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Abstract 

As CMOS technology scales to the nanometer range, designers have to deal with a growing number and 

variety of fault types. Particularly, intermittent faults are expected to be an important issue in modern 

VLSI circuits. The complexity of manufacturing processes, producing residues and parameter variations, 

together with special aging mechanisms, may increase the presence of such faults. This work presents a 

case study of the impact of intermittent faults on the behavior of a commercial microcontroller. In order 

to carry out an exhaustive reliability assessment, the methodology used lies in VHDL-based fault 

injection techniques. In this way, a set of intermittent fault models at logic and register transfer 

abstraction levels have been generated and injected in the VHDL model of the system. From the 

simulation traces, the occurrences of failures and latent errors have been logged. The impact of 

intermittent faults has been also compared to that got when injecting transient and permanent faults. The 

results obtained in this work suggest the suitability of adding mitigation techniques to deliver fast error 

detection and correction of intermittent faults in buses and critical registers. 
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1. Introduction 
As technology has progressed toward nanoscale devices, microprocessors and microcontrollers have 

reduced their area and supply voltage, increasing its processing speed. However, these advances impact 

negatively on their reliability. As feature sizes are aggressively scaled, the manufacturing of integrated 

circuits becomes more complex so that more defects and process variations are introduced. In addition, 

deep submicron devices are more vulnerable to the environment due to the reduction of the energy 

required to enable switching. As a result, designers have to deal with a growing number and variety of 

fault types [1]. 

Usually, only the effects of permanent and transient faults have been studied and modeled [2, 3]. 

Permanent faults, also known as hard faults, are caused by irreversible physical changes in a chip. 

Although the most common sources for this kind of faults are manufacturing processes, they can occur 

also during the operation of the circuit, especially when the circuit is old and starts to wear out.  

On the other hand, transient faults are commonly generated by temporary environmental conditions, like 

electromagnetic interferences or cosmic radiation. This type of faults does not leave any permanent 

effects on the chip and thus they are also called soft errors. The occurrence of transient faults is 

commonly random and, therefore, hard to detect. 

However, intermittent faults have not been considered habitually. These faults manifest as occasional 
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bursts that typically repeat themselves every now and then, and whose effects are not continuous as 

permanent faults. Also, intermittent faults occur repeatedly in the same places, and they may be activated 

or deactivated by changes in temperature, voltage or frequency [4]. Nowadays, intermittent faults are 

expected to have a great impact in nanotechnologies. The complexity of the manufacturing process 

(which produces residues and process variations) and special aging mechanisms may increase the 

presence of intermittent faults [1]. In addition, errors provoked by intermittent faults are very hard to 

detect because they may only occur under certain environmental constraints or in the presence of some 

specific input vector combination [5]. 

Fault Injection is a common method to assess the reliability of a computer system [6]. This technique 

allows a controlled introduction of faults in the system, not being necessary to wait for a long time to log 

the apparition of real faults. Fault injection techniques can be classified in three main categories [3]: 

physical (or Hardware Implemented Fault Injection, HWIFI), software implemented (SWIFI) and 

simulation-based. 

Simulation-based fault injection is a useful experimental way to evaluate the dependability of a system 

during the design phase. An early diagnosis allows saving costs in the design process, avoiding 

redesigning in case of error, and thus reducing time-to-market. In particular, VHDL-based Fault Injection 

has been used due to its flexibility, as well as the high observability and controllability of all the modeled 

components [7]. 

So far, very few attempts have been done in order to study the effects of intermittent faults by fault 

injection. In most of the works issued, real systems were monitored, and faults and failures produced were 

observed to determine the most frequent sources of errors and their manifestation [4, 8, 9]. 

The objective of this work is to study the impact of intermittent faults in a commercial microcontroller, as 

well as to compare their consequences to those provoked by permanent and transient faults. To do this, a 

set of intermittent fault models at logic and register transfer (RT) abstraction levels has been generated, 

and they have been injected in the VHDL model of a commercial microcontroller in order to analyze their 

impact. 

