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A bstract. There is a growing interest in form alm ethods and tools to
analyzecryptographicprotocolsm odulo algebraicpropertiesoftheirun-
derlying cryptographic functions.Itiswell-known thatan intruderwho
uses algebraic equivalences of such functions can m ount attacks that
would be im possible ifthe cryptographic functionsdid notsatisfy such
equivalences. In practice, however, protocols use a collection of well-
known functions,whosealgebraicpropertiescan naturally begrouped to-
getherasaunion oftheoriesE 1 ... E n .Reasoningsym bolically m odulo
thealgebraicpropertiesE 1 ... E n requiresperform ing (E 1 ... E n )-
unification.However,even ifa unification algorithm foreach individual
E i isavailable,thisrequirescom bining theexisting algorithm sby m eth-
odsthatarehighly non-determ inisticand havehigh com putationalcost.
In thiswork we presentan alternative m ethod to obtain unification al-
gorithm s for com bined theories based on variant narrowing.Although
variant narrowing is less e cient at the levelofa single theory E i,it
does not use any costly com bination m ethod.Furtherm ore,it does not
require thateach E i hasa dedicated unification algorithm in a toolim -
plem entation.W e illustrate the use ofthis m ethod in the M aude-NPA
toolby m eans of a well-known protocolrequiring the com bination of
three distinctequationaltheories.

K eyw ords: Cryptographicprotocolverification,equationalunification,
variants,exclusive or,narrowing

1 Introduction

In recent years there has been growing interest in the form alanalysis of
protocols in which the crypto-algorithm s satisfy di erent algebraic properties
[10,13,29,16].Applications such as electronic voting,digitalcash,anonym ous
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com m unication,and even key distribution,allcan profit from the use ofsuch
cryptosystem s.Thus,a num ber oftools and algorithm s have been developed
that can analyze protocols that m ake use of these specialized cryptosystem s
[29,28,6,2,14].

Lessattention hasbeen paid to com binationsofalgebraic properties.How-
ever,protocolsoften m ake use ofm ore than one type ofcryptosystem .Forex-
am ple,the Internet Key Exchange protocol[23]m akes use ofDi e-Hellm an
exponentiation (forexchangeofm asterkeys),publicand privatekey cryptogra-
phy (forauthentication ofm asterkeys),shared key cryptography (forexchange
ofsession keys),and exclusive-or (used in the generation ofm aster keys).All
ofthese functions satisfy di erentequationaltheories.Thus itis im portantto
understand thebehaviorofalgebraicpropertiesin concertaswellasseparately.
This is especially the case for protocolanalysis system s based on unification,
where the problem ofcom bining unification algorithm s[3,35]fordi erentthe-
oriesisknown to be highly non-determ inistic and com plex,even when e cient
unification algorithm sexistforthe individualtheories,and even when the the-
oriesaredisjoint(thatis,shareno sym bolsin com m on).

TheM aude-NPA protocolanalysistool,which relieson unification toperform
backwardsreachability analysisfrom insecurestates,m akesuseoftwo di erent
techniquesto handlethecom bination problem .Oneisto usea general-purpose
approach to unification called variant narrowing [20],which,although not as
e cientasspecialpurposeunification algorithm s,can beapplied toabroad class
oftheoriesthatsatisfy a condition known asthe finite variantproperty [12].A
second techniqueapplicabletospecialpurposealgorithm s,ortheoriesthatdonot
satisfy thefinitevariantproperty,usesa m oregeneralfram ework forcom bining
unification algorithm s.

Oneadvantageofusingvariantnarrowingisthattherearewell-known m eth-
odsand toolsforchecking thata com bination oftheorieshasthe finite variant
property,including checking its localconfluence and term ination,and also its
satisfaction ofthe finite variantproperty itself[17].Furtherm ore,underappro-
priate assum ptionssom e ofthese checkscan be m ade m odularly (see,e.g.,[33]
fora survey ofm odularconfluenceand term ination proofm ethods).Thism akes
variantnarrowingeasily applicableforunification com bination and very suitable
forexperim entation with di erenttheories.Lateron,when the theory isbetter
understood,itm ay beworth thee orttoinvestthetim etoapply thefram ework
to integratem oree cientspecialpurposealgorithm s.

In thispaperwedescribea casestudy involving theuseofvariantnarrowing
toapplyM aude-NPA totheanalysisofaprotocolthatinvolvesthreetheories:(i)
an associative-com m utative theory satisfied by sym bolsused in state construc-
tion,(ii)acancellation theory forpublickey encryption and decryption,and (iii)
the equationaltheory ofthe exclusive-or operator.This theory com bination is
illustrated in theanalysisofa version oftheNeedham -Schroeder-Loweprotocol
[28],denoted NSL ,in which oneoftheconcatenation operatorsisreplaced by
an exclusive-or[8].



Therestofthispaperisorganized asfollows.In Section 2wegivesom eneces-
sary background.In Section 3 wegivean overview ofM aude-NPA.In Sections4
and 5 wedescribevariantnarrowing and how itisused in M aude-NPA.In Sec-
tion 6 we describe ouruse ofM aude-NPA on the NSL protocol.In Section 7
wediscussrelated work,and Section 8 concludesthepaper.

