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Vehicle Routing Problem with Uncertain Demands:
An Advanced Particle Swarm Algorithm

Abstract

The Vehicle Routing Problem (VRP) has been thorbugtudied in the last decades. However, the
main focus has been on the deterministic versioarg/icustomer demands are fixed and known in
advance. Uncertainty in demand has not receivedginoonsideration. When demands are uncertain,
several problems arise in the VRP. For examplegeth@dght be unmet customers’ demands, which
eventually lead to profit loss. A reliable plan asdt of routes, after solving the VRP, can
significantly reduce the unmet demand costs, hglpinobtaining customer satisfaction. This paper
investigates a variant of an uncertain VRP in whilel customers’ demands are supposed to be
uncertain with unknown distributions. An advanceattiele Swarm Optimization (PSO) algorithm
has been proposed to solve such a VRP. A noveldilggscheme has also been developed to
increase the PSO efficiency. Comprehensive comipuatdt experiments, along with comparisons

with otherexistingalgorithms, have been provided to validate thgppsed algorithms.

Keywords: Vehicle routing problem, particle swarm optiminat uncertain demand.

1. Introduction

Significant efforts have been made to solve realiptoblems in supply chain management and
logistics (Clark and Scarf, 1960; Graves et al93%9mong many others). The complexity of the
resulting mathematical formulations is of primapncern in the real world supply chains problems.
In fact, the formulations are too large and the bernof binary variables goes over several hundreds
or even thousands for small case studies. Thergforeost cases, the scientific community is unable
to find optimal solutions in a reasonable amountrok. Furthermore, the mathematical optimum is
of no great concern because it depends on the idpta that, most of the time, is merely
approximated. This motivates the search for neimap solutions by means of heuristic approaches.
Advanced metaheuristic methods such as Geneticriffigms, Ant Colony Optimization, Neural
Networks, Particle Swarm Optimization (PSO) and ynatiers have been proposed. Some authors
like Yang et al., (2004) have stated the propexieBSO which defend ease of implementation and
tuning of parameters. Some other researchers (fTalg 008; Chen et al., 2006) claim that PSO can
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find solutions with relatively better qualities whéhybridized with local search. Kennedy and
Eberhart (1995) are believed to be the pioneerthefPSO concept which is a kind of swarm
intelligent algorithm based on socio-psychologigahciples. It has been applied to several routing
problems with success in other occasions. For eb@mpand Kachitvichyanukul (2009a) developed
a PSO for a VRP with simultaneous pick-up and @ejivand compared the performance of their
method with other existing metaheuristics usingesdmnchmark problems. They used a similar PSO
for the capacitated VRP (CVRP) and reported soneenjming results (Ai and Kachitvichyanukul,
2009b). PSO has also been applied to other logigticblems (Ai and Kachitvichyanukul, 2008; Ai
and Kachitvichyanukul, 2009c). Oniit et al. (2008); instance, used PSO for a multiple-level
warehouse layout design problem. Shi et al. (200@cessfully applied PSO for the Traveling
Salesman Problem (TSP).

One of the main assumptions in the general VRRatadll the input parameters and data are assumed
to be deterministic (Bertsimas, 1992). Thereforapnall perturbation on the input data could result
some impractical and/or suboptimal solutions. Sastb VRP (SVRP) was first studied by Tillman
(1969) who presented a savings approach for thdi-depot SVRP. Jaillet and Odoni (1988)
discussed some heuristics used to solve the piatiEbVRP. Dror (1993) modeled SVRP by a
Markov Decision Process. Golden and Yee (1979péhtced a chance constrained programming
model for VRPs with stochastic demands and obtaswde analytic results. Stewart and Golden
(1983) extended the work of Golden and Yee (197#) presented some computational results.
Gendreau et al. (1995) used an exact algorithnoliee she SVRP. Later, Gendreau et al. (1996a)
applied Tabu search as a metaheuristic for the S\BRRgur et al. (2008) used an exact algorithm to
achieve robust solutions for the SVRP. Shen e{28I09) surveyed some real large scale cases in
medical supply chains with uncertain demands dnt titgadlines.

The main contributions of this paper are presentinmtiew decoding algorithm and applying PSO to
solve the CVRP. We have also studied a special fofl€VRP where demand is not certain.
Furthermore, we have assumed that the demandbdittm is unknown. Since solving the presented
problem to optimality is not easy, we have usedr@ant of PSO to determine near optimal solutions.
In order to demonstrate the effectiveness of ooppsed PSO, results have been compared with
those of Ai and Kachitvichyanukul (2009b) which waensider a reference since these authors also
proposed a PSO for similar problems.

The paper has been organized as follows: introdndti section 1; problem definition in section 2;
the proposed PSO algorithm for the regular detastitnCVRP, along with the decoding procedure

(M1 algorithm) and a comparison with other algorih) in section 3; uncertainty (definition,
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development of a method and comparison of perfoogaim section 4; and finally, conclusions in

section 5.

2. Problem definition

VRP is a combinatorial optimization problem intedde serve a number of customers with a fleet of
vehicles. Formulated initially by Dantzig and RamgEd59), the VRP is a serious problem in the
fields of transportation, distribution and logistidn a typical VRP we have a depot, where differen
vehicles are to deliver goods to various custoraasthe primary objective is to minimize the total
transportation cost or distance.

