

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/chapter/10.1007%2F978-3-642-28872-2_33

http://hdl.handle.net/10251/35768

Springer Verlag (Germany)

Silva Galiana, JF.; Tamarit Muñoz, S.; Tomás Franco, C. (2012). System dependence
graphs in sequential Erlang. En Fundamental Approaches to Software Engineering.
Springer Verlag (Germany). 486-500. doi:10.1007/978-3-642-28872-2_33.

System Dependence Graphs
in Sequential Erlang?

Josep Silva, Salvador Tamarit and César Tomás

Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain.
{jsilva,stamarit,ctomas}@dsic.upv.es

Abstract. The system dependence graph (SDG) is a data structure
used in the imperative paradigm for different static analysis, and par-
ticularly, for program slicing. Program slicing allows us to determine
the part of a program (called slice) that influences a given variable of
interest. Thanks to the SDG, we can produce precise slices for interpro-
cedural programs. Unfortunately, the SDG cannot be used in the func-
tional paradigm due to important features that are not considered in
this formalism (e.g., pattern matching, higher-order, composite expres-
sions, etc.). In this work we propose the first adaptation of the SDG to
a functional language facing these problems. We take Erlang as the host
language and we adapt the algorithms used to slice the SDG to produce
precise slices of Erlang interprocedural programs. As a proof-of-concept,
we have implemented a program slicer for Erlang based on our SDGs.

1 Introduction

Program slicing is a general technique of program analysis and transformation
whose main aim is to extract the part of a program (the so-called slice) that
influences or is influenced by a given point of interest (called slicing criterion)
[18, 15]. Program slicing can be dynamic (if we only consider one particular
execution of the program) or static (if we consider all possible executions). While
the dynamic version is based on a data structure representing the particular
execution (a trace) [7, 1], the static version has been traditionally based on a
data structure called program dependence graph (PDG) [4] that represents all
statements in a program with nodes and their control and data dependencies
with edges. Once the PDG is computed, slicing is reduced to a graph reachability
problem, and slices can be computed in linear time.

Unfortunately, the PDG is imprecise when we use it to slice interprocedural
programs, and an improved version called system dependence graph (SDG) [6]
has been defined. The SDG has the advantage that it records the calling context
of each function call and can distinguish between different calls. This allows us
to define algorithms that are more precise in the interprocedural case.

? This work has been partially supported by the Spanish Ministerio de Ciencia e
Innovación under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana
under grant PROMETEO/2011/052. Salvador Tamarit was partially supported by
the Spanish MICINN under FPI grant BES-2009-015019.

(1) main() ->
(2) Sum = 0,
(3) I = 1,
(4) {Result,_} = while(Sum,I,11),
(5) Result.

(6) while(Sum,I,Top) ->
(7) if
(8) I /= Top -> {NSum,NI} = a(Sum,I),
(9) while(NSum,NI,Top-1)
(10) I == Top -> {Sum,Top};
(11) end.

(12) a(X,Y) ->
(13) {add(X,Y),
(14) fun(Z)->add(Z,1) end(Y)}.

(15) add(A,0) -> A;
(16) add(A,B) -> A+B.

Fig. 1: Original Program

(1) main() ->
(2)
(3) I = 1,
(4) {_,_} = while(undef,I,11).
(5)

(6) while(_,I,Top) ->
(7) if
(8) I /= Top -> {_,NI} = a(undef,I),
(9) while(undef,NI,Top)
(10)
(11) end.

(12) a(_,Y)->
(13) {undef,
(14) fun(Z)->add(Z,1) end(Y)}.

(15)
(16) add(A,B) -> A+B.

Fig. 2: Sliced Program

In this paper we adapt the SDG to the functional language Erlang. This
adaptation is interesting because it is the first adaptation of the SDG to a
functional language. Functional languages pose new difficulties in the SDG, and
in the definition of algorithms to produce precise slices. For instance, Erlang does
not contain loop commands such as while, repeat or for. All loops are made
through recursion. In Erlang, variables can only be assigned once, and pattern
matching is used to select one of the clauses of a given function. In addition,
we can use higher-order functions and other syntactical constructs not present
in imperative programs. All these features make the traditional SDG definition
useless for Erlang, and a non-trivial redefinition is needed.