2 B ackground on Term R ew riting

W efollow theclassicalnotation and term inologyfrom [36]forterm rewritingand
from [30,31]forrewriting logic and order-sorted notions.W e assum e an order-
sorted signature with a finite posetofsorts(S, )(such thateach connected
com ponent of(S, ) has a top sort) and a finite num ber offunction sym bols.
W e assum e an S-sorted fam ily X = {Xs}s S ofdisjointvariable setswith each
Xs countably infinite.T (X )s denotesthesetofterm sofsorts,and T ,s theset
ofground term sofsorts.W e write T (X ) and T forthe corresponding term
algebras.W e write Var(t) forthe setofvariables presentin a term t.The set
ofpositionsofa term tiswritten Pos(t),and the setofnon-variable positions
Pos (t).Thesubterm oftatposition p ist|p,and t[u]p istheresultofreplacing
t|p by u in t.A substitution isa sort-preserving m apping from a finite subset
ofX to T (X ).

A -equation isan unoriented pairt= t,where t T (X )s,t T (X )s ,
and sand s aresortsin thesam econnected com ponentoftheposet(S, ).For
a setE of -equations,an E -unifier fora -equation t= t isa substitution
s.t. (t)= E (t).A com plete setofE -unifiersofan equation t= t iswritten
CSUE (t= t).W esay thatCSUE (t= t)isfinitary ifitcontainsa finitenum ber
ofE -unifiers.A rewrite rule isan oriented pairl r,where l X and l,r
T (X )s forsom e sorts S.An (unconditional)order-sorted rewrite theory isa
triple R = ( ,E ,R)with an order-sorted signature,E a setof -equations,

and R a setofrewriterules.Therewriting relation R ,E on T (X )ist
p
R ,E t

(or R ,E ) if p Pos (t),l r R,t|p = E (l),and t = t[ (r)]p for
som e .Assum ing that E has a finitary and com plete unification algorithm ,
the narrowing relation m odulo on T (X ) is t

p
,R ,E t (or ,R ,E , R ,E ) if

p Pos (t),l r R, CSUE (t|p = l),and t = (t[r]p).
W esay thattherelation R ,E isterm inating ifthereisno infinitesequence

t1 R ,E t2 R ,E ···tn R ,E tn+ 1 ···.W e say thatthe relation R ,E is con-
fluent ifwhenever t R ,E t and t R ,E t ,there exists a term t such that
t R ,E t and t R ,E t .An order-sorted rewritetheory ( ,E ,R)isconflu-
ent(resp.term inating)ifthe relation R ,E isconfluent(resp.term inating).In
a confluent,term inating,order-sorted rewrite theory,foreach term t T (X ),
there isa unique (up to E -equivalence)R,E -irreducible term t obtained from
tby rewriting to canonicalform ,which isdenoted by t !

R ,E t ort R ,E (when
t is not relevant).The relation R ,E is E -coherent [24]if t1,t2,t3 we have
t1 R ,E t2 and t1 = E t3 im plies t4,t5 such thatt2 R ,E t4,t3

+
R ,E t5,and

t4 = E t5.



3 ProtocolSpecification and A nalysis in M aude-N PA

Given aprotocolP,wefirstexplain how itsstatesarem odeled algebraically.The
key idea isto m odelsuch statesaselem entsofan initialalgebra T

P /E P
,where

P isthesignaturedefiningthesortsand function sym bolsforthecryptographic
functionsand forallthestateconstructorsym bolsand EP isa setofequations
specifying the algebraic properties ofthe cryptographic functionsand the state
constructors.Therefore,a stateisan EP -equivalenceclass[t] T

P /E P
with ta

ground P -term .However,sincethenum berofstatesT P /E P
isin generalinfi-

nite,ratherthan exploringconcreteprotocolstates[t] T
P /E P

weexploresym -
bolic state patterns [t(x1,...,xn)] T

P /E P
(X ) on the free ( P ,EP )-algebra

overa setofvariablesX .In thisway,a state pattern [t(x1,...,xn)]represents
nota single concrete state buta possibly infinite setofsuch states,nam ely all
the instancesofthe pattern [t(x1,...,xn)]where the variablesx1,...,xn have
been instantiated by concreteground term s.

Letusintroducea m otivating exam ple thatwewilluse to illustrateourap-
proach based on exclusive–or.W eusean exclusive–orversion borrowed from [8]
ofthe Needham -Schroeder-Lowe protocol[28]which we denote NSL .In our
analysiswe use the protocolbased on public key encryption,i.e.,operatorspk
and sk satisfying theequationspk(P,sk(P,M ))= M and sk(P,pk(P,M ))= M
and the m essagesare puttogetherusing concatenation and exclusive–or.Note
thatweusea representation ofpublic-key encryption in which only principalP
can com putesk(P,X )and everyonecan com putepk(P,X ).Forexclusive–orwe
havetheassociativityand com m utativity(AC)axiom sfor ,plustheequations4

X 0= X ,X X = 0,X X Y = Y.

1.A B :pk(B ,N A ;A)
A sends to B ,encrypted under B ’s public key,a com m unication request
containing a nonceN A thathasbeen generated by A,concatenated with its
nam e.

2.B A :pk(A,N A ;B N B )
B answers with a m essage encrypted under A’s public key,containing the
nonceofA,concatenated with theexclusive–orcom bination ofa new nonce
created by B and itsnam e.

