
Improving Offline Handwritten Text

Recognition with Hybrid HMM/ANN

Models

S. España-Boquera, M.J. Castro-Bleda,
J. Gorbe-Moya, F. Zamora-Mart́ınez

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia, Valencia, Spain

sespana@dsic.upv.es, mcastro@dsic.upv.es,
jgorbe@dsic.upv.es, fzamora@dsic.upv.es

Abstract

This paper proposes the use of hybrid HMM (Hidden Markov Model)/ANN
(Artificial Neural Network) models for recognizing unconstrained offline
handwritten texts. The structural part of the optical models has been
modeled with Markov chains, and a Multilayer Perceptron is used to esti-
mate the emission probabilities. This paper also presents new techniques
to remove slope and slant from handwritten text and to normalize the
size of text images with supervised learning methods. Slope correction
and size normalization are achieved by classifying local extrema of text
contours with Multilayer Perceptrons. Slant is also removed in a non-
uniform way by using Artificial Neural Networks. Experiments have been
conducted on offline handwritten text lines from the IAM database, and
the recognition rates achieved, in comparison to the ones reported in the
literature, are among the best for the same task.

Keywords: Handwriting recognition, offline handwriting, hybrid HMM/ANN,
HMM, neural networks, multilayer perceptron, image normalization.

1 Introduction and motivation

Offline handwritten text recognition is one of the most active areas of research in
computer science and it is inherently difficult because of the high variability of
writing styles. High recognition rates are achieved in character recognition and
isolated word recognition, but we are still far from achieving high-performance
recognition systems for unconstrained offline handwritten texts [48, 41, 1, 54,
12, 35, 23].

1

Automatic handwriting recognition systems normally include several prepro-
cessing steps to reduce variation in the handwritten texts as much as possible
and, at the same time, to preserve information that is relevant for recognition.
There is no general solution to preprocessing of offline handwritten text lines,
but it typically relies on slope and slant correction and normalization of the size
of the characters. With the slope correction, the handwritten word is horizon-
tally rotated such that the lower baseline is aligned to the horizontal axis of the
image. Slant is the clockwise angle between the vertical direction and the direc-
tion of the vertical text strokes. Slant correction transforms the word into an
upright position. Ideally, the removal of slope and slant results in a word image
that is independent of these factors. Finally, size normalization tries to make
the system invariant to the character size and to reduce the empty background
areas caused by the ascenders and descenders of some letters.

This paper presents new techniques to remove the slope and the slant from
handwritten text lines and to normalize the size of the text images by using
Artificial Neural Networks (ANNs). Local extrema from a text image classified
as belonging to the lower baseline by a Multilayer Perceptron (MLP) are used
to accurately estimate the slope and the horizontal alignment. Slant is removed
in a non-uniform way by also using ANNs. Finally, another MLP computes the
reference lines of the slope and slant-corrected text in order to normalize its
size.

Hidden Markov Models (HMMs) have been widely applied to offline hand-
writing recognition [19, 41, 54, 12, 35, 37, 51, 56], after their success in automatic
speech recognition. The basic idea is that handwriting can be interpreted as
a left-to-right sequence of ink signals, which is analogous to the temporal se-
quence of acoustic signals in speech. The motivation for the work on the hybrid
HMM/ANN models presented here originates from

• a critical analysis of the state-of-the-art in offline handwritten text recog-
nition [12, 51, 56],

• our earlier work on offline handwriting recognition using conventional
HMMs [25],

• our own and others’ experience in using hybrid HMM/ANN models for
automatic speech recognition [3, 10, 17, 18, 24] and for online handwriting
recognition [6, 45, 29, 39, 16, 26],

• and previous works which used hybrid HMM/ANN word models with
remarkable success, although they were limited to digit recognition or
small vocabulary tasks [33, 46, 32].

Hybrid HMM/ANN models compute the emission probabilities for the HMMs
with a neural network instead of the commonly used Gaussian mixtures. This
work is the first successful attempt, to the best of our knowledge, to use hybrid
HMM/ANN models in unconstrained offline handwritten text recognition.

2

In many other works, artificial neural networks have been extensively ap-
plied to classify characters as part of isolated or continuous handwritten word
recognizers [14, 13, 34, 50, 36].

In our experiments with hybrid HMM/ANN models, left-to-right Markov
chains have been used to model graphemes, and a single neural network has
been used to estimate the emission probabilities. The estimates of the posterior
probabilities computed by the neural network are divided by the prior state
probabilities resulting in scaled likelihoods which are used as emission probabil-
ities in the HMMs.

We have conducted experiments with the “large writer-independent text
line recognition task” of the IAM database [38, 27] using our preprocessing and
conventional HMMs as optical models. This baseline experiment achieves com-
parative performance with state-of-the-art systems (38.8% of word error rate).
Next, experiments with our hybrid HMM/ANN system were performed and ex-
cellent results were achieved improving our baseline by a relative word error
rate reduction of more than 42% (from a word error rate of 38.8% to 22.4%).

Section 2 introduces our approach to handwritten text preprocessing, show-
ing illustrative examples. Section 3 describes the proposed hybrid HMM/ANN
recognition system. Experimental setup is detailed in Section 4 and recognition
results for the HMM and HMM/ANN systems with the IAM line task are shown
in Section 5. Analysis of the experiments and comparison with other approaches
are presented in Section 6. Finally, the conclusions are drawn in Section 7.

2 Preprocessing and feature extraction

Handwritten image normalization from a scanned image includes several steps,
which usually begin with image cleaning, page skew correction and line detec-
tion [37]. A database of skew-corrected lines has been used in all the exper-
iments [38], thus page skew correction and line detection are skipped in this
work. With the handwritten text line images, several preprocessing steps to re-
duce variations in writing style are usually performed: slope and slant removal
and character size normalization. This paper presents new techniques to remove
the slope and the slant from handwritten text lines, and to normalize the size
of the text images with ANNs. Table 1 resumes the key ideas of the MLPs
which are used for preprocessing. These MLPs are described in more detail in
Section 4.

2.1 Image cleaning

Before any other preprocessing step, the text line scanned image is first cleaned
and enhanced. Neural networks have been used in previous works for image
restoration by learning the appropriate filters from examples [36]. Similarly, we
have used a neural network filter to clean and enhance the handwritten text
images by estimating the gray level of one pixel at a time [28]: an MLP (from
now on called Enhancer-MLP) is fed with a square of pixels centered at the

3

Table 1: MLPs for preprocessing. MLPs are used for regression
(Enhancer-MLP) and for classification (Slope-MLP, Normalize-MLP, and
Slant-MLP).

Task MLP Input to MLP Output to MLP MLP topology
Image cleaning Enhancer-MLP Pixels in a window

around current pixel
Restored value
of current pixel

(11×11)→32→16→1

Slope removal Slope-MLP Pixels in a window
around current pixel

Lower base-
line/Not lower
baseline pixel

(50×30)→64→16→2

Slant removal Slant-MLP Resized sheared image
in a window around
current column of pix-
els

Presence of
slant angle

(40×40)→64→ 8→1

Size normalization Normalize-MLP Pixels in a window
around current pixel

Ascender/Upper
baseline/Lower
baseline/ De-
scender/None
pixel

(50×30)→64→16→5

pixel to be cleaned, and the output is the restored value of the pixel. The
entire image is cleaned by scanning all the pixels in this way. A scheme of this
process is illustrated in Figure 1. A real example of a cleaned image is shown
in Figure 2(b).