Example 1. The interprocedural Erlang program1 of Figure 1 is an Erlang trans-
lation of an example in [6]. We take as the slicing criterion the expression
add(Z,1) in line (14). This means that we are interested in those parts of
the code that might affect the value produced by the expression add(Z,1). A
precise slice w.r.t. this slicing criterion would discard lines (2), (5), (10) and
(15), and also replace some parameters by anonymous variables (represented
by underscore), and some expressions by a representation of an undefined value
(atom undef). This is exactly the result computed by the slicing algorithm de-
scribed in this paper and shown in Figure 2. Note that the resulting program is
still executable.

1 We refer those readers non familiar with Erlang syntax to Section 3 where we provide
a brief introduction to Erlang.

2

The structure of the paper is as follows. Section 2 presents the related work.
Section 3 introduces some preliminaries. The Erlang Dependence Graph is intro-
duced in Section 4, and the slicing algorithm is presented in Section 5. Finally,
Section 6 presents some future work and concludes.

2 Related work

Program slicing has been traditionally associated with the imperative paradigm.
Practically all slicing-based techniques have been defined in the context of im-
perative programs and very few works exist for functional languages (notable ex-
ceptions are [5, 13, 12]). However, the SDG has been adapted to other paradigms
such as the object-oriented paradigm [8, 9, 17] or the aspect-oriented paradigm
[21].

There have been previous attempts to define a PDG-like data structure
for functional languages. The first attempt to adapt the PDG to the func-
tional paradigm was [14] where they introduced the functional dependence graph
(FDG). Unfortunately, the FDGs are useful at a high abstraction level (i.e., they
can slice modules or functions), but they cannot slice expressions and thus they
are insufficient for Erlang. Another approach is based on the term dependence
graphs (TDG) [3]. However, these graphs only consider term rewriting systems
with function calls and data constructors (i.e., no complex structures such as if-
expressions, case-expressions, etc. are considered). Moreover, they are not able
to work with higher-order programs. Finally, another use of program slicing has
been done in [2] for Haskell. But in this case, no new data structure was defined
and the abstract syntax tree of Haskell was used with extra annotations about
data dependencies.

In [19, 20] the authors propose a flow graph for the sequential component of
Erlang programs. This graph has been used for testing, because it allows us to
determine a set of different flow paths that test cases should cover. Unfortunately,
this graph is not based on the SDG and it does not contain the information
needed to perform precise program slicing. For instance, it does not contain
summary edges, and it does not decompose expressions, thus in some cases it
is not possible to select single variables as the slicing criterion. However, this
graph solve the problem of flow dependence and thus it is subsumed by our
graphs. Another related approach is based on the behavior dependency graphs
(BDG) [16] that has been also defined for Erlang. Even though the BDG is able
to handle pattern matching, composite expressions and all constructs present in
Erlang, it has the same problem as previous approaches: the lack of the summary
edges [6] used in the SDG implies a loss of precision.

All these works have been designed for intra-procedural slicing, but they lose
precision in the inter-procedural case. This problem can be solved with the use
of a SDG. From the best of our knowledge, this is the first adaptation of the
SDG to a functional language.

3

3 Preliminaries

In this section we introduce some preliminary definitions used in the rest of the
paper. For the sake of concreteness, we will consider the following subset of the
Erlang language:

pr ::= fn (Program)

f ::= atom fcn (Function Definition)
fc ::= (pm)→ en | (pm) when go → en (Function Clause)
p ::= l | V | 〈pn〉 | [pn] | p1 = p2 (Pattern)
g ::= l | V | 〈gn〉 | [gn] | g1 op g2 | op g (Guard)
e ::= l | V | 〈en〉 | [en] | begin en end (Expression)

| e1 op e2 | op e | e(en) | p = e

| [e || gfn] | if icn end | case e of ccn end

| fun atom/number | fun fcn end

l ::= number | string | atom (Literal)
gf ::= p← e | e (Generator | Filter)
ic ::= gm → en (If Clause)
cc ::= p→ en | p when gm → en (Case Clause)
op ::= + | − | ∗ | / | div | rem | + + | − − (Operation)

