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FINITE FAMILIES OF PLANE VALUATIONS: VALUE SEMIGROUP, GRADED

ALGEBRA AND POINCARÉ SERIES

CARLOS GALINDO AND FRANCISCO MONSERRAT

1. Introduction

Valuation theory was one of the main tools used by Zariski when he attempted to
give a proof of resolution for algebraic schemes. In characteristic zero, resolution was
proved by Hironaka without using that tool; however there is no general proof for positive
characteristic and valuations seem to be suitable algebraic objects for this purpose. Val-
uations associated with irreducible curve singularities are one of the best known classes
of valuations, especially the case corresponding to plane branches where valuations and
desingularization process are very related. Germs of plane curves can contain several
branches and, for this reason, it is useful to study their corresponding valuations, not only
in an independent manner but as a whole [6, 7, 8].

Another very interesting class of valuations is that of valuations of the fraction field
of some 2-dimensional local regular Noetherian ring R centered at R, that we call plane
valuations. These valuations were studied by Zariski and their study was revitalized by
the paper [46]. Very little is known about valuations in higher dimension.

The aim of this paper is to provide a concise survey of some aspects of the theory of
plane valuations, adding some comments upon more general valuations when it is possible.
For those valuations, we describe value semigroup, graded algebra and Poincaré series em-
phasizing on the recent study of the same algebraic objects for finite families of valuations
and their relation with the corresponding ones for reduced germs of plane curves.

Section 2 of the paper recalls the general notion of valuation and compiles the main
known facts with respect to the value group and semigroup of a valuation. We show a new
condition, Proposition 2.1, given in [14], that has to do with the number of generators of
the value semigroups of Noetherian local domains (see [17] for a more general result). We
also give in Proposition 2.3 a numerical condition, called combinatorially finiteness, that
those value semigroups satisfy. The graded algebra of a valuation ν, grνR, is introduced
in Section 3. There, we explain how to construct a minimal free resolution of grνR as a
module over a polynomial ring and, in Proposition 3.2, how to compute the dimension of
its ith syzygy module. This graded algebra is the main ingredient in the Teissier’s idea to
prove resolution of singularities. When ν is plane grνR is Noetherian, notwithstanding this
is not true for higher dimension (see Proposition 3.3). Section 4 is devoted to introduce
plane valuations, their main invariants and to classify them by means of an algebraic
device that allows us to get parametric equations of the valuations. The introduction and
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2 CARLOS GALINDO AND FRANCISCO MONSERRAT

computation of the Poincaré series of plane valuations (with particular attention to the
divisorial case) is given in Section 5.

Finite families of valuations whose value group is that of integer numbers, Z, are consid-
ered in Section 6. For them we define the concepts of graded algebra, generating sequence
and Poincaré series, explaining that this series is a rational function whenever one consid-
ers certain families of valuations which include the divisorial ones in the plane and those
associated with a rational surface singularity. Following [19], and also in this section,
semigroup of values, generating sequences and Poincaré series for finite families of plane
divisorial valuations are explicitly computed. We also add some information given in [10]
corresponding to families of any type of plane valuations. Finally, in Section 7 we provide
an specific calculation of the Poincaré series of multiplier ideals of a plane divisorial valua-
tion ν, Theorem 7.1. That series gathers information on the multiplier ideals and jumping
numbers corresponding to the singularity that ν encodes and the proof of Theorem 7.1
uses techniques and results involving the family of plane divisorial valuations given by the
exceptional divisors appearing in the blowing-up sequence determined by ν.

