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Abstract

Complex, but specific, tasks —such as chess or Jeopardy!— are popularly seen as milestones for artificial intelligence (AI). How-
ever, they are not appropriate for evaluating the intelligence of machines or measuring the progress in Al. Aware of this delusion,
Detterman has recently raised a challenge prompting Al researchers to evaluate their artefacts against IQ tests. We agree that the
philosophy behind (human) IQ tests is a much better approach to machine intelligence evaluation than these specific tasks, and also
more practical and informative than the Turing test. However, we have first to recall some work on machine intelligence measure-
ment which has shown that some IQ tests can be passed by relatively simple programs. This suggests that the challenge may not
be so demanding and may just work as a sophisticated CAPTCHA, since some types of tests might be easier than others for the
current state of Al. Second, we show that an alternative, formal derivation of intelligence tests for machines is possible, grounded
in (algorithmic) information theory. In these tests, we have a proper mathematical definition of what is being measured. Third,
we re-visit some research done in the past fifteen years in the area of machine intelligence evaluation, which suggests that some
principles underlying IQ tests may require a re-visiting or even a substantial revision before using them for effectively measuring

machine intelligence —since some assumptions about the subjects and their distribution no longer hold.

1. The challenge

In February 2011, Douglas K. Detterman announced a chal-
lenge (originally to IBM’s program Watson (Ferrucci et al.,
2010), the recent winner of the Jeopardy! TV quiz show at
the time) for the whole field of artificial intelligence (AI). Al
artefacts should be better measured by classical 1Q tests. The
challenge goes as follows (Detterman, 2011): “I, the editorial
board of Intelligence, and members of the International Society
for Intelligence Research will develop a unique battery of intel-
ligence tests that would be administered to that computer and
would result in an actual I1Q score”.

Computers are (still) so stupid today, that it seems clear that
an average result at IQ tests is far beyond current computer tech-
nology. “It is doubtful that anyone will take up this challenge
in the near future”, Detterman said (Detterman, 2011). But the
challenge had already been taken up, in the past.

In 2003, a computer program performed quite well on stan-
dard human IQ tests (Sanghi & Dowe, 2003). This was an
elementary program, far smaller than Watson or the success-
ful chess-playing Deep Blue (Campbell et al., 2002). The pro-
gram had only about 960 lines of code in the programming lan-
guage Perl (accompanied by a list of 25,143 words), but it even
surpassed the average score (of 100) on some tests (Sanghi &
Dowe, 2003, Table 1).
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The computer program underlying this work was based on
the realisation that most IQ test questions that the authors had
seen until then tended to be of one of a small number of types
or formats. Formats such as “insert missing letter/number in
middle or at end” and “insert suffix/prefix to complete two or
more words” were included in the program. Other formats such
as “complete matrix of numbers/characters”, “use directions,
comparisons and/or pictures”’, “find the odd man out”, “cod-
ing”, etc. were not included in the program —although they
are discussed in (Sanghi & Dowe, 2003) along with their po-
tential implementation. The IQ score given to the program for
such questions not included in the computer program was the
expected average from a random guess, although clearly the
program would obtain a better “IQ” if efforts were made to im-
plement any, some or all of these other formats.

So, apart from random guesses, the program obtains its score
from being quite reliable at questions of the “insert missing
letter/number in middle or at end” and “insert suffix/prefix to
complete two or more words” natures. For the latter “insert
suffix/prefix” sort of question, it must be confessed that the pro-
gram was assisted by a look-up list of 25,143 words. Substan-
tial parts of the program are spent on the former sort of ques-
tion “insert missing letter/number in middle or at end”, with
software to examine for arithmetic progressions (e.g., 7 10 13
16 ?7), geometric progressions (e.g., 3 6 12 24 ?), arithmetic
geometric progressions (e.g., 359 17 33 ?7), squares, cubes, Fi-
bonacci sequences (e.g.,0 112358 13 ?) and even arithmetic-
Fibonacci hybrids such as (0 1 36 11 19 ?). Much of the pro-
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gram is spent on parsing input and formatting output strings —
and some of the program is internal redundant documentation
and blank lines for ease of programmer readability.