To sum up, the main contributions of this work are: 

a. To generate intermittent fault models at logic and register transfer (RT) abstraction levels, paying 

special attention to faults in combinational logic. 

b. To inject these fault models, applying different VHDL-based fault injection techniques. 

c. An exhaustive variation of the fault and system parameters, in order to obtain an extensive 

analysis of their effects. 

d. A study of the impact of intermittent faults in the behavior of a commercial microcontroller. 

e. Comparing the influence of intermittent faults to that of transient and permanent faults.  

The paper is organized as follows. Section 2 describes the generation of intermittent fault models. Section 

3 depicts the fault injection experiments. Section 4 includes a selection of the results. Finally, Section 5 

provides some conclusions. 

2. Intermittent fault models 
Whereas transient and permanent fault models have been traditionally well established, intermittent fault 

modeling is a pending issue [1]. Examples of popular fault models for permanent and transient faults are 

stuck-at and bit-flip, respectively [3]. 

To obtain representative fault models for intermittent faults, it is necessary to understand the physical 

mechanisms that take place in deep submicron technologies. Intermittent faults occur due to unstable or 

marginal hardware, and they may be activated by an environmental change such as temperature or voltage 

alterations. Manufacturing residues, process variations and special aging processes can lead to such faults. 

Traditionally, permanent fault models have been applied to intermittent faults, as intermittent faults often 

precede the occurrence of a permanent fault. Nevertheless, the introduction of new submicron 

technologies makes necessary to study new fault causes and mechanisms of intermittent faults. In this 

way, Table 1 summarizes some representative physical causes and fault mechanisms of intermittent 

faults, as well as the fault models proposed in every case.  

To do that we have selected a set of intermittent faults observed in real computer systems by means of 

fault logging [4, 9], and analyzed some fault mechanisms related to process variations and wearout that 

can provoke intermittent faults [10-15].  Then, a set of fault models at logic and RT abstraction levels 

which can be simulated into VHDL models has been deduced. 

The table tries to unify, classify and relate the different fault sources. It shows intermittent fault models 



for buses, storage elements, input/output connections and combinational logic. It extends the study made 

in [16] and [17], adding new challenging wearout processes of the nano-CMOS technology.  

 

TABLE 1. Some intermittent fault mechanisms and models 

 
Causes Targets Fault mechanisms Type of fault Fault models 

Residues in cells Memory and registers Intermittent contacts Manufacturing defect Intermittent stuck-at 

Solder joints Buses Intermittent contacts Manufacturing defect Intermittent pulse 

Intermittent short 
Intermittent open 

Electromigration 

Delamination 

Buses 

I/O connections 

Variation of metal resistance 

Voids 

Wearout-Timing Intermittent delay 

Intermittent short 
Intermittent open 

Crosstalk I/O connections  

Buses 
 

Electromagnetic interference Internal noise 

Timing 
 

Intermittent pulse 

Intermittent delay 
Intermittent speed-up 

Gate oxide soft 

breakdown 

NMOS transistors in 

SRAM cells 

Leakage current fluctuation 

 

Wearout-Timing 

 

Intermittent delay 

Intermittent Indetermination  
Negative bias-

temperature instability 
(NBTI) 

PMOS transistors in 

combinational logic 

Increase of transistor threshold 

voltage VTH 
Reduction of carrier mobility   

Wearout-Timing Intermittent delay 

 

Negative bias-

temperature instability 
(NBTI) 

PMOS transistors in 

SRAM cells 

Local mismatches among cell 

transistors, decrease of static 
noise margin 

Wearout Intermittent bit-flip 

 

Hot-carrier injection 

(HCI) 

NMOS transistors in 

combinational logic 

Increase of transistor threshold 

voltage VTH 

Wearout-Timing Intermittent delay 

 
Low-k dielectric 

breakdown 

Buses 

I/O connections 

Leakage current fluctuation 

Temperature variations 

Capacity degradation 

Wearout-Timing Intermittent delay 

Intermittent short 

 
Doping profile and 

gate length deviations 

MOS transistors in 

combinational logic and 

memory 

Deviations in VTH 

Deviations in operation speed 

 

Manufacturing variations Intermittent delay 

 

 

According to type of fault column, some faults are due to manufacturing defects and residues, which 

provoke intermittent contacts.  

