

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/chapter/10.1007/978-3-642-22327-3_31

http://hdl.handle.net/10251/36010

Springer Verlag (Germany)

Flores Sáez, E.; Barrón Cedeño, LA.; Rosso, P.; Moreno Boronat, LA. (2011). Towards the
detection of cross-language source code reuse. En Natural Language Processing and
Information Systems. Springer Verlag (Germany). 6716:250-253. doi:10.1007/978-3-642-
22327-3_31.

Towards the Detection of
Cross-Language Source Code Reuse

Enrique Flores, Alberto Barrón-Cedeño, Paolo Rosso, and Lidia Moreno

Dpto. de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia
{eflores,lbarron,prosso,lmoreno}@dsic.upv.es

Abstract. Internet has made available huge amounts of information,
also source code. Source code repositories and, in general, programming
related websites, facilitate its reuse. In this work, we propose a simple
approach to the detection of cross-language source code reuse, a nearly
investigated problem. Our preliminary experiments, based on charac-
ter n-grams comparison, show that considering different sections of the
code (i.e., comments, code, reserved words, etc.), leads to different re-
sults. When considering three programming languages: C++, Java, and
Python, the best result is obtained when comments are discarded and
the entire source code is considered.

Keywords: Source code reuse, cross-language source code reuse analy-
sis, plagiarism detection.

1 Introduction

In the digital era, massive amounts of information are available causing the
material from other people to be exposed to reuse. Therefore, there is high
interest in identifying whether a work has been reused.

As for documents in natural language, the amount of source code in Internet
is huge, facilitating the reuse of all or part of previously implemented programs.
People facing similar problems are frequently tempted to source code reuse and,
if no reference to the original work is included, plagiarism.1 As a counter measure
different models for the automatic detection of source code reuse (in particular
plagiarism) have been developed [2, 3, 6]. The challenge of cross-language reuse
detection has been approached just recently [1].

Let L1 and L2 be two programming languages (L1 6= L2), we define cross-
language source code reuse as the translation of (part of) a source code a ∈ L1

into a′ ∈ L2. As for texts written in natural language [5], detecting code reuse
when a translation process occurred, is even more challenging; it is very likely
that a′ does not represent an exact translation of a because of implementation
issues.

1 Source code reuse is often allowed, thanks to licences as those of Creative Commons
(http://creativecommons.org/), but if the information related to the source is not
included, plagiarism is being committed.

2 Flores et al.

As far as we know the only approach that aims to detect cross-language
source code reuse is that of [1]. Instead of processing source code, this approach
compares intermidiate language (RTL) produced by a compiler. The comparison
is in fact monolingual and compiler dependent. Unfortunately, the corpus used
is not available, making the direct comparison to this approach unfeasible.

This contribution represents a preliminary work attempting to detect source
code reuse among three programming languages: C++, Java and Python on the
basis of Natural Language Processing techniques.

2 Model

The following levels of edition in monolingual reuse are proposed by [2]:

0. No changes in source code.
1. Represents the changes in comments and identation.
2. Includes level 1 plus changes in identifiers.
3. Groups level 2 and changes in declarations (i.e. declaring extra constants,

changing the positions of declared variables, etc.).
4. Represents level 3 plus changes in program modules (i.e. merging proce-

dures).
5. Comprises level 4 and changes in program statements (i.e. using for instead

of while).
6. Represents level 5 and changes in control logic.

Our proposal aims to treat some of these levels, considering: (i) full code,
i.e., source code and comments, for level 0; (ii) full code without comments (fc-
without comments) for level 1; (iii) programming language reserved words only
(fc-reserved words only) for levels 2 and 3. Additionally, three more exploratory
experiments have been carried out: (iv) commments only (v) full code without
reserved words (fc-without rw) and (vi) full code without comments and without
reserved words (fc-wc-wrw).

The proposed model is divided in three steps: (a) Pre-processing: linebreaks,
tabs and spaces removal as well as case folding; (b) Features extraction: character
n-grams extraction, weighting based on normalised tf ; and (c) Comparison:
cosine similarity estimation.

Once a′ is compared to a ∈ A, a sorted list is generated that ranks the
potential sources for the suspicious program a′. The top k pairs (a′, a) in the
ranked list are the most similar and, therefore, more likely to be reused.

3 Experiments

Our aim is to evaluate the proposed model to detect cross-language reuse between
source codes. Our toy corpus is composed of a collection of programs including
source code in C++, Java and Python (the programs are formerly part of a multi-
agents system). For each language a collection of programs exist that maintains a

Towards the detection of cross-language source code reuse 3

correspondence to the programs in the other languages. The collections in C++
and Java have been partially reused. The cases Python→C++ represent real
examples of cross-language reuse. The cases Python→Java represent simulated
cases. Moreover, the cases C++−Java represent triangular reuse (having Python
as pivot). Table 1 shows some statistics of the corpus.