We can, of course, argue whether this experiment com-
plies with the challenge. Detterman established two levels for
the challenge, while only computers passing the second level
“could be said to be truly intelligent” (Detterman, 2011). Per-
haps this program is only acceptable for the first level of the
challenge (where the type of IQ tests is seen in advance by the
programmer). However, it is important to note that this toy pro-
gram was capable of passing tests it had not seen beforehand
(which is closer to the second and ultimate level of the chal-
lenge). If not directly qualified, the Perl program could at least
form an initial benchmark in this challenge.

Of course, the system can be improved in many ways. It
was just a 3rd year undergraduate student project, a quarter of
a semester’s work. With the budget Deep Blue or Watson had,
the program would likely excel in a very wide range of 1Q tests.
But this is not the point. The purpose of the experiment was not
to show that the program was intelligent. Rather, the intention
was showing that conventional IQ tests are not for machines —
a point that the relative success of this simple program would
seem to make emphatically. This is natural, however, since 1Q
tests have been specialised and refined for well over a century
to work well for humans.

We are certain that the editorial board of Intelligence and
some members of the International Society for Intelligence Re-
search can figure out a diverse battery of tests that the average
human can pass and the Perl program would fail. (We could
probably do this, too.) But an improved version of the program
would surely make things more difficult for the board. This spi-
ral is precisely what CAPTCHAs do (von Ahn et al., 2004). The
definition of a CAPTCHA (Completely Automated Public Tur-
ing test to tell Computers and Humans Apart) is basically any
problem an average human can pass easily but current com-
puter technology cannot. We are using them everyday on the
Internet —e.g., to create a new account or post a comment—,
frequently shown as a sequence of deformed letters. They are
useful and revealing, but they cannot be considered an intelli-
gence test. They are testing humanity —or perhaps rather little
more than the ability to recognise deformed Roman-language
letters (and then type the matching letters on the console key-
board). In addition, when bots get equipped with tools able to
crack them, the CAPTCHAs have to be replaced by more so-
phisticated ones. As a result, some (brilliant) people struggle
with them.

Summing up, there are IQ tests no machine can pass nowa-
days, but a selection of the ‘machine-unfriendly’ IQ tests would
have no particular relation with their ability to measure in-
telligence well in humans, but rather just their ability to dis-
criminate between humans and state-of-the-art machines, as
CAPTCHAs do. This selection (or battery) of IQ tests would
need to be changed and made more elaborate year after year as
Al technology advances.

2. Measuring machine intelligence

So, what are the right intelligence tests for machines? The
Turing test (originally just conceived as an imitation game)
(Turing, 1950; Oppy & Dowe, 2011) has been the answer to
many philosophical questions about thinking machines, but it is
not an intelligence test in that it is not able to evaluate machines
and humans on the same scale (or even on different scales). In
the end, the Turing test is also a test of humanity, rather than in-
telligence. Also, it can be argued that the Turing test has set the
goal of Al on a philosophical, misguided dimension. However,
all said, in our opinion, the Turing test has had a limited impact
on how the discipline of Al has evolved over the years.

The problem with Al cannot be found in a wrong interpreta-
tion of the notion of intelligence. In fact, the very discipline of
Al adheres to the mainstream concept of intelligence as, e.g.,
“a very general mental capability that, among other things, in-
volves the ability to reason, plan, solve problems, think ab-
stractly, comprehend complex ideas, learn quickly and learn
from experience” (Gottfredson, 1997). All these mentioned
abilities are mirrored in subdisciplines of Al, such as automated
reasoning, planning, problem solving, knowledge representa-
tion, natural language processing, machine learning, etc. How-
ever, the advances in developing evaluation devices for all these
subdisciplines, and across subdisciplines, have not been partic-
ularly encouraging. In more than fifty years of history of Al,
only a few ad-hoc, scattered and specific testing mechanisms
have been developed in each of these subdisciplines. This is
one of the problems, if not the most important one, in Al —the
lack of proper measuring devices to evaluate its progress.

Some early works in the 1990s looked for better alterna-
tives. (Dowe & Hajek, 1997, 1998) presented an enriched Tur-
ing test with compression exercises, which, in the end, aim at
measuring the ability of inductive inference a la MML (Wal-
lace & Boulton, 1968). The Minimum Message Length (MML)
principle advocates for (two-part) compression as a way to per-
form inductive inference (or induction —i.e., learning) and, ul-
timately, intelligence (Wallace & Dowe, 1999; Wallace, 2005;
Dowe, 2011, sec. 7.3).

