study the
total delay to destination by the simulator tool, then it reduces the total delay
to 670 seconds due to the fact that the second train recovers the buffer time of
50 seconds (ITime-MHWT), so the total delay is 720-50=670 seconds.

Other Simulation Results

We provide results that have been obtained after simulating disruptions for
different timetables. We have used the same railway line, which is composed of
17 stations with double track and automatic blocking in all its track sections. We
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have followed the process defined in subsection 7.2: (i) define original timetable,
(ii) insert disruptions, (iii) repair timetable (Re-scheduling), and (iv) get values
for response variables.

Train delay is one of these result variables, which is defined according to
expression 18, where:

• arrini
is the arrival time of train i to its final station lni , after the re-

scheduling process is finished,

• ârr
i
ni

is the arrival time of train i to its final station lni according to the
original timetable.

if arrini
− ârr

i
ni

< 0 then delayi = 0

else delayi = arrini
− ârr

i
ni

(18)

We have considered two types of trains in each original timetable, called Fast
and Slow, respectively. All trains of Fast type travel in each track section 1.5
times faster than trains of Slow type, in the same track section. The ordering
specified for the initial departure time of trains is made in such a way that trains
are distributed uniformly in the scheduling horizon with respect to trains of the
same type.

The tests have been divided in two parts. In the first part, we show how
the sum of delays changes when the number of trains is increased in the original
timetable. In the second part, we show how the sum of delays changes when
the primary delay produced by an incident is increased, considering the same
original timetable.

a) Sum of delays vs. Capacity (Number of Trains)

The simulator performs an iterative process. In each iteration, it obtains
the sum of delays corresponding to a given number of trains that make up
the original planning. The number of trains is increased in each iteration by
the lowest number that maintains the proportion among the types of trains.
We have established the minimum and maximum number of trains that are
considered in the first and last iterations, respectively.

We simulate incidents at different times in the scheduling horizon, and we
consider that each one causes a primary delay equal to two minutes.

Figure 38 shows the percentage of the total secondary delays with respect
to the primary delay according to the number of trains for three cases. These
are different due to the type ratio established in each case.

• Case 1: The same number of Fast and Slow trains.

• Case 2: The number of slow trains is two times the number of fast trains.

• Case 3: The number of fast trains is two times the number of slow trains.
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Figure 38: Percentage of total delays with respect to primary delay vs. Number of trains in
the original timetable (capacity utilization)

Figure 39: Original timetable with 192 trains

Figure 39 shows the original timetable used in the disruption scan process when
the number of trains is equal to 192. If this timetable suffers an incident whose
primary delay is equal to six minutes, then we could expect a sum of delays
equal to 780 seconds, according to the results shown in Figure 38.

b) Sum of delays vs. level of Primary delay

In this case, we consider only one original timetable, and we show how
changes the sum of delays when the primary delay produced by a disruption
is increased. In this case, the original timetable is composed of 180 trains
in the railway line. We employ the same re-scheduling procedure, but this
time, we consider different primary delays. The results are shown in Figure 40,
which shows that as the level of primary delay increases, the sum of delays also
increases. However there exist a point in which the primary delay is big enough
that the secondary delays are not affected in the same proportion so that the
sum of delays decrease. This is the case when the disrupted train is overtaken
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(see Figure 34).
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Figure 40: Sum of delays vs. level of primary delay

9. Conclusions and further work

The robustness of a solution in a real scheduling problem is becoming more
and more valuable. In railway scheduling, the robustness of a timetable is an
indicative measure of how good a timetable is. It depends on several factors.
From an initial point of view, it mainly depends on train heterogeneity, the ca-
pacity used in the infrastructure, and the average speed of running trains. For
instance, there can be: (i) a high stability in metro-trains with homogeneous
traffic, low speed and a large number of trains per time unit; or (ii) intercity
train services, with a higher average speed and heterogeneous traffic so that the
same reliability of the service cannot be attained even if the number of trains
per time unit is reduced considerably, [28]. Timetable robustness also depends
on timetable optimality, which is a basic criterion in the timetable construction
process as stated above. However, we can also work on many other factors in the
timetable construction process in order to obtain robust timetables. These ro-
bust timetables allow the railway operators to cope with unexpected disruptions
that normally occur on a daily basis. A timetable can have the characteristic
whereby delayed trains lead to considerable knock-on effects, whereas another
configuration of the timetable may be able to absorb such effects more read-
ily. In this paper, we have presented the main parameters that can be directly
related to robustness. Railway operators (based on their expertise) help us
to determine the most important parameters and they have been included in
our analytical formulas to compare and measure robustness. According to the
several real world test cases performed, the results obtained by the disruption
simulator process were very close to the expected average delays obtained in
real-world timetables under real world circumstances. Results obtained by the
analytical model were also close to those obtained by the Disruption Simulator
on the same real world timetables. For this reason, the disruption simulator
verifies the evaluations obtained by the analytical model.
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The described re-scheduling process is complex due to the real-world train
and infrastructure data and constraints it manages. An exhaustive sampling
of disruptions on complex timetables is a time consuming task. Performing
the analytical model on timetables is very efficient and only requires a few
milliseconds of computational time.

Therefore, the proposed (computationally more efficient) analytical model
becomes an efficient and useful alternative for light robustness assessment in
single-line railway timetables. This is a main conclusion of this work. For these
reasons, we will use the analytical model for generating more robust timeta-
bles by introducing this analytical robustness assessment as a new evaluation
criterion in timetable generation processes.

In further work, we will also use the results obtained by the analytical model
to deduce new conclusions about robustness, its properties and relationships.
Furthermore, we will also study some other features and statistical relations
when measuring robustness. To this end, we must analyze the historical data
about disruptions (given by railway operators) to obtain useful statistics to im-
prove our formulas and a better robustness assessment and timetable generation.
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