2.2 Slope removal

With the skew-corrected lines, most handwriting recognition systems require
the detection of the different areas of the cursive script: the main body area
(area between the upper baseline and the lower baseline), the ascenders, and
the descenders (see Figure 3 for an example). These areas can be detected by
means of horizontal histogram projection [15, 11, 55] or also by obtaining the
upper and lower contours of the image [57, 43]. Instead of relying on these
geometric heuristics, our approach consists in automatically detecting a set of
points from the image and classifying them by supervised machine learning
techniques [47, 25]. The points to be classified are local vertical extrema of text
contours which are used to determine the reference lines: line of ascenders, upper
baseline, lower baseline, and line of descenders (see Figure 3). These reference
lines provide an efficient way to perform slope removal and size normalization.

In a first step, and once the text line image has been cleaned, the local
extrema are obtained. First, a vertical contour of the image is extracted (see
Figure 2(c)). After that, the contour points are grouped into lines following a
proximity criterion: two pixels on adjacent columns are considered to belong
to the same line when the difference between their vertical coordinates is less
than 3. Finally, the maxima of the upper contours and the minima of the lower
contours are computed.

4

Figure 1: Enhancer-MLP: An MLP to enhance and clean images. The entire
input image is cleaned by scanning it with the neural network.

Since the lower baseline suffices to correct the slope, an MLP that is trained
to classify local extrema as belonging or not belonging to the lower baseline is
used (this MLP will be called Slope-MLP). The input to this Slope-MLP is a
window that is centered at the pixel to be classified.

Once the lower baseline points have been detected, the image is horizontally
divided into segments in order to apply the slope correction to every segment. A
vertical histogram projection is used to estimate the mean space width between
ink regions, and this value is used as a threshold to split the image into segments.
For each of these segments, the lower baseline is estimated by means of least
squares fitting of the lower baseline points. An example of the splitting process
of the estimated lower baseline is shown in Figure 2(d). These lower baselines
are used to correct the slope and the vertical relative positions of the segments.
Figure 2(e) illustrates an example of a slope-corrected image.

2.3 Slant removal

After the slope correction, slant is removed by means of a two-step method.
In the first step, a global slant angle is estimated and removed by performing
a shear operation to the image for every integer angle between an interval (in
this case, [-50◦,50◦]) and choosing the sheared image whose vertical projection
has the maximum variance [40]. In the second step, a novel non-uniform local
slant correction method is applied: an MLP (from now on called Slant-MLP) is
trained to estimate if a given column of the text line image is slanted. Using a
sliding input window, the Slant-MLP is applied to every column of the image
with some additional columns of context, for each integer angle in [-50◦,50◦].
This procedure generates a matrix which contains the estimated score of cor-

5

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 2: Preprocessing example. From top to bottom: (a) Original image from
the IAM database. (b) Cleaned image. (c) Text contour extracted to obtain
local extrema. (d) Local extrema classified by an MLP as lower baseline to be
used for slope correction. (e) Slope-corrected image. (f) Slant-corrected image.
(g) Local extrema labeled by an MLP as belonging to the four reference lines
to be used for size normalization. (h) Normalized final image.

6

Figure 3: Example of text line image with the different areas (ascenders, descen-
ders, and main body areas) and the reference baselines (upper and the lower
baselines, and the lines of ascenders and descenders) of the script.

recting each column with each slant angle. Finally, a dynamic programming al-
gorithm is applied over this matrix [52] to obtain the path with maximum score
which also satisfies a smoothness criterion (the slant angle must not change
more than ±1◦ per column). This sequence of angles conforms the input to
a non-uniform shear that generates the final slant corrected image. The total
computational cost is linear with the size of the image and the number of shear
angles considered. The whole slant removal process is illustrated in Figure 4
and an example of a slant-corrected image is shown in Figure 2(f).

2.4 Size normalization

When the image is slope and slant-corrected, the size of the text line is normal-
ized in order to minimize the variations in size and position of its three zones
(main body area, ascenders, and descenders). Furthermore, the normalized size
of ascenders and descenders is reduced with respect to the body since they
are not as informative (the presence or absence of ascenders and descenders is
preserved, as well as the width, but not the actual height).

One approach to size normalization consists of detecting the reference base-
lines and to normalize the size according to them [6, 47, 25, 44]. Following
this idea, our size normalization method detects and classifies the local extrema
using the same method based on ANNs described in Section 2.2. This time,
local extrema are classified into five classes (the four reference lines and points
not belonging to any of these lines) by using another MLP (Normalize-MLP).
Points belonging to the same class are used to obtain each reference line by
linear interpolation (see Figure 2(g)). These lines comprise the three zones to
be normalized. The normalization process is performed for each column of the
image by linearly scaling the three zones to a fixed height. Ascenders are re-
duced to 20% of the final image height and descenders are reduced to 10%. See
Figure 2(h) for an example of a normalized image.

2.5 Feature extraction

After preprocessing, a feature extraction method is applied to capture the most
relevant characteristics of the character to recognize. In our systems, a hand-

7

Figure 4: An example of slant removal: the original text line image (top) and
the slant-corrected text line image (bottom). The Slant-MLP estimates a mea-
sure of the slant angle of each pixel column, shown as a grey level matrix. A
dynamic programming (DP) algorithm obtains the optimal sequence of slant
angles. Beneath the matrix is a detail of it for a segment of the text line image.

written text line image is converted into a sequence of fixed-dimension feature
vectors. Following [51], features are extracted by applying a grid to the image
and computing three values for each cell of the grid: the normalized gray level
and the horizontal and vertical gray level derivatives. A grid of square cells
with 20 rows has been used so every feature vector is composed of 60 values.
An example of a graphical representation of the features obtained in this way
is shown at the top of Figure 5.

3 Hybrid HMM/ANN modeling

For small vocabulary handwriting recognition tasks (for example, check amounts
or postal addresses), it is possible to model words individually. But for large vo-
cabulary or even unconstrained tasks, the only feasible approach is to recognize
individual graphemes and map them onto complete words belonging to a fixed
vocabulary Ω. The same problem has to be addressed for automatic speech
recognition, and HMMs have been accepted as the standard solution [42]. For
offline handwritten text recognition, the image is converted into a sequence
X = (x1 . . . xm) of feature vectors and, under the statistical approach to pat-
tern recognition [42, 30], the goal of general handwritten text recognition is to
find the likeliest word sequence W ? = (w1 . . . wn) maximizing the a-posteriori
probability:

W ? = argmax
W∈Ω+

P (W |X) . (1)

8

The application of the Bayes rule leads to a decomposition of P (W |X) into
the optical model P (X|W) and the statistical language model P (W). The
problem can then be reformulated as:

W ? = argmax
W∈Ω+

P (X|W)P (W) . (2)

In state-of-the-art handwritten text recognition systems, P (X|W) is usually
estimated by a HMM-based recognizer and a word n-gram language model is
usually used to approximate P (W). Typically, each grapheme is modeled by a
left-to-right HMM and the number of states is chosen globally or individually
for each grapheme. Gaussian mixtures are used to model the output distri-
butions in each state q given the feature vector x, P (x|q). The Baum-Welch
algorithm is used for training the HMMs, whereas the Viterbi algorithm is used
for recognition.

