Contents

Objectives 1

1 Introduction 3

References .. 5

I Design of a Synthetic Bacterial Genome in Dynamic Environments 9

Introduction ... 11

References .. 13

2 Characterization of Bacterial Response to Synthetic Gene Expression 15

2.1 Construction of a Predictive Model of the Cell Growth Rate . 17

2.2 Tuning Synthetic Gene Expression 21

2.3 Biological Implications for the Design 25

Appendix A Estimation of Plasmids Concentration and Characterization 26

Appendix B Phenomenological Cellular Chassis Model 27

Appendix C Heterologous Gene Expression Model 27

References .. 29

3 Design-Guided Models of global Transcription Regulation 31

3.1 Genome-Wide Quantitative Model of Transcription Regulation of E. coli 32

3.2 Design of Artificial Genomes and Validation of their Transcription Profiles 33

3.3 Prediction of Wild-Type E. coli Transcriptome 36

3.4 Genome-Wide Model of E. coli Integrating Signal Transduction Data 36
CONTENTS

3.5 Model Validation: Predicting Growth Rate of Perturbed Transcriptional Networks of \textit{E. coli} \hspace{1cm} 39

3.5.1 Model Validation 1: Prediction of Expression Profiles Upon Genetic and Environmental Changes \hspace{1cm} 39

3.5.2 Model Validation 2: Predicting the Results of \textit{E. coli} Experimental Evolution \hspace{1cm} 41

3.5.3 Model Validation 3: Predicting the Growth Rate of Rewired Transcriptional Networks of \textit{E. coli} \hspace{1cm} 42

3.6 Discussion \hspace{1cm} 43

Appendix A Mathematical Model of Transcription Regulation \hspace{1cm} 45
Appendix B Using Network Inference to Obtain a Kinetic Model \hspace{1cm} 46
Appendix C Construction of a Transcriptional Regulatory Network That Integrates Signal Transduction \hspace{1cm} 49
Appendix D Structure of the Wild-Type Global Transcriptional Model \hspace{1cm} 51
Appendix E Prediction of Transcriptomic Profiles \hspace{1cm} 52
Appendix F Designing Genomes and Expression Data \hspace{1cm} 52
Appendix G \textit{In Silico} Genome Evolution by Adaptive Mutation \hspace{1cm} 54
Appendix H Prediction of Rewired Transcriptional Network of \textit{E. coli} \hspace{1cm} 55

References \hspace{1cm} 56

4 Automatic Design of a Genome by Gene Refactorization \hspace{1cm} 63

4.1 Design by Gene Refactorization in Dynamic Environments \hspace{1cm} 63

4.1.1 Refactored Genomes with a Reduced Number of Operators \hspace{1cm} 63

4.1.2 Cellular Environments Selectively Correlate with Genome Regulatory Complexity in the Refactored Genomes \hspace{1cm} 67

4.1.3 Analysis of Biochemical Adaptation in Refactored Genomes \hspace{1cm} 68

4.2 Prediction of a Refactored \textit{E. coli} Genome Sequence with Wild-type Behavior in Changing Environments \hspace{1cm} 69

4.3 Conclusions \hspace{1cm} 71

4.3.1 Biological Consequences of Computational Genome Refactorization \hspace{1cm} 71

4.3.2 Experimentally Testable Predictions \hspace{1cm} 74

Appendix A Automatic Genome Design \hspace{1cm} 75
Appendix B Genome-Wide Optimization Procedure \hspace{1cm} 76
Appendix C Objective Functions for Design \hspace{1cm} 78
Appendix D Genome Optimality Degree in Changing Environments \hspace{1cm} 79
Appendix E Functional Analysis of Genomes \hspace{1cm} 79
III Fine-Tuning of the Tomato Fruit Agronomic Properties by Computational Design 131

7 Computational Optimization of the Tomato Fruit Agronomic Traits 133
 Introduction ... 133
 7.1 Dissecting Tomato Genome: Kinectics-Based Models of Transcription, Metabolism and Phenotype 135
 7.1.1 A Genome-Wide Transcriptional Model Allows the Integration of Tomato Fruit Metabolism 135
 7.1.2 Genome-Wide Transcriptional Model Integrating Metabolism .. 137
 7.2 Computational Optimization of the Agronomic Properties by Lean Manufacturing 138
 7.2.1 Genome Redesign by Using Single and Multiple Genetic Perturbations 138
 7.3 Experimental Validation Via Predictions of Volatile Compounds Correlations 143
 7.4 Conclusions ... 144
 Appendix A Plant Material, Transcriptomic, Metabolomic and Phenomic Data ... 146
 Appendix B Mathematical Model 146
 Appendix C Construction of an Effective Transcriptional Regulatory Network Connected with Metabolism to Explain Agronomic Properties .. 147
 Appendix D Genome-Wide Multiple-Optimization ... 148
 Appendix E Experimental and Computational Metabolite Correlation .. 149
 References ... 150

8 General Discussion 155
 References ... 160

Acknowledgements 165