INTECH

open science | open minds

ARTICLE

International Journal of Advanced Robotic Systems

Industrial Robot Programming
and UPNP Services Orchestration
for the Automation of Factories

Regular Paper

A. Valera’, J. Gomez-Moreno, A. Sadnchez, C. Ricolfe-Viala, R. Zotovic and M. Vallés

Instituto de Automaética e Informética Industrial, Universitat Politecnica de Valéencia, Valencia, Spain

* Corresponding author E-mail: giuprog@isa.upv.es

Received 8 May 2012; Accepted 7 Jun 2012

DOI: 10.5772/51373

© 2012 Valera et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract The integration of equipment and other devices
built into industrial robot cells with modern Ethernet
interface technologies and low-cost mass produced devices
(such as vision systems, laser scanners, force torque-sensors,
PLCs and PDAs etc.) enables integrators to offer more
powerful and Nevertheless, the
programming of all these devices efficiently requires very
specific knowledge about them, such as their hardware
architectures and specific programming languages as well as
details about the system’s low level communication protocols.

smarter solutions.

To address these issues, this paper describes and analyses
the Plug-and-Play architecture. This is one of the most
architectures (SOAs)
available, which exhibits characteristics that are well

interesting service-oriented
adapted to industrial robotics cells. To validate their
programming features and applicability, a test bed was
specially designed. This provides a new graphical service
orchestration which was implemented using Workflow
Foundation 4 of .NET. The obtained results allowed us to
verify that the use of integration schemes based on SOAs
reduces the system integration time and is better adapted
to industrial robotic cell system integrators.

www.intechopen.com

Keywords industrial robotic cell programming, service-
oriented architectures, robotic systems adapted to SMEs.

1. Introduction

The use of industrial robots in typical manufacturing
systems is necessary. Therefore, they require a high level of
integration with other devices and systems which are
increasingly varied and powerful. The challenge is to
respond to increasing demands in terms of flexibility and
agility - e.g, it is common among small and medium
enterprises (SMEs) that manufacture short batches of several
types of products without stocks. Within system integration
for such production, experiences and developments have
resulted in a strong desire to improve efficiency and
flexibility by combining the following three approaches:
¢ Integrating the different types of devices, such as
conveyors, industrial robots, input-output devices
and sensors, etc.
¢ Developing human-machine interface solutions that
can take greater advantage of human operators
while hiding from them the tricky details about how
to have things done.

Int J Adv Robotic Sy, 2012, Vol. 9, 123:2012

e Developing easy to use programming methods to
enable system integrators to focus on system
functionality and allow them to avoid the need of
knowing about device dependant hardware and
software details, such as the specific languages used
and the protocols, etc.

Nevertheless, the desired level of flexibility for the
integration of these systems has still not been achieved
[20], [39].

The flexibility obtained today was basically achieved
through specialization within known major application
areas, more specifically, within specific equipment and its
functionality. However, this is a limited solution since
this approach aims to solve each system component’s
required functionality instead of dealing with the
system’s global functionality.

There are several ad hoc ways to approach the problem
for systems that integrate these kinds of technology.
Nevertheless the trend is to have a client-server software
environment that enables system architects to distribute
functionality as well as coordinate actions from a central
client commanding application.

With the advent of the Internet, SOAs have emerged to
increase the degree of decoupling between software
elements [11]. A SOA relies on highly autonomous but
interoperable systems. The definition of a service is ruled
by a larger context; this means that all of the technological
and interconnection details are hidden [25].

In the short term - as some authors and experiences point
out [9] — it looks as though SOAs are here to stay [46], not
only as applied to pure software development but also to
other fields, such as robotics [34],
technologies [17] and even human task support [35].

information

At the device level - as predicted in [21] - SOAs are
emerging as the main way to deal with the increasing
amount of embedded devices present in our homes,
offices and enterprises. The main idea behind the SOA
paradigm is in providing system integrators with the
possibility of offering their equipment and the services
needed to operate them. This will enable the exchange of
information between system elements through the
Internet and/or local networks without the need for
complex interconnections that are product dependant
and without human intervention.

In the industrial sector, manufacturing can also be
monitored remotely. This means that integration systems
must be strong and safe enough in order to guarantee
correct performance. In general terms, industrial robots in
a production line are programmed without considering

Int J Adv Robotic Sy, 2012, Vol. 9, 123:2012

possible failures or faults. Failures are dealt with by a
centralized system which synchronizes actions with
robots. Nevertheless, if the system enters into a deadlock,
a lot of time - and money - might be necessary in order to
reset the process and synchronize the required devices so
as to continue with production. With SOA-based systems,
deadlocks can be detected — and, from there, avoided - as
there is a continuous development of formal methods to
check the deadlock freedom in SOA scenarios [26], [28]
and [45].

With the aim of avoiding these problems, a service-
oriented architecture can offer a very efficient solution
since it will configuration and
synchronization very simple. In addition to this, recent
work lines have added real-time and fault tolerance
capabilities to SOAs [10], [13], allowing them to
undertake even time-critical scenarios.

make device

The SOA paradigm has even more advantages when the
production lines have many devices with a high capacity
of processing. In order to foster and facilitate integration
even more, so-called SOA logic devices are used. These
logic devices are composed by a physical device and a
group of the device features. In this way, a system can be
implemented as several SOA logical devices, where only
the interesting features for the process from each device
are used.