3.A B :pk(B ,N B )
A respondswith B ’snonceencrypted underB ’spublickey.

A and B agreethatthey both know N A and N B and no oneelsedoes.
In the M aude-NPA [15,16],a state in the protocolexecution is a term t

ofsort state,t T
P /E P

(X )state.A state is a m ultiset built by an associa-
tive and com m utative union operator & .Each elem ent in the m ultiset can
be a strand or the intruder knowledge at that state (intruder knowledge is
wrapped by { }).A strand [21]represents the sequence ofm essages sent and
received by a principalexecuting the protocoland is indicated by a sequence
ofm essages [m sg−1 , m sg

+
2 , m sg

−
3 ,..., m sg

−
k− 1, m sg

+
k ]where each m sgi is a

4 Thethird equation followsfrom thefirsttwo.Itisneeded forcoherencem odulo AC.



term ofsortM sg (i.e.,m sgi T P (X )M sg),m sg− representsan inputm essage,
and m sg+ represents an output m essage.In M aude-NPA,strands evolve over
tim e and thus we use the sym bol|to divide past and future in a strand,i.e.,
[m sg±1 ,...,m sg

±
j− 1 |m sg

±
j ,m sg

±
j+ 1,...,m sg

±
k ]wherem sg

±
1 ,...,m sg

±
j− 1 arethe

pastm essages,and m sg±j ,m sg
±
j+ 1,...,m sg

±
k are the future m essages(m sg±j is

theim m ediatefuturem essage).Theintruderknowledge isrepresented asa m ul-
tiset of facts unioned together with an associative and com m utativity union
operator _,_.There are two kinds ofintruder facts:positive knowledge facts
(the intruderknowsm ,i.e.,m I),and negative knowledge facts(the intruder
doesnotyetknow m butwillknow itin a future state,i.e.,m /I),wherem isa
m essageexpression.Factsoftheform m /I m akesensein a backwardsanalysis,
sinceonestatecan havem I and a priorstatecan havem /I.

The strands associated to the three protocolsteps above are given next.
There are two strands,one for each principalin the protocol.Note that the
first m essage passing A B :pk(B ,N A ;A) is represented by a m essage in
Alice’s strand sending (pk(B ,n(A,r);A))+ ,together with another m essage in
Bob’sstrand thatreceives(pk(B ,N ;A))− .W hen a principalcannotobservethe
contents ofa concrete part ofa received m essage (e.g.,because a key is nec-
essary to look inside),we use a generic variable for such part ofthe m essage
in the strand (as with variable N ofsortNonce above,and sim ilarly for X ,Y
below).W eencouragethereaderto com paretheprotocolin strand notation to
the presentation ofthe protocolabove.W e also om itthe initialand finalnilin
strands,which areneeded in thetoolbutclutterthepresentation.

-(Alice)::r::[(pk(B ,n(A,r);A))+ ,(pk(A,n(A,r);B Y ))− ,(pk(B ,Y ))+ ]

-(Bob)::r ::[(pk(B ,X ;A))− ,(pk(A,X ;B n(B ,r)))+ ,(pk(B ,n(B ,r)))− ]

Notethatr,r areused fornoncegeneration (they arespecialvariableshandled
asuniqueconstantsin ordertoobtain an infinitenum berofavailableconstants).

Therearealso strandsforinitialknowledgeand actionsoftheintruder,such
as concatenation,deconcatenation,encryption,decryption,etc.For exam ple,
concatenation by theintruderisdescribed by thestrand [(X )− ,(Y )− ,(X ;Y )+ ].
W ewillshow thefulllistofintrudercapabilitiesin Section 6.

Our protocolanalysis m ethodology is then based on the idea ofbackward
reachability analysis,where we begin with one or m ore state patterns corre-
sponding to attack states,and wantto proveordisprovethatthey areunreach-
able from thesetofinitialprotocolstates.In ordertoperform such areachability
analysiswem ustdescribehow stateschangeasa consequenceofprincipalsper-
form ing protocolstepsand ofintruderactions.Thiscan be done by describing
such statechangesby m eansofasetR P ofrewriterules,sothattherewritethe-
ory ( P ,EP ,R P )characterizesthebehaviorofprotocolP m odulotheequations
EP .Thefollowingrewriterulesdescribethegeneralstatetransitions,whereeach
statetransition im pliesm oving rightwardstheverticalbarofonestrand:

SS & [L |M − ,L ]& {M I,IK } SS & [L,M − |L ]& {IK }
SS & [L |M + ,L ]& {IK } SS & [L,M + |L ]& {IK }
SS & [L |M + ,L ]& {M /I,IK } SS & [L,M + |L ]& {M I,IK }



variables L,L denote lists ofinput and output m essages (m + ,m − ) within a
strand,IK denotes a set ofintruder facts (m I,m /I),and SS denotes a set
of strands.An unbounded num ber of sessions is handled by another rewrite
rule introducing an extra strand [m ±

1 ,...,m
±
j− 1 |m +

j ,m sg
±
j+ 1,...,m

±
k ]for an

intruderknowledgefactoftheform m j I.See[15]forfurtherinform ation.
The way to analyze backwards reachability is then relatively easy,nam ely

to run the protocol“in reverse.” Thiscan be achieved by using the setofrules
R − 1
P ,wherev − u isin R − 1

P i u − v isin R P .Reachability analysiscan be
perform ed sym bolically,not on concrete states but on sym bolic state patterns
[t(x1,...,xn)]by m eansofnarrowing m odulo EP (seeSection 2 and [24,32]).