| not | and | or | xor | == | /=
| =< | < | >= | > | =:= | =/=

An Erlang program is a collection of function definitions. Note that we use
the notation fn to represent the sequence f1 . . . fn. Each function definition
is formed in turn by a sequence of n pairs atom fc where atom is the name
of the function with arity n and fc is a function clause. Function clauses are
formed by a sequence of patterns enclosed in parentheses followed optionally by
a sequence of guards, and then an arrow and a sequence of expressions (e.g.,
f(X, Y, Z) when X > 0;Y > 1;Y < 5 → X +Y,Z.). A pattern can be a literal
(a number, a string, or an atom), a variable, a compound pattern or a tuple or
list of other patterns. Guards are similar to patterns, but they must evaluate
to represent a boolean value, and they do not allow compound patterns. Ex-
pressions can be literals, variables, tuples, lists, blocks composed of sequences of
expressions, operations, applications, pattern matching, list comprehensions, if-
expressions and case-expressions, function identifiers and declarations of anony-
mous functions, which are formed by a sequence of function clauses as in function
definitions. In Erlang, when a call to a function is evaluated, the compiler tries
to do pattern matching with the first clause of the associated function definition
and it continues with the others until one succeeds. When pattern matching suc-
ceeds with a clause then its body is evaluated and the rest of clauses are ignored.
If no clause succeeds then an error is raised.

In the following we will assume that each syntactic construct of a program
(e.g., patterns, guards, expressions, etc.) can be identified with program positions.
Program positions are used to uniquely identify each element of a program. In

4

Fig. 3: Graph representation of Erlang programs

particular, the program position of an element identifies the row and column
where it starts, and the row and column where it ends. We also assume the
existence of a function elem that returns the element associated to a given pro-
gram position. Additionally, we use the finite sets Vars, Literal , Ops and P that
respectively contain all variables, literals, operators and positions in a program.

4 Erlang Dependence Graphs

In this section we adapt the SDG to Erlang. We call this adaptation Erlang
dependence graph. Its definition is based on a graph representation of the com-
ponents of a program that is depicted in Figure 3.

Figure 3 is divided into four sections: function definitions, clauses, expres-
sions and patterns. Each graph in the figure represents a syntactical construct,
and they all can be composited to build complex syntactical definitions. The
composition is done by replacing some nodes by a particular graph. In partic-
ular, nodes labeled with c must be replaced by a clause graph. Nodes labeled
with e must be replaced by one of the graphs representing expressions or func-
tion definitions (for anonymous functions). And nodes labeled with p must be
replaced by one of the graphs representing patterns. In order to replace one node
by a graph, we connect all input arcs of the node to the initial node of the graph
that is represented with a bold line; and we connect all output arcs of the node
to the final nodes of the graph that are the dark nodes. Note that in the case

5

that a final node is replaced by a graph, then the final nodes become recursively
the dark nodes of this graph. We explain each graph separately:

Function Definition: The initial node includes information about the function
name and its arity. The value of fname is ⊥ for all anonymous functions.
Clauses are represented with c1 . . . cn and there must be at least one.

Clause: They are used by functions and by case- and if-expressions. In function
clauses each clause contains zero or more patterns (p1 . . . pm) that represent
the arguments of the function. In case-expressions each clause contains ex-
actly one pattern and in if-expressions no pattern exists. Node g represents
all the (zero or more) guards in the clause. If the clause does not have guards
it contains the empty list []. There is one graph for each expression (e1 . . . en)
in the body of the clause.

Variable/Literal: They can be used either as patterns or as expressions, and
they are represented by a single (both initial and final) node.

Function Identifier: It is used for higher order calls. It identifies a function
with its name and its arity and it is represented by a single (both initial and
final) node.

Pattern Matching/Compound Pattern: It can be used either as a pattern
or as an expression. The only difference is that if it is a pattern, then the
final nodes of both subpatterns are the final nodes. In contrast, if it is an
expression, then only the final nodes of the subexpression are the final nodes.

Block: It contains a number of expressions (e1 . . . en), being the final nodes the
last nodes of the last expression (en).

