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Vehicle Routing Problem with Uncertain Demands: 
An Advanced Particle Swarm Algorithm 

 

 
Abstract 
The Vehicle Routing Problem (VRP) has been thoroughly studied in the last decades. However, the 

main focus has been on the deterministic version where customer demands are fixed and known in 

advance. Uncertainty in demand has not received enough consideration. When demands are uncertain, 

several problems arise in the VRP. For example, there might be unmet customers’ demands, which 

eventually lead to profit loss. A reliable plan and set of routes, after solving the VRP, can 

significantly reduce the unmet demand costs, helping in obtaining customer satisfaction. This paper 

investigates a variant of an uncertain VRP in which the customers’ demands are supposed to be 

uncertain with unknown distributions. An advanced Particle Swarm Optimization (PSO) algorithm 

has been proposed to solve such a VRP. A novel decoding scheme has also been developed to 

increase the PSO efficiency. Comprehensive computational experiments, along with comparisons 

with other existing algorithms, have been provided to validate the proposed algorithms. 

 

Keywords: Vehicle routing problem, particle swarm optimization, uncertain demand. 

 

1. Introduction 
Significant efforts have been made to solve realistic problems in supply chain management and 

logistics (Clark and Scarf, 1960; Graves et al., 1993, among many others). The complexity of the 

resulting mathematical formulations is of primary concern in the real world supply chains problems. 

In fact, the formulations are too large and the number of binary variables goes over several hundreds 

or even thousands for small case studies. Therefore, in most cases, the scientific community is unable 

to find optimal solutions in a reasonable amount of time. Furthermore, the mathematical optimum is 

of no great concern because it depends on the input data that, most of the time, is merely 

approximated. This motivates the search for near optimal solutions by means of heuristic approaches. 

Advanced metaheuristic methods such as Genetic Algorithms, Ant Colony Optimization, Neural 

Networks, Particle Swarm Optimization (PSO) and many others have been proposed. Some authors 

like Yang et al., (2004) have stated the properties of PSO which defend ease of implementation and 

tuning of parameters. Some other researchers (Tao et al., 2008; Chen et al., 2006) claim that PSO can 
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find solutions with relatively better qualities when hybridized with local search. Kennedy and 

Eberhart (1995) are believed to be the pioneers of the PSO concept which is a kind of swarm 

intelligent algorithm based on socio-psychological principles. It has been applied to several routing 

problems with success in other occasions. For example, Ai and Kachitvichyanukul (2009a) developed 

a PSO for a VRP with simultaneous pick-up and delivery, and compared the performance of their 

method with other existing metaheuristics using some benchmark problems. They used a similar PSO 

for the capacitated VRP (CVRP) and reported some promising results (Ai and Kachitvichyanukul, 

2009b). PSO has also been applied to other logistics problems (Ai and Kachitvichyanukul, 2008; Ai 

and Kachitvichyanukul, 2009c). Önüt et al. (2008), for instance, used PSO for a multiple-level 

warehouse layout design problem. Shi et al. (2007) successfully applied PSO for the Traveling 

Salesman Problem (TSP).  

One of the main assumptions in the general VRP is that all the input parameters and data are assumed 

to be deterministic (Bertsimas, 1992). Therefore, a small perturbation on the input data could result in 

some impractical and/or suboptimal solutions. Stochastic VRP (SVRP) was first studied by Tillman 

(1969) who presented a savings approach for the multi-depot SVRP. Jaillet and Odoni (1988) 

discussed some heuristics used to solve the probabilistic VRP. Dror (1993) modeled SVRP by a 

Markov Decision Process. Golden and Yee (1979) introduced a chance constrained programming 

model for VRPs with stochastic demands and obtained some analytic results. Stewart and Golden 

(1983) extended the work of Golden and Yee (1979) and presented some computational results. 

Gendreau et al. (1995) used an exact algorithm to solve the SVRP. Later, Gendreau et al. (1996a) 

applied Tabu search as a metaheuristic for the SVRP. Sungur et al. (2008) used an exact algorithm to 

achieve robust solutions for the SVRP. Shen et al. (2009) surveyed some real large scale cases in 

medical supply chains with uncertain demands or tight deadlines. 

The main contributions of this paper are presenting a new decoding algorithm and applying PSO to 

solve the CVRP. We have also studied a special form of CVRP where demand is not certain. 

Furthermore, we have assumed that the demand distribution is unknown. Since solving the presented 

problem to optimality is not easy, we have used a variant of PSO to determine near optimal solutions. 

In order to demonstrate the effectiveness of our proposed PSO, results have been compared with 

those of Ai and Kachitvichyanukul (2009b) which we consider a reference since these authors also 

proposed a PSO for similar problems. 

The paper has been organized as follows: introduction in section 1; problem definition in section 2; 

the proposed PSO algorithm for the regular deterministic CVRP, along with the decoding procedure 

(M1 algorithm) and a comparison with other algorithms, in section 3; uncertainty (definition, 
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development of a method and comparison of performance) in section 4; and finally, conclusions in 

section 5.  

 

2. Problem definition 
VRP is a combinatorial optimization problem intended to serve a number of customers with a fleet of 

vehicles. Formulated initially by Dantzig and Ramser (1959), the VRP is a serious problem in the 

fields of transportation, distribution and logistics. In a typical VRP we have a depot, where different 

vehicles are to deliver goods to various customers and the primary objective is to minimize the total 

transportation cost or distance.  