Laporte (1992) defines the classical VRP as folldves G = (V, A) be a graph wher¥ ={1,..., n}

is a set of vertexes representing clieWs(l) is the single depot) with known and deterministic
demandsd; andA is the set of arcs that interconnect all clientse Tost or weight of each arc
between nodes and] is denoted byc; . In addition, there aren vehicles available. The objective is

to minimize the total travelled distance by theshigles, subject to:

0] each client in/\{1} is visited only once;

(i) each vehicle route starts and ends at the depot;
Considering uncertainty in the VRP results in maa& life-like problems which should be solved in
such a way that the solutions would be robust agjgiarturbations caused by the uncertainty. The
findings in the robust optimization field are ne@ble (Ben-Tal and Nemirovski, 1998; El Ghaoui et
al., 1998; Ben-Tal and Nemirovski, 1999). El Gha{2003) illustrates the robust solution by a
conceptual example which is depicted in Figure e Bold quadrangle is the feasible area for a
typical problem with deterministic parameters. Wkies parameters are perturbed, the intersection of
feasible areas is the robust area shown by th& blaendary. Since it is impossible to model thisaar
analytically, a counterpart is replaced as the solfeasible area. This way, all the solutions ® th
existing models in this counterpart are robusttheir best solutions are a little worse than theust
optimum solution. So in the robust optimizatiorerthis a trade-off between robustness and quality
of the solution. Despite quality degradation, imgacases it is priceless to get a robust soluBem-
Tal and Nemirovski (1999) proposed two methods twhformulate a mathematical robust

counterpart.

Figure 1. Conceptual representation of the robpsirization.
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Since the VRP is an NP-Hard problem (Lenstra amb®&i Kan, 1981), there have been tremendous
efforts made to use metaheuristics to find neain@dtsolutions for it. One for example, is the PSO
which has attracted a lot of attention in manyetight types of optimization problems (Ai and
Kachitvichyanukul, 2009a; Poli, 2008). We have emwthe PSO because of some advantages such as
easy implementation and rapid convergence, as bitegtveral authors (Angeline, 1998; Yang et al.,
2004). Furthermore, PSO has not yet been explordtetSVRP, and still some interesting results are
to be discovered. Since PSO solves problems withtiramous variables and the VRP is a
combinatorial optimization problem, a decoding noetlis needed to apply PSO to solve the VRP.
Therefore, designing an effective decoding algarnittan significantly improve the solutions given by
the PSO.

3. Proposed PSO algorithm

PSO uses some multidimensional particles, indiggtimsition and velocity, to model a swarm. Each

particle moves through space (i.e., ih") while updating its own best position, the glolaist
position and its neighborhood’s best positionnfoims other particles about its best positiomsb
obtains theirs and then adjusts its own positiod @glocity according to the shared information.
Figure 2 illustrates how a particle velocity isadhted. Consider some two-dimensional particles.
One of them (in solid black with coordinates (2) Bas been highlighted to show how a particle
position is updated. Three vectors are consideyethfs particle as follows:
» A global best position (shown in green with cooedés (9, 7)) is updated when a new
best position is found by the particles in the swar
* A neighborhood best position (shown in yellow witbordinates (2, 6)) which is the best
in the neighborhood of each particle.
* A local best position which is the best that thetiple has experienced so far
(coordinates (1, 4)).

Figure 2. Particle position and velocity.

The red vector, representing velocity, is the resilof these three vectors plus the last velatfitye
black particle (coordinates (0.1, -0.1)). In ordet to loose some potential solutions at eachtitara
the velocity vector should be so calculated aset@tnall enough to avoid large perturbations in the
solutions. This is why the coefficients are seldcés uniform random variables. In our example,

these coefficients are 0.1, 0.3 and 0.2 and hagr bsed as follows:
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Based on the above example, the new position dfldek particle (shown in gray) will be defined by

the following resultant vector:

New position {2} + {0'6} = {2'6}
3| |14 44

All particles should be updated following the pmws example. Afterwards, the global best, the
neighborhood best and the local best positionsipdated.
In this simple example, we have used two-dimensipagicles, but depending on the problem, any
suitable number of dimensions can be selectedeggatticle string length.
The notations related to our proposed PSO algoréteras follows:

a iteration indexg = 1,2,...,T

k particle indexk = 1,2,...,K

S dimension indexs =12,...,S

u uniform random number in the interval 10,

W) inertia weight in ther™ iteration

V(@) velocity of thek™ particle at thes" dimension in ther™ iteration

6,.(a) position of thek™ particle at thes" dimension in thea™ iteration

Nis personal best solution (pbest) of e particle at thes” dimension

g global best solution (gbest) at 158 dimension

ne local best solution (Ibest) of thé" particle at thes™ dimension

/72 near neighbor best solution (nbest) of Weparticle at thes" dimension
C, personal best solution acceleration constant

C global best solution acceleration constant

C, local best solution acceleration constant

C, near neighbor best solution acceleratiorstzom
6., Mmaximum position value

6., minimum position value
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O, position vector of the™ particle

Q,  velocity vector of thek" particle, [, @y, milys]

N personal best solution vector of 8 particle
n, global best solution vector
ne local best solution vector of thé" particle

Z(x) objective value ok

FDR fithess distance ratio

The proposed PSO algorithm, based on the abovéigrigamay now be defined as follows:

1. Initialize K particles as a swarm, generate kie particle with a random positio®, in the range

[gminlg

max

], velocity Q, = 0 and personal begt, =0, for k =12,...,K . Set iterationa =1

2. For k=12,...,K, calculate the objective value &, (Z(0©,)) according to the proposed
decoding M1 algorithm (to be explained later).

3. Update pbest: iZ(0,)<Z(n,)=n, =0, ; k=12,...,K

4. Update gbest: iZ(17,) <Z(n,)= n,=1, s k=12,...,K

5. Update Ibest: among all tHe" particle’s neighboring pbests, set the one withlgast objective

value ing, . k=12,...,K

6. Generate nbest: set\ =17 (/..is the same ag,. : personal best solution of th@" particle at
the s dimension;o=12,...,K andk#0); k=12...,K;s=12,...,S

to maximize the following Fitness Distance Ra#®R). In other words, thes” dimension of the

K" panicle’s velocity is updated using a particlelezhlthe nbest, with a prior best positimﬂ,

chosen to maximize.