All the services need to be made known in the SOA
environment in order to implement it and they must also
have their functions specified. In this way, all the logical
devices can be used to create a program at the highest
level, for instance, as with the welding tasks of an
industrial robot.

This paper describes and analyses the development of
industrial robotic cells based on industrial robots by
means of the use of SOA. In order to do so, one of the
most promising platforms will be displayed - the
Universal Plug-and-Play architecture (UPnP) - focusing
on the definition and orchestration of services.

For service planning and synchronization, a new
orchestrator has been developed. It is a graphical
orchestrator implemented using Workflow Foundation 4
of .NET. Therefore, the robot applications’ configurations
are very simple because the drag-and-drop enables to select
and use the activities, primitives and flow control
structures required for the application. The aim of this is
to fill the gap left for a runtime application which is
operator-oriented allowing for the easy re-programming
of an industrial robotic cell, in addition to previous
attempts at simplifying SOA development [14] that where
more oriented towards back office development. As
stated in [7], [16] and [44], visual programming allows

www.intechopen.com

users (such as operators) with a lower programming
background to be able to manage the system more
intuitively.

This attempts to contribute to the objective of fully
integrating the different layers of an enterprise under the
same architecture [46], from business decision-making at
the top, to the factory shop lower down.

The high complexity of such productive systems and the
eruption of new approaches to auto-adaptive
architectures [8], [29] have generated the belief that SOAs
have an important role to play in the paradigm shift that
will soon be arriving [9].

Developing good, service-based, operator-oriented
applications will become fundamental for such high
dimensional, rapidly changing systems.

2. Service-Oriented Architectures
2.1 Introduction

A great variety of mechatronic devices and components
with a high capacity for calculation and autonomy can be
found in industrial robotic cells nowadays, as mentioned
earlier. Some examples are robots, artificial vision
systems and programmable logic controllers (PLCs), etc.
[12],[15]. These are centralized systems which use client-
server point-to-point software based on the survey
method. They are usually manually configured, and so
this is a long, difficult and tedious task.

The industrial robotic cell should have modern network
architectures and communication systems based on a
publisher/subscriber pattern so as to avoid these
problems and obtain better performance [31]. In this way,
decentralized intelligent software with a nearly automatic
configuration can be obtained. Some examples that prove
this theory can be found in the bibliography, but this
approach constitutes a new research area. At present, the
research literature offers very little information about this
approach. A summary including the main characteristics
of SOAs and defining the kinds of device can be found in
[6],[19]. For instance, the European project SIRENA [37]
pointed out the advantages of using SOAs in industrial
automation, while the primary objective of the
SOCRADES [38] European project was to develop a
design, execution and management platform for next-
generation industrial automation systems, exploiting the
Service-oriented architecture paradigm, both at the device
level and at the application level.

In [30][42], the process of programming industrial robotic

cells with SOAs is proven. Moreover, in [2],[3],[4] and [6]
the use of SOAs is proposed as robot middleware.

www.intechopen.com

Four of the most relevant and available approaches of
SOAs are considered in this work: Jini [22],[33],
Decentralized Software Services Protocol (DSSP) [27],
Universal Plug-and-Play [33],[40] and Device Profile for
Web Services (DPWS) [36].

Jini is an architecture proposed by Sun Microsystems
based on Java. To make it independent from the platform,
it also carries a large memory footprint, due to the
presence of a virtual machine and extensive libraries,
making memory resources necessary. Therefore, it is less
appropriate for very small devices.

DSSP is a protocol which is based on the simple service
object access protocol (SOAP) that defines a lightweight,
REST-style model and which also
extensively on web technology. Paired with concurrency
and coordination runtime (CCR), it constitutes the major
parts of the Microsoft Robotics Studio (MSRS) platform.

service relies

UPnP and DPWS rely extensively on standard network
protocols, such as TCP/IP, UDP, HTTP, SOAP, XML and
web technology. This makes them platform and language
independent. XML formats are broadly used and
accepted and provide modern data exchange mechanisms
and communications.

The implementation of SOAs can be based on RPC
(Remote Procedure Call), which provides an innovative
approach and offers many possibilities to considerably
improve their application in robots [5]. The design of
middleware platforms for SOAs is very helpful in order to
have interoperability and a flexible and efficient coupling,
especially for applications working in a heterogeneous
environment. Therefore, a SOA has to specify the
functional and non-functional proprieties (scalability,
flexibility and the quality of the service included). Table 1
shows the three kinds of software related to this type of
architecture and the most representative examples.

The idea that lies behind the RPC is to make the
distributed systems more accessible to programmers. The
RPC provides developers with an interface with the
communication code, which is the best way to simplify
procedure calls. By using this concept, it is not necessary
for the developer to write the network code. Thus,
programmers do not need to be experts in developing
network code in order to write complex systems
distributed through any number of hosts in a network.

Levels Examples
SOA UPnP, DSSP
Middleware services DCOM, CORBA, RM],
(based on RPC) SOAP
Transport protocol TCP/IP, HTTP

Table 1. Service levels and examples

A. Valera, J. Gomez-Moreno, A. Sanchez, C. Ricolfe-Viala, R. Zotovic and M. Vallés:

Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories

3

4

RPC
CORBA

Characteristics

When it is obtained, CORBA
enables a client-server direct
communication. It allows very
fast communication. It is not
scalable.