Laporte (1992) defines the classical VRP as follows: Let G = (V, A) be a graph where },,1{ nV K=  

is a set of vertexes representing clients ()1(V  is the single depot) with known and deterministic 

demands id  and A is the set of arcs that interconnect all clients. The cost or weight of each arc 

between nodes i  and j  is denoted by ijc . In addition, there are m vehicles available. The objective is 

to minimize the total travelled distance by these vehicles, subject to: 

(i) each client in V\{1} is visited only once; 

(ii)  each vehicle route starts and ends at the depot;  

Considering uncertainty in the VRP results in more real life-like problems which should be solved in 

such a way that the solutions would be robust against perturbations caused by the uncertainty. The 

findings in the robust optimization field are noticeable (Ben-Tal and Nemirovski, 1998; El Ghaoui et 

al., 1998; Ben-Tal and Nemirovski, 1999). El Ghaoui (2003) illustrates the robust solution by a 

conceptual example which is depicted in Figure 1. The bold quadrangle is the feasible area for a 

typical problem with deterministic parameters. When the parameters are perturbed, the intersection of 

feasible areas is the robust area shown by the black boundary. Since it is impossible to model this area 

analytically, a counterpart is replaced as the robust feasible area. This way, all the solutions to the 

existing models in this counterpart are robust, but their best solutions are a little worse than the robust 

optimum solution. So in the robust optimization, there is a trade-off between robustness and quality 

of the solution. Despite quality degradation, in some cases it is priceless to get a robust solution. Ben-

Tal and Nemirovski (1999) proposed two methods which formulate a mathematical robust 

counterpart.  

 

Figure 1. Conceptual representation of the robust optimization. 
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Since the VRP is an NP-Hard problem (Lenstra and Rinooy Kan, 1981), there have been tremendous 

efforts made to use metaheuristics to find near optimal solutions for it. One for example, is the PSO 

which has attracted a lot of attention in many different types of optimization problems (Ai and 

Kachitvichyanukul, 2009a; Poli, 2008). We have chosen the PSO because of some advantages such as 

easy implementation and rapid convergence, as cited by several authors (Angeline, 1998; Yang et al., 

2004). Furthermore, PSO has not yet been explored to the SVRP, and still some interesting results are 

to be discovered. Since PSO solves problems with continuous variables and the VRP is a 

combinatorial optimization problem, a decoding method is needed to apply PSO to solve the VRP. 

Therefore, designing an effective decoding algorithm can significantly improve the solutions given by 

the PSO.  

 

3. Proposed PSO algorithm 
PSO uses some multidimensional particles, indicating position and velocity, to model a swarm. Each 

particle moves through space (i.e., in nℜ ) while updating its own best position, the global best 

position and its neighborhood’s best position. It informs other particles about its best position, it also 

obtains theirs and then adjusts its own position and velocity according to the shared information. 

Figure 2 illustrates how a particle velocity is calculated. Consider some two-dimensional particles. 

One of them (in solid black with coordinates (2, 3)) has been highlighted to show how a particle 

position is updated. Three vectors are considered for this particle as follows: 

• A global best position (shown in green with coordinates (9, 7)) is updated when a new 

best position is found by the particles in the swarm.  

• A neighborhood best position (shown in yellow with coordinates (2, 6)) which is the best 

in the neighborhood of each particle. 

• A local best position which is the best that the particle has experienced so far 

(coordinates (1, 4)). 

Figure 2. Particle position and velocity. 
 

The red vector, representing velocity, is the resultant of these three vectors plus the last velocity of the 

black particle (coordinates (0.1, -0.1)). In order not to loose some potential solutions at each iteration, 

the velocity vector should be so calculated as to be small enough to avoid large perturbations in the 

solutions. This is why the coefficients are selected as uniform random variables. In our example, 

these coefficients are 0.1, 0.3 and 0.2 and have been used as follows: 
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Based on the above example, the new position of the black particle (shown in gray) will be defined by 

the following resultant vector: 
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All particles should be updated following the previous example. Afterwards, the global best, the 

neighborhood best and the local best positions are updated. 

In this simple example, we have used two-dimensional particles, but depending on the problem, any 

suitable number of dimensions can be selected as the particle string length. 

The notations related to our proposed PSO algorithm are as follows: 

α         iteration index; T,,2,1 K=α  

k          particle index, Kk ,,2,1 K=  

s          dimension index, Ss ,,2,1 K=  

u          uniform random number in the interval [0, 1] 

)(αw     inertia weight in the thα  iteration 

)(αν ks  velocity of the thk  particle at the ths  dimension in the thα  iteration 

)(αθ ks  position of the thk  particle at the ths  dimension in the thα  iteration 

ksη        personal best solution (pbest) of the thk   particle at the ths  dimension 

gsη        global best solution (gbest) at the ths  dimension 

K
ksη        local best solution (lbest) of the thk  particle at the ths  dimension 

N
ksη        near neighbor best solution (nbest) of the thk  particle at the ths  dimension 

pC       personal best solution acceleration constant 

gC        global best solution acceleration constant 

kC        local best solution acceleration constant 

nC        near neighbor best solution acceleration constant 

 maxθ     maximum position value 

minθ      minimum position value 
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kΘ       position vector of the thk  particle 

kΩ       velocity vector of the thk  particle, ],...,,[ 21 kSkk ωωω  

kη        personal best solution vector of the thk  particle 

gη        global best solution vector 

K
kη        local best solution vector of the thk  particle 

)(xZ     objective value of x  

FDR     fitness distance ratio 

The proposed PSO algorithm, based on the above notations, may now be defined as follows: 

1. Initialize K particles as a swarm, generate the thk  particle with a random position kΘ  in the range 

[ minθ , maxθ ], velocity kΩ = 0 and personal best kη  = kΘ  for Kk ,,2,1 K= . Set iteration .1=α  

2. For Kk ,,2,1 K= , calculate the objective value of kΘ  ))(( kZ Θ  according to the proposed 

decoding M1 algorithm (to be explained later). 