Tuple/List/Operation: Tuples and lists can be patterns or expressions. Op-
erations can only be expressions. The initial node is the tuple ({}), list ([])
or operator (+, ∗, etc.) and the final nodes are the final nodes of all partici-
pating expressions (e1 . . . en).

Case-Expression: The evaluated expression is represented by e, and the last
nodes of its clauses are its final nodes.

If-Expression: Similar to case-expressions but missing the evaluated expres-
sion.

Function Call: The function is represented by e, the arguments are e1 . . . en
and the final node is the return node that represents the output of the
function call.

List Comprehension: A list comprehension contains n generators formed by
an expression and a pattern; m filters (e1 . . . em) and the final expression (e).

Definition 1 (Graph Representation). The graph representation of an Er-
lang program is a labelled graph (N , C) where N are the nodes and C are the
edges. Additionally, the following functions are associated to the graph:

type : N → T
pos : N → P
function : N → (atom,number)
child : (N , number)→ N

6

call

return (function_in) _/1 (term)
Y

clause_in

(term)
Z (guards) []

(term)
Z

call

return (term)
add

(term)
1

Fig. 4: EDG associated to expression fun(Z)->add(Z,1) end(Y) of Example 1.

children : N → {N}
lasts : N → {N}
rootLasts : N → {N}

For each function of the program there is a function definition graph that is
compositionally constructed according to the cases of Figure 3.

Total function type returns the type of a node. T is the set of node types:
function_in, clause_in, pm, guards, fid (function identifier), var, lit, block,
case, if, tuple, list, op, call, lc, and return. The total function pos returns
the program position associated to a node. Partial function function is defined for
nodes of types function_in, and it returns a tuple containing the function name
and its arity. Function child returns the child that is in the position specified by
the inputed number of a given node. Function children returns all the children
of a given node. Given a node in the EDG, function lasts returns the final nodes
associated to this node (observe that these nodes will always be leafs). Finally,
given a node in an EDG that is associated to one of the graphs in Figure 3,
function rootLast returns for each final node of this graph, (1) the initial node
of the graph that must replace this node (in the case the node is gray), or (2)
the node itself (in the case the node is white). This function is useful to collect
the initial nodes of all arguments of a function clause.

Example 2. The graph in Figure 4 has been automatically generated by our im-
plementation, and it illustrates the composition of some graphs associated to

7

the code in Example 1. This graph corresponds to the function call fun(Z)->
add(Z,1) end(Y). For the time being, the reader can ignore all dashed, dot-
ted and bold edges. In this graph, the final nodes of the call nodes are their
respective return nodes. Also, the result produced by function rootLast taking
the clause in node as input is the call node that is its descendant.

4.1 Control Edges

The graph representation of a program implicitly defines the control dependence
between the components of the program.

Definition 2 (Control Dependence). Given the graph representation of an
Erlang program (N , C) and two nodes n, n′ ∈ N , we say that n′ is control de-
pendent on n if and only if (n→ n′) ∈ C.

In Figure 4, there are control edges, e.g., between nodes clausein and tuple.

4.2 Data Edges

The definition of data dependence in Erlang is more complicated than in the
imperative paradigm mainly due to pattern matching. Data dependence is used
in four cases: (i) to represent the flow dependence between the definition of a
variable and its later use (as in the imperative paradigm), (ii) to represent the
matches in pattern matching, (iii) to represent the implicit restrictions imposed
by patterns in clauses, and (iv) to relate the name of a function with the result
produced by this function in a function call. Let us explain and define each case
separately.

Dependence produced by flow relations. In the imperative paradigm data
dependence relations are due to flow dependences. These relations also happen
in Erlang. As usual it is based on the sets Def (n) and Use(n) [15] that in Erlang
contain the (single) variable defined (respectively used) in node n ∈ N .

Given two nodes n, n′ ∈ N , we say that n′ is flow dependent on n if and only
if Def (n) = Use(n ′) and n′ is in the scope of n. We define the set Df as the
set containing all data dependencies of this kind, i.e., Df = {(n, n′) | n′ is flow
dependent on n}.

As an example, there is a data dependence of type Df between the pairs of
nodes containing variables Z in Figure 4, and between variables A in Figure 5.