2. Valuations

2.1. Definition and a bit of history. Between 1940 and 1960, Zariski [51, 52] and
Abhyankar [2, 3] developed the theory of valuations in the context of the theory of singu-
larities with the aim of proving resolution for algebraic schemes. The concept of valuation
is analogue to that of place. Places were introduced by Dedekind and Weber in the nine-
teenth century [21] with the purpose of constructing the Riemann surface associated with
an affine curve from the field of functions of the curve. Also in that century, to study
diophantine equations by using the Hensel’s Lemma and solutions of the equations in the
completions Qp, Hensel [31] considered p-adic valuations on the field of rational numbers,
Q, defined as νp(q) := α, whenever Q \ {0} 3 q = pα(r/s) and gcd(r, p) = gcd(s, p) = 1.
The properties of νp give rise to the definition of valuation and its definition has to do with
that of valuations centered at the completion of the local ring of a branch of a plane curve.
In 1964, Hironaka [34] proved resolution of singularities in characteristic zero (some more
recent references are [49, 22]) and valuations were forgotten for a large period. However,
activity in valuation theory has been increased in the last two decades, probably due to
the lack of success in proving resolution in positive characteristic. Next we define the
concept of valuation and some related objects.

Definition 2.1. A valuation of a commutative field K is a surjective map ν : K∗(:=
K \ {0})→ G, where G is a totally ordered commutative group, such that for f, g ∈ K∗

• ν(fg) = ν(f) + ν(g).
• ν(f + g) ≥ min{ν(f), ν(g)} and the equality holds whenever ν(f) 6= ν(g).

G is usually named the value group of ν and the set Rν := {f ∈ K∗|ν(f) ≥ 0} ∪ {0} is
a local ring, called the valuation ring of ν, whose maximal ideal is mν := {f ∈ K∗|ν(f) >
0} ∪ {0}. The rank of ν (rk(ν)) is the Krull dimension of the ring Rν and the dimension
of the Q-vector space G⊗Z Q is the rational rank of ν (r.rk(ν)).

2.2. Value group and value semigroup. Along this paper we shall consider a Noe-
therian local domain (R,m) whose field of fractions is K and we shall assume that each
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valuation ν dominates R, that is R ⊂ Rν and R ∩ mν = m. In this case, in addition
to the two previous numerical invariants associated with ν, we can consider the so-called
transcendence degree of ν (tr.deg(ν)), which is the transcendence degree of the field kν
over k, where kν := Rν/mν and k := R/m. Unless otherwise stated, we shall assume that
k is algebraically closed. The mentioned invariants are useful to classify valuations when
dimR = 2. The value groups G of valuations ν as above have been studied and classified
[41, 42, 52, 38]. G can be embedded in Rn with lexicographical ordering, n being the
dimension of R and R the real numbers.

An interesting object which is not well-understood in general is the value semigroup of
a valuation ν associated with R. This one is defined as

S := {ν(f)|f ∈ R \ {0}} .
Interesting data concerning ideal theory, singularities and topology are encoded by this
semigroup. The two main facts which are known about it are:

1) The Abhyankar inequalities:

rk(ν) + tr.deg(ν) ≤ r.rk(ν) + tr.deg(ν) ≤ dim(R).

Moreover, if rk(ν)+tr.deg(ν) = dimR, then G is isomorphic to Zrk(ν) with lexicographical

ordering and whenever r.rk(ν) + tr.deg(ν) = dimR, then G is isomorphic to Zr.rk(ν).
2) S is a well-ordered subset of the positive part of the value group G of ordinal type

at most ωrk(ν), ω being the ordinal type of the set N of non-negative integers.
When R is regular and dimR = 1, the semigroups S are isomorphic to the natural

numbers. The case dimR = 2 is also known; later we shall give more information about
it. For higher dimension, very little is known. Recently, Cutkosky [14] has proved that
conditions 1) and 2) do not characterize value semigroups on equicharacteristic Noetherian
local domains. To do it he proves the forthcoming Proposition 2.1, which gives a new
necessary condition for a semigroup to be a value semigroup. This allows him to provide
an example of a well ordered sub-semigroup of the positive rational numbers Q+ of ordinal
type ω which is not a value semigroup of some equicharacteristic local domain.