3. Update pbest: if ⇒<Θ )()( kk ZZ η kη  = kΘ  ; Kk ,,2,1 K=  

4. Update gbest: if ⇒< )()( gk ZZ ηη  gη = kη  ; Kk ,,2,1 K=  

5. Update lbest: among all the thk  particle’s neighboring pbests, set the one with the least objective 

value in K
kη . Kk ,,2,1 K=  

6. Generate nbest: set  os
N
ks ηη =  ( osη is the same as ksη  : personal best solution of the tho   particle at 

the ths  dimension; Ko ,,2,1 K=  and ok ≠ ) ; Kk ,,2,1 K= ; Ss ,,2,1 K=  

 to maximize the following Fitness Distance Ratio (FDR). In other words, the ths  dimension of the 

thk  panicle’s velocity is updated using a particle called the nbest, with a prior best position N
ksη , 

chosen to maximize. 

     ok
ZZ

FDR
osks

ok ≠
−
−Θ= ;

)()(

ηθ
η

 and Ko ,,2,1 K=                                        (1) 

Some researchers (Ozcan and Mohan, 1999; Clerc and Kennedy, 2002) have shown that particles 

move in sinusoidal waves until they reach the global best positions detected by all particles so far. If a 

point, visited by a particle during this oscillation, has a better objective value than its previous best 

position, then particle movement continues, generally converging at the global best position 

discovered so far. Other particles behave similarly, converging at a good local optimum for the 
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problem. However, if the global optimum for the problem doesn’t lie on a path between the original 

particle position and such a local optimum, then the global optimum is not achieved and the particles 

are wasting computational effort in seeking to move in the same direction (towards the local 

optimum), whereas better results may be obtained if various particles explore other possible search 

directions. Peram et al. (2003) has introduced another alternative in which the particles are influenced 

by other particles, not just move towards or away from the best position found so far. The socio-

cognitive learning process, defined in the standard PSO, is based on a particle’s own experience and 

that of the most successful particle. The FDR adds a new dimension to this approach; each particle 

also learns from the experience of the neighboring particles that have a better fitness than itself. FDR 

computes a best neighborhood position for each particle by maximizing the ratio between the 

objective difference of each particle for each dimension and the absolute value of the difference 

between the particles positions in that dimension (Veeramachaneni et al., 2003). Ai and 

Kachitvichyanukul (2009b) too have shown that FDR affects VRP. 

7. Update velocity and position of the thk  particle: 

    [ ])()1(
1

)()( Tww
T

T
Tww −

−
−+= αα                                                                                  (2) 

where: 

)1(w and )(Tw are the input parameters ( )()1( Tww > ). 

)(αw  is a parameter that decreases as the number of iterations increases.     

     
))(())((

))(())(()()()1(

αθηαθη

αθηαθηανααν

ks
N
ksnks

K
ksk

ksgsgkspspksks

ucuc

ucucw

−+−+

−+−+=+
                                  (3) 

In Equation (3), velocity of the thk  particle is therefore based on the previous iteration velocity, local 

best position, global best position, neighborhood best position and FDR. 

      )1()()1( ++=+ αναθαθ ksksks                                                                                        (4) 

After determining the position of the thk  particle, according to Equation (4), if it is less than minθ or 

more than maxθ , it should be considered equal to 
minθ  or maxθ  respectively and then the velocity is 

set to zero. 

8. If stop criterion is met ( T=α ), stop. Otherwise, 1+= αα  and return to step 2. 

 

3.1. M1 decoding algorithm 

In the PSO algorithm proposed in this research, every particle is represented by an array of real 

numbers. The particle moves in a multidimensional space to find the optimal /near optimal position. 
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So the important point is: How is a particle position used to determine the vehicles routes in a VRP? 

This study has proposed a decoding algorithm with the help of which we may define the characters of 

each particle. The algorithm should first specify the length of the array by showing haw many 

characters each particle has. Ai and Kachitvichyanukul (2009b) are the only researchers who have 

used such algorithms for the interpretation of such arrays. In the algorithm proposed in this research, 

the length of each particle equals n3  where n  is the number of customers. The first n  characters 

indicate the priority of the customers to be visited (similar to Ai and Kachitvichyanukul, 2009b) and 

the second and the third n  characters are used to assign customers to vehicles. An example of 

assigning customers to a vehicle is as fallows: 

Suppose there are 7 customers to be assigned to a vehicle. Figure 3 shows customers scores, extracted 

from a random particle. These scores are shown in the descending order in Figure 4. 

 

Figure 3. Customers scores extracted from a particle. 

 

Figure 4. Customers scores sorted in the descending order. 
 

Some problems will arise if one uses a traditional sequencing method; e.g. route [7-4-3-5-2-1-6] will 

be found for the above example. Logically, Route 1 ([7-4-3-5-2-1-6]) is the same as Route 2 [6-1-2-5-

3-4-7] but only backwards. There are many other redundancy problems that can severely affect the 

algorithm. Suppose [6-1-2-3-5-4-7] is the best route. Then, the PSO algorithm will guide Route 1 to 

this best route. Therefore, it tries to increase Customer 6’s score (17) so that this customer is served 

sooner, and also tries to decrease Customer 7’s score (82) because it is the last visited costumer in the 

best known solution and so on. The progressive updating of the scores needs several iterations. In the 

mean time, an updated route could be something like [4-7-5-3-6-2-1]. It is also possible that Route 1 

is much better than the updated route. In order to overcome this problem, the customers are added 

sequentially from the leftmost odd columns and then from the rightmost even columns when 

determining a route. This procedure for the above example is depicted in Figure 5 where the depot is 

denoted as D. 

Figure 5. Sequence of vehicles services to customers, based on Figure 4. 
 

The second and the third n  characters are used to assign customers to vehicles. These two strings can 

be applied independently. If we use only one string, the chance of remaining in local search will 

increase. In order to avoid local optimum convergence, one of these strings is selected stochastically. 

A threshold parameter, [ ]0,1∈p , is used to select one of these two strings. Therefore, the second 

string is applied with a probability p  and the third one with a probability p−1 . After selecting one 
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of the 2nd or the 3rd strings, the interval between ),( maxmin θθ will be stratified by tTl  which is given 

by Equation (5) below. Thereafter, if the value of iθ  lies between tTl  and 1+tTl  , it means that the thi  

customer will be served by the tht  vehicle.  

( ) min
minmax θθθ

+−






 −
= 1t

m
Tlt                                                                           (5) 

 
As an example, suppose the second string is selected (Figure 6). In order to assign 7 customers to 3 

vehicles we may proceed as follows:  

 

Figure 6. The second string of n  characters from a particle. 