EP -unification precisely m odels allthe di erent ways in which an intruder
could exploitthealgebraic propertiesEP ofP to break theprotocol;therefore,
ifan initialstate can be shown unreachable by backwardsreachability analysis
m odulo EP from an attack statepattern,thisensuresthat,even iftheintruder
usesthealgebraicpropertiesEP ,theattackcannotbem ounted.Thism eansthat
e cientsupportforEP -unification isa crucialfeature ofsym bolic reachability
analysisofprotocolsm odulo theiralgebraicpropertiesEP .

4 A U nification A lgorithm for X O R pk-sk A C

In general,com bining unification algorithm sfora theory E = E1 E2 ... En

is com putationally quite expensive,and typically assum es thatthe sym bols in
Ei and Ej are pairwise disjoint for each i= j.This is due to the substantial
am ountofnon–determ inism involved in the inference system ssupporting such
com binations(see [3]).In ourNSL exam ple,E = E1 E2 E3,where E1 is
theXOR theory,E2 isthetheory pk-sk given by thetwo publickey encryption
equationspk(K ,sk(K ,M ))= M and sk(K ,pk(K ,M ))= M ,and E3 isthe AC
theory foreach ofthestateconstructors_,_ and & explained in Section 3.To
furthercom plicatethem atter,weneed to com binenotjustuntyped unification
algorithm s,buttyped,and m oreprecisely order-sorted ones.

Fortunately,thevariant–narrowing–based approach thatweusein thispaper
avoids allthese di culties by obtaining the (XOR pk-sk AC )-unification
algorithm as an instance ofthe variantnarrowing m ethodology supported by
M aude-NPA.The pointisthatifan equationaltheory E hasthe finite variant
property [12],then a finitary E -unification algorithm can beobtained by variant
narrowing [20,19],asfurtherexplained in Section 5.In ourcase,the equations
in the theory pk-sk are confluent and term inating and,furtherm ore,have the
finite variant property.Likewise,the equations in the XOR theory presented
in Section 3 are confluent,term inating and coherentm odulo the AC axiom sof
and also have the finite variant property.Finally,the theory ofAC for the

state-building constructors_,_ and & isofcourse finitary and can be viewed
asa trivialcase ofa theory with the finite variantproperty (decom posed with
no rules and only axiom s).Note that allthese three equationaltheories are
disjoint,i.e.,they donotshareany sym bols.Thegood newsisthatthefollowing
disjointunion theory XOR pk-sk AC with N SL being the entire (order-



sorted)signature ofourNSL protocolexam ple isalso confluent,term inating
and coherentm odulo theAC axiom s5,and satisfiesthefinitevariantproperty:

1.Rules:
– pk(K ,sk(K ,M ))= M ,sk(K ,pk(K ,M ))= M ,
– X 0= X ,X X = 0,X X Y = Y ,

2.Axiom s:AC for ,AC for_,_ and AC for &

Therefore,M aude-NPA can analyzetheNSL protocolusingvariantnarrowing.
In thefollowing weexplain variantnarrowing in m oredetail.

5 Variant N arrow ing and Variant U nification

Suppose thatan equationaltheory E isdecom posed according to the following
definition.

D efinition 1 (D ecom position [19]).Let( ,E)bean order-sorted equational
theory. W e call ( ,Ax,E ) a decom position of ( ,E) if E = E Ax and
( ,Ax,E )isan order-sorted rewrite theory satisfying the following properties.

1. Ax is regular,i.e.,for each t= t in Ax,we have Var(t) = Var(t),and
sort-preserving,i.e.,for each substitution ,we have t T (X )s i t
T (X )s;furtherm ore allvariablesin Var(t)have a top sort.

2. Ax hasa finitary and com plete unification algorithm .
3. Foreach t t in E we have Var(t) Var(t).
4. E issort-decreasing,i.e.,for each t t in E ,each s S,and each substi-

tution ,t T (X )s im pliest T (X )s.
5. The rewrite rules E are confluentand term inating m odulo Ax,i.e.,the re-

lation E ,A x isconfluentand term inating.
6. The relation E ,A x isAx-coherent.

G iven a term t,an E ,Ax-variantoftisa pair(t, )with t an E ,Ax-canonical
form oftheterm t .Thatis,thevariantsofa term intuitively giveusalltheir-
reduciblepatternsthatinstancesoftcan reduceto.Ofcourse,som evariantsare
m ore generalthan others,i.e.,there isa naturalpreorder(t, ) E ,A x (t , )
definingwhen variant(t , )ism oregeneralthan variant(t, ).Thisisim por-
tant,because even though the setofE ,Ax-variantsofa term tm ay be infinite,

5 Alltheseconditionsareeasily checkable.Indeed,coherencem odulothecom bined AC
axiom sisim m ediate,and wecan usestandard m ethodsand toolsto check thelocal
confluenceand term ination ofthecom bined theory;sim ilarly,them ethod described
in [17]can beused to check thefinitevariantproperty ofthecom bined theory.Alter-
natively,onecan use m odular m ethodsto check thata com bined theory satisfiesall
thesepropertiesundercertain assum ptions:see[33]fora good survey ofm odularity
resultsforconfluenceand term ination.Likewise,thefinitevariantproperty can also
bechecked m odularly underappropriateassum ptions,buta discussion ofthistopic
isbeyond the scope ofthispaper.



the set ofm ost generalvariants (i.e.,m axim alelem ents in the generalization
preorderup to Ax-equivalenceand variablerenam ing)m ay befinite.

