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Abstract

More and more challenging designs are required everyday in today’s indus-

tries. The traditional trial and error procedure commonly used for mechanical

parts design is not valid any more since it slows down the design process and

yields suboptimal designs. For structural components, one alternative con-

sists in using shape optimization processes which provide optimal solutions.

However, these techniques require a high computational effort and require

extremely efficient and robust Finite Element (FE) programs. FE software

companies are aware that their current commercial products must improve in

this sense and devote considerable resources to improve their codes. In this

work we propose to use the Cartesian Grid Finite Element Method, cgFEM

as a tool for efficient and robust numerical analysis. The cgFEM methodology

developed in this thesis uses the synergy of a variety of techniques to achieve

this purpose, but the two main ingredients are the use of Cartesian FE grids

independent of the geometry of the component to be analyzed and an effi-

cient hierarchical data structure. These two features provide to the cgFEM

technology the necessary requirements to increase the efficiency of the cgFEM

code with respect to commercial FE codes. As indicated in [1, 2], in order to

guarantee the convergence of a structural shape optimization process we need

to control the error of each geometry analyzed. In this sense the cgFEM code

also incorporates the appropriate error estimators. These error estimators are

specifically adapted to the cgFEM framework to further increase its efficiency.

This work introduces a solution recovery technique, denoted as SPR-CD, that
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in combination with the Zienkiewicz and Zhu error estimator [3] provides very

accurate error measures of the FE solution. Additionally, we have also devel-

oped error estimators and numerical bounds in Quantities of Interest based

on the SPR-CD technique to allow for an efficient control of the quality of

the numerical solution. Regarding error estimation, we also present three new

upper error bounding techniques for the error in energy norm of the FE so-

lution, based on recovery processes. Furthermore, this work also presents an

error estimation procedure to control the quality of the recovered solution in

stresses provided by the SPR-CD technique. Since the recovered stress field

is commonly more accurate and has a higher convergence rate than the FE

solution, we propose to substitute the raw FE solution by the recovered solu-

tion to decrease the computational cost of the numerical analysis. All these

improvements are reflected by the numerical examples of structural shape op-

timization problems presented in this thesis. These numerical analysis clearly

show the improved behavior of the cgFEM technology over the classical FE

implementations commonly used in industry.

II E. Nadal



Resumen

Cada d́ıa diseños más complejos son requeridos por las industrias actuales.

Para el diseño de nuevos componentes, los procesos tradicionales de prueba y

error usados comúnmente ya no son válidos ya que ralentizan el proceso y dan

lugar a diseños sub-óptimos. Para componentes estructurales, una alterna-

tiva consiste en usar procesos de optimización de forma estructural los cuales

dan como resultado diseños óptimos. Sin embargo, estas técnicas requieren

un alto coste computacional y también programas de Elementos Finitos (EF)

extremadamente eficientes y robustos. Las compañ́ıas de programas de EF

son conocedoras de que sus programas comerciales necesitan ser mejorados

en este sentido y destinan importantes cantidades de recursos para mejorar

sus códigos. En este trabajo proponemos usar el Método de Elementos Fini-

tos basado en mallados Cartesianos (cgFEM) como una herramienta eficiente

y robusta para el análisis numérico. La metodoloǵıa cgFEM desarrollada en

esta tesis usa la sinergia entre varias técnicas para lograr este propósito, cuyos

dos ingredientes principales son el uso de los mallados Cartesianos de EF in-

dependientes de la geometŕıa del componente que va a ser analizado y una

eficiente estructura jerárquica de datos. Estas dos caracteŕısticas confieren

a la tecnoloǵıa cgFEM de los requisitos necesarios para aumentar la eficien-

cia del código cgFEM con respecto a códigos comerciales. Como se indica en

[1, 2], para garantizar la convergencia del proceso de optimización de forma

estructural se necesita controlar el error en cada geometŕıa analizada. En

este sentido el código cgFEM también incorpora los apropiados estimadores
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de error. Estos estimadores de error han sido espećıficamente adaptados al

entorno cgFEM para aumentar su eficiencia. En esta tesis se introduce un

proceso de recuperación de la solución, llamado SPR-CD, que en combinación

con el estimador de error de Zienkiewicz y Zhu [3], da como resultado medidas

muy precisas del error de la solución de EF. Adicionalmente, también se han

desarrollado estimadores de error y cotas numéricas en Magnitudes de Interés

basadas en la técnica SPR-CD para permitir un eficiente control de la calidad

de la solución numérica. Respecto a la estimación de error, también se pre-

senta un proceso de estimación de error para controlar la calidad del campo

de tensiones recuperado obtenido mediante la técnica SPR-CD. Ya que el

campo recuperado es por lo general más preciso y tiene un mayor orden de

convergencia que la solución de EF, se propone sustituir la solución de EF por

la solución recuperada para disminuir aśı el coste computacional del análisis

numérico. Todas estas mejoras se han reflejado en esta tesis mediante ejemplos

numéricos de problemas de optimización de forma estructural. Los resultados

numéricos muestran claramente un mejor comportamiento de la tecnoloǵıa

cgFEM con respecto a implementaciones clásicas de EF comúnmente usadas

en la industria.
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Resum

Cada dia dissenys més complexos són requerits per les indústries actuals. Per

al disseny de nous components, els processos tradicionals de prova i error usats

comunament ja no són vàlids ja que ralentitzen el procés i donen lloc a dis-

senys subòptims. Per a components estructurals, una alternativa consistix a

usar processos d’optimització de forma estructural els quals donen com resultat

dissenys òptims. No obstant això, estes tècniques requerixen un alt cost com-

putacional i també programes d’Elements Finits (EF) extremadament eficients

i robustos. Les companyies de programes d’EF són coneixedores que els seus

programes comercials necessiten ser millorats en este sentit i destinen impor-

tants quantitats de recursos per a millorar els seus codis. En este treball pro-

posem usar el Mètode d’Elements Finits basat en mallats Cartesians (cgFEM)

com una ferramenta eficient i robusta per a l’anàlisi numèrica. La metodologia

cgFEM desenrotllada en esta tesi usa la sinergia entre diverses tècniques per

a aconseguir este propòsit, els dos ingredients principals de la qual són l’ús

dels mallats Cartesians d’EF independents de la geometria del component que

serà analitzat i una eficient estructura jeràrquica de dades. Estes dos carac-

teŕıstiques conferixen a la tecnologia cgFEM dels requisits necessaris per a aug-

mentar l’eficiència del codi cgFEM respecte a codis comercials. Com s’indica

en [1, 2], per a garantir la convergència del procés d’optimització de forma es-

tructural es necessita controlar l’error en cada geometria analitzada. En este

sentit el codi cgFEM també incorpora els apropiats estimadors d’error. Estos

estimadors d’error han sigut espećıficament adaptats a l’entorn cgFEM per a
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augmentar la seua eficiència. En esta tesi s’introdüıx un procés de recuperació

de la solució, anomenat SPR-CD, que en combinació amb l’estimador d’error

de Zienkiewicz i Zhu [3], dóna com resultat mesures molt precises de l’error de

la solució d’EF. Addicionalment, també s’han desenrotllat estimadors d’error

i cotes numèriques en Magnituds d’Interés basades amb la tècnica SPR-CD

per a permetre un eficient control de la qualitat de la solució numèrica. Re-

specte a l’estimació d’error, també es presenta un procés d’estimació d’error

per a controlar la qualitat del camp de tensions recuperat obtingut mijançant

la tècnica SPR-CD. Ja que el camp recuperat és generalment més prećıs i té

un major orde de convergència que la solució d’EF, es proposa substituir la

solució d’EF per la solució recuperada per a disminuir aix́ı el cost computa-

cional de l’anàlisi numèrica. Totes estes millores s’han reflectit en esta tesi

per mitjà d’exemples numèrics de problemes d’optimització de forma estruc-

tural. Els resultats numèrics mostren clarament un millor comportament de

la tecnologia cgFEM respecte a implementacions clàssiques d’EF comunament

usades en la indústria.
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4.4 Problem 2.b. ūx in ΩI . Q4h. Sequence of h-adaptive refined

meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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4.2 Problem 2.a. ūn along Γo. Q4h. λ = 1. Values of the global

effectivity index of the error estimation ϑ̃ and the corrected

value of the QoI θ̃QoI of the bounding techniques for the GOA. 168
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Chapter 1

Introduction and scope

Since the early days of the Computer Aided Engineering (CAE) the Finite

Element Method (FEM) has predominated over other methods of analysis

and simulation of structural components. Nowadays, FEM is the most used

technique, not only for the linear elasticity problem in structural analysis,

but also for plasticity, electromagnetism, heat transfer, etc. The FEM is a

very flexible technique that can be applied in a vast amount of engineering

applications.

CAE software has been closely related with Computer Aided Design (CAD)

software. Traditionally, when a part of a structure or a mechanism is being

designed, first the geometry is defined with a CAD system and finally it is

analyzed with CAE software in order to control its behavior under certain

load situations. In case, after the simulation with the CAE software, the com-

ponent does not behave as desired the user has to modify the geometry of

the component to try to obtain a suitable geometry. In the majority of situa-

tions a manual or poorly automatized process is used to obtain the modified

geometry. This has been the design process of components of structures for

the last 50 years. The problem of this process is that it is a trial and error
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1. Introduction and scope

procedure. The final result of this trial and error procedure strongly depends

on the designer experience, preventing, in general, the evaluation of optimal

designs. Another important drawback is that it requires an incredible amount

of man-hours to obtain the final optimized geometry since the user has to keep

on checking the results and modifying the geometry until what he/she under-

stands as the final or, at least suitable, geometry is obtained. In a highly

evolving industrial environment this process is not desired because it slows

down the design process.

Nowadays high technology industries, such as the automotive industry or the

aerospace industry among others, need more efficient design processes able

to provide optimal solutions (and not only suitable ones) within a reasonable

time, where the human intervention is restricted to the initial steps of the

optimization process and non-existent during the iterative process. In order

to achieve this objective, we need to couple the optimization processes with

the design of components. This consists in parameterizing the geometry of the

component and running an optimization process over these parameters. The-

oretically, the result will be the combination of the parameters that provides

the optimal geometry for the application under a set of prescribed constraints.

The structural optimization processes consist of two levels, the higher level and

lower level. The higher level, the optimization algorithm, provides the com-

binations of parameters that define the geometries whereas the lower level is

in charge of numerically analyzing each of them in order to evaluate their re-

sponse. This method, depending on the behavior of the higher level, could in

general lead to the optimal solution, thus providing the industry the neces-

sary tool to automatically obtain the optimal configurations for their designs.

However, there are several practical problems that are not already solved. For

instance, a great amount of computationally expensive analysis is required to

obtain the optimal geometry of a component, making this process prohibitive

for practical applications. Additionally, when using the traditional FEM as

lower level, a robust and efficient meshing method for very complex geometries

is required. This goal is not yet fully achieved in commercial codes. As a result

of this the user needs to check each mesh before running the analysis. Finally,

in order to guarantee that the optimization process converges to a suitable

2 E. Nadal



geometry, we need to control the error in each analysis performed by the lower

level [1, 2, 4], otherwise the ”noise” introduced by the numerical errors will

make the optimization process to converge to a non-optimal solution, decrease

its convergence rate or even prevent convergence. This issue has not been ad-

equately addressed in commercial codes preventing their use in optimization

processes.

In this work we want to deal with and improve these three issues: efficiency of

the optimization process, robustness of the FE code used in the lower level and

accuracy of the FE analysis. We will present the Cartesian Grid Finite Element

Method, cgFEM technique, which represents an appropriate combination of

techniques to reach our objective. The main characteristic of cgFEM is that

the traditional geometry-conforming mesh of the FEM method disappears.

We will make the mesh used to solve the FE problem independent of the

geometry of the component to be analyzed. In the cgFEM framework we

have two domains, the problem domain Ω and the meshing domain ΩE that

is a square, trivial to mesh, surrounding Ω. This process avoids the tedious

meshing process of the traditional FEM. Similar techniques can be found in

the literature, being all of them classified under the umbrella term of Finite

Elements in ambient space [5]. The results will show how under this meshing

framework very complex geometries, such as the bridge represented in Figure

1.1 where the detail ratio is 1500 : 1 (relation between the problem size and the

smallest detail), could be successfully represented, with good quality elements,

without any user manipulation.

Once the robustness issue has been addressed, the next issue is efficiency. The

efficiency in comparison with traditional FE codes can be gained in two differ-

ent fronts: the generation of the FE numerical model and its resolution. The

first one is building the FE numerical problem and the second one is solving it.

In the cgFEM framework, to build the numerical model, we rely on the mesh

structure and on the hierarchical data structure specifically implemented for

this type of meshes to reduce the amount of calculations to be performed. In

general, in the traditional FEM, each element of the mesh is different, hav-

ing different stiffness matrix per element and integration points. Then they
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Figure 1.1: 2D representation of the Alamillo bridge in Sevilla.

have to be specifically evaluated at each element of the mesh. As it will be

explained in detail in this work, in the cgFEM the mesh is formed by geometri-

cally similar elements. The geometrically similar elements are those that have

the same shape but different sizes. The integration properties and specifically

the stiffness matrix of these geometrically similar elements are related with the

corresponding scaling factor, then when only one is evaluated, automatically

all of them can be directly evaluated. For instance, when the stiffness matrix is

evaluated for one element, this matrix will be shared with the other elements,

thus avoiding repeated calculations. However, there is a price we have to pay.

There are some elements of the Cartesian grid that can not be treated in this

way. The elements that are cut by the boundary of the problem domain ∂Ω

need a special and individualized treatment. This process avoids numerous

unnecessary repeated calculations improving the performance of the method

in comparison with the traditional FEM.

Additionally and specifically when the cgFEM is used as the lower level of

a shape optimization process, since the problem domain Ω and the mesh-

ing domain ΩE are independent, we can choose the same meshing domain

for all individuals during the optimization process. As the meshing domain
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ΩE remains the same for all individuals, the sharing information procedures

could also be applied between the different geometries during the optimization

process. The numerical experiments indicate that this approach considerably

reduces the computational cost [6] of the whole optimization process.

Regarding the resolution of the global system of equations, we can differentiate

between two cases: direct solvers and iterative solvers. When direct solvers

are used, it is very interesting to have an adequate reordering of the matrix of

the system of equations. In this work we have used a reordering based on the

structure of the Cartesian grid, the Nested Domain Decomposition (NDD).

This provides an optimal reordering for the matrix since it directly uses the

topological information of the mesh. When iterative solvers are used, because

of the Cartesian grid structure, efficient projection techniques have been easily

implemented to project the solution of the previous mesh as the initial solution

for the current mesh.

The third issue we wanted to deal with regarding to the use of FE codes

in shape optimization processes was the error estimation and the h-adaptive

refinement schemes. Only a few commercial codes include error estimation

techniques and none of them are robust enough to work as a lower level of

a shape optimization process with satisfactory results. In this work we pro-

pose a very robust solution for this problem that perfectly fits not only in the

cgFEM framework but also in commercial codes, the use of a recovery type

estimator of the error of the FE solution [3] based on the use of an improved

version of the the Superconvergent Patch Recovery Technique (SPR) [7, 8]

developed in this thesis and called SPR-CD technique. As indicated before,

to guarantee that an optimization process converges to a suitable geometry

we need to control the error of the numerical solution of each individual (ge-

ometry) analyzed during the optimization process. The SPR-CD technique

is a displacement recovery process that provides a kinematically admissible

improved displacement field and a nearly-statically admissible stress field of

a high quality. This improved stress field will be used to evaluate the error

in energy norm both, locally, to guide the h-adaptive refinement process, and

globally. One of the main characteristics of the SPR-CD technique is that it
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is extremely efficient when applied in the cgFEM framework, when compared

with other similar techniques under the traditional FEM. In this work we have

also extended the error estimation procedures to Goal Oriented Adaptivity in

order to predict the error not only in energy norm but also in a quantity that

could be of interest for practitioners, such as displacements or stresses. More-

over, in this work we also introduce some new alternatives to evaluate upper

error bounds in both, energy norm and Quantities of Interest.

Another important aspect of this work in that we have introduced a new error

estimation of the recovered stress field provided by the SPR-CD technique.

Since we will be able to evaluate the error of the recovered solution we propose

the use of the recovered solution as output of the analysis. The recovered

solutions provided by the SPR-CD technique generally have higher accuracy

than the raw FE solution provided by the cgFEM. In practice this means

that we can solve the problem with the same accuracy in coarser meshes,

considerably diminishing the computational cost of the analysis to reach the

prescribed accuracy level. This is crucial in optimization processes because it

reduces the total computational cost of the process which is one of the more

important drawbacks.

The cgFEM framework successfully deals with the three main problems of the

traditional FEM when applied as a lower level of a structural shape optimiza-

tion process. Techniques similar to the cgFEM have been already implemented

and presented in the bibliography. In academia, we can highlight the tech-

nique introduced in [9] which does not include error estimation procedures.

Also there is a commercial code based on Cartesian grids for 3D scanned

images under the name Scan&SolveTM developed by the US company In-

tact Solutions, LLC. However, so far it does not include error estimation nor

h-adaptive techniques. The Cartesian grid-based FE codes are a challenging

area of research because of their properties, specially in linear problems, and

also because of their robustness.
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This thesis will deal with different aspects of the FEM. In this introduction

we have presented a general overview of this work to shown the motivation

of the different topics of this thesis. Further detailed introduction and state

of the art of each topic will be presented in the corresponding Chapter. This

work is distributed as follows: in Chapter 2 we introduce the cgFEM and all

the details to build the global system of equations and to solve it. In Chapter

3 we present the error estimation techniques used in the cgFEM and a brief

summary of traditional ones for comparison. In Chapter 4 we introduce the

Goal Oriented Analysis in combination with the SPR-CD technique that is

able to provide not only error measures in Quantities of Interest but also very

accurate numerical bounds. In Chapter 5 we show three new techniques to

obtain upper bounds of the error in energy norm. In Chapter 6 we present

an heuristic error estimation for the recovered stress solution provided by

the SPR-CD technique and finally in Chapter 7 we gather all improvements

together applying the cgFEM to structural shape optimization problems com-

paring the results with a commercial code despite of the fact that the proposed

techniques have been fully implemented in Matlab R© 2010b. The last chapter

will summarize the conclusions of this work.
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Chapter 2

On the use of Cartesian grids

for the Finite Element

Method

2.1 Introduction and review. Motivation

During the last century researches have devoted big efforts to solve Bound-

ary Value Problems (BVP) in a wide range of disciplines, such as elasticity,

fluid-dynamics, acoustics, electromagnetism, etc. Generally these problems do

not have any known analytical solution, then they can only be solved numer-

ically. One technique to solve them, that emerged around mid XXth century,

is the Finite Element Method (FEM), with the initial contributions of Alexan-

der Hrennikoff (1941) and Richard Courant (1942). The main characteristic of

these two preliminary approaches was to divide the problem domain into small

regions bringing out the concept of mesh [10]. Along the 50s and 60s several

authors such as Courant, Prager, Synge, Clough and Friedrichs among others

9



2. On the use of Cartesian grids for the FEM

created the basis of the FEM. In the late 60s Zienkiewicz and Cheung pub-

lished one of the first books on the FEM “The finite element method in struc-

tural and continuum mechanics: Numerical solution of problems in structural

and continuum mechanics” (1967), bringing the corresponding mathematical

formalism to the method.

The mesh has become one of the main characteristic of the FEM, and ob-

viously, its creation, is the first step to solve any BVP using this method.

Nowadays the computational resources have increased and also the complex-

ity of the problems at hand. The difficulty to generate the mesh is directly

related to the complexity and the details of the geometry (the problem domain

Ω). The designers need to simplify the geometry to obtain an analysis-suitable

geometry. According to [11] the time spent to generate an appropriate finite

element mesh is excessive requiring a great amount of man-time. According to

[12], recent studies at Sandia National Laboratories revealed that the process

of creating an analysis-suitable geometry and the meshing of that geometry

requires about 80% of overall analysis time, whereas only 20% of overall time

is devoted to the analysis itself.

The traditional FEM is based on the idea of a domain Ω which is discretized

into small regions, for instance triangles or squares in 2D. Therefore the shape

and the distribution of those subdomains is directly related to the geometry

of the problem domain Ω. One way to decrease this 80% of overall time prior

to the analysis is to make the mesh geometry-independent, for instance, mesh-

ing an auxiliary domain ΩE . This approach can considerably reduce the time

devoted to prepare an analysis-suitable model and to mesh the domain, and

is especially useful in applications that would require continuous remeshings

during the analysis, like structural shape optimization problems, wear mod-

eling, etc. Thus, a natural variant of the traditional FEM appeared in 60s,

which aimed to avoid or reduce to a minimum the mesh generation burden.

According to [13], a wide amount of techniques have been developed since VK

Saul’ev published, in Russian, the paper Solution of certain boundary-value

problems on high-speed computers by the fictitious-domain method (Sibirsk.

Mat.Z. 1963.4:912-925). These methods are mainly based on separating, or
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making independent, the problem domain from the Finite Element (FE) mesh

discretization. This means dealing with two different domains, the first one is

the discretization domain ΩE , where the FE discretization is applied, and the

second is the problem domain Ω. The only requirement is that the discretiza-

tion domain must completely embed the problem domain, Ω ⊂ ΩE .

Following these ideas some variations of the FEM were developed to improve

its performance. In these approaches, the discretized domain is ΩE instead

of the problem domain. Generally ΩE is a domain with a simple geometry

that can be easily meshed. The analysis methodology presented in this work

is based on this idea. In our implementation for 2D problems, ΩE is a square

whose discretization into square quadrilateral elements of uniform size is triv-

ial. These techniques have been used both, in the Finite Volume Method

(FVM) and in the FEM and been applied in various fields, such as acous-

tics [14, 15, 16], fluid dynamics and fluid-structure interaction [17, 18], tank

waves modeling [19], biomedical problems [20], convection-diffusion [21] and

optimization [22, 23, 24, 25]. The present work will only focus in the FEM

framework for 2D linear elastic problems.

These techniques have several names in literature, such as Fictitious Domain

[14, 22, 21, 13, 26], Implicit Meshing [11], Immersed FEM [27], Immersed

Boundary Method [17, 28], Fixed Grid FEM [29, 9], etc. They have been

described in [5] under the name Finite elements in ambient space.

Two more techniques based on these ideas and the particularity of improv-

ing the solution by adding known information have appeared in the late 90’s.

These two improvements of the original FEM are the eXtended Finite Ele-

ment Method (XFEM) [30, 31] developed by T. Belytschko and his group at

Northwestern University (USA), and the Generalized Finite Element Method

(GFEM) [32, 33] developed by I. Babuška and coworkers at the University of

Texas at Austin (USA). XFEM is mainly devoted to the analysis of inclusions

or cracks. It uses the Partition of Unity Method (PUM) [34] and the Level

Set Method (LSM) [35] to introduce enrichment functions to represent the dis-
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placement discontinuity between the crack faces, the singular fields around the

crack tip and the geometrical description of the crack. The method improves

the accuracy of the results and is particularly interesting in crack growing

problems, as the mesh can remain unchanged when the crack evolves. GFEM

[32] follows a similar approach also based on the PUM to include enrichment

functions to describe the known behavior of the solution. In GFEM the mesh

used for the analysis can be independent of the geometry. For example, a

Cartesian grid is used in the GFEM III implementation described in [32].

Both, XFEM and GFEM require the use of an integration mesh, purely for

integration purposes, in the elements cut by the boundary to take into account

the part of the element actually lying within the domain. The LSM has also

been used in [36] to represent the geometry in non-conforming meshes. Other

authors also combine the LSM for boundary representation with the XFEM

to represent the solution gradient discontinuities into an element containing

more than one material [37, 38]

Since the mesh is not conforming with the geometry, these methods require

the information of the problem domain to be available during the evaluation

of element integrals. The accuracy of the results provided by these techniques

depends on the accuracy of the integration process. Hence, the methodology

proposed in this work includes an efficient integration procedure which would

be even able to consider the actual boundary, providing the exact element

integrals (up to the accuracy of the numerical integration and round-off errors).

One major difference between these methodologies and the standard FEM is

the consideration of the Dirichlet boundary conditions. In the general case,

there are no nodes lying on these boundaries. A procedure based on the use

of the Lagrange multipliers technique has been used to apply these boundary

conditions.

All the previous approaches were mainly interested on decoupling the geometry

representation form the FE mesh where the solution is interpolated. Generally,

in these techniques, the computational cost is concentrated in the elements lo-
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cated along the boundary as, in the Boundary Element Method (BEM) where

only the external boundary is considered for the analysis. In this framework,

we can cite the work done by Simpson et. al. [39] and Scott et. al. [40] where

the Isogeometric Analysis IGA [41], respectively with NURBS and T-Splines

has been adapted to the BEM. Thus, the geometry and the BEM mesh are

strongly coupled.

Through this Chapter we will expose the main characteristics of the cgFEM

whose objective is to be used as a FE code suitable to efficiently solve the 2D

linear elasticity problem.

2.2 Problem Statement

In this section we briefly present the model for the 2D linear elasticity problem.

We denote the Cauchy stress as σ, the displacement as u, and the strain as

ε, all these fields being defined over the domain Ω ⊂ R
2, of boundary denoted

by ∂Ω. Prescribed tractions denoted by t are imposed over the part ΓN

of the boundary, while displacements denoted by ū are prescribed over the

complementary part ΓD of the boundary. b denotes the body load.

The elasticity problem takes the following form. We look for (σ,u) satisfying:

• statical admissibility:

LTσ + b = 0 in Ω (2.1)

Gσ = t on ΓN (2.2)

where L is the differential operator,

L =




∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x


 (2.3)
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and G is the projection operator that projects the stress field into trac-

tions over the boundary. The operator G is the matrix form of Cauchy’s

law considering the unit normal n = {nx ny}T to ΓN such that:

G =

[
nx 0 ny

0 ny nx

]
(2.4)

• kinematic admissibility:

u = ū on ΓD (2.5)

• constitutive relation:

ε(u) = Lu in Ω (2.6)

σ = D(ε(u)− ε0) + σ0 in Ω (2.7)

where matrix D contains the elasticity coefficients of the usual linear

isotropic constitutive law relating stress and strain, and σ0 and ε0 are

the initial stress and strain respectively.

Using the notations introduced in [42] the problem above takes the primal

variational form:

Find u ∈ (V + {w}) : ∀v ∈ V

a(u,v) =

∫

Ω
ε(u)TDε(v)dΩ = l(v) =

∫

Ω
bTvdΩ +

∫

ΓN

tTvdΓ +

∫

Ω
εT0 Dε(v)dΩ−

∫

Ω
σT
0 ε(v)dΩ

(2.8)

where V = {v | v ∈ H1(Ω),v|ΓD
= 0}1 and w is a particular displacement

field satisfying the Dirichlet boundary conditions.

1H1(·) is the W 1
2 (·) Sobolev space. This is a vector space equipped with a norm that

is the combination of the L2-norms of the function itself and its first derivative. H1(·) =

W 1
2 (·) :=

{

f ∈ L2(·) : ‖f‖
W1

2
(·) < ∞

}

, where ‖f‖
W1

2
(·) :=

√

∑

|α|≤1 ‖Dαf‖2
L2(·). L

2(·) is the
Lebesgue space.

14 E. Nadal



2.3. Analysis Mesh

2.2.1 Finite element discretization

Let us introduce a classical finite element discretization scheme for the elas-

ticity problem. The approximate displacement field uh is searched for in a

space of finite dimension (V h + {w}) ⊂ (V + {w}) such that V h is spanned

by locally supported finite element shape functions.

Using the Galerkin framework, the primal variational formulation (2.1-2.7) is

recast in the form:

Find uh ∈
(
V h + {w}

)
: ∀v ∈ V h

∫

Ω
ε(uh)TDε(v)dΩ =

∫

Ω
bTvdΩ +

∫

ΓN

tTvdΓ +

∫

Ω
εT0 Dε(v)dΩ−

∫

Ω
σT
0 ε(v)dΩ

(2.9)

which can be solved using classical finite element technology [43]. Finally the

FE stress solution is evaluated as follows:

σh(x) = D(ε(uh(x))− ε0(x)) + σ0(x) (2.10)

2.3 Analysis Mesh

In standard FEM implementations the mesh must conform to the outer bound-

ary of the domain. This requirement, together with the need to adequately

refine the mesh in order to accurately represent the behavior of interest whilst

maintaining the geometry of the elements as un-distorted as possible, is the ori-

gin of the high cost (both in terms of computing time and analyst’s man-hours)

of the process required to generate an adequate FE model. In cgFEM the mesh

does not need to conform to the geometry. As a result of this, the analysis

mesh is easily created and the elements will remain un-distorted.
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There are several approaches to decrease the meshing time in the related bib-

liography. They are braced under the oct-tree (quad-tree for 2D) framework.

The mesh generator implemented in the cgFEM code is also based on the

quad-tree approach. Meagher [44] presented an oct-tree procedure for geom-

etry representation due to its advantages in computational cost and memory

storage. Yerry and Shepherd [45] and Baehmann et. al. [46] presented a mesh

generation based on an oct-tree. In this case, they built the oct-tree 3D mesh

obtaining some cut elements along the boundaries. Then, all the elements

in the mesh are spitted into triangles adding some extra nodes when neces-

sary. Finally the nodal locations are modified to improve the element quality.

Therefore the regular element shape is lost during the process. Another oct-

tree implementation developed by Jackins and Tanimoto [47], similar to the

one used in this work, is based on a Cartesian coordinate system to allocate the

elements. Our purpose was to generate a virtual home-made quad-tree mesh

generator in order to have total control over the mesh generation process and

to be able to adapt it to our FE code requirements.

This Section will show how the final mesh used for the analysis will be cre-

ated. A computationally efficient technique has been developed to create the

h-adapted meshes that will be used in the FE analyses. We will make use of

three different numbering structures:

• Virtual numbering

• Structured numbering

• Sequential numbering

These three numbering systems, their construction, and their relations will be

described in Sections 2.3.1 to 2.3.3. Each of the numbering systems will be

advantageous for certain processes during the analysis. To take advantage of

all the properties of these systems we will create efficient numbering conversion

schemes that will be described in Section 2.3.4.
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2.3.1 Virtual numbering

The virtual numbering consists in an oct-tree (in the implementation this

part is already prepared for 3D codes) numbering system that defines, by

means of explicit formulas, the relation between the nodes and the elements.

The virtual numbering is the kernel of the virtual mesher (VM) that is in

charge of finding the relations between element and nodes, i.e., it is in charge

of building the mesh. With the virtual numbering of elements or nodes it

results extremely fast to evaluate element and nodal information, such as

neighborhood, children, parents, etc. by means of explicit formulas, avoiding

the use of recursive techniques, typical in standard FE codes. The virtual

numbering defines the element numbering and the node numbering, both based

on their position in a virtual coordinates system. Figure 2.1 shows several

examples of meshes. The origin of the virtual coordinate system is located

at the top-left corner. For the nodes, Figure 2.1a, the length of each one

of the axis is 2mL + 1, where mL is the maximum level of the mesh. mL

is a parameter defined by the user that is related with the size of the finest

element of the mesh. It can be appreciated that the mL parameter indicates

the number of division of each axis, thus defining the discretization space. A

node defined by the virtual numbering is characterized by its three coordinates

in the virtual reference system, ǐ = {X,Y, Z}T , were ǐ is the node number in

the virtual numbering.

The virtual numbering for the elements is slightly more complex. Figure 2.1

shows different element numberings for the same domain and for the same

mL = 3, in this case. They only differ in the mesh level. For instance Figure

2.1b corresponds to level one, L = 1, that is 21 divisions per axis. In general 2L

divisions per axis are performed, see Figure 2.1c for L = 2 and Figure 2.1d for

L = 3. Note that the higher level, the finer element. The virtual numbering

for elements depends on the element level, then we need to add this to the

corresponding virtual element numbering, Ǩ = {L,X, Y, Z}T , where Ǩ is the

element number in virtual numbering.
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Y

X

Z

(a) Nodes for mL = 3

X

Y

Z

(b) Elements in level 1

Y

X

Z

(c) Elements in level 2

Y

X

Z

(d) Elements in level 3

Figure 2.1: Reference system for the virtual numbering depending on the mesh level.

In a) a 3D quadratic element is represented in red and a 3D linear element in blue.

Note that the smallest quadratic element that can be represented for a given node

discretization is bigger that the linear element because of the mid-side nodes.

The advantage of this numbering type both, for nodes and for elements, is

that it permits to build a set of explicit formulas that, given the number of

the element Ǩ or the node ǐ, it can easily provide the data required for a FE

analysis such as the element topology, its neighborhood, etc. Additionally,

the searching element operation in which a point of the domain is contained

results extremely fast as it only requires a coordinate system transformation

from real coordinates to virtual coordinates. The following list describes all
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data that is coded via explicit formulas that provide results in the virtual

numbering system.

• Children elements: given an element in level L, its children are those in

level L+ 1 obtained by splitting the original element into new elements

whose size (size of element’s edge) is half of the original one. As the mesh

refinement process will be based on element splitting, the information

about the children elements will be used for the refinement. Children

elements created during the refinement process will easily inherit proper-

ties form the parent element. The coordinates of the children elements,

relative to the parent element coordinates, in the virtual numbering are

shown in 2.2. Additionally the local element characterization, that is,

the local element children numbering (1,2,3,4), the local sides numbering

and the local nodes numbering are shown in Figure 2.2 for 2D and in

Figures 2.3, 2.4 and 2.5 for 3D.

• Parent element : this is the element that embeds the children element as

represented in Figure 2.2.

• Element topology : this indicates what nodes, in virtual numbering, are

forming an element. The local position of the nodes is indicated in Figure

2.5 for 3D. For instance, in Figure 2.1b for the linear element [1, 2, 1, 1]T

and mL = 3 the topology is:



5 9 9 5 5 9 9 5

5 5 1 1 5 5 1 1

1 1 1 1 2 2 2 2




• Neighbors: the neighbors of a given element are those of the same level

(same size) sharing an edge in 2D, or a face or edge in 3D. There are 4

neighbors in 2D, one per side, and, for 3D 6 face neighbors and 12 edge

neighbors. The element numbering of the neighbors in 2D is shown in

Figure 2.6 and the local one in Figure 2.4 for 3D.
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1 2

34

[L,X,Y,Z] T

1 2

34

1

2

3

4

Children

Parent

[L+1,2X,2Y,Z]T

[L+1,2X-1,2Y-1,Z]T [L+1,2X,2Y-1,Z]T

[L+1,2X-1,2Y,Z]T

Figure 2.2: 2D element characterization in the virtual mesher. The element side

nubering, the local node numbering and the local children numbering is indicated.

• Element level : this is directly extracted form the first component of a

element virtual numbering. The level indicates the relative size of the

element.

• Node level : this is the level of the element in which the node appears for

the first time.

• Node parents: under a h-adaptive refinement process, one element could

share an edge or a face with other of smaller size. The FE interpolation

in that face or edge should be described by the element of higher size

in order to enforce the continuity of the solution. The nodes defining

the interpolation in that shared edge or face are the so-called parent

nodes. Obviously this depends on the FE interpolation. For squared
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Figure 2.3: Children position for the 3D elements
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Figure 2.4: Local number of the element sides and edges used to locate the neighbors

of the same level elements in 3D for faces and edges.

linear elements in Figure 2.2, green points are the children nodes and

red point are the parents.

Note that the virtual mesher is able to provide 3D meshes, however, so far,

the cgFEM code presented in this thesis is only able to deal with 2D prob-
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Figure 2.5: Topology for the 3D elements, vertex nodes for linear elements in red and

mid-side nodes for quadratic elements in blue.
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T
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T

L,

[ , , -1, ]L X Y Z
T

[ -1, , ]X Y Z
T

L,

[ , +1, ]X Y Z
T

L,

Figure 2.6: Coordinates of the neighbors of the same level elements in 2D.

lems. Hence the virtual mesher is only used for the 2D approach setting the

coordinate Z = 1 for both, nodes and elements.
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2.3.2 Structured numbering

The structured numbering condenses the virtual numbering into a single natu-

ral number. This avoids the use of a vector definition for each element or node.

The structured numbering is living between the virtual mesher and the FEM

code. The main purpose is to make easier the communication between the vir-

tual mesher and the FEM code. The relation between the virtual numbering

and the structured numbering depends on the dimensions of the problem (2D

or 3D) and on the maximum level of the mesh mL. The structured numbering

is a sequential numbering which maintains a rigid structure directly related

with the oct-tree. The number of each element in structured numbering also

indicates the position in the oct-tree, including the level of the element. That

is, the element is completely defined.

Figure 2.7 represents the scheme for the structured numbering of a given mesh.

The maximum level of the mesh in the Figure is mL = 3. Figure 2.7a describes

the element numbering in structured numbering. The characteristic feature

is that independently of the level of the element the numbering is continuous

even when we change from one level to the next level. The node numbers, see

Figure 2.7b, only need to be identified in the finest mesh. They are numbered

in a sequential manner from top-left to bottom-right as shown in the Figure.

2.3.3 Sequential numbering

The sequential numbering is only living into the FEM code itself. This num-

bering is related with the structured numeration via an indexing vector. In

order to build the sequential numbering it is required to first build the anal-

ysis mesh. The analysis mesh consist of a set of selected elements from the

quad-tree structure which will made up the mesh for the FE model. Further

details of the analysis mesh construction will be presented in Section 2.3.6.
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(a) Elements numbered with the structured numbering.

(b) Nodes numbered with the structured numbering for mL = 3.

Figure 2.7: Oct.tree mesh structure numbered with the structured structured num-

bering for both, nodes and elements.
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Figure 2.8: Set of selected elements conforming an analysis mesh. The sequential

numbering is written into each element. The lower level elements are numbered first.

Figure 2.8 shows an example of an analysis mesh which includes the corre-

sponding sequential numeration. The sequential numeration is obtained by

sequentially numbering the elements in the analysis mesh, without gaps. This

allows to obtain a compact numbering that perfectly fits in any FE code. The

sequential numeration allows for the use of compact matrices (as opposite to

sparse matrices) for data storage along the FE code. It also allows to simplify

the code complexity.

2.3.4 Numbering conversion

We have just defined three different numbering systems. These three systems

have the required properties to efficiently work into each environment, the

virtual mesher or the FEM code. The appropriate numbering system will

be used into each environment to take advantage of the different properties.

Efficient methods to go from one numbering system to another will be defined.
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The virtual numbering perfectly fits into the virtual mesher because of its

structure. However, the main drawback of the virtual numbering is that each

node or element respectively requires a set of three or four components for

its definition. Thus, it does not fit into a FEM code. For instance, the loops

and the data storage will be much more complex with the virtual numbering

system. The sequential numbering is in general standard for the commercial

FE codes. This numbering system perfectly works with loops and data storage,

making the code faster. However the sequential numbering system can not

be used in the virtual mesher in an efficient manner because no structured

information is implicit the sequential numbering system. So, the sequential

numbering system will be used in the FEM code and the virtual numbering

system will be used in the virtual mesher.

It can be observe that we will be continuously changing from one numbering

system to another, then we need an efficient procedure for this purpose. The

idea is to use the third numbering system, the structured numbering system,

that it is able to live in the FEM code and also in the virtual mesher. As Figure

2.9 shows, to go form the sequential numbering to the virtual numbering and

vice versa, we pass thorough the structured numbering. The procedures to

convert the numbering systems will now be described

Virtual mesher

Virtual

numbering

Structured

numbering

Sequential

numbering

FEM Code

Figure 2.9: Element and node numbering transformation between the VM and the

FE code.
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Virtual numbering to structured numbering

The quad-tree structure is implicitly contained both, in the structured and

in the virtual numbering systems. Therefore, any element or node can be

easily converted form the virtual numbering to the structured numbering via

an explicit formula. That is, it will change the element numbering, Ǩ =

[L,X, Y, Z]T , into a single number K by means of expression (2.11).

K = A+B + C + Y (2.11)

where

A =
L−1∑

i=0

2i·d

B = (X − 1) 2L

C = (Z − 1) 22L

(2.12)

and d is the dimension of the problem, 2D or 3D. A similar procedure is

followed for the node numbering defined as ǐ = {X,Y, Z}T and converted to

the sequential one using:

i = (Z − 1)22(mL·p+1) + (X − 1)2mL·p+1 + Y (2.13)

where p is the degree of the FE interpolation.

Structured numbering to virtual numbering

Alternatively it is also possible to convert the sequential numbering into the

virtual numbering system, by using function (2.14) where L is obtained bound-

ing the sequential element number into the maximum and minimum number

of each level. For instance the maximum number in level 2 (L = 2) is 21 and

the minimum is 6, and for L = 3, 22 and 85, respectively (see Figure 2.7a).
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That is, K >
∑L−1

i=0 2i·d & K ≤∑L
i=0 2

i·d. Then the value of L for which both

inequalities hold is the corresponding mesh level.

Ǩ =





L

X

Y

Z





=





L

ceil
(
K−A−C

2L

)

K −A−B − C

ceil
(
K−A
2d·L

)





(2.14)

where A, B and C are defined in (2.12). Note that we will evaluate first Z,

then X and finally Y .

Finally, the virtual node numbering ǐ is obtained with (2.15):

ǐ =





X

Y

Z





=





ceil
(
i−(Z−1)2d·(mL·p+1)

2mL·p+1

)

i− (Z − 1)2d·(mL·p+1) − (X − 1)2mL·p+1

ceil
(

i
2d·(mL·p+1)

)





(2.15)

where mL is the maximum level for the Virtual Mesh (defined by user) and p

is the order of the element.

Sequential numbering to structured numbering

Figure 2.8 represents an example of the sequential numbering for an analysis

mesh. Now we are interested in converting this sequential numbering into the

structured one. Figure 2.10 shows the corresponding structured numbering.

As opposite to the previous case (structural ↔ virtual relations), in this case

there is no physical or data-structure-based relation between both numbering

systems. The only way to efficiently convert the sequential numbering into

structured numbering is via an indexing vector built for each analysis mesh

when constructed. The indexing vector in the case of the analysis mesh in

Figure 2.10 that converts the sequential numbering into virtual numbering is

represented in Table 2.1.
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Figure 2.10: Set of selected elements conforming an analysis mesh. The structured

numbering is written into each element.

Sequential 1 2 3 4 5 6 7 8 9 10 11 12 13

Structured 3 6 7 10 11 14 15 16 17 18 19 20 21

Table 2.1: Indexing vector from sequential numbering to structured numbering for the

analytical mesh represented in Figure 2.10. The first row represents the position in the

indexing vector (the number of the element in the sequential numbering system) and

the second row is the value (the number of the element in the structured numbering

system) allocated in the corresponding position.

It can be clearly observed that the vector represented in Table 2.1 is compact.

To convert the sequential numbering to the structured one, we ask for the

value allocated in the position corresponding to the sequential numbering.

The transformation from the sequential to the structured numbering systems

only requires to read the corresponding value in the indexing vector.
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Structured numbering to sequential numbering

To pass form the structured numbering to the sequential one, we follow a simi-

lar procedure. Once the analysis mesh is built we construct the corresponding

transformation matrix. The vector that transforms the structured numbering

into the sequential one for the analysis mesh represented in Figure 2.10 is

represented in Table 2.2:

Structured ... 3 ... 6 7 ... 10 11 ... 14 15 16 17 18 19 20 21

Sequential 0 1 0 2 3 0 4 5 0 6 7 8 9 10 11 12 13

Table 2.2: Indexing vector from structured to sequential numbering systems for the

analytical mesh represented in Figure 2.10. In the first row we represent the position

in the indexing vector (the number of the element in the structured numbering sys-

tem) and in the second row the value (the number of the element in the sequential

numbering system) that is allocated.