Similarly, (Hernandez-Orallo & Minaya-Collado, 1998;
Hernandez-Orallo, 2000a) devised a new test —known as the
C-test— with sequence-completion exercises very similar to
those found in some IQ tests. Unlike IQ tests, the exercises
were created from computational principles, and its complexity
(k, basically the number of instructions of the shortest program
generating the sequence) was mathematically quantified using
constructs derived from Kolmogorov complexity —a theory
closely related to MML (Wallace & Dowe, 1999). The C-test
was built by including exercises whose complexity range was
k = 7..14, an interval that was deemed appropriate for humans
since items with k < 7 looked trivial, while items with £k > 14
were really challenging (to us). With the limitations of an am-
ateur experimentation procedure, the test was administered to
humans, and the results strongly correlated (certainly as many
other difficult tasks do) with the results of some IQ tests which
were also administered to the same subjects (Hernandez-Orallo
& Minaya-Collado, 1998, Appendix A). For the authors, intelli-
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gence was no longer (only) what the IQ tests measure, but (also)
a precise mathematical concept. The new pathway looked so
promising that even mathematically-derived ‘factorisations’ of
intelligence were suggested (Herndndez-Orallo, 2000b).

But once that ‘stupid’ Perl program (Sanghi & Dowe, 2003)
was able to pass some 1Q tests, the idyllic picture blurred. It
must be said that the idea of connecting the exercises found
in many IQ tests with the mathematical theory of inductive in-
ference based on (algorithmic) information theory was not af-
fected by the experiment with the Perl program. However, the
research plan was hit by a fatal torpedo, since this new battery
of mathematically-devised C-tests looked fairly easy to crack.
In fact, the toy Perl program managed to solve some problems
of high k complexity and, overall, can score slightly better than
humans on the C-tests.

The previous quest for alternative approaches to intelligence
measurement and our dismissal of conventional IQ tests for ma-
chine evaluation should not be misunderstood. There must be
few people in the area of AI who have advocated more than
us for the hybridisation of psychometrics, comparative cogni-
tion and machine intelligence measurement. But, in our opin-
ion, the experiment with this small program in Perl has already
shown that IQ tests have become specialised for humans, and
many difficulties may arise if these tests are used to measure
intelligence outside this ‘normative’ population. This is easier
to accept from the point of view of comparative (animal) cogni-
tion since human IQ tests are not commonly used for evaluating
animals. Since 2003, this conviction is also shaping up in Al:
human IQ tests are not for machines. The reason is that, in our
opinion, many things are taken for granted in IQ tests which
cannot be assumed for machines. Current IQ tests are anthro-
pocentric. Some important elements of intelligence which are
shared by almost all humans are not evaluated by regular 1Q
tests. We can see some of these elements in ‘non-regular’ tests
which are designed for people with intellectual disabilities or
mental retardation, for children or for non-human animals. But
even these kinds of tests (including the C-tests) assume many
things about the subject.

3. Intelligence tests for machines must be universal

If we really want to measure intelligence instead of human-
ity and fully understand what we are really measuring, the Tur-
ing test is clearly not an option —and neither is a diverse bat-
tery of specific tasks such as (e.g.) chess, Jeopardy or multi-
plying large numbers together, even though these tasks were
once (considered) the exclusive domain of “intelligent” hu-
mans. We do believe that some human IQ tests are much bet-
ter than any other test that has been developed so far in Al
so we agree with Detterman insofar as “there is a better al-
ternative: test computers on human intelligence tests” (Detter-
man, 2011). But the above-mentioned works (Dowe & Hajek,
1997, 1998; Hernandez-Orallo, 2000a; Sanghi & Dowe, 2003)
seem to bring some evidence that this alternative cannot be the
definitive answer. Regular IQ tests cannot be the guide for Al
This was, in fact, one of the first tracks the then young disci-
pline of Al explored in the 1960s. IQ tests were used as inspi-
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ration for constructing intelligent systems (Evans, 1964), but
this line of research stalled and has had no significant progress
since that date, despite several subsequent attempts by other au-
thors. More recently, for example, the idea of using IQ tests as a
benchmark to drive the discipline of Al has been made explicit
in (Bringsjord & Schimanski, 2003). However, their impact has
been very limited since only Al systems which are specialised
to the particular test interface and choice of symbolic represen-
tation can be evaluated.