Y { CREF4UA
|Hks _1705|

Some researchers (Ozcan and Mohan, 1999; Cler&andedy, 2002) have shown that particles

. k#o0ando=12,...,K 1)

move in sinusoidal waves until they reach the dlbleat positions detected by all particles solfaa.
point, visited by a particle during this oscillatichas a better objective value than its previcest b
position, then particle movement continues, geherabnverging at the global best position

discovered so far. Other particles behave similatbnverging at a good local optimum for the
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problem. However, if the global optimum for the lplem doesn’t lie on a path between the original
particle position and such a local optimum, themdlobal optimum is not achieved and the particles
are wasting computational effort in seeking to mawethe same direction (towards the local
optimum), whereas better results may be obtainedribus particles explore other possible search
directions. Peram et al. (2003) has introducedraaralternative in which the particles are influeshc
by other particles, not just move towards or awaynf the best position found so far. The socio-
cognitive learning process, defined in the stand®8@, is based on a particle’s own experience and
that of the most successful particle. The FDR addew dimension to this approach; each patrticle
also learns from the experience of the neighbopemgicles that have a better fitness than it$dR
computes a best neighborhood position for eachictarby maximizing the ratio between the
objective difference of each particle for each digien and the absolute value of the difference
between the particles positions in that dimensideefamachaneni et al., 2003). Ai and
Kachitvichyanukul (2009b) too have shown that FORas VRP.

7. Update velocity and position of the" particle:

7T [w@) - w(m)] @)

w(@) =w(T) + S

where:
w(1) andw(T) are the input parametersv(l) > wW(T) ).
w(a) is a parameter that decreases as the numberatfates increases.
I/ks (0’ +1) = W(a)vks (0’) + Cpu(”ps - 5ks (O’)) + Cgu(ngs - Hks (a)) (3)
+ Cku(ﬂki —Gs(a) + Cnu(’7st —6,())

In Equation (3), velocity of e particle is therefore based on the previous itematelocity, local

best position, global best position, neighborhoest Iposition and FDR.
bs(a+1) =6 (a)+Vv,(a+]) (4)

After determining the position of thie™ particle, according to Equation (4), if it is lebsn 8™" or
more tharg™" it should be considered equal @™ or 8™ respectively and then the velocity is

set tozero

8. If stop criterion is met@ =T ), stop. Otherwiseg =@ +1 and return to step 2.

3.1. M1 decoding algorithm

In the PSO algorithm proposed in this researchryeparticle is represented by an array of real

numbers. The particle moves in a multidimensiopalce to find the optimal /near optimal position.
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So the important point is: How is a particle pasitused to determine the vehicles routes in a VRP?
This study has proposed a decoding algorithm vkighhtelp of which we may define the characters of
each particle. The algorithm should first specifie tlength of the array by showing haw many
characters each particle has. Ai and Kachitvichigah(2009b) are the only researchers who have
used such algorithms for the interpretation of saighys. In the algorithm proposed in this research
the length of each particle equad® where n is the number of customers. The firstcharacters
indicate the priority of the customers to be vigi{similar to Ai and Kachitvichyanukul, 2009b) and
the second and the third characters are used to assign customers to vehislexample of
assigning customers to a vehicle is as fallows:

Suppose there are 7 customers to be assignedetu@er Figure 3 shows customers scores, extracted

from a random patrticle. These scores are showmeidéscending order in Figure 4.

Figure 3. Customers scores extracted from a paurticl

Figure 4. Customers scores sorted in the descendilay.

Some problems will arise if one uses a traditi@eluencing method; e.g. route [7-4-3-5-2-1-6] will
be found for the above example. Logically, Rou(g714-3-5-2-1-6]) is the same as Route 2 [6-1-2-5-
3-4-7] but only backwards. There are many otheumedncy problems that can severely affect the
algorithm. Suppose [6-1-2-3-5-4-7] is the best eolthen, the PSO algorithm will guide Route 1 to
this best route. Therefore, it tries to increasst@uer 6’s score (17) so that this customer iseskerv
sooner, and also tries to decrease Customer 7'e §88) because it is the last visited costumehnén
best known solution and so on. The progressive timglaf the scores needs several iterations. In the
mean time, an updated route could be somethind4ik&5-3-6-2-1]. It is also possible that Route 1
is much better than the updated route. In ordeviercome this problem, the customers are added
sequentially from the leftmost odd columns and tHiemm the rightmost even columns when
determining a route. This procedure for the abowmarple is depicted in Figure 5 where the depot is
denoted as D.

Figure 5. Sequence of vehicles services to custrbased on Figure 4.

The second and the thiml characters are used to assign customers to vehi¢lese two strings can
be applied independently. If we use only one siritng chance of remaining in local search will
increase. In order to avoid local optimum conveogemne of these strings is selected stochastically

A threshold parameterpD[O,]], is used to select one of these two strings. Toerethe second

string is applied with a probabilityp and the third one with a probabillty p. After selecting one
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of the 2% or the & strings, the interval betwee(® ) will be stratified byTI, which is given

min ? gmax
by Equation (5) below. Thereafter, if the valuegflies betweerill, andTl,,, , it means that thé"

customer will be served by tH&" vehicle.
6. ~-06.
<[,
m

As an example, suppose the second string is sdléEtgure 6). In order to assign 7 customers to 3

vehicles we may proceed as follows:
Figure 6. The second string of characters from a particle.