 

Based on Equation 5, 1Tl , 2Tl , 3Tl  and 4Tl  are 0, 33, 66 and 99 respectively (supposing that 

0min =θ and 99max =θ ). If we define tV  as a customer set served by the tht  vehicle, then: 

}1,5{},6,7,2{ 21 == VV and }4,3{3 =V  

Many researchers suggest employing a hybrid strategy which embeds a local optimizer between the 

iterations of the metaheuristics (Tao et al., 2008; Chen et al., 2006). So, after determining customer 

assignments and vehicle service sequences, and in order to improve the solution, some local search 

algorithms can be applied. The ones we have used have been Variable Neighborhood Search (VNS) 

with algorithms such as 2-OPT, Exchange1-1 and Iterated Greedy to be explained in Section 3.2. It 

should be noted that using a local search algorithm means decreasing the objective function value 

without modifying the particle dimensions. Then, if the difference between objective function values 

before and after local search (lB  and lA respectively) is considerable, the related particle might be 

considered as a local best. This is the reason of the movement of other particles toward this one, while 

the real local best position is just different. Therefore, if the difference in the objective function 

values is greater than a predefined value δ  ( lB*1.0  in this research) the velocity vector, related to 

the particle, will be zero in that iteration. In addition, the particle is so updated that in the next 

iteration, before implementing the local search, the same solution (the one obtained in previous 

iteration after local search) will be obtained. This updating procedure is clarified with a numerical 

example in Step 5 of the M1 decoding algorithm. This algorithm is illustrated by the following 

example: 
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Suppose 7 customers (n =7) are to be served by 3 vehicles (m =3) (Table 1). Location of each 

customer is defined by its coordinates; for example, Customer 1is located at (82, 90). A 21-position-

long particle (3*7) (Figure 7) has been decoded by the M1 algorithm using the following data: 

lBTlTlTlTlp *1.0,)99,66,33,0(),,,(,9.0),99,0(),( 4321maxmin ==== δθθ  

  

Table 1. The input data of an example VRP  

Costumer No. (Depot) 1 2 3 4 5 6 7 

Coordinates 
82 82 99 70 80 58 93 62 
50 90 51 85 20 60 60 45 

 

 

Figure 7. A 21-position-long particle.  

 

1. Assign the n customers to the vehicles tV ; mt ,,2,1 K=   

1.1. In order to assign the thh  customer of the 
thi  particle, if rand (a random variable value 

generated from the interval [ ]1,0 ) is less than p  , then )( hni +θ  and otherwise,
 )2( hni +θ  is 

selected. 
1.2. For the selected θ  in the previous stage, a vehicle that satisfies equation 1+<≤ tt TlTl θ  

is selected considering the capacity constraint.(If this constraint is violated, the 
objective function will be set to a big value as the penalty and algorithm will 
terminate.)  

If the random variable is 0.8, we should use the second 8 characters, because p<8.0 . 

So, according to tTl :  

}5,1{},7,6,2{ 21 == VV and }4,3{3 =V  

The numbers in the above three sets do not show the sequence of customers; this 
sequence will be determined in the next step. 

2. Define the sequence of customers assigned to the tht  vehicle; mt ,,3,2,1 K=  

2.1. AssumeP set as follows: 

       ( ) },...,2,1{ , ZzP
ztVit == θ ; =Z Number of tV  members 

In our example: 
}24,18{},82,17,19{ 21 == PP  and }81,65{3 =P  

2.2. Sort P  in the descending order and update the sequence of customers in tV  according to 

Figure 5. 
)15(),627( 21 −=−−= VV  and )34(3 −=V   

3. Calculate the objective function value (lB ). 

31813310481133cos,104cos,81cos
321

=++=⇒=== lVVV Bttt   

4. Improve via local search. (Local search algorithms have been presented in Section 3.2) 
After improvement, suppose we have the following modified routes: 
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)54(),13(),627( 321 −=−=−−= VVV   

5. Update the particle and its related velocity 
5.1. Calculate the objective function value (lA ) 

2701029078102cos,90cos,78cos
321

=++=⇒=== lVVV Attt   

5.2. If δ≤− ll AB  , then consider lA as the objective function value and exit the algorithm. 

Since 8.31270318 >− , we should go to the next step.  
5.3. Update the particle only for the first and the secondn characters. 
5.3.1. In order to update ( )ktVi,θ , which belongs to tV  with K customers, generate a random 

value between minθ  and maxθ  that satisfies the following: 

( ) ( ) ( ) ( )1122 ,,,, tkttkt ViViViVi θθθθ <<<<
−−

L . 

So, for our example we will have: 

For the first route:   72,63,17 7,6,2,7,6,8,2, ===⇒<<< iiiiiii θθθθθθθ  

     For the second route:
  

58,32 3,1,3,1, ==⇒< iiii θθθθ  

     For the third route:
     

79,10 4,5,4,5, ==⇒< iiii θθθθ  

5.3.2. Update ( )ktVni +,θ  for all customers related to the tht  vehicle based on: 

( ) 1, ++ << tVnit TlTl
kt

θ . 

Since the 7th, the 2nd and the 6th customers should be served by the first vehicle, the related 

θ  values should be generated randomly between 01 =Tl  and 332 =Tl . 

8,23,31 )78(,)68(,)28(, === +++ iii θθθ   

This procedure is repeated for the customers served by the second and the third vehicles: 

42,54 )38(,)18(, == ++ ii θθ
 

79,90 )48(,)58(, == ++ ii θθ  

5.4. In order to update the velocity vector (iV ), the first and the second n  characters of iV  

are all assumed equal to zero. 
 

The above steps are demonstrated in Figure 8 too. The proposed decoding algorithm has three main 

novel features compared with the decoding methods SR-1 and SR-2 presented by Ai and 

Kachitvichyanukul, (2009b). First is the customer sequencing procedure (illustrated in Figure 5) 

which avoids some redundancy problems. Second is the special way in which the customers are 

assigned to vehicles avoiding convergence at a local optimum. The key point here is the usage of two 

different parallel strings. According to the second step of M1, often the first, and sometimes the 

second, string is used to assign customers to vehicles which helps escaping a local optimum. And the 

last is the updating of the particles values when some relative improvements occur after applying the 

local search algorithms. These algorithms may cause some route modifications that may not be 

reflected in the particles values. Imagine a particle with a given objective function value of 1000. If, 

after using the local search algorithms, the objective function improves to 900 and this particle 
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becomes the global best, then other particles will approach this one to improve theirs. But actually, 

900 is an unreal and a potential value for that particle and it will cause confusion in the particles 

velocity vectors because it is not reflected in the particle’s real vectors. 