3.1 The hybrid HMM/ANN approach

In the hidden Markov modeling approach, the emission probability density
P (x|q) must be estimated for each state q of the Markov chains, that is, the
probability of the observed feature vector x given the hypothesized state q of the
model. In the proposed hybrid HMM/ANN approach, the emission probabilities
are provided with a neural network since ANNs can be trained to estimate prob-
abilities that are related to these emission probabilities. In particular, an MLP
can be trained to approximate the a-posteriori probabilities of states, P (q|x), if
each MLP output unit is associated with a specific state of the model and if it
is trained as a classifier [10, 9]. In order to obtain such distribution for every
state q from the set Q of Markov chain states, the softmax activation function
has been chosen at the output layer:

f(yq) =
exp (yq)∑
i∈Q exp (yi)

(3)

where yq is the q-th output value before applying the softmax function. This
activation function enables the estimation of valid probability values, i.e., to lie
between zero and one and to sum to one.

The a-posteriori probability estimates from the MLP outputs, P (q|x), can
be converted to emission probabilities P (x|q) by applying Bayes rule:

P (x|q) =
P (q|x)P (x)

P (q)
. (4)

The class priors P (q) can be estimated from the relative frequencies of each
state from the information produced by a forced Viterbi alignment of the train-
ing data. Thus, the scaled likelihoods P (x|q)/P (q) can be used as emission
probabilities in the proposed system, since, during recognition, the scaling fac-
tor P (x) is a constant for all classes [10]. This allows MLPs to be integrated
into hybrid structural-connectionist models via a statistical framework.

9

The advantages of this approach are the discriminate training criterion (all
MLP parameters are updated in response to every input feature vector) and
the fact that it is no longer necessary to assume an a-priori distribution of
the data. Furthermore, if left and right contexts are used at the input of the
MLP, important contextual information can be incorporated into the probability
estimation process.

Another strength of this approach is that computing emission probabilities
with hybrid HMM/ANN models is usually faster than conventional HMMs with
Gaussian emissions since it only requires a forward-pass of the MLP for all states
of the Markov chains.

On the other hand, one of the weaknesses of this hybrid HMM/ANN ap-
proach is that every feature vector must be labeled to train the MLP. However,
this is not a serious drawback since these labels can be generated by running a
previous trained handwriting recognition system in a forced alignment mode in
order to initialize these labels.

In our experiments, we modeled graphemes with left-to-right Markov chains
and a single neural network with one output unit for each state of the Markov
chains was used to estimate the distribution probabilities. An MLP with sigmoid
hidden units and softmax output units is used. The estimates of the posterior
probabilities computed by the MLP are divided by the prior state probabilities
resulting in scaled likelihoods which are used as emission probabilities in the
HMMs. A scheme of the proposed hybrid HMM/ANN recognition system is
shown in Figure 5.

3.2 Training the HMM/ANN models

The training of the MLP is discriminant at the state level of Markov chains,
since each output is optimized during training by samples of its own class as well
as by samples of the other classes. Training of the whole hybrid HMM/ANN
system is done by an iterative Expectation-Maximization algorithm where the
training of the supervised ANN and either Baum-Welch or Viterbi alignment
of the training corpus are alternated. We have opted for Viterbi alignment and
the training procedure proceeds as follows:

1. Assign an initial labeling of desired MLP outputs to every feature vector
of the training and validation datasets. This labeling can be computed
by dividing the image into equal parts or by using a previously trained
handwritten recognition system in a forced alignment mode.

2. Assign an initial non-zero value to transition probabilities of the Markov
chains.

3. Train the supervised ANN with the training pairs, using the mean square
error on the validation dataset as the stopping criterion.

4. Use the partially trained hybrid ANN/HMM models to perform a forced
Viterbi alignment of the training data. This Viterbi procedure uses the

10

Figure 5: A scheme of the proposed hybrid HMM/ANN recognition system.
First, the image is preprocessed (see Figure 2) and the resulting feature vector,
plus a left and right context, is processed by an MLP. The |Q| outputs of
the MLP (after dividing by the prior state probabilities) are used as emission
probabilities in the HMMs.

11

class priors estimated from the relative frequencies of each class in the
training data. This Viterbi alignment is used for both obtaining a new
segmentation or labeling of the training and validation sets and also for
counting the number of times each HMM transition has been used. These
counts are used to reestimate the transition probabilities.

5. Go to step 3 until convergence, that is, until the difference between two
consecutive iterations is below a threshold.

4 Experimental setup

4.1 The IAM database

All experiments reported in this paper are conducted on handwritten text lines
from the IAM database [38]. The version 3.0 of this database includes over 1 500
scanned forms of handwritten text from more than 650 different writers, for a
total of more than 13 000 fully transcribed handwritten lines, without restric-
tions on the writing style or the writing instrument used. The sentences have
been extracted from the Lancaster-Oslo/Bergen (LOB) text corpus [31].

A writer-independent text line recognition task has been considered. The
subset of the IAM database used in this work consists of 6 161 training lines
(from 283 writers), 920 validation lines (56 writers) and 2 781 test lines (161
writers). All these data sets are disjoint, and no writer has contributed to more
than one set. These partitions are the same as those used in several works by
Bunke et al [27, 7, 8].

A total of 87 967 instances of 11 320 distinct words occur in the union of
the training, validation, and test sets. Lexicon is modeled with 78 characters:
26 lowercase letters, 26 uppercase letters, 10 digits, 14 punctuation marks, the
space, and a character for garbage symbols.

4.2 MLP for image cleaning

As described in Section 2.1, an MLP has been used for image cleaning by learning
the appropriate filter from examples.

Training data. Original noisy images from the IAM database and the same
images that were cleaned by hand formed the training pairs. Additionally,
artificially noised images (created by following the ideas presented in [28]) were
also used as training data.

Enhancer-MLP. In this case, the MLP is used for regression: the input
is a fixed-sized moving window of 11×11 pixels centered at the pixel to be
cleaned, and the output is the restored value of the current pixel (see Figure 1).
The Enhancer-MLP has two hidden layers of 32 and 16 sigmoid units and one
output linear unit. Training was performed using the stochastic version of the
backpropagation algorithm with momentum term [9], using the mean square
error (MSE) function. Last column of Table 1 shows the topology of the MLPs
which are used for preprocessing.

12

4.3 MLPs for slope removal and size normalization

As pointed out in Section 2.2 and 2.4, two MLPs to classify local extrema as
belonging to one of the reference lines (lower line, upper line, line of descenders,
or line of ascenders) are needed as part of the slope removal and image size
normalization processes.