Proposition 2.1. With the above notations, let assume that R is an equicharacteristic
local domain and ν a valuation of K that dominates R. Set s0 := min{ν(f)|f ∈ m \ {0}},
n := dimkm/m

2 and SΨ := ν(m \ {0})∩Ψ, Ψ being the convex subgroup of real rank 1 of
G. Then,

card (SΨ ∩ [0, (d+ 1)s0)) <

(
n+ d
n

)
,

for all nonnegative integer d, where we have set [a, b) := {c ∈ Ψ|a ≤ c < b}, a, b ∈ Ψ.

Ideals in R which are contraction of ideals in the valuation ring Rν are named valuation
ideals or ν-ideals. The following result collects basic results on value semigroups and ν-
ideals. Recall that an order ≤ in a group G is called cancellative if α+ β = α+ γ implies
β = γ and it is admissible if α+ γ ≤ β + γ whenever γ ≥ 0 and α ≤ β.

Proposition 2.2. The value semigroup S of a valuation ν of a field K, centered at R, is
a cancellative, commutative, free of torsion, well-ordered semigroup with zero, where the
associated order is admissible. Moreover, F = {Pα}α∈S, where

Pα := {f ∈ R \ {0} | ν(f) ≥ α} ∪ {0}
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is the family of ν-ideals (in R) of the valuation ν.

Proof. We shall prove that S is free of torsion, F is the family of ν-ideals and, finally, that
S is well-ordered. The remaining properties are clear. Assume that ν(u) 6= 0, u ∈ K \{0},
then either ν(u) > 0 or ν(u−1) > 0, so either u ∈ mν or u−1 ∈ mν and therefore either
up ∈ mν or u−p ∈ mν , p being a positive integer. Thus ν(up) 6= 0 and the group spanned
by S, G(S) (which is G) is free of torsion. This proves that S is also. R is a Noetherian
ring and then rk(ν) < ∞, so each ν-ideal I is finitely generated. Consider a finite set of
generators for I and set α the minimum of the values (by ν) of these generators, then it is
straightforward that I = Pα and so I ∈ F . Finally, S is well-ordered because the family
of ν-ideals F is also [52, App. 3]. 2

Let S be the value semigroup of a valuation ν. S satisfies that (−S) ∩ S = {0}. This
means that

∑m
i=1 αi = 0, αi ∈ S, implies αi = 0 for every index i. The length function of

a semigroup S, l : S → N ∪ {∞}, is defined as l(0) = 0 and, for α 6= 0,

l(α) := sup{m ∈ N|α =
m∑
i=1

αi, where αi ∈ S \ {0} }.

In our case l(α) < ∞ and therefore S is generated by its irreducible elements, that is
those elements in S whose length is one. This is a consequence of the following result
which can be deduced from the mentioned fact that G can be embedded in Rn with the
lexicographical ordering, n being the dimension of R.

Proposition 2.3. [11] Let ν be a valuation and S its value semigroup. Then, for each
α ∈ S, it happens that t(α) <∞, where

t(α) := card {{αi}mi=1 finite subset of S \ {0}|α =
∑m

i=1 αi } .

Generally speaking, the semigroups S such that t(α) < ∞ for all α ∈ S are called
combinatorially finite.

3. Graded algebra of a valuation

3.1. Graded algebra and generators. Let ν be a valuation of the field K centered at
the ring R. For each element α in the value semigroup S, consider the ν-ideals Pα and
P+
α = {f ∈ R|ν(f) > α} ∪ {0}. The graded algebra of R relative to ν is defined to be as

the graded k-algebra

grνR :=
⊕
α∈S

Pα

P+
α
,

where the product of homogeneous elements is defined as follows: for f ∈ Pα and g ∈ Pβ,

f modulo P+
α times g modulo P+

β is the class fg modulo P+
α+β.

kν is a field extension of the residue field of R, k. There is a canonical field embedding
of k into kν and when this embedding is an isomorphism, one gets dimk Pα/P

+
α = 1

for each α ∈ S. In this case, if one fixes an nonzero element [fβ] ∈ Pβ/P
+
β for each

β ∈ Λ, Λ being the set of irreducible elements in S, and consider the S-graded k-algebra,
kΛ[S] := K[{Xβ}β∈Λ], where the Xβ are indeterminates of degree β, then there exists an
epimorphism of graded k-algebras ψ : kΛ[S] → grνR, given by Ψ(Xβ) = [fβ], which is
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homogeneous of degree zero and allows us to regard grνR as kΛ[S]-module, kerψ being an
ideal of kΛ[S] spanned by binomials.