 

Figure 8. Example of the M1 decoding algorithm. 
 

 

3.2. Local search algorithms 

After applying the decoding algorithm, some local search algorithms are employed to increase 

convergence speed to better solutions. Some of such algorithms which can be applied for the VRP can 

be seen in Cordeau et al. (2005), Laporte, et al. (2000) and Kindervater and Savelsbergh (1997). In 

this research, the Variable Neighborhood Search (VNS) method is used with other algorithms such as 

2-OPT, Exchange1-1 and Iterated Greedy (IG) which are defined below.  

The VNS is a well-known heuristic search method applied successfully to some VRPs (Hansen and 

Mladenovic, 2003). For more details see Polacek et al., (2004) or Pirkwieser and Raidl, (2008). IG is 

a modern interesting simple heuristic method that generates solutions in two steps: stochastic 

destruction and construction (Ruiz and Stützle, 2007; Ruiz and Stützle, 2008). These algorithms are 

well-known; however, for the sake of reproducibility, they are detailed in the following subsections:  

 

3.2.1. OPT algorithm 

OPT is a well known local search algorithm with a )( 2nO  computational complexity that can 

improve VRP solutions by changing the sequence of customers for each vehicle or route. The pseudo 

code related to the algorithm is as follows:  

 
for 1i =  to )( 2K −  

      for )( 2ij +=  to K  

            
( ) ji tt VV ↔

+1
 

             If the total cost is improves, modify the sequence tV . 

       end 
end 
 
 

3.2.2. Exchange 1-1 algorithm 

In this algorithm, exchanges of customers among vehicles or routes are possible, so all the exchanges 

will be taken into account. If the distance between two customers is less than ε , the two customers 
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will be exchanged and the objective function will be updated. If the solution is feasible and improves 

the objective function, the customers assignments to the vehicles are updated and other assignments 

are checked; otherwise, the algorithm will proceed without updates. The computational complexity of 

this algorithm is )( 2nO  in the worst case. Figure 9 and the following pseudo code illustrate the 

exchange procedure for two routes: 

for  1i =  to 1n  (number of customers in the 1st route)  
 for 1=j to 2n  (number of customers in the 2nd route) 

  if distance( ji CusCus , )<ε   

   exchange  iCus  with jCus  

   if solution improve, modify the routes according to this exchange 
  end 
 end 
end 

Figure 9. Exchange 1-1 local search. 

 

3.2.3. Iterated Greedy (IG) algorithm 

In this algorithm, r customers are selected randomly and removed from their respective routes. Then, 

each of the removed customers is greedily added to the remaining incomplete routes in the cheapest 

possible way.  

These steps are shown in Figure 10. Let’s suppose ten customers around a depot which are served by 

two vehicles. First, four customers are selected randomly. Then they are removed from the routes. 

Finally, they are placed in such an order that they improve the objective function. Now, two of the 

formerly selected customers are placed in their previous route and the other two are placed in new 

routes. The computational complexity of this algorithm is )( 2rnO .The details are as follows: 

1. Select r customers randomly and remove them from their related vehicles. 

2. Suppose R  is a set including the r  removed customers sorted in the descending order 

according to their demands. 

3. Suppose V is a set of vehicles sorted in the descending order of their remaining 

capacities. 

4. Substitute the thi  customer of R  in the thj  member of V . If the solution is feasible, 

update V . 

5. If mj < , substitute jj →+1 and go to step 4; otherwise, substitute ii →−1  and 

jj →+1 and go to step 4. 
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6. Find the objective function value and update the vehicles capacities. 

7. If r  is empty, the algorithm is finished; otherwise, go to Step 4. 

 

Figure 10. An example of the Iterated Greedy steps. 

 

 

3.2.4. VNS algorithm 

Each of the three previous local search methods induces a neighborhood. The VNS searches each 

neighborhood until local optimality is achieved. If, at any step, the solution is improved, the search 

will start from the first neighborhood. Therefore, VNS is finished if and only if the solution is a local 

optimum with respect to all neighborhoods: 

 

while solution improves 

while solution improves 

while solution improves 
apply the 2-OPT algorithm 

end  
apply exchange 1-1 algorithm 

end 
for n=1 to 5  
 apply IG algorithm  
end 

end  

 

Applying PSO decoding and local search algorithms simultaneously results in high quality solutions. 

The effectiveness of the M1 decoding method, in comparison with SR-1 and SR-2 algorithms (Ai and 

Kachitvichyanukul, 2009b), is presented in Table 2. SR-1 and SR-2 algorithms assume a virtual 

position for each vehicle. Each customer that has a shorter distance to a vehicle, will have more 

priority to be allocated to that vehicle. This approach generates some relatively symmetric tours with 

the vehicle centricity. The proposed algorithms are coded in the Matlab language and can be run on a 

personal computer with a 3.0 GHz Pentium 4 processor and 512MB RAM. The sample instances have 

been extracted from Augerat et al. (1995). Initial experiments indicated that our proposed PSO was 

rather robust as regards the working parameters. Therefore, we just employed the following 

parameters, mainly extracted from Chen et al. (2006) and Ai and Kachitvichyanukul (2009b), for our 

proposed PSO: T, number of iterations: 500; K, number of particles: 50; )1(w , the first inertia 
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weight: 0.9; )(Tw , the last inertia weight: 0.4; pC , the personal best acceleration constant: 0.7; gC

the global best acceleration constant: 0.3; kC the local best acceleration constant: 1.5; nC the near 

neighbor best acceleration constant:1.5; maxθ  the maximum position value: 100; minθ  the minimum 

position value: 0; number of iterations for the IG algorithm: 5; and number of neighborhoods: 5. In 

order to compare our method with SR-1 and SR-2, the following error measures have been 

considered: 

 

optimumSRE functionObjectivefunctionObjectiveSR −=− −11  

optimumSRE functionObjectivefunctionObjectiveSR −=− −22  

optimumME functionObjectivefunctionObjectiveM −= 11  

 

 

Table 2. Comparison of M1 algorithm with SR1 and SR2 (Ai and Kachitvichyanukul, 2009b). 

