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A bstract. There is a grow Ing interest n form alm ethods and tools to
analyze cryptographic protocols m odul algebraic properties of their un-
derlying cryptographic finctions. It is wellknown that an intruder who
uses algebraic equivalences of such functions can m ount attacks that
would be in possible if the cryptographic functions did not satisfy such
equivalences. In practice, however, protocols use a collection of well-
known fiinctions, whose algebraic properties can naturally be grouped to-
getherasaunion oftheordesE; ... Ejn .Reasoning sym bolically m odulo
the algebraic propertiesE; ... E, requiresperform ing E; ... Ejq)-
unfication. H owever, even if a unfication algorithm for each individual
E; isavailable, this requires com bining the existing algorithm s by m eth-
ods that are highly non-determ nistic and have high com putational cost.
In this work we present an altemative m ethod to obtain uniication al-
gorithm s for com bined theordes based on variant narrow ing. A though
variant narrow ing is less e cient at the level of a sihgle theory E;, it
does not use any costly com bmnation m ethod. Furthem ore, it does not
require that each E; has a dedicated unification algorithm In a toolim -
plem entation. W e illustrate the use of this m ethod n the M aude-N PA

tool by m eans of a wellknown protocol requiring the com bination of
three distihct equational theordes.

K eyw ords: Cryptographic protocol verfication, equationaluniication,
variants, exclisive or, narrow Ing

1 Introduction

In recent years there has been grow ng interest in the form al analysis of
protoools In which the crypto-algorithm s satisfy di erent algebraic properties
fl0,13,29,16]. Applications such as electronic voting, digital cash, anonym ous
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com m unication, and even key distrdoution, all can profit from the use of such
cryptosystem s. Thus, a num ber of tools and algorithm s have been developed
that can analyze protocols that m ake use of these specialized cryptosystem s
P9,28,6,2,14].

Less attention has been paid to com binations of algebraic properties. How -
ever, protocols often m ake use of m ore than one type of cryptosystem . For ex-
am ple, the Intemet Key Exchange protocol B3] makes use of D1 eHelim an
exponentiation (for exchange of m aster keys), public and private key cryptogra-
phy (for authentication of m aster keys), shared key cryptography (for exchange
of session keys), and exclisive-or (used in the generation of m aster keys). ATl
of these fiinctions satisfy di erent equational theordes. Thus it is in portant to
understand the behavior of algebraic properties n concert as well as ssparately.
This is eppecially the case for protocol analysis system s based on unification,
where the problem of com bining unification algorithm s B,35] for di erent the-
ordes is known to be highly non-determ mistic and com plex, even when e cient
unification algorithm s exist for the mdividual theordies, and even when the the-
ories are dispomt (that is, share no symbols in comm on).

TheM audeN PA protooolanalysis tool, which relieson unification to perform
backw ards reachability analysis from insecure states, m akes use of two di erent
technigques to handle the com bination problem . One is to use a generalpurpose
approach to unfication called variant narrowing RO0], which, although not as
e client as specialpurpose unification algorithm s, can be applied to a broad class
of theordes that satisfy a condition known as the finite variant property [02].A
second technigue applicable to special purpose algorithm s, or theordes that do not
satisfy the finite variant property, uses a m ore general fram ew ork for com bining
unification algorithm s.

O ne advantage of using variant narrow ing is that there are well-known m eth-
ods and tools for checking that a com biation of theories has the finite variant
property, ncluding checking its local confluence and term mation, and also its
satisfaction of the finite variant property itself [L7]. Furthem ore, under appro-
priate assum ptions som e of these chedks can be m ade m odularly (see, eg., B3]
for a survey of m odular confluence and temm nation proofm ethods) . Thism akes
variant narrow Ing easily applicable foruniication com biation and very suitable
for experin entation w ith di erent theordes. Later on, when the theory is better
understood, i m ay beworth thee ort to nvest the tin e to apply the fram ew ork
to Integrate m ore e cient special purpose algorithm s.

In this paperwe describe a case study Involving the use of variant narrow ing
to apply M audeN PA to the analysis ofa protocol that involves three theordes: (i)
an associative-com m utative theory satisfied by sym bols used In state construc-
tion, (i) a cancellation theory forpublic key encryption and decryption, and (iii)
the equational theory of the exclisive-or operator. This theory com bation is
ilistrated In the analysis of a version of the N eedham -Schroederl.ow e protocol
p8], denoted NSL , In which one of the concatenation operators is replaced by
an exclisive-or BI.



T he rest of thispaper is organized as follow s. In Section 2 we give som e neces-
sary background. In Section 3 we give an overview ofM aude-N PA . In Sections 4
and 5 we describe variant narrow Ing and how it isused in M audeNPA . Tn Sec-
tion 6 we describe our use of M audeN PA on the NSL protoocol. In Section 7
we discuss related work, and Section 8 conclides the paper.