Generally speaking k is not isomorphic to kν . In any case, the following property
happens.

Proposition 3.1. For every α ∈ S, Pα/P
+
α is a finite dimensional k-vector space.

Proof. mPα ⊂ P+
α because s0 (:= min{ν(f)|f ∈ m}) > 0 and therefore Pα/P

+
α is a

k-homomorphic image of Pα/mPα which is a k-vector space of finite dimension because R
is a Noetherian ring. 2

This result allows us to get by a recursive procedure a minimal system of generators of
grνR, M = {[fγ ]}γ∈Γ, and attach to it an S-graded polynomial algebra A[ν] := k[{Xγ}γ∈Γ]
that substitutes the former kΛ[S] for the general case. The elements γ ∈ Γ are of the form
γ = (β, iβ) with β ∈ S and 1 ≤ iβ ≤ dim(Pβ/P

+
β ) and A[ν] is S-graded by setting

deg(Xγ) = deg(γ) = β ∈ S, [11].

3.2. Minimal free resolution of grνR. Denote by A[ν]α the homogeneous component
of degree α of the ring A[ν] and consider the map

φ0 : A[ν] =
⊕
α∈S

A[ν]α −→ grνR

which maps Xγ to [fγ ]; it is a homogeneous k-algebra epimorphism. Also consider the
graded ideals m[ν] :=

⊕
06=α∈S A[ν]α and I0 := ker(φ0), and a minimal homogeneous

generating set of I0, B = ∪α∈SBα, Bα being the set of elements in B of degree α. By
Nakayama’s graded Lemma, the set of classes [Bα] of Bα in I0/m[ν]I0 is a basis of the
homogeneous component of degree α of I0/m[ν]I0 and thus [Bα] and therefore Bα is
finite since A[ν]α is a finite-dimensional vector space because S is a combinatorially finite
semigroup. This allows us to provide a degree 0 homogeneous homomorphism φ1 : L1 :=
⊕α∈S(A[ν])l(α) → A[ν], l(α) being the cardinality of Bα and recursively a minimal free
resolution of grνR as S-graded A[ν]-module:

(A.) : · · · → Li
φi→ Li−1 → · · · → L1

φ1→ A[ν]→ grνR→ 0.

Write Ni := ker(φi), then the following result holds:

Proposition 3.2. [11]

(1) For every i ≥ 0, there exists a homogeneous of degree 0 isomorphism of graded

A[ν]-modules between the ith Tor module Tor
A[ν]
i (grνR, k) and Li

⊗
A[ν] k.

(2) For each α ∈ S, let denote the homogeneous component of degree α with the
subindex α, then

dimk

(
Tor

A[ν]
i+1 (grνR, k)

)
α

= dimk
(Ni)α

(m[ν]Ni)α
.

(3) There exists an isomorphism of S-graded modules between Tor
A[ν]
i (k, grνR) and the

ith homology Hi(G[ν]) of an augmented Koszul complex of grνR-modules.