Training data. We needed supervised training patterns to train MLPs to
classify interest points as belonging to the reference lines. A subset of 1 000
images from the IAM training set has been used. Local extrema of the 1 000
images were semi-automatically labeled using an active learning approach: first,
a horizontal projection algorithm was used to classify the points belonging to
each reference line of a subset of the 1 000 images; second, the subset of images
was manually corrected using a graphical tool designed to this purpose [25];
third, these images were used to train an MLP to classify interest points. With
this “pretrained” MLP, interest points of the 1 000 images were automatically
classified, and, afterwards, all the images were manually supervised. At the end
of this process, we had a training set composed of the interest points of the 1 000
images: 800 lines were used as training data and the remaining 200 lines were
used as validation data.

Slope-MLP. The Slope-MLP was trained to classify local extrema as belong-
ing to or not belonging to the lower baseline. The Slope-MLP input is a moving
window around the current pixel, being the choice of an appropriate window size
a trade-off between context and input size. To partially overcome this problem,
we have opted to use a fisheye distorsion centered at the pixel to classify (see
Figure 6 for an example) [25]. The fisheye distortion maintains a very accurate
resolution near the center and, at the same time, has a much smaller size than
using the original image. In this way, a detailed image near the interest point
and a coarse representation of the relative position of the surrounding text is
obtained: the input to this Slope-MLP is a window of 500×250 pixels centered
at the point to be classified, downsampled to 50×30 values using the fisheye
distortion. Two output units with a softmax activation function were used to
determine whether or not the current pixel belonged to the lower baseline. Af-
ter doing a scanning of topologies, two hidden layers of 64 and 16 sigmoid units
were used.

Normalize-MLP. Size normalization was achieved by using a second MLP,
which classifies the local extrema into five classes (the four reference lines and
points not belonging to any of these lines). The input to this Normalize-MLP is
the same as the Slope-MLP input and the output corresponded to five output
units with softmax activation function. We used two hidden layers of 64 and 128
sigmoid units.

Both MLPs, Slope-MLP and Normalize-MLP, were trained using the stochas-
tic version of the backpropagation algorithm with momentum term and the cross
entropy error function.

13

Figure 6: Fisheye lens example (from up-to-down): original image of 500×250
pixels centered at the pixel to be classified; the same image with a fisheye lens
distortion; the image downsampled to 50×30 values used by the neural network
classifier.

14

4.4 MLP for slant removal

As described in Section 2.3, part of the process of slant removal needs an MLP
to determine whether or not an image has slant.

Training data. The same set of 1 000 images was manually slant-corrected
in a non-uniform way by using a graphical tool. The user specifies a series of
slant angles which are interpolated for every image column. This information
is used to train the Slant-MLP. As before, 200 images were used for validation.

Slant-MLP. Each image is sheared for different integer angles from -50◦ to
+50◦ and resized to 40 pixels height, preserving the aspect ratio. The input
to this Slant-MLP is a square of 40×40 pixels centered at the column to be
evaluated, and the output is a measure of the local slant presence (shown as gray
levels in Figure 4). After doing a parameter and topology scanning, two hidden
layers of 64 and 8 units were used. Training was performed using the stochastic
version of the backpropagation algorithm with momentum term, using the mean
square error function.

5 Experiments

5.1 Dictionary and language model

A word bigram language model was trained with three different text corpora:
the LOB corpus [31] (excluding those sentences that contain lines from the test
set of the IAM database), the Brown corpus [22], and the Wellington corpus [2].
In order to cope with the fact that lines are fragments of sentences, we have
randomly broken each sentence from the corpus into fragments to resemble lines.
All this text is supplemented with the training lines from the IAM database.
Then, the final training material comprises:

• Sentences: 51 560 LOB sentences (2 134 sentences which contained IAM
test lines were eliminated), 51 763 Brown sentences, and 20 592 Wellington
sentences.

• Fragments of sentences to resemble lines: more than 400 000 lines ran-
domly obtained from the above set of sentences.

• Lines: finally, the 6 161 IAM training lines were also added.

The bigram language model used in the recognition systems was generated
using the SRI Language Modeling Toolkit [49] with the modified Kneser-Ney
back-off discounting.

To achieve unconstrained handwriting recognition, an open dictionary com-
posed of the 20 000 most frequently occurring (case insensitive) words in the
training material was used to test our recognition systems.

15

Table 2: Tuning the number of states of the HMMs: Word Error Rate of the
HMMs on the validation set.

Model WER on Validation (%)
6-state HMMs 35.1 ±1.6
7-state HMMs 34.5 ±1.6
8-state HMMs 32.9 ±1.5
9-state HMMs 33.3 ±1.5

10-state HMMs 35.0 ±1.5
11-state HMMs 37.3 ±1.5
12-state HMMs 40.0 ±1.6

5.2 Measuring recognition performance

The recognition performance was measured in terms of the Word Error Rate
(WER), which is computed by comparing the output of the recognizer with the
reference transcription. WER is defined as the number of word errors (inser-
tions, substitutions and deletions) summed over the whole test set and divided
by the total number of words in the transcriptions of the reference set:

WER = 100× insertions + substitutions + deletions

total number of words
. (5)

A null WER is only reached if the recognizer output matches the reference
transcription exactly.

The Character Error Rate (CER) was also measured for the final test ex-
periments. CER is defined as expression (5), but with characters instead of
words.

In order to properly compare different systems, it is highly desirable to
provide not only the value of the WER (or CER) but also a confidence interval
for it. In [53], the author proposes a method for computing these intervals
without simulations. Following his work, we have computed the confidence
interval for every experiment with the IAM validation and test sets, which
are composed of 920 and 2 781 lines, respectively. In every experiment, the
computed intervals correspond to a 95% confidence level.

5.3 Baseline experiments: HMMs

Baseline recognition HMM experiments were conducted using continuous den-
sity HMMs with diagonal covariance matrices of 64 Gaussians in each state, and
with a left-to-right topology without skips. The 78 optical models were trained
and tested with the HTK toolkit [58].

The validation set of the IAM database was used to optimize the number of
states of the optical HMMs and the integration of the statistical language model.
A bigram language model and an open dictionary were used as explained in

16

Table 3: Tuning the GSF: Word Error Rate of the best HMMs on the validation
set for different Grammar Scale Factors.

Model GSF WER on Validation (%)
8-state HMMs 30 35.6 ±1.7
8-state HMMs 35 33.9 ±1.6
8-state HMMs 40 32.9 ±1.5
8-state HMMs 45 32.9 ±1.5
8-state HMMs 50 32.8 ±1.4
8-state HMMs 55 33.3 ±1.4
8-state HMMs 60 33.8 ±1.4

 30

 32

 34

 36

 38

 40

 42

 5 6 7 8 9 10 11 12 13

W
E

R
 o

n
V

al
id

at
io

n
(%

)

Number of states

 30

 32

 34

 36

 38

 40

 42

 25 30 35 40 45 50 55 60 65

W
E

R
 o

n
V

al
id

at
io

n
(%

)

GSF

Figure 7: Tuning HMMs: Word Error Rate of the HMMs on the validation
set varying the number of states (left) and for different Grammar Scale Factors
(right). WER is given with a 95% confidence interval.