2 Background on Tem R ew riting

W e follow the classicalnotation and term mology from B6] forterm rew rithg and
from B0,31] for rew rithg lgic and order-sorted notions. W e assum e an order-
sorted signature  with a finite poset of sorts (S, ) (such that each connected
com ponent of (S, ) hasa top sort) and a finite num ber of finction symbols.
Weassume an S-sorted fam ily X = {X}s ¢ of dispoint variabk sets w ith each
Xs countably mfinite. T (X ), denotes the set of tetm sof sort s, and T s theset
ofground temm sof sort s.Wewrite T X ) and T for the corresponding term
algebras. W e write Var (t) for the set of variables present n a temm t. The set
of positions of a term t is written Pos (t), and the set of non-variable positions
Pos (t).The subtem oftatposition p ist), and thl, is the resul of replacing
th by u In t. A substitution is a sort-preserving m apping from a finite subset
ofX toT KX).

A  -equation isan unoriented pairt= t,wheret T X)_,t T &) ,
and s and s are sorts In the sam e connected com ponent of the poset (S, ).For
asetE of -equations, an E -unfier ora -equation t= t isa substiution
st. (© =g (t).A compkte st of E -unfiers of an equation t= t is written
CSUg (t= t).W esay thatCSUg (t= t) Isfiniary if it contains a finire num ber
of E -unfiers. A rewrite ruk is an ordented pair 1l r,wherel X and l,r
T X) forsomesorts S.An (unconditional) order-sorted rewrite theory isa
tripkeR = ( ,E,R)wih an ordersorted signature, E a sstof -equations,
and R a sstofrewrite rules. Therewritingrelation gz onT &) J'stpR,E t
or rg)ifp Pos ®,1 r R,th= @O,andt = t[ @} or
some .Assum Ing that E has a finitary and com plete unification algorithm ,
the narrow Ing relation modulo on T ®x)ist? rRE Lt (Or rRE, rgE) i
p Pos ®,1 r R, CSUg (tp = D,and t = (tk]).

W e say that the relation g is term lnating if there is no mfinite sequence
t R B rE ""th rE t+1 - c.Wesay that thereltion  y is con-
fluent fwhenevert [ p tandt ; ; t, thereexistsa tem t such that
t ggt andt p t .An ordersorted rewrite theory ( ,E ,R) isconflu-
ent (resp. tem mating) if the relation g is confluent (regp. term hating) . n
a confluent, term nating, order-sorted rew rite theory, oreach term t T &),
there is a unique (up to E -equivalence) R ,E -reducble term t cbtaned from
tby rew riting to canonical fom , which isdenoted by t § ; t ortg g When
t isnot relevant). The relation y z is E -wherent P4] if t,t%,5 we have
tt rEptandt =g & Wmples 4, suchthatt, ;4,5 ;5 &,and
L= t.



3 Protocol Speciication and A nalysis in M aude-N PA

G ven a protocol P ,wefirst explain how its statesarem odeled algebraically. The
key dea is to m odel such states as elem entsof an nitialalgebra T | )z, , Wwhere

p Isthe signature defining the sorts and function sym bols for the cryptographic
functions and for all the state constructor sym bols and Ep is a set of equations
goecifying the algebraic properties of the cryptographic finctions and the state
constructors. Therefore, a state isan Ep equivalenceclass &l T | )z, withta
ground p -temm .However, simce thenumberof states T |, )z, IS In general Infi-
nite, ratherthan exploring concrete protocolstates £l T , jz, weexplresym -
bolic state pattems E&i,...,X,)] T , g, &) on the firee ( p ,Ep )-algebra
over a set of variables X . In this way, a state pattem k&1, ...,x,)] represents
not a sngle concrete state but a possbly infinite set of such states, nam ely all
the instances of the pattem k&, ...,X,)] where the variables X1, ...,X, have
been mstantiated by concrete ground tem s.

Let us Introduce a m otivating exam ple that we w illuse to illustrate our ap-
proach based on exclisive-or. W e use an exclisive-or version borrowed from [B]
of the N eedham -SchroederLowe protocol P8] which we denote NSL . Tn our
analysis we use the protooolbased on public key encryption, ie., operators pk
and sk satisfying the equationspk P,sk (P ,M )) = M and sk(P,pk(P,M )) = M
and the m essages are put together using concatenation and exclisive-or. N ote
that we use a representation of publickey encryption in which only principal P
can com pute sk (P ,X ) and everyone can com pute pk (P ,X ). For exclusive-orwe
have the associativity and com m utativity A C) axiom sfor , plus the equations?
X 0=X,X X=0,X X Y=Y.