As a consequence of the commutative property of the Tor functor and from item (2), the
number of homogeneous elements of degree α in a minimal set of homogeneous generators
of the ith syzygy module of grνR as A[ν]-module is dimk(Hi(G[ν])α.
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The graded algebra relative to a valuation seems to be a useful tool to study the local
uniformization problem. This consists of, given the local ring of an algebraic variety
(assuming that it is an integral domain), finding, for each valuation ν centered at R, a
regular local R-algebra R′ essentially of finite type over R and contained in Rν . In [47],
Teissier proposes that R′ might be obtained from an affine chart of a proper algebraic map
Z → SpecR which would be described as a proper and birational toric map with respect
to some system of generators of the maximal ideal of R. An idea to do this would be to
view R as a deformation of the graded ring grνR with respect to the filtration associated
with the valuation and to obtain the uniformization of the valuation ν as a deformation of
the valuation induced by ν on grνR; the motivating example is the case of complex plane
branches which has been studied by Goldin and Teissier as deformations of monomial
curves.

Without doubt, the most interesting valuations from a geometric point of view are the
so-called divisorial valuations because they are attached to irreducible exceptional divisors
of some birational map. Next we state the definition.

Definition 3.1. Let us assume that dimR = n. A valuation ν of K centered at R is
called to be divisorial whenever its rank is 1 and its transcendence degree is n− 1.

When n = 2, the graded algebra grνR of a divisorial valuation is Noetherian. Notwith-
standing, this does not happen in higher dimension. For instance, let R be a 3-dimensional
local regular ring and blow-up X0 = SpecR at its maximal ideal m0. Let X1 be the ob-
tained variety. Consider the cubic with equation x2z + xy2 + y3 = 0 on the obtained
exceptional divisor E1 := Proj(k[x, y, z]) and a sequence of n ≥ 10 point blowing-ups
Xn → · · · → X0 centered at m0 and at points mi in Xi, 1 ≤ i ≤ n, on the last obtained
exceptional divisor Ei and on the strict transform of the cubic. Denote by ν the divisorial
valuation given by the divisor En and set Ri := OXi,mi . It is not difficult to prove that
R1 = k[a1, b1, c1](a1,b1,c1), where a1 = x, b1 = y/x and c1 = (x/z) + (y/x)2 + (y/x)3. If A1,
B1, C1 are, respectively, the initial forms of a1, b1, c1 on grνR1 = k[A1, B1, C1], then we
can state

Proposition 3.3. [13] The family A1, A1B1, A3
1C1, A1B

2
1 , A2

1B
5
1 , A3

1B
8
1 , . . . , A

i
1B

3i−1
1 , . . .

is a minimal system of generators of grνR ⊂ grνR1. As a consequence grνR is not Noe-
therian.

An interesting number associated with a divisorial valuation ν is the volume. In this
case Z is the value group of ν and by definition, the volume of ν is

vol(ν) := lim sup
α∈N

length(R/Pα)

αn/n!
.

This definition corresponds to the analogue of the Samuel multiplicity for an m-primary
ideal p ⊆ R:

e(p) := lim sup
α∈N

length(R/pα)

αn/n!
.

It is known that the multiplicity is always an integer number and also [23] that

vol(ν) = lim
α→∞

(e(Pα)/αn).
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However the volume of a divisorial valuation is not always an integer number although it is
rational when its graded algebra is Noetherian. As a consequence valuations with irrational
volume provide non-finitely generated attached graded algebras. For an example, see [37].

4. Plane valuations

4.1. Definition and geometric sense. From this section on we shall consider plane val-
uations, notwithstanding from time to time we shall speak about other types of valuations.
We start this section with the definition.

Definition 4.1. A plane valuation is a valuation of a field K which is the fraction field
of a two-dimensional Noetherian local regular ring R and is centered at R.

Zariski in [51] classified plane valuations by attending invariants as the rank and the
rational rank. By using previous results by Zariski, Spivakovsky [46] gives the following
geometric view of plane valuations.

Theorem 4.1. There is a one to one correspondence between the set of plane valuations
(of K centered at R) and the set of simple sequences of point blowing-ups of the scheme
Spec R.

The correspondence in Theorem 4.1 works as follows: each valuation ν is associated
with the sequence

(1) π : · · · −→ XN+1
πN+1−→ XN −→ · · · −→ X1

π1−→ X0 = X = Spec R,

where πi+1 is the blowing-up of Xi at the unique closed point pi of the exceptional divisor
obtained after the blowing-up πi, Ei, which satisfies that ν is centered at the local ring
OXi,pi (:= Ri).