The intim ate connection ofvariants with E-unification is then as follows.
Suppose that we add to our theory decom position E Ax a binary equality
predicate eq,a new constanttt6 and foreach top sort[s]and x ofsort[s]an
extra rule eq(x,x) tt.Then,given any two term st,t,if is a E-unifierof
t and t,then the E ,Ax canonicalform s oft and t m ust be Ax-equaland
thereforethepair(tt, )m ustbea variantoftheterm eq(t,t).Furtherm ore,if
theterm eq(t,t)hasafinitesetofm ostgeneralvariants,then weareguaranteed
thatthesetofm ostgeneralE-unifiersoftand t isfinite.

Forany theory E Ax with E confluent,term inating,and coherentm odulo
Ax,the folding variant narrowing of[20]is a generaland e ective com plete
strategy.Com plete both in the sense ofcom puting a com plete set ofE Ax-
unifiers,and ofcom puting a m inim aland com pletesetofvariantsforany input
term t.

In thefollowing,wecharacterizea notion ofvariantsem anticsforequational
theories.

D efinition 2 (Variant Sem antics [20]).Let( ,Ax,E ) be a decom position
ofan equationaltheory and tbe a term .W e define the setofvariants oft as
[[t]]E ,A x = {(t, )| Subst( ,X ),t !

E ,A x t ,and t = A x t}.

Exam ple 1. Letusconsidertheequationaltheory XOR pk-sk,which,together
with AC for_,_ and & isused forourNSL protocolpresented in Section 3.
This equationaltheory is relevant because none ofour previously defined uni-
fication procedures is directly applicable to it,e.g.unification algorithm s for
exclusive–orsuch as[22]do notdirectly apply ifextra equationsareadded.

For ( ,Ax,E ) a decom position of XOR pk-sk, and for term s
t= M sk(K ,pk(K ,M ))and s= X sk(K ,pk(K ,Y )),we have that[[t]]E ,A x =
{(0,id),...} and

[[s]]E ,A x = {(X Y,id),
(Z,{X 0,Y Z}),(Z,{X Z,Y 0}),
(Z,{X Z U,Y U }),(Z,{X U,Y Z U }),
(0,{X U,Y U }),(Z1 Z2,{X U Z1,Y U Z2}),
(0,{X V W ,Y V W }),...}

W ewrite(t1, 1) E ,A x (t2, 2)to denotethatvariant(t2, 2)ism oregeneral
than variant(t1, 1).

D efinition 3 (VariantP reordering [20]).Let( ,Ax,E )bea decom position
ofan equationaltheory and t be a term .Given two variants (t1, 1),(t2, 2)
[[t]]E ,A x,we write (t1, 1) E ,A x (t2, 2),m eaning (t2, 2) is m ore generalthan

6 W e extend to b by adding a new sortTruth,notrelated to any sortin ,with
constanttt,and foreach top sort[s]ofa connected com ponent,an operatoreq :[s]
× [s] Truth.



(t1, 1),i there is a substitution such thatt1 = A x t2 and 1 E ,A x = A x 2 .
W e write (t1, 1) E ,A x (t2, 2)iffor every substitution such thatt1 = A x t2
and 1 E ,A x = A x 2 ,then isnota renam ing.

Exam ple 2. ContinuingExam ple1wehavev1 = (0,{X U,Y U })asavalid
variantofs.Also,v2 = (0,{X V W ,Y V W })isa valid variantofsbut
clearlyv2 E ,A x v1,and thusv2 should notbeincluded in them ostgeneralsetof
variants.On theotherhand foru1 = (X Y,id)and u2 = (Z,{X 0,Y Z}),
wehavethatneitheru1 E ,A x u2 noru2 E ,A x u1 hold.

W e are,indeed,interested in equivalence classes for variant sem antics and
providea notion ofequivalenceofvariantsup to renam ing,written A x.

D efinition 4 (Ax-Equivalence [20]). Let ( ,Ax,E ) be a decom position of
an equationaltheory and t be a term .For (t1, 1),(t2, 2) [[t]]E ,A x,we write
(t1, 1) A x (t2, 2)ifthere isa variable renam ing such thatt1 = A x t2 and

1 = A x 2 .ForS1,S2 [[t]]E ,A x,we write S1 A x S2 ifforeach (t1, 1) S1,
there exists (t2, 2) S2 s.t.(t1, 1) A x (t2, 2),and for each (t2, 2) S2,
there exists(t1, 1) S1 s.t.(t2, 2) A x (t1, 1).

ThepreorderofDefinition 3allowsustoprovideam ostgeneraland com plete
setofvariantsthatencom passesallthevariantsfora term t.