Other faults are caused by wearout or aging mechanisms, affecting the metal connections 

(electromigration, delamination) or the gate-oxide of the transistors (soft breakdown). These may produce 

intermittent contacts and timing errors provoked by resistance variations and leakage current fluctuations. 

Timing errors and signal perturbations can also be produced by crosstalk between adjacent signals. 

In order to extend the fault models to combinational logic, two cases have been considered. Firstly, faults 

that affect the input/output connections of the combinational logic; and secondly, faults in internal 

components. In this last case, some challenging wearout processes that affect the gate-oxide and the 

interconnect-oxide have been considered: negative bias-temperature instability (NBTI), hot-carrier 

injection (HCI) and low-k dielectric breakdown.  

NBTI is a PMOS-specific transistor-aging effect that increases the threshold voltage (VTH) of a device, 

and reduces the carrier mobility  as a function of time and stress condition [12]. NBTI can result from 

continuous trap generation in a transistor‟s Si-SiO2 interface. These traps usually originate from Si-H 

bonds generated after the hydrogen passivation process to remove dangling silicon atoms at the Si-SiO2 

interface. However, under stressed operating conditions (negative gate bias at high temperatures), these 

bonds can easily break with time and generate positive interfacial traps, which increase VTH. Although the 

device reliability community has been aware of the NBTI process for decades, NBTI has recently gained 

more attention, mainly because of the wide use of ultrathin oxide devices. These thin oxides substantially 

increase the vertical oxide field and provoke more severe degradations. The increase of the PMOS 

transistor threshold voltage can lead, in his turn, to the increase of circuit delay in random-logic circuits 

and to the decrease of the static noise margins in memory arrays [14]. The increase of VTH can eventually 

derive to the transistor stuck-off, where the transistor is permanently in non conducting state. 

HCI is also related to the degradation of the gate oxide. As electrons are accelerated along the channel, 

they can acquire enough energy so that, through scattering and/or impact ionization, they can be injected 

into the gate oxide causing interface-state generation [12]. The effects are similar to those of NBTI, but in 

NMOS transistors. 

Besides transistors, scaled interconnections also suffer the rapid increase of reliability problems, 

especially after the introduction of new materials (such as copper or low-k dielectrics). These new 

materials enhance wire performance, but degrade thermal and mechanical stability. The situation is 

compounded by variations in the line geometry that increase the failure probability. One of the emerging 



wearout issues is low-k dielectric breakdown [15]. In recent years, copper and low-k interconnect systems 

have become vulnerable to breakdown because of the lower breakdown field strengths of porous low-k 

materials, the susceptibility of low-k materials to mechanical damage by chemical mechanical polishing, 

and the high susceptibility of low-k materials to copper drift. Low-k dielectric breakdown provokes 

fluctuations of the leakage currents and the wire capacity in time, which in his turn can lead to the 

increase of circuit delay in random-logic circuits. Dielectric breakdown can also produce intermittent 

shorts that eventually lead to permanent breakdown. 

These aging mechanisms may manifest as intermittent faults before deriving in permanent faults. Initially, 

faults will appear intermittently, depending on specific conditions (e.g., voltage, temperature, circuit 

inputs, etc.), but they might eventually end up as permanent defects. 

In short, the proposed fault models for the combinational logic are: intermittent delay, short, open, pulse, 

stuck-at, indetermination. 

Finally, another cause of intermittent faults can be the manufacturing variations, as it is shown in Table 1. 

As the fabrication dimensions shrink, the proportional extent of random deviations becomes larger and 

their effects more severe. For instance, gate length deviations and fluctuations of the doping profile 

provoke deviations of the transistor threshold voltage and the speed operation [5]. Slower devices may 

lead to timing violations and therefore to the malfunction of the circuit. This manifests as intermittent 

faults because the circuit may correctly operate most of the time. 

3. Fault injection experiments 
To inject the faults, VFIT (VHDL-based Fault Injection Tool) [3], a tool developed by the GSTF has been 

used. VFIT is able to inject faults automatically applying simulator commands, saboteurs and mutants 

techniques [18]. 

Fig. 1 shows the classification of the different VHDL-Based Fault Injection Techniques [3]. 