Based on Equation 5T1,, Tl,, Tl, and Tl, are 0, 33, 66 and 99 respectively (supposing that

6., =0and 6, =99). If we defineV, as a customer set served by tHe vehicle, then:

V, ={2,7,6},V, ={51} and V, ={3,4}

Many researchers suggest employing a hybrid styatdich embeds a local optimizer between the
iterations of the metaheuristics (Tao et al., 200Ben et al., 2006). So, after determining customer
assignments and vehicle service sequences, amdién to improve the solution, some local search
algorithms can be applied. The ones we have usesl been Variable Neighborhood Search (VNS)
with algorithms such as 2-OPT, Exchangel-1 anctiéel Greedy to be explained in Section 3.2. It
should be noted that using a local search algoritimans decreasing the objective function value
without modifying the particle dimensions. Thenthé difference between objective function values
before and after local searcl,( andA respectively) is considerable, the related partiight be
considered as a local best. This is the reasdmeafiovement of other particles toward this oneavhi
the real local best position is just different. fidfere, if the difference in the objective function
values is greater than a predefined vatug¢0.1* B, in this research) the velocity vector, related to
the particle, will be zero in that iteration. Inditibn, the particle is so updated that in the next
iteration, before implementing the local searcke #ame solution (the one obtained in previous
iteration after local search) will be obtained. Shipdating procedure is clarified with a numerical

example in Step 5 of the M1 decoding algorithm.sThigorithm is illustrated by the following

example:
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Suppose 7 customerf€7) are to be served by 3 vehicles1£3) (Table 1). Location of each
customer is defined by its coordinates; for exam@lestomer 1is located at (82, 90). A 21-position-
long particle (3*7) (Figure 7) has been decodethieyM1 algorithm using the following data:

(Brin161a) = (099, p=09, (T,T,T,T,) = (0336699, o6=01*B,

Table 1. The input data of an example VRP

Costumer No. (Depot)) 1 |2 | 3|4 |56 |7
82 82 |99 | 70| 80| 58| 93 62

50 90 |51 | 85| 20| 60] 60 41

Coordinates

Figure 7. A 21-position-long particle.

1. Assign thencustomers to the vehicldg; t = 12,...,m

1.1.In order to assign thb™ customer of thé™ particle, if rand (a random variable value
generated from the intervé[),l]) is less thanp , thend, .., and otherwiseg, ,.,, is

selected.
1.2.For the selected in the previous stage, a vehicle that satisfieaopTl, <8 <TI,,,

is selected considering the capacity constrairth{f constraint is violated, the
objective function will be set to a big value as glenalty and algorithm will

terminate)
If the random variable is 0.8, we should use tleisé 8 characters, becaud8 < p.

So, according tdl,:

V, ={2,6,7},V, ={1,5} andV, ={34}
The numbers in the above three sets do not shosetifieence of customers; this
sequence will be determined in the next step.

2. Define the sequence of customers assigned to'thehiclet = 123....,m
2.1.AssumeP set as follows:
P ={6,,),12=12....Z} ; Z=Number ofV, members
In our example:
P, = {191782, P, = {1824} and P, = {6581}
2.2.Sort P in the descending order and update the sequermestsimers inV/, according to
Figure 5.
V,=(7-2-6),V, =(56-1 andV, = (4-3)
3. Calculate the objective function valuB,().
cost,, =81 cost,, =104 cost, =133= B, =81+104+133=318

4. Improve via local search. (Local search algorithvage been presented in Section 3.2)
After improvement, suppose we have the followinglified routes:
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Vi=(-2-6)V,=@-D.V; =(4-9
5. Update the particle and its related velocity
5.1.Calculate the objective function valué\()

cost,, =78 cost, =90 cost, =102= A =78+90+102=270
5.2.If B, — A <0 , then consider as the objective function value and exit the athaoni

Since 318-270> 318, we should go to the next step.
5.3.Update the particle only for the first and the settocharacters.

5.3.1. In order to update ) , which belongs t&/, with K customers, generate a random

value betweeré, . and 8, . that satisfies the following:
<O <O, <G, <O

So, for our example we will have:
For the firstroute: 8 , <8, <8 ,<6,=6,=176,=636 ,=72
For the second route? ; <4 , =68, =326 , =58
For the third route: 8,<68 ,=6.,=108,=79
5.3.2. Updatet?i’m(\,t)k for all customers related to i€ vehicle based on:
T <8 ), <Tha-

Since the 7, the 2 and the B customers should be served by the first vehible ré¢lated
@ values should be generated randomly betwHer O andTl, =33.

6 (62 — 3l6i,(8+6) =236, @7 =98
This procedure is repeated for the customers sdaydkle second and the third vehicles:
8 @ =04 a g =42

Hi,(8+5) = 905i,(8+4) =79

5.4. In order to update the velocity vectdt, {, the first and the secorml characters oV,
are all assumed equal to zero.

The above steps are demonstrated in Figui@o. The proposed decoding algorithm has threia ma
novel features compared with the decoding metholsl Sand SR-2 presented by Ai and
Kachitvichyanukul, (2009b). First is the customequencing procedure (illustrated in Figure 5)
which avoids some redundancy problems. Secondeisspiecial way in which the customers are
assigned to vehicles avoiding convergence at d tmtanum. The key point here is the usage of two
different parallel strings. According to the secatdp of M1, often the first, and sometimes the
second, string is used to assign customers to leshichich helps escaping a local optimum. And the
last is the updating of the particles values whamesrelative improvements occur after applying the
local search algorithms. These algorithms may caasee route modifications that may not be
reflected in the particles values. Imagine a plrtigth a given objective function value of 100f). |

after using the local search algorithms, the objecfunction improves to 900 and this particle
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becomes the global best, then other particlesagpiiroach this one to improve theirs. But actually,
900 is an unreal and a potential value for thatigdarand it will cause confusion in the particles

velocity vectors because it is not reflected inpheticle’s real vectors.