We think there is one main reason for this apparent dead end.
The measurement of intelligence for machines must be more
holistic, since it cannot take anything for granted. We can as-
sume even fewer things than in animal intelligence evaluation.
The solution must be found then in the universality of the con-
cept of intelligence. This means that if a single test is not able
to measure the intelligence (or other cognitive abilities) of non-
human animals and humans precisely, it is very difficult to ex-
pect that this test will measure machine intelligence accurately.
This leads to the notion of universal test, a test which must be
valid for humans, non-human animals, machines, hybrids and
collectives, of any degree of intelligence. This does not mean,
of course, that these universal tests should replace IQ tests for
evaluating humans. There are many possible instruments, or ve-
hicles (Jensen, 1998, chap. 10), to measure the same construct
or ability, and we should use the best instrument according to
the construct and the kind of subject. For intelligence and hu-
mans, 1Q tests seem to be a very good instrument, as we could
also use brain monitoring and neuro-imaging techniques, or any
other kind of physical or genetic traits. For some animals, very
specialised and sophisticated instruments have been developed,
as well. For some machines we could also use customised tests
for a particular ‘series’ or ‘architecture’, or we could even in-
spect their programs. We clearly do not need to use the same
test for all of them, with the proviso that we are given informa-
tion about the kind of subject we are evaluating. However, for
any unknown machine for which we do not have any informa-
tion whatsoever, tests must be universal.

The crucial point for understanding why universality is so
significant is the realisation that machines are a much more
heterogeneous set of subjects. The only constraints for a ma-
chine are computational resources and the aptitudes of its pro-
grammers. Any imaginable (computable) behaviour is possi-
ble. It could behave as a human, it could behave as a rat or it
could behave as something we have never seen before. In addi-
tion, machines cannot be grouped into populations, or species.
The mere notion of an ‘average’ machine is ridiculous, because
there is no normative population of machines. Only if we are
given some information about the examinee, can we use more
efficient, customised tests, as we do with human IQ tests. But
if we are not given any information at all about the subject, our
measuring ruler must be as universal as possible, at the risk of
losing precision or efficiency. This follows a natural principle
of measurement: measuring is less efficient and more difficult
the less we know about the subject.

The lack of normative populations also makes some well-
established psychometric techniques infeasible. We cannot de-
rive the difficulty of an item by how well machines perform on it
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unless we find a reasonable choice for the machine population.
In fact, we can program machines which fail at the easy items
while acing at the difficult ones. This means that test items
have to be very carefully designed in such a way that we need
to know what they represent and what their intrinsic difficulty
is.

This limits the applicability of some powerful tools such as
Spearman’s theorem on the indifference of the indicator (Spear-
man, 1927), which states that any kind of test, any measurement
instrument, is perfectly useful for measuring intelligence pro-
vided that it correlates with the ‘g factor’. With machines, it is
not clear how the ‘g loading’ (correlation between a test and g)
can be derived, since correlations require a population. In fact,
it is not clear at all whether a g factor exists for machines.

Of course we can calculate the g loading and the item dif-
ficulty for humans, i.e. normed on a human subject sample,
and extrapolate to other kinds of individuals. Those tests with
lower g loading can be considered more specific. Therefore,
specialised, non-intelligent machines are expected to eventually
be able to solve these tasks. Apart from being anthropocentric,
this rationale does not seem to work. It is true that many tasks
machines perform well at nowadays have relatively low g load-
ing in humans (e.g. arithmetic). However, there are some other
cognitive tests at which machines can perform well but which
have very high g loading in humans, such as inductive inference
tasks (e.g. series completion, such as the C-tests). Conversely,
CAPTCHAs typically use tasks with presumably very low g
loading to tell humans and computers apart, such as reading
distorted text. In fact, these tasks can be performed by humans
without thinking. All this does not necessarily entail that the ‘g
construct’ may not work for machines, but just the well-known
fact that factor correlations and loadings cannot be extrapolated
between dissimilar distributions —here, humans and machines.