Dependence produced by pattern matching. In this section, when we talk
about pattern matching, we refer to the matching of an expression against a pat-
tern. For instance, the graph of {X,Y} matches the graph of {Z,42} with three
matching nodes: {} with {}, X with Z and Y with 42. Also, the graph of the ex-
pression if X>1 -> true; _ -> false end matches the graph of the pattern
Y with two matching nodes: Y with true and Y with false. Pattern matching is

8

clause_in

(term)
A

(term)
0 (guards) []

(term)
A

Fig. 5: EDG associated to clause add(A,0) -> A of Example 1.

used in three situations, namely, (i) in case-expressions to match the expression
against each of the patterns, (ii) in pattern-matching-expressions, and (iii) in
function calls to match each of the parameters to the arguments of the called
function. Here we only consider the first two items because the third one is rep-
resented with another kind of edge that will be discussed in Section 4.3. Given
the initial node of a pattern (say np) and the initial node of an expression (say
ne) we can compute all matching pairs in the graph with function match that is
recursively defined as:

match(np, ne) =
{(ne, np) | type(ne) = var ∨

(type(np), type(ne) ∈ {lit, fid}
∧ elem(pos(np)) = elem(pos(ne)))} ∪

{(laste, np) | (type(np) = var ∨
(type(np) = lit ∧ type(ne) ∈ {op, call}) ∨
(type(np) = tuple ∧ type(ne) = call) ∨
(type(np) = list ∧ type(ne) ∈ {op, call, lc}))
∧ laste ∈ lasts(ne)} ∪

{edge | ((type(np) ∈ {lit, tuple, list} ∧ type(ne) ∈ {case, if, pm, block})
∧ edge ∈

⋃
n′
e∈rootLasts(ne)

match(np, n
′
e)) ∨

(type(np) = pm ∧ edge ∈
⋃

n′
p∈rootLasts(np)

match(n′
p, ne))} ∪

{edge | type(np) ∈ {tuple, list} ∧ type(ne) = type(np)
∧ |{n′ | (ne → n′) ∈ C}| = |{n′ | (np → n′) ∈ C}|
∧

∧
i∈1...|children(ne)|

match(child(np, i), child(ne, i)) 6= ∅

∧ edge ∈ ((ne, np) ∪ (
⋃

i∈1...|children(ne)|
match(child(np, i), child(ne, i)))}

The set of all pattern matching edges in a graph is denoted with Dpm.

9

Dependence produced by restrictions imposed by patterns. The pat-
terns that appear in clauses can impose restrictions to the possible values of the
expressions that can match these patterns. For instance, the patterns used in
the function definition foo(X,X,0,Y) -> Y impose two restrictions that must
be fulfilled in order to return the value Y: (1) The first two arguments must be
equal, and (2) the third argument must be 0.

These restrictions can be represented with an arc from the pattern that im-
poses a restriction to the guards node of the clause; meaning that, in order to
reach the guards, the restrictions of the nodes that point to the guards must be
fulfilled. The set of all restrictions in a graph is denoted with Dr, and it can be
easily computed with function constraints that takes the initial node of a pattern
and the set of repeated variables in the parameters of the clause associated to
the pattern, and it returns all nodes in the pattern that impose restrictions.

constraints(n,RVars) =

{n} type(n) = lit ∨
(type(n) = var ∧ elem(pos(n)) ∈ RVars)

{n} ∪
⋃

n′∈children(n)

constraints(n′,RVars) type(n) ∈ {list, tuple}⋃
n′∈children(n)

constraints(n′,RVars) type(n) = pm

∅ otherwise

As an example, there is a data dependence of type Dr between the term 0

and the guard node in Figure 5.

Dependence produced in function calls. The returned value of a function
call always depends on the function that has been called. In order to represent
this kind of dependence, we add an edge from any node that can represent the
name of the function that is being called to the return node of the function call.
Note that the name of the function is always represented by a node of type atom,
variable or fid. We represent the set containing all dependences of this kind
with Dfc.

As an example, there is a data dependence of type Dfc between the node
containing the literal add and the return node in Figure 4.

We are now in a position to define a notion of data dependence in Erlang.