 

 
 

Fig. 1. Fault injection techniques for VHDL models. 

 

Simulator commands change automatically, at simulation time, the value or the timing of the signals and 

variables of the system. Saboteurs and mutants techniques are more complex, as they modify the VHDL 

code of the system by inserting injection components (saboteurs) or activating “mutated” versions of the 

existing components (mutants). Other techniques are based in some extensions of the syntax and 

semantics of the VHDL language. 

Most of the experiments have been carried out with simulator commands technique, because it is not 

necessary to modify the VHDL code and it is easy to apply. Saboteurs technique has been used in the last 

group of experiments, in order to extend the fault load injected. 

Intermittent faults have been injected on the VHDL model of the 8051 microcontroller [19], running the 

Bubblesort sorting algorithm as workload. 

Fig. 2 shows the structure of the 8051 microcontroller and the injection targets of the experiments. 

Intermittent faults have been injected in the storage elements (the register file and the internal RAM), the 

internal buses, and the combinational logic of the ALU and CU. 
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Fig. 2. Structure of the 8051 microcontroller and injection targets. 

 

Fig. 3 shows the block diagram and the design hierarchy of the microcontroller VHDL model. Modules 

containing logic have been designed with a behavioral RTL architecture, whereas modules composed of 

connected sub-modules present a structural architecture. The type of description is shown in each module: 

Struc (structural) or RTL (behavioral at RT level). 

Although the chosen system is a small prototype processor, the methodology used to analyze the impact 

of intermittent faults would be the same for more complex microcontrollers and microprocessors. 

 

       
 

              (a) Block diagram.                                                            (b) Design hierarchy. 

 

Fig. 3. 8051 microcontroller VHDL model. (a) Block diagram. (b) Design hierarchy. 

 

The main injection parameters are: 

a) Fault multiplicity 

We have injected both single and multiple faults. Due to technology scaling, it is expected that 

intermittent faults will likely affect multiple locations [9]. Multiple faults have been injected in adjacent 

and non-adjacent places. To select the targets, Uniform distribution functions have been used.  

b) Fault models 

According to Section 2, and considering the capabilities of simulator commands fault injection technique, 

the intermittent fault models selected have been: 

ALU

CONTROL UNIT

8051 IP CORE

TIMER/
COUNTER

SERIAL
INTERFACE

UNIT

ROM
External

RAM
Internal

RAM

System

(Struc)

External RAM

(RTL)

Internal RAM

(RTL)

Microcontroller 

Core

(Struc)

ROM

(RTL)

ALU

(Struc)

Serial Interface

(RTL)

Timer/Counter

(RTL)

Control Unit

(Struc)

Memory Unit

(RTL)

FSM

(RTL)

Divider

(RTL)

Decimal Adjust

(RTL)

Multiplier

(RTL)

Adder/

Subtractor

(Struc)

ALU Core

(RTL)

MUX

(RTL)

Adder/Subtractor 

with carry

(RTL)

Adder/Subtractor with 

carry and overflow

(RTL)



 Intermittent stuck-at, for storage elements. 

 Intermittent pulse, for buses.  

 Intermittent pulse, open, stuck-at, indetermination, for combinational logic. 

Delay fault model has not been injected with simulator commands because of the lack of temporal 

specifications in the VHDL model of the core. Nevertheless, by using the saboteurs technique, the faults 

injected in the buses have been extended with two new fault models, Intermittent short and Intermittent 

delay.  

c) Injection instant 

It has been selected randomly along the workload duration, according to a Uniform distribution. 

In real computer systems, other fault distributions have been observed, such as Exponential or Weibull 

[18]. For instance, a Weibull distribution with increasing fault rate can be used to emulate a wearout 

process that increases the frequency of intermittent faults, before eventually become permanent. 

d)  Burst parameters 

Intermittent faults manifest in bursts. So, to inject this type of faults the following parameters can be 

configured [17] (see Fig. 4): 

 The number of fault activations in the burst (we will call it burst length, or LBurst). 

 The duration of each activation (we will refer to it as activity time, or tA). 

 The separation between two consecutive activations (we will name it as inactivity time, or tI). 

 

 
 

Fig. 4. Main elements of an intermittent burst. 