Note that the indexing vector represented in Table 2.2 is sparse and in general

it will have a great amount of zeros. In this case to obtain the element number

in the sequential numbering system we only need to read the value allocated

in the position corresponding to the number of the element in the structured

numbering system. The size of this indexing vector is limiting the number

of elements in the structured numbering system, and it is also limiting the

maximum level of elements (the minimum element size). For instance, for

2D we can reach 22 refinement levels (4, 194, 304 elements per side) and 14

(16, 384 elements per side) for 3D.

2.3.5 From virtual space to real space. Nodal coordinates

We have described the numbering system and its transformation, however we

have obtained a mesh structure that has no relation with the geometry. The

final step is to convert the quad-tree (living in the VM space) to a suitable

mesh structure in the real space (the space where the problem is living). As
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Figure 2.11: Transformation process from the virtual coordinate system to the coor-

dinate system in the real space.

previously described, a node is described in the virtual numbering system by

its virtual coordinates. To obtain the nodal coordinates in the real space it

will only be necessary to change the virtual coordinate system to the real

coordinate system in the real space.

Figure 2.11 represents a scheme of this process. The left hand side of the pic-

ture represents the mesh structure in the virtual space (VM spaceXV , Y V , ZV )

represented by a cube of dimensions 2mL + 1. The first step consists in con-

verting this virtual system to a normalized one (centered in (0, 0, 0) and side

length 2), represented at the center of the picture, by means of a translation,

rotation and scaling. This normalized system, aligned with the real system, is

the standard output of the virtual mesher. The final step consists in a second

translation and scaling to obtain the coordinates system in the real space,

which is the one used for solving the problem at hand, shown on the right

hand side of the picture in Figure 2.11.

Once the nodal coordinates are evaluated in the real coordinates system, we

are able to work together with the mesh structure and the geometry of the
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problem to finally build the corresponding analysis mesh as it will be described

in the following Section.

2.3.6 Generation of the Analysis Mesh

cgFEM is based on the use of a sequence of uniformly refined 2D Cartesian

meshes, created by the VM, where hierarchical relations between the different

mesh levels have been defined. Note that the virtual mesher is prepared for

3D but the FE code in this work only works with 2D problems, so far. This

sequence of meshes used to discretize ΩE is called the Cartesian grids pile,

see Figure 2.12a, which embeds all the problem domain Ω and is formed by

bilinear (Q4) or biquadratic (Q8) squared elements of uniform size. A hier-

archical data structure for h-adaptive FE analysis based on element splitting

was presented in [48]. This data structure took into account the hierarchical

relations between the elements of different levels, obtained during the element

splitting process, to speed up FE computations. The data structure has been

adapted to the particular case of a sequence of meshes given by the Cartesian

grids pile where all elements are geometrically similar to the element used

in the coarsest level (level 0) of the Cartesian grids pile, called the reference

element. The Cartesian grids pile is built using the virtual mesher functions

previously described. One of the main benefits of the data structure is that,

as it will be described in Section 2.3.8, in the linear elastic case all elements

of the Cartesian grids pile will have the same stiffness matrix that will be

evaluated only for the reference element and shared with the rest of elements

in the pile, making the evaluation of element stiffness matrices trivial. This

and other hierarchical relations considered in the data structure allow for a

simplification of the mesh refinement process and the pre-evaluation of most of

the information used by the FE code, remarkably influencing on the efficiency

of the code.

The first step of the analysis consists in creating the analysis mesh used to

obtain the FE solution of the problem. This mesh is built taking a set of
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Level 0

Level 1

Level 2

Level 3

(a) Cartesian grid pile.

ki j

(b) Analysis mesh. ◦ nodes with multi-

point constrais for C0 continuity.

Figure 2.12: Difference between the Cartesian grids pile and the analysis mesh.

non-overlapped elements of different sizes, see Figure 2.12b, taken from the

different levels of the Cartesian grids pile. A maximum difference of 1 refine-

ment level is allowed between adjacent elements in the analysis mesh. Due to

this, as the reader can observe in Figure 2.12b, the resulting h-adapted mesh

is not conforming, then the required C0 continuity of the FE solution is not

guaranteed. This issue is overcome by using Multi-point constrains (MPCs)

[49, 50], which enforces the C0 continuity between adjacent elements of dif-

ferent levels. The lower-left corner in Figure 2.12b shows nodes i, j and k. k

is a so-called hanging node, as it is present in the smaller element but not

in the bigger one, thus preventing the C0 continuity between elements. MPC

equations are imposed to enforce C0 continuity. The constraint equation reads

uk = 0.5ui + 0.5uj , for linear elements. Note that in the data structure i and

j are the k’s parent nodes previously introduced.

Figure 2.12 shows elements of different levels. The element level indicates the

relative size of the element with respect to the reference element, that is the
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level 0 element on the bottom of the Cartesian grid pile in 2.12a. That is,

level 1 elements are obtained splitting the level 0 element sides 21 times The

elements of level 2 are obtained by subdivision of the elements in level 1 and

are 22 times smaller than the reference element. The next levels are evaluated

similarly.

Taking into account that all elements in the Cartesian grid pile, are geometri-

cally similar, that is, they are all square elements, whose only difference is their

size, it is possible to set some relation between the main element characteris-

tics, such as the element stiffness matrix, Jacobian matrix, etc. Ródenas et al.

define in [48] 5 characteristic properties that are related between geometrically

similar elements. The parameter relating the elements is the relative elements

size, ς.

In the cgFEM framework ς = 2−L. Then we could easily relate all the following

properties with those of the reference element indicated with the subindex 0.

• Jacobian matrix : J = ςJ0.

• Inverse Jacobian: J−1 = 1
ς J

−1
0 .

• Jacobian: |J| = ςD |J|0, where D is the problem dimension (2 for 2D).

• Shape function derivatives matrix : B = 1
ςB0.

• Stiffness matrix : k = ςD−2k0, for D being constant.

2.3.7 Geometry-mesh intersection. Integration

According to the relation of the elements with the boundary of the domain

∂Ω, the analysis mesh is formed by three element types, see Figure 2.13:
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• Boundary elements: elements placed along the domain boundary, ∂Ω.

Only a part of each of these elements remains into the problem domain

Ω. The evaluation of the stiffness matrix of these elements requires

to evaluate the intersection between the geometry and the sides of the

elements. These intersection points will later be used in order to detect

the element area placed into the domain.

• Internal elements: elements fully located into the domain. These are

treated as standard FE elements. All these elements point to the same

object in the data structure that stores the information of the reference

element.

• External elements: elements fully located outside of the domain and,

therefore, not considered in the analysis.

Figure 2.13: Element types according to their relation with the problem boundary:

Internal elements, external elements and boundary elements.

The boundary elements are the critical elements in cgFEM. Approximations

of the integration domain in these elements would lead to geometrical er-

rors in the evaluation of the element matrices that could spoil the theoretical

convergence rate of the FE analyses. An exact or at least sufficiently pre-

cise representation of the integration domain into these elements is therefore
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required. The bibliography shows several methods to perform the domain

integrals in these elements. One method was proposed by Garćıa-Ruiz and

Steven [29] where they multiply the stiffness matrix of intersected elements by

the ratio of the area |Ωe
E ∩ Ω| to the area of the element |Ωe

E |. Some authors

propose to detect the nodes outside or close to the boundary of the domain

and move them to the boundary [51, 18]. Daneshmand and Kazemzadeh-Parsi

[9] propose to subdivide the intersected area into triangular subdomains and

use them just for integration. The process used in this work is similar to that

shown in [9] and consists in three steps:

• Intersection of boundary with element edges. Figure 2.14a shows the in-

tersections of the curves that define the boundary of the domain with the

Cartesian Grid element edges. The shaded area represents the problem

domain.

• Addition of intermediate points. As shown in figure 2.14b we will identify

some extra points placed on the curves that define the boundary. The

number of these extra points is related to the curvature of the boundary.

In order to increase the performance of the code the curvature is not

evaluated but a quantity that is related with it. We evaluate the distance

between the mid-point of the segment of the intersecting curve and an

imaginary straight line between the input point and the output point.

The number of additional points is proportional with this quantity. This

set of points together with the vertex nodes of the element are used to

create a Delaunay triangulation that defines integration subdomains at

each boundary element.

• Selection of internal triangular subdomains. Figure 2.14c represents the

integration subdomains selected to evaluate the element stiffness matrix.

For each boundary element this process generates: a) a discretization of the

element for domain integration and, b) a discretization of the boundary useful

for boundary integration. Thereby, the integration in those elements will be
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(c) Integration subdomain generation.

Figure 2.14: Intersection and subdomain generation process in boundary elements.
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performed using these integration subdomains. Note that in the case of multi-

material problems, those triangles now considered falling outside the problem

domain could be considered of a different material and also considered in

the integration with different properties. Note that this would represent an

homogenization of the material properties.

Contour integrals. Natural boundary conditions

The consideration of the natural boundary condition requires the evaluation

of contour integrals. Contour integrals are also required along the FE analysis

process to evaluate certain quantities. An example could be the value of the

J-integral in problems with singularities.

As a parametric definition of the boundaries is available, the boundary inte-

gration is performed along the boundary Γ of the domain, and not along its

linear discretization. In Figure 2.15a we can observe the boundary Γ intersect-

ing an element K at intersection points Ij and Ik. We add some extra points

depending on the relative curvature of the boundary. In this case we added

two more points Im1 and Im2, which divide the part of the boundary falling

into K, ΓK , into three integration sections ΓK
iS , represented by different colors.

NiS is the number of the integration sections. The integral of an arbitrary

function f(x), where x are the coordinates of the points along the boundary,

is performed by the following expression, where ΩK is the domain of element

K. ∫

ΩK
⋂

Γ
f(x)dΓ =

NiS∑

i=1

∫

ΓK
iS

f(x)dΓ (2.16)
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(b) Quadratic domain integration.
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(c) Transfinite domain integration.

Figure 2.15: Integration domains for different integrations schemes.

Domain integration

Domain integration is crucial to achieve a good quality in the FE results. The

standard FEM with an isoparametric mapping uses the same discretization

to represent the geometry and the solution. As the geometrical error due

to the isoparametric geometry representation converges faster than the FE

solution, the convergence rate of the solution is the theoretical convergence rate

associated to the discretization error. In cgFEM , we use a more sophisticated

way to represent the geometry of the domain because the FE nodes are not
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placed along Γ. Once the Delaunay tessellation is performed, we have some

triangular integration subdomains into each boundary element. For instance,

in Figures 2.15 we have 4 subdomains. The domain integrals in the boundary

elements are evaluated considering these integration subdomains using (2.17).

∫

ΩK

f(x)dΩ =
NT∑

i=1

∫

Ti

f(x)dΩ (2.17)

where NT is the number of triangular integration subdomains in K placed in

Ω ∩ ΩK and Ti is each of the integration subdomains.

The next step is the numerical integration of each one of the subdomains.

We have three different aproaches: a) linear approximation to the boundary,

Figure 2.15a, b) quadratic approximation to the boundary, Figure 2.15b and c)

transfinite mapping, Figure 2.15c. These three approaches have been ordered

in terms of increasing accuracy and computational cost. Our experience shows

that in order to guarantee the optimal convergence of the FE solution , at least

the approximation to the boundary should be of the same order than the FE

interpolation, that is a) for bilinear elements and b) for biquadratic elements.

Linear and quadratic integration The side of the triangular integration

subdomain used to represent the curved boundary can be approximated by a

straight line segment or by a quadratic polynomial as shown in Figure 2.16.

Given an integration quadrature of a number of integration points (NIntP )

placed at local triangle coordinates (ξ, η)j with weights ωj like those rep-

resented in Figure 2.16a, we can obtain various coordinate transformations

depending on the degree of approximation to the real boundary. So, the main

difference between them is the location, in real coordinates, of the integration

points and the Jacobian of the coordinate transformation. The integration of

an arbitrary function f(x) is performed using (2.18).

∫

Ti

f(x)dΩ =
NIntP∑

j

f(xj) |J(xj)|ωj (2.18)
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Figure 2.16: Integration area for linear and quadratic integrations schemes.

where xj are the global coordinates of the jth integration point. xj is defined

by the coordinates transformation xj = N̂
q
(ξ, η)jx̂ from local coordinates

(ξ, η) to global coordinates (x, y). Where N̂
q
(ξ, η)j is the shape functions

matrix of the triangular subdomain and x̂ are the coordinates of the points

used to define the interpolation (equivalent to the nodes of the elements used

in FEA), green points at Figure 2.16.

Transfinite integration Alternatively it is also possible to use the transfi-

nite mapping technique, commonly used in p-adaptive analysis [52] to consider

the exact geometry. The use of this mapping increases the computational cost

per subdomain but reduces the number of triangular subdomains required for

a given accuracy. In Figure 2.17a we show a reference triangle, and a generic

triangle in global coordinates in Figure 2.17b defined by its vertex and the

curves connecting those vertices.

Each one of the curves of the edges of the triangle in global coordinates is

defined by a parametric expression ci(ti), i = 1, 2, 3, according to (2.19).

A parameter ti is defined at each side of the triangle in the local reference

system (2.20), where Li are the area coordinates of the reference triangle. All

this allows us to evaluate the position, in global coordinates (X,Y ), of each
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(a) Triangle for the transfinite map-

ping in the normalized reference sys-

tem.

(X1,Y1)

(X2,Y2)

(X3,Y3)

c1(t)

c2(t)
c3(t)

x

y

(b) Triangle in global coordinates

(X,Y ).

Figure 2.17: Triangular elements for the transfinite mapping in local al global refer-

ence systems.

integration point and its corresponding area, used for integration along the

code.

ci(ti) =

{
xi(ti)

yi(ti)

}
(2.19)

t1 = L2 − L1 t2 = L3 − L2 t3 = L1 − L3 (2.20)

Now, following the ideas presented in [53] we obtain the coordinates mapping

defined in (2.21). The Jacobian matrix (2.25) of the transfinite mapping is
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obtained form (2.22,2.23,2.24).

x(L1, L2, L3) =L1X1 + L2X2 + L3X3+

+
4L1L2

1− t21

[
x1(t1)−

(
1− t1

2
X1 +

1 + t1
2

X2

)]
+

+
4L2L3

1− t23

[
x2(t2)−

(
1− t2

2
X2 +

1 + t2
2

X3

)]
+

+
4L3L1

1− t23

[
x3(t3)−

(
1− t3

2
X3 +

1 + t3
2

X1

)]

y(L1, L2, L3) =L1Y1 + L2Y2 + L3Y3+

+
4L1L2

1− t21

[
y1(t1)−

(
1− t1

2
Y1 +

1 + t1
2

Y2

)]
+

+
4L2L3

1− t23

[
y2(t2)−

(
1− t2

2
Y2 +

1 + t2
2

Y3

)]
+

+
4L3L1

1− t23

[
y3(t3)−

(
1− t3

2
Y3 +

1 + t3
2

Y1

)]

(2.21)
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∂x(L1, L2, L3)

∂L1
= X1+

+
4L2(1− t21)− 8L1L2t1

(1− t21)
2

[
x1(t1)−

(
1− t1

2
X1 +

1 + t1
2

X2

)]
+

4L1L2

1− t21

(
−∂x1(t1)

∂t1
− X1 −X2

2

)
+

+
4L3(1− t23)− 8L3L3t3

(1− t23)
2

[
x3(t3)−

(
1− t3

2
X3 +

1 + t3
2

X1

)]
+

4L3L1

1− t21

(
∂x3(t3)

∂t3
− X1 −X3

2

)

∂x(L1, L2, L3)

∂L2
= X2+

+
4L3(1− t22)− 8L2L3t2

(1− t22)
2

[
x2(t2)−

(
1− t2

2
X2 +

1 + t2
2

X3

)]
+

4L2L3

1− t22

(
−∂x2(t2)

∂t2
− X2 −X3

2

)
+

+
4L1(1− t21)− 8L1L2t1

(1− t21)
2

[
x1(t1)−

(
1− t1

2
X1 +

1 + t1
2

X2

)]
+

4L1L2

1− t21

(
∂x1(t1)

∂t1
− X2 −X1

2

)

∂x(L1, L2, L3)

∂L3
= X3+

+
4L1(1− t23)− 8L3L1t3

(1− t23)
2

[
x3(t3)−

(
1− t3

2
X3 +

1 + t3
2

X1

)]
+

4L3L1

1− t23

(
−∂x3(t3)

∂t3
− X3 −X1

2

)
+

+
4L1(1− t22)− 8L2L3t2

(1− t22)
2

[
x2(t2)−

(
1− t2

2
X2 +

1 + t2
2

X3

)]
+

4L2L3

1− t22

(
∂x2(t2)

∂t2
− X3 −X2

2

)

(2.22)
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∂y(L1, L2, L3)

∂L1
= Y1+

+
4L2(1− t21)− 8L1L2t1

(1− t21)
2

[
y1(t1)−

(
1− t1

2
Y1 +

1 + t1
2

Y2

)]
+

4L1L2

1− t21

(
−∂y1(t1)

∂t1
− Y1 − Y2

2

)
+

+
4L3(1− t23)− 8L3L3t3

(1− t23)
2

[
y3(t3)−

(
1− t3

2
Y3 +

1 + t3
2

Y1

)]
+

4L3L1

1− t21

(
∂y3(t3)

∂t3
− Y1 − Y3

2

)

∂y(L1, L2, L3)

∂L2
= Y2+

+
4L3(1− t22)− 8L2L3t2

(1− t22)
2

[
y2(t2)−

(
1− t2

2
Y2 +

1 + t2
2

Y3

)]
+

4L2L3

1− t22

(
−∂y2(t2)

∂t2
− Y2 − Y3

2

)
+

+
4L1(1− t21)− 8L1L2t1

(1− t21)
2

[
y1(t1)−

(
1− t1

2
Y1 +

1 + t1
2

Y2

)]
+

4L1L2

1− t21

(
∂y1(t1)

∂t1
− Y2 − Y1

2

)

∂y(L1, L2, L3)

∂L3
= Y3+

+
4L1(1− t23)− 8L3L1t3

(1− t23)
2

[
y3(t3)−

(
1− t3

2
Y3 +

1 + t3
2

Y1

)]
+

4L3L1

1− t23

(
−∂y3(t3)

∂t3
− Y3 − Y1

2

)
+

+
4L1(1− t22)− 8L2L3t2

(1− t22)
2

[
y2(t2)−

(
1− t2

2
Y2 +

1 + t2
2

Y3

)]
+

4L2L3

1− t22

(
∂y2(t2)

∂t2
− Y3 − Y2

2

)

(2.23)
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{
∂
∂ξ
∂
∂η

}
=

[
−1

2
1
2 0

− 1
2
√
3

− 1
2
√
3

− 1√
3

]


∂
∂L1
∂

∂L2
∂

∂L3





(2.24)

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(2.25)

The transfinite mapping allows us to represent the exact geometry up to nu-

merical integration errors. A representation of the location of the integration

points into a triangular subdomain is shown in Figure 2.18 for the case of

transfinite mapping. The location of integration points in this Figure can be

compared to the location of integration points for the two previous approxi-

mations shown in Figure 2.13. Note that as there are no approximations in

the definition of the subdomain, the integrals are free form geometrical errors.

Therefore, the accuracy of the integrals depends on the number of integra-

tion points. As before, for any arbitrary function f(x) we use (2.18) where in

this case the Jacobian and the global coordinates of the integration point are

obtained using the expressions shown above.

G

x

y

Figure 2.18: Integration area for transfinite mapping.
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2.3.8 Element data sharing

The use of Cartesian grids together with the data structure used in the im-

plementation of the cgFEM methodology allow for simple and efficient infor-

mation data sharing between elements. This considerably reduces the total

amount of calculations, thus improving the computational efficiency of the FE

code. The shared data corresponds to information related to integration, that

is: integration points, weight, element stiffness, B matrix corresponding to the

derivatives of the shape functions and the element nodal equivalent forces from

the Neumann boundary condition. This section describes, for the internal and

boundary elements the sharing information process during the analysis.

Internal elements

As shown in Section 2.3.6 the terms used to evaluate the stiffness matrix (B

matrix and Jacobian matrix J) of geometrically similar elements are related

by a constant value evaluated as a function of the scaling factor ς between the

elements. In fact, the stiffness matrices of geometrically similar elements are

simply related by a factor ςd−2 where d is the number of spatial dimensions.

Therefore the evaluation of the stiffness matrices of all the internal elements

of the analysis mesh is trivial as, for constant material properties, all these

elements share the same stiffness matrix in the 2D case, which will be evaluated

only for the reference element (element used to define the coarsest level, level 0)

and then shared with the rest of the internal elements through the hierarchical

data structure. This implies a major increase in the efficiency of the generation

of the system of equations to be solved by the FE code.
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Boundary elements

On boundary elements the hierarchical data structure enables for the use of

the so-called vertical data sharing and horizontal data sharing described next.

h-adaptive refinement process: vertical data sharing As previously

explained, the evaluation of the stiffness matrix of all internal elements of the

analysis mesh is trivial. As each boundary element is trimmed differently, each

of these elements will require a particular evaluation of the element matrices,

following the procedure exposed in Section 2.3.7. It could be said that the

computational cost of the generation of the FE model for the analysis is a

function of the number of boundary elements, that is, (d− 1)-dimensional.

In many h-adaptive FE codes the previous meshes are discarded and com-

pletely new meshes are created as the h-adaptive analysis evolves, thus pre-

venting the reuse of information evaluated in previous meshes. In our case,

the use of Cartesian grids together with the hierarchical data structure al-

lows reusing calculations performed in previous meshes. The hierarchical data

structure provides the so called vertical data sharing by means of which ele-

ments present in different meshes of the h-adaptive process will not be reeval-

uated for the newer meshes.

As an example, Figure 2.19 shows two consecutive meshes obtained during

the h-adaptive analysis of a gravity dam. Note that elements colored in blue

are present in both meshes. The vertical data sharing allows for the reuse in

the finer mesh of the information evaluated in the coarsest mesh. In the finer

mesh new element matrices are only evaluated for white elements.

Structural shape optimization problems: horizontal data sharing

The structural shape optimization problem will be detailed in Chapter 7, and

a brief introduction was given in Chapter 1. Let us recall that the lower level
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(a) Coarse mesh. (b) Fine mesh.

Figure 2.19: Vertical data sharing in two consecutive meshes of the h-adaptive analysis

of a gravity dam. The data structure relates the stiffness matrices of internal elements

(yellow) to that of the reference element. The calculations for boundary element

colored in blue are reused. Element matrices in the finest mesh are only evaluated for

white elements.

of the shape optimization process is in charge of analyzing each of the geome-

tries proposed by the higher level during the iterative process. In our case we

will use cgFEM in this lower level because of the benefits in computational

cost obtained when evaluating each of the different geometries but also be-

cause data can be shared between different geometries through the so-called

horizontal data sharing to further improve the overall computational efficiency

of the optimization process.

With the traditional FEM it is almost impossible to enable an efficient ex-

change of information between elements of different geometries because, in

general, the elements of different geometries are completely different and com-

pletely unrelated, as each geometry requires a different mesh conformal to the

boundary. However, if we use cgFEM considering the same Cartesian grids

pile for all the geometries to be analyzed we will be able to relate elements

used in different geometries making it possible to define a process for horizontal

data sharing, i.e. between elements of different geometries.

Note that the parametric definition of the boundary of the components to be

analyzed can be subdivided into two parts:
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• The fixed part : This is the part of the boundary that remains fixed in

all the geometries (such as the external boundary and the lower straight

segment of the internal boundary of the gravity dams represented in

Figure 2.20).

• The moving part : This is the part of the boundary that would be modi-

fied by the optimization algorithm (such as the curved part of the internal

boundary of the gravity dams in Figure 2.20).

The horizontal data sharing consist of reusing the computations performed

over the elements intersected by the fixed part of the boundary in the differ-

ent geometries analyzed during the optimization process. Figure 2.20 shows

an example of this horizontal data sharing. This Figure shows two different

geometries i and j analyzed during the iterative process. h-adaptive analysis

is used to obtain an accurate solution for each geometry as the low accuracy

results would negatively affect the performance of the optimization process.

In this case green elements represented in Figures 2.20a,b for geometry i are

reused in geometry j represented in Fig. 2.20c. Observe that the horizontal

data sharing implies a significant reduction of calculations as the information

required for most of the boundary elements used in geometry j was already

evaluated in geometry i. The only element matrices evaluated for the analysis

of geometry j are those corresponding to the white elements.

2.4 h-adaptive refinement strategies

The computational cost of FE analyses of complex structural components can

be reduced by means of the use of h-adaptive techniques. These techniques

can provide an adequate sizing of the elements adapted to the characteristics

of the problem. The use of these techniques can provide the required accuracy

in the solution with optimized FE models where the number of elements has

been minimized, thus reducing the computational cost of the analysis. In some
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(a) Geometry i of the optimization

process

(c) Geometry j of the optimization

process

(b) Geometry i of the optimization

process, a h-adapted mesh

Figure 2.20: Comparison of two different geometries i < j during an optimization

process. The data for the green elements evaluated for geometry i are reused in

geometry j.

cases, like in structural shape optimization problems, h-adaptive analysis is

a must because inaccurate FE results can negatively affect the behavior of

the optimization algorithm [2], leading to non-optimal solutions, reducing the

convergence rate to the optimal solution or even preventing convergence.

cgFEM implements two h-refinement strategies. As in [54], the first one is

based on geometrical criteria, whereas the second one considers the quality of

the solution and is based on the minimization of the error in the energy norm,

or, alternatively, on the error in Quantities of Interest as described in Chapter

4.
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2.4.1 Geometrical refinement

The analysis starts adapting the dimensions of the Cartesian Grid domain

(ΩE) to the problem domain Ω in order to ensure that Ω is embedded into ΩE .

A preliminary mesh (not used for FE analysis) of uniform element size defined

by the user is created as the first step of the analysis process. This preliminary

mesh is then intersected with the problem domain. The first analysis mesh

is then created following a refinement process based on the geometry of the

domain. This procedure consists in refining the boundary elements where

curvature of the boundary is too large with respect to the element size. A

simple curvature indicator is defined in (2.26), where, as represented in Figure

2.21, the values of di represent the distances between the intersection points

over the boundary and a straight line segment of length L defined by the

intersection of the boundary with the element sides. NIP is the number

of those intersection points defining the curve (red crosses), obtained during

the intersection process, see Figure 2.14. The refinement process is repeated

until the relative curvature indicator k is smaller than a user-defined value (its

default value in the cgFEM code is 0.03). The first analysis mesh is created

as a result of this process. Table 2.3 shows examples of preliminary meshes

and the first analysis meshes.

k =

∑NIP
i=1 |di|

NIP · L (2.26)

2.4.2 Solution-based refinement

After the FE solution of the first analysis mesh has been obtained, new meshes

are created following a refinement procedure that takes into account the quality

of the FE solution. This procedure aims to minimize the error in energy norm

of the solution. The exact error in energy norm of the solution is given by:

|||e|||2Ω :=

∫

Ω
(σ − σh)TD−1(σ − σh) dΩ (2.27)
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Preliminary mesh
1st analysis mesh geometrically

adapted

Table 2.3: Comparison between the preliminary mesh and the geometrically adapted

mesh uisng the curvature criterion.
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L

d
i

d
i

d
i

d
i

d
i

d1

d2

d3

dNIP-1

dNIP

..
.

Figure 2.21: Intersection points and distances used for the evaluation of the curvature

error indicator k

where σh is the FE stress field and, neglecting other error sources, e = u−uh

is the discretization error. In order to estimate the error in energy norm we

use the Zienkiewicz & Zhu (ZZ) error estimator (2.28), presented in [3], where

σ∗ is an improved stress field, more accurate than σh.

|||e|||2Ω ≈ E
2
ZZ :=

∫

Ω
(σ∗ − σh)TD−1(σ∗ − σh) dΩ (2.28)

σ∗ could be in general any improved solution. It is easy to deduce that the

quality of the estimation is directly related with the quality of the recovered

stress field.

Particularizing (2.28) at each element domain, we would obtain the estimation

of the error in energy norm at element level. With that information, and using

a mesh optimization criterion based on the equidistribution of the error in the

elements of the mesh to be created [55], we obtain the new levels (sizes) of the

elements in each zone. Examples of analysis meshes obtained by this procedure

are represented in Table 2.4.
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2nd analysis mesh 3rd analysis mesh

Table 2.4: Second and third analysis mesh obtained using the error estimation infor-

mation following the 1st meshes represented in Table 2.3
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2.5 Essential boundary conditions

In the cgFEM the nodes are not placed over the boundary of the domain,

then the Dirichlet boundary conditions can not be applied directly over the

nodes. In this case, we follow a Lagrange multipliers approach. The proposed

approach have been developed in collaboration with the Department of Me-

chanical Engineering and Material Engineering at Universitat Politècnica de

València. In this case we do not use any stabilization procedure because for

the particular case of the examples used in this thesis it is not necessary. An

improvement of the proposed method including a stabilization term is recently

introduced in [56]. Consider that the solution of the problem (2.8) is equiva-

lent to the following one, where we introduce the Lagrange multipliers field λ

to impose the Dirichlet boundary conditions:




Find u ∈U , λ ∈ L :

a(u,v) + b(λ,v) = l(v) ∀v ∈ U

b(µ,u) = b(µ, ū) ∀µ ∈ L

where b(w,v) =

∫

ΓD

wTv dΓ

(2.29)

where U = H1(Ω) and L is the space of the Lagrange multipliers defined

on ΓD. The bilinear form b(λ,v) represents the virtual work of the reactions

over ΓD. Applying the FE discretization to (2.29) and considering the discrete

subspaces U h ⊂ U and L h ⊂ L we obtain:





Find uh ∈U
h, λh ∈ L

h :

a(uh,v) + b(v, λh) = l(v) ∀v ∈ U
h

b(µ,uh) = b(µ, ū) ∀µ ∈ L
h

(2.30)

This discrete system (2.30) yields a linear system of equations that will give as

a result the displacements at nodes and also the discrete Lagrange multipliers

field:
[
K CT

D

CD 0

]{
uh

λh

}
=

{
F

û

}
(2.31)
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Stiffness matrix K and force vector F in (2.31) are built as in the standard FE

formulation, but in this case we will have two new terms, namely û and the

constraints matrixCD. Now, we present a brief summary about the evaluation

of the new terms related with the functional b(·, ·).

We define the discrete space for the Lagrange multiplier field as the intersection

between the analysis mesh and the Dirichlet boundary, excluding from that

space the initial and final points of the boundary. In Figure 2.22 we observe an

example of the discretization. Then the discretized space L h for the Lagrange

multipliers field is:

λh =
∑

Miλ
h
i

µh =
∑

Miµ
h
i

(2.32)

where i represents each intersection point, λi is the value of the Lagrange

multiplier at that intersection point, µi its variation and Mi is the shape

function on the support of i, that is Γ1 ∪ Γ2, as represented in Figure 2.22.

Note that the shape function Mi is constant on the extremes of the boundary.

Then, for the intersection point i, we write the constraint equation Ci and the

r.h.s. ûi:

b(µh,uh) → Ci =

(∫

Γ1∪Γ2

MiN dΓ

)
ũh

b(v,λh) → CT
i =

(∫

Γ1∪Γ2

MiN dΓ

)T

λh
i

b(µh, ū) → ûi =

∫

Γ1∪Γ2

Miū dΓ

(2.33)

where N is a vector containing the FE shape functions involved in the element

which is intersected by Γi such that for a single component of the displacement

field uh = Nũh. Note that the integrals of the first two equations in 2.33 are

equal, thus leading to a symmetric system matrix.

E. Nadal 57



2. On the use of Cartesian grids for the FEM

iG1
G2

Mi

m

i

n

j

l

k

Figure 2.22: Shape function for intersection point i.

2.6 Solver

Efficiently solving the global system of the equations is one of the key aspects

in a FE code to guarantee a high performance. In this thesis we have worked

in two directions, the first one is based on the reordering of the stiffness matrix

in order to improve direct solver speed. The second one is related to iterative

solvers. In the last case we have studied projection techniques from coarser

discretizations in order to obtain initial guesses for the iterative solvers.

Since cgFEM uses non-conforming meshes containing hanging nodes (see Fig-

ure 2.12b) and the Dirichlet boundary conditions are imposed via Lagrange

multipliers, the linear system will have constraint equations. The constraints

related with the Dirichlet boundary conditions are grouped in the matrix CD

and the constraints related with the hanging nodes are grouped in the matrix

CMPC . These last constraints enforce continuity between adjacent elements of

different refinement levels using Multi-Point Constraint (MPC) via Lagrange

multipliers. The global system for the analysis is:




K CT
D CT

MPC

CD 0 0

CMPC 0 0








u

λD

λMPC





=





F

û

0





(2.34)

In order to decrease size of the system (2.35) we reduce it by eliminating the

constraint matrix related with the hanging nodes, CMPC , from the system.
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We define the system of equations:

K̂Û = F̂ (2.35)

where:

K̂ =

[
Ǩ Č

T
D

ČD 0

]
Û =

{
u

λD

}
F̂ =

{
F̌

û

}
(2.36)

Defining Krow and Frow as the rows of K and F corresponding to the degrees

of freedom constrained with a MPC, andKcol andCcol
D the respective columns,

then we obtain:

Ǩ = K+KcolCMPC +CT
MPCK

row

F̌ = F+CT
MPCF

row

ČD = CD +CMPCC
col
D

(2.37)

Removing from (2.35) the rows and columns affected by the hanging nodes we

obtain the reduced system of equations to solve:

[
K′ C′T

D

C′
D 0

]{
u′

λD

}
=

{
F′

û

}
(2.38)

Finally, the displacements associated to the degrees of freedom of the hanging

nodes are evaluated as follows:

uMPC = CMPCu
′ (2.39)

2.6.1 Nested Domain Decomposition-based direct solver

When a direct solver is used to solve a system of equations such as the one

presented in 2.38, a previous reordering is usually used in order to improve the

performance of the solver. Usually this reordering is obtained via an optimiza-

tion process which not always obtains the best reordering for the system of

equations. In this Section we propose to use a Nested Domain Decomposition

(NDD) reordering technique. This technique is based on the Cartesian grid
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Subdomain 1 Subdomain 2

Subdomain 3Subdomain 4

(a) Nested domain subdi-

vision

(b) Problem domain and

analysis mesh

Figure 2.23: Nested scheme 1.

structure, directly related to the mesh topology. Thus, providing an optimal

reordering. That will provide a considerable reduction of the computational

cost associated to the resolution of the system of equations with a minimum

computational cost.

The NDD technique was used in [48] and applied to a hierarchical FE code.

The NDD technique consist in recursively subdividing the domain of the prob-

lem into subdomains. Then, we reorder all DoF such that all of them falling

into a subdomain will be allocated together in the stiffness matrix. The nodes

falling in the interface of the subdomains will not be reordered and will simply

be moved to the end of the matrix. This idea can be recursively applied into

each original subdomain, hence it can be called nested.

For the cgFEM code, we subdivide the domain ΩE in 4 subdomains or regions

as shown in Figure 2.23a. Each subdomain is represented in a different color.

If we now take the Cartesian grid pile represented in Figure 2.12a we can

identify those subdomains with the elements of level 1. Thus, the nested

reordering in cgFEM will be made up by grouping the nodes according to

the corresponding element in the Cartesian grid pile. Figure 2.23b shows an

example of an analysis mesh where we are going to apply the nested reordering.
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Interface nodes in previous levels

Current interface node

Nodes of the different subdomains

(a) Legend (b) Level 1 (c) Level 2

(d) Level 3 (e) Level 4

Figure 2.24: Nested scheme 2.

For instance, in Figure 2.24b we have the level 1 nested subdivision. The

nodes are subdivided into 5 different regions. The colored ones indicate the

nodes falling into each one of the elements of level 1. Black nodes are those

falling in the interface between the level 1 elements. The stiffness matrix will

be reordered grouping all nodes of the same color, see Figure 2.25b. Level

2 reordering, Figure 2.24c, indicates that each of the level 1 subdomains is

again reordered in the same way. In this case we are using the 2nd level of

elements represented in Figure 2.12a. For instance, the green subdomain in

Figure 2.24b is subdivided into 4 subdomains and the interface in black as

shown in Figure 2.24c. Interfaces of previous levels are represented by white

squares. The same process is followed for the next levels, using the elements

of the corresponding level of the Cartesian grid pile.

E. Nadal 61



2. On the use of Cartesian grids for the FEM

The result of the NDD is shown in the stiffness matrices presented in Figure

2.25. As observed, the NDD produces an arrowhead type stiffness matrix. In

Figure 2.25a we present the original non-reordered stiffness matrix with the

constrains described in (2.35) placed at the end of the matrix. We observe the

4 subdomains corresponding to the level 1 reordering, represented with their

respective colors in Figures 2.24b to 2.24e. When we increase the reordering

level, reordering the nodes falling into the level 1 subdomains, we can perceive

how each of those level 1 subdomains is internally reordered, leading again

to an arrow-head structure into the subdomains. The recursive application of

this process generates a nested arrow-head structure as shown in the evolution

from Figure 2.25b. This arrow-head structure leads to a decrease in the fill-in

of the factorized matrices used in the direct linear solver. For instance, in

this case, the fill-in of the LU factorization of the matrix in Figure 2.25a is

12.35% while the fill-in of the corresponding factorization for the matrix in

Figure 2.25e, when the NDD is used, is 8.12%.

In order to obtain a better comprehension of the NDD reordering we analyze in

Figure 2.26 the matrix in Figure 2.25e. In this case we foccus on the recursive

reordering in one of the level 1 subdomains. For instance we study the evolu-

tion of the reordering of the level 1, the green subdomain. Zooming the green

block in level 1 shows up a new image corresponding to a level 2 reordering

of the green subdomain. We observe that the arrowhead structure is repeated

again. Now, taking for instance the blue subdomain of the level 2 subdomain

and zooming again we can observe the corresponding level 3 subdomain, again

arrowhead shaped. Finally, zooming again the highlighted level 3 subdomain

we obtain the level 4 blocks, again arrowhead shaped. This process will con-

tinue until all nodes are reordered. A nested arrowhead structured matrix is

therefore obtained.

Note that for this implementation we have used the NDD just as a reordering

procedure to further increase the standard direct solver. Its use in parallel

solvers will be part of future works to improve the direct solver performance.
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Figure 2.25: Nested scheme K.
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Figure 2.26: Representation of the nested arrowhead structure.
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2.6.2 Iterative solver. Projections

Direct solvers are competitive for small and medium size systems of equations.

However, large system of equations require the use of iterative solvers. These

solvers try to iteratively approximate the exact solution in most cases using

Krylov subspaces. We will consider the CGS iterative solver implemented in

Matlab R©2010b.

Among other factors, the computational cost of these methods depends on the

initial guess of the solution used to initialize the iterative process. Accurate

initial vectors would in general reduce the number of iterations. Note that

because of the use of the cgFEM, projection techniques between different

meshes are both, easily implemented and computationally very efficient.

Because of the use of the cgFEM code, the essential boundary conditions are

imposed via Lagrange multipliers (2.35). In order to overcome this issue we

propose the use of the Augmented Lagrange formulation. For a similar situa-

tion, in the context of contact problems, some iterative techniques have been

reported in [57]. In this Section, the linear system to be solved considering

the Augmented Lagrange formulation is the following:
[
K′ +C′T

DWC′T
D C′T

D

C′
D 0

]{
u′

λD

}
=

{
F′ +C′T

DWq

û

}
(2.40)

where W is any square symmetric positive semidefinite matrix of the same

size than the number of constraints. In our implementation we define W as

W = γI with γ > 0. In particular, we take γ = ‖K‖L2
/ ‖CD‖2L2

in order to

minimize the condition number. As preconditioner we use the one proposed

in [58]:

P =

[
diag

(
K′ +C′T

DWC′T
D

)
C′T

D

C′
D 0

]
(2.41)

As mentioned above, we will feed the iterative solver with an initial solution,

but we have to take into account that the solution vector of the system in

(2.35) has two parts: one related to the displacements solution u and the
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other related to the Lagrange multipliers λ. For the first part we consider two

different approaches:

• the projection of the FEM solution in mesh i− 1 into mesh i,

• the projection of recovered solution u∗
u evaluated in mesh i−1 into mesh

i. This recovered displacement field, u∗
u, is obtained via a displacement

recovery process (SPR-CD) considering the FE solution and information

related with the boundary conditions and body forces. A full description

of the SPR-CD is detailed in Section 3.3.

For the Lagrange multipliers we took into account that they represent the

traction over ΓD required to satisfy the prescribed displacements over Dirichlet

boundaries. Then, we have two options for them:

• To project the FEM stress field σh from the previous mesh. The FE

stress field is not continuous, then to evaluate the stress value in a point

over the interface between two elements we randomly choose the value

corresponding to one of the elements connected to the point of interest.

• To project the recovered stress field σ∗
σ from the previous mesh. This

recovered stress field, σ∗
σ is evaluated form u∗

u, see Section 3.3.

2.7 Numerical Results

The numerical results presented in this Section are mainly focused in demon-

strating the efficiency of the cgFEM code to improve the computational ef-

ficiency of the main parts of the FE procedure. Two parts of the method

benefits form the cgFEM code. The first one is related to the mesh generation

process and the second to the resolution of the system of equations. Regarding

the mesh generation process:
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• The cgFEM code does not need to evaluate any mesh since it is already

virtually created.

• The element stiffness matrices have to be evaluated only for the elements

intersected by the boundary and not in the whole domain as in the

traditional FEM. That is a (d − 1) dimensional process, which leads to

a considerable improvement in the computational cost.

Once system (2.35) is built, the cgFEM code can provide improvements to

solve it in two different directions.

• For direct solvers, due to the hierarchy of the mesh the NDD reordering

is almost costless. With that reordering method, the results show a

considerable computational cost reduction in comparison with standard

reordering procedures.

• For iterative solvers, projection techniques of the FE solution from one

mesh to other meshes are easy to implement and computationally inex-

pensive. When the projection techniques are used in iterative solvers, the

results shows a decrease in the number of iterations, and consequently a

computational cost improvement.

For this Section, we have run several tests always using the same problem to

show the behavior of the cgFEM code. The problem at hand is a hollowed

cylinder under internal pressure as represented in Figure 3.13. In this case,

we only model a quarter of the cross section. We have applied symmetry

boundary conditions along the vertical and horizontal sides. The external side

is load-free. The exact solution and material properties are shown in Figure

3.13. Uniform refinement and bilinear elements (Q4u) have been considered.

For the numerical examples we have used a PC DELL PE1950 equipped with

two processors Intel Xeon E5430 with 32Gb of memory. The operating system

is Windows Server 2003 Enterprise x64 SP2. The cgFEM code is implemented

in Matlab R© 2010b.
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2.7.1 Evaluation of the global system of equation

The main objective of this Section is to compare the computational cost in-

volved in the evaluation of the global system of equations when cgFEM is

used and to compare it with a commercial code like ANSYS R© 12.1. In order

to perform that comparison we divide the total cost into meshing tasks and

solving tasks. Meshing tasks refer to the generation of the FE mesh. When

the commercial code is used, this process consists in generating a free mesh of

linear elements. When cgFEM is used, this process consist in generating the

analysis mesh from the virtual mesh generator and intersecting the mesh with

the geometry.

The second step generates the element stiffness matrices and the element load

vector, assembles them and solves the global system of equations. The main

difference in this process is that in the standard FEM we need to evalu-

ate the element stiffness matrices for all elements in the mesh, whereas in

cgFEM element stiffness matrices are only evaluated for boundary elements.

Note that the computational cost comparison between the commercial com-

piled code and the cgFEM code fully implemented in Matlab R© 2010b pre-

sented in this Section is very basic because the main interest of the com-

parison is to give some numerical evidences about the improvements of the

cgFEM technique in comparison with a standard FE commercial implementa-

tion.