Definition 3 (Data Dependence). Given the graph representation of an Er-
lang program (N , C) and two nodes n, n′ ∈ N , we say that n′ is data dependent
on n if and only if (n, n′) ∈ (Df ∪ Dpm ∪ Dr ∪ Dfc).

4.3 Input/Output Edges

Input and output edges represent the information flow in function calls. One of
the problems of functional languages such as Erlang is that higher-order calls

10

can hide the name of the function that is being called. And even if we know the
name of the function, it is not always possible to know the actual clause that
will match the function call.

Example 3. In the following program, it is impossible to statically know what
clause will match the function call g(X) and thus we need to connect the function
call to all possible clauses that could make pattern matching at execution time.

-export(f/1).

f(X) -> g(X).

g(1)-> a;

g(X)-> b.

Determining all possible clauses that can pattern match a call is an undecid-
able problem because a call can depend on the termination of a function call,
and proving termination is undecidable. Therefore, we are facing a fundamental
problem regarding the precision of the graphs. Conceptually, we can assume the
existence of a function clauses(call) that returns all clauses that match a given
call. In practice, some static analysis must be used to approximate the clauses.
In our implementation we use Typer [10] that uses the type inference system of
Dialyzer [11] producing a complete approximation.

Given a graph (N , C) we define the set I of input edges as a set of directed
edges. For each function call graph call, we make graph matching between each
parameter subgraph in the call to each argument subgraph in the clauses be-
longing to clauses(call). There is an edge in I for each pair of nodes matching.
Moreover, there is an edge from the return node of the call to the clausein node
of the clause. As an example, in Figure 4, there are input edges from node with
variable Y to node with variable Z and from the return node to the clause in

node.
Given a graph (N , C) we define the set O of output edges as a set of di-

rected edges. For each function call graph call and each clause belonging to
clauses(call). There is an edge in O for each final node of the clause graph to
the return node of the call. As an example, in Figure 4, there is an output edge
between the two return nodes.

4.4 Summary Edges

Summary edges are used to precisely capture inter-function dependences. Ba-
sically, they say what arguments of a function do influence the result of this
function (see [6] for a deep explanation about summary edges). Given a graph
(N , C), we define the set S of summary edges as a set of directed edges. As in
the imperative paradigm, they can be computed once all the other dependencies
have been computed. We have a summary edge between two nodes n, n′ of the
graph if n belongs to the graph representing (a part of) an argument of a func-
tion call, n′ is the return-node of the function call, and there is an input edge
starting at n. In Figure 4, the summary edges are all bold edges.

11

We are now in a position to formally introduce the Erlang Dependence
Graphs.

Definition 4 (Erlang Dependence Graph). Given an Erlang program P,
its associated Erlang Dependence Graph (EDG) is the directed labelled graph
G = (N , E) where N are the nodes and E = (C,D, I,O,S) are the edges.

Example 4. The EDG corresponding to the expression fun(Z)-> add(Z,1) end(Y)

in line (14) of Figure 1 is shown in Figure 4.

5 Slicing Erlang Specifications

The EDG is a powerful tool to perform different static analysis and it is partic-
ularly useful for program slicing.

In this section we show that our adaptation of the SDG to Erlang keeps the
most important property of the SDG: computing a slice from the EDG has a
cost linear with the size of the EDG. This means that we can compute slices
with a single traversal of the EDG. However, the algorithm used to traverse the
EDG is not the standard one. We only need to make one small modification that
allows us to improve precision.

One important advantage of the EDG with respect to the SDG is that it
minimizes the granularity level. In the EDG all syntactical constructs are decom-
posed to the maximum (i.e, literals, variables, etc.). Contrarily, in the imperative
paradigm, each node represents a complete line in the source code. Therefore,
we can produce slices that allows us to know what parts of the program affect a
given (sub)expression at any point.

Definition 5. Given an EDG G = (N , E), a slicing criterion for G is a node
n ∈ N .