 

All the three parameters were generated according to random Uniform distribution functions. LBurst was 

varied between 1 and 10. For tA and tI, three time ranges were used: [0.01T–0.1T], [0.1T–1.0T], and 

[1.0T–10.0T], where T is the clock cycle. In our experiments, the nominal clock frequency of the 

microcontroller is 10 MHz, thus T = 100 ns.  

Intermittent faults which become permanent will probably vary their burst parameters along time, 

increasing LBurst and tA, and decreasing tI. Other distribution functions, like Weibull or Lognormal, may 

be used to emulate aging processes.  

e) Number of faults injected 

To obtain a reliable statistic sample, 1,000 faults have been injected per experiment, so that more than 

100,000 faults have been injected in total. 

f) Measures obtained 

In order to measure the impact of intermittent faults, we have calculated in every experiment the 

percentages of provoked failures and latent errors, defined as follows: 

 Percentage of failures: 

           

100
N

N
P

Injected

Failures

Failures 

 
 Percentage of latent errors: 

           

100
N

N
P

Injected

Latent

Latent 

 
where: 

 NInjected is the number of faults injected. 

 NFailures is the number of failures. A failure is produced when the result obtained after the 

execution of the workload is erroneous. 

tA(1) tI(1)

Activation
#LBurst

Burst

Activation
#1

Activation
#2

tA(2)

   

tA(LBurst)
tI(LBurst ) - 1tA(LBurst ) - 1

 



 NLatent is the number of latent errors. A latent error is produced when the injected fault propagates 

to the storage elements but it does not provoke a failure. 

 

Faults that provoke neither failures nor latent errors are called Non Effective. Latent errors and failures are 

detected by comparing the trace of every faulty simulation with a golden run. Fig. 5 summarizes the 

syndrome of faults and the calculated data. 

 

 
Fig. 5. Syndrome of faults. 

4. Results 
The results are divided in five groups. Section 4.1 studies the influence of burst parameters. Section 4.2 

analyzes the influence of the injection target. Section 4.3 verifies the effect of the system clock frequency. 

Section 4.4 compares the impact of intermittent faults to that of transient and permanent faults for 

combinational logic. Finally, Section 4.5 shows the use of the saboteurs fault injection technique in order 

to extend the set of injected fault models. 

These results complete those obtained in [16, 17], where faults were injected only in storage elements and 

buses by applying the simulator commands technique. 

4.1. Influence of burst parameters 

 

Activity time 

Fig. 6 and Fig. 7 represent, respectively, the influence of tA and the fault multiplicity in the percentages of 

failures and latent errors. In these figures, tI has been defined in the intermediate range [0.1T–1.0T]. 

Fig. 6 shows that the percentage of failures grows with tA in all the targets. In buses and combinational 

logic, the increase is roughly logarithmic (note that the scale of tA is logarithmic), with higher values of 

PFailures for buses. 

In the storage elements, a much smoother slope is observed. This is caused by two facts: i) faults in 

critical registers provoke failures independently of tA, and ii) faults in memory mainly cause latent errors, 

because the faults are injected randomly and the memory is much bigger than the workload. 

Globally, intermittent faults in buses are the most damaging, except for low values of tA, where faults in 

the storage elements provoke more failures. 

Fig. 6 also shows that multiple faults have much more impact than single faults. This is a predictable 

behavior, as multiple faults affect simultaneously various physical locations of the system. Values of 

PFailures over 90% can be seen for intermittent multiple faults in buses. 

Fig. 7 reflects that PLatent does not show a uniform trend with regard to tA. It rises slightly in combinational 

logic and buses, and it is almost constant in storage elements. This discrepancy is due to the fact that 

faults in memory and registers propagate “instantaneously”, while faults in combinational logic and buses 

can be masked (by logic or temporal masking mechanisms). In this case, the rise of tA reduces the 

effectiveness of fault masking. 

We can also observe in Fig. 7 that latent errors are much more frequent in storage elements than in the 

other targets. This is due to both the absence of masking effects in the propagation, and the existence of a 

great quantity of cells, especially in memory, that can be perturbed but are not accessed later by the 

workload. 