Figure 2.27 represents the computational cost in seconds needed for the mesh-

ing tasks and for the solving tasks. We can directly observe two main details.

The first one is that currently, the meshing time is considerably higher than

the solving time, hence the importance on developing new techniques to im-

prove this step of the FE analysis. Second, we observe a considerable decrease

in the computational cost during the meshing tasks when the cgFEM is used.
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Regarding the computational cost related to the solving tasks, we can not

observe any considerable difference between both codes. For the cgFEM code

we only need to evaluate the element stiffness matrices of the elements cut by

the boundary, while the standard FE formulation requires the evaluation of the

element stiffness matrix for all the elements in the mesh, which is considerably

more expensive. This is not noticed in these results because the cgFEM code

is fully implemented in Matlab R© 2010b, considerably slower than a compiled

and optimized code like those used in commercial codes.
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Figure 2.27: Problem 2, Q4u. Computational cost, time in seconds, used for meshing

tasks (left) and solving tasks (right). The results are obtained for the commercial

code ANSYS R© 12.1 and for the proposed cgFEM code with the NDD technique.

Figure 2.28a represents the total computational cost for solving the linear elas-

ticity problem including the error estimation process in both, the commercial

code and the cgFEM code. We observe that the computational cost in both

codes is comparable. At this point we have to consider that the error esti-

mation, in both codes, is based on the well-known Zienkiewicz and Zhu error

estimator [3] that will be described in detail in Chapter 3. The difference be-

tween the commercial code and the cgFEM is that the commercial code just

performs a simple nodal averaging to obtain the recovered stress field while

the cgFEM evaluates a high quality recovered stress field based on a version of

the SPR technique [7] improved to locally satisfy the internal equilibrium and
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the Dirichlet and Neumann boundary conditions. In other words, the post-

processing procedure used in the cgFEM is considerably more accurate than

the simple nodal averaging but, at the same time, is more expensive. However

the global computational cost is still comparable with that of the commercial

code, despite of the fact that cgFEM is fully implemented in Matlab R© 2010b.

The motivation of using this sophisticated recovery process will be explored

in detail in the following Chapters. Finally, Figure 2.28b shows a compar-

ison between the relative error in energy norm and the computational cost

of the cgFEM code using a plain nodal averaging (blue line), for error esti-

mation of the FE solution, and the more sophisticated SPR-based recovery

process (black line), which allows to evaluate the error of the recovered solu-

tion, and ANSYS R© 12.1. We observe that the FE solution obtained with the

cgFEM code requires slightly minor computational cost than the FE solution

provided by ANSYS R© 12.1 for finer meshes. However one of the most impor-

tant advantages of the cgFEM code is that it is able to provide a recovered

solution (see Chapter 3) and an error measure for this recovered solution (see

Chapter 6), as a difference of standard commercial codes. This permits to use

the recovered field as output instead of the FE solution. In this Figure we

clearly show the considerably decrease in the computational cost required for

a given accuracy when the recovered solution is considered (black line) with

respect to the FE solutions (red and blue lines).

2.7.2 NDD. Computational cost

We utilize three different reordering strategies to evaluate the performance of

the technique used to solve the linear system of equations in (2.35): Reference,

Matlab R© 2010b and NDD. We have run the tests in Matlab R© 2010b, using

the standard backslash solver provided in this compilation.

• Reference: this strategy consists in preventing the standard Matlab R©
2010b reordering. Then, the system is solved without any previous re-

ordering.
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sus computational cost for the FE so-

lution obtained with the cgFEM code

and the commercial code ANSYS R©

12.1 and for the recovered solution pro-

vided by the cgFEM code.

Figure 2.28: Problem 2, Q4u. Computational cost, time in seconds, used for whole

FEM analysis, considering the solution recovery process and the error estimation for

a commercial code ANSYS R© 12.1 and for the proposed code cgFEM with the NDD

technique.

• Matlab R© 2010b: in this case we allow Matlab R© 2010b to apply the

standard reordering before solving the system.

• NDD : in this case, we use the NDD reordering presented in Section

2.6.1. The nested reordering considers the maximum element level of

each mesh.

We have used a sequence of h-uniform refined meshes for the problem presented

in Figure 3.13. The evolution of time (s) required to solve the global system

of equations (2.35) is presented in Figure 2.29.
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Figure 2.29: Problem 2, Q4u. Computational cost (time in seconds) used to solve

the global system (2.35) with different reordering procedures. Reordering time also

included.

As we can observe, when no reordering is applied (blue line) the computa-

tional cost rapidly increases. Meanwhile when a previous reordering is run

(red and black lines), the memory usage and the computational cost decrease

considerably, allowing for the resolution of much larger systems of equations.

Furthermore, it is also observed that when the matrix is reordered with the

NDD technique the computational cost decreases with respect to the use of

standard reordering techniques. We observe a reduction of more than a 50%

for systems with 5 · 106 degrees of freedom. It is also important to point out

that the tendency is to increase this difference for finer meshes. The reason

for this behavior is that the NDD reordering could be considered optimal, as

it uses the topology of the mesh in the process. The reordering time is also

included in the results.

E. Nadal 71



2. On the use of Cartesian grids for the FEM

2.7.3 Iterative Solvers. Projections

Iterative solvers require a number of iterations to get a solution with a given

level of accuracy. The number of iterations depends on the quality of the pre-

conditioner P used and also on the quality of the initial vector used to initialize

the process. Consider the system Ax = b, if P = A−1, then any iterative

solver will provide the exact solution with only one iteration: x = PAx = Pb,

but the computational cost to obtain P will be excessive. Alternatively, if we

feed the iterative solver with the solution of the system, we will directly ob-

tain that solution with one single iteration. This means that the performance

of the iterative solvers is strongly related with the pre-conditioner and with

the initial guess. We are interested on decreasing the number of iterations

for a given pre-conditioner by feeding the iterative solver with accurate initial

solutions. In this case we are going to solve with the computationally inex-

pensive pre-conditioner presented in (2.41). Other pre-conditioners could also

be considered.

As previously mentioned, we feed the iterative solver with an initial solution.

The solution vector of the system in (2.40)2 has two parts. One related with

the displacements solution u and the other related to the Lagrange multipliers

λ. We will only consider three possibilities for the initial vector as described

below:

• U0 = {0 0}T the null vector, for comparison.

• Uh =
{
uh
i−1p

λh
i−1p

}T
the projection of the FE solution uh

i−1 and the

projected traction Gσh
i−1 over the Dirichlet boundaries evaluated with

the FE stress field. Note that G is the operator that projects the stress

field to the traction along a given boundary, see (2.4).

2Note that the convergence of the iterative solver is affected by the nature of the system

of equations
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• U∗ =
{
u∗
i−1p

λ∗
i−1p

}T
the projection of the recovered displacement so-

lution u∗
i−1 over the new mesh i and the projection of the recovered

traction Gσ∗
σ i−1 over the Dirichlet boundaries.

As shown in Figure 2.30, the identification of the position of the DoFs of the

analysis mesh i (current mesh) into the previous analysis mesh i−1 is very sim-

ple due to the hierarchical data structure used used by the cgFEM. In Figure

2.31 we present the computational cost of the projection technique measured

in equivalent number of iterations needed to project the solution from the

coarser mesh i − 1 to the finer one i. The equivalent number of iterations

required to project the solution is measured by comparing the computational

cost of the projecting tasks with the computational cost of the iterative solver

in the current mesh i. Results show that the importance of the projection

decreases for finer meshes, that are the ones of interest, in both situations.

Then, the cost associated with the projection becomes small in comparison

with the cost of the iterative solver as shown in the Figure.

Nodes in mesh i− 1.

Nodes in mesh i already present in i− 1

whose values are directly obtained form

nodes in i− 1.

Nodes in i whose projected solution is

interpolated using the standard partition

of the unity of the FEM in their parent

elements of the mesh i− 1.

i

i-1

Figure 2.30: Projection of the solution of the analysis mesh i − 1 into the analysis

mesh i.

Results in Table 2.5 shows the results for the iterative solver with different

stopping tolerances (10−6, 10−8 and 10−9). All the results are obtained with a

constraint of 104 iterations. In the three tables we observe that there is a range

in which the results obtained with the projection of the recovered solution U∗

improves with respect to the use of the projection of the raw FE solution Uh as

initial vector. This is because the recovered solution has a higher convergence
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Figure 2.31: Problem 2, Q4u. Number of solving iterations needed to project the

initial guess from the coarser mesh (i − 1) to the finer one (i) and the number ob

iterations required to solve the system of equations.

rate, hence the initial vector provided by the recovered solution is closer to

the solution of the system of the equations in this range. However, in the

first table (tolerance 10−6) we clearly observe that for the last two meshes the

projection of the FE solution Uh improves with respect to the projection of

the recovered field U∗. In this case, the recovered solution has become too

much accurate (because of the higher convergence rate) and it differs from the

solution of the system of equations. The same behavior is expected in finer

meshes for tolerances 10−8 and 10−9.

Dashes in Table 2.5 indicate that the iterative solver could not reach a solution.

The error encountered in all of these situations is “one of the scalar quantities

calculated during CGS became too small or too large to continue computing.”.

This description is obtained from the help of Matlab R© 2010b. This indicates

that the algorithm can not continue because a numerical error. It is clear

from the results shown that the robustness of the iterative solver considerably

improves with the use of the recovered displacement solution.

Figure 2.32 represents the results shown in the Table 2.5. We observe that after

a certain number of DoF, depending on the tolerance, the use of the projected
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recovered solution U∗ as initial guess is clearly a better choice than the use

of the projected FE solution Uh. However this effect disappears for finer

meshes. Then there is a range where the recovered solutions provides better

results. However, we suggest the use of U∗ since it considerably improves the

robustness of the iterative solver.
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Figure 2.32: Problem 2, Q4u. Number of iterations needed using as initial solution

the null vector, the FEM solution and the recovered solution. All cases consider the

projection of the Lagrange multipliers.
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2.8 Conclusions

In this Chapter we have presented the cgFEM code used to solve the linear

elasticity problem. The cgFEM technology has several parts such as: the

virtual mesher, the geometry-mesh intersection, the integration procedures,

etc. described during this Chapter. All these parts have been optimized in

order to make the cgFEM code competitive with commercial codes even if the

cgFEM is fully implemented in Matlab R© 2010b. As the results show, there

is an important improvement in the first steps of the Finite Element analysis,

i.e. the mesh generation and the creation of the element stiffness matrices.

This is one of the key features of the cgFEM that reduces the number of

calculations as a result of the hierarchical data structure used with the nested

Cartesian grids. The information sharing procedures between elements of

different meshes for a given geometry or even between different geometries play

an important role in this aspect. These information sharing procedures can be

easily applied under the structural shape optimization framework, providing

a considerable improvement in the computational cost of the optimization

process [6], as shown in Chapter 7.

We have obtained an important improvement when the NDD is used. This

technique permits to reorder the global system of equation in an optimal man-

ner. This reordering comes out naturally within the cgFEM framework be-

cause of the hierarchy of the mesh. The NDD reordering consumes a small

computational cost shown in the numerical tests. As future work, and contin-

uing with the NDD reordering, the resulting system could be easily adapted

to parallel solvers because the arrow-head shape matrix resulting after the

reordering can be easily divided into small subsystems suitable for paralleliza-

tion.

In the case of iterative solvers the initial guess is important for their perfor-

mance. Usually this initial guess is the projection into current mesh of previous

solutions. Under the cgFEM framework, projection techniques between dif-

ferent meshes are highly efficient, improving the performance of the iterative
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solvers. Under some circumstances, that require further studies, the projec-

tion of the recovered solution, U∗, represents an improvement with respect to

the projection of Uh. However, the main characteristic of the projection of

U∗ is its higher robustness with respect to the used of Uh.
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Table 2.5: Problem 2, Q4u. Number of iterations needed for different initial vectors.

All cases consider the projection of the Lagrange multipliers. A maximum of 104

iterations is allowed. The tolerance for the stopping criterion in the iterative process

is indicated on each table.

Tolerance 10−6

NDoF N Iter U0 N Iter Uh N Iter U∗

48 13 26 26

144 23 26 39

478 42 47 61

1,714 83 61 62

6,444 – 161 119

24,944 – 241 199

98,168 – 206 326

389,348 – 49 622

Tolerance 10−8

NDoF N Iter U0 N Iter Uh N Iter U∗

48 17 17 17

144 28 26 44

478 56 52 79

1,714 100 99 142

6,444 – 178 276

24,944 – 408 253

98,168 – 1,047 468

389,348 – – 950

Tolerance 10−9

NDoF N Iter U0 N Iter Uh N Iter U∗

48 17 17 17

144 30 33 48

478 57 54 85

1,714 102 102 161

6,444 – 220 286

24,944 – 107 504

98,168 – 884 763

389,348 – – 1,050
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Chapter 3

Error estimation and recovery

procedures

Chapter 2 described how to build the FE model from the geometrical model

and also how to obtain the FE displacement solution. However, the FE solu-

tion is only an approximation to the exact solution, which is usually unknown.

It is important to know what kind of error it is introduced during the numerical

analysis. Analyzing the procedure followed to obtain the numerical solution we

find out several sources of error. In Figure 3.1 we present a simplified scheme

where we can observe the different sources of error during the simulation of a

physical system.

During the idealization process, we try to obtain a mathematical model from

the physical phenomena. That is, we condense the behavior of the phenomena

into a mathematical expression. Sometimes, the mathematical model, that

is, the differential equation, does not accurately describe the physics of the

phenomena. For instance sometimes in the analysis at the crack tip in a

mechanical component, we consider linear material behavior when we know

that there exists some local plastic deformation. This is an usual practice
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Physical

phenomena

Mathematical

model

Discrete

model

Discrete

solution

Idealization Discretization (FEM) Solution

Solution error
Discretization + solution error

Modeling + discretization + solution error

Figure 3.1: Scheme for the error sources during the simulation of a physical phenom-

ena.

that George Box summarized in the sentence “All models are wrong, some are

useful”.

Generally the geometry of the component to analyze, represented by a CAD

model, is very complex, including small details (features). It is a common

practice to eliminate these small details by means of the “defeaturing” process

before applying the discretization process. The discretization process consists

in converting the mathematical model in a discrete one. For a given degree of

interpolation functions this error depends on the element size and will show

up as two different kinds of errors:

• The geometrical error with respect to the CAD model. In this case the

volume (area in 2D) of the actual CAD model is discretized into small

regions, called elements, which generally cannot exactly fit the CAD

model. For instance, Figure 3.2 shows two different meshes for the same

domain. It can be observed that the geometrical error in the finer mesh

has decreased.

• The solution discretization error. One of the main features of every FE

method is that it tries to fit the exact solution by a set of polynomial

functions locally defined, in the support of each node. Thus, in general

as in the case of the geometry, it will not be possible to exactly represent
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the analytical solution of the differential equation. We are only able to

obtain a local element-wise polynomial approximation. The discretiza-

tion error is, omitting other error sources, the difference between the

exact solution of the mathematical model, u, and its FE approximation,

uh, the solution of the discrete problem.

Finally, when the discrete model is obtained, we need to evaluate a solution.

During the solution process other types of error can show up, such as round

off error, the errors associated to the numerical accuracy of the computer, etc.

and also the prescribed tolerance when iterative solvers are used.

Generally, analysts consider that the error due to the FE discretization is small.

However experience tells us that this is not always true. A clear example of

this is the catastrophic collapse of the Sleipner offshore platform in 1991,

with a cost of $700 million [59], which sunk because the accuracy during the

simulation was not enough. In this Chapter we will consider the discretization

error as the main source of error, then all others will be considered as negligible.

Figure 3.2: Different discretizations of a quarter of a square domain with a hole. Left,

coarse discretization, right, finer element mesh.
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3. Error estimation and recovery procedures

3.1 Introduction and general review

FEM is a powerful method for a vast type of engineering problems, however it

is only able to provide an approximated solution. Therefore, some error level

has to be accounted for defining the safety factors during the design process of

mechanical parts. During several years several types of error estimators tech-

niques have been developed. It is important to classify them and to know their

general properties. In general we can define three kinds of error estimators

according to their convergence to the exact error [42]. The global effectivity

index θ (which indicates the relation between the estimate and the true error)

is an indicator of their convergence:

• Asymptotically exact : when we increase the richness of the discrete solu-

tion space, the estimated error gets closer (from above or below, or even

oscillating) to the true one, then θ → 1 when N → ∞.

• Asymptotically effective: when we increase the richness of the discrete

solution space, the estimated error gets higher values than the true one,

therefore θ ≥ 1 when N → ∞.

• Asymptotically ”‘useless”’, as defined during the ECCOMAS 2012 congress

during the oral presentation of [60]. When we increase the richness of

the discrete solution space, the estimated error gets lower values than

the true one, then θ ≤ 1 when N → ∞.

As a consequence of this description, it is easy to observe that the best error

estimator would be one which is both asymptotically effective and asymptoti-

cally exact.

Another way to classify them is according to the procedure used to obtain the

estimates. Traditionally, there are four major branches in the error estimator

field:
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1. The residual-based error estimators.

2. The recovery type error estimators.

3. The Constitutive Relation Error-based error estimators.

4. Dual analysis.

The first branch, the residual-based error estimators, were introduced by Babuška

and Rheinboldt [61]. This group may be subdivided into two more groups,

the explicit and the implicit error estimators.

The explicit error estimators are based on the evaluation of the error by using

the strong form of the residual equation [62]. Traditionally, they provide an

upper bound up to a constant. In that sense, a great effort has been done

during the last years by Stein’s group at Hanover to develop a procedure to

evaluate that constant [63].

The second subgroup, corresponding to implicit error estimators, is based

on solving local problems by using the weak form of the residual equation.

Local FE problems are solved in order to assess the global error of the FE

solution. In this case, we do not need any constant to get an upper bound

of the true error. This group is mostly used by mathematicians due to its

well-known mathematical properties. In general, this method only guarantees

the upper bound property when the local problems are solved minimizing their

complementary energy. However, researchers usually solve local displacement-

based problems in a richer space obtaining enough accuracy to maintain the

upper bound property. Work in this area has been done for example by the

groups of Oden [64] and Dı́ez [65, 66] among others.

These two types of error estimators are asymptotically effective. That means

they always yield upper bounds of the true error; however, the results could

be rather conservative.
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The second major branch,recovery type error estimators, is based on the use

of the Zienkiewicz and Zhu (ZZ) error estimator [3]. In this case, these tech-

niques were traditionally unable to provide upper error bounds. The key idea

behind these techniques was to obtain a continuous recovered stress field and

use it as a better approximation to the exact stress field than the raw FE

solution. This recovered stress field can be used to obtain an estimation of the

error in energy norm. The error evaluation is obtained by comparing the FE

solution (compatible) with the recovered solution, not necessary equilibrated,

but continuous, obtained with a recovery procedure such as, the Supercon-

vergent Patch Recovery (SPR) technique [7, 8]. Reference [67] showed that if

the recovered field used for the estimation is obtained with the SPR technique

the error estimator is asymptotically exact. This kind of error estimators are

robust, easy to implement, and are used in some commercial codes.

The publication of the original SPR technique was followed by several works

aimed to improve its quality, see for example [68, 69, 70]. Ródenas et al. pro-

posed to add constraints to impose local equilibrium and local compatibility

to the recovered solution in the FEM framework [71] bringing up the SPR-C

technique that was also adapted to the eXtended Finite Element Method

(XFEM) framework [72]. The recovered field obtained with the SPR-C tech-

nique has a high accuracy and locally (at patch level) fulfills the equilibrium

and compatibility equations. Dı́ez et al. [73] presented a methodology to ob-

tain computable upper bounds of the error in energy norm considering the

quasi-equilibrated stress recovered field. This technique allowed us to obtain

the first procedure to get practical upper error bounds for FEM and XFEM

based on recovery techniques [73, 74] instead of using the traditional residual

based error estimators [64]. We have to note that with SPR-based methods

the upper bound property is not directly guaranteed because the recovered so-

lution is not fully equilibrated. The upper bound property is obtained in these

methods by adding correction terms for which only an estimation is available.

Regarding to the use of the SPR technique with Cartesian Grids, reference

[11] indicates: ”Unfortunately, for an implicit mesh it would be very difficult

to implement such a superconvergent recovery scheme of the stress field for
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elements that intersect the boundary”. However in the XFEM framework,

where the mesh is independent of the crack, efficient recovery techniques have

been already proposed based on the Moving Least Squares (MLS) technique

[75, 76, 77, 78, 79] and some on the SPR technique [80, 74], which introduce

worthy improvements to the solution, specially along the boundaries, even

in elements trimmed by the crack. These SPR-based techniques have been

adapted in this work to the context of Cartesian grids.

According to some authors [13, 11, 28, 29], the main drawback of the use of

the techniques under the large umbrella of finite elements in ambient space,

such as the cgFEM, is the low accuracy along the boundaries since they are

not explicitly represented. In the proposed methodology, the recovery tech-

niques developed by Ródenas and coworkers [71, 73, 80, 74] have been specially

adapted both: i) to be used with the Zienkiewicz & Zhu error estimator [3]

that will guide the h-adaptive refinement process to improve the quality of the

solution, and ii) to neutralize the possible lack of accuracy along the bound-

aries in the cgFEM framework providing an enhanced solution (for which an

error estimator will be presented in Chapter 6) that will be used instead of

the FE solution.

In the third branch of error estimators we can place the Constitutive Relation

Error (CRE) introduced by Ladevèze and Leguillon [81] and followed by several

contributions for many applications, see for example [82, 83, 84, 85]. The CRE

consist in evaluating a statically admissible stress field and compare it with

a kinematically admissible stress field, directly providing upper error bounds

of the error in energy norm. In general this kinematically admissible solution

is the FE solution. For the statically admissible solution, a local problem is

solved, which is built with the use of the strong prolongation condition.

Finally the fourth branch of error estimators is related with the concept of dual

analysis, that makes use of two solutions. One of them is compatible whereas

the other one is an equilibrated solution. This type of error estimators can also

be used to directly obtain upper error bounds. Some of these error estimators
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solve two global problems in parallel [86] whereas others post-process the FE

solution [81, 87, 88]. The main characteristic of these error bounding tech-

niques is that the error is evaluated by comparing the two solutions, which are

complementary in nature, and whose errors are orthogonal, see [89]. Note that

the CRE approach could also be included in this group since the final idea is

to compare kinematically admissible solutions with statically admissible ones.

In this Chapter we will consider the FE solution of linear elasticity problems,

where the Zienkiewicz and Zhu [3] (ZZ) error estimator in energy norm is

commonly used to quantify the accuracy of the numerical solution. The in-

formation provided by the ZZ error estimator at element level can be used to

improve the FE model by means of h-adaptive procedures. In this case, we

have developed a SPR-type displacement-based recovery technique (SPR-CD)

which we will use in the ZZ error estimator. The recovered stress field σ∗
σ

is obtained as the continuous part of the stresses derived from a recovered

displacement field u∗
u, obtained with the SPR-CD technique which enforces

static and kinematic admissibility constraints at patch level. The SPR-CD

technique, considers the displacement and stress splitting into “singular” and

“smooth” part, as in the SPR-CX technique [80] where stress splitting was

also considered. Finally, during the recovery process we obtain a recovered

pair (u∗
u, σ

∗
σ) that will be used as output for the FE analysis. The subindex σ

and u stands for the quasi- statical admissibility and kinematical admissibility

of the recovered fields, respectively.

3.2 Error estimators in FEM

3.2.1 Explicit residual error estimator

This type of error estimators were initially introduced by Babuška and Miller

[90] will be briefly described here. First we will introduce the main tools we

used with his technique. The following well-known mathematical inequalities
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will serve to obtain the error estimates in this method. Note that these will be

useful when we introduce the explicit error estimator for the recovered solution

in Chapter 6, following similar ideas.

• The Cauchy-Schwarz inequality:
∫

Ω

∣∣uTv
∣∣ dΩ ≤ ‖u‖L2(Ω) ‖v‖L2(Ω) ∀u,v ∈ L2(Ω) (3.1)

• The Poincaré inequality, where the constant is defined by Chua and

Wheeden [91]:

∣∣∣
∣∣∣v −Υhv

∣∣∣
∣∣∣
L2(Ω)

≤ diam(Ω)

π
|v|H1(Ω) ∀v ∈ H1(Ω) (3.2)

||v||L2(Ω) ≤
diam(Ω)

π
|v|H1(Ω) ∀v ∈ V (3.3)

where Υh is a projector that projects any vector in V to V h, the dis-

cretized space.

• The Korn inequality:

|v|H1(Ω) ≤ C ‖ε(v)‖L2(Ω) (3.4)

where C is a positive constant.

• The relation between the L2(Ω)-norm of the strain field ε(v) and the

energy norm [62]:

‖ε(v)‖L2(Ω) ≤
1√
2µ

|||v|||Ω ∀v ∈ V (3.5)

where µ = E
2(1+ν) is the Lamé constant with Young’s modulus E and

Poisson’s ratio ν.

Let us define the residual equation, that is, the error in energy norm between

both solutions, the exact one (living in V ) and the discretized one (living in

V h).

R(v) := a(e,v) = l(v)− a(uh,v) ∀v ∈ V (3.6)
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Solving (3.6) in V h ⊂ V would be one possibility to evaluate the error in the

FE solution. Discretizing (3.6):

R(vh) = l(vh)− a(uh,vh) ∀vh ∈ V h (3.7)

R(vh) = a(u,vh)− a(uh,vh) = a(e,vh) (3.8)

where a(e,vh) = 0 ∀vh ∈ V h, because of the Galerkin orthogonality, then

R(vh) = 0 and the solution to that problem is trivial. This means that we

need a richer space than V h for solving (3.6) and to obtain an error measure,

but the computational effort would be unaffordable since it would require to

solve a global problem in a richer space.

Let us investigate some alternatives. Consider the regularly discretized mesh

T , formed by bilinear or bicuadratic squared elements, ∪K = T , where K

indicates each element. Let N indicate the set of nodes of the mesh. As

indicated in [62], it is possible to define a quasi-interpolation operator Υh :

V → V h, such that for every v ∈ V we can obtain Υhv = vh ∈ V h. Then, we

can rewrite (3.7) as:

0 = l(Υhv)− a(uh,Υhv) ∀v ∈ V (3.9)

Now we introduce an example of the quasi-interpolation operator. Consider a

node i ∈ N . We define the “local” quantity related with node i as:

υi(v) :=
1

|Ω∗
i |

∫

|Ω∗
i |
v dΩ (3.10)

where Ω∗
i could be any area associated to the node i, for instance the patch of

elements connected to the node i. The quasi-interpolation operator is defined

as follows:

Υhv :=
N∑

i

Niυi(v) (3.11)
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Regarding to the residual equation (3.6), subtracting (3.9) and discretizing we

rewrite (3.6) as follows:

R(v) =
∑

K∈T

(∫

ΩK

bT (v −Υhv) dΩ +

∫

ΓN∩∂K
tT (v −Υhv) dΓ

)

−
∑

K∈T

∫

ΩK

σ(uh)Tε(v −Υhv) dΩ ∀v ∈ V (3.12)

and integrating the second summation by parts,

R(v) =
∑

K∈T

(∫

ΩK

bT (v −Υhv) dΩ +

∫

ΓN∩∂ΩK

tT (v −Υhv) dΓ

)

+
∑

K∈T

(∫

ΩK

(LTσ(uh))T (v −Υhv) dΩ−
∮

∂ΩK

(Gσ(uh))T (v −Υhv) dΓ

)

∀v ∈ V (3.13)

Regrouping terms, it is possible to write the following expression:

R(v) =
∑

K∈T

∫

ΩK

(b+ LTσ(uh))T (v −Υhv) dΩ+

∫

ΓN∩∂ΩK

(t−Gσ(uh))T (v −Υhv) dΓ−
∫

∂ΩK\ΓN

(Gσ(uh))T (v −Υhv) dΓ

∀v ∈ V (3.14)

Let us analyze these terms at element level. Let be El the element side and J

and K two adjacent elements. Let us define rhEl
as:

rhEl
:= −





1
2GEl

(σ(uh)K − σ(uh)J) if El = K̄ ∩ J̄

t−GEl
σ(uh) if El ⊂ ΓN

0 if El ⊂ ΓD

(3.15)

where GEl
is the stress field outward projector over each side El of element

K. Note that the outward projector of the element J of the common edge
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with K is just −GEl
. Then, (3.14) could be condensed as follows:

R(v) =
∑

K∈T

(∫

ΩK

(b+ LTσ(uh))T (v −Υhv) dΩ

−
L∑

l=1

∫

El⊂∂ΩK

(rhEl
)T (v −Υhv) dΓ

)
∀v ∈ V (3.16)

If we take these integrals at element level, we could bound them by using

the Cauchy-Schwarz inequality. Renaming −sh = b + LTσ(uh), the lack of

internal equilibrium and rhEl
the lack boundary equilibrium of the FE solution.

−
∫

ΩK

(sh)T (v −Υhv) dΩ ≤
∥∥∥sh
∥∥∥
L2(K)

∥∥∥v −Υhv
∥∥∥
L2(K)

−
∫

El⊂∂ΩK

(rhEl
)T (v −Υhv) dΓ ≤

∥∥∥rhEl

∥∥∥
L2(El)

∥∥∥v −Υhv
∥∥∥
L2(El)

(3.17)

The final step consists in bounding the unknown terms
∥∥v −Υhv

∥∥
L2(K)

and∥∥v −Υhv
∥∥
L2(El)

. From [62] the following inequalities could be proven:

∥∥∥v −Υhv
∥∥∥
L2(K)

≤ C1hK ‖ε(v)‖L2(K∗)

∥∥∥v −Υhv
∥∥∥
L2(El)

≤ C2h
1
2
K ‖ε(v)‖L2(K∗)

(3.18)

Using the inequalities in (3.18) and defining C ′ = max(C1, C2) we can rewrite

(3.16) as follows:

R(v) ≤
∑

K∈T
C ′hK

∥∥∥sh
∥∥∥
L2(K)

‖ε(v)‖L2(K∗)

+
∑

K∈T
C ′h

1
2
K

L∑

l

∥∥∥rhEl

∥∥∥
L2(El)

‖ε(v)‖L2(K∗)

(3.19)
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extracting C ′ as common factor and applying the Hölder inequality,
∑n

j=1 ajbj ≤{∑n
j=1 a

p
j

∑n
j=1 b

p
j

} 1
p 1:

R(v) ≤ C ′
{
∑

K∈T
‖ε(v)‖2L2(Ω∗)

} 1
2



{
∑

K∈T
h2K

∥∥∥sh
∥∥∥
2

L2(ΩK)

} 1
2

+

{
∑

K∈T
hK

L∑

l

∥∥∥rhEl

∥∥∥
2

L2(El)

} 1
2




(3.20)

applying again the Hölder inequality, in this case with n = 2:

R(v) ≤ C ‖ε(v)‖L2(Ω)

{
∑

K∈T

(
h2K

∥∥∥sh
∥∥∥
2

L2(ΩK)
+ hK

L∑

l

∥∥∥rhEl

∥∥∥
2

L2(El)

)} 1
2

(3.21)

where C =
√
2C ′. Finally considering (3.5) we obtain the explicit error esti-

mator:

R(v) ≤ C√
2µ

|||v|||Ω

{
∑

K∈T

(
h2K

∥∥∥sh
∥∥∥
2

L2(ΩK)
+ hK

L∑

l=1

∥∥∥rhEl

∥∥∥
2

L2(El)

)} 1
2

(3.22)

Now, substituting v by e we obtain an estimate for the discretization error in

energy norm, up to a constant C, depending only on the mesh type.

3.2.2 Implicit residual error estimator

The implicit residual error estimators are also based on the residual problem

(3.6). The difference from the previous method is that in this case we estimate

the weak form of the residual. In the previous case the error was estimated

by directly measuring the energy due to the lack of equilibrium of the FE

solution. The previous method depends on an unknown constant C whereas

1Note that the Hölder inequality when p = 2 coincides with the Cauchy-Schwartz in-

equality

E. Nadal 91



3. Error estimation and recovery procedures

the implicit residual error estimator is constant free. This error estimator is

based on solving the residual equation (3.23) into each element K ∈ T . Thus

the global error is obtained by summing up all element contributions.

R(v) := a(e,v) =
∑

K∈T
aK(e,v) ∀v ∈ V (3.23)

where aK(e,v) represents the bilinear form extended only over the area of

a single element K. In Figure 3.3 we represent the local problem over the

element K ∈ T where tL are the tractions that define the local problem.

These tractions should be in equilibrium with the other applied loads. There

are several ways to obtain the solution of these local problems at each element.

According to some authors [43], the most robust formulation to solve these

local problems is the one based on the equilibrated residual over the element.

K

tL

K

Figure 3.3: Local problem at element K ∈ T . The traction tL represent the equili-

brated traction obtained from a FE post-processing technique.

In order to give a better comprehension of these local problems we decompose

(3.23) into the following integrals:

aK(e,v) =−
∫

ΩK

(σh)TD−1σ(v) dΩ +

∫

ΩK

bTv dΩ

+

∫

∂ΩK\ΓN

tTLv dΓ +

∫

∂ΩK∪ΓN

(Gσ(u))Tv dΓ ∀v ∈ V
(3.24)
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However, the traction field tL over ∂K\ΓN are not know. In order to be

able to solve these local problems, we need to evaluate an auxiliary traction

field t̃L from the available data, that is the FE solution and the problem

loads. Furthermore, t̃L must be in equilibrium with the other loads of the

local problem (body forces, Neumann boundary conditions, etc.) to ensure

the solvability of the local problems. Different methods [81, 83, 92] have been

used to evaluate auxiliary traction fields leading to different implicit residual

type error estimators. Other approach, not requiring an equilibrated traction

field, was introduced by Bank and Weiser [93] and followed by Dı́ez et. al. [65].

This last approach evaluates a consistent traction field, that is a continuous

traction field (a nodal averaging could be used). Then, to ensure the solvability

of the local problems, they restrict the set of admissible functions, in the local

problem, eliminating the kernel of the l.h.s of equation (3.24) from the local

interpolation space. Following the most common approach, introducing the

auxiliary tractions t̃L, the local problem is reformulated as follows:

aK(φ,v) =−
∫

ΩK

(σh)TD−1σ(v) dΩ +

∫

ΩK

bTv dΩ

+

∫

∂ΩK\ΓN

t̃
T
Lv dΓ +

∫

∂ΩK∩ΓN

(Gσ(u))Tv dΓ ∀v ∈ V

(3.25)

where φ is the solution of the local problem (3.25) living in V b(Ω) so-called the

broken space, richer than V . Summing up all these local problem satisfies that

a(φ,v) = a(e,v) ∀v ∈ V because the global FE problem is self-equilibrated

for a given discretization. Considering the particular case when v = e we can

write:

0 ≤ a(φ− e,φ− e) = a(φ,φ)− 2a(φ, e) + a(e, e)

|||e|||Ω ≤ |||φ|||Ω
(3.26)

proving the upper bound property.

Unfortunately, the local problem (3.25), in general, can not be solved exactly.

So we need to use a numerical method to obtain a solution. If we are interested

in obtaining upper bounds, we should solve this problem with the stress-based
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FEM, however this is cumbersome and it is not used in practice. Some authors

[94, 95] use the standard displacement based FEM with a richer space, for

instance p+ 3 [95] where p is the interpolation degree of the FE solution uh.

Flux free implicit methods

The evaluation of the equilibrated traction of the local problems is cumbersome

and requires a high computational effort. Parés et. al. [96] introduced a new

variant of the local problems, using the partition of unity approach. In this

case the local problem is extended to a star or patch of elements surrounding

a node, as shown in Figure 3.4. The shape functions are partition of unity so

we can rewrite (3.23) as follows:

i

i

Figure 3.4: Local problem at element K ∈ T . The tractions tL represents the equili-

brated tractions obtained from a FE post-processing technique.

R(v) = R(
∑

i∈N
N1

i v) =
∑

i∈N
R(N1

i v) ∀v ∈ V (3.27)

where N1
i is the linear (or bilinear) shape function associated to the node i of

the mesh. As you can percieve the global residual R(v) could be evaluated

by summing up all local contributions evaluated at each patch i, R(N1
i v).

Because of the use of the partition of the unity, the traction along the bound-
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ary of the patch vanishes, then the evaluation of the traction filed along the

boundary of the local problem (3.28) is no longer needed.

ai(φ̄
i
,v) = R(N1

i (v −Υhv)) ∀v ∈ V (3.28)

Finally, the global error could be evaluated by adding all contributions from

the local problems.

3.2.3 Constitutive Relation Equation (CRE) based error esti-

mators

Error estimators based on the violation of the constitutive law were introduced

by Ladevèze et. al [81]. The authors use the so-called constitutive relation

error E 2
CRE = ā(σ̆ − σh, σ̆ − σh) that provides a guaranteed upper bound

of the exact error |||e|||Ω [82], where ā(·, ·) is the stress representation of the

standard FE bilinear form, σ̆ is a statically admissible stress field and σh is

a kinematically admissible field. Not that in this case we have followed the

most common approach that consist in using the FE stress solution as the

kinematically admissible stress field. In this case, the recovered stress field σ̆

is obtained making use, at each element, of the strong prolongation condition

which allows to obtain a set of equilibrated traction over the edges of each

element t̆L. Once these traction have been obtained, a local high order FE

problem has to be solved for each element to obtain the stress field σ̆ in the

bulk of the element. The error is evaluated using the following expression,

similar to the ZZ-type error estimator:

E
2
CRE =

∫

Ω
(σ̆ − σh)TD−1(σ̆ − σh) dΩ (3.29)

Note that this method is also similar to the standard implicit residual methods.

The main difference is that the implicit residual methods directly provide the

error at each element while in the CRE method provides a statically admissible

stress field at each element that will be used to evaluate the local error.
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3.2.4 Mixed formulation error estimators

The well-known Prager-Synge inequality states that, in terms of energy, the

difference between a kinematically stress field and a statically stress field is an

upper bound of the true error in energy of those solutions. The FE problem

provides a stress field that is kinematically admissible, so we only need to

obtain a statically admissible stress field to compute an upper bound of the

FE discretization error. However to obtain a statically admissible stress field

we should solve a stress-based FE problem, minimizing the complementary

energy. This would be as expensive as solving the displacement-based FE

problem.

Another option to obtain the statically admissible stress field could be obtained

by locally post processing the displacement-based FE solution, as in the CRE

method, or by using a mixed formulation for the global problem. This second

method, introduced by [97], is usually the most accurate [82] because mini-

mizes both the deformation energy and the complementary energy, however

requires a higher computational effort. In this case, the system solves both

formulations together, the displacement-based and stress-based formulations.

Some authors [86, 89, 88] maintain that despite the higher computational cost,

these mixed formulations, which directly provide kinematically and statically

admissible solutions, have important advantages in quality of the solution and

in the possibility to directly obtain very accurate error bounds in energy norm.

3.2.5 Recovery-based error estimators. The SPR technique

Recovery-based error estimators are based on the Zienkiewicz and Zhu (ZZ)

error estimator (2.28) [3], presented in Section 2.4. In this case, instead of

trying to achieve the upper error bound property (asymptotically effective)

the method only focuses on the quality of the estimate (asymptotically exact).

There are several recovery procedures in literature from which we can high-
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light the nodal averaging technique which is the simplest one. The recovered

stress field provided by this technique is obtained by a nodal representation

of the stress field. The value assigned at each node is obtained as an aver-

age of the stress value of the elements connected to the node. The FE shape

functions are used to interpolate the recovered stress field. This technique is

extremely simple and allows for fast calculations and provides acceptable re-

sults for linear elements. However, for quadratic elements, it does not provide

good error estimations since the effectivity index does not converge (θ��→1)

thus this procedure is asymptotically “useless”. The Super-convergent Patch

Recovery (SPR) technique introduced by Zienkiewicz and Zhu [7, 8] provides

a recovered stress field of a better quality providing asymptotically effective

error estimates for practical situations.

The SPR technique is widely used to obtain the improved stress field σ∗ used

in the ZZ error estimator (2.28). References [98, 99, 100] show that the SPR is

the most robust technique used for error estimation on problems with smooth

solutions approximated on patch-wise uniform grids, for linear or quadratic

elements. This technique, first defines a patch of elements P i, that is a set

of elements sharing a vertex node i ∈ N , this node is also called the patch

assembly node, see Figure 3.5.

A polynomial surface, as shown in Figure 3.6, per component (3.30) (of the

same degree as the FE interpolation) is fitted to the FE stress values at the

super-convergent points of the patch by using a least square approach:

σ̂∗
k(x) = p(x)ak k = xx, yy, xy (3.30)

where p(x) = {1, x, y} for the linear case, p(x) =
{
1, x, y, x2, xy, y2

}
for the

quadratic case, and ak are the corresponding coefficients for each stress com-

ponent. In this case, each component k of the stress field could be recovered

independently by minimizing the following functional:

ΦSPR =
NGP∑

gp

(p(xgp)ak −Dε(uh(xgp))|k)2 (3.31)
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3. Error estimation and recovery procedures

Figure 3.5: Representation of a patch of linear triangular elements. The black points

indicates the nodes of the mesh and the red node is the patch assembly node. The

transparent surfaces indicate the FE stress field σh. The super-convergent points are

indicated by blue crosses.

yielding a linear system of equations per component Mak = Hk, where NGP

indicates the number of integration (sample) points and:

M =
NGP∑

l

pT (xl)p(xl)

Hk =
NGP∑

l

pT (xl)Dε(uh(xl))|k.
(3.32)

The recovered stresses σ̂∗
i at each node are obtained particularizing these

surfaces at the assembly node. Finally, following the same process at each

assembly node of the mesh we end up with a nodal stress representation.

Note that this process is computationally efficient as it only requires to solve

small systems of equations to obtain the recovered field. The nodal values into

each element are interpolated using the FE shape functions Ni, according to

(3.33), see Figure 3.7.

σ∗(x, y)SPR =
∑

i

Ni(x)σ̂
∗
i (3.33)
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Figure 3.6: Representation of the least squares fitted polynomial surface. The pink

line represents the stress value at the assembly node, the only one that is retained in

the stantard SPR.

where Ni is the shape function associated to i ∈ N and σ̂∗
i is the corresponding

recovered nodal stress value.

3.2.6 A nearly equilibrated recovery procedure. The SPR-C

technique

Since the introduction of the plain SPR technique [8] we can find several con-

tributions aimed at improving the quality and the robustness of this technique.

In general they couple the stress component equations in order to be able to

add constraints that improve the quality of the recovered field. Wiberg and

Abdulwahab [101, 68] proposed to take into account the equilibrium of the

recovered field by using a penalty method, reporting considerably better re-

sults in comparison with the standard SPR. Blacker and Belytschko [69], how-

ever reported that by only using the enforcement of the internal equilibrium

equation and the natural condition does not always improve the convergence
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Figure 3.7: Representation of the final recovered stress field σ∗ over the problem

domain. The nodal recovered values are interpolated by the FE shape functions.

rate of the recovered field. However when they use the “Conjoint Polynomial

Enhancement”, introduced in that contribution, they always found the appro-

priate behavior of the recovered solution, also along the boundaries. Looking

for a technique to obtain upper error bounds, Aalto et. al. [102, 103, 104]

proposed the use of self-equilibrated polynomial basis to represent the re-

covered solution. Kvamsdal and Okstad [105] introduced a recovery process

including equilibration techniques and the Conjoint Polynomial enhancement.

They consider that the lack of internal equilibrium of their recovered field

was negligible. Although their technique is not SPR-based, Boroomand and

Zienkiewicz [106, 107] presented a technique, the so-called Recovery Equilib-

rium in patches (REP), that tries to obtain equilibrated recovered stress fields

by using the equilibrium information provided by the FE analysis.