D efinition 5 (M ost G eneral and C om plete Variant Sem antics [20]).
Let( ,Ax,E ) be a decom position ofan equationaltheory and t be a term .A
m ost generaland com plete variant sem antics oft,denoted [[t]]E ,A x, is a sub-

set [[t]]E ,A x [[t]]E ,A x such that:(i) [[t]]E ,A x E ,A x [[t]]E ,A x, and (ii) for each
(t1, 1) [[t]]E ,A x, there is no (t2, 2) [[t]]E ,A x s.t.(t1, 1) A x (t2, 2) and
(t1, 1) E ,A x (t2, 2).

Exam ple 3. Continuing Exam ple 1 itisobviousthatthe following variantsare
m ostgeneralw.r.t. E ,A x:[[t]]E ,A x = {(0,id)} and

[[s]]E ,A x = {(X Y,id),
(Z,{X 0,Y Z}),(Z,{X Z,Y 0}),
(Z,{X Z U,Y U }),(Z,{X U,Y Z U }),
(0,{X U,Y U }),(Z1 Z2,{X U Z1,Y U Z2})}.

Notethat,bydefinition,allthesubstitutionsin [[t]]E ,A x areE ,Ax-norm alized.
M oreover,[[t]]E ,A x isuniqueup to A x and providesa very succinctdescription

of[[t]]E ,A x.Indeed,up to Ax-equality,[[t]]E ,A x characterizesthe setofm axim al
elem ents (therefore,m ostgeneralvariants)ofthepreorder([[t]]E ,A x, E ,A x).

Again,letusm akeexplicittherelation between variantsand E-unification.

P roposition 1 (M inim aland C om plete E-unification [20]).Let( ,Ax,E )
be a decom position ofan equationaltheory ( ,E).Lett,t be two term s.Then,
S = { |(tt, ) [[eq(t,t)]]bE ,A x} is a m inim aland com plete setofE-unifiers

for t = t,where eq and tt are new sym bols defined in Footnote 6 and �E =
E {eq(X ,X ) tt}.



Thefinite variantproperty defined by Com on-Lundh and Delaune[12],pro-
videsa usefulsu cientcondition forfinitary E-unification.Essentially,itdeter-
m ineswhetherevery term hasa finitenum berofm ostgeneralvariants.

D efinition 6 (Finite variant property [12]).Let( ,Ax,E )be a decom po-
sition ofan equationaltheory ( ,E).Then ( ,E),and thus( ,Ax,E ),hasthe
finite variantproperty i for each term t,the set[[t]]E ,A x is finite.W e willcall
( ,Ax,E )a finite variantdecom position of( ,E)i ( ,Ax,E )hasthe finite
variantproperty.

In [18]a technique isproposed to check whetheran equationaltheory hasthe
finite variantproperty.Using thistechnique itiseasy to check thatExam ple 1
hasthefinitevariantproperty,asevery right–hand sideisa constantsym bolor
a variable.See[18,Exam ple2]form oredetails.

Finally,itisclearthatwhen wehavea finitevariantdecom position,wealso
havea finitary unification algorithm .

C orollary 1 (Finitary E-unification [20]).Let( ,Ax,E )bea finitevariant
decom position ofan equationaltheory( ,E).Then,foranytwo given term st,t,
S = { |(tt, ) [[eq(t,t)]]bE ,A x} is a finite,m inim al,and com plete setofE-

unifiersfort= t,where �E ,eq,and tt are defined asin Proposition 1.

Notethattheoppositedoesnothold:given two term st,t thathavea finite,
m inim al,and com plete setofE-unifiers,the equationaltheory ( ,E)m ay not
have a finite variant decom position ( ,Ax,E ).An exam ple is the unification
underhom om orphism (orone-sidedistributivity),wherethereisafinitenum ber
ofunifiersoftwoterm sbutthetheory doesnotsatisfy thefinitevariantproperty
(see[12,18]);thekey idea isthattheterm eq(t,t)m ay havean infinitenum ber
ofvariantseven though there isonly a finite setofm ostgeneralvariantsofthe
form (tt, ).W ereferthereaderto [20]forfurtherinform ation.

Currently,M aude-NPA restricts itselfto a subsetoftheories satisfying the
finitevariantproperty:

1.The axiom sAx can declare som e binary operatorsin to be com m utative
(with the comm attribute),orassociative-com m utative (with the assoc and
comm attributes).

2.The set ofrewrite rules E is strongly rightirreducible,that is no instance
ofthe right-hand side ofa rule in E by a norm alized substitution can be
furthersim plified by theapplication theequationsin E m odulo Ax.

The reasonsforrestricting ourselvesin thisway isfore ciency and ease of
im plem entation.M audecurrently supportsunification m odulocom m utativeand
associative-com m utativetheories,aswellassyntacticunification,sothisiswhat
drivesourchoiceofAx.Furtherm ore,therestriction ofE to strongly rightirre-
ducible theoriesm eansthatthe depth ofthe narrowing tree isbounded by the
num berofsym bolsin a term .M oreover,m any ofthefinitevarianttheoriesthat
arisein cryptographicprotocolanalysissatisfy strong rightirreducibility.These



includeencryption-decryption cancellation,exclusive-or,and m odularexponen-
tiation.The m ajorexception isAbelian groups(otherthan those described by
exclusive-or).W eare currently working on im plem enting fullvariantnarrowing
in M aude-NPA to handletheseand othercasesnotcurrently covered by strong
rightirreducibility.