1.A B :pk®B ,Nj;A)
A sends to B, encrypted under B ’s public key, a com munication request
containing a nonce N, that hasbeen generated by A , concatenated w ith its
name.

2.B A :pk@ ,Np;B Ng)
B answers with a m essage encrypted under A ‘s public key, containing the
nonce of A , concatenated w ith the exclusive-or com bination of a new nonce
created by B and itsname.

3.A B :pk® ,Ng)
A resoondsw ith B ‘s nonce encrypted under B ‘s public key.

A and B agree that they both know N, and Ny and no one else does.

In the M audeNPA [5,16], a sate In the protocol execution is a term t
ofcort state, £t T | /g, & )state- A state is a multiset built by an associa-
tive and com mutative union operator _& . Each elem ent In the multiset can
be a srand or the mtruder know ledge at that state (mhtruder know ledge is
wrapped by {_}).A stand P1] represents the sequence of m essages sent and
received by a principal executing the protoool and is indicated by a sequence
of messages msg; , msg, , msg ,..., msg,_,, msg ] where each msg; isa

* The third equation ollow s from the first two. It isneeded for coherencem odulb AC .



term of sort M sy (e, msg; T , X Jug), M Sy represents an mput m essage,
and m sg* represents an output m essage. In M audeN PA |, strands evolve over
tin e and thus we use the symbol | to divide past and future i a strand, ie.,
fnsg,...m ng{1 |msg]i ,m sg;l,...,msgi Jwherem sgt ,...,msgj{l are the
pastmessages,andmsg;f ,m sgjﬂl,...,msgﬁ are the future m essages (msggf' is
the In m ediate future m essage) . T he ntruder know Jedge is represented asa mul-
tiset of facts unioned together with an associtive and com mutativity union
operator , . There are two kinds of mtruder facts: positive know ledge facts
(the mtuder knowsm , ie.,, m I), and negative know ledge facts (the intruder
does not yet know m but willknow it n a future state, ie.,m /I),wherem isa
m essage expression . Facts of the form m /I m ake sense I a backw ards analysis,
since one state can havem I and a prior state can havem /I .

The strands associated to the three protocol steps above are given next.
There are two strands, one for each principal I the protoool. Note that the
first m essage passing A B :pk®B /N, ;A) is represented by a message n
Alice's srand sending kB ,n @ ,1);A))* , together w ith another m essage I
Bob’s strand that receives (pk B ,N ;A))” .W hen a principal cannot cbserve the
contents of a concrete part of a received m essage (eg., because a key is nec-
essary to ook mside), we use a generic variable for such part of the m essage
In the swrand (@s with variable N of sort Nonce above, and sin ibrly for X , Y
below ) . W e encourage the reader to com pare the protocol n strand notation to
the presentation of the protocolabove. W e also om it the nitial and finalnil n
strands, which are needed I the toolbut clutter the presentation.

- (@Alice) =r = [EkB n@,r);A))" , k@ n@A,x);B Y)) ,pkB®,Y))]
- Bdb) =r = [pk®.X;A)) ,k@A,X;B nB,r)))" ,pkB,nE,r)) ]

Note that r,r are used fornonce generation (they are special variables handled
asunigue constants in order to cbtain an finite num ber of available constants) .

T here are also strands for mitial know ledge and actions of the intruder, such
as oconcatenation, deconcatenation, encryption, decryption, etc. For exam ple,
concatenation by the intruder is described by the strand [X )™, (Y )™, X ;Y )* 1.
W e will show the filll list of mtruder capabilities In Section 6.

O ur protoool analysis m ethodology is then based on the idea of ackward
reachability analysis, where we begin with one or m ore state pattems corre-
goonding to attack s@ates, and want to prove or disprove that they are unreach-
ablke from the set of mitial protocolstates. n order to perform such a reachability
analysis we m ust describe how states change as a consequence of principals per-
form ing protoool steps and of ntruder actions. This can be done by describing
such state changesby m eansofa set Rp of rew rite rulkes, so that the rew rite the-
ory ( p ,Ep ,Rp ) characterizes the behavior of protocolP m odulo the equations
Ep .The ollow Ing rew rite rules describe the general state transitions, w here each
State transition in plies m oving rightw ards the vertical bar of one strand:

sse« LM ,Ll&{M I, IK} SS& LM~ |Ll& {IK}
Ss& L |M*,Lls& {IK} SS& L,M* |[Ll& {IK}
sse« L |M*,L]l&{™M/I,IK} Ss&LM"* |Ll&{M I,IK}



variabls L ,L denote lists of nput and output messages m* m~ ) wihih a
strand, IK denotes a set of Ntruder facts m I m /I), and SS denotes a set
of strands. An unbounded num ber of sessions is handled by another rew rite
ke htroducing an extra strand fn ¥ ,...,m]{l |m§ ,msgjﬂl,...,mi] for an
htruder know ledge fact of the form m 4 I.See [5] for further inform ation.