More recently, Ródenas and coworkers introduced the so-called SPR-C tech-

nique [71], where the “C” stands for constraints. The SPR-C technique was

also applied in the XFEM context by Ródenas et al. [74] and finally adapted to

geometry-mesh independent FE formulations [108], such as the cgFEM. This

technique has some differences with respect to the previous improvements. As
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in the SPR technique, a patch P i is defined as the set of elements connected

to a vertex node i. On each patch, a polynomial expansion for each one of

the components of the recovered stress field is expressed according to (3.30).

In this case they need to simultaneously consider all the components of the

stress vector to be able to include the required constrain equations. Thus, in

the SPR-C, the recovered stress field for the 2D case, for each patch, reads:

σ̂∗
i (x) =





σ̂∗
xx(x)

σ̂∗
yy(x)

σ̂∗
xy(x)





= P(x)A =



p(x) 0 0

0 p(x) 0

0 0 p(x)








axx
ayy
axy





(3.34)

To obtain the stress field coefficientsA, the L2-norm of the following functional

is minimized:

Φ′(A) :=

∫

Pi

(P(x)A−Dε(uh(x)))2 dΩ (3.35)

Resulting in a linear system of equations to solve at each patch P i:

MA = H (3.36)

where after numerical integration M and H are:

M =
NGP∑

l

P(xl)
TP(xl)ωl |J(xl)|

H =
NGP∑

l

P(xl)
TDε(uh(xl))ωl |J(xl)|

(3.37)

where NGP is the number of integration points (not necessarily super-conver-

gent), ωl is the corresponding weight, xl is the integration point into the patch

and J(xl) the the Jacobian matrix of the coordinates transformation used for

numerical integration.

As a difference from standard smoothing techniques, the SPR-C technique

uses a continuous approach (3.37) to take into account the different densities of

sampling points in patches placed in the vicinity of the boundaries. The main

difference between the continuous approach and discrete approach (3.32) is

that in the continuous approach the values at sampling points are weighted by
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their corresponding area (ωl |J(xl)|), whereas in discrete approach all sampling

points have the same weight. The results have shown that the continuous

approach performs better than the discrete one in the cgFEM.

The SPR-C technique uses constrain equations to consider the known infor-

mation of the linear elasticity problem during the recovery process. Lagrange

multipliers are used to consider the satisfaction of the internal equilibrium

equation (int), boundary equilibrium equation (ext) and compatibility equa-

tion (cmp), when evaluating coefficients A. The constrain equations to be

considered are described below.

• Internal equilibrium equation: the constraint equation for the internal

equilibrium in the patch is defined as:

cint(xj) : L
T σ̂∗

i (xj) + LT (σ0(xj)−Dε0(xj)) + b̂(xj) = 0 ∀xj ∈ P i

(3.38)

b̂(x) is a polynomial least squares fitting of degree p − 1, being p the

degree of the recovered stress field σ̂∗, to the actual body forces b(x).

Note that this approximation will allow to have b̂(x) = b(x) in the

vast majority of practical cases. The approximation will be necessary

if b(x) is too complex to be represented by σ̂∗. cint(xj) is enforced in

a sufficient number of non-aligned points (niee) to guarantee the exact

representation of b̂(x).

• Boundary equilibrium equation: the constraint equation reads:

cext(xj) : Gσ̂∗
i (xj) +G(σ0(xj)−Dε0(xj)) = t(xj) ∀xj ∈ ΓN ∩ P i

(3.39)

cext(xj) is enforced in p + 1 = nbee points along ΓN ∩ P i. In the case

where more than one boundary is intersecting the patch, only one curve

is considered in order to avoid over-constraining issues.

• Compatibility equation: ccmp(xj) is only imposed in the case that p ≥ 2

in a sufficient number of non-aligned points nc. For example, for p = 2 we
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have nc = 1. σ̂∗ directly satisfies ccmp for p = 1. The 2D compatibility

equation expressed in terms of stresses, (see [109]) is:

ccmp(xj) :
∂2

∂y2
(kσ̂xx(xj)− νqσ̂yy(xj))+

∂2

∂x2
(kσ̂yy(xj)− νqσ̂xx(xj))−

2(1 + ν)
∂2σ̂xy(xj)

∂x∂y
= 0 ∀xj ∈ P i (3.40)

where k, q are functions of the Poisson’s coefficient ν

{
k = 1, q = 1 for plane stress

k = (1− ν)2, q = (1 + ν) for plane strain

Thus, the functional to be optimized considering the constraint equations for

a patch P i can be written as:

Φ(A,λ) :=Φ′(A)+

nbee∑

j

λint
j

(
cint(xj)

)
+

niee∑

j

λext
j

(
cext(xj)

)
+

nce∑

j

λcmp
j (ccmp(xj))

(3.41)

yielding a modified system of equations to solve at each path:
[
M CT

CT 0

]{
A

λ

}
=

{
H

Λ

}
(3.42)

where C represents the constraint equations, A are the coefficients of the

polynomial expansion andΛ is the r.h.s. of the constraint equations. To obtain

a continuous field, a partition of unity procedure (the conjoint polynomial

enhancement [69]) properly weighting the stress interpolation polynomials,

obtained from patches corresponding to each of the vertex nodes of the element

containing point x, is used. The field σ∗
SPR−C is interpolated using linear shape

functions Ni associated with the nv vertex nodes such that:

σ∗
SPR−C(x) =

nv∑

J=1

Ni(x)σ̂
∗
i (x)−Dε0(x) + σ0(x) (3.43)
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3.3 Nearly equilibrated displacement recovery pro-

cedure. The SPR-CD technique

In this work we propose to obtain a recovered displacement field form the FE

pair (uh,σh), instead of a recovered stress field as in the SPR-C technique. The

proposed method, denoted as SPR-CD (where C stands for constraints and

D for displacements), is more complete in the sense that it is able to provide

an improved recovered pair (u∗
u,σ

∗
σ)

2. To evaluate the displacement recovered

field, some authors such as Tabbara et. al. [110] propose the use of a Moving

Least Squares (MLS) technique. These authors reported a higher accuracy

than the standard SPR technique for the recovered fields. More recently Aalto

et. al [102, 103, 104] also proposed to recover the displacement field, adding

some equilibrium information to directly obtain a continuous recovered stress

field. Wiberg and Abdulwahab [111] proposed also to obtain a recovered pair

but with two different recovery procedures, one for stresses and another for

the displacements. However the references related with displacement recovery

procedures are not as common as those related with stress-based recovery

methods.

Regarding to the MLS approaches we will present in Appendix A an equi-

librated displacement recovery procedure based on the MLS approach, the

MLS-CD. “C” stands for the constrains to impose the equilibrium and “D”

because it is based on the recovery of the displacement field. We recommend

the use of the MLS-CD technique in meshless methods because it does not

need any mesh structure.

This Section shows the displacement-based recovery procedure SPR-CD, based

on the SPR-C scheme, specially adapted to the cgFEM frame-work and capa-

ble to deal with singular problems. This technique consists in a displacement

recovery procedure where at each patch, we will be able to impose the satisfac-

2Hereinafter subindex u will refer to kinematically admissible global fields and subindex

σ will refer to nearly-statically admissible global fields.
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tion of the Dirichlet boundary conditions, internal equilibrium equation and

boundary equilibrium equation. The SPR-C was used to obtain upper bounds

of the error in energy norm [73]. However some correction terms depending on

the exact error of the displacement field were needed. The SPR-CD technique

results more handy than the technique based on stresses, SPR-C [71], because

the recovered displacement field could be used to evaluate an approximation

to those correction terms.

As in the case of SPR-C, SPR-CD is based on subdividing the domain in small

regions or patches P i. In Figure 3.8 we show an example of a patch of elements

around a node i. This is the general case where the patch is subdivided in

two zones by an internal geometrical curve, that could represent the boundary

between two materials or a crack surface.

Figure 3.8: Example of an internal patch split by an internal curve. The black circle

indicates the position of the node shared between the elements of the patch. The red

points indicate the position where boundary equilibrium is imposed and the green

points indicate some random points where the internal equilibrium constraints are

imposed.

In the SPR-CD we fit, at each patch a polynomial surface per component to

recover a displacement field as in [71] for stresses. Next, we add extra informa-
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tion to improve the solution at each patch. This information is related to the

internal and boundary equilibrium and Dirichlet boundary conditions. Then a

local recovered displacement field û∗
i will be evaluated into each patch around

the node i. û∗
i will be evaluated using a scheme similar to that used for the

SPR technique [7] but in this case we use the FE displacements of the elements

within the patch instead of the corresponding FE stresses. The polynomial

surface û∗
i will be forced to satisfy the Dirichlet boundary conditions and the

stresses σ̂∗
i (û

∗
i ), will be forced to satisfy the internal equilibrium equation and

the boundary equilibrium equation. Note that as σ̂∗
i is directly evaluated from

û∗
i , the compatibility equation is satisfied and it does not need to be explicitly

considered as in the case of the SPR-C technique. The satisfaction of these

equations will be enforced using the Lagrange multipliers technique by a point

collocation technique in a sufficient number of points, according to the de-

gree of the recovered displacement field. Thus, we define the local recovered

displacement and stress fields as follows:

û∗
i (x) =

{
û∗x(x)
û∗y(x)

}
= P(x)A =

[
p(x) 0

0 p(x)

]{
ax
ay

}
(3.44)

σ̂∗
i (x) = DLû∗

i (x) (3.45)

where p(x) = {1, x, y} for the linear case, p(x) =
{
1, x, y, x2, xy, y2

}
for the

quadratic case and p(x) =
{
1, x, y, x2, xy, y2, x3, x2y, xy2, y3

}
for the cubic

case, and ak are the corresponding vectors of unknown coefficients. Note that,

in this case, the degree p of the recovered displacement in one degree higher

than the FE nodal interpolation. Under this definition, the functional to be

optimized at each patch P i reads as follows:

ΦD(A,λ) :=

∫

Pi

(P(x)A− uh(x))2 dΩ+

nbee∑

j

λnbee
j

(
cint(xj)

)
+

niee∑

j

λniee
j

(
cext(xj)

)
+

ndce∑

j

λndce
j

(
cdir(xj)

)
(3.46)

where cint(xj) is defined in (3.38) and cext(xj) in (3.39), considering that

σ̂∗
i (xj) is defined in (3.45), and cdir(xj) in (3.49). Finally, optimizing (3.46)
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we obtain the linear system of equations to solve at each patch:
[
M CT

CT 0

]{
A

λ

}
=

{
H

Λ

}
(3.47)

which yields the coefficients A for the recovered displacement field. The global

kinematically admissible displacement field is evaluated at each element using

the ”‘Conjoint Polynomial Enhancement” [69], using the displacement field û∗
i

evaluated from the patches corresponding to each of the nv vertex nodes of

the element and the linear shape functions Ni associated to these nodes:

u∗
u(x) =

nv∑

i=1

Ni(x)û
∗
i (x) (3.48)

Note that because of the use of (3.48) we will lose the internal equilibration

of the patch recovered stress field σ̂∗
i as it will be detailed in Section 3.3.3.

3.3.1 Constraints definition

As in the SPR-C, we enrich the recovered field with known information about

boundary conditions and equilibrium increasing the accuracy of the recovered

pair (u∗
u,σ

∗
σ). The constraints considered, at patch level, for the evaluation of

û∗
i are:

• Dirichlet constraints: constraints related with the Dirichlet boundary

conditions can be written as:

cdir(xj) : û
∗
i (xj)− u(xj) = 0 ∀xj ∈ ΓD ∩ P i (3.49)

We impose the satisfaction of the Dirichlet boundary conditions at ndce =

p+1 points (being p the degree of the recovered displacement field) along

the part of ΓD falling into the patch.

• Internal equilibrium equations: defined in (3.38)

• Boundary equilibrium equations: defined in (3.39)
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3.3.2 Patches cut by the boundary

In some situations a patch of elements is cut by an internal boundary. This

type of situations are common in multi-material problems or along cracks

modeled with the XFEM. In Figure 3.8 we have shown a patch intersected by

an internal boundary. In this case we define two recovered surfaces û∗
i |Pi

1
and

û∗
i |Pi

2
, one at each side of the boundary. Each one of these recovered surfaces

will satisfy the internal equilibrium equation by considering (3.38) in each of

them. Boundary equilibrium and displacement continuity is also imposed by

using an extended version of equations (3.49) and (3.39):

• Dirichlet constraints: usually, internal boundaries correspond to Neumann-

type boundaries where traction are imposed. However the recovery

process could provide discontinuous recovered displacement fields where

ujump represents the jump of the displacement field along the respective

boundary.

cdir(xj) : û
∗
i (xj)|Pi

1
− û∗

i (xj)|Pi
2
= ujump(xj) ∀xj ∈ ΓD ∩ P i (3.50)

where, to ensure the continuity of the displacement field ujump = 0, thus

introducing a weak discontinuity. In the case that ujump 6= 0 a strong

discontinuity will be introduced.

• Boundary equilibrium equations: in this case we allow a strong discon-

tinuity between the recovered stress fields at each side of the internal

boundary, provided by an internal traction along ΓN .

cext(xj) : G {DLû∗
i (xj) + σ0(xj)−Dε0(xj)} |Pi

1
−

G {DLû∗
i (xj) + σ0(xj)−Dε0(xj)} |Pi

2
= t(xj) ∀xj ∈ ΓN ∩ P i

(3.51)

This strong discontinuity between the recovered stress fields will be in-

teresting for Goal Oriented Adaptivity as it will be indicated in Chapter

4.
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3.3.3 Recovered stress evaluation

u∗
u(x) is a kinematically admissible recovered displacement field. To obtain a

consistent recovered stress field we should differentiate (3.48) according to the

following expression:

σ∗
u(x) = DL

nv∑

i=1

Ni(x)û
∗
i (x) + σ0(x)−Dε0(x)

σ∗
u(x) =

nv∑

i=1

D (LNi(x)) û
∗
i (x)

︸ ︷︷ ︸
discontinuous

+

nv∑

i=1

Ni(x)DLû∗
i (x)︸ ︷︷ ︸

σ̂
∗
i (x)︸ ︷︷ ︸

σ∗
σ(x) continuous

+σ0(x)−Dε0(x)

(3.52)

When we apply the differential operator L to the kinematically admissible

displacement field u∗
u we generate the kinematically admissible pair (u∗

u,σ
∗
u).

If we observe equation (3.52), the field σ∗
u is split into two parts, one continuous

and one discontinuous. The continuous part coincides with the partition of

unity of the patch-wise recovered stress field σ̂∗
i , directly derived from û∗

i (see

(3.45)). Note that σ̂∗
i will satisfy the equilibrium equations.

It can be said that the main part of the stress field description will be taken

into account in the continuous part σ∗
σ, since the discontinuous part will tend

to zero with the mesh refinement. Note that in the infinite dimensional space,

û∗
i will have the same value at each point when evaluated from the different

patches, the discontinuous part will be zero because of the partition of nullity

of the derivatives of the shape functions. Moreover, the statically admissible

stress fields have, in general, a better quality than the kinematically admis-

sible ones since the equilibrium conditions are strongly enforced, and in this

particular case we could have a high control of the statical admissibility prop-

erties of the continuous part. Because of these reasons and in order to retain

the continuity of the recovered stress field we will use as general output for
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the recovered stress field only the continuous part:

σ∗
σ(x) =

nv∑

i=1

Ni(x)DLu∗
i (x) =

nv∑

i=1

Ni(x)σ
∗
i (x) + σ0(x)−Dε0(x) (3.53)

Note that, because of the use partition of unity technique in (3.53), σ∗
σ will

not satisfy the internal equilibrium equation:

LTσ∗
σ(x) = LT

nv∑

i=1

Ni(x)σ
∗
i (x) + LT (σ0(x)−Dε0(x))

LTσ∗
σ(x) =

nv∑

i=1

LTNi(x)σ
∗
i (x)

︸ ︷︷ ︸
−s∗σ

+

nv∑

i=1

Ni(x) + LT (σ0(x)−Dε0(x))

LTσ∗
σ(x) = −s∗σ(x)− b(x)

(3.54)

This expression is a modified version of the internal equilibrium equation where

s∗σ represents the lack of internal equilibrium. Furthermore, there could also

exist a lack of boundary equilibrium of σ∗
σ over ΓN which can be evaluated

as r∗σ = Gσ∗
σ − tΓN

, where tΓN
are the exact tractions over the Neumann

boundaries.

Hence, the standard output of the cgFEM code will be the pair (u∗
u,σ

∗
σ) in-

stead of (uh,σh). Error estimator for the recovered solution and h-adaptive

processes based on the error of the recovered solution will be presented in

Chapter 6.

3.3.4 Singular fields

The SPR-CD recovery technique can also consider the singular behavior of

the solution due to a re-entrant corner, a crack, etc. We have to take into

account that the SPR-based techniques tend to increase the smoothness of the

solution. However this characteristic, being convenient for standard situations,

can decrease the accuracy in the surrounding of the singularity. Different
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techniques have been proposed to account for the singular behavior during

the recovery process [80, 76, 78]. Here, following the ideas in [80], for stresses

in singular problems, our solution (u,σ) will be split into 2 parts, one singular

(using,σsing) and one smooth (usmo,σsmo):

u = usmo + using

σ = σsmo + σsing

(3.55)

note that the displacement field u does not have singular behavior, however

we maintain the subscripts “smo” and “sing” for consistency. The recovered

fields (u∗,σ∗) can also be expressed as the contribution of two recovered fields,

one smooth and one singular:

u∗
u = u∗

smo + u∗
sing

σ∗
σ = σ∗

smo + σ∗
sing

(3.56)

For the recovery of the singular part we will use the expressions which describe

the asymptotic fields near the crack tip with respect to a coordinate system

(r, φ) at the tip (see Figure 3.9) as described in [112]:

using(r, φ) = KIr
λIΨI(λI, φ) +KIIr

λIIΨII(λII, φ) (3.57)

σsing(r, φ) = KIλIr
λI−1ΦI(λI, φ) +KIIλIIr

λII−1ΦII(λII, φ) (3.58)

where r is the radial distance to the corner, λm (with m = I, II) are the

eigenvalues that determine the order of the singularity, Ψm and Φm are sets

of trigonometric functions that depend on the angular position φ, and Km

are the so-called Generalized Stress Intensity Factors (GSIFs). The GSIF is

a multiplicative constant that depends on the loading of the problem and

linearly determines the intensity of the displacement and stress fields in the

vicinity of the singular point. Therefore, the eigenvalues λ and the Generalized

Stress Intensity Factor (GSIF) K define the singular field.

The Generalized Stress Intensity Factor K is the characterizing parameter

in fracture mechanics problems with singularities. In the particular case in

which 2α = 360◦ the problem will correspond to a crack as considered in the

context of Linear Elastic Fracture Mechanics where this parameter is called
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α

α

ϕ

Figure 3.9: Elastic solid with a V-notch

the Stress Intensity Factor (SIF). Let us consider the general singular problem

of a V-notch domain subjected to loads in the infinite as shown in Figure 3.9.

The analytical solution for this singular elasticity problem can be found in

[112, 113] where, in accordance with the polar reference system shown in

Figure 3.9, the displacement and stress fields at points sufficiently close to the

corner can be described according to (3.57). In practice, the eigenvalue λ is

easily known in advance because it depends solely on the corner angle α and

can be obtained as the smallest positive root of the following characteristic

equations:
sinλIα+ λI sinα = 0

sinλIIα− λII sinα = 0
(3.59)
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3.3. Nearly equilibrated displacement recovery procedure. The SPR-CD technique

The set of trigonometric functions for the displacement and stress fields under

model I are [112]:

ΨI(λI, φ) =

{
ΨI,x(λI, φ)

ΨI,y(λI, φ)

}

=
1

2µ

{
(κ−QI(λI + 1)) cosλIφ− λI cos(λI − 2)φ)

(κ+QI(λI + 1)) sinλIφ+ λI sin(λI − 2)φ

}
(3.60)

ΦI(λI, φ) =





ΦI,xx(λI, φ)

ΦI,yy(λI, φ)

ΦI,xy(λI, φ)





=





(2−QI(λI + 1)) cos(λI − 1)φ− (λI − 1) cos(λI − 3)φ

(2 +QI(λI + 1)) cos(λI − 1)φ+ (λI − 1) cos(λI − 3)φ

QI(λI + 1) sin(λI − 1)φ+ (λI − 1) sin(λI − 3)φ





(3.61)

where κ is the Kolosov’s constant, µ is the shear modulus and Q is a constant

for a given notch angle:

QI = −

(
λI − 1

λI + 1

)
· sin

(
(λI − 1)

α

2

)

sin
(
(λI + 1)

α

2

) (3.62)

(3.63)
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For mode II we have:

ΨII(λII, φ) =

{
ΨII,x(λII, φ)

ΨII,y(λII, φ)

}

=
1

2µ

{
(κ−QII(λII + 1)) sinλIIφ− λII sin(λII − 2)φ

−(κ+QII(λII + 1)) cosλIIφ− λII cos(λII − 2)φ

}
(3.64)

ΦII(λII, φ) =





ΦII,xx(λII, φ)

ΦII,yy(λII, φ)

ΦII,xy(λII, φ)





=





(2−QII(λII + 1)) sin(λII − 1)φ− (λII − 1) sin(λII − 3)φ

(2 +QII(λII + 1)) sin(λII − 1)φ+ (λII − 1) sin(λII − 3)φ

QII(λII + 1) cos(λII − 1)φ+ (λII − 1) cos(λII − 3)φ





(3.65)

QII = −
sin
(
(λII − 1)

α

2

)

sin
(
(λII + 1)

α

2

) (3.66)

To evaluate the GSIF it is a common practice to use the interaction integral

in its Equivalent Domain Integral (EDI) form. There are different expressions

already available to evaluate the EDI for singular problems. In this work, we

consider the expression shown in [113], expressed in indicial notation.

K = − 1

C

∫

Ω

(
σjku

aux
k − σaux

jk uk
) ∂q

∂xj
dΩ (3.67)

where uaux, σaux are the auxiliary fields associated with the extraction func-

tions for the GSIFs in mode I or mode II, q is a function used to define the

extraction zone and xj is referred to the local coordinates system at the crack

tip. This expression can be recast in vectorial notation as:

K = − 1

C

∫

Ω
σT





uauxx q,x
uauxy q,y

uauxy q,x + uauxx q,y





− uT

{
σaux
xx q,x + σaux

xy q,y
σaux
xy q,x + σaux

yy q,y

}
dΩ (3.68)

where q,x =
∂q

∂x
and q,y =

∂q

∂y
.
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3.3. Nearly equilibrated displacement recovery procedure. The SPR-CD technique

The function q must meet some requirements. It must be 1 at the singular

point and 0 on the outer boundary and also be at least as regular as the FE

solution. A suitable function q used in this work can be defined as:

q(s) =





1 if s ≤ rint

1− 6X2 + 8X3 − 3X4 if s ∈ [rint, rext]

0 if s > rext

(3.69)

where X =
s− rint

rext − rint
, rint and rext are the internal and external radius of

the extraction zone respectively and s(x, y) =
√
(x− xs)2 + (y − ys)2, being

(xs, ys) the coordinates of the singular point. This function q has been selected

in order to provide a plateau area around the singular point and then a smooth

transition between 1 to 0 between rint and rext.

In (3.68) the auxiliary fields for the problem in mode I are defined as:

uaux(r, φ) = r−λIΨI(−λI, φ) (3.70)

σaux(r, φ) = −λIr
−λI−1ΦI(−λI, φ) (3.71)

Analogously, the auxiliary fields for the problem in mode II are defined as:

uaux(r, φ) = r−λIIΨII(−λII, φ) (3.72)

σaux(r, φ) = −λIIr
−λII−1ΦII(−λII, φ) (3.73)

Finally C is a constant that can be evaluated for mode I using the expression

CI =

∫ α/2

−α/2
[λIΞI(λI, φ) ·ΨI(−λI, φ)− (−λI)ΞI(−λI, φ) ·ΨI(λI, φ)] dφ (3.74)

and for mode II, using the expression

CII =

∫ α/2

−α/2
[λIIΞII(λII, φ) ·ΨII(−λII, φ)− (−λII)ΞII(−λII, φ) ·ΨII(λII, φ)] dφ

(3.75)

where ΨI and ΨII are the displacement trigonometric functions given in (3.60)

and (3.64), and ΞI and ΞII are the trigonometric functions associated with the
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tractions vector related to ΦI and ΦII respectively, i.e.:

ΞI =

{
ΦI,xx(λ, φ) cosφ+ΦI,xy(λ, φ) sinφ

ΦI,xy(λ, φ) cosφ+ΦI,yy(λ, φ) sinφ

}
(3.76)

ΞII =

{
ΦII,xx(λ, φ) cosφ+ΦII,xy(λ, φ) sinφ

ΦII,xy(λ, φ) cosφ+ΦII,yy(λ, φ) sinφ

}
(3.77)

The singular field (u∗
sing,σ

∗
sing) will be evaluated as in (3.57) considering the

GSIF value evaluated with expression (3.68). uh
smo will be defined subtracting

the singular part u∗
sing to the FE solution uh:

uh
smo = uh − u∗

sing (3.78)

uh
smo will be used as the input for the SPR-CD recovery process that will yield

the pair (u∗
smo,σ

∗
smo). The final recovered solution will be evaluated using

(3.56). Note that LTσ∗
sing = 0, therefore no additional terms will be considered

in (3.38) when applying the SPR-CD technique to σh
smo = σh−σh

sing. However,

equation (3.39) and also (3.51) will be modified by subtraction to the r.h.s.

the singular part of the traction t∗sing = Gσ∗
sing. The same will occurs in the

constrains related with the Dirichlet boundaries, (3.49) and (3.50), where the

r.h.s will be modified by subtracting the singular part of the displacement field

u∗
sing.

This splitting procedure is not used in the whole domain of the problem but

only in an area close to the singular point in order to localize the process

allowing for a number of different singularities in the same problem. The area

affected by this process is defined by the user, and it should be related with

extension of the singular behavior of the stress field.

3.3.5 Efficiency of the recovery procedure

A maximum difference of one level is allowed in the h-adaptive process between

two adjacent elements. Because of this and the topological features of the
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Cartesian Grid, only a reduced number of possible patch configurations can

be obtained. Let us define as the internal patches those composed by internal

elements only. Figure 3.10 represents the 19 possible configurations of internal

patches for 2D.

Figure 3.10: Possible configurations of internal patches in 2D.

The polynomial coefficients A used to describe the recovered displacement

field according to (3.47) are obtained for a normalized coordinate system.

Then, the matrix in (3.47) will be exactly the same for all internal patches

having the same configuration. This implies that we will only need to invert

it a maximum of 19 times to obtain the recovered field in all the internal

patches. The first step of the recovery process for the internal patches consists

in codifying the configuration of each patch and classifying them according to

the configurations shown in Figure 3.10, then we invert the coefficient matrix

in (3.47) for each one of the different patch configurations. Once the r.h.s.

in (3.47) have been evaluated for each patch, the unknown coefficients are

directly evaluated. This procedure considerably reduces the computational

cost associated to the evaluation of internal patches. The computational cost

associated to the evaluation of internal patches is negligible with respect to the
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cost associated to the evaluation of patches that contain boundary elements as

each of these patches will have a different system configuration. In practice, the

computational cost of the recovery process is only depending on the number of

patches along the boundary. That implies a (d−1)-dimensional computational

cost.

3.4 Error estimation in energy norm. Error bound-

ing

3.4.1 Error estimation in energy norm

Recovery-type error estimators relay on the use of the Zienkiewicz and Zhu

(ZZ) error estimators presented in (2.28). The quality of the estimation is

highly related with the quality of the recovered field σ∗, so the accuracy of

the estimate will be strongly affected by the quality of the recovered field.

We will compare two different estimators, the first one with the stress field

provided by the SPR-C technique σ∗
SPR−C, and the second one with the stress

field provided by the SPR-CD technique σ∗
σ:

E
2
SPR−C :=

∫

Ω
(σ∗

SPR−C − σh)TD−1(σ∗
SPR−C − σh) dΩ (3.79)

E
2
SPR−CD :=

∫

Ω
(σ∗

σ − σh)TD−1(σ∗
σ − σh) dΩ (3.80)

Note that both fields, σ∗
SPR−C and σ∗

σ, are locally equilibrated, but SPR-C

is a stress-based smoothing technique, while SPR-CD is displacement-based.

We expect similar results, but the SPR-CD recovery process, having a similar

computational cost than the SPR-C, will provide us also a recovered displace-

ment field that will be useful in the following Sections.
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3.4.2 Error bounds in energy norm

Recovery based error estimators have a small computational cost and are easy

to adapt to existing FE commercial codes. Numerical experiences demonstrate

their robustness and accuracy [98, 99] in the vast majority of engineering prob-

lems. However these kinds of error estimators have an important drawback,

despite of their accuracy, so far they are unable to provide guaranteed error

bounds in energy norm.

If the recovered stress field used in the ZZ error estimator is a statically ad-

missible one, since the FE stress field σh is kinematically admissible, the ZZ

error estimator becomes equivalent to the Constitutive Relation Error (CRE)

[81], directly providing upper error bounds.

Both, the CRE and the ZZ error estimators are usually based on comparing the

finite element solution with an improved one, let us call it ˇ̌σ. The estimated

error is evaluated with the following expression:

E
2 = ā(ˇ̌σ − σh, ˇ̌σ − σh) (3.81)

Note that if we use ˇ̌σ = σ∗ we obtain the ZZ error estimator (2.28), but if

we consider ˇ̌σ = σ̆ with, as described in Section 3.2.3, σ̆ being a statically

admissible stress field, we obtain the CRE (3.29). Thus (3.81) yields different

estimators having different properties as previously explained.

If we expand (3.81), comparing both approximate solutions with the exact

one, we can write the following expression:

E
2 =ā(ˇ̌σ − σ, ˇ̌σ − σ) + a(u− uh,u− uh)+

2

∫

Ω
(ˇ̌σ − σ)T (ε(u)− ε(uh)) dΩ

(3.82)

Performing an integration by parts to the last term in (3.82), and assuming a

sufficient smoothness of the improved stress field ˇ̌σ at each element, we obtain
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the following expression:

∫

Ω
(ˇ̌σ − σ)T (ε(u)− ε(uh)) dΩ = −

∑

K∈T

∫

ΩK

(LT (ˇ̌σ − σ))T (u− uh) dΩ

+
∑

K∈T

∫

∂ΩK

(G(ˇ̌σ − σ))T (u− uh) dΓ

=
∑

K∈T

∫

∂ΩK∩ΓN

(Gˇ̌σ − t)T (u− uh) dΓ

+
∑

K∈T

∫

∂ΩK\ΓN

(Gˇ̌σ)T (u− uh) dΓ

−
∑

K∈T

∫

ΩK

(LT ˇ̌σ + b)T (u− uh) dΩ

(3.83)

Finally we could observe that if the stress field ˇ̌σ is equilibrated at each element

the last term in (3.82) is zero. This is because (3.83) represent the work of a

load-free problem if ˇ̌σ is equilibrated. Thus, from (3.82), if the improved field
ˇ̌σ is statically admissible, then:

|||e|||2Ω = a(u− uh,u− uh) = E
2 − ā(ˇ̌σ − σ, ˇ̌σ − σ) ≤ E

2 (3.84)

It can be observed that both, the CRE and the ZZ error estimator, become

similar when statically admissible recovered fields are used for the recovered

solution. Given this equivalence our purpose would be to use SPR-type recov-

ery techniques to generate statically admissible stress fields which will be used

in the CRE equation to provide upper bounds of the error in energy norm.

The upper error bound in energy norm is achieved if:

∑

K∈T

∫

∂ΩK∩ΓN

(Gˇ̌σ − t)T (u− uh) dΓ

+
∑

K∈T

∫

∂ΩK\ΓN

(Gˇ̌σ)T (u− uh) dΓ

−
∑

K∈T

∫

ΩK

(LT ˇ̌σ + b)T (u− uh) dΩ = 0.

(3.85)
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For the stress field coming from the SPR-CD recovered procedure, σ∗
σ, we

could assume that the second term in (3.85) is null since the recovered stress

field is continuous. However, the third term in (3.85) is, in general, not null due

to the use of the partition of unity to obtain σ∗
σ, as explained in Section 3.2.6.

This leads to a lack of internal equilibrium at each element s∗σ = LTσ∗
σ + b.

Moreover, for curved boundaries or non-polynomial natural constraints we

could not guarantee the strict fulfillment of the prescribed traction over the

Neumann boundaries ΓN , then r∗σ = Gσ∗
σ − t.

Similar conclusions were also obtained by other authors. Dı́ez et. al. [73]

and Ródenas et. al. [74] introduced an expression to directly obtain upper

bounds of the error in energy norm, based on the SPR-C technique, adding

some correction terms:

|||e|||2Ω ≤ E
2
SPR−CDUB

=

∫

Ω

(
σ∗
σ − σh

)T
D−1

(
σ∗
σ − σh

)
dΩ

− 2

∫

Ω
(s∗σ)

Te dΩ− 2

∫

Γ
(r∗σ)

Te dΓ

(3.86)

where e := u−uh is the exact error in displacements. In general this quantity

is not available, in [73] the authors obtained an estimation eesi ≈ ei for mesh i

of a sequence of increasingly refined meshes as follows: ei ≈ eesi = uh
N−uh

i ∀i ∈
1...N − 1, where uh

N corresponds to the solution obtained for the last mesh of

the sequence. The error eesN for the last mesh was obtained by extrapolating

form eesN−1 . This process requires the projection from the last mesh of the

sequence and it is not accurate enough for the last mesh. Now, with the

SPR-CD recovery technique we could approximate e as e ≈ eu := u∗
u − uh at

a lower cost. Using that definition we obtain a computable and not guaranteed

version of the upper bound in energy norm:

Ê
2
SPR−CDUB

=

∫

Ω

(
σ∗
σ − σh

)T
D−1

(
σ∗
σ − σh

)
dΩ

− 2

∫

Ω
(s∗σ)

Teu dΩ− 2

∫

Γ
(r∗σ)

Teu dΓ

(3.87)

So far, we have presented a first low cost numerical upper error bound in

energy norm. This is a first approach to obtain upper error bounds in energy

norm. More advanced approaches will be described in Chapter 5.
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The next step is to obtain a lower bound on the error in energy norm by using

the recovered fields at hand. Taking the ideas presented in [65] it is possible

to obtain a lower bound of this value from a statically admissible solution in

combination with a kinematically admissible solution.

Theorem 3.1. Being u the exact displacement solution of the linear elas-

ticity problem presented in Section 2.2, uh the corresponding approximation

obtained with a displacement-based FEM, u∗
u a kinematically admissible dis-

placement field, σ∗
σ a nearly-statically admissible stress field with s∗σ and r∗σ

the corresponding lacks in internal and boundary equilibrium, respectively. The

following expression

2λ

{
ā(σ∗

σ − σh, σ(eu))−
∫

Ω
(s∗σ)

Teu dΩ−
∫

Γ
(r∗σ)

Teu dΓ

}
− λ2 |||eu|||2Ω

(3.88)

is a lower error bound in energy norm for any λ ∈ R.

Proof. Considering the following expression in [73] and considering the resid-

uals of internal equilibrium s∗σ and boundary equilibrium r∗σ of the recovered

field, we can write:

ā(σ∗
σ, σ(v)) = l(v) +

∫

Ω
(s∗σ)

Tv dΩ +

∫

Γ
(r∗σ)

Tv dΓ ∀v ∈ V (3.89)

Subtracting ā(σh, σ(v)) from (3.89) we write

ā(σ∗
σ − σh,σ(v)) = l(v) +

∫

Ω
(s∗σ)

Tv dΩ +

∫

Γ
(r∗σ)

Tv dΓ− ā(σh, σ(v))

= R(v) +

∫

Ω
(s∗σ)

Tv dΩ +

∫

Γ
(r∗σ)

Tv dΓ ∀v ∈ V

(3.90)

and considering R(v) := ā(σ(e), σ(v)) = a(e,v)

ā(σ(e), σ(v)) = ā(σ∗
σ − σh,σ(v))−

∫

Ω
(s∗σ)

Tv dΩ−
∫

Γ
(r∗σ)

Tv dΓ ∀v ∈ V

(3.91)
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Considering that eu is continuous because both, the FE solution and the re-

covered solutions are continuous, and considering also that both fulfill the

Dirichlet boundary conditions, then eu remains into V , the standard solution

space. Then we can substitute by v = eu in the previous equation:

ā(σ(e), σ(eu)) = ā(σ∗
σ − σh, σ(eu))−

∫

Ω
(s∗σ)

Teu dΩ−
∫

Γ
(r∗σ)

Teu dΓ (3.92)

This allows us to evaluate a lower bound following the ideas presented in [65].

Expanding the following symmetric bilinear form 0 ≤ ā(σ(e)−λσ(eu),σ(e)−
λσ(eu)) for any λ ∈ R:

0 ≤ ā(σ(e),σ(e)) + λ2ā(σ(eu),σ(eu))− 2λā(σ(e),σ(eu)) (3.93)

Substituting the last term by expression (3.92) and rearranging terms we proof

the theorem:

2λ

{
ā(σ∗

σ − σh, σ(eu))−
∫

Ω
(s∗σ)

Teu dΩ−
∫

Γ
(r∗σ)

Teu dΓ

}
− λ2 |||eu|||2Ω

≤ |||e|||2Ω (3.94)

The previous expression is valid for any λ ∈ R. Differentiating with respect to

λ we obtain the expression for the optimum λ and thus, the optimum lower

bound.

E
2
SPR−CDLBOpt

=

{
a(eσ, eu)−

∫
Ω (s∗σ)

Teu dΩ−
∫
Γ(r

∗
σ)

Teu dΓ
}2

|||eu|||2Ω
≤ |||e|||2Ω

(3.95)

Since (3.94) is valid for any λ ∈ R another possibility is to consider λ = 1

obtaining a simpler expression that will be used afterwards:

E
2
SPR−CDLB1

= 2

{
ā(σ∗

σ − σh,σ(eu))−
∫

Ω
(s∗σ)

Teu dΩ−
∫

Γ
(r∗σ)

Teu dΓ

}

− |||eu|||2Ω ≤ |||e|||2Ω
(3.96)
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3.5 Numerical results

In this Section we present the results concerning error estimation in the energy

norm and bounding techniques presented before. We have chosen a set of

benchmark problems for testing the methods. The results are obtained by

performing the analysis with the cgFEM code and recovering the solution

with the SPR-CD technique. Results are presented for both, bi-linear (Q4)

and bi-quadratic (Q8) square elements.

The main objective of this Section is to check the behavior of both, the pro-

posed recovery procedure SPR-CD and also the behavior of the proposed error

estimators and error bounds in energy norm. Both quantities are closely re-

lated since the ZZ error estimator (2.28) is used. We will check the behavior of

both equations by checking the local and global results of the error estimation.

Remember that, as shown previously, for the right convergence of the FE

solution, we need, at least, the same degree for solution interpolation than

the degree used for the geometry interpolation. For the results presented in

this Section we have used a quadratic approximation to the triangular-shape

integration subdomains used in elements cut by the boundary as described in

Section 2.3.7.

In order to check the reliability of the combination of the cgFEM and the

recovery procedure we solve a set of problems with known analytical solution

and compared the cgFEM solution with the exact one. In these situations,

we compare them locally and at a global level. However, in the vast majority

of the situations the exact solution is not available. Then, we evaluate the

convergence of the error in energy norm E to measure the quality of the

recovery process and the error estimator.

To measure the quality of the solution when the exact solution is available,

we define the global effectivity index θ (3.97) and the corresponding local
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effectivity index D (3.98):

θ =
E

|||e|||Ω
(3.97)

D =





θK − 1 if θK > 1

1− 1

θK
if θK ≤ 1

(3.98)

where θK is the effectivity index evaluated only at each element K ∈ T . We

will also consider the mean value of the local effectivity index m(D) and its

standard deviation σ(|D|) as a quality measure.

Once the error in energy norm E has been estimated at each element, it will be

used to guide the h-adaptive refinement process. The refinement of the mesh

using the error estimate as the guiding parameter considers a stopping criterion

that checks the value of the global estimated error against the prescribed or

desired error. If the estimated error is higher than the desired error then the

mesh is refined. Several procedures to perform the refinement are available

in the literature. To define the size of the elements in the new mesh we

follow the adaptive process described in [114, 115, 81] which minimizes the

number of elements in the new mesh for a given accuracy level. This criterion

is equivalent to the traditional approach of equally distributing the error in

each element of the new mesh as shown in [116, 55]. This criterion provides

the size of the elements in the new mesh as a function of i) the ratio of the

estimated error in energy norm in the current mesh to the desired error in the

new mesh, and ii) the estimated error in energy norm in each element, which

always takes non negative values.

The refinement technique provides a distribution of the required new element

sizes. These sizes are specified in each element of the current mesh, which

will be recursively split into 4 new elements until the sizes of the elements are

smaller than the required size. A maximum difference of only one refinement

level will be allowed between adjacent elements. In these cases C0 continuity

will be enforced by means of the use of MPC [49, 50].
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3.5.1 Problems with exact solution

In this Section we will present a set of benchmark problems with known analyt-

ical solution in order to analyze the reliability of the cgFEM and the proposed

error estimation techniques. First we will present all the problems and then

we will analyze their results all together.

Problem definitions

Problem 1a: Square domain with a 3rd order solution The First

benchmark problem considers an infinite domain problem where we have ex-

tracted a 2× 2 square domain, centered at the origin of the reference system.

The exact displacement solution consists in a 3rd order polynomial, yield-

ing linear body loads over the domain. We have imposed the corresponding

Neumann boundary conditions. A model of the problem and the analytical

solution considering plane strain conditions are shown in Figure 3.11.

ux(x) = x+ x
2 − 2xy + x

3 − 3xy2 + x
2
y

uy(x, y) = −y − 2xy + y
2 − 3x2

y + y
3 − xy

2

σxx(x) =
E

1 + ν
(1 + 2x− 2y + 3x2 − 3y2 + 2xy)

σyy(x) =
−E

1 + ν
(1 + 2x− 2y + 3x2 − 3y2 + 2xy)

σxy(x) =
E

1 + ν
(−x− y +

x2

2
− y2

2
− 6xy)

bx(x) =
−E

1 + ν
(1 + y) by(x) =

−E

1 + ν
(1− x)

E = 1000 ν = 0.3

Figure 3.11: Problem 1a. Problem model and analytical solution.
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3.5. Numerical results

Problem 1b: Square domain with a 4rd order solution This problem

also considers the 2× 2 domain as the previous one but in this case the exact

displacement solution consists in a 4rd order polynomial, yielding quadratic

body loads over the domain. A model of the problem and the analytical

solution considering plane strain conditions are shown Figure 3.12.

ux(x, y) = x
4 + 5x3

y − 3x2
y
2 + x

3

uy(x, y) = y
4 − 6y2

x
2 + 3yx3 + 2y

A(x) = 4x3 + 15x2
y − 6xy2 + 3x2

B(x) = 4y3 − 12x2
y + 3x3 + 2

C =
E

(1 + ν)(1− 2ν)

D(x) = 5x3 + 3x2
y − 12xy2

σxx(x) = C((1− ν)A(x) + νB(x))

σyy(x) = C(νA(x) + (1− ν)B(x))

σxy(x) = C
1− 2ν

2
D(x)

bx(x, y) =
−3E

2(1 + ν)(2ν − 1)
9x2 − 12xy + 4y2 − 4x+ ν(4x2 + 20xy − 4y2 + 4x)

by(x, y) =
3E

2(1 + ν)(2ν − 1)
4y2 − 3x2 + 2xy + ν(8x2 − 12xy)

E = 1000 ν = 0.3

Figure 3.12: Problem 1b. Problem model and analytical solution.