6 Finding attacks m odulo X O R pk-sk A C using
M aude-N PA

W e have analyzed the NSL protocolpresented in Section 3 m odulo itsequa-
tionaltheory XOR pk-sk AC in M aude-NPA using variantnarrowing.

W e now explain in m ore detailallthe operations available to the intruder.
Itscapabilitiesare allgiven in strand notation.Note thatwe are om itting the
position m arker|which isassum ed to beatthebeginning.

(s1) [(X )− ,(Y )− ,(X ;Y )+ ] Concatenation
(s2) [(X ;Y )− ,(X )+ ] Left-deconcatenation
(s3) [(X ;Y )− ,(Y )+ ] Right-deconcatenation
(s4) [(X )− ,(Y )− ,(X Y )+ ] Exclusive–or
(s6) [(X )− ,(sk(i,X ))+ ] Encryption with i’sprivatekey
(s7) [(X )− ,(pk(A,X ))+ ] Encryption with any publickey
(s8) [(0)+ ] G eneratetheexclusive–orneutralelem ent
(s9) [(A)+ ] G enerateany principal’snam e.

Theattackstatepattern from which westartthebackwardsnarrowingsearch
in thisexam pleisgiven by onestrand,representing Bob (b)wanting to com m u-
nicatewith Alice(a)

::r::[(pk(b,X ;a))− ,(pk(a,X ;b n(b,r)))+ ,(pk(b,n(b,r)))− |nil]

togetherwithrequiringtheintruder(i)tohavelearnedBob’snonce,i.e.,n(b,r) I.
W hatthisrepresentsisan attack in which Bob hasproperly executed the pro-
tocoland believes to be talking to Alice,while the intruder has obtained the
noncethatBob created and considersa secretshared between Aliceand him .

See Figure 1 fora pictorialrepresentation ofthe strand space and m essages
sentand received,depictingtheattack found by M aude-NPA.Thisattack agrees
with the one described in [8].The figure hasbeen created with the help ofthe
M aude-NPA G UI[34],with theexclusive–orsym bol textually represented as
in thefigure.

7 R elated W ork

Thereisasubstantialam ountofresearch on form alverification ofcryptographic
protocols.M uch ofitabstractsaway from any equationaltheoriesobeyed by the
cryptographicoperators,butthereisa growing am ountofwork addressing this



Fig.1.Pictorialrepresentation oftheinitialstate,leading to an attack

problem .The earliestwasthe NRL ProtocolAnalyzer[29],which,like M aude-
NPA,wasbasedon unificationandbackwardssearch,im plem entedvianarrowing
overconfluentequationaltheories.Thiswassu cienttohandle,forexam ple,the
cancellation ofencryption and decryption,although there were m any theories
of interest it did not address,such as exclusive-or and other Abelian group
operators.

M orerecently,toolshavebegun too ersupportforspecification and,tosom e
degree,analysisofprotocolsinvolving equationaltheories.These toolsinclude,
forexam ple,ProVerif[6],OFM C [4],and CL-Atse [37].Both OFM C and CL-
Atse work in the bounded session m odel,while ProVerifuses abstraction and
unbounded sessions.Both OFM C and CL-Atse supportexclusive-orand Di e-
Hellm an exponentiation.ProVerifcan also be used to analyze these,but the
equationaltheoriesitisknown to work wellwith arem orelim ited,e.g.notsup-
porting associativity-com m utativity orDi e-Hellm an exponentiation.However,
K üsters and Truderung [25,26]have developed algorithm s that can translate
protocolsusing exclusive-ororDi e-Hellm an exponentiation to protocolsthat
can be analyzed by ProVerifin a free algebra m odel;forexclusive-orthey can
handle protocols satisfying the -linearity property.According to a study by
Lafourcadeetal.[27],thisproducesanalysistim esthatare only slightly slower
than analysesby OFM C and CL-Atse,m ainly becauseofthetranslation tim e.

There isalso a growing am ountoftheoreticalwork on cryptographic proto-
colanalysisusing equationaltheories,e.g.[1,9,7,11,5].Thisconcentrateson the
decidability ofproblem sofinterestto cryptographic protocolanalysis,such as



deducibility,which m eans thatitis possible (e.g.for an intruder) to deduce a
term from a setofterm s,and static equivalence,which m eansthatan intruder
cannottellthedi erencebetween two setsofterm s.However,thereism uch less
work on the com bination ofdi erent theories,although Arnaud,Cortier,and
Delaune [13]have considered the problem in term sofdecidability ofthe prob-
lem forcom bination ofdisjointtheories,showing thatifany two disjointtheo-
rieshavedecidablestaticequivalenceproblem s,then so doestheircom bination.
M ore recently Chevalierand Rusinowitch analyze the security ofcryptographic
protocolsvia constraintsystem sand have also studied com position oftheories.
In [10],they givea generalm ethod forcom bining disjointtheoriesthatisbased
on the Baader-Schulz com bination algorithm forunification algorithm sfordif-
ferenttheories[3].Thiscan bethoughtofasa constraint-based analogueofthe
M aude-NPA com bination fram ework,which isalso based on the Baader-Schulz
com bination algorithm [3].