Figure 8. Example of the M1 decoding algorithm.

3.2. Local search algorithms

After applying the decoding algorithm, some locahrsh algorithms are employed to increase
convergence speed to better solutions. Some ofalgohithms which can be applied for the VRP can
be seen in Cordeau et al. (2005), Laporte, e280@) and Kindervater and Savelsbergh (1997). In
this research, the Variable Neighborhood SearchSMiNethod is used with other algorithms such as
2-OPT, Exchangel-1 and Iterated Greedy (IG) whiehdafined below.

The VNS is a well-known heuristic search methodliagpsuccessfully to some VRPs (Hansen and
Mladenovic, 2003). For more details see Polacelt.e{2004) or Pirkwieser and Raidl, (2008). IG is

a modern interesting simple heuristic method themegates solutions in two steps: stochastic
destruction and construction (Ruiz and Stitzle,728uiz and Stiitzle, 2008). These algorithms are

well-known; however, for the sake of reproducililithey are detailed in the following subsections:

3.2.1. OPT algorithm

OPT is a well known local search algorithm withG(n®) computational complexity that can

improve VRP solutions by changing the sequenceustiorners for each vehicle or route. The pseudo
code related to the algorithm is as follows:

fori=1to (K -2)
forj=(i+2) to K
V,

) VY
If the total cost is improves, modife sequency, .

end
end

3.2.2. Exchange 1-1 algorithm

In this algorithm, exchanges of customers amongcleshor routes are possible, so all the exchanges

will be taken into account. If the distance betwé&o customers is less than, the two customers

12 of 24



will be exchanged and the objective function wél lppdated. If the solution is feasible and improves
the objective function, the customers assignmentbe vehicles are updated and other assignments
are checked; otherwise, the algorithm will procedttiout updates. The computational complexity of
this algorithm isO(n?) in the worst case. Figure 9 and the following pseadde illustrate the
exchange procedure for two routes:

for i =1 to n1 (number of customers in th& doute)
for j =1to n2 (number of customers in th&2oute)

if distanceCus, ,Cusj <&
exchangeCus, with Cus;

if solution improve, modify the routes accordiogthis exchange
end
end
end

Figure 9.Exchange 1-1 local search.

3.2.3. Iterated Greedy (IG) algorithm
In this algorithm,r customers are selected randomly and removed fremrspective routes. Then,
each of the removed customers is greedily addédetoemaining incomplete routes in the cheapest
possible way.
These steps are shown in Figure 10. Let's supmoseustomers around a depot which are served by
two vehicles. First, four customers are selectedi@ely. Then they are removed from the routes.
Finally, they are placed in such an order that tingyrove the objective function. Now, two of the
formerly selected customers are placed in theiviptss route and the other two are placed in new
routes. The computational complexity of this altjori is O(n°r) .The details are as follows:
1. Selectr customers randomly and remove them from theiredlathicles.
2. SupposeR is a set including the removed customers sorted in the descending order
according to their demands.
3. SupposeV is a set of vehicles sorted in the descending oodetheir remaining
capacities.

4. Substitute the™ customer ofR in the jth member ofV . If the solution is feasible,

updateV .
5. If ] <m, substitutej +1 -~ jand go to step 4; otherwise, substititel — i and

j+1 - jand go to step 4.
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6. Find the objective function value and updateutigicles capacities.

7. If r is empty, the algorithm is finished; otherwise tg&step 4.

Figure 10. An example of the Iterated Greedy steps.

3.2.4. VNS algorithm

Each of the three previous local search methodscesl a neighborhood. The VNS searches each
neighborhood until local optimality is achieved. dt any step, the solution is improved, the search
will start from the first neighborhood. Therefok&\S is finished if and only if the solution is ack

optimum with respect to all neighborhoods:

while solution improves
while solution improves

while solution improves
apply the 2-OPT algorithm

end

apply exchange 1-1 algorithm
end
forn=1to 5

apply IG algorithm
end
end

Applying PSO decoding and local search algorithimsikaneously results in high quality solutions.
The effectiveness of the M1 decoding method, ingamson with SR-1 and SR-2 algorithms (Ai and
Kachitvichyanukul, 2009b), is presented in TableSR-1 and SR-2 algorithms assume a virtual
position for each vehicle. Each customer that hahater distance to a vehicle, will have more
priority to be allocated to that vehicle. This amgch generates some relatively symmetric tours with
the vehicle centricity. The proposed algorithmsarded in the Matlab language and can be run on a
personal computer with a 3.0 GHz Pentium 4 procemsth 512MB RAM. The sample instances have
been extracted frorAugerat et al. (1995). Initial experiments indichteat our proposed PSO was
rather robust as regards the working parametergreftre, we just employed the following
parameters, mainly extracted from Chen et al. (2@@@ Ai and Kachitvichyanukul (2009b), for our
proposed PSO: T, number of iterations: 500; K, neimbf particles: 50;w(l), the first inertia
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weight: 0.9;W(T), the last inertia weight: 0.4Z,, the personal best acceleration constant: G7;
the global best acceleration constant: @3the local best acceleration constant: 1(5;the near

neighbor best acceleration constant:145;, the maximum position value: 10@,,, the minimum

min
position value: 0; number of iterations for the a@orithm: 5; and number of neighborhoods: 5. In
order to compare our method with SR-1 and SR-2, fthiewing error measures have been

considered:
SR-1; = Objective functiong, , — Objective function, ;.