Protocol

Inter-
ORB
GIOP

DCOM
(Windows)

ORPC This requires several round-
trips to activate and use the
remote object. When the
reference has been obtained,
access to DCOM objects can
be carried out directly from

the client. It is not scalable.

RMI
(Java)

JRMP Works well, but only with
the Java language. It is quite

scalable.

SOAP
(XML-RPC
successor)

Any Nowadays, it has limited
transport |services. There is an overhead
protocol |[for extracting the SOAP
envelope, parsing XML,
creating appropriate objects
and converting parameters. It

is scalable.

Table 2. Remote Procedure Call variations

Many systems have tried to implement the concept of the
RPC and so some of the most common varieties can be
found, for instance, CORBA (Common Object Request
Broker Architecture)) DCOM (Distributed Component
Object Model), Java RMI (Remote Method Invocation)
and SOAP (Simple Object Access Protocol). Despite the
fact that this software is used in different environments,
they each have the same objective: to facilitate writing
and maintaining the different applications. Table 2 shows
the most-used procedures, the protocol name and the
RPC’s essential features.

CORBA is a RPC object-oriented version. CORBA -
GIOP, to be precise - uses TCP/IP connections to transmit
data. DCOM was the biggest CORBA competitor. Some
years ago, these technologies’ supporters considered
them as an example of coding and service reuse on the
Internet. However, if the client has a firewall or a very
restrictive server which only enables HTTP connections,
communication can become impossible.

Juric, et al. [24], analysed how RMI worked. Even though
this technology worked better than the web services, the
fitting/adjustment alternatives have limited services/features.
In addition, the web services have to be used if it is not
possible to open distributed application ports.

SOAP is a specification that enables communications
between applications [47]. SOAP has two main objectives
-simplicity and extensibility. To reach them, it omits
features that are usually found in distributed systems

Int J Adv Robotic Sy, 2012, Vol. 9, 123:2012

within the messages’ framework. In addition, it is an
open standard specification based on open technologies,
such as XML and HTTP, so it is versatile enough to
enable different transport protocols. SOAP is lower than
CORBA, RMI and DCOM. Nevertheless, SOAP correctly
designs tunnels on HTTP in firewalls and proxies.

As can be found in [32], the integration cycle for the
development of distributed applications in industrial
robotic systems based on middleware services can be a
long and tedious task. In this work, a robotic system that
uses services based on SOA in a framework which is
oriented towards distributed services was developed and
analysed. In comparison with the existing work, the
robotic system supports publisher/subscriber
mechanisms and it can find services and devices in a
precise way.

2.2 UPnP Architecture

This work notes the services and applications based on an
UPnP architecture. This type of architecture has been
chosen because it has been tested and validated for some
time in different office environments. Therefore, there are
a great variety of development tools available. In
addition, [2],[3],[43] include some examples of the use of
this architecture for the development of industrial robot
cells.

The basic elements of an UPnP network are: services,
devices and control points. A service is a unit of
functionality that exposes actions and has a state defined
by a group of state variables. A device is a container of
services and other devices. Finally, a control point is a
service requester. It can call for an action or subscribe an
‘evented’ variable (a variable with events associated).

The basic steps that compose UPnP networking are:

e Addressing. A device or a control point obtains a
valid IP address.

e Discovery. A control point finds a device of interest.

e Description. A point obtains
descriptions from devices.

¢ Control. A control point invokes actions on devices.

e Eventing. The services announce changes in their
states.

control service

e Presentation. A control point monitor and control
device status using a HTML User Interface.

Usually the dynamic host configuration protocol (DHCP)
is used to obtain the IP. Once devices are attached to the
network and are properly addressed, the discovery step
takes place. The devices advertise their services to control
points and they in turn search for devices in the network.
The description step enables a control point to obtain the
necessary information about a device. This is done using

www.intechopen.com

the URL provided by the device in the discovery
message. At this stage, the control point has the necessary
information about the actions and state variables
provided by a device. The control step consists on calls to
actions present in a device made by a control point. When
the state of a service (modelled in their state variables)
changes, the service publishes updates by sending
messages over the network. These messages are also
expressed in XML and formatted using the general event
notification architecture (GENA). Some devices may have
presentation web pages. In this case, a control point can
retrieve a page from the specified URL, load the page into
the browser and - depending on the capabilities of the
page - enable a user to control the device and/or view the
device status.

3. UPnP Services Development for Applications
Based on Industrial Robots

3.1 Introduction

In this section, some methods and tools used to develop
UPnP services for industrial robot applications will be
explained. Firstly, two tools that enable the services’
devices” automatic generation are shown. Once the devices
have been obtained, it is only necessary to program the
services functionality that these devices have. This is done
by means of the two tools that allow the programming of
the industrial robots ABB and FANUC.

3.2 UPnP Service Development.

Although it is possible to find other solutions, in this
work Intel® Tools for UPnP™ Technology is used for the
development of the services [18]. Based on the Microsoft
.NET Framework, these free software tools help hardware
and software designers and programmers to develop, test
and use UPnP services in a quick and simple way.

State Variables Aetions | Complex Types | Complex Typs Primitives |
Action Name [Arguments [
@ EscibiT areta sing valor, 4 canal
¥ Action Editor. [B]=1E5]
Action Name:
[EscibiT arjsta
oS Add bgumert |
ew® Name [valor
4|] vaiable [vaior =l
g Name [canal
4] | vaiable [Canal -
% |

Figure 1. The Service Author tool - used for the automatic
generation of the XML service description.

www.intechopen.com

Although the package has 11 tools available, the
application Service Author is mainly used in this work.
This application generates the XML format automatically
and it enables the creation and execution of the service.
Therefore, state variables - which enable the input-output
service arguments - can be specified. From these state
variables, the actions linked to services can be defined.