No. Sample 
objective function  

No. Sample 
objective function 

optimum  
solution 

SR-1 SR-2 M1  optimum  
solution 

SR-1 SR-2 M1 

1 An32k5 784 784 784 784  31 Bn64k9 861 866 863 863 

2 An33k5 661 661 661 661  32 Bn66k9 1316 1318 1316 1316 

3 An33k6 742 742 742 742  33 Bn67k10 1032 1035 1034 1035 

4 An34k5 778 778 778 778  34 Bn68k9 1272 1278 1274 1272 

5 An36k5 799 799 799 799  35 Bn78k10 1221 1239 1223 1221 

6 An37k5 669 670 669 669  36 En30k3 534 541 534 534 

7 An37k6 949 949 949 949  37 En51k5 521 521 521 521 

8 An38k5 730 730 730 730  38 En76k7 682 691 687 682 

9 An39k5 822 825 822 822  39 Fn72k4 237 237 237 237 

10 An44k6 937 940 940 937  40 Fn135k7 1162 1184 1165 1167 

11 An46k7 914 914 914 914  41 Mn101k10 820 821 820 821 

12 An60k9 1354 1366 1355 1354  42 Mn121k7 1034 1041 1036 1035 

13 Bn31k5 672 672 672 672  43 Pn23k8 529 529 529 529 

14 Bn34k5 788 788 788 788  44 Pn40k5 458 458 458 458 

15 Bn35k5 955 955 955 955  45 Pn45k5 510 510 510 510 

16 Bn38k6 805 809 805 805  46 Pn50k7 554 554 554 554 

17 Bn39k5 549 549 549 549  47 Pn50k8 631 631 631 631 

18 Bn41k6 829 829 829 829  48 Pn50k10 696 696 696 696 

19 Bn43k6 742 742 742 742  49 Pn51k10 741 741 741 741 

20 Bn44k7 909 915 912 909  50 Pn55k7 568 568 568 568 

21 Bn45k5 751 751 751 751  51 Pn55k8 588 588 588 588 

22 Bn45k6 678 678 678 678  52 Pn55k10 694 696 694 694 

23 Bn50k7 741 748 746 741  53 Pn55k15 989 998 995 989 

24 Bn50k8 1312 1315 1312 1312  54 Pn60k10 744 746 744 744 
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25 Bn51k7 1032 1033 1032 1032  55 Pn60k15 968 970 968 968 

26 Bn52k7 747 747 747 747  56 Pn65k10 792 799 795 792 

27 Bn56k7 707 709 707 707  57 Pn70k10 827 828 827 827 

28 Bn57k7 1153 1153 1153 1153  58 Pn76k4 593 599 594 593 

29 Bn57k9 1598 1603 1598 1598  59 Pn76k5 627 628 627 629 

30 Bn63k10 1496 1500 1499 1496  60 Pn101k4 681 686 683 688 

35.01,75.02,77.21: ==−=− EEE MSRSRAveragesError  
Note: Bold values equal optimum solutions.  
 

As we can see in Table 2, the error averages show that our proposed decoding algorithm M1 is much 

closer to the optimum solution in comparison with the two other decoding algorithms. According to 

Table 2 data, applying paired T- test for the null hypothesis ErrorSRErrorMH 110 : µµ =  against 

ErrorSRErrorMH 111 : µµ < , based on the Minitab reported P-value (P-value=0), will result in the 

rejection of 0H . So, M1 method is statistically better than SR-1. Also, applying the same test for the 

null hypothesis ErrorSRErrorMH 210 : µµ =
 
against ErrorSRErrorMH 211 : µµ < , based on the reported P-

value (P-value=0.032), will result in the rejection of 0H . So, M1 method is also statistically better 

than SR-2. Conceptually, SR-1 and SR-2 work in such a way that they consider a position for each 

vehicle. The customers geographically closer to the vehicle have higher priorities to be satisfied by 

that vehicle. The above concept causes SR-1 and SR-2 not to be able to sweep all the possible routes 

and consequently they cannot find the optimum solution in many cases. These algorithms are not able 

to achieve the global best solution in some cases because they cannot define some asymmetric tours. 

In the following example, we will solve a problem with SR-1 and M1 in a similar condition (CPU 

time). Figures 11 and 12 are related to SR-1and M1with 823 and 789 as their objective function 

values respectively. As shown, M1 has found some asymmetric tours, therefore it is a better solution. 

Many other examples can be found as this behavior is easily reproducible. 

 

Figure 11. A VRP which is solved by SR-1. 

 

  Figure 12. A VRP which is solved by M1. 

 

Now, including uncertainty demand and comparing the proposed PSO and M1 with other SVRP 

algorithms, we will proceed. 

  

4. Uncertainty in demands 
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Stochastic Vehicle Routing Problems (SVRP) have different models: VRP with Stochastic Demands 

(VRPSD), VRP with Stochastic Customers (VRPSC), VRP with Stochastic Customers and Demands 

(VRPSCD) and so on. Bertsimas (1992) presented an a priori method with diverse re-optimization 

policies to solve the VRPSD. Gendreau et al. (1996b) proposed some methods and techniques to 

solve these problems. Markovic et al. (2005) modeled a VRPSD which could be applied for delivery 

and pickup processes of mail, packages, and recycled materials and, concurrently, Dessouky et al. 