Section 5.1.1 Table 2 summarizes the experiments varying the number of states
of the HMMs and Figure 7 plots the word error rate with a 95% confidence
level interval. From these figures, it can be observed that several configurations
achieved equivalent statistical performance, the 8-state HMMs being the best
topology.

To compensate for scale differences between the likelihood values P (X|W)
from the HMMs and the probabilities P (W) provided by the language model in
equation (2), a grammar scale factor is used to weight the influence of the bigram
language model against the optical model. The grammar scale factor used for
these experiments was fixed to 40. Afterwards, the grammar scale factor was
optimized by systematically testing values from 20 to 60 on the 8-state HMMs.
Table 3 shows the performance of this experiment on the validation set using
bigrams. It can be observed that performance is almost identical between a

1Those LOB sentences which contained IAM validation lines were also excluded to estimate
the bigram language model for the tuning experiments.

17

grammar scale factor of 40 and 50, with the lowest word error rate of 32.8%
being achieved with a grammar scale factor of 50. All these results are also
plotted in Figure 7 with a 95% confidence level interval.

5.4 Experiments with hybrid HMM/ANN models

Hybrid HMM/ANN models with a different number of states and different
topologies and parameters of MLP were tested. In all cases, the MLP input
consisted of 9 consecutive feature vectors (the central feature vector and a con-
text of four vectors at each side). The softmax outputs (after being divided by
the prior state probabilities) were used as emission probabilities of the states
of the 78 optical models. Thus, we trained fully connected MLPs of 540 input
units (the 60-dimensional nine feature vectors). The number of output units is
determined by the total number of states of the 78 optical models (from 78×6
output units for 6-state HMMs to 78×9 output units for 9-state HMMs), since
each output unit of the MLP is related to one state of the HMMs. The num-
ber of hidden units was determined empirically by measuring the MSE on the
validation set. Other parameters such as the learning rate and the momentum
term were also empirically tuned with the validation data.

Training was performed using stochastic backpropagation with momentum
and the mean square error function. In order to monitor the generalization
performance during learning and to stop training when there was no longer
an improvement, the validation set was used. More than five million training
patterns (corresponding to the 6 161 training lines) and close to 800 000 valida-
tion patterns (from 920 lines) composed the training and validation datasets,
respectively. Due to the large time requirements to train the MLPs, we used
a resampling algorithm: only 300 000 training patterns and 200 000 validation
patterns were used in each training epoch. These subsets were randomly selected
in each run.

The emission probabilities are obtained by dividing the a-posteriori proba-
bility estimates from the MLP outputs by the class priors. The a-priori prob-
abilities of the states are estimated from the relative frequencies of each state,
which are computed from the segmentation given by a forced Viterbi alignment
of the training data.

The initial segmentation at state level that is required to train an MLP at
the first step of the EM algorithm (see Section 3.2) was generated by running
a “pretrained” hybrid HMM/ANN handwriting recognition system in a forced
alignment mode. The word error rate on the validation set, using a closed dictio-
nary from the IAM task composed of 10 353 words and a bigram language model
estimated with the LOB corpus, was used as the stopping criterion. Around ten
iterations of the EM training algorithm were enough for all the configurations.
Figure 8 illustrates a typical evolution of the EM training, showing the evolution
of the mean square error on the training and validation set. The evolution of the
WER on validation is also shown in the graphic. The hybrid HMM/ANN mod-
els were trained and tested with the APRIL toolkit [21], which was developed
for neural networks and pattern recognition tasks in our research group.

18

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0 100
 200

 300
 400

 500
 600

 700

13.5

14

14.5

15

1 5 10 15

M
S

E

W
E

R
 (

%
)

MLP CYCLES

EM CYCLES

B
es

t E
M

 c
yc

le

MSE training
MSE validation

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0 100
 200

 300
 400

 500
 600

 700

13.5

14

14.5

15

1 5 10 15

M
S

E

W
E

R
 (

%
)

MLP CYCLES

EM CYCLES

B
es

t E
M

 c
yc

le

WER validation

Figure 8: Evolution of the EM training algorithm for the 7-state HMMs and an
MLP of two hidden layers of 192 and 128 units each. The mean square error
(MSE) is shown for the training and validation data, along with the WER on
validation of each iteration of the EM algorithm.

Table 4 shows the performance achieved for the different configurations of
the hybrid HMM/ANN systems on the validation dataset using the bigram lan-
guage model and the open dictionary as explained in Section 5.1. The lowest
WER was obtained by using 7-state Markov chains and an MLP topology of two
hidden layers of 192 and 128 units, respectively. Further experiments were con-
ducted with the optimized configuration: Table 5 shows the performance of this
hybrid HMM/ANN system on the validation dataset using the bigram language
model with different grammar scale factors. The grammar scale factor has been
optimized by systematically testing values from 6 to 16 on the validation text
lines. Small changes in word error rate are observed, and the best performance,
19.0%, was achieved with a grammar scale factor of 10 or 12. All these word
error rate results are plotted in Figure 9 with a 95% confidence level interval.

6 Discussion and Comparison

This section describes the performance of the optimized systems on the test
set, and a comparison is made with the best published results. Experiments to
study the influence of the dictionary on the recognizer were also carried out.

19

Table 4: Tuning the topology of the hybrid HMM/ANN models: Word Error
Rate of the hybrid HMM/ANN models on the validation set.

Model WER on Validation (%)
6-state HMMs, MLP 192-128 19.5 ±1.3
7-state HMMs, MLP 192-128 19.0 ±1.2
8-state HMMs, MLP 384-128 19.1 ±1.2
9-state HMMs, MLP 384-128 19.5 ±1.2

Table 5: Tuning the GSF: Word Error Rate of the best hybrid HMM/ANN
models on the validation set for different Grammar Scale Factors.

Model GSF WER on Validation (%)
7-state HMMs, MLP 192-128 6 21.3 ±1.4
7-state HMMs, MLP 192-128 8 19.6 ±1.3
7-state HMMs, MLP 192-128 10 19.0 ±1.2
7-state HMMs, MLP 192-128 12 19.0 ±1.2
7-state HMMs, MLP 192-128 14 19.3 ±1.2
7-state HMMs, MLP 192-128 16 20.1 ±1.1

 17

 18

 19

 20

 21

 22

 23

 24

 5 6 7 8 9 10

W
E

R
 o

n
V

al
id

at
io

n
(%

)

Number of states

 17

 18

 19

 20

 21

 22

 23

 24

 4 6 8 10 12 14 16 18

W
E

R
 o

n
V

al
id

at
io

n
(%

)

GSF

Figure 9: Tuning HMM/ANN models: Word Error Rate of the HMM/ANN
models on the validation set varying the topology (left) and for different Gram-
mar Scale Factors (right). WER is given with a 95% confidence interval.

20

Table 6: Testing the systems: Error Rate of the HMMs and the hybrid
HMM/ANN models on the test set.