Figure 1 displays the appearance of the Service Author
application. This is a that enables to
digital/analogical conversion with a data acquisition card.
To generate the service XML file, an action is defined
(Write card). It has two input parameters: the value of the
tension to be converted and the output required.

service

Once the service XML file is created, the only thing that
remains to be done is to generate the code for the
implementation of the device that offers the service.
Therefore, this paper suggests a second, free software
application: the Intel Device Builder for UPnP
Technologies, from the library Intel® Digital Home
Device Code Wizard [19]. This is an application which
enables the generation of devices and control points for
different platforms from XML descriptions of the services
that are generated with the Service Author application.

In order to export the desired device with the services,
Device Builder generates a portable C code automatically.
It is only necessary to specify the desired target platform,
the path where the code will be generated and the
namespaces of the device.

Although codes can be generated for different platforms -
such as Linux, Windows and PocketPC, etc. - in this
paper, the solution is generated for the NET Framework
and C# is used. This is because of the programming
used to develop the programming
applications and to control the industrial robots. Figure 2
shows the appearance of the Device Builder tool.

environment

Target Flatform

Froject Home.
Output Path

New Line Format

Caling Corvention
Librayy Code Prefix |

CloHrs o Gna otk ‘

Figure 2. The Device Builder tool - used for the automatic
generation of UPnP logical devices.

A. Valera, J. Gomez-Moreno, A. Sanchez, C. Ricolfe-Viala, R. Zotovic and M. Vallés:

Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories

5

3.3 Industrial robots’ programming environments.

After selecting the platform, Device Builder creates a
.NET project with the necessary code for the service to be
started or stopped or else to detect when this service is
called, etc. The only thing to be done is to program the
code that implements the required device functionality. It
is only necessary for this to modify one of the .NET
project files: namely, the DVImportedService.cs file.

Two environments are used for the development of the
services’ functionalities as based on industrial robots:
Robot Application Builder and PCDK.

The Robot Application Builder (RAB) is a software
development kit (SDK) designed for ABB robots. RAB
uses the Microsoft® tool VisualStudio .NET in order to
create personalized operator interfaces for both PC and
FlexPendant. They enable the programmer to develop
control applications for industrial robots, have access to
their signals, modify the value of the variables in a
program in RAPID [1] code, load programs, move the
robot through RAPID programs, obtain the controller
characteristics, have access to the file system of IRC5 and
all the operations that can be done on an industrial robot.

RAB is based on a .NET class hierarchy, allowing for
more comfortable and simpler programming (C#.Net o
VB.Net), where all of these classes represent a robot
entity. For example, there is a class (Mastership) that
controls user access and checks their access and control
rights to the robot and the IRC5 controller for actions that
require a degree of security, for instance, the access to
variables in a RAPID program. Thus, it can avoid the
situation where two users have access to a variable at the
same time.

PCDK is the second development environment used. It is
a very powerful tool that enables a high degree of
efficiency in the
instructions between the PC and the controller of the
FANUC robots, thus allowing the development of the
applications in the languages of .NET, such as C# or VB.

information communication and

PCDK provides robot servers so that access to the
controller of the FANUC robots is allowed. This enables
write and read KAREL variables, write and read
numerical TPE registers, access to and the configuring of
the input-output robot signals, load, saving and executing
robot programs and the monitoring of their state, access
to robot positions and the generating of movement paths,
the monitoring alarms and use events, etc.

4. UPnP Service Orchestration

As has been explained in the previous part, the high level
tasks of the robotic cell can be programmed using UPnP

Int J Adv Robotic Sy, 2012, Vol. 9, 123:2012

services. Once these services are developed, it is only
necessary to plan and synchronize them.

In order to orchestrate the services, a graphical
development environment was initially considered,
similar to the Visual Programming Language included in
the Microsoft Robotics Developer Studio (MSRS) [23].

An attempt was made to adapt control the UPnP services
of industrial robots to the MSRS environment. However,
this was not possible, since UPnP is not supported in
MSRS nowadays.

It was also considered whether to orchestrate the services
by the execution of State Chart XML (SCXML) schemes,
since there are some tools that enable the converting of a
Unified Modelling Language (UML) scheme into SCXML.
Nevertheless, this possibility was also dismissed since it
required off-line programming, which limited the UPnP
features and did not have any real advantage in
comparison to conventional programming.

Finally, a new orchestrator was built from a standing
start. One of the new Visual Studio 2010 (VS2010) features
is a powerful workflow designer that allows us to
program graphically. Workflow Foundation 4 (WF) of
.NET provides the relevant classes so one can customize
the workflow designer for one’s own needs and use it in
one’s own applications out of V52010. In addition, WF
provides a workflow execution engine, offering the
possibility of evaluating Visual Basic expressions at
runtime and enabling the creation of variables to be used
in the program. Since these characteristics matched the
desired requirements for the orchestrator, WF was the
chosen technology to build it.

In order to develop the orchestrator, a software layer was
programmed that enabled the importing of an action
included in an UPnP service as an “activity” (a basic WF
element). These activities include all the data processing
needed for the input data to be considered as service
input parameters and, in the same way, the returned
values become output values of the WF activity. Figure 3
shows the orchestrator structure.