The way to analyze backwards reachability is then relatively easy, nam ely
to run the protoool “in reverse.” This can be achieved by using the set of rules
R;',wherev- uiihR;'i u- vishRp .Reachability analysis can be
perform ed sym bolically, not on concrete states but on sym bolic state pattems
txi,...,Xa)] by means of narrowing modub Ep (see Section 2 and P4 ,32]).

Ep unfication precisely m odels all the di erent ways In which an ntruder
ocould exploit the algebraic properties Ep of P to break the protoool; therefore,
if an mitdal state can be shown unreachable by badkwards reachability analysis
modub Ep from an attack state pattem, this ensures that, even if the mtuder
uses the algebraicpropertiesEp |, the attack cannotbem ounted . Thism eans that
e cient support for Ep -unification is a crucial feature of sym bolic reachability
analysis of protocols m odulo their algebraic propertiesEp .

4 A Unfication A lgorithm for XOR pk-sk AC

In general, com bining unification algorithm s fora theory E = E; E, ... E,
is com putationally quite expensive, and typically assum es that the sym bols In
E; and E5 are paiw ise disjoint for each i = j. This is due to the substantial
am ount of non-determm niam Involved In the nference system s supporting such
combmations (see B]). M curNSL exampl,E = E; E, E;,whereE; is
the XOR theory, E, is the theory pk-sk given by the two public key encryption
equationspk K ,sk(® ,M )) =M and sk® ,pkK ,M ))=M ,and E; istheAC
theory for each of the state constructors ,  and _& - explained in Section 3.To
further com plicate the m atter, we need to com bine not just untyped uniication
algorithm s, but typed, and m ore precisely order-sorted ones.

Fortunately, the variant-narrow lng-based approach that we use In thispaper
avolds all these di culties by cbtaning the KOR pk-<k AC)-unification
algorithm as an instance of the variant narrow ing m ethodology supported by
M audeN PA . The pomt is that if an equational theory E has the finite variant
property [12], then a finitary E -unfication algorithm can be cbtained by variant
narrowing R0,19], as further explained in Section 5. In our case, the equations
In the theory pk-sk are confluent and temm nating and, furthemm ore, have the
finite variant property. Likew ise, the equations in the XOR theory presented
Tn Section 3 are confluent, term mating and coherent m odulo the AC axiom s of

and also have the finite variant property. Fnally, the theory of AC for the
state-building constructors ,  and _&- is of course finitary and can be viewed
as a trivial case of a theory w ith the finite variant property (decom posed w ith
no rulks and only axiom s). Note that all these three equational theories are
disjomt, ie., they do not share any sym bols. T he good new s is that the follow iIng
disjoint union theory XOR pksk AC with ygs; belng the entire (order-




sorted) signature of our NSL  protoool exam ple is also confluent, term nating
and coherent m odulo the AC axiom &, and satisfies the finite variant property:

1.Rulks:
-pk®,sk® M ))=M ,sk® ,pk®K /M ))=M ,
-X 0=X,X X=0X X Y=Y,

2. Axioms:AC for ,AC for_, andAC for_&._

T herefore, M audeN PA can analyze the NSL protocolusihng variant narrow Ing.
In the ollow ng we explain variant narrow Ing In m ore detail.

5 Variant N arrow Ing and Variant Unification

Suppose that an equational theory E is decom posed accordng to the follow ing
definition .

D efinition 1 (D ecom position [19]).Let ( ,E) ke an order-sorted equational
theory. We aall ( ,AxX,E) a decomposition of ( ,E) f E = E Ax and
( ,Ax,E) is an order-sorted rewrite theory satisfying the follow Ing properties.

1. Ax is regular, ie., oreach t = t In Ax, we have Var(t) = Var(t), and
sort-preserving, ie., for each substhutbion , we have t T X), 1t
T & ),; furtherm ore all variables in Var (t) have a top sort.

2. Ax has a finiary and com plkte unfication algorithm .

.Foreacht t mE wehavweVar() Var(®).