Results of Test (%)
Best model WER CER

8-state HMMs 38.8 ±1.0 18.6 ±0.6
7-state HMMs, MLP 192-128 22.4 ±0.8 9.8 ±0.4

6.1 HMM vs. hybrid HMM/ANN models

Table 6 shows the error rate of the recognized test lines of the IAM task using the
best HMM and the best hybrid HMM/ANN systems. We tested each system
with the open dictionary of 20 000 words and a bigram language model, as
explained in Section 5.1. For each recognition experiment, two performance
figures were obtained: the word error rate and the character error rate. No
parameters were optimized on the test set.

Our baseline experiment achieved comparative performances with state-of-
the-art HMM systems: a WER of 38.8%±1.0 with a 95% confidence interval and
a CER of 18.6% in the interval (18.0, 19.2). Our final hybrid HMM/ANN system
achieved excellent results: a WER of 22.4% in the interval (21.6, 23.2) and a
CER of 9.8% in the interval (9.4, 10.2). The hybrid system outperforms our
baseline in 16 points in WER, which represents a relative error rate reduction
of 42%. Similarly, the character error rate improved nearly 9 points, which
represents a relative percentage of improvement that is greater than 47%.

Besides the word and character error rates, another measure to consider
when evaluating a recognition engine is the decoding time, since a high value
might diminish the usability of the recognition system in practical applica-
tions. Unfortunately, this time is not reported by most authors. Our hybrid
HMM/ANN prototype required an average time of 0.76 seconds per word for
preprocessing and 0.65 seconds per word on decoding [20]. This CPU time was
measured in a single core of an Intel® Core™2 Quad CPU Q6600 @ 2.40GHz
using DDR2-800Mhz memory. These times could be reduced in the production
stage of the recognition engine, and the latency could also be reduced by using
several cores since many steps are highly parallelizable.

6.2 Influence of the dictionary

A series of experiments to study the influence of the dictionary size were carried
out. Open dictionaries with between 10 000 and 30 000 words were generated
by taking the N most frequently occurring words in the training material for
the language model.

Table 7 shows the word error rate and the character error rate of the test set
when the size of the open dictionary was increased. The second column of this
table shows the test set coverage, and the last two columns show the word and

21

Table 7: Influence of the dictionary size (with open dictionaries): Word Error
Rate of hybrid HMM/ANN models on the test set.

Results of Test (%)
Dictionary size Coverage (%) WER CER

10 000 66.57 26.9 ±0.9 11.7 ±0.5
15 000 74.28 24.2 ±0.8 10.5 ±0.4
20 000 78.86 22.4 ±0.8 9.8 ±0.4
25 000 81.97 21.9 ±0.8 9.4 ±0.4
30 000 84.39 21.2 ±0.8 9.1 ±0.4

Table 8: Influence of using closed dictionaries: Word Error Rate of hybrid
HMM/ANN models on the test set.

Results of Test (%)
Dictionary size WER CER

4 953 15.5 ±0.7 6.9 ±0.4
20 000 16.8 ±0.7 7.5 ±0.4

the character error rate of the test set using a bigram language model estimated
for each lexicon. To give an idea of the meaning of coverage in the IAM line
task, consider, for example, that with the open dictionary of 20 000 words, a
coverage of 78.86% was achieved, that is, 21.14% of the words in the test set
were out-of-vocabulary words. However, if we measure the out-of-vocabulary
running-words, this figure falls to 4.99%. (The out-of-vocabulary running-words
were 1 268, that is, 1 268 running-words from the 25 424 running-words in the
test set were not in the lexicon.) As expected, performance increased with
lexicon size and test coverage. Figure 10 plots this experiment against test set
coverage.

Another experiment was also carried out to study the influence of using
closed dictionaries. Two closed dictionaries were generated: one containing only
the 4 953 words in the IAM test line set, and another one padding the first one up
to 20 000 words (the most frequently occurring words in the training material for
the language model). The influence of using the closed dictionaries is shown in
Table 8 using a 95% confidence interval for WER. In this case, a bigram language
model estimated for each lexicon was also used. Not surprisingly, the closed
dictionary containing only the test set words achieved the best performance.
The score with the 20 000 word closed dictionary was still better than those
reached with open dictionaries.

22

 20

 21

 22

 23

 24

 25

 26

 27

 28

 65 70 75 80 85

W
E

R
 o

n
T

es
t (

%
)

Coverage

Figure 10: HMM/ANN performance with open dictionaries plotted against test
set coverage. WER on test is given with a 95% confidence interval.

6.3 Comparison with other systems

Comparisons to other recognition systems in the literature are difficult due to
the lack of availability of common databases. With regard to the publications
using the IAM database, a more detailed comparison is possible. In a very re-
cent work, Graves et al [27] presented a novel handwriting recognition system
based on recurrent neural networks, which achieved the best published recog-
nition rates to date, a WER of 25.9% with bigrams. In order to compare both
systems, we contacted the authors to exactly reproduce the same experimental
conditions. They provided us with their dictionary and language model and we
retrained our optical models using the same grapheme set as them and normal-
izing each input feature to zero mean and unit variance. Also, case differences
in words were taken into account during recognition and in the WER compu-
tation. Surprisingly, we obtained the very same 25.9% of WER for the test
set, despite the fact that recurrent neural networks and HMM/ANN are very
different approaches.

7 Conclusions

In this paper, we have presented a hybrid HMM/ANN system for recognizing
unconstrained offline handwritten text lines. The key features of the recognition
system are the novel approach to preprocessing and recognition, which are both
based on ANNs. The preprocessing is based on using MLPs:

23

• to clean and enhance the images,

• to automatically classify local extrema in order to correct the slope and
to normalize the size of the text lines images, and

• to perform a non-uniform slant correction.

The recognition is based on hybrid optical HMM/ANN models where an MLP
is used to estimate the emission probabilities.

The main property of ANNs which is useful for preprocessing tasks is their
ability to learn complex nonlinear input-output relationships from examples.
Used for regression, an MLP can learn the appropriate filter from examples.
We have exploited this property to clean and enhance the text images. Used
for classification, MLPs can be used to determine the membership of interest
points from the image to the reference lines, which is useful for slope correc-
tion and size normalization, and to locally detect slant in a text image. This
preprocessing favouribly behaved when compared to other preprocessing tech-
niques. We tested our HMM and HMM/ANN systems, performing the same
experiments that those presented here but by using more classical techniques to
correct slope, slant and size normalization [51]. We obtained a 54.3% and 29.8%
test WER, respectively, which represent a percentual decrease of 29% and 25%
when compared to the test results from Table 6.

The proposed hybrid HMM/ANN recognition system outperformed our base-
line experiment, which is a state-of-the-art HMM-based system that includes our
preprocessing. The novel hybrid HMM/ANN approach obtained an impressive
42% relative improvement in WER over our baseline. We compared our system
with the recurrent neural network approach presented in [27] under the same
experimental conditions and we obtained the same results.