Table 1. Statistics of the corpus used for the experiments.

Language Tokens Avg. length of tokens Types Types per program Programs

C++ 1,318 3.46 144 28.8 5

Java 1,100 4.52 190 47.5 4

Python 10,503 3.24 671 167.75 4

We have tested our character n-grams model considering n={1, . . . , 5}. Ta-
ble 2 shows the average and standard deviation of the positions of that document
a that is the source of a′. In the most of the experiments the best result is ob-
tained when considering full code as well as full code without comments with the
same values in both cases. The best results are obtained with n = 3. This is in
fact the same cases as for text reuse detection [5].

Table 2. Results obtained with character 3-grams. The value represents the mean and
standard deviation of the position of the source program in the ranked list.

Features Java − C++ Python → C++ Python → Java

full code 1.00 ± 0.00 1.44 ± 0.83 1.62 ± 1.10

fc-without comments 1.00 ± 0.00 1.44 ± 0.83 1.62 ± 1.10

fc-reserved words only 1.56 ± 0.83 1.78 ± 1.02 1.75 ± 0.83

comments only 2.29 ± 1.57 2.83 ± 1.34 3.00 ± 0.67

fc-without rw 1.44 ± 0.83 1.78 ± 1.13 2.00 ± 1.32

fc-wc-wrw 1.44 ± 0.83 1.67 ± 0.94 1.44 ± 0.69

The comments in the source code has not had much impact, partly because
the programmer has decided to rewrite the comment, write their own comments,
or because they have not taken into account the comments when reusing the
code. As a malicious programmer can modify the comments to introduce noise in
the detection, it is better to ignore these sections of the program. The best results
were obtained between the C++ and Java codes because they include common
reused fragments from the Python implementations. Evidently, the syntax and
vocabulary of C++ and Java is highly similar.

4 Flores et al.

4 Conclusions and Future Work

This work is a preliminary attempt to detect cross-language source code reuse.
The proposed approach is based on similarity computations at character n-grams
level. The impact of comments, variable names, and reserved words of the differ-
ent programming languages has been investigated. The best results are obtained
when comments are ignored. This suggests that the comments can be safely
discarded when aiming to determine the cross-language similarity between two
programs. Presumably, the character 3-grams are able to represent programming
style as in the case of documents written in natural language. No improvement
was observed when weighting with tf -idf , but this could be due to the small
corpus. Further experiments have to be carried out out on a larger corpus.

As future work, we identify the following avenues: (i) employing sliding win-
dows [7] in order to compare blocks of codes, letting the location of similar
fragments (for instance, a function at the beginning of a program could have
been plagiarised and located at the end of another one); and (ii) applying cross-
language alignment-based similarity analysis [4] that recently have given good
results for texts (the necessary dictionary could be composed of reserved words).

Acknowledgments This work has been developed with the support of the
project TEXT-ENTERPRISE 2.0: Text comprehension techniques applied to
the needs of the Enterprise 2.0 (MICINN, Spain TIN2009-13391-C04-03 (Plan
I+D+i))

References

1. Arwin, C. and Tahaghoghi, S.M.M.: Plagiarism Detection across Programming
Languages. Proceedings of the 29th Australasian Computer Science Conference
vol. 48, pp. 277-286. (2006)

2. Faidhi, J. and Robinson, S.: An empirical approach for detecting program similarity
and plagiarism within a university programming environment. Comput. Educ., vol.
11, pp. 11-19. (1987)

3. Jankowitz, H. T.: Detecting plagiarism in student pascal programs. The computer
journal, vol. 31(1). (1988)

4. Pinto, D., Civera, J., Barrón-Cedeño, A., Juan, A., and Rosso, P. A statistical
approach to crosslingual natural language tasks. Journal of Algorithms, vol. 64(1),
pp. 51-60. (2009)

5. Potthast M., Barrón-Cedeño A., Stein B., Rosso P.: Cross-Language Plagiarism
Detection. In: Languages Resources and Evaluation. Special Issue on Plagiarism
and Authorship Analysis, vol. 45(1). (2011)

6. Rosales, F., Garćıa. A., Rodŕıguez, S., Pedraza, J. L., Méndez, R., and Nieto, M.
M.: Detection of plagiarism in programming assignments. IEEE Transactions on
Education, vol. 51(2), pp. 174-183. (2008)

7. Stamatatos, E.: Intrinsic Plagiarism Detection Using Character n-gram Profiles.
In Proc. SEPLN’09, Donostia, Spain, pp. 38-46. (2009)