Theorem 4.1 allows Spivakovsky to give a classification of plane valuations which im-
proves the Zariski’s one and it is based in the form of the so-called dual graph of the
sequence π. This graph is a tree whose vertices represent the strict transforms in Xl, l
large enough, of the divisors Ei (also named Ei) and two vertices are joined by an edge
whenever these strict transforms intersect. Set Cν = {pi}i≥0 the configuration of infinitely
near points determined by ν. We say that pi is proximate to pj (denoted by pi → pj)
whenever i > j and pi belongs either to Ej+1 or to some strict transform of Ej+1 and pi is
said to be satellite if there exists j < i− 1 such that pi → pj . Valuations whose associated
sequence (1) is finite are exactly the divisorial ones. The dual graph shape of a divisorial
(plane) valuation is that of Figure 1.

The dual graph is not suitable when we desire to get parametric equations for comput-
ing valuations. Furthermore, the classical theory for curves uses, for this purpose, Puiseux
exponents that only work for zero characteristic. Next, we recall the Spivakovsky’s clas-
sification in terms of the so-called Hamburger-Noether expansions of valuations. These
expansions provide parametric equations for plane valuations [26] and have been used in
[18] to study saturation with respect to this type of valuations.

4.2. Hamburger-Noether expansions and classification of plane valuations. Let
ν be a plane valuation and take {u, v} a regular system of parameters for the ring R.
Assume that ν(u) ≤ ν(v). This means that there exists an element a01 ∈ k such that the
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Figure 1. The dual graph of a divisorial valuation

set {u1 = u, v1 = (v/u)− a01} constitutes a regular system of parameters for the ring R1.
If, now, ν(u) ≤ ν(v1) holds, then we repeat the above operation and we keep doing the
same thing until we get v = a01u+ a02u

2 + · · ·+ a0hu
h + uhvh, where either ν(u) > ν(vh)

or ν(vh) = 0, or v = a01u+ a02u
2 + · · ·+ a0hu

h + · · · , with infinitely many steps. In the
last two cases, we have got the Hamburger-Noether expansion for ν, obtaining Rν = Rh
when ν(vh) = 0. Otherwise, set w1 := vh and reproduce the above procedure for the
regular system of parameters {w1, u} of Rh. The procedure can continue indefinitely or
we can obtain a last equality. In any case, we attach to ν a set of expressions called
the Hamburger-Noether expansion of the valuation ν in the regular system of parameters
{u, v} of the ring R which provides a regular system of parameters for each local ring Ri
given by the sequence π described in (1) and it has the form given in Figure 2.

v = a01u+ a02u
2 + · · ·+ a0h0u

h0 + uh0w1

u = wh1
1 w2

...
...

ws1−2 = w
hs1−1

s1−1 ws1
ws1−1 = as1k1w

k1
s1 + · · ·+ as1hs1w

hs1
s1 + w

hs1
s1 ws1+1

...
...

wsg−1 = asgkgw
kg
sg + · · ·+ asghsgw

hsg
sg + w

hsg
sg wsg+1

...
...

wi−1 = whii wi+1
...

...
(wz−1 = w∞z ).

Figure 2. Hamburger-Noether expansion of a plane valuation

The nonnegative integers {sj}gj=0 correspond to rows with some nonzero asj l (called free

ones and that are those associated with the non-satellite blowing-up points), g ∈ N∪{∞}
and kj = min{n ∈ N | asj ,n 6= 0}. Thus, plane valuations can be classified in the following
five types which we name with a letter or as in [24].
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type subtype rk r.rk tr.deg

A — 1 1 1
B I 2 2 0

II 1 1 0
C — 2 2 0
D — 1 2 0
E — 1 1 0

Table 1

– Type A or divisorial valuations. Their Hamburger-Noether expansion is finite and
their last row has the following shape