Our next goal is to upgrade our recognition engine by using ensembles of
MLPs [9, 18], by combining several recognizers [8, 59], and by using deep con-
nectionist architectures [5, 4]. The first very basic idea is to use several MLPs
rather than just a single one, to solve a given pattern classification or regression
task [9, 18]. This idea can be directly applied to the optical hybrid HMM/ANN
models, using an ensemble of MLPs to estimate the emission probabilities of
the Markov chains, as well as using ensembles of MLPs in every preprocess-
ing step. Another idea is to combine several individual recognition systems
(based on HMMs, HMM/ANN models or recurrent ANNs) and specialized clas-
sifiers [8, 59]. Finally, as pointed out in [5, 4], using deep learning methods
would lead us to better trained ANNs which could improve every step of our
recognition engine.

Acknowledgements

This work has been partially supported by the Spanish Ministerio de Educación
y Ciencia (TIN2006-12767) and by the BPFI 06/250 scholarship from the Con-
selleria d’Empresa, Universitat i Ciencia, Generalitat Valenciana.

24

The authors would like to acknowledge the valuable help provided by Moisés
Pastor, Juan Miguel Vilar, Alex Graves, and Marcus Liwicki.

References

[1] N. Arica and F.T. Yarman-Vural. An overview of character recognition
focused on off-line handwriting. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 31(2):216–233, 2001.

[2] L. Bauer. Manual of Information to Accompany The Wellington Corpus of
Written New Zealand English. Technical report, Department of Linguistics,
Victoria University, Wellington, New Zealand, 1993.

[3] Yoshua Bengio. A connectionist approach to speech recognition. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 7(4):647–
667, 1993.

[4] Yoshua Bengio. Learning deep architectures for AI. Foundations and
Trends in Machine Learning, 2(1), 2009.

[5] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.
Greedy layer-wise training of deep networks. In Neural Information Pro-
cessing Systems, pages 153–160, 2006.

[6] Yoshua Bengio, Yann LeCun, Craig Nohl, and Chris Burges. LeRec: A
NN/HMM Hybrid for On-Line Handwriting Recognition. Neural Compu-
tation, 7(6):1289–1303, 1995.

[7] R. Bertolami and H. Bunke. Ensemble Methods to Improve the Perfor-
mance of an English Handwritten Text Line Recognizer. In Arabic and
Chinese Handwriting Recognition, volume 4768 of Lecture Notes in Com-
puter Science, pages 265–277. Springer, 2008.

[8] R. Bertolami and H. Bunke. Hidden Markov models-based ensemble meth-
ods for offline handwritten text line recognition. Pattern Recognition,
41(11):3452–3460, 2008.

[9] C. M. Bishop. Neural networks for pattern recognition. Oxford University
Press, 1995.

[10] H. Bourlard and N. Morgan. Connectionist speech recognition—A hybrid
approach, volume 247 of Engineering and computer science. Kluwer Aca-
demic, 1994.

[11] Radmilo M. Bozinovic and Sargur N. Srihari. Off-line cursive script word
recognition. 11(1):68–83, 1989.

[12] Horst Bunke. Recognition of Cursive Roman Handwriting – Past, Present
and Future. In Proc. 7th International Conference on Document Analysis
and Recognition, volume 1, pages 448–459, Edinburgh, Scotland, 2003.

25

[13] C.J.C. Burges, J.I. Ben, J.S. Denker, Y. LeCun, and R. Nohl. Off-Line
recognition of handwritten postal words using neural networks. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 7(4):689–
704, 1993.

[14] C.J.C. Burges, O. Matan, Y. LeCun, J.S. Denker, L.D. Jackel, C.E. Ste-
nard, C.R. Nohl, and J.I. Ben. Shortest Path Segmentation: A Method for
Training a Neural Network to Recognize Character Strings. International
Joint Conference on Neural Networks, 3:165–172, 1992.

[15] D. J. Burr. A normalizing transform for cursive script recognition. In
Proc. 6th International Conference on Pattern Recognition, pages 1027–
1030, Munich, Germany, 1982.

[16] Émilie Caillault and Christian Viard-Gaudin. Mixed Discriminant Train-
ing of Hybrid ANN/HMM Systems for Online Handwritten Word Recog-
nition. International Journal of Pattern Recognition and Artificial Intelli-
gence, 21(1):117–134, 2007.

[17] M. J. Castro and F. Casacuberta. Hybrid connectionist-structural acous-
tical modeling in the ATROS system. In Proc. 6th European Conference
on Speech Communications and Technology, volume 3, pages 1299–1302,
Budapest, Hungary, 1999.

[18] M. J. Castro and F. Casacuberta. Committees of MLPs for Acoustic Mod-
eling. In Proc. 5th Iberoamerican Symposium on Pattern Recognition, pages
797–807, Lisboa, Portugal, 2000.

[19] A. El-Yacoubi, M. Gilloux, R. Sabourin, and C. Y. Suen. An HMM-Based
approach for off-line unconstrained handwritten word modeling and recog-
nition. 21(8):752–760, 1999.

[20] S. España-Boquera, M.J. Castro-Bleda, F. Zamora-Mart́ınez, and J. Gorbe-
Moya. Efficient Viterbi algorithms for lexical tree based models. In Ad-
vances in Nonlinear Speech Processing, International Conference on Non-
Linear Speech Processing, volume 4885 of Lecture Notes in Computer Sci-
ence, pages 179–187. Springer, 2007.

[21] S. España-Boquera, F. Zamora-Mart́ınez, M. J. Castro-Bleda, and
J. Gorbe-Moya. Efficient BP Algorithms for General Feedforward Neu-
ral Networks. In Bio-inspired Modeling of Cognitive Tasks, volume 4527 of
Lecture Notes in Computer Science, pages 327–336. Springer, 2007.

[22] W.N. Francis and H. Kucera. Brown Corpus Manual, Manual of Informa-
tion to accompany A Standard Corpus of Present-Day Edited American
English. Technical report, Department of Linguistics, Brown University,
Providence, Rhode Island, US, 1979.

26

[23] Hiromichi Fujisawa. Forty years of research in character and document
recognition-an industrial perspective. Pattern Recognition, 41(8):2435–
2446, 2008.

[24] R. Gemellovo, F. Mana, and D. Albesano. Hybrid HMM/Neural Network
based Speech Recognition in Loquendo ASR. 2008.

[25] J. Gorbe-Moya, S. España-Boquera, F. Zamora-Mart́ınez, and M. J.
Castro-Bleda. Handwritten Text Normalization by using Local Extrema
Classification. In Proc. 8th International Workshop on Pattern Recogni-
tion in Information Systems, pages 164–172, Barcelona, Spain, 2008.

[26] A. Graves, S. Fernandez, M. Liwicki, H. Bunke, and J. Schmidhuber. Un-
constrained online handwriting recognition with recurrent neural networks.
In Advances in Neural Information Processing Systems 20, pages 577–584.
MIT Press, 2008.

[27] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst
Bunke, and Jürgen Schmidhuber. A Novel Connectionist System for Un-
constrained Handwriting Recognition. 31(5):855–868, 2009.