8 C onclusions and Future W ork

To gain high assuranceaboutcryptographicprotocolsusing form alm ethodsre-
quiresreasoningm odulothealgebraicpropertiesoftheunderlyingcryptographic
functions.In sym bolicanalysesthistypically necessitatesperform ing unification
m odulo such algebraic properties.However,since a protocolm ay use a variety
ofdi erent functions — so that di erent protocols typically require reasoning
m odulo di erenttheories— itisunrealisticto expectthata fixed setofunifica-
tion algorithm swillsu ceforsuch analyses.Thatis,com bination m ethods that
obtain unification algorithm fora com position oftheoriesoutofa fam ily ofsuch
algorithm for each ofthem ,are unavoidable.Standard m ethods for obtaining
a unification algorithm for a com bined theory E1 ... En [3]are com puta-
tionally costly due to the high degree ofnon-determ inism in the com bination
m ethod;furtherm ore,they require the existence ofa unification algorithm for
each individualtheory Ei,which in practice m ay not be available in a tool’s
infrastructure.In thiswork we have proposed an alternative m ethod based on
variantnarrowing toobtain a(E1 ... En)-unification algorithm undersim pler
requirem ents.Specifically,dedicated im plem entationsofunification algorithm s
foreach ofthetheoriesEi arenotneeded:in ourexam ple,only a dedicated AC -
unification algorithm wasused:no dedicated algorithm sforXOR ofpk-sk were
needed.Furtherm ore,even though narrowing is less e cient than a dedicated
algorithm foreach individualtheory Ei,thecostly com putationaloverhead ofa
standard com bination m ethod isavoided.The case study presented hasshown
thatvariantnarrowing,assupported by theM aude-NPA,isindeed an e ective
m ethod to dealwith nontrivialcom binationsofequationaltheories;and foran-
alyzing m any protocolswith even a m odestinfrastructureofbuilt-in unification
algorithm s.Thecasestudy waschosen asa well-known protocolforillustration
purposes,butm any otherexam plescould havebeen given.

W e should em phasizethatstandard com bination m ethodssuch asthosede-
scribed in [3],and the alternative variantnarrowing m ethod presented here are



not “rival” m ethods.Instead they are highly com plem entary m ethods which,
when used in tandem ,allow a toolto analyze a m uch widerrange ofprotocols
than thoseanalyzableby each m ethod in isolation.Letususeourexam plethe-
ory XOR pk-sk AC to illustrate this im portant point.Variant narrowing
decom posed thiscom bined theory into:(i)threerewriterulesforXOR and two
rewrite rules for pk-sk plus,(ii) three instances ofAC :one for ,another for
, and another for & .That is,variant narrowing with the rules in (i) was
perform ed m odulo the axiom s in (ii).But the axiom s in (ii) are them selves a
com bined theory (in fact,also com bined with allthe otherfunction sym bolsin
the protocolspecification asfree function sym bols).The M aude infrastructure
used by M aude-NPA hasin factused an order-sorted version ofa standard com -
bination m ethod in the style of[3]to support unification with the com bined
axiom sof(ii).Therefore,theadvantageofusing standard com bination m ethods
and variantnarrowing in tandem isthefollowing:

1.A given toolinfrastructurecan only havea finitenum berofpredefined (fini-
tary)unification algorithm sfor,say,theoriesT1,...,Tk;however,itshould
also beableto supportany com bination ofsuch built-in theoriesby a stan-
dard com bination m ethod.

2.A given protocolm ay require perform ing unification m odulo a com bination
oftheoriesE1 ... En,butsom e oftheEi m ay notbelong to thelibrary
T1,...,Tk,so thatthestandard com bination m ethod cannotbeused.

3.However, if E1 ... En can be refactored as a theory decom position
( ,B ,R) that:(i) it has the finite variant property;and (ii) B is a com -
bination ofthe theories T1,...,Tk supported by the current library,then
a finitary (E1 ... En)-unification algorithm can be obtained by variant
narrowing.

A very im portantdirection forfuture work in form altoolssupporting sym -
bolic protocolanalysism odulo equationalpropertiesconsistsin:(i)developing
m ethodsforexpanding a tool’sbuilt-in unification infrastructureasdescribed in
(1)above to m ake itase cientand extensible aspossible;and (ii)im proving
and optim izing the m ethodsfore cientvariantnarrowing m odulo such infras-
tructure.Good candidatesfornew theoriesTj to beadded to thebuilt-in infras-
tructure include com m only used theories,with high priority given to theories
thatlack thefinitevariantproperties.Forexam ple,thetheory ofhom om orphic
encryption,which lacksthe finite variantproperty,hasbeen recently added to
M aude-NPA forexactly thispurpose.
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8. Y.Chevalier,R.K üsters,M .Rusinowitch,and M .Turuani.An NP decision proce-
dure forprotocolinsecurity with XO R.In LICS,pages261–270.IEEE Com puter
Society,2003.

9. Y.Chevalier and M .Rusinowitch. Hierarchicalcom bination ofintruder theories.
Inf.Com put.,206(2-4):352–377,2008.

10. Y.Chevalier and M .Rusinowitch. Sym bolic protocolanalysis in the union of
disjoint intruder theories:Com bining decision procedures. Theor.Com put.Sci.,
411(10):1261–1282,2010.
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