Orchestrator
UPNP API

Figure 3. Orchestrator structure.

www.intechopen.com

Figure 4 shows the developed graphical orchestrator.
Four areas can be considered in it. In the left column, the
activities available in the orchestrator are found, for
instance, the workflow control primitives and UPnP
services devices. In the second column, the area for the
orchestration of activities can be found. Here, the
program that will control the robotic cell can be
composed. In addition, in the lower part of the same
column, the required variables for the orchestration of
services can be managed. The third column includes the
properties of the selected WF activity. Here, the input-
output parameters can be assigned. The right column
offers the basic options for selecting files (to create a new
program or to save the current one, etc). In addition, it
has the “find” button, which enables the search for
services on the Net. It also has the key “run”, which
allows the execution of the program.

Therefore, the use of the application is very simple. “Drag
and Drop” enables us to place the activities and
primitives that constitute the application in the working
space. In addition, these primitives offer most of the flow
control structures presented in any programming
language (“while”, “if-else”, “for each”...), enabling it to
encapsulate sequential or concurrent actions.

- PP Cond x tor o m
"an [FIRE — —
a G e
@ooenares | e —
@
@ -
fihe =
°
8 e Fomtar
&
e —I
a
@
L]
@
: Start
- (3] sequence - Pick
. 5 seuence - Pace M Parallel - Initialize

E Sequence - Pick

=/ Fanuc RJ3iB

4Gk Set Digital Output

4 Go to Position

46k Go to Detailed Position

4 Follow Path 5] Sequence - Place

p ,
Figure 4. The developed graphical orchestrator.

Figure 4 shows an example of a simple application that
has 3 stages: initiation, pick and place. At the first stage,
different activities are launched in parallel to initialize the
cell. Once the activities of the first stage are finished, the
pick stage is run. At this stage, the robot moves until it
reaches approximation, then descends to reach the
picking point, closes the gripper and then rises. Figure 5
shows the encapsulate process of the second stage.
Finally, in the last stage, the robot moves to the place
where the piece will be left.

www.intechopen.com

,_'21 Sequence - Pick

=] RJ3iB_Aproach

1 RJ3B_Attack

(] RJ3iB_Close Claw

(™) RJ3B_withdraw

Figure 5. Activity sequence for the pick stage.

5. Development of an Experimental Test Bed
for Robot Cells for the Automation of a Factory

This section presents an experimental test bed that
enables the validation of the SOA as a general solution to
the programming of industrial robot cells. The proposed
application is an inspection and automatic pick-and-place
station based on industrial robots. The demonstrator is
basically composed of:

e A ABB IRB 140 robot, equipped with the IRC500
controller.

e A FANUC LR Mate 200Ib robot, equipped with the
R-J3iB controller.

e Two conveyors controlled by variable frequency
drives and equipped with presence sensors and
encoders.

¢ Two web cameras located on the conveyors.

The station functionality can be summarized as follows:
the first conveyor transports the pieces to be inspected.
They are cylindrical pieces with similar dimensions but
different colours. When the first sensor detects one piece,
the web camera takes an image of it and it is analysed. If
there is an object that does not pass the quality test -
because of its colour - it is sent to the first robot (IRB140,
equipped with a robot gripper) as a vector with the pieces
of the centroids that have to be removed from the
conveyor.

The correct pieces are automatically taken to the second
conveyor, which has a web camera at the end of it. It is in
charge of taking another image in order to detect the
piece position. This information is sent to the FANUC LR
Mate robot so that it takes the piece, one by one, in order
to pack it.

Figure 6 shows the devices used for the development of
the experimental test bed.

A. Valera, J. Gomez-Moreno, A. Sanchez, C. Ricolfe-Viala, R. Zotovic and M. Vallés:

Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories

8

Figure 6. The experimental test bed.

It may be possible to deal with how to increase the
versatility of the robot cell by incorporating features such
as visual servoing, the synchronization of robots with the
conveyors from the information given by their encoders,
the verification of the quality control of pieces with more
complex algorithms and the picking of pieces by
controlling strength, etc. However, this paper focuses on
the possibilities of SOA for the development of
applications based on industrial robots.

For the development of the application based on SOA,
five software applications, which match the five UPnP
devices present (ABB_IRB_140, FANUC, Conveyor,
Camera and System), have been developed. Figure 7
shows how the experimental test bed components have
technological dependence.

Yo %o :

Services Servicy sl
= ... Services__ =

PP s gy S
| SocketMessa — iy
| Socketiessaoing,

uPnP |
Sy | L & .
i y
-

ging
uPnP i ~— -
—r, -

| _ABBPCSDK
- | ———r

Orchestrator

RAPID

UPnP UPnP
Services Services

P
Figure 7. Test bed technological dependences.

Since industrial robots do not support UPnP by default, it
is necessary to develop an additional software layer to
integrate it as standard UPnP devices and services.
Therefore, ABB_IRB_140 devices were implemented in a
software application that communicates with the ABB
robot controller via a TCP/IP-based network. The robot
controller runs a server application developed in RAPID.
This UPnP device provides some services that accept one
position, a configuration (position and orientation) or a
positions’ vector where the robot must go to, to read or
write a RAPID variable content or to read a digital signal.