PLatent shows little differences between single and multiple faults in buses and combinational logic. In the 

storage elements, single faults provoke even more latent errors than multiple faults, because most of 

multiple faults lead to failures. 
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Fig. 6. Influence of the activity time and the fault multiplicity in the percentage of failures. 

 

 
 

Fig. 7. Influence of the activity time and the fault multiplicity in the percentage of latent errors. 
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Inactivity time 

Unexpectedly, no significant influence has been observed when varying tI. A more detailed analysis has 

shown that the separation between activations has not changed the total number of activations in the 

bursts because the workload is long enough to fit all activations. Thus, the system is affected regardless of 

tI. 

 

Burst length 

In previous experiments, LBurst was varied randomly in the range [1–10]. Fig. 8 shows the results obtained 

when fixing this parameter from 1 to 10, with tA and tI defined in the intermediate range [0.1T–1.0T]. The 

figure shows the results for multiple faults. 

In the buses, PFailures rises asymptotically up to 75%, stabilizing from LBurst  9. In combinational logic, the 

trend is also asymptotic, rising up to 34-35% from LBurst  7. 

In the storage elements, PFailures presents a nearly constant behavior, with small variations between 48.5% 

and 54%. This is due to: 

 Faults affecting critical registers provoke a failure in the firsts activations (i.e., for low values of 

LBurst). 

 Faults affecting unaccessed memory cells only cause latent errors, but not failures, even in the 

presence of several activations. 

 

 
 

Fig. 8. Influence of the burst length in the percentage of failures (multiple faults). 

4.2. Influence of the injection target 

Previous section has shown that: 

 Intermittent faults in buses are really harmful, as buses are a bottleneck in the fetch and execution 

phases of the microcontroller. 

 Intermittent faults in registers provoke a high percentage of failures, because they store 

intermediate results when executing an instruction. 

 Faults in memory manifest mainly as latent errors. 

 Combinational logic is less sensitive, although its impact can be notable for high values of tA and 

Lburst. 
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4.3. Influence of the system clock frequency  

Fig. 9 shows how the frequency influences in the percentage of failures, for single and multiple 

intermittent faults in buses. Frequency has been varied from 1F to 10F, where the nominal frequency is F 

= 10 MHz. It can be observed that PFailures rises asymptotically, similarly to as with the burst length. 

When injecting single faults, PFailures tends to 60%, while with multiple faults it seems to stabilize over 

90%. The asymptote is attained roughly at 7F (i.e., about 70 MHz).  

The same growing asymptotic trend has been observed in storage and combinational logic targets, but 

with lower values of PFailures. 

The explanation of the notable frequency influence lies in the fact that at higher frequencies, the 

probability of capturing an error in active edges of synchronous components (like memory and registers) 

rises. It is important to remark that the frequency increase has been a trend in VLSI technologies. 

 

 
 

Fig. 9. Influence of the clock frequency in PFailures (Target: buses). 

4.4. Comparison to transient and permanent faults  

In [17] we compared the effects of intermittent, transient and permanent faults in the storage elements and 

buses. Fig. 10 completes this study showing the impact in the combinational logic. Transient fault models 

injected were pulses (to emulate Single Event Transients, or SETs), and indetermination (undefined logic 

value provoked by voltage and current variations) [2]. For permanent faults, the fault models injected 

were stuck-at(0,1), open and indetermination [2, 3]. In the case of transient faults, three different ranges 

of fault duration have been considered. In fact, the same used for the activity time in intermittent faults. 

From the figure, we can see that intermittent faults provoke a greater percentage of failures than transient 

faults. This is an expected result, as a burst of intermittent faults manifests like a sequence of transient 

faults in spite of having different origin. The greatest impact corresponds to permanent faults because of 

their infinite duration, although this value is a bit bigger than that provoked by intermittent faults with the 

greatest tA range. The same trend was found in [17] for storage elements and buses. 
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Fig. 10. Comparison of the effects of transient, intermittent and permanent faults (target: 

combinational logic). 