In practice, the EDG is hidden to the programmer, and the slicing criterion
is selected in the source code. In our implementation this is done by just high-
lighting an expression in the code. This action is automatically translated to a
position that in turn is the identifier of one node in the EDG. This node is the
input of Algorithm 1 that allows us to extract slices from an EDG. Essentially,
Algorithm 1 first collects all nodes that are reachable from the slicing criterion
following backwards all edges in C∪D∪I. And then it collects from these nodes,
all nodes that are reachable following backwards all edges in C ∪D ∪O. In both
phases, the nodes that are reachable following backwards edges in S are also col-
lected, but only if they are connected to a node that belongs to the slice through
an input edge.

The behavior of the algorithm is similar to the standard one except for the
treatment of summary edges. In the SDG, summary edges go from the input
parameters to the output parameters of the function and they are always tra-
versed. Moreover, each of the parameters cannot be decomposed. In contrast,

12

Algorithm 1 Slicing interprocedural programs

Input: An EDG G = (N , E = (C,D, I,O,S)) and a slicing criterion SC
Output: A collection of nodes Slice ∈ N
return traverse(traverse({SC}, I), O)

function traverse(Slice,X)
repeat

Slice = Slice ∪ {n′ | (n′ → n) ∈ (C ∪ D ∪X) with n ∈ Slice}
∪ {n2 | (n2 → n1) ∈ S ∧ (n2 → n3) ∈ I with n1, n3 ∈ Slice}

until a fix point is reached
return Slice

in Erlang, the arguments of a function can be composite data structures, and
thus, it is possible that only a part of this data structure influences the slicing
criterion. Therefore, in function calls, we only traverse the summary edges if
they come from nodes that are actually needed. The way to know that they are
actually needed is to observe their outgoing input edge and know if the node
pointed does belong to the slice. Of course this can only be known after having
analyzed the function that is called.

Once we have collected the nodes that belong to the slice, it is easy to map the
slice into the source code. For a program P, the exact collection of positions (lines
and columns) that belong to the slice is {pos(n) | n ∈ Slice(P)} where function
Slice implements Algorithm 1. In order to ensure that the final transformed
program is executable, we also have to replace those expressions that are not in
the slice by the (fresh) atom undef and those unused patterns by an anonymous
variable. The result of our algorithm with respect to the program in Figure 1 is
shown in Figure 2.

6 Conclusions and future work

This work adapts the SDG to be used with Erlang programs. Based on this
adaptation, we introduce a program slicing technique that precisely produces
slices of interprocedural Erlang programs. This is the first adaptation of the
SDG for a functional language. Even though we implemented it for Erlang, we
think that it can be easily adapted to other functional languages with slight
modifications.

The slices produced by our technique are executable. This means that other
analysis and tools could use our technique as a preprocessing transformation
stage simplifying the initial program and producing a more accurate and reduced
one that will predictably speed up the subsequent transformations. We have
implemented a slicer for Erlang that generates EDGs, this tool is called Slicerl

and it is publicly available at:

http://kaz.dsic.upv.es/slicerl

13

The current implementation of Slicerl accepts more syntactical constructs
that those described in this paper. It is able to produce slices of its own code.
Even though the use of summary edges together with the algorithm proposed
provides a solution to the interprocedural loss of precision, there is still a loss of
precision that is not faced by our solution. This loss of precision is produced by
the expansion and compression of data structures.

Example 5. Consider the Erlang program at the left and the slicing criterion Y

in line (4):

(1) main() ->
(2) X={1,2},
(3) {Y,Z}=X,
(4) Y.

(1) main() ->
(2) X={1,2},
(3) {Y,_}=X,
(4) Y.

(1) main() ->
(2) X={1,_},
(3) {Y,_}=X,
(4) Y.

Our slicing algorithm produces the slice shown in the center. It is not able to
produce the more accurate slice shown at the right because it losses precision.

The loss of precision shown in Example 5 is due to the fact that the EDG
does not provide any mechanism to trace an expression when it is part of a
data structure that is collapsed into a variable and then expanded again. In the
example, there is a dependence between variable Y and variable X in line (3), This
dependence means “The value of Y depends on the value of X”. Unfortunately,
this is only partially true. The real meaning should be “The value of Y depends
on a part of the value of X”. We are currently defining a new dependence called
partial-dependence to solve this problem. A solution to this problem has already
been defined in [16]. Its implementation will be available soon in the webpage of
Slicerl.