SR -2, = Objective functiong,_, — Objective function

optimum

M1, = Objective function,,, — Objective function

optimum

Table 2. Comparison of M1 algorithm with SR1 and2SRi and Kachitvichyanukul, 2009b).

objectivefunction objectivefunction
No. Sample C;F(’Jtlil']rt‘i‘(‘)r: SR1 SR2 M1 No.  Sample C;F(’Jtlil’}:i‘(‘)r: SR-1 SR2 M1
1 An32k5 784 784 784 784 31 Bn64k9 861 866 863 863
2 An33k5 661 661 661 661 32 Bn66k9 1316 1318 1316 1316
3 An33k6 742 742 742 742 33 Bn67k10 1032 1035 1034 1035
4 An34k5 778 778 778 778 34 Bn68k9 1272 1278 1274 1272
5 An36k5 799 799 799 799 35 Bn78k10 1221 1239 1223 1221
6 An37k5 669 670 669 669 36 En30k3 534 541 534 534
7 An37k6 949 949 949 949 37 En51k5 521 521 521 521
8 An38k5 730 730 730 730 38 En76k7 682 691 687 682
9 An39k5 822 825 822 822 39 Fn72k4 237 237 237 237
10 An44k6 937 940 940 937 40 Fn135k7 1162 1184 1165 1167
11 An46k7 914 914 914 914 41 Mn101k10 820 821 820 821
12 An60k9 1354 1366 1355 1354 42 Mn121k7 1034 1041 1036 1035
13 Bn31k5 672 672 672 672 43 Pn23k8 529 529 529 529
14 Bn34k5 788 788 788 788 44 Pn40k5 458 458 458 458
15 Bn35k5 955 955 955 955 45 Pn45k5 510 510 510 510
16 Bn38k6 805 809 805 805 46 Pn50k7 554 554 554 554
17 Bn39k5 549 549 549 549 47 Pn50k8 631 631 631 631
18 Bn41k6 829 829 829 829 48 Pn50k10 696 696 696 696
19 Bn43k6 742 742 742 742 49 Pn51k10 741 741 741 741
20 Bn44k7 909 915 912 909 50 Pn55k7 568 568 568 568
21 Bn45k5 751 751 751 751 51 Pn55k8 588 588 588 588
22 Bn45k6 678 678 678 678 52 Pn55k10 694 696 694 694
23 Bn50k7 741 748 746 741 53 Pn55k15 989 998 995 989
24 Bn50k8 1312 1315 1312 1312 54 Pn60k10 744 746 744 744
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25 Bn51k7 1032 1033 1032 1032 55 Pn60k15 968 970 968 968

26 Bn52k7 747 747 747 747 56 Pn65k10 792 799 795 792
27 Bn56k7 707 709 707 707 57 Pn70k10 827 828 827 827
28 Bn57k7 1153 1153 1153 1153 58 Pn76k4 593 599 594 593
29 Bn57k9 1598 1603 1598 1598 59 Pn76k5 627 628 627 629
30 Bn63k10 1496 1500 1499 1496 60 Pn101k4 681 686 683 688

Error Averages: R-1. = 277, SR-2. = 075 M1, =035
Note: Bold values equal optimum solutions.

As we can see in Table 2, the error averages shatrotir proposed decoding algorithm M1 is much

closer to the optimum solution in comparison witke two other decoding algorithms. According to

Table 2 data, applying paired T- test for the rwpothesisH : ty1eror = Hmiere agaiNSt
H. Uienor < Hsienor » Pased on the Minitab reported P-value (P-valuewdl) result in the
rejection ofH,. So, M1 method is statistically better than SRAs0, applying the same test for the
null hypothesisH  © /1 ev0r = Hsroerror @9AINSTH T 141 ever < Mo errer » D@SE ON the reported P-

value (P-value=0.032), will result in the rejectiohH,. So, M1 method is also statistically better

than SR-2. Conceptually, SR-1 and SR-2 work in suetay that they consider a position for each
vehicle. The customers geographically closer tovitdcle have higher priorities to be satisfied by
that vehicle. The above concept causes SR-1 an2l I5Rto be able to sweep all the possible routes
and consequently they cannot find the optimum &milih many cases. These algorithms are not able
to achieve the global best solution in some caseause they cannot define some asymmetric tours.
In the following example, we will solve a problenitiivSR-1 and M1 in a similar condition (CPU
time). Figures 11 and 12 are related to SR-1and 1823 and 789 as their objective function
values respectively. As shown, M1 has found sorgmagetric tours, therefore it is a better solution.
Many other examples can be found as this behawieasily reproducible.

Figure 11. A VRP which is solved by SR-1.
Figure 12. A VRP which is solved by M1.

Now, including uncertainty demand and comparing phaposed PSO and M1 with other SVRP

algorithms, we will proceed.

4. Uncertainty in demands
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Stochastic Vehicle Routing Problems (SVRP) haviediht models: VRP with Stochastic Demands
(VRPSD), VRP with Stochastic Customers (VRPSC), iR Stochastic Customers and Demands
(VRPSCD) and so on. Bertsimas (1992) presented @nine method with diverse re-optimization
policies to solve the VRPSD. Gendreau et al. (1998bposed some methods and techniques to
solve these problems. Markovic et al. (2005) madielé/RPSD which could be applied for delivery
and pickup processes of mail, packages, and retynkgerials and, concurrently, Dessouky et al.
(2005) suggested a VRPSD for some health careaglproblems. Demand uncertainty is a serious
problem appearing in the VRP which leads to unrmeetahds (Sungur et al., 2008). Novoa and Storer
(2009) developed an approximate dynamic programmpmyoach to solve the VRPSD. Therefore, it
seems necessary that some methods be developerbviglep solutions that are robust against
uncertainty. To comprehend robustness of a solutigainst demand uncertainty, a conceptual
example is given as follows:

Table 3. The input data of a VRP, including 7 diseserved by one depot.