The FANUC UPnP device is similar to the device
previously explained. It was developed to program and
control the FANUC robot. For this device, services have
been programmed (for instance, to send the robot a
configuration or position vector where it must go to or in

Int J Adv Robotic Sy, 2012, Vol. 9, 123:2012

order to read a variable content. For this purpose, a
KAREL application has also been developed. The
application runs like a server, so that once the client is
connected - the UPnP device - it waits to receive from the
socket any information related to, for instance, the
positions where it must go to.

Identically, the development of services for other
manufacturers (such as KUKA and Motoman, etc.) will be
possible since they support socket messaging but, for
developing the test bed, ABB and FANUC were chosen
because they were the only ones available.

The conveyor device was also implemented as a software
application to control the conveyors. The whole of the
five conveyors works by means of an alternating current
engine which is activated with a frequency variator
(Altivar-31, from Telemecanique). The conveyors are
controlled by a PC equipped with a data acquisition card
(PCI-1720, from Advantech). The conveyors can start
working, stop and specify the direction and speed thanks
to the digital output channels in the card. The card access
programming has been done using C#.

The camera device was programmed using C# in order to
control access to the commercial cameras (Logitech
Webcam), which are in the inspection and packing
conveyors. This device returns the pieces’ numbers and
positions on the conveyors.

The last device (System) is a service used to initiate and
finish the robotic cell. It is also in charge of loading and
booting the programs that are run in the industrial robot.
In addition, it also has a service enabling the ending of
the system.

The additional effort made in programming the necessary
middleware for all the devices deployed for this demo
consisted of: developing the UPnP Service (which is quite
easy thanks to the automated tools provided by Intel);
setting up the communications with the UPnP service
(which is as trivial as coding socket messaging and
developing the WF activity to manage the service, which
only takes a few lines of code). Such effort is only
necessary once per device.

Once the development process is finished, the
orchestration of the final program logic was very simple
and intuitive.

The main advantages of this new way of working as
observed during the robot applications” development are
scalability and device reusability. Since the only centralized
part of the system is the system logic, adding new elements
to the robotic cell is straightforward insofar as they can
communicate through a TCP/IP-based network.

www.intechopen.com

The development can be started by solving a small part of
the problem (for example, the picking) and then connect
new devices to the network to build a more complex
solution. Regarding the reuse of devices, the development
of a different application for this set of devices will only
require changes in the service orchestration. This is
particularly rapidly
manufacturing environments.

profitable for changing

Another finding made during this task - which turned out
to be a core contribution of the graphical orchestrator - is
to finally bring the business logic to the workshop. This is
achieved by solving two problems:

First, drag and drop - one of the most widely used (and,
therefore, expected) - input methods are used. By this,
robotic cell programming is feasible for people with only
background knowledge in robotics and
automation. It is simpler to learn to operate the
orchestrator and plug devices into the network than to
learn the different controllers’ programming languages
and the proper way to communicate between them
(without even considering other difficulties such as using
robots from different manufacturers).

minimal

Second, the visual programming paradigm and the
workflow encapsulation capabilities of WF allow the
operator to have a clear overview of the productive
process.

Due to the complexity of this test bed and the SOAs’
advantages, a traditional approach for this industrial
robotic cell was not implemented. Therefore, data
couldn’t be obtained in order to accurately compare the
two solutions. However, the obtained results match with
the conclusions of [41]. In this work, using UPnP services,
the authors obtained a reduction in programming time of
40% compared with an alternative ad hoc robotic cell
solution. In addition, another evaluation was made based
on the feedback of robot programmers, R&D engineers,
former system integrators and engineering students. The
results were satisfactory since the simplicity and the
expressiveness of the SOA platform allowed their
development intuitively. Moreover, various users
claimed that the discovery features of the SOA allowed
for a better reconfiguration experience.

6. Conclusions

The main aim of this paper was to describe one of the
many SOAs recently proposed and to verify its use in real
industrial
programming of robotic cells. To achieve this, an
experimental test bed was designed in order to
implement one of the most promising SOA technologies:
UPnP

workshop applications, such as the

www.intechopen.com

Focusing on industrial automation and - more specifically
- on the programming of industrial robotic cells, UPnP
can enable operators to perform high-level programming
tasks. Therefore, engineers can concentrate only on low-
level programming tasks, with the added advantage of
being able to program them wusing any language.
Moreover, since it is based on standard technology, it
allows them to spend less time and attention on complex
interconnection tasks.

A new orchestrator has also been developed in this work.
It is a graphical orchestrator based on Workflow
Foundation 4 technology. It is intuitive and simple to use.
For these reasons, SOA allows the programming this type
of industrial cell by simply specifying the logic of the
system. In addition, it enables one to save time when
configuring and programming industrial applications in
the workshop, even for those who are not considered to
be experts in the subject. In addition, developed solutions
can be found and used for the most important cell
components - for instance, robots, cameras, PLCs and
intelligent sensors, etc.

7. Acknowledgments

The authors wish to express their gratitude to the Plan
Nacional de I+D (FEDER-CICYT, Spanish Government)
and to the Universitat Politecnica de Valencia (Spain) for
the financing of this work, which was made under the
research projects DPI12010-20814-C02-02, DPI12011-28507-
C02-01 and PAID/2011/039. In addition, they also want to
acknowledge the assistance of Elena Ruiz Gémez for her
help in the translation of the article.

8. References

[1] ABB (2005). “ABB IRC5 Documentation, ABB
Flexible Automation”, Merrit.