(2005) suggested a VRPSD for some health care delivery problems. Demand uncertainty is a serious 

problem appearing in the VRP which leads to unmet demands (Sungur et al., 2008). Novoa and Storer 

(2009) developed an approximate dynamic programming approach to solve the VRPSD. Therefore, it 

seems necessary that some methods be developed to provide solutions that are robust against 

uncertainty. To comprehend robustness of a solution against demand uncertainty, a conceptual 

example is given as follows:  

Table 3. The input data of a VRP, including 7 clients served by one depot. 
 Costumer No. (Depot) 1 2 3 4 5 6 7 

Coordinates 
82 82 99 70 80 58 93 62 
50 90 51 85 20 60 60 45 

Demand 0 46 46 44 32 10 34 45 
Each vehicle capacity: 100 

 

Figure 13 illustrates two solutions to the example problem of Table 3. The left figure depicts the 

optimum solution. It is clear that Route 1 is not robust against demand perturbations because 

summation of the demands in Route 1 is exactly equal to the related vehicle capacity, and any 

increase in demands will cause unmet demands leading to some profit loss. In the right figure, the 

cost increases about 2% (from 230 to 235), but all routes are more robust against demand uncertainty. 

In a typical bad case, suppose that the demands of customers 2 and 4 increase to 51 and 49 

respectively (about 10% perturbation); then, the vehicle is able to satisfy the customers without any 

unmet demands. So, we should determine the values of 2% extra cost (related to the robust solution) 

and 10% unmet demands (related to the best solution) to figure out if the robust solution is more 

economical. In this strategy, the vehicles’ remaining capacities are leveled, considering minimization 

of the extra cost. 

 

Figure 13. Best (left) and robust (right) solution. 

 

Uncertainty in demand can be modeled in different ways such as “probability distributed demands” 

and “Fuzzy demands” (Erbao and Mingyong , 2009; Liu and Lai, 2002). This research considers no 
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known or assumed distribution for demands and modifies the PSO objective function in such a way 

that robust VRP solutions can be achieved. The modification is as follows: 

Let id
~

 be the customer demand ( iiiii ddddd εε +≤≤− ~
) where ε  is a constant indicating the 

perturbation percentage and id  is the nominal demand. Therefore: 

u
i

il DdD ∑ ≤≤ ~
                                                                                                                          (6) 

where lD  and uD are the lower and the upper bounds for the sum of the real perturbed demands 

respectively. As explained in the example of Figure 13, we should balance the unused capacity of 

vehicles. There, the unused capacities of vehicles for the 3 routes, when the solution is deterministic, 

are: 0, 20 and 23 (100- 100, 100-80 and 100- 77), but in the robust solution they change to: 10, 20 and 

13. Index  ψ  in relation 7 below, has been devised to compare the balancing of unused capacities in 

different solutions.  

1))(( −= vVar λψ  (7) 

where ϕρλ −= vv  is the difference between the unused capacity ( vρ ) for different routes (ν ), and  








 −
= ∑∑

n
dD

n
v vuv v )(

,max
ρϕ  is the maximum average demand considering uncertainty in 

demands. 

ψ
 
increases when all routes are leveled and have enough unused capacities to overcome uncertainty. 

Equation (7) is to make sure that each vehicle’s remaining capacity limit does not exceed its upper 

bound.  

To make Equation (3) (for the deterministic case) usable for the uncertain conditions, index ψ  is 

added and Equation (8) is obtained as follows: 

)))((()))(((

)))((()))((()()()1(

Nks
N
ksnKks

K
ksk

gksgsgpkspspksks

ucuc

ucucw

ψαθηψαθη

ψαθηψαθηανααν

−+−+

−+−+=+
                        (8) 

Suppose in a deterministic solution the lbest has a high ψ  and the gbest has a lowψ , therefore the 

velocity vector will tend to the lbest rather than to the gbest. Generally speaking, velocity vectors are 

more affected by solutions which have balanced unused capacities. That is why the above 

modification ensures a solution’s robustness. 

In order to evaluate the performance of the proposed modification, it is necessary that some 

performance indexes be determined when demands are uncertain. Let DU  and RU  be the unmet 

demands percentages for the deterministic and the robust solutions respectively. In order to find them, 
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first the demands are generated randomly in the interval [ ]iiii dddd εε +− ,  and then, based on the 

vehicle capacity, the unmet demands are counted. For instance, in the problem explained in Table 3, 

the demands, considering 20% perturbation, would be 48, 45, 48, 29, 10, 40 and 54. In the optimum 

solution, the summations of the demands in the three routes would be 106, 81 and 69. So we would 

have 6 units as unmet demands related to Route 1 and DU =6/257. In the robust solution, the 

summations of the demands in the routes are 96, 81 and 79.  Therefore, we would have no unmet 

demands and, as a result, RU =0/257. This procedure is repeated until the final values of DU  and RU  

are found. Another index to be determined is DRZ  which indicates the extra cost of the robust 

solution compared to the deterministic one ( DDRDR ZZZZ )( −= ). In this example DRZ  is equal 

to 0.02 ( 230)230235( −= ). 

Next in the evaluation process, is to compare our heuristic results ( )(MU R , )(MZDR ) and the exact 

robust optimum solutions ( )(SU R , )(SZDR  ) presented by Sungur et al. (2008). Although there are 

many results on SVRP, Sungur et al. (2008) are the only researchers who have investigated robust 

VRP. There are many differences between the robust VRP and the SVRP (see for example Ben-Tal 

and Nemirovski, 2000). Table 4 summarizes the results of the implementation of the proposed 

methods ( %10=ε ). In some cases, exact robust optimum solutions are not available (NA) in an 

acceptable amount of time because of the complexity of the related counterparts (Sungur et al., 2008). 

Since Sungur et al. (2008) have applied the exact algorithm to obtain the robust solution, their 

)(SU R  is equal to zero for all instances; that is why we have not entered it in Table 4. In this table, 

data are computed based on a computer and environment similar to Sungur’s et al. (2008), but the 

exact robust solution data have been extracted from Sungur et al. (2008). 