One could (even) go so far as to imagine an elaborate model
of hierarchical clusters of models with single (and even mul-
tiple) latent factors, as per the statistical theory in (e.g.) (Wal-
lace & Freeman, 1992; Wallace, 1995; Edwards & Dowe, 1998)
(Wallace, 2005, sec. 6.9) (Dowe, 2008, sec. 0.2.4, p537, col.
2) and possibly also as per (Jensen, 1998, chap. 10, p337, fig.
10.3), but even this would still leave our models and their re-
sultant latent factors dependent upon the underlying population
being modelled —and it is not only unclear how best to sam-
ple from the machine population, but computing history shows
that this population (whatever it is) seems to be changing quite
rapidly. This may (all) suggest that the g loading of a cognitive
test should be determined theoretically and not empirically.

A convenient theoretical, a priori approach to constructing
intelligence tests can be based on a formal computational def-
inition of the cognitive abilities involved, and likewise a math-
ematical, intrinsic, derivation of task complexity. For example,
the theory of inductive inference based on (algorithmic) infor-
mation theory (Wallace & Boulton, 1968; Wallace & Dowe,
1999) models inductive inference ability, closely related to
Solomonoff’s earlier notions of algorithmic probabilistic pre-
diction (Solomonoft, 1964). This allows for the a priori genera-
tion of exercises of different complexity, where this complexity
is derived in a mathematical way (Hernandez-Orallo, 2000a,b)
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and not obtained in an empirical way over a population. De-
termining the complexity of tasks in this way would then be
much more informative for Al (and also for the research on hu-
man and non-human animal intelligence). Ultimately, ATl would
know exactly what it is aiming at.

4. The future calls for working together

As happens in any scientific discipline, any extension over
the objects and phenomena of interest leads to further research
opportunities and discoveries, but also raises the risk of some
parts of the established paradigm being refuted or revised for
the more general situation. Universal tests are not only strictly
necessary for machine evaluation, but they can also be a very
important research tool for detecting inconsistencies and for the
generalisation of scales and procedures.

The common use of CAPTCHASs in a wide range of situ-
ations is an indicator that things will become more complex
in the future. An astonishing plethora of bots, avatars, ani-
mats, swarms and other kinds of virtual agents will require a
thoughtfully-designed battery of tests. Many of these tests will
have to be universal, especially when no information about the
subject is given beforehand (not even information of whether
it is a human or a machine). Universal tests will become even
more imperative when machines get close to and ultimately be-
yond human intelligence (Solomonoff, 1985; Hernandez-Orallo
& Dowe, 2010).

But how can these tests be constructed? We think they
must be based upon many of the techniques which have
been developed for intelligence measurement in psychomet-
rics, comparative psychology, animal cognition, informa-
tion theory and Al The study of this possibility is the
very goal of the project “Anytime Universal Intelligence”
(http://users.dsic.upv.es/proy/anynt/). One of the outcomes of
this project has been a mathematical setting for constructing
universal tests —built upon solid, non-anthropomorphic foun-
dations (Herndndez-Orallo & Dowe, 2010). Naturally, there
are also many difficulties along the way —as some prelimi-
nary tests on machines and humans are showing (Insa-Cabrera
et al., 2011a; Herndndez-Orallo et al., 2011; Insa-Cabrera et al.,
2011b). For example, some simple “a priori algorithms” —
the terminology used by Detterman for the second level of
the challenge— can score better than humans at a diverse,
randomly-generated and previously unknown set of tasks.

One natural consequence of aiming at universality is that
tests need to be adaptive to an unknown subject of unexpected
characteristics, and the complexity of items must be determined
in advance in order to use them on demand, as tests do in the
area of computerised adaptive testing. Many other notions from
psychometrics and (comparative) psychology also apply, such
as the notions of a task being discriminative, the use of rewards
and, of course, the use of (latent) factor analysis and other sta-
tistical tools for experimental results. In the end, most of the
knowledge and techniques in the science of human intelligence
are directly applicable. Yet, as we point out in this paper, only a
few concepts and techniques (would) need to be re-considered
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or revised. Ultimately, humans are a perfect source for refuta-
tion of tests for machines and vice versa.

What seems clear to us is that a new generation of intelli-
gence tests for machines will require an enormous effort. This
will most likely involve several decades and a myriad of re-
searchers from many disciplines. But the quest is so fascinating
that it is already growing in popularity (Kleiner, 2011; Biever,
2011). We share Detterman’s “hope” that “it may someday hap-
pen [...] that the fields of artificial and human intelligence will
grow closer together, each learning from the other” (Detterman,
2011). We have been stirring up this hope for over fifteen years.
Everyone is welcome on board.
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