4. E is sortdecreasing, ie. foreacht t mmE,echs S, and each subst-
tution ,t T &) impliest T &X),.

5. The rewrite rules E are confluent and term inating m odub A x, ie., the re-
Bktion g ax is confluent and term nating.

6. The relhtion g ax is Ax-ooherent.

w

Given atemm t,an E Axvariantoftisapair (t, ) wih t an E Ax-canonical
form ofthe term t .That is, the variants of a term mtuitively give us all the ir-
reducble pattems that nstances of t can reduce to. O fcourse, som e variants are
m ore general than others, ie., there Isa naturalpreorder (£, ) gax &, )
defining when vardant (&t , ) ism ore general than variant (¢, ).Thisisinpor-
tant, because even though the set of E Ax-variantsofa term tm ay be infinite,

> A Ilthese conditions are easily checkable. ndeed, coherence m odulo the combmned AC

axiom s is in m ediate, and we can use standard m ethods and tools to check the local
confluence and term ination of the com bined theory; sim ilarly, the m ethod described
I [L7] can beused to chedk thefinite variant property of the com bined theory. A Irer-
natively, one can use m odular m ethods to check that a com bined theory satifies all
these properties under certain assum ptions: see B3] fora good survey of m odularity
results for confluence and term mation . Lkew ise, the finite variant property can also
be checked m odularly under appropriate assum ptions, but a discussion of this topic
is beyond the scope of this paper.



the set of m ost general variants (ie., m axin al elem ents In the generalization
preorder up to Ax-equivalence and variable renam ing) m ay be finite.

The Intin ate connection of variants wih E-unification is then as llows.
Suppose that we add to our theory decom position E = AX a bmary equality
predicate e, a new constant tt® and for each top sort k] and x of sort k] an
exta rule eqX,x) tt.Then, given any two tem s t,t, if is a E-unifier of
tand t, then the E Ax canonical orms of t and t must be Ax-equal and
therefore the pair (tt, ) mustbe a variant of the term eq (t, t ) . Furthem ore, if
the term eq (t,t) hasa finite set of m ost general variants, then we are guarantesd
that the set of m ost general Eunifiers of t and t isfinite.

Forany theory E Ax wih E confluent, term mating, and coherent m odulo
Ax, the folding variant narrowing of PO0] is a general and e ective com pkte
strategy. Com plete both In the sense of computing a complte sest of E Ax-
unifiers, and of com puting a m inim aland com plete set of variants for any nput
termm t.

In the follow ing, we characterize a notion of variant sem antics for equational
theories.

D efinition 2 (Variant Sem antics [20]). Let ( ,Ax,E) ke a decom position
of an equational theory and t ke a term . W e define the set of variants of t as
Bl .= {t, )| Subst( ,X),t f,,t,andt =axt}.

Examplke 1. Let us consider the equationaltheory XOR pk-sk, which, together
withAC for , and _&_ isused forourNSL protocolpresented In Section 3.
This equational theory is relevant because none of our previously defined uni-
fication procedures is directly applicable to it, eg. unfication algorithm s for
exclisive-or such as P2] do not directly apply if extra equations are added.

For ( ,Ax,E) a decomposition of XOR pk-<k, and for tem
t=M gk®,pk@® M ))ands=X sk ,pkK ,hY)),wehave that [l Ax =
{0,id),...} and

Bl ., = {&® Y,id),

e {x oy zh,e.{x z,¥y 0},

e {x z uy U}, {x UY 2z U},

0,{x Uu,Y U}),Z: Z.,{X U z.,Y U Z,}),
x vw,y v w}h,..l}

Wewrte (&, 1) rax (&, 2) todenote that variant (&, ) ismore general
than variant (&, 1).

D efinition 3 (Variant P reordering R0]).Let ( ,Ax,E) ke a decom position
of an equational theory and t ke a term . G iven two variants (G, 1), (&, 2)
El o,  wewrite (&, 1) eax (&, 2), meaning (&, ») is more general than
® Weextend to?D by adding a new sort Truth, not related to any sort n , with
constant tt, and for each top sort ] of a connected com ponent, an operatoreq : ]
x [l Truth.



(b, 1), 1 there isa subsdtution suchthatt =ax & and 1 g ax =ax 2
Wewrite (G, 1) gax (&, 2) if or every substitution such thatty =ax &
and ; g ax =ax 2 ,then Iisnota renam ing.

Exampk 2. ContihulngExampklwehavev; = (0,{X U,Y U}) asavald
varint ofs.Also, v; = (0,{X V W,Y V W }) isavaldvariantofsbut
clearly v, g ax Vi,and thusv, should notbe included in them ost generalset of
varints.On the otherhand foru; = ®  Y,id) andu, = (Z,{X 0,Y zZ}),
we have that nettheru; g ax Uy NOrXu; g ax U hold.

W e are, ndead, Interested I equivalence classes for vardiant sem antics and
provide a notion of equivalence of variants up to renam Ing, written .

D efinition 4 (Ax-Equivalence RO0]). Let ( ,Ax,E) be a decom position of
an egquational theory and t ke a term . For (&, 1), &, 2) El; o,  we wrie
(t, 1) ax &, 2) ifthere isa variablke renam ng such thatty =,y & and
1 =ax 2 .ForS;,S, [[t]]EAX,WeWIthSl ax S, ifforeach (g, 1) Si,
there exists (&, 3) S, st. G, 1) ax @, »2), and for each (&, ») Sa,
there edists (&, 1) Si1 st &, 2) ax (G, 1).

