FEM3DD SOFTWARE VERIFICATION

Samuel SANCHEZ-CABALLERO1, Miguel Angel SELLÉS2, Miguel Angel PEYDRO3, David JUAREZ4

1 Institute of Design and Manufacturing, Universitat Politècnica de València, Pl. Ferrandiz y Carbonell, s/n; 03801; Alcoy – Alicante (Spain), sasanc@dimm.upv.es
2 Department of Mechanical and Materials Engineering, Universitat Politècnica de València, Pl. Ferrandiz y Carbonell, s/n; 03801; Alcoy – Alicante (Spain), miselcan@dimm.upv.es
3 Department of Mechanical and Materials Engineering, Universitat Politècnica de València, Pl. Ferrandiz y Carbonell, s/n; 03801; Alcoy – Alicante (Spain), mpeyro@mcm.upv.es
4 Department of Mechanical and Materials Engineering, Universitat Politècnica de València, Pl. Ferrandiz y Carbonell, s/n; 03801; Alcoy – Alicante (Spain), djurez@mcm.upv.es

Abstract—Structural optimization requires a large number of structures to be evaluated. In simultaneous size and shape optimization, where only metaheuristics techniques can be used, the number of evaluations can easily run into thousands. Renowned and widespread commercial software like ANSYS or MSC Nastran are multipurpose FEM (Finite Element Method) programs have high initialization times which are even higher than the computing ones. This has a vital influence on the algorithm performance, especially in population based metaheuristic techniques. In order to avoid this issue, lighter FEM software or even embedded FEM code should be used. Among the Openware FEM code, the software FEM3DD can be highlighted. From its features, it is worthy to stand out: fast initialization, multi-OS open source code (GNU license), command line operation, CSV and Matlab files reading, and well documented.

Keywords—Structural, optimization, FEM3DD, verification

I. INTRODUCTION

The price increase of raw materials has forced the engineers to reduce the weight of the structures. This has brought the flowering of a new set of optimization algorithms.

Traditional optimization algorithms do not use simultaneous size and shape optimization, which biases solutions towards local optima. In contrast, new metaheuristics techniques as Genetic Algorithms [1], Evolutionary Strategies [2], Particle Swarm Optimization [3] or Ant Colony Optimization [4, 5] are capable to handle both size and shape variables simultaneously in an easy way. These techniques can lead to lighter structures than traditional Linear Programming [6], Non Linear Programming, Branch and bound [7] algorithms.

The main drawback of this new techniques is that are population based and they require from a large number of evaluations which run from hundreds to thousands, and even millions depending on the structure complexity. This requires the computing time to be very low as on the contrary they become pointless.

Renowned and widespread commercial software like ANSYS or MSC Nastran are multipurpose FEM programs have high initialization times which are even higher than the computing ones. For example, the lighter Ansys v.12.1 startup from command line requires 2 seconds which is usually higher than the structure computing time. To avoid this drawback it is necessary to use a lighter FEM software or even embedded FEM code.

There are a lot of free FEM utilities, some of them even with free open source. Among them FEM3DD is a good choice. The main features of this software are:

1) Fast initialization time for binaries.
2) Binaries for windows, OS X and Linux.
3) Open source code with GNU license [8].
4) Multiple load cases in each analysis with gravity loading, partial trapezoidal loads, thermal loads, and prescribed displacements.
5) Shear deformation effects on geometric stiffness are included.
6) Matlab and spreadsheet interface, graphical output via Gnuplot.

The software uses very common FEM routines, several of them from Numerical Recipes, and is being used by lots of researchers, but the documentation does not show a numerical verification with other renowned software or examples.

The aim of this paper is to do such verification through the evaluation of a set of different structures.

II. EVALUATED STRUCTURES

A. 32 bar roof structure

The structure is an isostatic structure with two supports with point loads on the upper joints.