Problem 2: Thick-wall cylinder subjected to internal pressure The

geometrical model for this problem is represented in Figure 3.13. Only 1/4

of the section is modeled together with the appropriate symmetry boundary

conditions. The internal and external surfaces are of radius a and b with a = 5,

b = 20. Young’s modulus is E = 1000, Poisson’s ratio is ν = 0.3 and the load

P = 1.
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The exact solution for the radial displacement assuming plane strain conditions

is given by:

ur(r) =
P (1 + ν)

E(c2 − 1)

(
r (1− 2ν) +

b2

r

)
(3.99)

where c = b/a, r =
√
x2 + y2 and φ = arctan(y/x). The stresses in cylindrical

coordinates are given by:

σr(r) =
P

c2 − 1

(
1− b2

r2

)
σφ(r) =

P

c2 − 1

(
1 +

b2

r2

)
σz = 2ν

P

c2 − 1
(3.100)

a

b

P
L1

L2L3

L4

y

x

Figure 3.13: Problem 2. Thick-wall cylinder subjected to internal pressure.

Problem 3: L-Shape plate Let us consider the singular problem of a finite

portion of an infinite domain with a reentrant corner. The model is loaded

on the boundary with the tractions corresponding to the first terms of the

asymptotic expansion that describes the exact solution under mixed mode

loading conditions around the singular vertex, see Figure 3.14. The exact

values of boundary tractions on the boundaries represented by discontinuous

thick lines have been imposed in the FE analyses.

The exact displacement and stress fields (3.57) for this singular elasticity prob-

lem can be found in [112]. Exact values of the GSIF [112] under mixed mode

have been taken as KI = 1 and KII = 1. The material parameters are Young’s

modulus E = 1000 and Poisson’s ratio ν = 0.3. The analytical solution of this
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x

y

2
2

1

1

Figure 3.14: Problem 3. L-shaped domain.

problem is singular at the reentrant corner of the plate. Therefore we will ap-

ply the singular+smooth decomposition for the stress recovery as explained in

Section 3.3. We will use a domain integral method based on extraction func-

tions to obtain an approximation of the recovered singular part as explained

in Section 3.3.

Convergence analysis

The convergence results and the corresponding convergence rate for both Q4

(blue line) and Q8 (red line) elements have been studied. This convergence

study has been carried out with h-uniform refinement is presented in Figure

3.15. Each of the problems is indicated with a small picture included into

the graph. On the left column we present the convergence results for all the

problems. The quantity plotted is the relative exact error in energy norm of

the FE solution R|||e|||Ω. We can observe that we have obtained a smooth

convergence in all situations.
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3. Error estimation and recovery procedures

On the right column of the Figure 3.15 we present the convergence rate of the

exact error in energy norm of the FE solution as a function of the number

of Degrees of Freedom (DoF). For problems with non-singular solution the

theoretical convergence rate is 1 for Q8 elements and 0.5 for Q4 elements. In

the graphics these convergence rates are indicated with black lines. We observe

that for all problems solution the convergence rate tends asymptotically to

the expected values. Note that for the L-Shape problem, the convergence rate

tends to a value slightly below 0.28, as expected. For these kind of problems

the convergence rate, under a h-uniform refinement process, is defined by

the minimum value between the interpolation degree and the intensity of the

singularity which is 0.2722 in this case.

h-adaptive refinement process

We have also performed a h-adaptive refinement process guided by the local

estimation in energy norm ESPR−CD. First we present the set of the first

4 meshes for each problem. Note that for Problem 2, we would expect the

refinement process to provide symmetric meshes with respect to line x = y

given the solution and geometry symmetry. However we observe a lack of

symmetry from the second mesh that tends to disappear. This is because

of the lack of symmetry during the imposition of the boundary equilibrium

equation (3.39), that as explained before, is only imposed in one curve when

the patch is cut by more than one curve.

Global effectivity index for the h-adaptive refinement process

The global effectivity index of the proposed error estimation technique pro-

vides very accurate results. Tables 3.1 and 3.2, for Q4 and Q8 elements respec-

tively, shows the global effectivity index θ for the four problems. We easily
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Figure 3.15: Convergence analysis for h-uniform refinement.
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(a) Problem 1a

(b) Problem 1b

(c) Problem 2

(d) Problem 3

Figure 3.16: Q4. First four meshes of the h-adaptive refinement process.
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(a) Problem 1a

(b) Problem 1b

(c) Problem 2

(d) Problem 3

Figure 3.17: Q8. First four meshes of the h-adaptive refinement process.
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observe that the values tend to 1 when increasing the mesh refinement by

using the h-adapted refinement process.

Figure 3.18 shows the behavior of the bounding techniques. Black lines rep-

resent the guaranteed upper error bound and the brown ones the guaranteed

lower error bound of the error in energy norm. We have to remark that

while the lower error bound ESPR−CDLBOpt
is fully evaluable, the upper bound

ESPR−CDUB
does need the evaluation of correction terms that depend on the

exact solution, then it is not available for the vast majority of problems. To

overcome this difficulty we propose the use of ÊSPR−CDUB
, the numerical ap-

proximation to the actual upper bound, given by (3.87). This is just an im-

provement of the standard error estimator. We observe that this last estimator

provides better results, in general, than the plain error estimator ESPR−CD.

We should observe that for Q4 elements, left column in Figure 3.18, the error

estimator ESPR−CD and the numerical version of the upper bound take effec-

tivity values below 1 in all cases, but with very accurate results, smoothly

converging to one when refining. Therefore these error estimators are asymp-

totically exact. The same occurs with the guaranteed upper ESPR−CDUB
and

lower bounds ESPR−CDLBOpt
.

For Q8 elements, right column in Figure 3.18, we observe that for the three

last problems, the plain error estimation ESPR−CD and the guaranteed upper

bound (black line) provide quite similar results. In the first Problem, we

observe that the natural trend for both, the error estimator and the numerical

approximation to the upper bound is to tend to the guaranteed upper bound.

In other words, we observe in this Figure that for Q8 elements the natural

tendency of the proposed error estimator is to provide upper error bounds

when we refine the mesh. Finally, the lower error bound provides a good

behavior for the vast majority of situations, specially for finer meshes.

Note that for Problem 1b, 4th order plate, the results of the guaranteed upper

bound, ESPR−CDUB
, shows small underestimations. This is because there is a
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3.5. Numerical results

lack of internal equilibrium that is not taken into account because the body

forces in this problem are represented by a quadratic polynomial and the

recovered stress field is only able to represent linear body forces, as explained

in Section 3.3.

Table 3.1: Q4h. Values for the global effectivity θ considering h-adapted meshes.

DoF θP1a
SPR−CD

162 0.9975828

396 0.9890647

1,316 0.9910361

4,544 0.9948067

16,902 0.9972978

66,706 0.9970884

DoF θP1b
SPR−CD

162 0.9808512

434 0.9957558

1,378 0.9878902

4,548 0.9915437

15,964 0.9946252

58,692 0.9953141

DoF θP2
SPR−CD

144 1.1809610

256 0.9990164

780 0.9915373

2,836 0.9907888

10,648 0.9926603

40,728 0.9954087

DoF θP3
SPR−CD

246 0.8828344

728 0.9520967

2,320 0.9721498

8,324 0.9832810

31,414 0.9907382

122,982 0.9938090

Table 3.2: Q8h. Values for the global effectivity θ considering h-adapted meshes.

DoF θP1a
SPR−CD

450 1.0036098

1,146 0.9747222

3,994 0.9857416

14,842 0.9937332

57,274 1.0000077

227,386 1.0025933

– –

DoF θP1b
SPR−CD

450 1.0427583

918 1.0982516

2,028 1.0262182

3,222 1.0152258

4,844 1.0156769

11,160 1.0060170

15,898 1.0070371

DoF θP2
SPR−CD

396 1.8271363

528 1.7001104

684 1.2059119

1,326 1.1264376

2,122 1.1241507

4,434 1.0357824

6,970 1.0232700

DoF θP3
SPR−CD

654 1.2126743

1,238 1.2445716

2,046 1.2391891

4,644 1.1351134

7,582 1.0998022

12,494 1.0683767

26,816 1.0751757

We also observe in Figure 3.18 that for the Problem 3 and Q8 elements the

error estimation deteriorates in the last mesh of the sequence, this being rep-

resented by effectivity values moving away from the ideal value θ = 1. This

is produced because of the pollution error introduced due to the insufficient

refinement near the singular point. The cgFEM code has a limit for the small-

est size of the element as explained in Section 2.3. When this limit is reached

during the refinement process (as in this case when trying to get increasingly

refined meshes as we move towards the singularity) uniform meshes are pro-

duced, thus introducing pollution error.
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Figure 3.18: Effectivity of the error estimators for h-adaptative refinement.
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Local effectivity index for the h-adaptive refinement process

In the previous Subsection we have presented the results in a global sense.

However, the h-adaptive refinement process relays on the local error estima-

tion. Therefore it is also important to assess the behavior of the estimator at

the local level. To evaluate the accuracy of our local error estimations we have

defined the local effectivity index D (3.98) taking positive values for overesti-

mations and negative values for underestimations of the exact error in energy

norm at element level. The mean value m(D) and the standard deviation

σ(D) should tend to zero with mesh refinement and be as close to zero as

possible. The evolution of these parameters is presented in Figure 3.19. In

that Figure, we have compared the values obtained with the proposed recovery

process SPR-CD (blue lines for Q4 and black lines for Q8) and the previous

version based on stress smoothing SPR-C (red lines for Q4 and brown lines

for Q8).

In this case we observe that behavior for both, Q4 and Q8 elements, tends

to zero, for the SPR-CD technique, as expected. We also observe that the

results for the proposed technique are, in general, of the same quality as for

the SPR-C technique, or in some situations, even better. For instance, in

Problem 1a, for Q8 elements the mean value of D for the SPR-C seems not to

converge, with the SPR-CD technique we obtain a sharp convergence trend.

The SPR-C technique have already been compared with the SPR technique

in several works [71, 74] reporting a local improvement.

In Figure 3.20 and Figure 3.21 we present the local effectivity maps for Q4

and Q8 elements, respectively. We observe that when the refinement increases

the extreme values tend to get closer to zero, thus the local error indicator

becomes more accurate, providing better h-adapted meshes.
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Figure 3.19: Local effectivity indicators for h-adaptative refinement.
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Figure 3.20: Q4. SPR-CD. Local effectivity indicator D for the h-adaptive refinement

process.
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Figure 3.21: Q8. SPR-CD. Local effectivity indicator D for the h-adaptive refinement

process.
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3.5.2 Problems without analytical solution

In this Section our purpose is to show the performance of the h-adaptive

refinement process in more complex geometries. Naturally, in these kind of

problems there is no available exact solution, then we will check the behavior

of the method by measuring the convergence rate of the estimated error in

energy norm of the FE solution [76, 77].

Problem definitions

Problem 4: Gravity dam This problem represents a cross section of a

gravity dam. In this case, the dam is under hydrostatic pressure on the left

side. The displacement normal to the three inferior boundaries is constrained,

as represented in Figure 3.22. The material of the dam is concrete with density

ρconcrete = 2300Kg
m3 . The density of the water is considered as ρwater = 1000Kg

m3 .

The Young modulus of the concrete is taken as 27.5 · 109Pa and the Poisson

ratio ν = 0.3. Volume load due to gravity g = 9.81m
s2

is also considered. We

assume plane strain behavior.

32 5m

Figure 3.22: Problem 4. Gravity dam: Model of the problem, loads and constrains.
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Problem 5: Flywheel This problem, with a more complex geometry, rep-

resents a flywheel under tangential tractions along the external surface and

constrained displacements in the internal surface as shown in Figure 3.23. The

material is aluminum with elastic modulus E = 70 · 109Pa and Poisson ratio

µ = 0.33. Plane stress conditions are considered.

Figure 3.23: Problem 5. Flywheel: Model of the problem, loads and constrains

h-adapted meshes

Figures 3.24 and 3.25 shows the set of h-adapted meshes for both, Q4 and

Q8 elements. We observe how, in the first mesh, the geometrical refinement

process provides an initial mesh considering the geometrical details without

any user intervention. Second, third and fourth meshes are guided by the

standard h-adaptive refinement process, which is fed by the error estimation

in energy norm, utilizing the recovered stress field σ∗
σ.
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(a) Problem 4

(b) Problem 5

Figure 3.24: Q4. Problems without exact solution. First four meshes of the h-adaptive

refinement process.

(a) Problem 4

(b) Problem 5

Figure 3.25: Q8. Problems without exact solution. First four meshes of the h-adaptive

refinement process.
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Convergence analysis for h-adapted mesh refinement

In Figure 3.26 we present the convergence analysis of these two problems

without analytical solution. As the analytical solution is unknown, the only

parameters in which we can rely on are the convergence rate and the smooth-

ness of the convergence process. In both cases, for Q4 elements (blue line) we

observe that around 10 thousand degrees of freedom the asymptotic behavior

is achieved. We also observe that the estimated convergence rate tends to the

right one, that is 0.5 for Q4 elements.

However, for Q8 elements, red lines, the asymptotic behavior seems not to be

achieved that fast. But attending to the convergence rate, we observe that

it tend to 1. That indicates the good behavior for both, the displacement

recovered field and the ZZ error estimator for more challenging geometries.

3.6 Conclusions

In this Chapter we have presented a brief summary of different error estimation

and bounding techniques. Additionally we have described in detail two meth-

ods based on the well-known SPR technique, the SPR-C introduced in [71]

and the SPR-CD, briefly introduced in [117] and developed in this Chapter.

The numerical results have compared both techniques in order to validate the

newer one, the SPR-CD technique, with satisfactory results. The SPR-CD,

introduced in this Chapter, provides the recovered solution (u∗
u,σ

∗
σ) which is,

in general, more accurate than the FE solution pair (uh,σh). Therefore we

propose to substitute (uh,σh) by (u∗
u,σ

∗
σ) as the standard output of the FE

code. An error estimator for this pair will be presented in Section 6.

Both techniques, ESPR−C and ESPR−CD, provides very accurate results when

they are used as error estimator. Additionally the ESPR−CD, can also be used
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Figure 3.26: Convergence analysis for h-adaptive refinement.
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to evaluate an accurate the lower error bound, increasing its versatility in

comparison with traditional stress-based recovery procedures. However, the

numerical approach for the upper bound of the error in energy norm proposed

in this Chapter does not always provides upper bounds and further research

will be needed. In Chapter 5 we will investigate other techniques that provide

guaranteed upper error bounds.
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Chapter 4

Goal Oriented Adaptivity

4.1 Introduction and motivation

Traditionally error estimators are based on the evaluation, in one or another

way, of an approximation to the true error in energy norm of a problem. How-

ever, this quantity is generally useless for practitioners. In practice, engineers

and final users run simulations in order to evaluate stresses, displacements,

etc... in an area of the domain, but they do not generally care about the en-

ergy norm involved in the problem. In the late 90s, a new paradigm appeared

[64, 118, 85]. In this case, instead of evaluating the error of the solution in

terms of energy norm, the error in a Quantity of Interest (QoI) into a Domain

of Interest (DoI) was evaluated. That is, some relevant quantity for the final

user is selected as the main output. Then, instead of using the error in energy

norm to evaluate the accuracy of the FE solution, we directly control the error

in the QoI into the DoI which actually is more useful for practitioners. The

error estimation of a QoI requires the evaluation of two problems simultane-

ously. The first one, so-called primal problem, is the one we are interested in.

The second problem, so-called dual or adjoint problem, is used to extract the
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information for the error in the QoI. Both problems are geometrically identical,

but subjected to different loading conditions. The loads of the dual problem

depend only on the DoI and the QoI and have no relation with the loads of

the primal problem. The construction of the dual problem will be explained

later in more detail. Subsequently, Oden and Prudhomme [119] introduced

the basis for the error bounding in QoI. This bounding technique is based on

the evaluation of upper and lower bounds of the error in energy norm for a

combination of the primal and the dual problems. These bounds are usually

obtained by using residual based error estimators that directly provides upper

and lower error bounds in energy norm as shown in Chapter 3.

The main difference between the approach proposed in this thesis to obtain

highly accurate error estimations and bounds in QoI and previous ones is that

the proposed technique is based on the use of recovered fields both, for the

primal and the dual problems. The proposed technique starts with the eval-

uation of recovered displacement fields considering the fulfillment of bound-

ary and internal equilibrium equations, Dirichlet constraints and, for singular

problems, the splitting of the displacement and stress fields into singular and

smooth parts, as described in Section 3.3. Similar stress based recovery tech-

niques were previously used to obtain upper bounds of the error in energy

norm [73, 74]. However, enforcing continuity over the locally equilibrated

stress fields evaluated on patches introduced a lack of equilibrium which had

to be taken into account by using correction terms. The evaluation of these

correction terms requires approximations of the exact error in the displace-

ments that were obtained using projection techniques, which led to a higher

computational effort. To overcome this difficulty, we use a recovery procedure

based on the displacement field, introduced in Chapter 3, to directly obtain

an estimation of the error in the displacements, thus easing the evaluation of

the correction terms.

First, the recovered displacements are used to obtain nearly statically admissi-

ble recovered fields for the primal and the dual problems. Then, we evaluate a

compatible stress field using the recovered continuous displacement field that

fulfills the essential boundary conditions. With these two recovered stress

148 E. Nadal



4.2. Auxiliary problem statement. The dual problem

fields we can evaluate lower error bounds (adapting the procedure presented

in [65]), computed versions of the upper error bounds, and very accurate error

estimates for different QoI.

One particular feature of the proposed approach is that the error bounds for

the QoI are given in terms of the errors in energy norm for the primal and

dual solutions, following the ideas presented by Oden and Prudhomme [119].

After obtaining the solutions for the primal and dual problems we evaluate

recovered fields for both problems using our equilibrated recovery technique.

For the dual problem, we must define analytical expressions that describe the

loads and required by the equilibrating recovery process. Once the recovered

fields are obtained we evaluate correction terms and the error estimates in

energy norm for the dual and primal solutions. In this work we propose the

use of a technique to approximate lower and upper bounds for the QoI at

hand, based on the methodology presented in [119].

In order to investigate the quality of the proposed technique numerical tests

are performed using 2D benchmark problems with exact solution. The results

for different quantities of interest show that the technique provides numerical

error bounds and sharp error estimates that can be used in goal oriented

adaptive (GOA) procedures.

4.2 Auxiliary problem statement. The dual prob-

lem

In this Chapter, for the sake of simplicity, we assume that the Dirichlet bound-

ary conditions are homogeneous. We will consider a quantity of interest

Q : V → R, defined as a linear functional of the displacement field1. The

1The explanations are restricted to linear quantities of interest. In the developments,

affine quantities of the displacement will also be considered, but we will show that these

particular cases can be recast into the linear case.
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aim is to estimate the error in functional Q, which is expressed by

Q(u)−Q(uh) = Q(u− uh) = Q(e) (4.1)

Standard procedures to evaluate Q(e) introduce the dual problem (this ter-

minology comes from the optimal control community) or auxiliary problem.

Find ũ ∈ V such that ∀v ∈ V ,
∫

Ω
ε(v)TDε(ũ) dΩ = Q(v). (4.2)

Problem (4.2) can be seen as the variational form of an auxiliary mechanical

problem. Dual field ũ ∈ V is a displacement that vanishes over ΓD. Test

function v is a virtual displacement. Field σ̃ = D(ε(ũ)− ε̃0) + σ̃0, where σ̃0

and ε̃0 are the initial stress and strain fields, can be interpreted as a mechanical

stress field. The left-hand side of (4.2) is the work of the internal forces of the

auxiliary mechanical problem. As detailed later on, Q(v) is the work of an

abstract external load for the auxiliary mechanical problem.

The dual problem is solved using the cgFEM software. Here, we will make

use of the same finite dimensional space used to solve the initial problem (or

“primal” problem). Therefore, we will look for an approximation of ũ ∈ V

using the Galerkin approach:

Find ũh ∈ V h such that ∀v ∈ V h,

∫

Ω
ε(v)TDε(ũh) dΩ = Q(v). (4.3)

By substituting v = u− uh = e in (4.2) we obtain:

Q(e) =

∫

Ω
ε(e)TDε(ũ) dΩ (4.4)

considering the Galerkin orthogonality of the primal problem a(e, ũh) = 0 we

can rewrite expression (4.2) as follows (see [64] for more details):

Q(e) =

∫

Ω
ε(e)TDε(ũ− ũh) dΩ =

∫

Ω
ε(e)TDε(ẽ) dΩ (4.5)
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where ẽ = ũ − ũh is the discretization error of the dual problem (4.2). Ex-

pression (4.5) can now be written in terms of mechanical stresses:

Q(e) =

∫

Ω
(σ − σh)TD−1(σ̃ − σ̃h) dΩ (4.6)

where σ̃h = D(ε(ũh) − ε̃0) + σ̃0 is the finite element stress field for the dual

problem. An error estimation for the QoI is obtained following the Zienkiewicz

and Zhu ideas [3]:

ẼSPR−CD =

∫

Ω
(σ∗

σ − σh)TD−1(σ̃∗
σ − σ̃h) dΩ (4.7)

where σ∗
σ and σ̃∗

σ represent the recovered stress field for both, the primal and

dual problem and will be evaluated using the SPR-CD technique.

4.3 Analytical definitions of the dual problem for

equilibrium enforcement

The SPR-CD procedure relies on the enforcement of equilibrium for the re-

covered stress fields evaluated at each patch. To apply this technique with

the dual problem, the corresponding mechanical equilibrium must be made

explicit. In order to do so, the right-hand side of (4.2) is interpreted as the

work of the mechanical external forces. The analytical expression of these

forces will be derived for some the quantities of interest:

Equation (4.2) can be reformulated as:

Find ũ ∈ V : ∀v ∈ V :
∫

Ω
ε(v)TDε(ũ)dΩ = Q(v)

=

∫

Ω
vT b̃ dΩ +

∫

ΓN

vT t̃ dΓ +

∫

Ω
ε(v)TDε̃0 dΩ−

∫

Ω
ε(v)T σ̃0 dΩ

(4.8)

E. Nadal 151



4. Goal Oriented Adaptivity

The problem in (4.8) is solved using a FE approximation with test and trial

functions in V h. The finite element solution is denoted by ũh ∈ V h.

Such derivations have been presented in [120, 121, 122]. Here, we will recall

some of the results presented in these papers. Additionally, we will provide

the analytical expression of the dual load when the quantity of interest is the

GSIF in problems with singularities.

4.3.1 Mean displacement in ΩI

Let us assume that the objective is to evaluate the average of the displacement

in a sub-domain of interest ΩI ⊂ Ω. In this case, the quantity of interest is:

Q(u) =
1

|ΩI |

∫

ΩI

uT cu dΩ (4.9)

where |ΩI | is the measure of ΩI and cu is a vector used to select the combina-

tion of the components of the displacement field that give us the displacement

along the defined direction. For example, cu = {1, 0}T to extract the first

component of u.

The definition of this QoI (4.9) can be easily identified in (4.8) with v = u

with the term corresponding to the body forces. Then, the right-hand side of

expression (4.8) that defines the dual problem is:

Q(v) =

∫

ΩI

vT

(
cu
|ΩI |

)
dΩ (4.10)

In this case, the dual problem is equivalent to a problem loaded with the body

force b̃ defined by b̃ = cu/|ΩI |.
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4.3.2 Mean displacement along ΓI

The quantity of interest is now the mean value of the displacement field along

a subset ΓI of the Neumann boundary ΓN :

Q(u) =
1

|ΓI |

∫

ΓI

uT cu dΓ (4.11)

where |ΓI | is the length of ΓI and cu an extractor acting on u.

The QoI defined in (4.11) can also be easily identified with the traction term

in (4.8). Then the right hand side of the dual problem is defined by:

Q(v) =

∫

ΓI

vT

(
cu
|ΓI |

)
dΓ (4.12)

Note that the quantity t̃ = cu/|ΓI | can be interpreted as a traction vector

applied along the boundary in the problem defined in (4.8). Thus, t̃ is a

vector of traction applied on ΓI and that can be used in the dual problem to

extract the mean displacements along ΓI .

4.3.3 Mean strain in ΩI

In this case we are interested in some combination of the components of the

strain over a subdomain ΩI such that the QoI is given by:

Q(u) =
1

|ΩI |

∫

ΩI

ε(u)T cε dΩ (4.13)

where cε is the extraction operator used to define the combination of strains

under consideration.

Comparing the expression that defines the QoI (4.13) with the expression

(4.8) we identify it with the term corresponding to initial stresses. Then we
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can rewrite the right hand side of the dual problem as:

Q(v) =

∫

ΩI

ε(v)T
cε
|ΩI |

dΩ (4.14)

where the term σ̃0 = cε/|ΩI | represents the vector of initial stresses that is

used to define the auxiliary problem for this particular QoI.

4.3.4 Mean stress value in ΩI

Let us consider now Q(u) as the mean stress value given by a combination cσ
of the stress components σ in a domain of interest:

Q(u) =
1

|ΩI |

∫

ΩI

cTσ (D(ε(u)− ε0) + σ0) dΩ (4.15)

Q is an affine functional. Let us define

Q̃(v) =
1

|ΩI |

∫

Ω
cTσDε(v) dΩ (4.16)

for v an arbitrary vector of H1(Ω). Q̃ is such that Q̃(e) = Q(e), so that by

solving the dual problem
∫

Ω
ε(v)TDε(ũ) dΩ = Q̃(v) (4.17)

the derivations of Section 4.2 applies.

As in the previous cases, the right-hand side of the auxiliary problem is defined

by the term ε̃0 = cTσ /|ΩI |, which represents in this case a vector of initial

strains.

4.3.5 Mean tractions along ΓI included in ΓD

Let us assume that we want to evaluate the mean value of a combination of

the tractions TR on a part ΓI of the Dirichlet boundary ΓD.

154 E. Nadal



4.3. Analytical definitions of the dual problem for equilibrium enforcement

The application of the principle of virtual work with test functions v ∈ H1

that do not necessarily vanish over ΓD gives:
∫

ΓD

vTTR dΓ =

∫

Ω
ε(u)TDε(v) dΩ−

∫

ΓN

vT t dΓ

−
∫

Ω
vTb dΩ +

∫

Ω
ε(v)Tσ0 dΩ−

∫

Ω
ε(v)TDε0 dΩ (4.18)

Extracting the quantity 1
|ΓI |
∫
cTRTR dΓ, where cR is an extractor defined over

ΓI , is done by defining the prolongation δ ∈ H1(Ω) of extractor cR such that

δ|ΓI
= cR/|ΓI |. For instance, δ can be the finite element field that is null at

every place that does not belong to ΓI . Taking v = δ for v in (4.18) yields

Q(u) =

∫

Ω
ε(u)TDε(δ) dΩ−

∫

ΓN

δT t dΓ

−
∫

Ω
δTb dΩ +

∫

Ω
ε(δ)Tσ0 dΩ−

∫

Ω
ε(δ)TDε0 dΩ (4.19)

Q is an affine functional. We define

Q̃(v) =

∫

Ω
ε(v)TDε(δ) dΩ (4.20)

Q̃ is such that Q̃(e) = Q(e), so that by solving the dual problem
∫

Ω
ε(v)TDε(ũ) dΩ = Q̃(v) (4.21)

the derivations of Section 4.2 applies. The dual load is an initial strain ε(δ).

Alternatively, by recalling the variational form in (4.8) we see that the dual

problem is a mechanical problem in ū = ũ − δ, where ū|ΓI
= −δ|ΓI

=

−cR/|ΓI |, hence, we can use a boundary value problem with Dirichlet bound-

ary conditions ũ = −cR/|ΓI | on ΓI for this QoI.

4.3.6 Generalized stress intensity factor

Consider the problem of evaluating the generalized stress intensity factor

(GSIF) (3.67), that characterizes the singular solution in problems with reen-
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trant corners and cracks, as the quantity of interest, thus Q(u) = K. Function

q is used to define the extraction zone ΩI .

Rearranging the terms of the integral in (3.68) in order to split it in two

integrals, we can obtain:

K =

∫

Ω
uT

(
1

C

){
σaux
xx q,x + σaux

xy q,y
σaux
xy q,x + σaux

yy q,y

}
dΩ

−
∫

Ω
σT

(
− 1

C

)




uauxx q,x
uauxy q,y

uauxy q,x + uauxx q,y





dΩ (4.22)

Rewriting the previous expression, we obtain

K =

∫

Ω
uT b̃ dΩ +

∫

Ω
σT ε̃0 dΩ (4.23)

where b̃ and the ε̃0 are equivalent to body forces and initial strains, respec-

tively.

Comparing (4.23) with the weak form of the dual problem (4.8) we can easily

cast the right hand side of the dual problem as:

Q(v) =

∫

Ω
vT b̃ dΩ +

∫

Ω
ε(v)TDε̃0 dΩ (4.24)

Hence, the body loads in the dual problem are:

b̃ =

(
1

C

){
σaux
xx q,x + σaux

xy q,y
σaux
xy q,x + σaux

yy q,y

}
(4.25)

and the initial strains in the dual problem are:

ε̃0 =

(
− 1

C

)




uauxx q,x
uauxy q,y

uauxy q,x + uauxx q,y





(4.26)

It must be taken into account that these expressions can be used either for

mode I or mode II.
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4.4 Error bounds in QoI

A methodology to get upper and lower bounds in QoI was introduced in [119].

The ideas are summarized in the following expressions. Let us apply the

parallelogram identity to the following quantities:

|||e+ ẽ|||2Ω = a(e+ ẽ, e+ ẽ) = a(e, e) + a(ẽ, ẽ) + 2a(e, ẽ)

|||e− ẽ|||2Ω = a(e+ ẽ, e+ ẽ) = a(e, e) + a(ẽ, ẽ)− 2a(e, ẽ)
(4.27)

subtracting the second expression to the first one we can define the error in

the QoI as:

Q(e) =
1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣τe+

ẽ

τ

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

Ω

− 1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣τe−

ẽ

τ

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

Ω

(4.28)

where τ =
√
|||ẽ|||Ω / |||e|||Ω is a scaling factor. From this expression we can

evaluate upper and lower bounds of Q(e) by only bounding the energy norms

in (4.28). Let us consider that η+low, η
+
upp, η

−
low and η−upp represent global error

estimates such that

η+low ≤
∣∣∣∣
∣∣∣∣
∣∣∣∣τe+

ẽ

τ

∣∣∣∣
∣∣∣∣
∣∣∣∣
Ω

≤ η+upp η−low ≤
∣∣∣∣
∣∣∣∣
∣∣∣∣τe−

ẽ

τ

∣∣∣∣
∣∣∣∣
∣∣∣∣
Ω

≤ η+upp (4.29)

Then, using (4.28) we have

ẼLB =
1

4
(η+low)

2 − 1

4
(η−upp)

2 ≤ Q(e) ≤ 1

4
(η+upp)

2 − 1

4
(η−low)

2 = ẼUB (4.30)

The following step is to obtain appropriate values for η−upp η+upp η−low η+low.

These quantities are upper and lower bounds of the energy norms in (4.29),

thus any bounding technique for energy norm presented in Section 3.4 can be

used. Now, we are going to adapt those bounding techniques for this particular

situation.

4.4.1 Definitions

First, let us define the following quantity E± = τe ± ẽ
τ , where ± symbol

indicates the adding and subtracting forms. By evaluating the energy norms
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∣∣∣∣∣∣E±∣∣∣∣∣∣
Ω
we could evaluate the error in the QoI since it represents the terms

in (4.28). Then, to evaluate the bounds of the QoI we should obtain the upper

and lower bounds of
∣∣∣∣∣∣E±∣∣∣∣∣∣

Ω
.

Let us taking into account the residual for the primal problem (3.6), we define

the residual for the dual problem:

R̃(v) = a(ẽ,v) ∀v ∈ V (4.31)

Now, recalling the expression (3.89) presented in [73], considering the lack of

equilibrium along boundaries, and writing it for the dual problem, we will

have:

ā(σ̃∗
σ, σ(v)) = Q(v) +

∫

Ω
(s̃∗σ)

Tv dΩ +

∫

Γ
(r̃∗σ)

Tv dΓ ∀v ∈ V (4.32)

This allow us to write the residual expression, as in (3.91), for the dual problem

in the following way:

R̃(v) = ā(σ̃∗
σ − σ̃h,σ(v))−

∫

Ω
(s̃∗σ)

Tv dΩ−
∫

Γ
(r̃∗σ)

Tv dΓ ∀v ∈ V (4.33)

We define the residual equation for E± as a linear combination of the residuals

of the primal and dual problems:

R±(v) := τR(v)± 1

τ
R̃(v) = a(z±,v) ∀v ∈ V (4.34)

Finally, considering (3.91) and (4.33) into (4.34) we obtain the residual equa-

tion for E± with the lacks of equilibrium for the primal and dual recovered

solution.

R±(v) = a(τe,v)± a(
ẽ

τ
,v) = a(E±,v)

= a(E∗ ±
σ ,v)− τ

∫

Ω
(s∗σ)

Tv dΩ∓ 1

τ

∫

Ω
(s̃∗σ)

Tv dΩ

− τ

∫

Γ
(r∗σ)

Tv dΓ∓ 1

τ

∫

Γ
(r̃∗σ)

Tv dΓ

(4.35)

for all v ∈ V . In this case E∗ ±
σ indicates the estimated error using the recov-

ered fields.
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4.4.2 The upper bound for GOA

Theorem 4.1. Under the definitions given in Subsection 4.4.1:

a(E±,E±) ≤ a(E∗ ±
σ ,E∗ ±

σ )− 2τ

∫

Ω
(s∗σ)

TE± dΩ∓ 2

τ

∫

Ω
(s̃∗σ)

TE± dΩ

− 2τ

∫

Γ
(r∗σ)

TE± dΓ∓ 2

τ

∫

Γ
(r̃∗σ)

TE± dΓ

(4.36)

is an upper bound of a(E±,E±).

Proof. Taking the positive quantity 0 ≤ a(E± − E∗ ±
σ ,E± − E∗ ±

σ ), and ex-

panding it we obtain:

0 ≤ a(E±,E±) + a(E∗ ±
σ ,E∗ ±

σ )− 2a(E±,E∗ ±
σ ) (4.37)

finally combining (4.35), with v = E±, with the last term in (4.37) we obtain:

0 ≤ a(E±,E±) + a(E∗ ±
σ ,E∗ ±

σ )− 2a(E±,E±)− 2τ

∫

Ω
(s∗σ)

TE± dΩ

∓ 2

τ

∫

Ω
(s̃∗σ)

TE± dΩ− 2τ

∫

Γ
(r∗σ)

TE± dΓ∓ 2

τ

∫

Γ
(r̃∗σ)

TE± dΓ

(4.38)

proving (4.36). Consider then that the upper bounds for both terms in (4.29)

are obtained.

Note that (4.36) is condensed for E± and the part for the primal and dual

problem are not explicitly described. The following expression decompose

(4.36) into the primal and dual contributions:

a(E±,E±) ≤ τ2
{
|||e∗σ|||2Ω − 2

∫

Ω
(s∗σ)

Te dΩ− 2

∫

Γ
(r∗σ)

Te dΓ

}

+
1

τ2

{
|||ẽ∗σ|||2ω − 2

∫

Ω
(s̃∗σ)

T ẽ dΩ− 2

∫

Γ
(r̃∗σ)

T ẽ dΓ

}

± 2a(e∗σ, ẽ
∗
σ)∓ 2

∫

Ω
(s∗σ)

T ẽ dΩ∓ 2

∫

Γ
(r∗σ)

T ẽ dΓ

∓ 2

∫

Ω
(s̃∗σ)

Te dΩ∓ 2

∫

Γ
(r̃∗σ)

Te dΓ

(4.39)
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4.4.3 The lower bound for GOA

Theorem 4.2. Under the definitions given in Subsection 4.4.1:

a(E±,E±) ≥ −λ2a(E∗ ±
u ,E∗ ±

u ) + 2λa(E∗ ±
σ ,E∗ ±

u )− 2λτ

∫

Ω
(s∗σ)

TE∗ ±
u dΩ

∓ 2λ
1

τ

∫

Ω
(s̃∗σ)

TE∗ ±
u dΩ− 2λτ

∫

Γ
(r∗σ)

TE∗ ±
u dΓ∓ 2λ

1

τ

∫

Γ
(r̃∗σ)

TE∗ ±
u dΓ

(4.40)

is a lower bound of a(E±,E±) for any λ ∈ R.

Proof. Taking the quantity positive 0 ≤ a(E± − λE∗ ±
u ,E± − λE∗ ±

u ), and

expanding it we obtain:

0 ≤ a(E±,E±) + λ2a(E∗ ±
u ,E∗ ±

u )− 2λa(E±,E∗ ±
u ) (4.41)

E∗ ±
u corresponds to the kinematic admissible recovered fields for both, primal

and dual problems (see Section 3.3). Combining the last term in the previous

expressions with (4.35) when v = E∗ ±
u we obtain:

0 ≤ a(E±−λE∗ ±
u ,E±−λE∗ ±

u ) = a(E±,E±)+λ2a(E∗ ±
u ,E∗ ±

u )−2λa(E±,E∗ ±
u )

(4.42)

from which we can directly proof (4.40).

Expression (4.40) is valid for any λ ∈ R. Solving the corresponding optimiza-

tion problem for λ and rearranging the terms:

a(E±,E±) ≥ 1

a(E∗ ±
u ,E∗ ±

u )

{
a(E∗ ±

σ ,E∗ ±
u )− τ

∫

Ω
(s∗σ)

TE∗ ±
u dΩ

∓1

τ

∫

Ω
(s̃∗σ)

TE∗ ±
u dΩ− τ

∫

Γ
(r∗σ)

TE∗ ±
u dΓ∓ 1

τ

∫

Γ
(r̃∗σ)

TE∗ ±
u dΓ

}2

(4.43)
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The next step consist in making explicit the contributions of the primal and

dual problems:

a(E±,E±) ≥ 1

|||e∗u|||2Ω + |||ẽ∗u|||2Ω ± 2a(e∗u, ẽ
∗
u)

{
τ2a(e∗σ, e

∗
u) +

1

τ2
a(ǫ∗σ, ǫ

∗
u)

± a(e∗σ, ẽ
∗
u)± a(e∗u, ẽ

∗
σ)− τ2

∫

Ω
(s∗σ)

Te∗u dΩ− τ2
∫

Γ
(r∗σ)

Te∗u dΓ

∓
∫

Ω
(s̃∗σ)

Te∗u dΩ∓
∫

Γ
(r̃∗σ)

Te∗u dΓ− 1

τ2

∫

Ω
(s̃∗σ)

T ẽ∗u dΩ

− 1

τ2

∫

Γ
(r̃∗σ)

T ẽ∗u dΓ∓
∫

Ω
(s∗σ)

T ẽ∗u dΩ∓
∫

Γ
(r∗σ)

T ẽ∗u dΓ

}2

(4.44)

4.4.4 Numerical bounding approaches for GOA

In (4.44) all values are computable, however, in (4.39) e and ẽ are not com-

putable since its evaluation would require the analytical solution for both, the

primal and the dual problem. To overcome this problem we can substitute e

by e∗u and ẽ by ẽ∗u, both computable. This will lead to a computable version

of the upper bound of
∣∣∣∣∣∣E±∣∣∣∣∣∣

Ω
. However, the evaluation of (4.39) and (4.44)

using e∗u and ẽ∗u is extremely laborious and we do not recommend it.

Instead, we propose the use of a simplified computable version of the up-

per and lower bounds2 of the error in the QoI. Our purpose is to develop

a computationally efficient technique to evaluate computable (and thus non-

guaranteed) bounds of the error in QoI’s. Taking into account that |||eσ|||2Ω ≥
2a(eσ, eu)− |||eu|||2Ω holds:

0 ≤ a(eσ − eu, eσ − eu) = a(eσ, eσ) + a(eu, eu)− 2a(eσ, eu)

then, |||eσ|||2Ω ≥ 2a(eσ, eu)− |||eu|||2Ω
(4.45)

2Note that when we refer to a computable bound we are assuming some approximations

and therefore, the bounding properties are not strictly guaranteed. Whenever the guaranteed

bounds were obtained we will specifically indicate it as guaranteed bounds.
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and that expression (4.28) could be rewritten as:

4Q(e) = τ2 |||e|||2Ω +
1

τ2
|||ẽ|||2Ω + 2a(e, ẽ)− τ2 |||e|||2Ω − 1

τ2
|||ẽ|||2Ω + 2a(e, ẽ)

(4.46)

Let us assume that we can evaluate upper and lower bounds of the error

in energy norm for the primal and dual problems, ESPR−CDLB1
≤ |||e|||Ω ≤

ESPR−CDUB
and ẼSPR−CDLB1

≤ |||ẽ|||Ω ≤ ẼSPR−CDUB
. These values can the

be used to bound the first two addends of (4.47). The lower bound in energy

norm, for both primal and dual problems, could be obtained with expression

(3.96) with λ = 1. However, since the upper bound of the error in energy

norm can not be guaranteed, the bounds in the QoI are also non-guaranteed

bounds if the bounding procedure proposed in Section 3.4 is used. Expression

(4.46) could be rewritten as follows:

4Q(e) = τ2
{
|||e|||2Ω − |||e|||2Ω

}
+

1

τ2

{
|||ẽ|||2Ω − |||ẽ|||2Ω

}
+ 4a(e, ẽ) (4.47)

Substituting the exact errors in energy norm by the corresponding numerical

upper bound and the lower bound, and considering (4.45), we obtain the upper

error bound in the QoI:

ẼSPR−CDUB
:=

τ2

4

{
Ê

2
SPR−CDUB

− E
2
SPR−CDLB1

}

︸ ︷︷ ︸
≥0

+
1

4τ2

{
ˆ̃
E

2

SPR−CDUB
− Ẽ

2
SPR−CDLB1

}

︸ ︷︷ ︸
≥0

+a(e, ẽ) ≤ Q(e)

(4.48)

and the corresponding lower bound:

ẼSPR−CDLB
:=

τ2

4

{
E

2
SPR−CDLB1

− Ê
2
SPR−CDUB

}

︸ ︷︷ ︸
≤0

+
1

4τ2

{
Ẽ

2
SPR−CDLB1

− ˆ̃
E

2

SPR−CDUB

}

︸ ︷︷ ︸
≤0

+a(e, ẽ) ≥ Q(e)

(4.49)
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Notice that even if the upper error bound in energy norm for both, primal

and dual problems is the numerical approximation, because of (4.45) the pos-

itiveness or the negativeness of the quantities between braces are guaranteed

when λ = 1. Then the bounding properties of (4.48) and (4.49) hold. In

spite of that we are not able to evaluate them since we need the exact solution

to obtain the remaining term a(e, ẽ). Thus the numerical approach for the

bounding techniques is based on the evaluation of an estimation for that term,

which will be the plain error estimation in the QoI (4.7). Thus the bounding

formulas are nothing but the error estimation plus some correction terms. The

numerical version of the upper bound are:

ˆ̃
E SPR−CDUB1

:=
τ2

4

{
Ê

2
SPR−CDUB

− E
2
SPR−CDLB1

}

︸ ︷︷ ︸
≥0

+
1

4τ2

{
ˆ̃
E

2

SPR−CDUB
− Ẽ

2
SPR−CDLB1

}

︸ ︷︷ ︸
≥0

+ẼSPR−CD ' Q(e)

(4.50)

and for the lower bound we have

ˆ̃
E SPR−CDLB1

:=
τ2

4

{
E

2
SPR−CDLB1

− Ê
2
SPR−CDUB

}

︸ ︷︷ ︸
≤0

+
1

4τ2

{
Ẽ

2
SPR−CDLB1

− ˆ̃
E

2

SPR−CDUB

}

︸ ︷︷ ︸
≤0

+ẼSPR−CD / Q(e)

(4.51)

Finally, another alternative is to use the optimal value of λ for the lower

bounds. In this cases ((4.52) and (4.53)) is not guaranteed that the posi-

tiveness or the negativeness of the terms in braces holds, however numerical

examples will show a better accuracy but losing the bounding property is some

situations. The respective expressions are:

ˆ̃
E SPR−CDUBOpt

:=
τ2

4

{
Ê

2
SPR−CDUB

− E
2
SPR−CDLBOpt

}

+
1

4τ2

{
ˆ̃
E

2

SPR−CDUB
− Ẽ

2
SPR−CDLBOpt

}
+ ẼSPR−CD ' Q(e)

(4.52)
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ˆ̃
E SPR−CDLBOpt

:=
τ2

4

{
E

2
SPR−CDLBOpt

− Ê
2
SPR−CDUB

}

+
1

4τ2

{
Ẽ

2
SPR−CDLBOpt

− ˆ̃
E

2

SPR−CDUB

}
+ ẼSPR−CD / Q(e)

(4.53)

The results will show that these computational bounds will provide numerical

results with bounding properties. This fact is due to the high accuracy of the

error estimator in the QoI, ẼSPR−CD with respect of the difference of the terms

in braces.