T he preorder ofD efinition 3 allow sus to provide a m ost generaland com plete
set of variants that encom passes all the variants fora temm t.

D efinition 5 M ost G eneral and Com plete Variant Sem antics R0]).
Let ( ,AX,E) e a decom position of an equational theory and t e a term . A
m ost general and com plete variant sem antics of t, denoted [kl Ax is a sub-
st B, o, Bl ., such that: ) B, o, =ax B ,,, and () ©reach
&, 1) tlg . there isno (&, 2) El; o, st &, 1) ax &, 2) and
G, 1) eax &, 2).

Exampk 3. Conthuing Exam ple 1 it is cbvious that the follow ing variants are
most generalw rt. g ax: Bl 5, = {(0,id)} and

Bl ., = {® Y,id),
@,{x 0,Y z}),Z.{x zZ,Y 0},
z{x =z uy uh,z.{x uyxy z U},
o {x Uy UD,2Z: Z,,{X U Z.,¥Y U Zy}}.

N ote that, by definition, allthe substiutions n [tl; ,, areE Ax-nom alized.
M oreover, [; ,, Isunigueup to ax and providesa very succinct description
of [l 5, - Indeed, up to Ax-equality, [l ,, characterizes the set of maximal
elem ents (therefore, m ost general variants) of the preorder ([t Ax’ EAX ).

Again, ket usm ake explicit the relation between variants and E-uniication.

Proposition 1 (M inim aland C om plete E-uniication R0]).Let ( ,Ax,E)
e a decom position of an equational theory ( ,E).Lett,t be two term s. Then,
s={ [t ) Eaktt)ly,,} sammhimaland compkte set of E-uniiers
for t = t, where eq and tt are new symlols defined in Footmote 6 and E =
E {eg® ,X) tt}.



T he finite variant property defined by Com on-Lundh and D elaune [2], pro-
videsa usefilsu cient condition forfinitary E-unfication. E ssentially, it deter-
m nes whether every term has a finite num ber of m ost general variants.

D efinition 6 (Finite variant property [2]).Let ( ,Ax,E) ke a decompo-
gition of an equationaltheory ( ,E).Then ( ,E), and thus ( ,Ax,E), has the

finite variant property i for each term t, the set [l ,, isfinite. W e willcall
( ,Ax,E) a finite variant decom position of ( ,E) 1 ( ,Ax,E) has the finite
variant property.

In [18] a technique is proposed to check whether an equational theory has the
finite variant property. U sing this technigue it is easy to chedk that Example 1
has the finite variant property, as every right-hand side is a constant sym bolor
a variable. See [18, Exam ple 2] for m ore details.

Finally, it is clear that when we have a finite variant decom position, we also
have a finitary unfication algorithm .

Corollary 1 (Finitary E-uniication R0]).Let ( ,Ax,E) bea finite variant
decom position of an equationaltheory ( ,E).Then, forany wo given term s t, t,
s={ |kt ) Ibq(t,t)]@Ax} is a finite, m ;nim al, and com plete set of E-

unffiers or t= t, where E/, eq, and tt are defined as In P roposition 1.

N ote that the opposite does not hold: given two temm s t,t that have a finie,
m inim al, and com plte set of Euniiers, the equational theory ( ,E) may not
have a finite variant decom position ( ,Ax,E).An exampl is the unfication
under hom om orphism (or one-side distribbutivity), w here there is a finite num ber
of unfiers of two term sbut the theory doesnot satisfy thefinite variant property
(see [2,18]); the key dea is that the term eq (L, t) m ay have an finite num ber
of vardants even though there is only a finite set of m ost general variants of the
form (tt, ).W e refer the reader to R0] for further nform ation.

Currently, M audeN PA restricts itself to a subset of theories satisfying the
finite variant property :

1. The axiom s Ax can declare som e bnary operators I~ to be com m utative
(w ith the comm attribute), or associative-com m utative (w ith the assoc and
comm attributes) .

2. The set of rewrite rules E  is sttongly right irveducible, that is no mstance
of the right-hand side of a rule In E by a nom alized substitution can be
firther sin plfied by the application the equations in E modulo Ax.

T he reasons for restricting ourselves n thisway is fore ciency and ease of
In plem entation .M aude currently supports uniication m odulo com m utative and
associative-com m utative theories, aswellas syntactic unfication, so this iswhat
drives our choice of A x . Furtherm ore, the restriction of E to strongly right irre-
ducible theories m eans that the depth of the narrow Ing tree is bounded by the
num ber of sym bols In a term .M oreover, m any of the finite variant theories that
arise In cryptographic protocol analysis satisfy strong right frreducibility. T hese



hclide encryption-decryption cancellation, exclusive-or, and m odular exponen-
tiation . The m ajor exoeption is Abelian groups (other than those described by
exclisive-or) . W e are currently working on in plem enting fi1ll variant narrow ing
In M audeN PA to handle these and other cases not currently covered by strong
right imreducibility.