4.5. Extending the intermittent fault models by means of saboteurs  

As commented before, the VHDL model of the microcontroller does not present any information about 

delays. This is common in core models, as delays are introduced in the implementation phase, after place 

and route. As reflected in Table 1, intermittent delay fault model is quite important. So, in order to inject 

this type of fault, saboteurs technique has been used instead of simulator commands. This technique can 

apply more fault models but at the cost of modifying the VHDL model.  

A saboteur is a special VHDL component added to the original model [3, 18]. When activated, the 

mission of this component is to alter the value or timing characteristics of one or more signals, simulating 

the occurrence of a fault. During the normal operation of the system, instead, the component remains 

inactive.  

The study has been focused on the buses, which are critical locations where intermittent faults have been 

observed (see Table 1). Saboteurs have been placed in the ports of the components connected to the 

buses. The model of the saboteur applied is n-bit uni-directional (nUSS) [20]. Generally, saboteurs can 

be applied in structural architectures, made of interconnected components. 

As an example, Fig. 11(a) shows the scheme and a pseudo-code implementation of the nUSS. I and O are 

respectively the input and the sabotaged output of the saboteur. Control signal determines the instant 

when the saboteur has to be activated, and the duration of the activation. Depending on the number of 

activations and deactivations of this signal, permanent, transient or intermittent faults can be injected. The 

function Finj implements the injection of the fault in the targeted signals. The operation performed 

depends on the fault model to be injected, as shown in Fig. 11(b). The fault is injected in the rising edge 

of the control signal, and inputs are ignored during the fault duration. If the control signal is activated 

repeatedly during tA, and deactivated during tI, intermittent faults can be injected.  
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                                           (a) 

 

Fault model Finj(I, inj_cfg) 

Stuck-at 0 „0‟ 

Stuck-at 1 „1‟ 

Bit-flip, Pulse not(I) 

Open „Z‟ (high impedance) 

Delay I after delay, delay > 0 

Indetermination „X‟ 

Short I(i) = I(j) 

Stuck-open „0‟ after tretention 

                                       (b) 

 

Fig. 11. nUSS saboteur. (a) Scheme and implementation. (b) Injection function. 

 

Fig. 12 illustrates how a generic internal component of a microcomputer is sabotaged. Saboteurs are 

inserted between the buses (address, data, and control) and the component to be perturbed. 

 

 
 

Fig. 12. Example of sabotaging an internal component of a microcomputer. 

 



The main injection parameters of the experiments carried out in this section are: 

a) Injection targets: Microcontroller (8051) buses. The following components have been sabotaged: 

ALU, Control Unit, ROM and internal RAM. 

b) Injection technique: Saboteurs. 

c) Fault models: Intermittent Pulse, Short, Open, Delay. Notice that, concerning the previous 

experiments, the fault model set has been extended with Intermittent Short and Intermittent Delay. 

d) Values of delay (only for delay fault model): Defined according to a Uniform distribution function 

in the range [0.1T, 1.5T], being T the nominal system clock cycle (100 ns).  

e) Workloads: Arithmetic series, Bubblesort algorithm and Matrix multiplication. Notice that also 

workloads have been extended. 

f) Burst parameters: 

 tA and tI are defined according to a Uniform distribution function in the intermediate range 

[0.1T–1.0T]. 

 LBurst is defined according to a Uniform distribution function in the range [1–10]. 

 

Fig. 13 compares the impact (in terms of percentage of failures) of the new fault load. We can observe 

that the values corresponding to the intermittent pulse are bigger than those obtained with simulator 

commands technique shown in Fig.6. The reason is that saboteurs have injected a higher percentage of 

faults in the data bus, an especially critical target. When inserting the saboteurs in the model, the number 

of injection targets that affect the data bus has been increased.  

From the figure, some conclusions can be extracted. Intermittent pulse, Intermittent open and Intermittent 

short fault models present similar impact levels, except in some cases where Intermittent pulses are a bit 

more damaging. This suggests that Intermittent opens and Intermittent shorts manifest mostly as 

Intermittent pulses. On the other hand, notice that Intermittent pulse fault model is easier to implement, as 

it can be injected with simulator commands technique, whereas Intermittent open and Intermittent short 

should be implemented by using saboteurs. 