Costumer N¢ | (Depot 1 2 3 4 5 6 4
Coordinates |22 82 99 70 80 58 93 62
50 9C 51 85 20 60 60 45
Demand 0 46 46 44 32 10 34 45

Each vehicle capacity: 1

Figure 13 illustrates two solutions to the exampleblem of Table 3. The left figure depicts the
optimum solution. It is clear that Route 1 is nobust against demand perturbations because
summation of the demands in Route 1 is exactly letpuahe related vehicle capacity, and any
increase in demands will cause unmet demands lgadisome profit loss. In the right figure, the
cost increases about 2% (from 230 to 235), buballes are more robust against demand uncertainty.
In a typical bad case, suppose that the demandsustbmers 2 and 4 increase to 51 and 49
respectively (about 10% perturbation); then, thieiale is able to satisfy the customers without any
unmet demands. So, we should determine the vafg% @xtra cost (related to the robust solution)
and 10% unmet demands (related to the best sojutiofigure out if the robust solution is more
economical. In this strategy, the vehicles’ remaintapacities are leveled, considering minimization

of the extra cost.

Figure 13. Best (left) and robust (right) solution.

Uncertainty in demand can be modeled in differeaysvsuch as “probability distributed demands”
and “Fuzzy demands” (Erbao and Mingyong , 2009; amd Lai, 2002). This research considers no
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known or assumed distribution for demands and nesdthe PSO objective function in such a way

that robust VRP solutions can be achieved. The fication is as follows:
Let a, be the customer demand (- £d, < J, <d, +&d,) where € is a constant indicating the

perturbation percentage amll is the nominal demand. Therefore:

D, <Y.d <D, (6)

where D, and D, are the lower and the upper bounds for the sunhefréal perturbed demands

respectively. As explained in the example of FigliBe we should balance the unused capacity of
vehicles. There, the unused capacities of vehfolethe 3 routes, when the solution is determiojsti
are: 0, 20 and 23 (100- 100, 100-80 and 100- WR)inahe robust solution they change to: 10, 2@ an

13. Index ¢ in relation 7 below, has been devised to comgadalancing of unused capacities in
different solutions.
Y=Mar () @

where A, = p, — ¢ is the difference between the unused capdgiy) for different routeqV ), and
D _
¢= ma{zv :0% ,( u ZVd"%J is the maximum average demand considering uncégyrtain

demands.

Y increases when all routes are leveled and havegbnanused capacities to overcome uncertainty.

Equation (7) is to make sure that each vehiclesaiaing capacity limit does not exceed its upper

bound.
To make Equation (3) (for the deterministic casgghle for the uncertain conditions, indgx is
added and Equation (8) is obtained as follows:
Vis(@+1) =wW(a)v (@) + c u(7, =6 (@) W,) +Cu(7 — G (a))(@,)
+CU(7s ~ G (@)W ) + CU(T7s ~ B (@) W)
Suppose in a deterministic solution thest has a highy and thegbest has a lowy , therefore the

(8)

velocity vector will tend to thébest rather than to thgbest. Generally speaking, velocity vectors are
more affected by solutions which have balanced eshusapacities. That is why the above
modification ensures a solution’s robustness.

In order to evaluate the performance of the proposmdification, it is necessary that some
performance indexes be determined when demandsraestain. LetU, and U, be the unmet

demands percentages for the deterministic andtiest solutions respectively. In order to find them

18 of 24



first the demands are generated randomly in tresvat [di -&£d;,d; + £di] and then, based on the

vehicle capacity, the unmet demands are countedinBtance, in the problem explained in Table 3,
the demands, considering 20% perturbation, would&el5, 48, 29, 10, 40 and 54. In the optimum

solution, the summations of the demands in theethoetes would be 106, 81 and 69. So we would
have 6 units as unmet demands related to Routed1Usn=6/257. In the robust solution, the
summations of the demands in the routes are 9&n8179. Therefore, we would have no unmet

demands and, as a reslt, =0/257. This procedure is repeated until the firzdlies ofU, andU,

are found. Another index to be determined4sg, which indicates the extra cost of the robust
solution compared to the deterministic org,§ = (Zg —=Z5)/Z; ). In this exampleZ 5, is equal

to 0.02 & (235-230/230).

Next in the evaluation process, is to compare ewriktic resultsJ ;(M), Z,z(M)) and the exact

robust optimum solutiondd 3 (S) , Zz(S) ) presented by Sungur et al. (2008). Althoughetee
many results on SVRP, Sungur et al. (2008) areottlg researchers who have investigated robust
VRP. There are many differences between the rolR&t and the SVRP (see for example Ben-Tal
and Nemirovski, 2000). Table 4 summarizes the tesol the implementation of the proposed
methods € =10%). In some cases, exact robust optimum solutioasnat available (NA) in an
acceptable amount of time because of the complekitlye related counterparts (Sungur et al., 2008).
Since Sungur et al. (2008) have applied the exkgrithm to obtain the robust solution, their
U R(S) is equal to zero for all instances; that is whyhawe not entered it in Table 4. In this table,

data are computed based on a computer and envindreimilar to Sungur’s et al. (2008), but the

exact robust solution data have been extracted Songur et al. (2008).