Fig. 1. Geometry of the 32 bar truss.
Mechanical properties:
Young Modulus. $E = 210000$ MPa
Poisson coefficient. $N = 0.296$
Shear Modulus. $G = 81000$ MPa
Density. $\rho = 7.85 \times 10^{-9}$ kg/mm3
Upper and lower bars properties:
Profile: $T 40$
Transverse section. $(A_x): 377$ mm2
Y axis moment of inertia $(I_{YY}): 52800$ mm4
Z axis moment of inertia $(I_{ZZ}): 25800$ mm4
Polar moment of inertia $(J_{XX}): 78600$ mm4
Vertical and diagonal bars properties:
Profile: $L 40 \times 4$
Transverse section. $(A_x): 308$ mm2
Y axis moment of inertia $(I_{YY}): 70900$ mm4
Z axis moment of inertia $(I_{ZZ}): 18600$ mm4
Polar moment of inertia $(J_{XX}): 89500$ mm4

B. Ten bar truss
The structure is very well known in structural optimization and is used as benchmark problem by the researchers to test their algorithms with more than 55 researchers [9] during the last forty years. Fig. 2 shows the best optimum reported with a reduced number of bars.

Fig. 2. Geometry of the optimum ten bar truss.

Mechanical properties:
Young Modulus. $E = 68900$ MPa
Poisson coefficient. $N = 0.33$
Density. $\rho = 2.65851 \times 10^{-7}$ kg/mm3

Area B1: 8709.66 mm2
Area B2: 8709.66 mm2
Area B3: 4658.0552 mm2
Area B4: 3703.2184 mm2
Area B5: 8709.66 mm2

C. 22 bar truss
This is also a well-known structure in structural optimization [10].

Fig. 3. Geometry of the 22 bar truss.

Mechanical properties:
Young Modulus. $E = 68900$ MPa
Poisson coefficient. $N = 0.33$
Density. $\rho = 2.65851 \times 10^{-7}$ kg/mm3

Area B1: 1729.029 mm2
Area B2: 1729.029 mm2
Area B3: 1438.707 mm2
Area B4: 1096.772 mm2
Area B5: 690.321 mm2
Area B6: 515.483 mm2
Area B7: 1438.707 mm2
Area B8: 1096.772 mm2
Area B9: 954.837 mm2
Area B10: 515.483 mm2
Area B11: 279.354 mm2
Area B12: 690.321 mm2
Area B13: 690.321 mm2
Area B14: 690.321 mm2
Area B15: 690.321 mm2
Area B16: 690.321 mm2
Area B17: 412.257 mm2
Area B18: 412.257 mm2
Area B19: 412.257 mm2
Area B20: 412.257 mm2
Area B21: 412.257 mm2
Area B22: 412.257 mm2

D. Two supported beam
The structure is an isostatic beam with two supports with several loads and moments.

Fig. 4. Geometry of the two supported beam.

Mechanical properties:
Young Modulus. $E = 210000$ MPa
Poisson coefficient. $N = 0.296$
Shear Modulus. $G = 81000$ MPa
Density. $\rho = 7.85 \times 10^{-9}$ kg/mm3
Profile. IPN 200
Transverse section. $(A_x): 3350$ mm2
Y axis moment of inertia $(I_{YY}): 21400000$ mm4
Z axis moment of inertia $(I_{ZZ}): 1170000$ mm4
Polar moment of inertia $(J_{XX}): 22570000$ mm4
III. FEM MODELING

The computing results for verification were obtained using Ansys APDL v12.1.

For the 32 bar roof structure a BEAM54 element with a mesh of ten divisions per bar was used.
For the ten bar truss a LINK1 element was used.
For the 22 bar truss a LINK1 element was used.
For the two supported beam a BEAM3 element with a mesh of twenty divisions per bar was used.

The results given by FEM3DD are: joint loads and displacements, frame element forces and moments, and reactions. So, stresses are not computed by the program and must be subsequently computed.