4.5 Numerical results

In this Section 2D benchmark problems with exact solutions are used to inves-

tigate the quality of the proposed technique. All problems have been solved

with bilinear elements (Q4) and h-adaptive refinement. The first problem has

a smooth solution whilst the second is a singular problem. These two problems

correspond to the geometries of problems 2 and 3 shown in Section 3.5. For

all models we assume plane strain conditions. To assess the performance of

the proposed technique we consider the effectivity index of the error estimator

ϑ̃ defined as the quotient of the estimated error Ẽ in the QoI over the exact

error Q(e) as follows:

ϑ̃ =
Ẽ −Q(e)

|Q(e)| (4.54)

Note that in this definition of global effectivity index for the error estimator

in QoI, positive values will indicate over estimation of the true error, while

negative values will indicate under estimation of the true error. We can also

represent the effectivity in the QoI, θ̃QoI , defined as the value of the QoI, Q(uh)

evaluated from the FE analysis, corrected using the error estimate, divided by

the exact value Q(u):

θ̃QoI =
Q(uh) + Ẽ

Q(u)
(4.55)
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The distribution of the local effectivity index D̃ is analyzed at the element

level, following the definitions described in [71] for the error in the energy

norm, adapted here to the case of the error in QoI:

D̃ = ϑ̃K − 1 if θ̃K ≥ 1

D̃ = 1− 1

ϑ̃K

if θ̃K < 1
with ϑ̃K =

ẼK

Q(eK)
(4.56)

Nonetheless, we should remark that this is only possible for some problems

with analytical solutions as the exact value of the solution is unknown in the

vast majority of cases, especially for the dual problem.

Once the error in the QoI is estimated, the local error estimates in each element

can be used to perform h-adaptive analysis using techniques similar to those

already available for the error in the energy norm. The refinement of the mesh

using the error estimate as the guiding parameter considers a stopping criterion

that checks the value of the global estimated error against a prescribed or

desired error in the QoI. If the estimated error is higher than the desired

error the mesh is refined. The technique to evaluate the new size distribution

for the new mesh is the same than the one used in Chapter 3. However,

we apply some minor modifications in the GOA context because the local

contributions to the global error in the QoI can take negative values. Thus,

for our implementation using h-adaptive routines developed for the error in

the energy norm we prepare as input the square root of the absolute values of

the error in the QoI at each element and the ratio of the estimated error in

the QoI in the current mesh to the desired error in the new mesh.

4.5.1 Problem 2: Thick-wall cylinder subjected to internal

pressure

The definition of this problem is detailed in Section 3.5.1. At this point we are

interested in presenting the dual problems to be solved in this Section under

the GOA framework. In Figure 4.1 we present the model for the dual problem

in which we can perceive the domains of interest (DoI) ΩI and Γo.
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a

b

P

Γo

ΩI

Figure 4.1: Problem 2. Thick-wall cylinder subjected to an internal pressure. The

domains of interest ΩI and Γo are indicated in yellow.

Several linear QoI were considered for this problem: the mean radial dis-

placements along Γo, the mean displacements ūx in the DoI ΩI and the mean

stresses σ̄x in ΩI .

Problem 2.a: Mean radial displacements along Γo

Let Q be the functional that evaluates the mean normal displacement ūn along

Γo such that:

Q(u) = ūn =
1

|Γo|

∫

Γo

(Ru)T cudΓ (4.57)

where R is the standard rotation matrix for the displacements that aligns the

coordinate system with the boundary Γo and cu = {1, 0}T is the extraction

vector that selects the normal component. The exact value of the QoI given

by (3.99) for r = b is ūn = 2.426̄ · 10−3.

In Figure 4.2 we represent the set of the first four meshes of the h-adaptive

refinement process. We observe in this case that the refinement process is

similar to the one obtained for the energy norm. This peculiarity happens

because the dual problem considered for the QoI is a traction field over the

boundary Γo.
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Figure 4.2: Problem 2.a. ūn along Γo. Q4h. Sequence of h-adaptive refined meshes.

Table 4.1 presents the convergence analysis results under the h-adaptive re-

finement process for this problem. This Table shows the exact global error in

the QoI, Q(e), evaluated using (4.1), the estimated error in the QoI, ẼSPR−CD,

evaluated with (4.7), the effectivity index for the error estimate, ϑ̃SPR−CD, and

the effectivity index for the corrected value of the QoI, θ̃QoI
SPR−CD, all of them

evaluated using the SPR-CD technique. We could observe that both, the es-

timated error in the QoI and the exact one are very similar yielding a highly

accurate error estimation, which is reflected in the effectivity indexes.

Table 4.1: Problem 2.a. ūn along Γo. Q4h. λ = 1. Values of the global effectivity

index of the error estimator ϑ̃ and the corrected value of the QoI θ̃QoI for the GOA.

DoF Q(e) ẼSPR−CD ϑ̃SPR−CD θ̃
QoI
SPR−CD

452 0.000020094 0.000024067 0.197752638 1.001637450

800 0.000005751 0.000005714 −0.006289505 0.999985096

2,362 0.000001548 0.000001519 −0.018576279 0.999988153

8,570 0.000000397 0.000000395 −0.007208172 0.999998820

31,888 0.000000102 0.000000101 −0.011756630 0.999999505

121,260 0.000000026 0.000000026 −0.009305513 0.999999900

Table 4.2 shows the performance of the bounding technique presented in Sec-

tion 4.4 for the error estimation in QoI. This represent the values of ϑ̃ the

global effectivities of the error bounds while θ̃QoI refer to the effectivities of

the QoI bounds. Equation (4.50) is used for the upper error bound evaluation

whilst equation (4.51) is used for the lower bound. As indicated before, we ex-

pect positive values for ϑ̃SPR−CDUB1
and negative values for ϑ̃SPR−CDLB1

. The

values in Table 4.2 shows the high accuracy of the evaluations. However, al-
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though ẼSPR−CDLB1
always produces underestimations of the true error. Note

that these are computational versions of the guaranteed bound, then this sit-

uation could happen above all when we are having a very high accuracy in the

bounds evaluation. In the following examples, with a more complex solution,

we will obtain the desired bounding properties.

Table 4.2: Problem 2.a. ūn along Γo. Q4h. λ = 1. Values of the global effectivity

index of the error estimation ϑ̃ and the corrected value of the QoI θ̃QoI of the bounding

techniques for the GOA.

DoF ϑ̃SPR−CDUB1
ϑ̃SPR−CDLB1

θ̃
QoI
SPR−CDUB1

θ̃
QoI
SPR−CDLB1

452 0.409034150 −0.002689044 1.003386924 0.999977734

800 0.028501282 −0.006034606 1.000067540 0.999985700

2,362 −0.003518890 −0.016444636 0.999997756 0.999989513

8,570 −0.000110991 −0.006310464 0.999999982 0.999998967

31,888 −0.007879272 −0.011211376 0.999999668 0.999999528

121,260 −0.006953840 −0.009182392 0.999999925 0.999999902

Finally, as a summary, these results have been plotted in Figure 4.3. The

Figure shows that the global effectivity index for the error estimation on the

QoI is stable during the refinement process, and that the value of the QoI is

accurately captured from the very beginning of the analysis.

Problem 2.b: Mean displacements ūx in ΩI

Let us consider the mean displacement ūx in ΩI as the quantity of interest. The

objective is to evaluate the error when evaluating ūx defined by the functional:

Q(u) = ūx =
1

|ΩI |

∫

ΩI

uxdΩ (4.58)

The exact value of the QoI for this problem with analytical solution is ūx =

0.002238239291713. Figure 4.4 shows the first four meshes used in the h-adaptive

refinement process guided by the error estimate in the QoI.
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Figure 4.3: Problem 2.a. ūn along Γo. Q4h. λ = 1. Evolution of the effectivity index

of the error estimation ϑ̃ and the effectivity in the QoI θ̃QoI for the error estimates in

(4.7) and the error bounds (4.50) and (4.51) obtained with the SPR-CD technique.

Figure 4.4: Problem 2.b. ūx in ΩI . Q4h. Sequence of h-adaptive refined meshes.

Table 4.3 shows for the QoI its exact error, Q(e), the estimated error, ẼSPR−CD,

the effectivity of the error estimates, ϑ̃SPR−CD, and the effectivity in the QoI,

θ̃QoI
SPR−CD. Comparing Q(e) and ẼSPR−CD we can notice that both values

decrease with the mesh refinement and that the estimate ẼSPR−CD gives a

good approximation to the exact error. The effectivity of the error estimator,

ϑ̃SPR−CD, converges and is very close to the optimal value ϑ̃ = 0. As expected

from these results, the effectivity θ̃QoI
SPR−CD is very accurate as well, with values

very close to 1.
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Table 4.3: Problem 2.b. ūx in ΩI . Q4h. λ = 1. Values of the global effectivity index

of the error estimator ϑ̃ and the corrected value of the QoI θ̃QoI for the GOA.

DoF Q(e) ẼSPR−CD ϑ̃SPR−CD θ̃
QoI
SPR−CD

144 0.000035829 0.000066111 0.845167524 1.013529191

320 0.000008326 0.000004000 −0.519630338 0.998066960

936 0.000002248 0.000002637 0.172967518 1.000173752

3,071 0.000000494 0.000000536 0.083398620 1.000018424

10,841 0.000000178 0.000000175 −0.012655962 0.999998996

39,669 0.000000050 0.000000050 0.013370641 1.000000296

Regarding the bounding technique presented in Section 4.4, we have evalu-

ated the results for the lower bound when λ = 1. Thus, for the bounding

technique we used equation (4.50) for the upper error bound and (4.51) for

the lower error bound in the error estimation of the QoI. Table 4.4 presents

the global effectivity index of the error estimator in the QoI for the upper

bound, ϑ̃SPR−CDUB1
, and for the lower bound, ϑ̃SPR−CDLB1

. The Table also

presents the global effectivity index of the QoI when the FE solution for the

QoI, Q(uh), is corrected with the bounding estimates (4.55), θ̃QoI
SPR−CDUB1

for

the upper bound and θ̃QoI
SPR−CDLB1

for the lower bound, respectively. As in-

dicated before, positive results evaluated with equation (4.54) indicates over

estimation of the error, that is, upper bounding properties; whilst negative

values indicates lower bounding behavior. We observe that the right behavior

holds during the whole refinement process.

Table 4.4: Problem 2.b. ūx in ΩI . Q4h. λ = 1. Values of the global effectivity index

of the error estimation ϑ̃ and the corrected value of the QoI θ̃QoI of the bounding

techniques for the GOA.

DoF ϑ̃SPR−CDUB1
ϑ̃SPR−CDLB1

θ̃
QoI
SPR−CDUB1

θ̃
QoI
SPR−CDLB1

144 3.996995344 −1.411675200 1.063982716 0.977402322

320 2.136273708 −3.014450269 1.007947002 0.988786154

936 1.493632807 −0.806117295 1.001500407 0.999190227

3,071 0.521672091 −0.316171273 1.000115247 0.999930152

10,841 0.131498419 −0.193872474 1.000010431 0.999984621

39,669 0.074022078 −0.080697612 1.000001639 0.999998213
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Finally, Figure 4.5 shows the results presented in Table 4.3 and Table 4.4. We

observe that the evolution of the estimates and bounds smoothly converges to

the expected values, 0 for ϑ̃ and 1 for θ̃QoI . We also observe that the estimates

(blue line) is always between the bounds.
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Figure 4.5: Problem 2.b. ūx in ΩI . Q4h. λ = 1. Evolution of the effectivity index of

the error estimation ϑ̃ and the effectivity in the QoI θ̃QoI for the error estimates in

(4.7) and the error bounds (4.50) and (4.51) obtained with the SPR-CD technique.

Problem 2.c: Mean stress σ̄x in ΩI

Consider now that the QoI is the mean stress value σ̄x in ΩI evaluated using

(4.15) whose exact value is 0.06̄. Figure 4.6 shows the first four meshes of

bilinear elements used in the refinement process guided by the error estimated

for this QoI.

We observe that the mesh refinement process is not only affecting the DoI. It

is also refining the zones of the domain with influence over the solution in the

DoI, that is, around the internal radius.
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Figure 4.6: Problem 2.c. σ̄x in ΩI . Q4h. Sequence of h-adaptive refined meshes.

Table 4.5 presents the results obtained for the convergence analysis. For this

analysis we obtain good results except for the third mesh. The effectivity of

the error estimator in the QoI ϑ̃SPR−CD has a very high value (−56.447333).

In order to understand this behavior we should analyze how the exact error

behaves. One significant difference between the error analysis in energy norm

and the error analysis in the QoI is that the convergence of the error does not

necessarily tends to zero monotonically. That is, the true error could have

positive or negative values while it is converging to zero. This fact means

that during the convergence process, it could take values near to zero as in

the third mesh. Notice that Q(e) = 0.000001428 for the third mesh and

Q(e) = −0.000035007 for the fourth mesh. Note that in this mesh as a results

of Q(e taking a very small value (Q(e) = 0.000001428) ϑ̃ is quite big.

Table 4.5: Problem 2.c. σ̄x in ΩI . Q4h. λ = 1. Values of the global effectivity index

of the error estimator ϑ̃ and the corrected value of the QoI θ̃QoI for the GOA.

DoF Q(e) ẼSPR−CD ϑ̃SPR−CD θ̃
QoI
SPR−CD

144 −0.003488289 −0.003898475 −0.117589385 0.993847213

292 −0.002278696 −0.003066968 −0.345931461 0.988175912

767 0.000001428 −0.000079201 −56.447333124 0.998790566

2,512 −0.000035007 −0.000036466 −0.041663722 0.999978122

8,540 0.000006266 0.000005588 −0.108155159 0.999989835

30,331 0.000004219 0.000004183 −0.008493327 0.999999463

Regarding bounds for λ = 1 represented in Table 4.6 we observe that the

upper and lower bounding properties hold. We devise again a problem with
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the third mesh. Notwithstanding the assessment of bounds for the QoI in that

mesh (two last columns) remains quite accurate.

Table 4.6: Problem 2.c. σ̄x in ΩI . Q4h. λ = 1. Values of the global effectivity index

of the error estimation ϑ̃ and the corrected value of the QoI θ̃QoI of the bounding

techniques for the GOA.

DoF ϑ̃SPR−CDUB1
ϑ̃SPR−CDLB1

θ̃
QoI
SPR−CDUB1

θ̃
QoI
SPR−CDLB1

144 14.133077232 −17.499789766 1.739503894 0.084335106

292 7.183236654 −8.878411688 1.245526160 0.696532019

767 1,955.142709777 −2,148.719329010 1.041890673 0.953961776

2,512 8.875868515 −9.487498425 1.004660802 0.995018025

8,540 10.382070501 −10.936829891 1.000975761 0.998972100

30,331 5.320570439 −5.397654465 1.000336686 0.999658436

Finally these results have been represented in Figure 4.7 to observe the evo-

lution of the effectivity indexes.
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Figure 4.7: Problem 2.c. σ̄x in ΩI . Q4h. λ = 1. Evolution of the effectivity index of

the error estimation ϑ̃ and the effectivity in the QoI θ̃QoI for the error estimates in

(4.7) and the error bounds (4.50) and (4.51) obtained with the SPR-CD technique.
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4.5.2 Problem 3: L-Shape plate

Let us consider the singular problem of a finite portion of an infinite domain

with a re-entrant corner described in Section 3.5.1. In order to impose equi-

librium conditions during the recovery of the displacement field by means

of the SPR-CD we use the following approach. For the primal solution, on

each patch, we enforce internal equilibrium in Ω, and boundary equilibrium

all along the Neumann boundary. For the dual problem, we enforce internal

equilibrium using the body loads and the initial strains given by (4.25) and

(4.26), and homogeneous Neumann boundary conditions.

Problem 3.a: Generalized stress intensity factor KI as QoI

In this example, we consider the GSIF KI as the quantity of interest. Figure

4.8 shows the Cartesian meshes used to solve the primal and dual problems

when the mesh is h-adapted for the evaluation of KI. For the dual problem, we

use the same Dirichlet conditions as shown in Figure 3.14 and the set of nodal

forces used to extract the QoI in the annular domain ΩI , shown in Figure 4.8,

defined by a plateau function q. Function q is defined such that q = 1 for

r ≤ r1 = 0.6, q = 0 for r ≥ r2 = 0.8. Further details about q function are

described in Section 3.3.

r2

r1

Figure 4.8: Problem 3.a. KI . Q4h. Cartesian meshes with h-adaptive refinement.
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Table 4.7 shows the results for the stress intensity factor KI. Similarly to

the results for other QoIs, we observe that the proposed technique provides a

tight representation ẼSPR−CD of the exact error Q(e). Thus effectivity index

for ϑ̃SPR−CD is always close to the optimal value ϑ̃ = 0 and also, in agreement

with the previous cases, the effectivity in the QoI is also close to 1.

Table 4.7: Problem 3.a. KI . Q4h. λ = 1. Values of the global effectivity index of the

error estimator ϑ̃ and the corrected value of the QoI θ̃QoI for the GOA.

DoF Q(e) ẼSPR−CD ϑ̃SPR−CD θ̃
QoI
SPR−CD

366 0.018202430 0.020032978 0.100566180 1.001830549

1,118 0.006060242 0.007319557 0.207799593 1.001259316

3,088 0.001962537 0.001813805 −0.075785580 0.999851268

9,560 0.000434558 0.000451289 0.038501551 1.000016731

30,510 0.000149663 0.000147368 −0.015334636 0.999997705

106,300 0.000041549 0.000040514 −0.024908876 0.999998965

Table 4.8 presents the results for the bounding techniques for λ = 1. In

this case, we observe that for all situations the bounding technique provides

numerical upper and lower bounds of the error in the QoI. These error bounds

apparently seem rather conservatives, however the bounds for the QoI are

quite tight.

Table 4.8: Problem 3.a. KI . Q4h. λ = 1. Values of the global effectivity index of the

error estimation ϑ̃ and the corrected value of the QoI θ̃QoI of the bounding techniques

for the GOA.

DoF ϑ̃SPR−CDUB1
ϑ̃SPR−CDLB1

θ̃
QoI
SPR−CDUB1

θ̃
QoI
SPR−CDLB1

366 2.130063328 −1.823004948 1.038772328 0.966816881

1,118 3.212470634 −3.001114026 1.019468348 0.981812524

3,088 4.108177178 −4.210226762 1.008062451 0.991737273

9,560 6.839119537 −6.887298872 1.002971995 0.997007069

30,510 4.779258922 −4.889795715 1.000715279 0.999268178

106,300 3.875314798 −3.969754041 1.000161016 0.999835060

Table 4.9 shows the upper and lower bounds of the error in the QoI for the

optimum value of λ evaluated using (4.52), for the upper error bound in the
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QoI and (4.53) for the corresponding lower error bound, as explained in Section

4.4. In this case, the positiveness of the term in braces in (4.52) and the

negativeness of the term in braces in (4.53) are not guaranteed.

Table 4.9: Problem 3.a. KI . Q4h. Optimal value of λ. Values of the global effectivity

index of the error estimation ϑ̃ and the corrected value of the QoI θ̃QoI of the bounding

techniques for the GOA.

DoF ϑ̃SPR−CDUBOpt
ϑ̃SPR−CDLBOpt

θ̃
QoI
SPR−CDUBOpt

θ̃
QoI
SPR−CDLBOpt

366 0.010391286 0.296667094 1.000189147 1.005400062

1,118 1.844731138 −1.633374530 1.011179517 0.990101356

3,088 2.156554968 −2.258604552 1.004232319 0.995567405

9,560 3.582652082 −3.630831417 1.001556870 0.998422193

30,510 2.162224282 −2.272761075 1.000323605 0.999659851

106,300 1.681654181 −1.776093424 1.000069871 0.999926205

Figure 4.9 represents the results of Table 4.7, Table 4.8 and Table 4.9. In the

graphs, the black and the red lines represent the error bound obtained with

expressions (4.50) and (4.51), respectively, with λ = 1. The green and brown

lines represent the error bounds obtained with the optimum value of λ. The

results show that for λOpt the bounding property holds when we refine the

mesh, but with more accurate results than in the case where λ = 1. We have

chosen this example to show the results with λOpt because has an acceptable

behavior, however in general when λOpt is used, the bounding property is

harder to fulfill, then we recommend to use λ = 1 when we are interested in

bounding properties. It is also worthy mentioning that the accuracy of the

error estimation (blue line) for this singular problem is also remarkable.

Problem 3.b: Generalized stress intensity factor KII as QoI

In this example, we consider the GSIF KII as the QoI. Figure 4.10 shows

the Cartesian meshes used to solve the primal and dual problems during the

h-adaptive refinement process guided by the error in the QoI, KII. The Figure

clearly shows that the refinement is performed not only in the DoI (annular
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Figure 4.9: Problem 3.a. KI . Q4h. Optimal value of λ and λ = 1. Evolution of the

effectivity index ϑ̃ and the effectivity in the QoI θ̃QoI for the error estimates in (4.7)

and the error bounds (4.50) and (4.51) obtained with the SPR-CD technique.

area) but also in the surroundings of the singular point. For the dual problem

the Dirichlet boundary conditions and the nodal forces to extract the value of

the QoI are built up as in the previous case.
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Figure 4.10: Problem 3.b. KII . Q4h. Cartesian meshes with h-adaptive refinement.

Table 4.10 shows the results for the generalized stress intensity factor KII. As

in the previous cases we observe that the evaluation of the QoI is convergent

because the error Q(e) is decreasing. The error estimation ẼSPR−CD is very

accurate as its effectivity, ϑ̃SPR−CD, indicates. Note that the accuracy of the

error estimation for the last mesh is around 1.4%.

Table 4.10: Problem 3.b. KII . Q4h. λ = 1. Values of the global effectivity index of

the error estimator ϑ̃ and the corrected value of the QoI θ̃QoI for the GOA.

DoF Q(e) ẼSPR−CD ϑ̃SPR−CD θ̃
QoI
SPR−CD

366 0.006394160 0.008200164 0.282445768 1.001806004

880 0.001387519 0.001846926 0.331099229 1.000459407

2,200 0.000569657 0.000602497 0.057648895 1.000032840

6,078 0.000288879 0.000284524 −0.015077564 0.999995644

17,458 0.000078596 0.000077508 −0.013849060 0.999998912

54,078 0.000022858 0.000022532 −0.014285924 0.999999673

Table 4.11 presents the results for the bounding techniques. For this QoI, KII,

the upper and lower bounds are not as tight as in previous cases, their values

are in general between 10 and 20. Despite of that, the bounds evaluated for

the QoI remains extremely accurate and for the last mesh the accuracy of

both, the upper and the lower bound is within a 0.04%.

Figure 4.11 summarizes these results. At the left hand side we observe how

the bounds of the error in the QoI are maintaining their bounding property
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Table 4.11: Problem 3.b. KII . Q4h. λ = 1. Values of the global effectivity index

of the error estimation ϑ̃ and the corrected value of the QoI θ̃QoI of the bounding

techniques for the GOA.

DoF ϑ̃SPR−CDUB1
ϑ̃SPR−CDLB1

θ̃
QoI
SPR−CDUB1

θ̃
QoI
SPR−CDLB1

366 4.042138161 −4.657397682 1.025846080 0.970219852

880 22.151894229 −21.741740151 1.030736183 0.969832914

2,200 28.605125564 −28.885422686 1.016295108 0.983545218

6,078 17.150217589 −16.920352049 1.004954343 0.995112061

17,458 18.172459180 −18.151958982 1.001428290 0.998573321

54,078 14.421669967 −14.494149835 1.000329656 0.999668687

while tending to increase their accuracy for finer meshes. At the right hand

side, we observe the rapid increase in the accuracy of the bound for the QoI. It

is also worth mentioning that in this case as in all previous situations, the high

accuracy of the error estimation, ẼSPR−CD. As mentioned before, the accuracy

of the plain error estimator, ẼSPR−CD, is crucial for the proposed numerical

bounding techniques ((4.50) and (4.51)) to yield these results. This is because

the last term (the error estimator) has to be closer to the exact error than the

difference between the terms in brackets.

4.6 Conclusions

In this Chapter we have summarized the main characteristics about the error

estimation in QoI’s and the corresponding h-adaptive process. Traditionally

the error estimation in QoI was performed using residual-based error estima-

tors whereas our objective with this contribution is to introduce enhanced

recovery-based error estimators in this field. In this Chapter we have shown

some numerical results using a ZZ-type error estimator specifically adapted to

evaluate the error in QoI using the recovered fields provided by the SPR-CD

technique for both, the primal and dual problems. These numerical results
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Figure 4.11: Problem 3.b. KII . Q4h. λ = 1. Evolution of the effectivity index ϑ̃ and

the effectivity in the QoI θ̃QoI for the error estimates in (4.7) and the error bounds

(4.50) and (4.51) obtained with the SPR-CD technique.

show that this recovery-based error estimator is a clear alternative to the

residual-based error estimators for QoI.

Additionally, we have also presented some numerical versions (and thus not

guaranteed) of bounding techniques for of the error in QoI. The main ad-

vantage is that they are obtained with only one recovery process, one for the

primal problem and one for the dual problem, and that all error bounds are ob-

tained by only post-processing the recovered fields obtained with the SPR-CD

technique. Thus, the computational cost for the bounding technique is small

in comparison with traditional techniques. Despite of the fact that the pro-

posed method is just a numerical version, it is able to provide sharp bounds

in practice. Future work will be focused in adapting the technique that will

be introduced in Section 5.3 to the QoI environment, providing guaranteed

bounds with a reasonable computational cost.
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Chapter 5

Upper error bounding

techniques for the error in the

energy norm

In this Chapter we have developed three methods to obtain guaranteed upper

error bounds in energy norm, all of them are based on the use of recovery

techniques. The first one, so-called FER (Fully Equilibrated Recovery), is

based on a special recovery process that directly provides, into each element,

an equilibrated stress field. This stress field is introduced in the ZZ error

estimator to directly provides an upper error bound in energy norm. The

second one, so-called RL (Recovery process and Local problems), is a mixed

method which uses the advantages in accuracy of a recovery-based stress field

and the bounding properties of the Neumann local problems. This approach

is similar to the procedure introduced by Ladevèze et. al. [81]. In this

case the recovery process yields a self-equilibrated recovered stress field into

each element, then the stress projection to the element edges defines the local

Neumann problem at each element. The statically admissible recovered stress

field obtained will be used in the ZZ error estimator, directly yielding an upper
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5. Upper error bounding techniques for the error in the energy norm

error bounds in energy norm. Finally, the third one, so-called FUB (Fast

Upper Bound), is based on the ideas presented in [73] where the correction

terms in (3.86) are bounded. For shake of simplicity, we will consider in this

Chapter that the initial strains are zero, ε0 = 0, and also the initials stresses,

σ0 = 0.

These three methods have been developed in collaboration with other re-

searchers. We would like to thank their help provided for developing these

techniques. More concretely, to J.P. Moitinho for the FER process, to P.

Kerfriden for the RL processand, and finally to P. Dı́ez for the FUB process

5.1 A fully equilibrated recovery procedure. The

FER technique

As previously mentioned, recovery-type error estimators were unable to di-

rectly provide error bounds in energy norm. Dı́ez et al.[73] made a first at-

tempt by adding some correction terms to the ZZ error estimator in order to

ensure the upper bound property. In this Section we are going to introduce

a scheme for a new recovery procedure that, directly using a ZZ-type error

estimator, yields upper error bounds in energy norm.

When the recovered stress field used in the ZZ error estimator is statically ad-

missible, then it yields an upper error bound, see Section 3.4. In this Section we

intend to evaluate an statically admissible stress field for upper error bound-

ing purposes. The recovery technique presented in this Section, so-called FER

(FER stands for Fully Equilibrated Recovery), will directly provide a stati-

cally admissible stress field. The recovered stress field will fulfill the internal

equilibrium equation, the boundary equilibrium equation and equilibrium of

traction along the internal element edges. Note that the normal stress tangent

to the boundary does not necessarily need to be continuous along the element

edges. In case that the stress field were continuous, that is, all components
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5.1. A fully equilibrated recovery procedure. The FER technique

were continuous along element edges, and also equilibrated it will be the exact

stress solution. Therefore, the FER technique relaxes the stress continuity of

the SPR-CD that prevents statical admissibility.

5.1.1 Recovery procedure

The FER technique, is based on the SPR technique developed by Zienkiewicz

and Zhu [7]. In the FER, as in the SPR, we create patches of elements P i with

the elements connected to the vertex nodes i, so-called patch assembly nodes,

as in Section 3.3. There are two main differences between the traditional SPR

and the FER:

• In the SPR each recovered stress component is represented by a single

polynomial on each patch, while for the FER a polynomial surface is

fitted for each stress component on each element k of the patch. Figure

5.1 shows two different patches for the case of Cartesian grids used in

this thesis. A different polynomial surface for each stress component at

elements k = I, II, III, IV will be evaluated considering the appropriate

constraints.

• The second difference is that the SPR technique builds up the global

recovered field at each element by adding the contributions of each patch

using the partition of unity concept. However, in the FER the global

recovered field is obtained directly adding the contributions of all patches

σ∗
FER =

∑nv

i=1 σ̂
∗ k
i connected to one element k since the partition of

unity is implicit in the functional (5.1). Note that when we apply the

constraints for internal and boundary equilibrium the problem loads will

be also affected by the shape functions Nk
i used in the partition of the

unity.

For the statical admissibility condition, we add the constraints that are nec-

essary to enforce the required continuity and equilibrium in the recovered so-
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lution using a point collocation approach. The number of points will depend

on the degree of the recovered field. This is obtained by adding continuity

of traction along the internal edges (red edges). We enforce the recovered

traction to zero along the external edges (blue edges) and finally we enforce

the internal equilibrium equation at each element, separately. The recovery

process will be described below in more detail.

I II

IIIIV

i

(a) Patch of elements. Assembly node

i represented in orange.

I

IV

II

III

GE

x

h

(b) Patch in contact with a boundary

(green line) of the domain.

Figure 5.1: Internal patch formed by 4 elements (left) and patch in contact with the

boundary formed by 2 elements (right).

Let us assume a patch in a Cartesian grid composed by 4 elements of the

same size around the node i, see Figure 5.1a. We will minimize the following

functional on each of the k elements of the patch:

ΦFER :=

∫

Pi
k

(
σ̂∗
k(x)−Nk

i (x)σ
h(x)

)2
dΩ k = I, II, III, IV (5.1)

where Nk
i (x) is the linear shape function of the node i, in element k, σh

is the FE stress field and σ̂∗
k = Pkak is the recovered stress field for the

element k, where ak =
{
axxk ,ayyk ,axyk

}T
are the coefficients for each stress

component and Pk(x) is the matrix for the polynomial expansion pk(x) =
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{xmyn : m,n ≤ q}k, where q is the polynomial degree.

Pk(x) =



pk(x) 0 0

0 pk(x) 0

0 0 pk(x)


 (5.2)

For each element k, integrating numerically after the minimization of (5.1) we

obtain the following expression:

NIntP∑

j

PT
k (xj)Pk(xj)|J(xj)|ωjak =

NIntP∑

j

PT
k (xj)N

k
i (xj)σ

h(xj)|J(xj)|ωj

(5.3)

where |J| is the Jacobian of the coordinates transformation, ω is the weight

of each integration point and NIntP is the number of integration points.

This expression yields a linear system of equations for each element of the

patch Mkak = gk. Due to the constraints we have imposed, we need some

interaction between the different recovered stress fields. Thus, we assemble all

four systems together and we obtain the following linear system for the patch:




MI 0 0 0

0 MII 0 0

0 0 MIII 0

0 0 0 MIV








aI
aII
aIII
aIV





=





gI

gII

gIII

gIV





⇒ Ma = g (5.4)

Internal equilibrium constraint

In contrast with the SPR-CD presented in Section 3.3, where the internal

equilibrium constraint is considered by using (3.38), in the SPR-FE we have

to take into account the partition of unity introduced in the functional (5.1).

Therefore, it will affect to the body forces b and also it will bring up a new

term, first introduced in [88]: the fictitious body forces, LTNk
i σ

h. Their role

is to ensure that the forces applied to each patch satisfy global equilibrium

E. Nadal 185



5. Upper error bounding techniques for the error in the energy norm

for the isolated patch. If it were not considered, then the system of equations

at the patch would generally have no solution. Nevertheless, when we sum

up the contributions of the four patches of a single element k these terms will

sum to zero, canceling their effect at a global level.

Then, the internal equilibrium equation to impose in this case is:

LT σ̂∗ k
i (xj) +Nk

i b̃(xj) = LTNk
i σ

h(xj) ∀xj ∈ P i
k (5.5)

at each element k. These constraints are independently enforced in all ele-

ments. This generates the internal equilibrium matrix for each element, CIEE
k ,

and the independent term hIEE
k shown in (5.6). This matrix is assembled to

the previous system (5.4), yielding the new constrained system (5.7).

CIEE =




CIEE
I 0 0 0

0 CIEE
II 0 0

0 0 CIEE
III 0

0 0 0 CIEE
IV


 hIEE

k =





hIEE
I

hIEE
II

hIEE
III

hIEE
IV





(5.6)

[
M (CIEE)T

CIEE 0

]{
a

λIEE

}
=

{
g

hIEE

}
(5.7)

External patch edge constraint

The next step is to add the constraints along the external boundaries of the

patch, that is, the constraints along the blue edges in Figure 5.1. These

constraints will ensure tractions continuity when we sum up the contributions

from the patches related to an element. Since the partition of unity function

is zero at the external edges of the patch, the equation to be imposed is:

Gσ̂∗ k
i (xj) = 0 ∀xj ∈ ΓN ∩ P i

k (5.8)
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This generates for each element the matrix CBE
k (5.10) and the independent

term hBE
k = 0.

CEB =




CEB
I 0 0 0

0 CEB
II 0 0

0 0 CEB
III 0

0 0 0 CEB
IV


 (5.9)

The linear system can be rewritten as follows.




M (CIEE)T (CEB)T

CIEE 0 0

CEB 0 0








a

λIEE

λEB





=





g

hIEE

0





(5.10)

Equilibrium along internal edges of the patch

Finally, it is also necessary to add the constraints along the internal boundaries

of the patch (red edges), i.e. the interfaces between elements. These are also

used to ensure traction continuity along the element interface. The equation

to be imposed is:

Gkσ̂
∗ k
i (xj) +Glσ̂

∗ l
i (xj) = 0 ∀xj ∈ ΓN ∩ P i

k∩l (5.11)

where k 6= l and Gk = −Gl, generating CIB (5.12) and the corresponding

r.h.s is again null, hIB = 0.

CIB =




CIB
I CIB

II 0 0

CIB
I 0 0 CIB

IV

0 CIB
II CIB

III 0

0 0 CIB
III CIB

IV


 (5.12)

A particular situation occurs when an internal edge coincides with a boundary

where the tractions are prescribed. In Figure 5.1b we illustrate such a bound-

ary (green line), which is internal to the patch. This is a typical situation
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when the assembly nodes (orange point) are over the boundary. In this case,

the equations to be imposed have to take into account the Neumann boundary

conditions:

Gkσ̂
∗ k
i (xj) = Nk

i (xj)t(xj) ∀xj ∈ ΓN ∩ P i
k∩l (5.13)

When the boundary condition is non-homogeneous the corresponding term in

the r.h.s. is generally not null, hIB 6= 0.

5.1.2 Comments about the resolution of the system of equa-

tions

Adding all constraints to (5.4) we obtain the following linear system to solve

at each patch:




M (CIEE)T (CEB)T (CIB)T

CIEE 0 0 0

CEB 0 0 0

CIB 0 0 0








a

λIEE

λEB

λIB





=





g

hIEE

0

hIB
k





(5.14)

Equation (5.14) can be rewritten as MCaC = gC , where C indicates that the

constraints are included.

The basis p for the stress field has to be able to represent all constraints to

guarantee the statical admissibility property. Thus, we need to analyze the

minimum degree required for the stress field to guarantee that the system of

equations (5.14) is solvable. This procedure cannot be directly applied to bi-

linear FE elements since they do not guarantee the rotational equilibrium of

the patch [123]. We will then consider bi-quadratic elements (Q8), therefore

the FE stress field, σh, will have quadratic terms. The term Nk
i (x) in (5.1) is

bilinear and its divergence will have linear terms. Analyzing the constraints:
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5.1. A fully equilibrated recovery procedure. The FER technique

• Internal equilibrium constrain: the virtual body forces, LTNk
i σ

h, has

cubic terms and assuming that the body forces b is linear the required

degree for the recovered stress field is 4.

• External patch edge constrain: in this case there is not any requirement.

• Internal patch edge constrain: is this case for quadratic tractions over

the boundary we require also a 4th order recovered stress representation.

Then, for linear body forces and quadratic traction over the boundary we need

at least a 4th order polynomial interpolation for p because of the fictitious body

forces.

Table 5.1 shows the total size of the system to be solve at each node. We have

to pay attention to the “effective” number of “free coefficients” (last column),

which represents the difference between the number of “ Coefficients” a and

the number of independent constraints. For degree 4 the number of constraints

(192+80+40 = 312) is higher than the number of coefficients (300), therefore

some constraints are linearly dependent. In fact there are always linearly

dependent constraints, as indicated by the difference between the dimension

of the system and its rank. For example, we obtain 16 effective free coefficients

for degree 4.

Degree Coeff IEE EB IB Sys size Rank Eff free coef

4 300 192 80 40 612 584 16

5 432 280 96 48 856 828 40

6 588 384 112 56 1140 1108 68

Table 5.1: Number of coefficients and constraints

To solve the system of equations in (5.14) we use the Singular Value Decom-

position (SVD) technique. Using the SVD, any m × n matrix MC can be

decomposed in three matrices U, S, and V as represented in (5.15). U is an

m ×m unitary matrix (UTU = I, I the identity matrix), the matrix S is an

m × n diagonal matrix with nonnegative real numbers on the diagonal, and
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the n×n unitary matrix VT denotes the conjugate transpose of V. Then, the

linear system could be solved by using (5.16), even if we have linear dependent

constraints.

MC = USVT (5.15)

aC = VS−1UTgC (5.16)

5.2 An error estimator combining a recovery-based

procedure with equilibrated local problem res-

olution. The RL technique

In this Section we propose a methodology to obtain also guaranteed upper

error bounds solving local equilibrated problems to obtain a statically admis-

sible stress field. Traditionally, the main difficulty for local problem resolution

has been the evaluation of a suitable traction field t̃L for solving the local

problem at element level. Similar problems are reported for the implicit resid-

ual error estimators and also for the CRE method, see Section 3.1. In this

Section we propose to generate the element traction field t̃L with a SPR-based

recovery procedure which guarantees that the local problems at each element

K ∈ T , are solvable (self-equilibrated). The statically admissible stress field

obtained from the solution of these local problems will be used in a ZZ-type

error estimator equation to directly provides an upper error bound in energy

norm.

The RL technique consists of two steps. In the first step an auxiliary recovered

stress field σ∗
aux is evaluated. This field will be used to evaluate the traction

field along the edges of each element defining the local Neumann problem.

The second step will be to solve the local Neumann problem to obtain the

statically admissible stress field σ∗
RL used in the ZZ error estimator to obtain

an upper error bound.
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5.2.1 Local problem formulation

Let us first define the local problem formulation, the second step of this error

estimation process, to formally obtain the appropriate requirements that the

auxiliary stress field σ∗
aux must satisfy. In order to evaluate an upper error

bound in energy norm we obtain a statically admissible stress field as a solution

of a local Neuman problem over each element of the mesh. The local problem

at each element will be obtained integrating the weak form of the elasticity

problem defined in (2.8) into the corresponding element domain ΩK :

a(u,v) =

∫

Ω
σ(u)TD−1σ(v)dΩ

=
∑

K

∫

ΩK

σ(u)TD−1σ(v)dΩ =
∑

K

aK(u,v) ∀v ∈ V
(5.17)

integrating by parts the contribution of each single element we have:

aK(u,v) =

∫

∂ΩK

(Gσ(u))Tv dΓ−
∫

ΩK

(LTσ(u))Tv dΩ ∀v ∈ V (5.18)

Note that the projection of the exact stress field over the Neumann boundary,

coincides with the Neumann conditions, that is Gσ(u) = t. Furthermore,

the body forces are data in the elasticity problem, hence we can consider

−LTσ(u) = b. Then we rewrite (5.18) as:

aK(u,v) =

∫

∂ΩK∩ΓN

tTv dΓ +

∫

∂ΩK\ΓN

(Gσ(u))Tv dΓ

+

∫

ΩK

bTv dΩ ∀v ∈ V

(5.19)

The local problem defined in (5.19) would be solvable if the tractions over the

non-Neumann element edges were known, but in practice they are unknown,

then that problem is generally unsolvable. The idea here, as in Ladevèze et.

al. [81], is to generate an alternative Neumann local problem which reads:

aK(u∗
RL,v) =

∫

∂ΩK∩ΓN

tTv dΓ +

∫

∂ΩK\ΓN

t̃
T
Lv dΓ

+

∫

ΩK

bTv dΩ ∀v ∈ V

(5.20)
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where the traction field t̃
T
L over the non-Neumann element edges ∂ΩK\ΓN will

be obtained by the projection of the auxiliary recovered field over these element

edges, that is t̃
T
L = Gσ∗

aux on ∂ΩK\ΓN . The exact solution of the problem

defined in (5.20) yields a statically admissible stress field per element, σ∗
RL =

DLu∗
RL, which will be the stress field used in the ZZ-type error estimator to

provide upper error bounds in energy norm.

To strictly guarantee the upper bounding property we need to solve the local

problems exactly, or at least to solve them by using the stress-based formula-

tion of the FEM. This is not desirable as it requires a second implementation

of the FEM for this purpose. As an alternative, it is of common practice to

use the standard FEM for the local problem but with a higher interpolation

degree. In our particular implementation we have chosen p + 2, obtaining

satisfactory results, being p the FE interpolation degree.

So far, we have presented a local Neumann problem whose stress solution,

σ∗
RL, is statically admissible. Now we have to consider the requirements to

guarantee the solvability of the local problem (5.20). The condition is that

the traction field, t̃
T
L over ∂ΩK\ΓN has to be in equilibrium with the other

loads in the element. Alternatively, applying the virtual work principle the

condition can be seen as that the rigid body motions must not generate any

work. This can be expressed in the following equation:

∫

∂ΩK\ΓN

(Gσ∗
aux)

Tv dΓ+

∫

∂ΩK∩ΓN

tTv dΓ+

∫

ΩK

bTv dΩ = 0 ∀v ∈ V RBM

(5.21)

where V RBM is the Rigid Body Motion space. Then, the procedure to evalu-

ate the auxiliary recovered field, σ∗
aux, will impose (5.21) during the recovery

process as it will be shown next.
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5.2.2 The recovery procedure for the auxiliary stress field

The recovery procedure used for building up the auxiliary recovered field σ∗
aux

is based on the SPR-C implementation. The initial non-constrained system

(3.34) is built as usual, that is, minimizing and discretizing the functional de-

fined in (3.35). The difference between this procedure and the SPR-C recovery

process are the constraints added to the linear system of equations to solve

at each patch i. This Section will be focused in developing the constraints

needed to guarantee the solvability of the local problems.