Table 4. Comparison of the proposed heuristic methith exact robust solutions (Sungur et al., 2008)

No. Sample UD Zor(S) Up(M) Zpe(M) No. Sample UD Zor(S) Ug(M) Zp(M)
1 An32k5 2.5 1.5 0 1 26 Bn52k7 2 0.7 0 0.3
2 An33k5 1.7 2.1 0 2 27 Bn56k7 3 3 0 3.2
3 An33k6é 1.8 2.7 0 1.5 28 Bn57k7 5 IN 1.5 0.9
4 An34k5 0.3 1.5 0 0.6 29 Bn57k9 3.1 NA 0 1.2
5 An36k5 2.1 1.8 0 0.9 30 Bn63ki0 3 NA 0.21 2.1
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6 An37k5 1.6 2.7 0 1.9 31 Bn64k9 3.3 IN 0.9 3
7 An37k6 2.4 NA 0.2 0.5 32 Bn66k9 3.6 IN 0.91 21
8 An38k5 3.8 IN 0.67 15 33 Bn67k10 2.5 NA 0.87 3
9 An39k5 3.1 15 0.48 13 34 Bn68k9 3.9 NA 0.27 4.1
10 And4ke 2.2 15 0 0.9 35 Bn78k10 3.7 NA 0.7 2.4
11 An46k7 3.4 4.2 0.2 4.5 36 Pn23k8 3.4 IN 0.71 2.8
12 An60k9 2.1 NA 0.35 21 37 Pn40k5 1.2 0.7 0 0.3
13 Bn31k5 0.7 13 0 0.4 38 Pn45k5 3.3 2 0 11
14 Bn34k5 2.5 0.1 0 0.1 39 Pn50k7 2 2 0 15
15 Bn35k5 2.3 2.8 0 0.8 40 Pn50k8 3.9 IN 1.54 3
16 Bn38k6 2 0.1 0 0.1 41 Pn50k10 2.1 IN 0.82 21
17 Bn39k5 2.7 2.2 0 1.4 42 Pn51k10 3.2 IN 0.72 2
18 Bn4lké 2.4 4.2 0.4 21 43 Pn55k7 2 NA 0 0.4
19 Bn43k6é 3.5 15 0 0.9 44 Pn55k8 1.9 NA 0 0.8
20 Bn44k7 3.6 4.6 0.3 3.5 45 Pn55k10 2.9 NA 0 11
21 Bn45k5 3.1 IN 0.79 1.2 46 Pn55k15 4.4 IN 1.4 2
22 Bn45k6 4.4 IN 0.84 11 47 Pn60k10 1.7 NA 0.68 1.8
23 Bn50k7 1.5 0.5 0 0.2 48 Pn60k15 2.3 NA 0.9 3
24 Bn50k8 3 2.7 0 11 49 Pn65k10 1.8 NA 0.94 25
25 Bn51k7 3.2 IN 0.83 0.9 50 Pn70k10 2.3 IN 1 2.7

Average: 2.7 2* 032 13"
A: According toz_(s) column, since some data are infeasible or not aiviail(IN

or NA), the average is calculated only based orettigting data.

According to Table 4 data, applying paired T-temt the null hypothesisH CHz vy T Mz
againstH, : ;) <l (s based on the Minitab reported P-value (P-valuewd) result in the

rejection of H,. So, our method statistically leads to smalletsdisan that of the exact method,

proposed by Sungur et al. (2008). Also, in somepsasn in Table 4, the exact method leads to
infeasible solutions while ours has an appropatation.

Table 4 shows that our proposed method has twtiveladvantages in comparison with the robust
exact solutions. First, in all cases it has yieldezblution while in Sungur et al. (2008) robushaix

method, 26% of the cases have had no solutions, 288 had infeasible counterparts and 48% of

the cases have yielded a robust solution. Secbedaterage for the values &f,,(M) equals 1.3

while this value forZ 5 (S) equals 2 which shows that in our proposed PSOadethe extra cost is

7% less than that of the Sungur’s et al. (2008)weéicer, the exact robust method, for cases with
available solutions, meets all uncertain demandkewalur method misses some demands (in Table 4,
the average of unmet demands is 0.32%). In suchscdese two methods should be compared

economically.
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As was explained before, El Ghaoui (2003) illustsathe robust solution by a conceptual example
which is depicted in Figure 1. In our method, weenproposed a new heuristic counterpart area (the
red bound) which is larger than the exact countéigfeown in his figure. Since the red area is large

than the exact counterpart, sometimes it includeasaaffected by perturbation. That is why on the

one hand we have some unmet demands, but on teewhd, in some caseé,;(M) is smaller

than Z 5(S). Therefore, although the exact robust algorithwegisolutions without any unmet

demands, the proposed method (even with some utheneands) has much better solutions. Yet, in
practical cases, we should compare the cost of udemands in the proposed method with the extra
cost of the exact robust method to see which swmiuf more economical.

5. Conclusions

In this paper, a novel Particle Swarm Optimizat{i®$O) approach is applied to solve the CVRP
having stochastic demands with no known distrimgidsince PSO solves problems with continuous
variables and the VRP is a combinatorial optim@aproblem, a decoding method is needed to apply
PSO to solve the VRP. We have developed a noveldieg method for interpreting PSO solutions
for the VRP. The proposed M1 decoding method ineuithiree local search operators in a VNS loop
in order to significantly improve the quality ofetlsolutions. It has been tested against two reargsht
state-of-the-art decoding methods from Ai and Kadthyanukul, (2009b). The results clearly show
that our proposed approach is a superior and pdgfelPSO method in some CVRP instances. The
whole proposed PSO approach has also been testdldef&tochastic VRP (SVRP). Results show
that the solutions of this algorithm are applicabléarger scale problems and resist perturbations
an acceptable extent. Although the exact robusorithgn gives solutions without any unmet
demands, our proposed method (even with some wenednds) has less robustness cost. Also, in all
cases, the proposed method has produced a feaslbt®on while the other method has not (in many
cases).

Our intention for future research is to actuallgttthe proposed PSO in a production environment
with a real SVRP and to actually measure unmetrgbustness costs. A close study of the
performance of the proposed PSO parameters carelmibject of further researches.
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