[2] AhnS.C, Kim J.H., Lim K.W., Ko H., Kwon Y.M. and
Kim H.G. (2005). “UPnP Approach for Robot
Middleware,” Proc. of the 2005 IEEE International
Conference on Robotics and Automation, Barcelona
(Spain), pp. 1959-1963.

[3] AhnS.C, Lee JW., Lim K.W., Ko H., Kwon Y.M. and
Kim H.G. (2006). “UPnP SDK for Robot
Development”, Proc. of the SICE-ICASE Int. Joint
Conference, Busan (Corea), pp. 363-368.

[4] AhnS.C., Lee JW., Lim KW., Ko H., Kwon Y.M. and
Kim H.G. (2006). “Requirements to UPnP for Robot
Middleware”, Proc. of the 2006 IEEE/RS] Int. Conf. on
Intelligent Robots and Systems, Beijing (China), pp.
4716-4721.

[5] Al-Jaroodi J., Mohamed N. and Aziz J. (2010).
“Service Oriented Middleware: Trends and
Challenges”, Information Technology: New Generations,
Third Int. Conf. on, 2010 Seventh International
Conference on Information Technology, pp. 974-979.

A. Valera, J. Gomez-Moreno, A. Sanchez, C. Ricolfe-Viala, R. Zotovic and M. Vallés:

Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories

[6] Bettstetter C. and Christoph R. (2000). “A Comparison
of Service Discovery Protocols and Implementation of
the Service Location Protocol”, Sixth EUNICE Open
European Summer School, Twente (Netherlands).

[7] Kelleher C. and Pausch R. (2005). “Lowering the
barriers to programming: A taxonomy of
programming environments and languages for
novice programmers”’, ACM Computing Surveys,
Vol. 37, No. 2, pp. 83-137.

[8] Candido G., Colombo A.W., Barata J. and Jammes F.
(2011). "Service-Oriented Infrastructure to Support
the Deployment of Evolvable Production Systems",
IEEE Transactions on Industrial Informatics, Vol. 7, No.
4, pp. 759-767.

[9] Crnkovic I, Stafford J. and Szyperski C. (2011).
"Software Components beyond Programming: From
Routines to Services", IEEE Software, Vol. 28, No. 3,
pp- 22-26.

[10] Cucinotta T., Mancina A., Anastasi G.F., Lipari G,,
Mangeruca L., Checcozzo R. and Rusina F. (2009). "A
Real-Time Service-Oriented Architecture for
Industrial Automation", IEEE Transactions
on Industrial Informatics, Vol.5, No. 3, pp. 267-277.

[11] Delamer IM. and Lastra]J.L.M. (2006). "Service-
Oriented Architecture for Distributed
Publish/Subscribe Middleware in Electronics
Production”, IEEE Transactions on Industrial
Informatics, Vol. 2, No. 4, pp. 281-294.

[12] El-KebbeSalaheddine D. A. (2000). “Towards a
Manufacturing System under Hard Real-Time
Constraints”, Informatik 2000: 30. Jahrestagung der
Gesellschaftf ‘urInformatik, Berlin.

[13] Estevez-Ayres 1., Basanta-Val P., Garcia-Valls M.,
Fisteus J.A. and Almeida L. (2009). "QoS-Aware Real-
Time Composition Algorithms for Service-Based
Applications", IEEE Transactions on Industrial
Informatics, Vol. 5, No. 3, pp. 278-288.

[14] Foster H., Uchitel S, Magee J. and Kramer J. (2010). "An
Integrated Workbench for Model-Based Engineering of
Service Compositions", IEEE Transactions on Services
Computing, Vol. 3, No. 2, pp. 131-144.

[15]Gou L., Luh P. and Kyoyax Y. (1997). “Holonic
Manufacturing Scheduling: Architecture,
Cooperation Mechanism, and Implementation”,
IEEE/ASME International Conf. on Advanced Intelligent
Mechatronics, Vol. 37, pp. 213-231.

[16] Green T.R.G., Petre M. and Bellamy R.K.E. (1991).
“Comprehensibility of visual and textual programs:
A test of superlativism against the “match-mismatch’
conjecture”, Proceedings of the Empirical Studies of
Programmers: Fourth Workshop (ESP4), pp. 121-146.

[17] Hong-Mei C., Kazman R. and Perry O. (2010). "From
Software Architecture Analysis to Service Engineering:
An Empirical Study of Methodology Development for
Enterprise SOA Implementation". IEEE Transactions
on Services Computing, Vol. 3, No. 2, pp. 145-160.

10 IntJ Adv Robotic Sy, 2012, Vol. 9, 123:2012

[18] Intel. http://software.intel.com/en-us/articles/intel-
software-for-upnp-technology-download-tools, 2009.

[19] Intel.http://intel-r-digital-home-device-code-
wizard.software.informer.com, 2010.

[20] Jaejoon L. and Kotonya G. (2010). "Combining
Service-Orientation with Product Line Engineering”,
IEEE Software, Vol. 27, No. 3, pp. 35-41.

[21] Jammes F. and Smit H. (2005). "Service-oriented
paradigms in industrial automation”, IEEE
Transactions on Industrial Informatics, Vol. 1, No. 1, pp.
62-70.

[22] Jini, The Community Resource for Jini technology:
http:www jini.org, 2007.

[23] Microsoft. Microsoft Robotics Developer Studio.
Available online:
http://www.microsoft.com/robotics/, 2010.