With regard to Intermittent delay fault model, its impact is quite lower. This fact is caused by timing 

masking phenomena in synchronous components. The implementation of this fault model requires the use 

of the saboteurs technique, implying in this way an extra overhead. However, it is expected an increasing 

incidence of timing errors in deep submicron technologies due to the reduction of the metal layer widths 

and the rise of clock frequencies, so this fault model should be taken into account. More details about 

fault model extension using saboteurs can be found in [21]. 

 

 



 
 

Fig. 13. Percentage of failures provoked by extended fault load using saboteurs (target: buses).  

5. Conclusions 
In this work we have presented a case study of the effects of intermittent faults on the behavior of a 

commercial microcontroller. The methodology used lies in VHDL-based fault injection technique, which 

allows a systematic and exhaustive analysis of the influence of different fault parameters. 

In general terms, and assuming the important influence of the microcontroller and the workload used, 

some conclusions can be extracted. 

Related to the influence of burst parameters: 

 The activity time is a quite important parameter. Increasing the duration of the activations 

provokes a significant rise of the percentage of failures, especially in buses and combinational 

logic. Its influence in latent errors is lower. This is the common behavior of some intermittent 

faults (for instance, those due to wearout), as they evolve to permanent. 

 The burst length has also a notable influence. When increasing, the percentage of failures grows 

asymptotically. Like the activity time, the burst length of intermittent faults that become 

permanent tends to grow. 

 The inactivity time has not shown any significant impact because the duration of the workload 

was long enough to fit all activations. It is expected that this parameter will be more important in 

a fault-tolerant system, as the separation between activations may affect the detection and 

recovery latencies. 

Regarding other factors: 

 The spatial multiplicity of intermittent faults presents a significant impact on the behavior of the 

system. Multiple faults provoke a much greater percentage of failures than single faults. The 

presence of multiple intermittent faults is an expected trend in deep submicron technologies, as 

the feature size of the manufacturing process reduces. 

 The injection target leads to important differences. Buses and registers are the most sensitive 

targets to intermittent faults, while faults in memory provoke mainly latent errors. On the other 

hand, the impact of faults in combinational logic is also important. As the effect of masking 

mechanisms reduces in deep submicron technologies, it is expected that combinational logic will 

be increasingly sensitive to intermittent faults. 
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 The rise of the clock frequency increases the impact of intermittent faults. This is due to the 

higher probability of capturing errors in the active edges of synchronous components. The 

percentage of failures presents an asymptotical rising trend, similar to the burst length 

dependency. The increase of the clock frequency has been a trend in deep submicron 

technologies. 

 

Also, the impact of intermittent faults has been compared to that of transient and permanent faults. 

Intermittent faults provoke a quite greater percentage of failures than transient faults. The greatest impact 

is caused by permanent faults because of their infinite duration, although intermittent faults with long 

activations present a similar impact. 

Finally, the fault model set has been extended using the saboteurs technique. In this way, intermittent 

delay and short faults could be injected. It is important to include Intermittent delay in the fault model set, 

because it is expected an increasing incidence of timing errors in deep submicron technologies. 

The results obtained in this work suggest the suitability of adding mitigation techniques to deliver fast 

error detection and correction of intermittent faults in buses and critical registers, such as hardware-

implemented ECCs. It is expected also that mitigation techniques in combinational logic will be 

increasingly necessary.  

In the future, we have planned to extend this study in different aspects. Firstly, we want to analyze the 

effect of intermittent faults on more complex microprocessors and fault-tolerant systems. Secondly, going 

more deeply into the causes and mechanisms of intermittent faults in new submicron technologies, in 

order to propose new fault models related to them. In addition, it would be interesting to use different 

probability distributions to model more accurately wearout mechanisms. Finally, we intend to study 

mitigation techniques for fast detection and recovery of intermittent faults. 
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 To generate intermittent fault models at logic and register transfer (RT) abstraction levels, paying 

special attention to faults in combinational logic. 

 To inject these fault models, applying different VHDL-based fault injection techniques. 

 An exhaustive variation of the fault and system parameters, in order to obtain an extensive 

analysis of their effects. 

 A study of the impact of intermittent faults in the behavior of a commercial microcontroller. 

 Comparing the influence of intermittent faults to that of transient and permanent faults.  
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