References

1. H. Agrawal and J. R. Horgan. Dynamic program slicing. In Programming Language
Design and Implementation (PLDI), pages 246–256, 1990.

2. C. Brown. Tool Support for Refactoring Haskell Programs. PhD thesis, School of
Computing, University of Kent, Canterbury, Kent, UK, 2008.

3. Diego Cheda, Josep Silva, and Germán Vidal. Static slicing of rewrite systems.
Electron. Notes Theor. Comput. Sci., 177:123–136, June 2007.

4. J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program Dependence Graph
and Its Use in Optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319–349, 1987.

5. John Field, G. Ramalingam, and Frank Tip. Parametric program slicing. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’95, pages 379–392, New York, NY, USA, 1995.
ACM.

6. Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions Programming Languages and Systems,
12(1):26–60, 1990.

7. B. Korel and J. Laski. Dynamic Program Slicing. Information Processing Letters,
29(3):155–163, 1988.

14

8. Loren Larsen and Mary Jean Harrold. Slicing object-oriented software. In Pro-
ceedings of the 18th international conference on Software engineering, ICSE ’96,
pages 495–505, Washington, DC, USA, 1996. IEEE Computer Society.

9. D. Liang and M. J. Harrold. Slicing objects using system dependence graphs. In
Proceedings of the International Conference on Software Maintenance, ICSM ’98,
pages 358–, Washington, DC, USA, 1998. IEEE Computer Society.

10. Tobias Lindahl and Konstantinos F. Sagonas. Typer: a type annotator of erlang
code. In Konstantinos F. Sagonas and Joe Armstrong, editors, Erlang Workshop,
pages 17–25. ACM, 2005.

11. Tobias Lindahl and Konstantinos F. Sagonas. Practical type inference based on
success typings. In Annalisa Bossi and Michael J. Maher, editors, PPDP, pages
167–178. ACM, 2006.

12. Claudio Ochoa, Josep Silva, and Germán Vidal. Dynamic slicing based on redex
trails. In Proceedings of the 2004 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, PEPM ’04, pages 123–134, New York,
NY, USA, 2004. ACM.

13. Thomas Reps and Todd Turnidge. Program specialization via program slicing. In
Proceedings of the Dagstuhl Seminar on Partial Evaluation, volume 1110 of Lecture
Notes in Computer Science, pages 409–429. Springer-Verlag, 1996.

14. Nuno F. Rodrigues and Luis S. Barbosa. Component identification through pro-
gram slicing. In In Proc. of Formal Aspects of Component Software (FACS 2005).
Elsevier ENTCS, pages 291–304. Elsevier, 2005.

15. F. Tip. A survey of program slicing techniques. Journal of Programming Languages,
3(3):121–189, 1995.

16. Melinda Tóth, István Bozó, Zoltán Horváth, László Lövei, Máté Tejfel, and Tamás
Kozsik. Impact analysis of erlang programs using behaviour dependency graphs. In
Proceedings of the Third summer school conference on Central European functional
programming school, CEFP’09, pages 372–390, Berlin, Heidelberg, 2010. Springer-
Verlag.

17. Neil Walkinshaw, Marc Roper, Murray Wood, and Neil Walkinshaw Marc Roper.
The java system dependence graph. In In Third IEEE International Workshop on
Source Code Analysis and Manipulation, pages 5–5, 2003.

18. M. Weiser. Program Slicing. In Proceedings of the 5th international conference on
software engineering, pages 439–449. IEEE Press, 1981.

19. Manfred Widera. Flow graphs for testing sequential erlang programs. In Proceed-
ings of the 2004 ACM SIGPLAN workshop on Erlang, ERLANG ’04, pages 48–53,
New York, NY, USA, 2004. ACM.

20. Manfred Widera and Fachbereich Informatik. Concurrent erlang flow graphs. In
In Proceedings of the Erlang/OTP User Conference 2005, 2005.

21. Jianjun Zhao. Slicing aspect-oriented software. In Proceedings of the 10th Inter-
national Workshop on Program Comprehension, IWPC ’02, pages 251–260, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

15