[24] Juric M.B., Kezmah B., Hericko M., Rozman I. and
Vezocnik I. (2004). “Java RMI, RMI tunneling and
Web services comparison and performance analysis”,
ACM Sigplan Notices, Vol. 39, No. 5, pp. 58-65.

[25] Lewis G., Morris E., Simanta S. and Smith D. (2011).
"Service Orientation and Systems of Systems",
IEEE Software, Vol. 28, No. 1, pp. 58-63.

[26] Lou L., Tang F., You I, Guo M., Shen Y. and Li L.
(2011). “An Effective Deadlock Prevention
Mechanism for Distributed Transaction
Management”, Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2011 Fifth
International Conference on. pp. 120-127.

[27] Nielsen H. and Chrysanthakopoulos G. (2007).
“Decentralized Software Services protocol” — DSSP/1.0
July.

[28] Martin M., Grounds N.G., Antonio J.K., Crawford K.
and Madden J. (2010). “Banker's Deadlock Avoidance
Algorithm for Distributed Service-Oriented
Architectures”, PDPTACSREA Press, pp. 43-50.

[29] Menasce D., Gomaa H., Malek S., Sousa]J. (2011).
"SASSY: A Framework for Self-Architecting Service-
Oriented Systems", IEEE Software, Vol. 28, No. 6, pp.
78-85.

[30] Nilsson K. and Bengel M. (2008). “Plug-and-Produce
technologies real-time aspects-Service Oriented
Architectures for SME robots and Plug-and-Produce.
Informatics in Control”, Automation and Robotics:
Selected Papers from the International Conference on
Informatics in Control, Automation and Robotics 2008.

[31] Pires J.N. (2007). “Industrial Robots Programming
Building Applications for the Factories of the
Future”, Springer.

[32] Qiang Z., Danyan C. and Xiaohong C. (2009). “An
Approach to Constructing Event-Driven Virtual
Enterprise Based on SOA”, Int. Forum on Computer
Science-Technology and Applications, pp. 443-446.

[33] Rekesh J. (1999). “UPnP, Jini and Salutation A look at
some popular coordination frameworks for future
networked devices”. California Software Labs.

www.intechopen.com

[34] Remy S.L. and Blake M.B. (2011). "Distributed
Service-Oriented Robotics", IEEE Internet Computing,
Vol. 15, No. 2, pp.70-74.

[35] Sasa A., Juric M.B. and Krisper M. (2008). "Service-
Oriented Framework for Human Task Support and
Automation”, IEEE Transactions on Industrial
Informatics, Vol .4, No .4, pp. 292-302.

[36] Schlimmer J., Chan S., Kaler C., Kuehnel T., Regnier
R., Roe B., Sather D., Sekine H., Walter D., Weast J.,
Whitehead D. and Wright D. (2004). “Devices Profile
for Web Services: A Proposal for UPnP 2.0 Device
Architecture”,
http://xml.coverpages.org/ni2004-05-04-a.html.

[37] SIRENA Project (2005). “Service Infrastructure for
Real-time Networked applications”, Eureka Initiative
ITEA, www.sirena-itea.org.sadasd.

[38] SOCRADES Project (2006), “Service Oriented Cross-
layer Infrastructure for Distributed Smart Embedded
Devices”, 6% Framework Programme, European
Commission (2006-2009).
www.http://www.socrades.eu.

[39] Unver H.H. (2011). "System Architectures Enabling
Reconfigurable Laboratory-Automation Systems",
IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, Vol. 41, No. 6, pp.
909-922.

[40]UPnP forum. Available online:
http://www.upnp.org.

available:

www.intechopen.com

[41] Veiga G. (2009). “On the orchestration of operations
in flexible manufacturing”, Doctoral dissertation.
University of Coimbra (Portugal).

[42] Veiga G., Pires J.N. and Nilsson K. (2009).
“Experiments with Service-Oriented Architectures
for Industrial Robotics Cells Programming”, Robotics
and Computer-Integrated Manufacturing, Vol. 25, No. 4-
5, pp- 746-755.

[43] Veiga G., Pires].N. and Nilsson K. (2007). “On the
use of Service Oriented Software Platforms for

Robotic Cells”, IFAC Int. Workshop
Intelligent Manufacturing Systems, Alicante (Spain).

[44] Whitley, K.N.(1997). “Visual = Programming
Languages and the Empirical Evidence For and
Against”, Journal of Visual Languages and Computing,
Vol. 8, Issue 1, pp. 109-142.

[45] Wolf K., Stahl C., Ott J. and Danitz R. (2009).
“Verifying Deadlock- and Livelock Freedom in an
SOA Scenario”, Application of Concurrency to System
Design, 2009. ACSD '09. Ninth
Conference on. pp. 168-177.

[46] Xu L.D. (2011). "Enterprise Systems: State-of-the-Art
and Future Trends", IEEE Transactions on Industrial
Informatics, Vol. 7, No. 4, pp. 630-640.

[47] Yilmaz G. (2006). “Comparison of Soap based
Technologies: .Net Remoting and Asp.Net Web
Services”, Journal of Aeronautics and Space
Technologies, Vol. 2, No. 4, pp. 23-28.

Industrial

International

A. Valera, J. Gomez-Moreno, A. Sanchez, C. Ricolfe-Viala, R. Zotovic and M. Vallés:

Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories

"