 

 

 

 

Table 4. Comparison of the proposed heuristic method with exact robust solutions (Sungur et al., 2008) 

No. Sample DU  )(SZ DR
 )(MU R

 )(MZ DR
 No. Sample DU  )(SZ DR

 )(MU R
 )(MZ DR

 

1 An32k5 2.5 1.5 0 1 26 Bn52k7 2 0.7 0 0.3 

2 An33k5 1.7 2.1 0 2 27 Bn56k7 3 3 0 3.2 

3 An33k6 1.8 2.7 0 1.5 28 Bn57k7 5 IN 1.5 0.9 

4 An34k5 0.3 1.5 0 0.6 29 Bn57k9 3.1 NA 0 1.2 

5 An36k5 2.1 1.8 0 0.9 30 Bn63k10 3 NA 0.21 2.1 
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6 An37k5 1.6 2.7 0 1.9 31 Bn64k9 3.3 IN 0.9 3 

7 An37k6 2.4 NA 0.2 0.5 32 Bn66k9 3.6 IN 0.91 2.1 

8 An38k5 3.8 IN 0.67 1.5 33 Bn67k10 2.5 NA 0.87 3 

9 An39k5 3.1 1.5 0.48 1.3 34 Bn68k9 3.9 NA 0.27 4.1 

10 An44k6 2.2 1.5 0 0.9 35 Bn78k10 3.7 NA 0.7 2.4 

11 An46k7 3.4 4.2 0.2 4.5 36 Pn23k8 3.4 IN 0.71 2.8 

12 An60k9 2.1 NA 0.35 2.1 37 Pn40k5 1.2 0.7 0 0.3 

13 Bn31k5 0.7 1.3 0 0.4 38 Pn45k5 3.3 2 0 1.1 

14 Bn34k5 2.5 0.1 0 0.1 39 Pn50k7 2 2 0 1.5 

15 Bn35k5 2.3 2.8 0 0.8 40 Pn50k8 3.9 IN 1.54 3 

16 Bn38k6 2 0.1 0 0.1 41 Pn50k10 2.1 IN 0.82 2.1 

17 Bn39k5 2.7 2.2 0 1.4 42 Pn51k10 3.2 IN 0.72 2 

18 Bn41k6 2.4 4.2 0.4 2.1 43 Pn55k7 2 NA 0 0.4 

19 Bn43k6 3.5 1.5 0 0.9 44 Pn55k8 1.9 NA 0 0.8 

20 Bn44k7 3.6 4.6 0.3 3.5 45 Pn55k10 2.9 NA 0 1.1 

21 Bn45k5 3.1 IN 0.79 1.2 46 Pn55k15 4.4 IN 1.4 2 

22 Bn45k6 4.4 IN 0.84 1.1 47 Pn60k10 1.7 NA 0.68 1.8 

23 Bn50k7 1.5 0.5 0 0.2 48 Pn60k15 2.3 NA 0.9 3 

24 Bn50k8 3 2.7 0 1.1 49 Pn65k10 1.8 NA 0.94 2.5 

25 Bn51k7 3.2 IN 0.83 0.9 50 Pn70k10 2.3 IN 1 2.7 

      Average: 2.7 2A 0.32 1.3A 
A: According to )(SZDR  

column, since some data are infeasible or not available (IN 

or NA), the average is calculated only based on the existing data. 

 

According to Table 4 data, applying paired T-test for the null hypothesis )()(0 : SZMZ DRDR
H µµ =  

against
 )()(1 : SZMZ DRDR
H µµ < , based on the Minitab reported P-value (P-value=0), will result in the 

rejection of 0H . So, our method statistically leads to smaller costs than that of the exact method, 

proposed by Sungur et al. (2008). Also, in some samples, in Table 4, the exact method leads to 

infeasible solutions while ours has an appropriate solution. 

Table 4 shows that our proposed method has two relative advantages in comparison with the robust 

exact solutions. First, in all cases it has yielded a solution while in Sungur et al. (2008) robust exact 

method, 26% of the cases have had no solutions, 26% have had infeasible counterparts and 48% of 

the cases have yielded a robust solution. Second, the average for the values of )(MZ DR  equals 1.3 

while this value for )(SZDR  equals 2 which shows that in our proposed PSO method, the extra cost is 

7% less than that of the Sungur’s et al. (2008). However, the exact robust method, for cases with 

available solutions, meets all uncertain demands while our method misses some demands (in Table 4, 

the average of unmet demands is 0.32%). In such cases, these two methods should be compared 

economically.  
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As was explained before, El Ghaoui (2003) illustrates the robust solution by a conceptual example 

which is depicted in Figure 1. In our method, we have proposed a new heuristic counterpart area (the 

red bound) which is larger than the exact counterpart shown in his figure. Since the red area is larger 

than the exact counterpart, sometimes it includes areas affected by perturbation. That is why on the 

one hand we have some unmet demands, but on the other hand, in some cases )(MZDR  is smaller 

than )(SZDR . Therefore, although the exact robust algorithm gives solutions without any unmet 

demands, the proposed method (even with some unmet demands) has much better solutions. Yet, in 

practical cases, we should compare the cost of unmet demands in the proposed method with the extra 

cost of the exact robust method to see which solution is more economical. 

 

5. Conclusions 
In this paper, a novel Particle Swarm Optimization (PSO) approach is applied to solve the CVRP 

having stochastic demands with no known distributions. Since PSO solves problems with continuous 

variables and the VRP is a combinatorial optimization problem, a decoding method is needed to apply 

PSO to solve the VRP. We have developed a novel decoding method for interpreting PSO solutions 

for the VRP. The proposed M1 decoding method includes three local search operators in a VNS loop 

in order to significantly improve the quality of the solutions. It has been tested against two recent and 

state-of-the-art decoding methods from Ai and Kachitvichyanukul, (2009b). The results clearly show 

that our proposed approach is a superior and preferable PSO method in some CVRP instances. The 

whole proposed PSO approach has also been tested for the Stochastic VRP (SVRP). Results show 

that the solutions of this algorithm are applicable in larger scale problems and resist perturbations to 

an acceptable extent. Although the exact robust algorithm gives solutions without any unmet 

demands, our proposed method (even with some unmet demands) has less robustness cost. Also, in all 

cases, the proposed method has produced a feasible solution while the other method has not (in many 

cases). 

Our intention for future research is to actually test the proposed PSO in a production environment 

with a real SVRP and to actually measure unmet vs. robustness costs. A close study of the 

performance of the proposed PSO parameters can be the subject of further researches. 
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