In Figure 5.2 we present a patch with assembly node i. In cgFEM, all patches

have square elements and at most four elements, k = I, II, III, IV , k indi-

cating the relative position of the element with respect to the assembly node.

The recovery procedure will provide a local stress field σ̂∗ i
aux associated to the

patch i. To build up the global stress field σ∗
aux we use the Conjoint Polinomial

enhancement:

σ∗
aux(x) =

nv∑

i=1

Ni(x)σ̂
∗ i
aux(x) (5.22)

To guarantee the solvability of the local problems we need all loads applied

to the local problem to be in equilibrium, see (5.21). Substituting in (5.21)

the definition of the auxiliary stress field shown in (5.22) and applying the

partition of the unity to the other integrals, we obtain:

nv∑

i=1

∫

∂ΩK\ΓN

Nk
i Gσ̂∗ i

auxv dΓ +

nv∑

i=1

∫

∂ΩK∩ΓN

Nk
i t

Tv dΓ

+

nv∑

i=1

∫

ΩK

Nk
i b

Tv dΩ =

nv∑

i=1

∫

ΩK

(LTNk
i σ

h)Tv dΩ = 0 ∀v ∈ V RBM

(5.23)

We have a new term in(5.23),
∑nv

i=1

∫
ΩK (LTNk

i σ
h)Tv dΩ. This term is the

virtual work associated to the fictitious body forces already reported in 5.1.

This term accounts for the local equilibrium when Nk
i is applied to the con-

straint. Note that when the patch contributions are added this term vanishes,
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Figure 5.2: Local SdR and patch. The SdR is used to define the rotation virtual

displacement

but it is important when the patch contributions are used independently. The

next step consist in considering, independently, the contribution of each patch

i to (5.23). This yields the constraint to impose into each patch i for each of

the elements k of the patch:

∫

∂ΩK\ΓN

Nk
i (Gσ̂∗ i

aux)
Tv dΓ +

∫

∂ΩK∩ΓN

Nk
i t

Tv dΓ +

∫

ΩK

Nk
i b

Tv dΩ

=

∫

ΩK

(LTNk
i σ

h)Tv dΩ ∀v ∈ V RBM (5.24)

Note that when the auxiliary recovered field is evaluated with (5.22) for a

single element, the patch contributions are taken into account affected by the

partition on the unity. The same will occur with the constraint defined in
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(5.24), each of the integrals in (5.24) will be added, then:

nv∑

J=1

∫

∂ΩK\ΓN

Nk
J (Gσ̂∗ J

aux)
Tv dΓ =

∫

∂ΩK\ΓN

(Gσ∗
aux)

Tv dΓ (5.25)

nv∑

J=1

∫

∂ΩK∩ΓN

Nk
J t

Tv dΓ =

∫

∂ΩK∩ΓN

tTv dΓ (5.26)

nv∑

J=1

∫

ΩK

Nk
Jb

Tv dΩ =

∫

ΩK

bTv dΩ (5.27)

nv∑

J=1

∫

ΩK

(LTNk
Jσ

h)Tv dΩ = 0 (5.28)

recovering the initial condition (5.21) for the solvability of the local problem

at each element of the mesh.

During the recovery of the patch i we need to fulfill (5.24) at each element k of

the patch for all rigid body motion space. For instance we took a basis of the

rigid body motion space consisting of a displacement in x direction, another

in y direction and a pure rotation over the element center:

v =





[1, 0]T

[0, 1]T

[−r · sin(θ), r · cos(θ)]T
(5.29)

where r and θ are defined in Figure 5.2 for each element of the patch. So, for

each patch of four elements we have twelve constraints, nsole = 12, added via

the Lagrange Multipliers technique as in Section 3.2.6, to ensure solvability of

the local problem. The constraint for any rigid body motion v described in

(5.29) reads:

csol :

∫

∂ΩK\ΓN

Nk
i (Gσ̂∗ i

aux)
Tv dΓ = −

∫

∂ΩK∩ΓN

Nk
i t

Tv dΓ

−
∫

ΩK

Nk
i b

Tv dΩ +

∫

ΩK

(LTNk
i σ

h)Tv dΩ ∀k ∈ P i

(5.30)

Furthermore, in patches containing Neumann boundaries, we could also add

the constraint equation (3.39) described in Section 3.2.6, to further increase
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the quality of the recovered field over the boundary. Finally the functional to

be minimized at each patch P i reads:

Φ(A,λ) := Φ′(A) +
nbee∑

j

λj

(
cint(xj)

)
+

nsole∑

j

λj

(
csol
)

(5.31)

Considerations about the resolution of the system of equations

In this case, as in the SPR-C method, the information from the FE solution

is considered using the functional described in (3.35), after numerical inte-

gration. This will yield matrix M and the right hand side vector H defined

in (3.37). Then, we will add the constraint equations previously indicated.

Finally, optimizing the functional (5.31) we obtain a linear system of equa-

tions for each patch of elements i, containing a constraint matrix C and the

corresponding right hand side vector Λ similar to the one described in (3.42).

Now we should proceed to analyze the set of equations playing a role in this

case:

• Boundary equilibrium equation: the constrain equation is described in

(3.39) and imposed as in the SPR-C procedure.

• Solvability constraint: the constraint to be imposed is described in

(5.24). This equation has to be imposed once for each element of the

patch and for each virtual displacement described in (5.29). That means

a total of 12 equation per patch, independently of the degree of the recov-

ered field. It is also important to point out that some of these equations

are linearly dependent, increasing the difficulty for solving the patch

system.

The system is solved with the SVD technique as for the FER method. However

in this case, the size of the system is considerably smaller, yielding a better
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performance. For instance, for a 2nd order recovered field we have a total of

36 equations.

Note that, because of the lack of rotational equilibrium for the linear (Q4) FE

solution [123], this method can be directly applied only for quadratic elements

(Q8), as in the FER. For Q4 elements, it requires a post-processing of the FE

solution in order to correct the lack of rotational equilibrium. See [123] for

further information.

5.3 A fast SPR-based upper bounding technique.

The FUB technique

This technique is based on the used of the SPR-CD technique and the cor-

rection terms presented in Section 3.4 that takes into account the lacks of

internal and boundary equilibrium. These correction terms (5.32) require the

exact displacement solution to be evaluated. Thus, in the previous numerical

approach to obtain the upper error bound in energy norm presented in that

Section, we pretended to estimate the correction terms using the recovered

displacement field provided by the SPR-CD technique. In this Section we

are not interested in estimating them but in bounding them, thus obtaining

guaranteed upper error bounds in energy norm. As it will be shown through

this Section the computational cost needed to bound these correction terms

is negligible in comparison with the computational cost required to obtain

the numerical solution of the elasticity problem, as a difference from the two

previous techniques.

− 2

∫

Ω
(s∗σ)

Te dΩ and − 2

∫

ΓN

(r∗σ)
Te dΓ (5.32)
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These correction terms are first bounded with the Cauchy-Schwarz inequality.
∣∣∣∣
∫

Ω
(s∗σ)

Te dΩ

∣∣∣∣ ≤ ‖s∗σ‖L2(Ω) ‖e‖L2(Ω)

∣∣∣∣
∫

ΓN

(r∗σ)
Te dΓ

∣∣∣∣ ≤ ‖r∗σ‖L2(ΓN ) ‖e‖L2(ΓN )

(5.33)

In (5.33) we observe that the correction terms will be bounded if we obtain a

bound of the L2-norm of the error in the displacement field. With the Aubin-

Nitsche lemma [124], the L2-norm of the error in the displacement field can be

bounded with the respective error in energy norm for all the problem domain,

then:

‖e‖L2(Ω) ≤ CΩh |||e|||Ω
‖e‖L2(ΓN ) ≤ CΓh

1
2 |||e|||Ω

(5.34)

where h is a representative size of the mesh. In a h-uniform refinement process

h is the size of the element. However for h-adaptive refinement processes we

should take a representative value of the mesh size. In this case we have

related it with the Number of Degrees of Freedom (NDoF), then have defined

h :=
(

1
NDoF

) 1
d , where d is the dimension of the problem, d = 2 for 2D. CΩ

and CΓ are constants dependent on the problem, but independent on the mesh

size. Then we can bound the correction terms as follows:∣∣∣∣
∫

Ω
(s∗σ)

Te dΩ

∣∣∣∣ ≤ ‖s∗σ‖L2(Ω) ‖e‖L2(Ω) ≤ CΩh ‖s∗σ‖L2(Ω) |||e|||Ω
∣∣∣∣
∫

ΓN

(r∗σ)
Te dΓ

∣∣∣∣ ≤ ‖r∗σ‖L2(ΓN ) ‖e‖L2(ΓN ) ≤ CΓh
1
2 ‖r∗σ‖L2(ΓN ) |||e|||Ω

(5.35)

Note that correction terms in (5.32) can be taken as the residual of the recov-

ered solution. Let us define the residual of the recovered stress field σ∗
σ:

R∗(v) := l(v)− ā(σ∗
σ,σ(v)) ∀v ∈ V (5.36)

this expression can be rewritten as follows:

R∗(v) =
∑

K∈T

(∫

ΩK

bTv dΩ +

∫

ΓN∩∂ΩK

t Tv dΓ

)
−

−
∑

K∈T

∫

ΩK

(σ∗
σ)

Tε(v) dΩ ∀v ∈ V (5.37)

198 E. Nadal



5.3. A fast SPR-based upper bounding technique. The FUB technique

and integrating by parts:

R∗(v) =
∑

K∈T

(∫

ΩK

bTv dΩ +

∫

∂ΩK∩ΓN

t Tv dΓ

)
+

+
∑

K∈T

(∫

ΩK

(LTσ∗
σ)

Tv dΩ−
∫

∂ΩK

(Gσ∗
σ)

Tv dΓ

)
∀v ∈ V (5.38)

grouping terms and using the definition of −s∗σ = LTσ∗
σ + b in K and −r∗σ =

t−Gσ∗
σ only over ΓN due to the continuity of σ∗

σ, we end up with the following

expression:

R∗(v) = −
∑

K∈T

(∫

ΩK

(s∗σ)
Tv dΩ +

∫

∂ΩK∩ΓN

(r∗σ)
Tv dΓ

)
∀v ∈ V (5.39)

Adding the local contribution of all elements in the mesh and applying the

Cauchy-Schwartz inequality we obtain a expression similar to the one that

defines the upper bound of the correction terms.

|R∗(v)| ≤ ‖s∗σ‖L2(Ω) ‖v‖L2(Ω) + ‖r∗σ‖L2(ΓN ) ‖v‖L2(ΓN ) ∀v ∈ V (5.40)

Now, particularizing (5.40) for v = e and applying the inequality defined in

(5.35).

|R∗(e)| ≤ CΩh ‖s∗σ‖L2(Ω) |||e|||Ω + CΓh
1
2 ‖r∗σ‖L2(ΓN ) |||e|||Ω (5.41)

Because of the use of the SPR-CD recovery technique, the lack of equilib-

rium along the boundary is negligible, thus we can use the assumption that

CΓ = CΩ without loss in accuracy. Finally we square the contribution of the

lacks of equilibrium in order to further decrease the importance of the lack of

equilibrium along the boundary:

|R∗(e)| ≤ C |||e|||Ω
{
h2 ‖s∗σ‖2L2(Ω) + h ‖r∗σ‖2L2(ΓN )

} 1
2

(5.42)

where C =
√
2CΩ

1. Now, we rewrite expression (3.86) in the following manner:

|||e|||2Ω ≤
∫

Ω

(
σ∗
σ − σh

)
T

D−1
(
σ∗
σ − σh

)
dΩ + 2R∗(e) =

E
2
SPR−CD + 2R∗(e)

(5.43)

1Note that
√
2 is obtained when the Cauchy-Schwarz inequality is applied to (5.41).

∑n

i
ai ≤

(

n2 ∑n

i
a2
i

) 1
2 .
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substituting (5.42) in (5.43) we obtain:

|||e|||2Ω ≤ E
2
SPR−CD + 2C |||e|||Ω

{
h2 ‖s∗σ‖2L2(Ω) + h ‖r∗σ‖2L2(ΓN )

} 1
2

= E
2
SPR−CD + Ξ |||e|||Ω

(5.44)

Expression (5.44) is a second order degree polynomial in |||e|||Ω. The most

conservative root is providing the upper bound in energy norm up to a constant

C, see [73].

|||e|||Ω ≤ EFUBSPR−CD
:=

Ξ +
√

Ξ2 + 4E 2
SPR−CD

2
(5.45)

Now we have to investigate the convergence rate of each term in (5.44).

• ESPR−CD: this term is considered asymptotically exact because the re-

covery technique has a higher convergence rate than the FE solution

[67]. Thus its convergence rate could be considered the same as that of

the convergence rate of the error in energy norm, p, being p the order of

the FE interpolation.

• |||e|||Ω: obviously the convergence rate of this term is p.

• Ξ: the convergence rate of this term is not obvious. In our case, it will

depend on the convergence rate of ‖s∗σ‖L2(Ω) and ‖r∗σ‖L2(ΓN ). Assuming

that the recovered field has a convergence rate p+ q, q > 0, higher than

that for the FE solution, p, then the convergence of ‖s∗σ‖L2(Ω) would be

p + q − 1 and the convergence rate of ‖r∗σ‖L2(ΓN ) would be p + q − 1
2 .

Then, under this situation the convergence rate of Ξ could be considered

as p+ q.

In general we cannot confirm that q = 1. However we know that the recovered

field converges faster than the FE solution, q > 0. This means that these

correction terms will disappear during the refinement process. Therefore, the
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plain ZZ error estimator with the SPR-CD technique will provide asymptoti-

cally guaranteed upper error bounds.

Finally, we can conclude that if the recovered field converges faster than the FE

solution, we will obtain a stable upper bound, that is asymptotically effective.

Regarding to the constant C, some authors take the value C = 1 for error

estimation [62]. However this approach could be in some cases inaccurate and

in others it will provide under estimations of the true error. In the following

Section we propose a methodology to numerically compute this constant for

each problem.

5.3.1 Numerical evaluation of the constant CΩ

Expression (5.45) is an upper bound of the error in energy norm, but requires

the evaluation of a constant C which is specific for each problem and also for

each discretization type. This constant appears in the a priori error estimator

(5.34). This constant relates the L2-norm of the error in displacements with

the respective error in energy norm.

Prof. Stein’s group at Leibniz University is actively working in explicit residual-

type error estimators for the elasticity problem [62, 125]. These error estima-

tors also requires the evaluation of a constant with similar characteristics than

the constant presented in (5.34), but arising from the Korn inequality. Re-

cently, Prof. Stein presented a value for the constant they use in their explicit

residual type error estimator [63] only valid for linear triangular elements.

In this work we propose a methodology to numerically estimate the value

of the constant for any mesh type and also for any problem domain. This

methodology is based on the numerical evaluation of the constant CΩ in (5.34)

under a h-adaptive refinement process. LetH and h be the representative sizes

of two meshes such that H << h, uH be the FE solution of the finer mesh.

We can consider that uH is a good approximation to u in comparison with uh.
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Considering the Richardson extrapolation the following relations will hold.

∥∥∥u− uh
∥∥∥
2

L2(Ω)
≈
∥∥uH − uh

∥∥2
L2(Ω)

1 +
(
H
h

)2p+2

∣∣∣
∣∣∣
∣∣∣u− uh

∣∣∣
∣∣∣
∣∣∣
2

Ω
≈
∣∣∣∣∣∣uH − uh

∣∣∣∣∣∣2
Ω

1 +
(
H
h

)2p

(5.46)

where p is the degree of the FE solution. Under these assumptions, it imme-

diately follows the evaluation of the numerical approximation to CΩ, C
∗
Ω for

the mesh h.

CΩ ≈ C∗
Ω =

√√√√√
‖uH − uh‖2L2(Ω)

(
1 +

(
H
h

)2p)

h2 |||uH − uh|||2Ω
(
1 +

(
H
h

)2p+2
) (5.47)

Then constant C will be also approximated by C∗ =
√
2C∗

Ω. Note that we

are also assuming that CΓ ≈ C∗
Ω. In this case this is reasonable because

the SPR-CD technique provides a recovered stress field with a negligible lack

of boundary equilibrium, ‖r∗σ‖L2(ΓN ) << ‖s∗σ‖L2(Ω), as indicated before. For

other recovery processes, where the boundary equilibrium will not be fulfilled,

such as the plain SPR, this assumption does not hold.

Finally the upper bound of the error in energy norm reads:

|||e|||Ω . E
∗
FUBSPR−CD

:=
Ξ∗ +

√
(Ξ∗)2 + 4E 2

SPR−CD

2
(5.48)

where:

Ξ∗ = 2C∗
{
h2 ‖s∗σ‖2L2(Ω) + h ‖r∗σ‖2L2(Γ)

} 1
2

(5.49)

Note that with the described process, a estimation of the constant is not

available for the first iteration. For the evaluation of the constant C∗
Ω for

mesh n, n > 2, we take, in general a difference of two meshes, uH = un and

uh = un−2. But, for the first one (n = 1) we set C∗
Ω = 1 and for the second

one (n = 2) we take uh = u1 and uH as the solution of the current mesh.
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5.4 Numerical results

In this Section we compare the three bounding techniques presented before.

The upper error bound for the FUB technique is obtained with expression

(5.45), whereas the FER and the LM techniques evaluate the upper error

bound directly using the ZZ error estimator:

|||e|||2Ω ≤ E
2
FER =

∫

Ω

(
σ∗
FE − σh

)T
D−1

(
σ∗
FE − σh

)
dΩ (5.50)

|||e|||2Ω ≤ E
2
RL =

∫

Ω

(
σ∗
RL − σh

)T
D−1

(
σ∗
RL − σh

)
dΩ (5.51)

Recall that the fields σ∗
FER and σ∗

RL are statically admissible. Thus the ZZ

error estimator directly provides upper error bounds as explained in Section

3.4.

In this Section we will compare the results obtained with these three techniques

in terms of accuracy and performance. In all problems, plane strain and bi-

quadratic (Q8) elements will be considered for all analysis. In all problems a

2 × 2 square portion of the domain has been selected and the corresponding

Neumann boundary conditions applied. Note that 2 × 2 square domains have

been used in order to force that the nodes of the mesh coincides with the

sides of the domain. The general case in which the boundary of the domain

intersects the mesh is under development.

5.4.1 Problem 1a: 3rd order solution in a 2× 2 square

This problem has an analytical cubic solution in displacements with body

forces. The problem model, material properties and exact solution are repre-

sented in Figure 3.11. Table 5.2 shows the global effectivity index obtained

with the different upper error bounding techniques presented in this Section.

The results obtained with the SPR-CD are also shown for comparison. We

also observe that there are two columns referring to the FUB technique, each
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5. Upper error bounding techniques for the error in the energy norm

one with a different constant C as indicated. The results indicate that all the

bounding techniques are providing upper error bounds. The most accurate

one is the RL procedure while the FUBC=1
SPR−CD is obtaining the worst results,

in general. However we should recall that this last technique is constant de-

pendent, and as observed, as the value of the constant changes, the results also

change. When we estimate the value of the constant as described is Section

5.3.1, the results improve considerably. Table 5.2 also shows the value of the

constant C numerically evaluated as described in Section 5.3.1. We clearly

observe that the numerical approximation of C rapidly stabilizes.

Table 5.2: Problem 1a. Q8 uniform refinement. Values of the global effectivity index

θ for different bounding techniques and C∗ for the FUB technique.

DoF SPR-CD C∗ FUBC∗
SPR−CD

130 1.0031653 1.0000000 3.5674100

450 1.0051082 0.0244572 1.0317116

1,666 1.0061665 0.0244476 1.0243175

6,402 1.0067316 0.0244476 1.0196603

25,090 1.0070231 0.0244476 1.0166475

FUBC=1
SPR−CD

3.5674100

2.5444876

1.9824101

1.6611042

1.4723679

FER

1.1408109

1.1726613

1.2015884

1.1948981

1.2003460

RL

1.0056877

1.0035760

1.0020300

1.0011346

1.0006565

In Figure 5.3, the left hand side graph is a plot of the results shown in Table

5.2 for the different bounding techniques. On the right hand side, we plot the

computational cost of those techniques where the most remarkable fact is that

the FUBSPR−CD is almost inexpensive in comparison with the plain SPR-CD

technique as it only requires an additional cheap post process.

5.4.2 Problem 1c. 2× 2 square without body forces

In this case we present a third load set for the problem 1, see Section 3.5.1.

This problem has an analytical cubic solution in displacements with null body

forces. The problem model, material properties and exact solution are repre-

sented in Figure 5.4.
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Figure 5.3: Problem 1a. Q8 uniform refinement. Global effectivity index θ and overall

computational cost.
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Figure 5.4: Problem 1c. Model, material and analytical solution.

As in the previous example, Table 5.3 presents the results obtained for the

different bounding techniques. These results show the same tendencies for the

bounding techniques than in the previous example. The main difference is

that the effectivity index for the plain SPR-CD goes below 1. This is normal
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5. Upper error bounding techniques for the error in the energy norm

because the SPR-CD technique does not guarantee upper bounds. Despite of

this the rest of techniques are able to provide the upper bounds. Figure 5.5

represents the results presented in the Table 5.3. The effectivity index for the

FUBSPR−CD technique goes smoothly towards θ = 1 in both situations, when

C = 1 and also for C∗. The FER seems not to be converging to one, losing

the asymptotically exactness of the SPR-based technique, while the RL seems

to be converging. Regarding to the computational cost, we have obtained the

same results as before, as expected.

Table 5.3: Problem 1c. Q8 uniform refinement. Values of the global effectivity index

θ for different bounding techniques and C∗ for the FUB technique.

DoF SPR-CD C∗ FUBC∗
SPR−CD

130 1.0220357 1.0000000 1.2404561

450 0.9987000 1.4910874 1.1681756

1,666 0.9935364 1.5482592 1.0936909

6,402 0.9928568 1.3584752 1.0511103

25,090 0.9930377 1.2549370 1.0353162

FUBC=1
SPR−CD

1.2467417

1.1728618

1.0969724

1.0530188

1.0364043

FER

1.0317717

1.0498760

1.0825020

1.0677168

1.0708363

RL

1.0205229

1.0084493

1.0039569

1.0019774

1.0010347
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Figure 5.5: Problem 1c. Q8 uniform refinement. Global effectivity index θ and overall

computational cost.

Finally, Figure 5.6 shows the behavior of the FUBSPR−CD technique for dif-

ferent values of the constant C defined by the user. The value of the constant

does not affect to the asymptotic convergence of the technique to θ = 1. It
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affects to the accuracy of the estimate and also to the upper bound property

as very low values of C could lead to underestimations of the true error. For

instance, blue and red lines differ on the accuracy while maintaining the upper

bound property, however black line for C = 0.1 lose the upper bound property.

We should recall that the implemented method to numerically evaluate C∗ is

always providing upper error bounds.

102 103 104

1

1.5

2

2.5

DoF

θ

C = 5 C = 1

C = 0.1

Figure 5.6: Problem 1c. Q8 uniform refinement. Global effectivity index θ for the

FUBSPR−CD with different values of the constant C. Note that for C = 0.1 for the

finer mesh the effectivity is θ = 0.99595488728704.

5.4.3 Problem 1d. 2× 2 square. Thick-wall cylinder subjected

to internal pressure

This problem corresponds to the geometry of the problem 1 with the load set

corresponding to a thick-wall cylinder under internal pressure. The analytical

solution corresponds to problem 2, see Section 3.5.1. We have extracted from

the domain of the problem 2 a 2 × 2 area (green area in Figure 5.7) for the

analysis. This square area is the problem domain for the FE analysis where

we apply the corresponding Neumann boundary conditions. We have also
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a

b

P
L1

L2L3

L4

Figure 5.7: Problem 1d: The model of the problem corresponds to the green square

area extracted from the thick-wall cylinder geometry which corresponds to the geom-

etry of the problem 2.

constrained the rigid body motions. The problem model is represented in

Figure 5.7.

Table 5.4 presents the global effectivity index for the different error estimators.

As in the previous occasions, the bounding techniques provides upper error

bounds. For this particular case, the SPR-CD technique is also providing over

estimations of the true error in energy norm. Continuing with the format used

in previous problems, in Figure 5.8 we plot the effectivity evolution for the

techniques analyzed. We observe the smooth convergence of the FUBSPR−CD

technique in both situations, when C = 1 and for C∗. In this case it is easier

to observe that the FER, obtaining an accurate upper error bound, is not

converging to one but it stabilizes to a higher value. It is worthy to mention

that, as in the previous cases, the accuracy obtained with the RL technique is

remarkable.

5.5 Conclusions

In this Chapter we have presented some novel techniques that are able to

provide upper error bounds in energy norm. The FUBSPR−CD and the FER
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Table 5.4: Problem 1d. Q8 uniform refinement. Values of the global effectivity index

θ for different bounding techniques and C∗ for the FUB technique.

DoF SPR-CD C∗ FUBC∗
SPR−CD

130 1.0029377 1.0000000 1.1116927

450 1.0042645 1.1974190 1.0737540

1,666 1.0049761 1.2602164 1.0464060

6,402 1.0054346 1.0741445 1.0271042

25,090 1.0057159 0.9800008 1.0191599

FUBC=1
SPR−CD

1.1116927

1.0619881

1.0377170

1.0255938

1.0194361

FER

1.0931193

1.1185186

1.1355020

1.1379648

1.1409429

RL

1.0062968

1.0030439

1.0015428

1.0008145

1.0004522
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Figure 5.8: Problem 1d. Q8 uniform refinement. Global effectivity index θ and overall

computational cost.

techniques are based on recovery procedures, while the RL also includes solving

local Neumann problems.

The FUBSPR−CD is a SPR-based upper error bounding method for the linear

elasticity problem. This method consists of two steps, the first one uses a very

accurate and locally equilibrated recovery process, the SPR-CD. It usually

provides non-guaranteed upper error bounds. In order to guarantee the upper

bound property some correction terms introduced in [73] have to be taken

into consideration. The second step consists in evaluating upper bounds of

the correction terms. To bound these terms we use a constant dependent a

E. Nadal 209



5. Upper error bounding techniques for the error in the energy norm

priori error estimator. Additionally we also propose a method to numerically

evaluate the constant. The numerical results show the accuracy of the pro-

posed technique, and also its convergence from above to the exact solution.

The procedure for the evaluation of C∗ has also shown to be effective.

For the FER technique the results showed that the computational cost to

obtain the recovered field is quite high in comparison with standard recov-

ery procedures or the other bounding techniques, specially when compared to

FUBSPR−CD. The main advantage of the FER technique is that, in contrast

with other recovery procedures such as the SPR-CD, it is able to provide guar-

anteed error bounds without any correction terms. Nevertheless, the SPR-CD

has provided for these examples numerical upper bounds and error estimates

close to one. We are currently working to improve the computational cost

associated to the FER technique to make it competitive with traditional error

bounding techniques.

Finally the RL consist of two steps, the first one is to build a weakly equi-

librated traction field at each element by means of an SPR-based recovery

procedure, and the second one is to solve a local problem. The results show

the high accuracy of the method, however we have also obtained a high com-

putational cost.

The FUBSPR−CD, even when we need to evaluate a constant, is providing

the best results if we take into account both accuracy and efficiency. The

FUBSPR−CD is therefore a very competitive technique to provide upper error

bounds in energy norm for practical applications. In the future we pretend to

extend this method to GOA as indicated in Chapter 4.

210 E. Nadal



Chapter 6

Error estimation in the

recovered solution field

6.1 Introduction

For the recovery-based error estimators we usually compute an enhanced stress

solution which is compared with the raw FE stress solution. As explained in

Chapter 3 the enhanced solution has better properties, in terms of continuity

and equilibrium. Since we have evaluated an enhanced solution, obviously we

are interested in using it. However, in order to use it as the output of our FE

code we need a method to assess the quality of this magnitude, i. e., we need

to obtain an error estimate for the enhanced solution. Some authors [111]

evaluate the error of the plain SPR recovered field by comparing it with some

enhancements of the SPR solution, such as adding equilibrium and information

of the elasticity problem. Other authors [126] also use a recovered (recycled)

solution from the recovered solution.
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6. Error estimation in the recovered solution field

This Chapter will show a technique to estimate the error, for the enhanced

SPR-CD technique presented in Section 3.3. Recovery error estimation tech-

niques are based on the assumption that the recovered solution is more ac-

curate than the FE solution. A sufficiently accurate estimation of the error

in energy norm of the recovered solution could lead to refinement processes

based on the accuracy of the recovered solution instead of that of the FE

solution. This could result in a considerable reduction of the computational

cost that would be particularly interesting, for example, in optimization pro-

cesses whose efficiency would be significantly increased as the required level

of accuracy would be achieved with a considerable lower number of degrees of

freedom.

Figure 6.1 shows an scheme of the evolution of the exact errors in energy

norm of the finite element and recovered solutions. Note that in the SPR-CD

technique the recovered solution is in practice more accurate than the FE

solution and has a higher convergence rate. Therefore, the number of degrees of

freedom NB required by the recovered solution to reach a prescribed accuracy

level defined by blue horizontal line in Figure 6.1 is considerably smaller than

that required by the FE solution (NC). We can thus define a highly efficient

h-adaptive refinement process that considers the accuracy of the recovered

solution instead of the accuracy of the FE solution so that the refinement

process finishes when the error in the recovered solution is smaller than the

prescribed value.

In this Chapter we will first show the initial developments that finally led to

an heuristic expression that can be used to efficiently estimate the error in

energy norm of the recovered solution σ∗
σ, initially evaluated to estimate the

error of the FE solution uh. We also show some numerical results accompanied

with the proposed h-adaptive technique. The results show a good accuracy in

the error estimation and also an important reduction in computational cost

in comparison with standard h-adaptive refinement procedures based on the

error in energy norm of the FE solution.
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Figure 6.1: h-adaptive refinement scheme.

6.2 Error norm representation for the recovered so-

lution

The purpose of this Section is to introduce an error measure for the SPR-CD

stress recovered field. We have developed an expression which allows us to

evaluate the error of the nearly-statically recovered stress field σ∗
σ.

The SPR-CD procedure yields a post-processed stress field σ∗
σ which is taken

as an enhanced approximation to the exact stresses, σ, more accurate than

σh. As explained in Section 3.3, the recovered stress σ∗
σ is continuous but it

has a lack of internal equilibrium s∗σ and also a lack of boundary equilibrium

r∗σ.
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Theorem 6.1. Under the assumptions presented so far, the following expres-

sion evaluates the error in energy norm of the recovered stress field.

∣∣∣∣∣∣e∗
σ

∣∣∣∣∣∣2
Ω
= |||u− u∗

σ|||2Ω = ā (σ − σ∗
σ,σ − σ∗

σ)

= −
∫

Ω
(s∗σ)

Te∗σ dΩ−
∫

ΓN

(r∗σ)
Te∗σ dΓ

(6.1)

being e∗σ the error in displacements corresponding to the recovered solution σ∗
σ

such that σ∗
σ = σ(u∗

σ) = σ(u− e∗σ). Note that u∗
σ and e∗σ will not be explicitly

evaluated.

Proof.

−
∫

Ω
(s∗σ)

Te∗σ dΩ−
∫

ΓN

(r∗σ)
Te∗σ dΓ

=

∫

Ω
(LTσ∗

σ + b)Te∗σ dΩ−
∫

ΓN

(Gσ∗
σ − t)Te∗σ dΓ

=

∫

Ω
(LTσ(u∗

σ)− LTσ(u))Te∗σ dΩ−
∫

ΓN

(Gσ(u∗
σ)−Gσ(u))Te∗σ dΓ

=

∫

Ω
(−LTσ(e∗σ))

Te∗σ dΩ +

∫

ΓN

(Gσ(e∗σ))
Te∗σ dΓ

=

∫

Ω
σ(e∗σ)

Tε(e∗σ) dΩ−
∫

ΓN

(Gσ(e∗σ))
Te∗σ dΓ +

∫

ΓN

(Gσ(e∗σ))
Te∗σ dΓ

=

∫

Ω
σ(e∗σ)

Tε(e∗σ) dΩ

= |||e∗σ|||2Ω (6.2)

In the following we will show how to evaluate an upper error bound of
∣∣∣∣∣∣e∗

σ

∣∣∣∣∣∣2
Ω

and also several heuristic error estimators making use of the recovered solution

already evaluated with the SPR-CD technique. Regarding the evaluation of

an upper bound, operating with (6.1) considering Cauchy-Schwartz inequality
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we will have:

|||e∗σ|||2Ω = −
∫

Ω
(s∗σ)

Te∗σ dΩ−
∫

ΓN

(r∗σ)
Te∗σ dΓ

≤ (‖s∗σ‖L2(Ω) + ‖r∗σ‖L2(Ω)) ‖e∗σ‖L2(Ω) (6.3)

During the SPR-CD recovery process, the functional (3.46) tries to minimize∥∥u∗
u − uh

∥∥
L2(Pi)

, locally. In addition, as u∗
σ would be a recovered displace-

ments field, laying in a so-called ’broken space’ richer than V h, we could

assume that the L2-norm of the error of the recovered solution is smaller than

the L2 norm of the error of the FE solution:

‖e∗σ‖L2(Ω) . ‖e‖L2(Ω) (6.4)

Considering the assumption in (6.4) in (6.3) we would obtain an upper error

bound of the recovered solution:

|||e∗σ|||Ω . (‖s∗σ‖L2(Ω) + ‖r∗σ‖L2(Ω)) ‖e‖L2(Ω) (6.5)

Note that ‖e‖L2(Ω) is unknown in general. One possibility is to replace it by

‖eu‖L2(Ω), recall that eu = u∗
u − uh obtaining a computational version of the

upper bound. The implicit idea is to replace ‖e∗σ‖L2(Ω) by ‖eu‖L2(Ω), i.e. we

have replaced the error in the recovered solution u∗
σ by the estimated error of

the FE solution uh, to obtain a bound of the error in the recovered solution.

Following this idea we can also derive expressions for the error estimator. We

can replace e∗σ = u−u∗
σ by eu = u∗

u −uh in (6.1), and we define the following

error estimator E ∗
1 in (6.6a) to check if it could provide an indication of the

error level in energy norm of the recovered solution σ∗
σ. We also defined the

error indicators E ∗
2 and E ∗

3 as described in (6.6b) and (6.6c) to force the result
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to be positive:

E
∗
1 =

√
−
∫

Ω
(s∗σ)Teu dΩ−

∫

Γ
(r∗σ)Teu dΓ (6.6a)

E
∗
2 =

√∑

K

(∣∣∣∣
∫

K
(s∗σ)Teu dΩ

∣∣∣∣+
∣∣∣∣
∫

∂K∪ΓN

(r∗σ)Teu dΓ

∣∣∣∣
)

(6.6b)

E
∗
3 =

√∫

Ω
|(s∗σ)Teu| dΩ +

∫

Γ
|(r∗σ)Teu| dΓ (6.6c)

In (6.6b) the value of the integrals at each element are forced to be positive.

In (6.6c) the integrands themselves are forced to be positive. Note that this

is a reasonable assumption. For example, if we assume r∗σ = 0, see (6.2).

0 ≤ σ(e∗σ)ε(e
∗
σ) = −(s∗σ)

Te∗σ =
∣∣(s∗σ)Te∗σ

∣∣ (6.7)

As s∗σ and e∗σ are consistent (s∗σ would be the defaults of equilibrium corre-

sponding to u∗
σ, whose associated error is e∗σ) then 0 ≤ −(s∗σ)

Te∗σ. However, in
(6.6c) e∗σ has been substituted by eu. The terms s∗σ and eu are non-consistent

and as a result −(s∗σ)
Teu could be negative. This suggests the use of the

approximation in (6.6c), −(s∗σ)
Te∗σ ≈

∣∣(s∗σ)Teu
∣∣.

6.3 h-adaptive refinement process

In the previous Section we have presented several methods to estimate the

error of the recovered solution. The numerical results will indicate that the

estimator E ∗
3 provides very accurate results with an excellent global effectivity

index. Now, we are going to show how to use this error estimator of the

recovered solution to define a h-adaptive refinement processes.

During a h-adaptive refinement process, using a standard FE compilation, the

process reads as follows:
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1. Generate a FE mesh.

2. Solve the FE problem.

3. Estimate the error of the FE solution (locally and globally).

4. If target error is smaller than the estimated error of the FE solution

continue to step 5, else stop the process.

5. Generate a h-adapted mesh using the local FE error estimation

6. Go to step 2.

In this classical situation we are estimating the error of the raw FE solution,

then we are using the raw FE solution (uh,σh) as output. However, when we

use our recovery procedure we have an improved solution (u∗
u,σ

∗
σ) available.

So far, we were unable to estimate the error of this last solution, therefore

this output was not reliable. However, with the contribution presented in this

Chapter we have a methodology to obtain an accurate estimation of the error

of this recovered solution, E ∗
3 , thus we can use (u∗

u,σ
∗
σ) as the output for the

analysis. The information about the error estimation in the recovered solution

could then be used in the h-adaptive refinement process to obtain a solution

(u∗
u,σ

∗
σ) with the required accuracy.

The h-adaptive procedure proposed in this Section is guided by the well-

established techniques based on the error estimation of the FE solution. As

a consequence of the refinement process the error of the FE solution and the

error of the recovered solution will simultaneously decrease. An scheme of the

proposed h-adaptive process is in Figure 6.1. The main difference between the

traditional refinement process and the proposed one is, simply, the stopping

criterion. We simply propose to stop the h-adaptive refinement process when

the estimated error of the recovered solution is smaller than the target error.

As the recovered solution reaches the prescribed error level with less degrees

of freedom than the FE solution, this method produces important savings in

the total computational cost of the analysis. The process would then be as

follows:
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1. Generate a FE mesh.

2. Solve the FE problem.

3. Evaluate the local error estimate of FE solution (uh,σh).

4. Evaluate the global value of the error estimate of the recovered solution

(u∗
u,σ

∗
σ) (costless procedure).

5. If target error is smaller than the error of the recovered solution continue

to step 6, else stop the process.

6. Generate a h-adapted mesh using the local FE error estimation

7. Go to step 2.

6.4 Numerical Examples

This section will in the first place show the accuracy of the error estimator

for the recovered solution, both at global and local levels. After that we

will present the results obtained with the new h-adaptive process previously

described.

6.4.1 Accuracy of the error estimator for the recovered solu-

tion

In this Section we have two objectives regarding he error estimation of the

recovered stress field. First we will check if the error indicators E ∗
i ’s provide a

rough idea about the error level of the recovered solution. Then we will also

check if the local evaluations, at element level, of E ∗
i ’s could roughly describe

the distribution of the error of the recovered solution. As far as we know, there

is no any strict mathematical relation between E ∗ and the error indicators
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E ∗
i that could make them provide accurate evaluations of E ∗. However, the

numerical results obtained show that the E ∗
i ’s capture the order of magnitude

of E ∗. In particular, E ∗
3 provides an accurate evaluation of E ∗ ( E ∗

3 ≈ E ∗) and
very similar error distributions.

Finally we will also introduce the h-adaptive refinement process based on

the error estimation of the recovered solution. The results will shown the

importance of this new process in computational cost saving while maintaining

the accuracy of the solution.

Problem 1b: 2× 2 plate with 4rd order solution

This problem considers a 4th order displacements field over an infinite domain.

A 2×2 square portion has been modeled. The corresponding body loads and

Neumann conditions have been imposed. For further description of the prob-

lem see Section 3.5.1.

Figure 6.2 shows the evolution of the global effectivity index θ considering the

error estimates E ∗
i defined in (6.6). Note that in this case we have consid-

ered the lack of equilibrium both, in the internal and boundary equilibrium

equations.

The results show that the error estimators E ∗
1 , E ∗

2 and E ∗
3 capture the order

of magnitude of the exact error in energy norm of the recovered solution. In

particular, the results obtained with E ∗
3 provide error effectivity indexes very

close to one, the desired value.

Moreover, in Figure 6.3 we show the local error evaluated by E ∗
3 |K and the

exact error of the recovered field |||e∗σ|||K for a sequence of h-adapted meshes.

Index K indicates that the quantities are evaluated at element level. For this
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Figure 6.2: Problem 1b. Global effectivity index during the h-adaptive refinement

process.

problem both results are quite similar, thus E ∗
3 |K is a good indicator at local

level of the error of the recovered solution.

Problem 2: Thick-wall cylinder

Let us now consider a pipe under internal pressure. For further description of

the problem see Section 3.5.1. Figure 6.4 shows the evolution of the effectivity

index for the different error estimates.

For this problem we have also evaluated the distribution of the exact energy

norm of the recovered solution |||e∗|||K and the distribution of the error es-

timate E ∗
3 |K . In Figure 6.5 we have represented these results for a sequence

of h-adapted meshes. We can observe that both error distributions are quite

similar. These results show that the error estimator for the recovered solutions

E ∗
3 has a good behavior at global level, but also at local level.
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Figure 6.3: Problem 1b. Q4. Local exact error of the recovered solution (left), local

error estimates using E ∗
3 estimator (right).
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Figure 6.4: Problem 2. Global effectivity index during the h-adaptive refinement

process.

Problem 3: L-Shape plate

Consider the problem of an infinite plate with a V-notch subjected to tractions.

We have considered the Mode I loading condition. The model of the problem

and further information can be found in Section 3.5.1.

Figure 6.6 shows again that E ∗
3 exhibits the best results for linear and quadratic

elements. In the last meshes of the analysis we always obtain a decrease of

the effectivity index. This is because for the firsts meshes of each analysis

the mesh increases its element density around the reentrant corner increasing

the refinement level as we get closer to the singular point. The FE code

can reach up to 22 refinement levels. In the last mesh the refinement level

around the singularity requires higher refinement levels. The result is that,

as higher refinement levels cannot be reached, we obtain an area around the

singularity with elements of uniform size as opposite to graded meshes towards

the singularity. This produces pollution errors and a decrease in the accuracy

of the error estimation that leads to worse effectivity indexes.
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Figure 6.5: Problem 2. Q4. Local exact error of the recovered solution (left), local

error estimates using E ∗
3 estimator (right).
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Figure 6.6: Problem 3. Global effectivity index during the h-adaptive refinement

process.

We show the local error index E ∗
3 |K and the exact error of the recovered solu-

tion, |||e∗|||K , in Figure 6.7. Observe that even for this singular problem the

results are quite similar, concluding again that E ∗
3 |K is a good error indicator.

6.4.2 h-adaptive process

The following results compare the traditional h-adaptive process with the pro-

posed one that uses the recovered solution. Figures 6.8 and 6.9 show the

evolution of the errors during the h-adaptive refinement process and the com-

putational cost to obtain a certain accuracy level, for Problem 2 for Q4 and

Q8 elements, see details in Section 3.5.1.

The horizontal black lines in Figures 6.8 and 6.9 represent the error level

of the solution prescribed by the analyst. Red and brown lines represent

the error (exact and estimated) of the standard FE output (uh,σh). Blue

and black lines represent the error (exact and estimated) of the recovered
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Figure 6.7: Problem 3. Q4. Local exact error of the recovered solution (left), local

error estimates using E ∗
3 estimator (right).
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Figure 6.8: Problem 2. h-adaptive analysis with Q4 elements. The black line repre-

sents the prescribed relative error in energy norm (1%).
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field (u∗
u,σ

∗
σ). We can observe that the error estimation of recovered solution

accurately represents the exact error for both linear (Q4) and quadratic (Q8)

elements. The Figures show a considerable improvement of the h-adaptive

process to reach a prescribed error level. Note that, for Q4 elements, to reach

the prescribed relative error in energy norm (1%), the standard h-adaptive

strategy based on the accuracy of the FE solution would stop the process

after an analysis with 30492 degrees of freedom and 170.2 s whereas with the

proposed h-adaptive method based on the accuracy of the recovered solution

the process would stop with only 654 degrees of freedom and 11.7 s. With Q8

elements reaching a 0.05% prescribed error, the standard h-adaptive procedure

would stop the process after an analysis with 12102 degrees of freedom and

41.53 s, whereas the proposed method would only require 3728 degrees of

freedom and 21.8 s.