6 Finding attacksmodulo XOR pk-sk AC using
M aude-N PA

W e have analyzed the NSL protocol presented In Section 3 m odul its equa-
tionaltheory XOR pk-sk AC inM audeNPA using variant narrow Ing.

W e now explain In m ore detail all the operations available to the mtruder.
Tts capabilities are all given in strand notation. N ote that we are om itting the
position m arker |which is assum ed to be at the begining.

—

)", (¥) ,X;Y)"] Concatenation

)", X )*] Left-deconcatenation

)", (¥)*] R ight-deconcatenation

-,¥),X Y)'] Exclsive-or

- ,(k@d,X))"] Encryption with i's private key
T, Pk@,X))*] Encryption with any public key
] G enerate the exclisive-or neutral elem ent

G enerate any principal’s nam e.
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T he attack state pattem from which we start the backw ardsnarrow ing search
Tn this exam plk is given by one strand, representing Bob (o) wanting to commu-
nicate with A lice @)

=r o [pkb,X ;a))” , Pk@,X ;b np,r))*, pkbnbr)) pil

togetherw ith requiring the ntruder (i) to have leamed Bab’snonce, ie.,n b,r) I.
W hat this represents is an attack In which Bob has properly executed the pro-
toool and believes to be taking to A lice, while the mtruder has cbtained the
nonce that Bob created and considers a secret shared between A lice and hin .
See Figure 1 for a pictorial representation of the strand gpace and m essages
gent and received, depicting the attack found by M audeN PA . Thisattadk agrees
w ith the one descrbed 1 B]. The figure has been created w ith the help of the
M audeNPA GUI B4], wih the exclisive-or symbol textually represented as
I the figure.

7 Related W ork

T here is a substantialam ount of research on form alverfication of cryptographic
protoools.M uch of it abstracts away from any equational theories cbeyed by the
cryptographic operators, but there is a grow Ing am ount of work addressing this



pk(i, n(a, r'): a)

‘IJ’ pk(b, nia, 7} : a) .
o Pkl e, 1) b * o, )
. p(i, b * i * nfb, 1)) .
o
‘u‘ pk(b, nib, 1)) b

Fig.1l. Pictorial representation of the mitial state, leading to an attack

problem . The earliest was the NRL Protocol Analyzer R9], which, ke M aude-
N PA ,wasbased on unfication and backw ards search, in plem ented via narrow ing
over confluent equational theories. Thiswassu cient to handle, forexam ple, the
cancellation of encryption and decryption, although there were m any theories
of mterest it did not address, such as exclisive-or and other Abelian group
operators.

M ore recently, toolshave begun to o er support for specfication and, to som e
degree, analysis of protoools nvolving equational theordes. T hese tools nclude,
for exam ple, ProVerif k], OFM C #], and CL-Atse B7].Both OFM C and CL-
Atse work In the bounded session m odel, while P roVerif uses abstraction and
unbounded sessions. Both O FM C and CL-A tee support exclusive-orand Di e-
Hellm an exponentiation. ProVerif can alo be used to analyze these, but the
equational theordes it is known to work wellw ith are m ore lim ited, e g. not sup-
porting associativity-com m utativicy orD 1 e-H elln an exponentiation . H owever,
Kusters and Truderung PR5,26] have developed algorithm s that can transhte
protoools using exclisive-or orDi eH ellm an exponentiation to protocols that
can be analyzed by ProVerif n a free algebra m odel; for exclisive-or they can
handle protoools satisfying the -lnearity property. A cocording to a study by
Lafourcade et al. 7], this produces analysis tin es that are only slightly slower
than analysesby OFM C and CL-Atse, m ainly because of the transhtion tin e.

T here is also a grow Ing am ount of theoretical work on cryptographic proto-
ool analysis using equational theordes, eg. [L,9,7,11,5]. T his concentrates on the
decidability of problem s of Interest to cryptographic protocol analysis, such as



deducibility, which m eans that it is possible (eg. for an ntruder) to deduce a
term from a set of tem s, and static equivalence, which m eans that an mtruder
cannot tell the di erence between two sets of term s. H ow ever, there ismuch less
work on the combination of di erent theordes, although A maud, Cortier, and
D elaune [13] have considered the problem In temm s of decidability of the prob-
lem for combiation of disjoint theories, show ing that if any two disjont theo-
ries have decidable static equivalence problem s, then so does their com bination.
M ore recently Chevalier and R usihow itch analyze the security of cryptographic
protoools via constramt system s and have also studied com position of theordes.
In [L0], they give a generalm ethod for com bining disjoint theories that is based
on the Baader-Schulz com bnation algorithm for unification algorithm s for dif-
ferent theordes B]. This can be thought of as a constraint-based analogue of the
M audeN PA com bination fram ework, which is also based on the Baader-Schulz
com bhation algorithm B].