Following the formulae used for stress computation are shown:

A. Normal axial stress:

\[\sigma_A = \frac{N_X}{A_X} \]
(1)

Where:
\(\sigma_A \) is the axial normal stress.
\(N_X \) is the axial force.
\(A_X \) is the transversal area considered

B. Normal asymmetric bending stress (compression side):

\[\sigma_{F_C} = \frac{|M_Y|}{I_Y} y_T + \frac{|M_Z|}{I_Z} z_T \]
(2)

Where:
\(\sigma_{F_C} \) is the bending compressive stress due to bending
\(M_Y \) is the bending moment around the local Y axis.
\(I_Y \) is the moment of inertia around the local Y axis
\(y_T \) is the Y axis distance from the neutral axis to the farest compression point
\(M_Z \) is the bending moment around local Z axis.
\(I_Z \) is the moment of inertia around the local Z axis
\(z_T \) is the Y axis distance from the neutral axis to the farest compression point

C. Normal asymmetric bending stress (tensile side)

\[\sigma_{F_T} = \frac{|M_Y|}{I_Y} y_T + \frac{|M_Z|}{I_Z} z_T \]
(3)

Where:
\(\sigma_{F_T} \) is the bending tensile stress due to bending
\(y_T \) is the Y axis distance from the neutral axis to the farest compression point
\(z_T \) is the Y axis distance from the neutral axis to the farest tensile point

D. Average Shear stress along Y axis:

\[\tau_{xy} = \frac{|V_Y| + |T_X|}{A_{xy} C} \]
(4)

Where:
\(\tau_{xy} \) is the shear stress along Y axis.
\(V_Y \) is the Y axis shear force.
\(A_{xy} \) is the Shear Area (Collignon Area).
\(T_X \) is the torsional moment.
\(C \) is the torsion shear constant.

E. Average Shear stress along Z axis:

\[\tau_{xz} = \frac{|V_Z| + |T_X|}{A_{sz} C} \]
(5)

Where:
\(\tau_{xz} \) is the shear stress along Z axis.
\(V_Z \) is the Z axis shear force.
\(A_{sz} \) is the Shear Area (Collignon Area).

IV. RESULTS AND DISCUSSION

The verification of the FEM3DD code was done by comparing the computed solutions with the Ansys computed ones. The selected results to make the comparison were: support reactions, joint displacement and bar compound stress.

Once the solutions were computed, the relative error was computed:

\[\varepsilon(\%) = \frac{|\text{value}_{\text{ansys}} - \text{value}_{\text{frame3DD}}|}{\text{value}_{\text{ansys}}} \times 100 \]
(6)

Following the results for all the structures are shown.

A. 32 bar roof structure

![Fig. 5. Relative error of the 32 bar roof structure.](image-url)
As can be seen the relative error of displacement and reaction is negligible. However, the stress solution shows a large deviation, up to 38%. This can be due to the fact that the stress computation through equations from (1) to (5) is a rough approximation to the real solution.

B. 10 bar truss

![10 bar truss graph]

Fig. 6. Relative error of the 10 bar truss.

As Fig. 6 shows the error is negligible.

C. 22 bar truss

![22 bar truss graph]

Fig. 7. Relative error of the 22 bar truss.

As Fig. 7 shows the error is negligible.

D. Two supported beam

![Two supported beam graph]

Fig. 8. Relative error of the 22 bar truss.

Like the roof structure, the stress relative error is significant, due to the same effects described before. The reaction and displacement error is negligible.

V. CONCLUSIONS

According to the previous analysis, the displacement and reaction differences regarding to Ansys results is negligible. However, the stress results can have a large divergence when working with beam elements due to the fact that the computed results during post-processing are a rough approximation to the real phenomena.

So, when working with beam elements, the computed stresses through FEM3DD should be affected by a safety factor of about 1.5

ACKNOWLEDGMENT

The author thanks Professor Henri P. Gavin, from the Department of Civil and Environmental Engineering of the Duke University, for the development of FEM3DD and making the code open for everybody.

REFERENCES