6.5 Conclusions

In this Chapter we have presented several heuristic methods to estimate the

error of the recovered solution, E ∗
1 , E ∗

2 and E ∗
3 . We have validated them using

several benchmark problems with satisfactory results. The best performance

in all situations have been obtained by E ∗
3 both, globally and locally. E ∗

3 has

been selected as the error estimator for the recovered solution. It will be used

in Chapter 7 for shape optimization problems.

As mentioned before this is an heuristic method to evaluate the error of the

recovered solution obtained with the SPR-CD process, however, the results

obtained are very promising. This kind of techniques could represent a new

paradigm leading to substantially more efficient FE analysis. Evidently this

will require further studies to provide mathematical support to the results

presented in this Chapter.
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Chapter 7

Structural Shape

Optimization

7.1 Introduction and motivation

As mentioned in Chapter 1 the final objective of this thesis is to obtain an

efficient and also accurate FE code to be used as the lower level in a shape

optimization process. In this Chapter we will use the cgFEM code developed

in this thesis as the lower level of the optimization process. We will also

compare the cgFEM implementation with a commercial code in order to check

the performance of the proposed implementation. The cgFEM code includes

the improvements with respect to traditional FE implementations described

along the thesis, such as the sharing information procedures and the solving

improvements described in Chapter 2. We also benefit from the advantages of

the accuracy of the recovered solution for which we have developed an error

estimator in Chapter 6. All these ingredients make the cgFEM code a serious

alternative for structural shape optimizations processes.
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7. Structural Shape Optimization

The optimization processes used in this Section is based on Genetic Algo-

rithms and requires a high number of evaluations of the objective function.

In the particular case of structural shape optimization, each evaluation of the

objective function requires to solve a full elasticity problem that it is highly

time consuming, hence the importance in the efficiency of the cgFEM solver.

The discretization error of each individual must be controlled to ensure the

convergence of the optimization process [1, 2]. This justifies the use of adaptive

procedures to ensure that the prescribed accuracy level is obtained with the

minimum computational cost. In any case, adaptive analysis involves a consid-

erable computational cost. It is thus necessary to develop new methodologies

with a higher computational efficiency and accuracy. The SPR-CD technique,

introduced in this thesis, produces highly accurate recovered stress fields with

a reduced computational cost because of the mesh structure, as indicated in

Section 3.3. This recovery technique in combination the ZZ error estimator

yields very accurate error estimations which is used for the h-adaptive refine-

ment process based on element splitting. This element splitting procedure,

and thus the regeneration of the meshes for the adaptive analysis, is very ef-

ficient thanks to the Cartesian grid. The numerical results will provide the

evidence in the decrease of the total computational cost.

In an optimization process some parts of the geometry do not change along the

process. The cgFEM code has been used to easily share information between

individuals, reusing information previously evaluated in other individuals, as

introduced in Section 2.3.8. This means that a significant part of the FE anal-

ysis of the current individual has been evaluated before (for other individuals)

and stored in memory. Then, for the current individual the pre-evaluated data

will not be computed again, it will only be loaded from memory, thus reducing

the total amount of calculations to be performed.

The objective of this Chapter is to use the cgFEM code for structural shape

optimization in order to check its performance, robustness and reliability. We
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7.2. The optimization problem

will also compare the cgFEM code with a commercial version of the traditional

FEM code in order to check the behavior of the cgFEM technology.

7.2 The optimization problem

The optimization problem can be formally defined as follows: given a deci-

sion space (search space) X, and an objective space (objective values) Y , the

objective function f : X −→ Y and a set of constraints gi:

min f(x)

where x = {xi} i = 1, 2, ..., n

under g(x) ≤ {gj(x)} j = 1, 2, ...,m

ai ≤ xi ≤ bi i = 1, 2, ..., n

(7.1)

In the particular case of structural optimization the objective function (OF)

f is, normally, the weight of the component, xi are the design variables (for

example coordinates of control points) that define the geometry, gj are the

constraints expressed, normally, in terms of displacements or stresses and ai
and bi define the side constraints.

There are different optimization algorithms that can be used in the higher

level to create the different geometries to be analyzed during the optimization

process. The benefits of the use of the cgFEM methodology can be obtained

with any optimization algorithm. In our case, in the numerical examples, we

have considered the use of the genetic algorithm (GA) proposed by Storn and

Pricce [127]. More precisely, we use the Differential Evolution (DE) algorithm,

version DE1.
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7.3 Numerical Results

In this Section we first present the results of a first problem with known exact

geometry in order to test the optimization algorithm and also the cgFEM im-

plementation coupled with the optimization software. The second problem

does not have analytical solution but it has a more complex geometry. The

results we will measure are the evolution of the computational cost during the

optimization process, the discretization error in energy norm achieved at each

individual and also the evolution of the area during the process.

For these numerical examples we have used a PC DELL PE1950 equipped

with two processors Intel Xeon E5430 with 32Gb of memory. The operative

system is Windows Server 2003 Enterprise x64 SP2. For the FE analysis we

have used Q4 and Q8 elements, always under a h-adaptive refinement process.

7.3.1 Optimization problem 1. Cross section under pressure

over internal circular shape

In order to observe the performance of the proposed solver, we compare it

with a commercial code such as ANSYS R© 12.1. We also compare the dif-

ferent performance when the raw FE solution is used as output or, instead,

the output is the recovered solution. The data and the design variables are

shown in Figure 7.1. The external boundary is represented by using a cubic

spline, defined by points 1, 2, and 3. The optimal shape for this problem

corresponds to a thick-wall cylinder under internal pressure. The analytical

solution corresponds with problem 2, see Section 3.5.1. Considering a yield

stress Sy = 2 · 106, the analytical optimal shape is a thick-wall cylinder with

external circular surface of radius R0 = 10.67033824461. The optimal area is

Aopt = 69.787307715081. Analytically, the optimal solution is obtained mini-

mizing the external radius in order to obtain a Von Mises stress value, at the

internal radius, equal to the yield stress.
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Figure 7.1: Optimization problem 1. Model and data. The optimal shape corresponds

to a thick-wall cylinder under internal pressure as represented in gray.

Table 7.1 shows the constraints imposed over the design variables and their

range. The number of individuals at each iteration is 30 and the number of

iterations is 150. We have performed analyses with Q4 and Q8 elements for

different prescribed error levels, γ, to study the influence of the error in energy

norm on the computational cost and on the accuracy of the solution provided

by the optimization process. We have considered two types of h-adaptive

analysis techniques to evaluate the numerical solution of each geometry.

• Strategy a σh. We have used the FE solution σh as the output of the

analysis together with a criterion to stop the adaptive process based on

ESPR−CD, see (3.80).

• Strategy b σh. We have used the recovered solution σ∗
σ and a criterion to

stop the adaptive process based on the error estimator for this solution

E ∗
3 , see (6.6c). Details of the refinement process can be found in Section

6.4.2.
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Variables Description Range Constrain Reference solution

V1 x point 1 [5, 24] 20

V2 y point 2 [5, 23] 19

V3 x point 2 [5, 23] V 3 < V 1− 0.5 19

V4 y point 3 [5, 24] V 4 > V 2 + 0.5 20

Table 7.1: Optimization problem 1. Design variables constraints and reference solu-

tion.

First we present the results referring to Q4 elements to evaluate the time re-

duction for the strategy b in comparison with the strategy a. Later, we will

compare the results obtained with the cgFEM code with those obtained with

ANSYS R© 12.1 as a solver. Figure 7.2 shows at the left, the evolution of the

exact error in area through the optimization process. First we can observe

that the final error in area of the optimization process strongly depends on

the prescribed error in energy norm during the FE analysis. These results

are in agreement with [2, 4] where the importance of the error control for

optimization processes was emphasized. The second aspect that we can ob-

serve is that for the same prescribed error (γ = 5% or γ = 2%) we observe a

higher accuracy when strategy b used. This is because of the higher accuracy

of the recovered field along the boundaries, which is usually the critical area

for design. The right graph in Figure 7.2 shows that the discretization error

obtained during the optimization process, is below the prescribed one. The

discretization error at each generation is evaluated as the mean discretization

error of the individuals in that generation.

Figure 7.3 shows a graph comparing the accumulative computational cost ob-

tained for both strategies and for the different prescribed error levels. Compar-

ing the continuous lines for γ ≤ 5% we observe a reduction in computational

cost, but it is more interesting for γ ≤ 2% where the reduction in computa-

tional cost is around 50% for the same level of accuracy. Hence the importance

of using the strategy b for optimization processes.
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Figure 7.2: Optimization problem 1. Q4. Evolution of cylinder optimization con-

sidering the error estimation of the FE solution (σh) or the recovered one (σ∗
σ), for

different prescribed errors levels γ. Left : Evolution of exact error in area with respect

to the optimal analytical solution. Right : Real error in energy norm.
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Figure 7.3: Optimization problem 1. Q4. Evolution of the optimization process

considering the error estimation of the FE solution (σh) or the recovered one (σ∗
σ),

for different prescribed errors levels γ. Evolution of the accumulative computational

cost.

We will now present the results concerning Q8 elements. We will compare these

results, obtained with the cgFEM solver and strategy b, with those obtained
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7. Structural Shape Optimization

with ANSYS R© 12.1. The analysis in ANSYS R© 12.1 have been carried out with

the element PLANE 82, plane strain configuration. The h-adaptive refinement

process has been carried out using the ADAPT function implemented with the

default configuration. The left hand side of Figure 7.4 shows that both solvers

are giving the similar results. The graph on the right shows the mean error in

energy norm at each iteration. In this case we have chosen the criterion γ ≤ 1

(black line). We observe that the error obtained with cgFEM solver is always

below the prescribed one, however when ANSYS R© 12.1 is the solver, it can

not achieve the objective for the firsts iterations. This is not critical for the

optimization processes because a higher error at the beginning of the process

does not affect to the final result, but shows that cgFEM has been more robust

than ANSYS R© 12.1, always providing FE models with the prescribed accuracy

level.
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Figure 7.4: Optimization problem 1. Q8. Evolution of cylinder optimization consid-

ering the cgFEM as a solver (red line) or ANSYS R© 12.1 (blue line) for γ ≤ 1. Left :

Evolution of exact error in area with respect to the optimal analytical solution. Right :

Real error in energy norm.

In Figure 7.5 we plot the accumulated computational cost of the optimization

process for the cgFEM and also ANSYS R© 12.1. As it can be appreciated,

the cgFEM solver is around a 30% faster than the commercial code. It is

important to mention that the cgFEM solver is fully implemented in Matlab R©

2010b, without any compiled routine. This reduction in computational cost is

due to the hierarchical data structure of the cgFEM method that allows a fast
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data sharing as indicated in Section 2.3.8. Additionally the use of the strategy

b also improves considerably the computational cost, making it competitive

with commercial codes.
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Figure 7.5: Optimization problem 1. Q8. Evolution of the optimization process con-

sidering the cgFEM as a solver (red line) or ANSYS R© 12.1 (blue line) for prescribed

relative error γ ≤ 1. Evolution of the accumulative computational cost.

7.3.2 Optimization problem 2. Gravity dam

This problem consist in the structural optimization of the section of a gravity

dam. The optimization process will change the shape of the internal surface in

order to decrease the dam volume. Figure 7.6a shows the global problem model

and the material data. The optimization process consists in 100 iterations with

30 individuals in each generation. Figure 7.7a shows a detail of the internal

hole defined by a spline (points 22, 23, 24, 25, 26, 27 and 21) and by a straight

line (points 21 and 22). Material properties are defined in Figure 7.7b. Table

7.1 shows the input constraints of the design variables and its range. We

have performed several analysis with Q4 and Q8 elements using a h-adaptive

refinement process for this problem.
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Figure 7.6: Optimization problem 2. Gravity dam. Model of the problem.

The left graph in Figure 7.9 represents the evolution of the area through the

optimization process for the strategy a (red line) and also for strategy b. The

convergence in both methods is similar, as expected. For this problem, we

have implemented a variation of the prescribed error (γ) along the optimization

process as shown by the in black line on the right graph in Figure 7.9. Initially

we allow a 20% of error in energy norm and then we gradually decrease it to

2.5% in 20 iterations. Afterward it will remain constant till the end of the

optimization process. This allows to increase the speed of the calculations

at the initial iterations of the optimization process without affecting the final

results. Further research should be addressed in this sense for further increase

the efficiency of the optimization process. Both techniques always achieve an

error smaller than the prescribed one.

As shown in 7.10 when solving this problem with cgFEM and strategy a (red

line) the computational cost becomes unaffordable for the prescribed evolu-

tion of the error in energy norm presented in Figure 7.9. Thus, we had to

stop the process after 30 generations. However, when strategy b is used, the

computational cost decreases considerably, making possible to solve the whole

optimization process, that is, reaching 100 generations, with a reasonable com-

putational cost.
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Figure 7.8: Optimization problem 2. Gravity dam. Detail of the parametric hole and

material properties.
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Figure 7.9: Optimization problem 2. Gravity dam. Q4. Evolution of the dam

optimization considering the cgFEM as a solver. Using strategy a (red line) or strategy

b (blue line) for γ variable. Left : Evolution of the area. Right : Evolution of the

estimated error in energy norm.

As for the previous example, we compare the results for Q8 obtained with

cgFEM with strategy b with those obtained with the commercial code ANSYS R©

12.1. Figure 7.11 shows on the left, the evolution of the area of the optimiza-

tion process. In this example it seems, because of the scale ranges, that they

stabilize around a different value of area, however their values are actually

similar. For the cgFEM the optimal value is 2486.252888 and for ANSYS R©

12.1 it is 2435.90375. This difference could be due to the randomness of the
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Variables Description Range Constrain Reference solution

V1 x point 23 [50, 60] 50

V2 y point 23 [2, 10] 30

V3 x point 24 [41, 50] V 3 < V 1− 2 47

V4 y point 24 [3, 20] V 4 > V 2 + 3 7

V5 x point 25 [25, 48] V 5 < V 3− 3 40

V6 y point 25 [3, 25] V 6 > V 4 + 2 10

V7 x point 26 [25, 39] V 7 < V 5− 3 33

V8 y point 26 [3, 20] V 8 < V 6− 2 7

V9 y point 27 [23, 30] V 9 < V 7− 2 30

V10 y point 27 [2, 10] V 10 < V 8− 3 3

Table 7.2: Optimization problem 2. Gravity dam. Design variables constraints and

reference solution.
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Figure 7.10: Optimization problem 2. Q4. Evolution of the dam optimization con-

sidering the cgFEM as a solver. Using strategy a (red line) or strategy b (blue line)

for γ variable. Evolution of the accumulative computational cost.

GA used and also because of the Neumann boundary conditions which in

ANSYS R© 12.1 are limited to a linear evolution in the curves of the wall of

the dam where the hydrostatic pressure is applied. On the right hand side of

the Figure, we observe that both approaches provide an error in energy norm

smaller than the prescribed one, as expected.
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Figure 7.11: Optimization problem 2. Q8. Evolution of optimization process consid-

ering the cgFEM with strategy b as a solver (red line) or ANSYS R© 12.1 (blue line) for

variable prescribed error. Left : Evolution of the total area. Right : Estimated error

in energy norm.

Finally, Figure 7.12 shows the evolution of the computational cost for solving

the optimization process with the commercial code and the cgFEM technology

proposed in this work. We observe that for this case the computational cost

is similar in both analysis, however the cgFEM remains competitive when we

consider that is fully implemented in Matlab R© 2010b. Future compiled ver-

sions of the cgFEM technology would considerably improve its performance.

7.4 Conclusions

In this Chapter we have presented the cgFEM code working as the lower level

of a structural shape optimization process based on genetic algorithms. We

have used all the developments described along this thesis in order to improve

the performance of the cgFEM technology obtaining satisfactory results. The

results show that, even when the cgFEM is fully implemented in Matlab R©

2010b, the overall computational cost of the optimization process is compara-
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Figure 7.12: Optimization problem 2. Q8. Evolution of optimization process con-

sidering the cgFEM strategy b as a solver (red line) or ANSYS R© 12.1 (blue line) for

variable prescribed error. Evolution of the accumulative computational cost.

ble to the one obtained with commercial codes. Future compiled versions of

the cgFEM technology will considerably improve its performance.

The results presented in this Chapter also show the excellent behavior of the

h-adaptive refinement process and of both, the error estimation of the FEM

solution and the error estimation of the recovered solution, providing always

results at the prescribed level of accuracy. We should also remark the im-

provement in computational cost obtained when the strategy b is used.

Future research can be addresses in the field of the prescribed error evolution

and is influence in the final shape in order to decrease the computational cost

of the optimization process which so far, continues being excessive, especially

if evolutionary algorithms are used.
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Chapter 8

Conclusions

During this thesis we have introduced the cgFEM technology for solving the

linear elasticity problem. This method has proved its competitiveness against

the traditional FEM with a variety of numerical examples showed in this work.

The key points of the increased performance of the cgFEM technology are:

• The use of Cartesian grids that allows making the mesh independent of

the geometry embedding the problem domain into a bigger domain for

which the process of creating a FE mesh results trivial. The geometry

is transferred to the FE model via an intersection process that will de-

fine the relative position of the elements with the geometry. After the

intersection process we obtain internal elements, which do not require

any special treatment, external elements that will not be considered in

the analysis and intersected elements, whose element matrices will be

obtained using a special integration procedure. This process avoids the

tedious meshing process of the traditional FEM codes, see Chapter 2.

• The hierarchical data structure, easily built due to the Cartesian grid

mesh structure, allows for an easy to implement (and computationally
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efficient) data sharing process. This process permits to share integration

information between elements, such as the stiffness and, in general, all

basic element data. The sharing data process can be applied into the

h-adaptive refinement process (vertical data sharing) or also in the struc-

tural shape optimization process (horizontal data sharing), see Chapter

2.

• The robust SPR-CD technique. This versatile technique is the kernel

of the error estimation process of the cgFEM code. This technique in

combination with the ZZ error estimation is used to drive the h-adaptive

refinement process based on the error in energy norm. Additionally the

SPR-CD technique provides numerical upper error bounds and guaran-

teed lower error bounds in energy norm, see Chapter 3. Furthermore, the

error estimation in QoI and also the numerical bounding techniques in

QoI are based on the used of the SPR-CD technique, see Chapter 4. The

FUB upper bound technique of the error in energy norm is also based

on the SPR-CD technique results. And finally, the error estimation of

the recovered solution provided by the SPR-CD technique is also based

on a fast post-processing the SPR-CD output, see Chapter 6. Then

the SPR-CD technique is mainly present in all the developments of this

thesis.

• The introduction of a heuristic error estimator for the recovered field

provided by the SPR-CD technique. In Chapter 6 we have introduced

three practical error estimators for the recovered solution provided by

the SPR-CD technique. This fact allows to use the recovered solution, of

a better quality than the raw FE solution, as output of the cgFEM code.

This permits to evaluate the solution for a prescribed error level with

a considerably reduction in the computational cost as the results have

shown.

All these features of the cgFEM code presented along this thesis make the

code competitive for practical applications. We consider remarkable the sub-

stitution of the FE solution by the recovered solution provided by the SPR-CD
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technique. This is possible because of the introduction of the corresponding

error estimator for the recovered stress field. This introduces an important

increase in the performance of the cgFEM code. In order to check the compet-

itiveness of the code, we have used the cgFEM code as the solver of structural

shape optimization processes (see Chapter 7). This has allowed to apply all

the improvements described in the previous enumeration and control its per-

formance and robustness in a vast number of different geometries. The results

obtained for the structural shape optimization processes presented show the

robustness of the cgFEM code . A basic comparison with a commercial code

has shown that the FE code developed in this thesis is at least as fast as the

commercial code. This can be considered as an outstanding result taking into

account that our code has been fully implemented in Matlab R© 2010b.

Along this thesis we have also explained the possibility to interpret the dual

problem, used to evaluate the error in QoIs, as an abstract elasticity prob-

lem. In Chapter 4 we present some relations for practical QoIs that permit

to interpret the abstract dual load as a set of traction, body forces, initial

stresses, initial strains,... This allowed us to use the SPR-CD techniques to

evaluate a recovered field of the dual problem locally equilibrated. Combining

the recovered solutions of the primal problem and also of the dual one in a

modified version of the ZZ error estimator we have obtained very accurate

error estimations of the error in the QoI as well as error bounds, see Chapter

4.

Finally, we would like to remark that we have introduced error bounding tech-

niques based on recovery procedures, which are able to provide guaranteed

upper error bounds in energy norm. Among these three techniques we would

like to highlight the behavior of the FUB technique which provides accurate re-

sults at a reasonable computational cost and that could be easily implemented

into existing commercial codes. The FUB technique consists in a post-process

of the SPR-CD recovered stress field. This post-process corrects the ZZ error

estimation accounting for the lacks of internal and boundary equilibrium of

the recovered solution, see Chapter 5.
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8. Conclusions

8.1 Future works

This work has opened several lines of research for the cgFEM technology. Now

we will summarize the most important:

• To extend the cgFEM technology to 3D. The crucial aspect of this point

is to accurately and also efficiently intersect the 3D geometry with the

mesh structure. This process is even more complex when consider-

ing that the 3D body is defined by Non-Uniform Rational B-Splines

(NURBS). A great effort in this sense is being done in the Department

of Mechanical Engineering and Materials at UPV.

• To enrich the FE basis functions. It would be very interesting to rep-

resent weak discontinuities, such as internal material interfaces or even

strong discontinuities such as cracks. This task should be addressed by

implementing XFEM in the cgFEM code. This would allow to easily

deal with crack propagation and would provide interesting capabilities

to the cgFEM code.

• To use the upper bounding procedures introduced in Chapter 5 to the

error estimation in QoI. The FUB technique is easy to implement and

computationally efficient. Thus, it would be interesting to apply this

technique to obtain guaranteed, and accurate, bounds in the QoI.

• Another interesting point of this thesis is that we have introduce a

method to evaluate the error of the recovered solution provided by the

SPR-CD technique. This allows to use the recovered fields as the stan-

dard output of the cgFEM code. However, this error estimation requires

consistent mathematical support.
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2012; 28(1):1–11.
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[54] Löhner R, Cebral J, Castro M, Baum JD, Luo H, Mestreau E, Soto O.

Adaptive Embedded Unstructured Grid Methods. Mecánica Computa-

cional Vol. XXIII, Buscaglia G, Dari E, Zamonsky O (eds.). Bariloche,

2004.

[55] Fuenmayor FJ, Oliver JL. Criteria to achieve nearly optimal meshes in

the h-adaptive finite element mehod. International Journal for Numer-

ical Methods in Engineering 1996; 39(23):4039–4061.
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[81] Ladevèze P, Leguillon D. Error estimate procedure in the finite element

method and applications. SIAM Journal on Numerical Analysis 1983;

20(3):485–509.
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[99] Babuška I, Strouboulis T, Upadhyay CS, Gangaraj SK, Copps K. Valida-

tion of a posteriori error estimators by numerical approach. International

Journal for Numerical Methods in Engineering 1994; 37(7):1073–1123.
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[108] Nadal E, Bordas S, Ródenas JJ, Tarancón JE, Tur M. Accurate Stress

Recovery for the Two-Dimensional Fixed Grid Finite Element Method.

Procedings of the Tenth International Conference on Computational

Structures Technology, 2010; 1–20.

[109] Timoshenko SP, Goodier JN. Theory of Elasticity. 2nd edn., McGraw-

Hill: New York, 1951.

[110] Tabbara M, Blacker T, Belytschko T. Finite element derivative recov-

ery by moving least square interpolants. Computer Methods in Applied

Mechanics and Engineering 1994; 117(1-2):211–223.

[111] Wiberg NE, Abdulwahab F. Error estimation with postprocessed finite

element solutions. Computers & Structures 1997; 64(1-4):113–137.
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Appendix A

Displacement-based Moving

Least Squares recovery with

constrains. The MLS-CD

technique

A.1 Introduction

In this thesis we have described several SPR-based recovery processes, such

as the plain SPR, the SPR-C or the SPR-CD technique. However there exist

other recovery processes which are more versatile in the sense that they do

not require a mesh to be used and can therefore be directly applied to any

type of BVP’s solver, such as the meshless methods. In this appendix we will

explain the details of a moving least squares recovery technique so-called MLS-

CD which is a displacement based version of the one introduced by Ródenas

et. al. [79]. The MLS-CX technique proposed in [79] had similar properties
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to the ones obtained with the SPR-C technique. Analogously, the technique

here proposed is similar to the SPR-CD technique. The MLS-CD includes

the boundary equilibrium, internal equilibrium and Dirichlet constraints, to

further increase the accuracy of both, the displacement and stress recovered

fields.

A.2 The MLS-CD recovery technique

As introduced in Section 3, one way to estimate the error in energy norm of

the FE solution is to use the ZZ error estimator (2.28). The use of the ZZ error

estimator requires an improved stress field. During this work we have proposed

to use the SPR-CD recovery process for that purpose, however we would like

to briefly introduce this MLS-based recovery processes. The output of the

MLS-CD recovery process will also be a recovered pair (u∗
MLS−CD,σ

∗
MLS−CD)

as in the SPR-CD technique. The error in energy norm will be estimated as

follows:

E
2
MLS−CD :=

∫

Ω
(σ∗

MLS−CD − σh)TD−1(σ∗
MLS−CD − σh) dΩ (A.1)

A.2.1 MLS recovery process

The MLS technique is based on a weighted least squares formulation biased

towards the test point where the value of the function has to be obtained. The

technique considers a polynomial expansion for each one of the components of

the recovered displacement field in the form:

u∗k(x) = p(x)ak(x) k = x, y (A.2)
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where p represents a polynomial basis of one degree higher than the FE inter-

polation degree and ak are unknown coefficients:

p(x) = {1 x y x2 xy y2 . . .} (A.3)

ak(x) = {a0k(x) a1k(x) a2k(x) a3k(x) a4k(x) a5k(x) . . .}T (A.4)

For 2D, x = (x, y), the expression to evaluate the recovered displacement field

reads:

u∗
MLS−CD(x) =

{
u∗x(x)
u∗y(x)

}
= P(x)A(x) =

[
p(x) 0

0 p(x)

]{
ax(x)

ay(x)

}
(A.5)

Notice that the main difference between the SPR-CD and the MLS-CD tech-

nique is that in this case the coefficients ak are not constant. The format of

(A.5), considering the two components of the displacement vector in a single

equation, will result useful to impose the constraints required to satisfy the

equilibrium equations and the Dirichlet boundary conditions.

Suppose that χ is a point within Ωx, being Ωx the support corresponding to a

point x defined by a distance (radius) RΩx
. The MLS approximation for each

displacement component at χ is given by:

u∗k(x,χ) = p(χ)ak(x) ∀χ ∈ Ωx, k = x, y (A.6)

To obtain the coefficients A we have adopted the Continuous Moving Least

Squares Approximation described in [128]. The following functional will be

minimized:

J ′(x) =
∫

Ωx

W (x− χ)
[
u∗
MLS−CD (x,χ)− uh (χ)

]2
dχ

=

∫

Ωx

W (x− χ)
[
P(χ)A(x)− uh (χ)

]2
dχ (A.7)

where W is the MLS weighting function, which in this work has been taken

as the fourth-order spline, commonly used in the MLS related literature:

W (x− χ) =

{
1− 6s2 + 8s3 − 3s4 if |s| ≤ 1

0 if |s| > 1
(A.8)
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where s denotes the normalised distance function given by

s =
‖x− χ‖
RΩx

(A.9)

A.2.2 Satisfaction of the Dirichlet equation

We would like to enforce the satisfaction of the Dirichlet boundary conditions

along the Dirichlet boundaries. In order to avoid the introduction of disconti-

nuities in the recovered field, we have followed a nearest point approach. The

nearest point approach can be used to impose the satisfaction of both, Dirich-

let and Neumann boundary conditions. The approach introduces the exact

satisfaction of the boundary conditions in a smooth continuous manner. As

the constraint is smoothly introduced there is no jump when the support does

not longer intersects Γ. For a point x ∈ Ω whose support Ωx intersects the

boundary Γ, the constraints are considered only in the closest points χj ∈ Γ

on the boundaries within the support of x, as shown in Figure A.1. Note

that we can have more than one nearest point for a given support, as is the

case of a point x approaching a corner where we take one point for each side

of the corner (see Figure A.1). In this case, two different points have to be

considered on the boundary to avoid jumps induced by the different boundary

conditions when crossing the diagonal that bisects the corner.

The MLS functional expressed in its continuous version (see [128]) and incor-

porating the boundary constraints reads:

J ′′(x) = J ′(x) +
nDbc∑

j=1

W ′ (x− χj

) [
u∗k
(
x,χj

)
− uexk

(
χj

)]2
(A.10)

= J ′(x) +
nDbc∑

j=1

W ′ (x− χj

) [
ckP(χj)A (x)− uexk

(
χj

)]2
k = x, y

where nDbc is the number of points χj on the boundary where the known

boundary constraints uexk is the exact displacement field at Dirichlet bound-
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Figure A.1: MLS support with boundary conditions applied on the nearest boundary

points.

aries and ck is the displacement component selector. In the previous equations

W ′ is a weighting function defined as:

W ′(x− χj) =
W (x− χj)

s
=





1

s
− 6s+ 8s2 − 3s3 if |s| ≤ 1

0 if |s| > 1
(A.11)

This function has two main characteristics:

1. W ′ includes the weighting function W such that the term for the bound-

ary constraint is introduced smoothly into the functional J ′(x). As a

result, the recovered stress field will be continuous in Ω

2. W ′ also includes s−1 such that the weight of the boundary constraint in

J ′′(x) increases as we approach the boundary (when x → χj s → 0),

therefore u∗
MLS−CD will tend to exactly satisfy boundary condition as

x → χj (see Figure A.2). Note that to estimate the error using the

numerical integration in (A.1), the value of σ∗
MLS−CD is never evaluated

on the boundary (where s = 0) because the integration points considered
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are always inside the elements. If the recovered displacement field has

to be evaluated along the boundary, we will replace this formulation by

the standard Lagrange Multiplier technique as presented in Section 3.3

to impose the Dirichlet boundary conditions.

Figure A.2: Satisfaction of boundary conditions. We observe two zones corresponding

to the support of points A and B, ΩA and ΩB , with B closer to the boundary. The red

line indicates the exact value at the boundary imposed (displacement or traction).

We observe that when the support point gets closer to the boundary (A → B),

the surface (shadowed red area) represents more accurately the exact value at the

boundary. When the support point is on the boundary the recovered field (stress or

displacement) will represent the boundary conditions exactly.

A.2.3 Satisfaction of the equilibrium equation

The boundary equilibrium equation must be satisfied at each point along the

contour. In [73, 71, 74], where an SPR-based technique was used, the au-

thors enforced the satisfaction of the boundary conditions in patches along

the boundary using Lagrange Multipliers to impose the appropriate constraints

between the unknown coefficients to be evaluated. In the case of the Dirichlet

boundary conditions, this approach produces discontinuities in a MLS formu-

lation as we move from a support fully in the interior of the domain to a
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support intersecting the boundary. As previously mentioned we have followed

a nearest point approach to introduces the exact satisfaction of the boundary

equilibrium equation in a smooth continuous manner.

Let us express the stress vector σ∗
MLS−CD(x,χ) in a coordinate system (x′, y′)

aligned with the contour at χj such that x′ is the outward normal vector,

rotated an angle α with respect to x:

σ∗′
MLS−CD(x,χ) = R(α)σ∗

MLS−CD(x) (A.12)

where R is the stress rotation matrix

R =



rx′x′

ry′y′

rx′y′


 =




cos2 α sin2 α sin(2α)

sin2 α cos2 α − sin(2α)

− sin(2α)/2 sin(2α)/2 cos(2α)


 (A.13)

The MLS functional expressed in its continuous version and incorporating the

boundary constraints reads:

J(x) = J ′′(x) +
nNbc∑

j=1

W ′ (x− χj

) [
σ′∗
k

(
x,χj

)
− σex

k′
(
χj

)]2
(A.14)

where nNbc is the number of nearest points along the boundaries with the

support of x.

In order to add this constrain we need an expression for the stress field

σ∗′
k (x,χ) in the support. First we define the strain field components as follows:

ε∗km(x,χ) =
1

2

∂u∗k(x,χ)
∂m

+
1

2

∂u∗m(x,χ)

∂k

=
1

2

[
∂p(χ)

∂m
ak(x) + p(χ)

∂ak(x)

∂m

]

+
1

2

[
∂p(χ)

∂k
am(x) + p(χ)

∂am(x)

∂k

]
(A.15)

where k = x, y and m = x, y indicate the components of the strain field, the

values of ak(x) and am(x) and their derivatives are unknown. The stress field
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is evaluated as usual, using the Hook’s law matrix D:

σ∗
MLS−CD(x,χ) = D





ε∗xx(x,χ)
ε∗yy(x,χ)
2ε∗xy(x,χ)





(A.16)

For the evaluation of the derivatives of the displacement field needed to evalu-

ate the strain field we use the following methodology. Evaluating ∂J ′′/∂A = 0

results in the following linear system of equations that could be used to eval-

uate A

M(x)A(x) = G(x) (A.17)

M (x) =

∫

Ωx

W (x− χ)PT (χ)P (χ) dχ+
nDbc∑

j=1

W ′ (x− χj

)
PT (χj)c

T
k ckP(χj)

G (x) =

∫

Ωx

W (x− χ)PT (χ)σh (χ) dχ+
nDbc∑

j=1

W ′ (x− χj

)
PT (χj)c

T
k u

ex
k

(
χj

)

(A.18)

As an example, we now show how to evaluate the derivatives in the x direction.

Differentiating (A.17) with respect to x we obtain:

∂M(x)

∂x
A(x) +M(x)

∂A(x)

∂x
=

∂G(x)

∂x
(A.19)

then,

∂A(x)

∂x
=

{
∂ax(x)

∂x
∂ay(x)

∂x

}
= M−1(x)

[
G(x)

∂x
− ∂M(x)

∂x
A(x)

]
(A.20)

Using this definition for the derivatives of the coefficient vector A(x) we eval-

uate the strain field defined in (A.15) and therefore the stress field can be
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evaluated as follows:

σ∗
MLS−CD(x,χ) =

D








∂p(χ)
∂x 0

0 ∂p(χ)
∂y

∂p(χ)
∂y

∂p(χ)
∂x


A(x)−



p(χ) 0

0 0

0 p(χ)


M−1(x)

∂M(x)

∂x
A(x)

−




0 0

0 p(χ)

p(χ) 0


M−1(x)

∂M(x)

∂y
A(x)

+



p(χ) 0

0 0

0 p(χ)


M−1(x)

∂G(x)

∂x
+




0 0

0 p(χ)

p(χ) 0


M−1(x)

∂G(x)

∂y





= D

{[
LP(χ)−P∗

x(χ)M
−1(x)

∂M(x)

∂x
−P∗

y(χ)M
−1(x)

∂M(x)

∂y

]
A(x)

+P∗
x(χ)M

−1(x)
∂G(x)

∂x
+P∗

y(χ)M
−1(x)

∂G(x)

∂y

}

= H(x,χ)A(x) + F(x,χ)

(A.21)

where the partial derivatives of M and G with respect, for example, to x are

∂M

∂x
=

∫

Ωx

∂W (x− χ)

∂x
PT (χ)P(χ) dχ+

nDbc∑

j=1

∂W ′(x− χj)

∂x
PT (χj)c

T
k ckP(χj) (A.22)

∂G

∂x
=

∫

Ωx

∂W (x− χ)

∂x
PT (χ)σh(χ) dχ+

nDbc∑

j=1

∂W ′(x− χj)

∂x
PT (χj)c

T
k u

ex
k (χj) (A.23)

where, differentiating (A.8) and (A.11):

∂W (x− χ)

∂x
=

∂W (x− χ)

∂s

∂s

∂x
(A.24)
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∂W ′ (x− χj

)

∂x
=

∂W ′ (x− χj

)

∂s

∂s

∂x
(A.25)

In these equations ∂s/∂x can be obtained from (A.9) or, alternatively, from

(A.36) for the case shown in the next Section.

Finally the functional (A.14) can be rewritten as follows:

J(x) = J ′′(x)+
nNbc∑

j=1

W ′ (x− χj

) [
rk′
[
H(x,χj)A(x) + F(x,χj)

]
− σex

k′
(
χj

)]2

(A.26)

Notice that when evaluating the derivatives at this step the full functional

J(x) is not considered (as it is being built). Then the boundary equilibrium is

not strictly fulfilled, although it has a high level of accuracy. In practice can

be considered that the boundary equilibrium is satisfied.

A.2.4 Satisfaction of the internal equilibrium equation

In addition to the enforcement of the Dirichlet boundary conditions and the

boundary equilibrium, we will also consider the satisfaction of the internal

equilibrium equation using the Lagrange Multipliers technique. Thus, we will

try to enforce the recovered stress field σ∗
MLS−CD to satisfy the internal equi-

librium equation:

LTσ∗
MLS−CD + b = 0 (A.27)

In order to build the constrain equations we need to evaluate the first deriva-

tives of expression (A.21). The following equation represents the derivate in
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x direction for the stress field.

∂σ∗
MLS−CD

∂x

= D

{[
∂LP(χ)

∂x

− ∂P∗
x(χ)

∂x
M−1(x)

∂M(x)

∂x
−P∗

x(χ)
∂M−1(x)

∂x

∂M(x)

∂x
−P∗

x(χ)M
−1(x)

∂2M(x)

∂x2

−
∂P∗

y(χ)

∂x
M−1(x)

∂M(x)

∂x
−P∗

x(χ)
∂M−1(x)

∂x

∂M(x)

∂x
−P∗

x(χ)M
−1(x)

∂2M(x)

∂yx

]

A(x)

+

[
LP(χ)−P∗

x(χ)M
−1(x)

∂M(x)

∂x
−P∗

y(χ)M
−1(x)

∂M(x)

∂y

]
∂A(x)

∂x

+
∂P∗

x(χ)

∂x
M−1(x)

∂G(x)

∂x
+P∗

x(χ)
∂M−1(x)

∂x

∂G(x)

∂x
−P∗

x(χ)M
−1(x)

∂2M(x)

∂x2

+
∂P∗

y(χ)

∂x
M−1(x)

∂G(x)

∂x
−P∗

x(χ)
∂M−1(x)

∂x

∂G(x)

∂x
−P∗

x(χ)M
−1(x)

∂2G(x)

∂yx

}

(A.28)

Equation (A.28) has new terms that have to be evaluated. To obtain this we

can consider now functional J(x) in (A.26) because we have already evaluated

the terms corresponding to boundary equilibrium.

• the first derivative of the M matrix:

∂M

∂k
=

∫

Ωx

∂W (x− χ)

∂k
PT (χ)P(χ) dχ

+
nDbc∑

j=1

∂W ′(x− χj)

∂k
PT (χj)c

T
k ckP(χj)

+
nNbc∑

j=1

∂2W ′(x− χj)

∂k
HT (x,χj)r

T
k′rk′H(x,χj)

(A.29)
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• the first derivative of the G matrix:

∂G

∂x
=

∫

Ωx

∂W (x− χl)

∂x
PT (χl)σ

h(χl) dχ

+
nDbc∑

j=1

∂W ′(x− χj)

∂x
PT (χj)c

T
k u

ex
k (χj)

+

nNbc∑

j=1

∂2W ′(x− χj)

∂k
HT (x,χj)r

T
k′σ

′ex
k (χj)

(A.30)

• the derivative of the inverse of the M matrix:

∂M−1(x)

∂k
= −M−1(x)

∂M(x)

∂k
M−1(x) (A.31)

• the second derivative of the M matrix:

∂2M(x)

∂km
=

∫

Ωx

∂2W (x− χ)

∂km
PT (χ)P(χ) dχ

+
nbc∑

j=1

∂2W ′(x− χj)

∂km
PT (χj)c

T
k ckP(χj)

+
nbc∑

j=1

∂2W ′(x− χj)

∂km
HT (x,χj)r

T
k′rk′H(x,χj)

(A.32)

• the second derivative of the G vector:

∂2G(x)

∂km
=

∫

Ωx

∂W (x− χ)

∂x
PT (χ)σh(χ) dχ

+
nbc∑

j=1

∂W ′(x− χj)

∂x
PT (χj)c

T
k u

ex
k (χj)

+
nbc∑

j=1

∂2W ′(x− χj)

∂km
HT (x,χj)r

T
k′σ

′ex
k (χj)

(A.33)
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The use of the Lagrange Multipliers technique to impose the equilibrium con-

straint (A.27) in (A.26) leads to the following system of equations:
[
M CT

C 0

][
A

λ

]
=

[
G

B

]
(A.34)

where C and B are the terms used to impose the constraint equations and λ

is the vector of Lagrange Multipliers.

However, in (A.28), it was assumed that A is evaluated solving MA = G,

although, operating by blocks in (A.34) the following system of equations is

obtained:

MA+CTλ = G (A.35)

Hence, in the formulation proposed in this paper we have neglected the term

CTλ when evaluating the partial derivatives of A. Evidently, this implies that

the internal equilibrium equation is not fully satisfied, leading to a nearly exact

satisfaction of the internal equilibrium equation as in the SPR-CD technique.

A.2.5 Visibility

For problems with re-entrant corners a visibility criterion is used to modify

the normalised distance s in (A.9). The standard weight function depends on

the distance between the central point of the support and the sampling points,

decreasing as the sampling points are located farther from the center [76].

Consider a domain with a re-entrant corner as shown in Figure A.3. The value

of the weight function for a sampling point χl, considering a centre point x

whose support contains the singularity at χλ, diminishes with the visibility of

χl from x such that, for points that cannot be directly viewed from x, instead

of (A.9), the following equation is used

s =
‖x− χλ‖+ ‖χl − χλ‖

RΩx

(A.36)
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Figure A.3: Domain with re-entrant corner.

A.2.6 Stress splitting for singular problems

It is well known that smoothing techniques perform badly when the solution

contains a singularity. In Section 3.3 a technique that decomposes the stress

field in singular and smooth parts in order to improve the accuracy of SPR-

based error estimators was proposed. The exact solution (u,σ) corresponding

to a singular problem can be expressed as the contribution of a smooth pair,

(usmo,σsmo), and a singular pair, (using,σsing), then we will apply the same

ideas than the ones presented in Section 3.3 for the SPR-CD.

A.3 Concluding remarks

In this Appendix we have introduced a displacement recovery procedure based

on an equilibrated moving least squares approach applied to the cgFEM code,

the MLS-CD technique. The MLS-CD also includes the splitting procedure

presented in Section 3.3 for singular fields and also a visibility criterion for
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re-entrant corners. The MLS-CD technique provides an improved continuous

recovered pair (u∗
MLS−CD,σ

∗
MLS−CD) over all the domain which can be used in

combination with the ZZ error estimator to obtain extremely accurate error

estimators in energy norm. This technique has the advantage with respect

to the SPR-CD that can be directly applied to meshless methods due to the

MLS-CD only uses a cloud of sampling points (integration points) and does not

attend to the mesh structure. However the computational cost is considerably

higher than the one required by the SPR-CD. Therefore the improvement in

accuracy does not justify its use when the mesh structure is already present

as in the cgFEM technique.
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