[28] J. L. Hidalgo, S. España, M. J. Castro, and J. A. Pérez. Enhancement
and cleaning of handwritten data by using neural networks. In Pattern
Recognition and Image Analysis, volume 3522 of Lecture Notes in Computer
Science, pages 376–383. Springer-Verlag, 2005.

[29] S. Jaeger, S. Manke, and A. Waibel. Npen++: An On-Line Handwriting
Recognition System. In Proc. 7th International Workshop on Frontiers in
Handwriting Recognition, pages 249–260, Amsterdam, 2000.

[30] F. Jelinek. Statistical Methods for Speech Recognition. Language, Speech,
and Communication. The MIT Press, 1997.

[31] S. Johansson, E. Atwell, R. Garside, and G. Leech. The Tagged LOB
Corpus: User’s Manual. Norwegian Computing Centre for the Humanities,
Bergen, Norway, 1986.

[32] Jin Ho Kim, Kye Kyung Kim, and Ching Y. Suen. An HMM-MLP Hybrid
Model for Cursive Script Recognition. Pattern Analysis & Applications,
3:314–324, 2000.

[33] S. Knerr and E. Augustin. A Neural Network-Hidden Markov Model Hybrid
for Cursive Word Recognition. In Proc. 14th International Conference on
Pattern Recognition, volume 2, pages 1518–1520, Washington, DC, USA,
1998.

[34] A.L. Koerich, Y. Leydier, R. Sabourin, and C.Y. Suen. A Hybrid Large
Vocabulary Handwritten Word Recognition System Using Neural Networks
with Hidden Markov Models. Eighth International Workshop on Frontiers
in Handwriting Recognition, pages 99–104, 2002.

27

[35] A.L. Koerich, R. Sabourin, and C.Y. Suen. Large vocabulary off-line hand-
writing recognition: A survey. Pattern Analysis & Applications, 6(2):97–
121, 2003.

[36] Simone Marinai, Marco Gori, and Giovanni Soda. Artificial Neural Net-
works for Document Analysis and Recognition. 27(1):23–35, 2005.

[37] U.-V. Marti and H. Bunke. Using a statistical language model to im-
prove the performance of an HMM-based cursive handwriting recognition
systems. International Journal of Pattern Recognition and Artificial Intel-
ligence, 15(1):65–90, 2001.

[38] U.-V. Marti and H. Bunke. The IAM-database: an English sentence
database for offline handwriting recognition. International Journal of Doc-
ument Analysis and Recognition, 5(1):39–46, 2002.

[39] S. Marukatat, T. Artières, B. Dorizzi, and P. Gallinari. Sentence Recog-
nition through hybrid neuro-markovian modelling. In International Con-
ference on Document Analysis and Recognition, pages 731–735, Seattle,
Washington, USA, 2001.

[40] M. Pastor, A. Toselli, and E. Vidal. Projection profile based algorithm
for slant removal. In Proc. International Conference on Image Analysis
and Recognition, volume 3212 of Lecture Notes in Computer Science, pages
183–190, Porto, Portugal, 2004.

[41] R. Plamondon and S. N. Srihari. On-line and off-line handwritting recog-
nition: a comprehensive survey. 22(1):63–84, 2000.

[42] L. Rabiner and B. H. Huang. Fundamentals of Speech Recognition. Prentice-
Hall, 1993.

[43] V. Romero, M. Pastor, A. H. Toselli, and E. Vidal. Improving handwritten
off-line text slant correction. In Proc. 6th IASTED International Con-
ference on Visualization, Imaging, and Image Processing, pages 389–394,
Palma de Mallorca, Spain, 2006.

[44] Joachim Schenk, Johannes Lenz, and Gerhard Rigoll. On-Line Recogni-
tion of Handwritten Whiteboard Notes: A Novel Approach for Script Line
Identification And Normalization. In Proc. 11th International Workshop on
Frontiers in Handwriting Recognition, pages 540–543, Montréal, Québec,
Canada, 2008.

[45] M. Schenkel, I. Guyon, and D. Henderson. On-line cursive script recognition
using time delay neural networks and hidden Markov models. Machine
Vision and Applications, 8(4):215–223, 1995.

[46] A. W. Senior and A. J. Robinson. An off-line cursive handwritten recogni-
tion system. 20(3):309–321, 1998.

28

[47] P.Y. Simard, D. Steinkraus, and M. Agrawala. Ink normalization and beau-
tification. In Proc. 8th International Conference on Document Analysis and
Recognition, pages 1182–1187, 2005.

[48] Tal Steinherz, Ehud Rivlin, and Nathan Intrator. Offline cursive script
word recognition - a survey. International Journal of Document Analysis
and Recognition, 2(2):90–110, 1999.

[49] A. Stolcke. SRILM: an extensible language modeling toolkit. In Proc. Inter-
national Conference on Spoken Language Processing, pages 901–904, Den-
ver, Colorado, 2002.

[50] Y.H. Tay, M. Khalid, R. Yusof, and C. Viard-Gaudin. Offline cursive
handwriting recognition system based on hybrid Markov model and neural
networks. In Proceedings of the 2003 IEEE International Symposium on
Computational Intelligence in Robotics and Automation, pages 1190–1195,
2003.

[51] A. H. Toselli, A. Juan, J. González, I. Salvador, E. Vidal, F. Casacu-
berta, D. Keysers, and H. Ney. Integrated Handwriting Recognition and
Interpretation using Finite-State Models. International Journal of Pattern
Recognition and Artificial Intelligence, 18(4):519–539, 2004.

[52] Seiichi Uchida, Eiji Taira, and Hiroaki Sakoe. Nonuniform slant correc-
tion using dynamic programming. In Proc. 6th International Conference
on Document Analysis and Recognition, volume 1, pages 434–438, Seattle,
USA, 2001.

[53] J. M. Vilar. Efficient computation of confidence intervals for word error
rates. In Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 5101–5104, Las Vegas, Nevada, 2008.

[54] A. Vinciarelli. A survey on off-line cursive word recognition. Pattern Recog-
nition, 35(7):1433–1446, 2002.

[55] A. Vinciarelli and J. Luettin. A new normalization technique for cursive
handwritten words. Pattern Recognition Letters, 22(9):1043–1050, 2001.

[56] Alessandro Vinciarelli, Samy Bengio, and Horst Bunke. Offline Recog-
nition of Unconstrained Handwritten Texts Using HMMs and Statistical
Language Models. 26(6):709–720, 2004.

[57] K. Y. Wong, R. G. Casey, and F. M. Wahl. Document Analysis system.
IBM Journal of Research and Developement, 26(6):647–655, 1982.

[58] S. J. Young, P. C. Woodland, and W. J. Byrne. HTK: Hidden Markov
Model Toolkit V1.5. Technical report, Cambridge University Engineering
Department Speech Group and Entropic Research Laboratories Inc., 1993.

29

[59] Francisco Zamora-Mart́ınez, Maŕıa José Castro-Bleda, Salvador España-
Boquera, and Jorge Gorbe-Moya. Improving isolated handwritten word
recognition using a specialized classifier for short words. Lecture Notes in
Artificial Intelligence. Springer-Verlag, 2010. To appear.

30