8 Conclusions and Future W ork

To gal high assurance about cryptographic protocols using form alm ethods re-
quires reasoning m odulo the algebraic properties of the underlying cryptographic
fiunctions. n sym bolic analyses this typically necessitates perform ing unification
modub such algebraic properties. However, since a protocolm ay use a variety
of di erent functions — o that di erent protocols typically require reasoning
modulo di erent theordes— it is unrealistic to expect that a fixed set of unfica-
tion algorithm swillsu ce for such analyses. That is, com bination m ethods that
cbtain unification algorithm fora com position of theordes out ofa fam il of such
algorithm for each of them , are unavoidable. Standard m ethods for cbtaning
a unfication algorithm for a combied theory E; ... E, B] are computa-
tionally costly due to the high degree of non-determ nism I the com bination
m ethod ; furtherm ore, they require the existence of a unfication algorithm for
each imdividual theory E;, which h practice m ay not be availbble  a tool’s
hfrastructure. In this work we have proposed an altemative m ethod based on
variantnarrowing toobtaina E; ... E,)-unfication algorithm under sin pler
requirem ents. Spectfically, dedicated in plem entations of unification algorithm s
for each of the theoriesE ; are not needed : In our exam ple, only a dedicated AC -
unification algorithm was used: no dedicated algorithm s for XOR of pk-sk were
needed . Furthem ore, even though narrow Ing is less e cient than a dedicated
algorithm for each imdividual theory E ;, the costly com putational overhead of a
standard com bmation m ethod is avoided. The case study presented has shown
that variant narrow Ing, as supported by the M audeN PA , is Indeed an e ective
m ethod to dealw ith nontrivial com bations of equational theordes; and for an-
alyzing m any protocols w ith even a m odest mfrastructure of built-in unification
algorithm s. The case study was chosen as a wellknown protocol for illustration
purposes, but m any other exam ples could have been given.

W e should em phasize that standard com bination m ethods such as those de-
scribed In B, and the altemative variant narrow Ing m ethod presented here are



not “rival’ m ethods. Instead they are highly com plm entary m ethods which,
when used n tandem , allow a tool to analyze a m uch w der range of protocols
than those analyzable by each m ethod in isolation. Let us use our exam ple the-
ory XOR pk-=k AC to ilustrate this in portant point. Variant narow ing
decom posed this com bined theory to: (1) three rew rite rules for XOR and two
rew rite rules for pk-sk plus, (i) three mstances of AC : one for , another for
_,- and another for & _. That is, variant narrow Ing with the rmules n (i) was
perform ed modub the axiom s In (). But the axiom s In (Hi) are them selves a
com bined theory (n fact, also combied with all the other function sym bols n
the protocol spectication as fire finction symbols). The M aude mfrastructure
used by M audeN PA has In fact used an order-sorted version of a standard com -
bination m ethod in the style of B] to support unfication with the combined
axdiom s of (i) . T herefore, the advantage of using standard com bination m ethods
and variant narrow ing i1 tandem is the ollow ng:

1. A given tool mfrastructure can only have a finite num ber of predefined (ini-
tary) unfication algorithm s for, say, theordes T4, ..., Tx ; however, i should
also be ablk to support any com bination of such built-in theordes by a stan-
dard com bination m ethod.

2. A given protocolm ay require perform ing uniication m odulo a com bination

oftheoriesE; ... E,,but some oftheE; may not belong to the lbrary
T1,...,Tx, 0 that the standard com bination m ethod cannot be used.
3. However, if E; ... E, can be refactored as a theory decom position

( ,B,R) that: (I i has the finie variant property; and (i) B is a com -
bination of the theories T, ...,Tx supported by the current lbrary, then
afinimry E; ... E,)-unification algorithm can be obtained by variant
narrow Ing.

A very in portant direction for future work in form al tools supporting sym -
bolic protocol analysis m odulo equational properties consists in: (1) developing
m ethods for expanding a tool’s built-in unfication mhfrastructure as described in

(1) above to make i as e cient and extensble as possble; and (i) in proving
and optin Izing the m ethods for e cient variant narrow ng m odulo such mfras-
tructure. G ood candidates fornew theordes Ty to be added to the built-in mfras-
tructure nclude comm only used theordes, w ith high priority given to theories
that lack the finite variant properties. For exam ple, the theory of hom om orphic
encryption, which lacks the finie variant property, has been recently added to
M audeN PA for exactly this purpose.
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