(2) wsg−1 = asgkgw
kg
sg + · · ·+ asghsgw

hsg
sg + w

hsg
sg wsg+1,

where g <∞, hsg <∞, wsg+1 ∈ Rν and ν(wsg+1) = 0.
– Type B or curve valuations. Their Hamburger-Noether expansion has a last equality

associated with an infinite sum like this wsg−1 =
∑∞

i=kg
asgiw

i
sg . Here g < ∞ and there

exists a positive integer i0 such that pi is free for all i > i0.
– Type C or exceptional curve valuations. Their Hamburger-Noether expansion has a

last free row like (2) and, after, finitely many non-free rows with the shape

wsg = w
hsg+1

sg+1 wsg+2

...
...

wz−1 = w∞z .

In this case, g < ∞, sg < ∞ and there exists a positive integer i0 such that pi → pi0 for
all i > i0.

– Type D or irrational valuations. A plane valuation will be called of type D, whenever
its Hamburger-Noether expansion has a last free row like (2) followed by infinitely many

rows with the shape wi−1 = whii wi+1 (i > sg). Now g < ∞ and there exists a positive
integer i0 such that pi is a satellite point for all i ≥ i0 but ν is not a type C valuation.

– Type E or infinitely singular valuations. When the Hamburger-Noether expansion of
a plane valuation repeats indefinitely the basic structure, then the valuation is called to
be of type E. This means that the sequence Cν alternates indefinitely blocks of 1 free and
(1 ≤) l (<∞) non-free rows. Here g = z =∞.

This classification does not depend on the regular system of parameters we choose on
R. Table 1 relates our classification with the invariants of ν above defined. Notice that
classical invariants provide a refinement of type B valuations. We also add that in [24] the
real-valued class of plane valuations is interpreted in a rooted metric tree in such a way
that the valuations are partially ordered and there is a unique path from any valuation to
any other, being this path isometric to a real interval.

4.3. Other invariants of plane valuations. Let ν be a plane valuation and {mi}i≥0

the family of maximal ideals of the rings Ri of the sequence (1). We attach to ν the
following data:
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– The sequence {min{ν(f)|f ∈ mi \ {0}}i≥0, that we call sequence of values of ν.
– The sequence {β′j}0≤j<g+2 that we name Puiseux exponents of ν and, with the con-

vention 1/∞ = 0, it is defined as β′0 := 1 and

β′j+1 := hsj − kj + 1 +
1

hsj+1 + 1

. . .

.

– Set β′j = pj/nj with gcd(pj , nj) = 1 and ri = ν(wi) and ej = ν(wsj ) for 0 ≤ j < g+ 1
and i ≥ 0. Define

βj+1 := βj + (hsj − kj)ej + rsj+1

and

β̄j+1 := nj β̄j + (hsj − kj)ej + rsj+1.

Then the sequence {βj}g+1
j=0 is called to be the characteristic sequence and the sequence

{β̄j}g+1
j=0 the sequence of maximal contact values both of ν.

Last three sequences are infinite in case E, and in case B we only consider sub-indices
from j = 0 to j = g although in case B-II we add to {β̄j}gj=0 the minimum element in

the value semigroup S with non-zero first coordinate, denoted by β̄g+1. The main result
concerning maximal contact values is that they are a set of generators of S. Moreover, if
we delete the last one β̄g+1 in type A valuations, we get a minimal set of generators for
S. We can determine the type of a valuation if we know either its sequence of values or
its characteristic exponents or its maximal contact values, but this does not happen with
the Puiseux exponents or with the semigroup. When one knows the type of the valuation,
the following result holds.

Proposition 4.1. [18] Assume that ν is a plane valuation and that we know which is its
type. Then any of the following invariants can be computed from whichever of the others:
sequence of values, Puiseux exponents, maximal contact values, characteristic exponents,
and semigroup S of the valuation (or pair (S, β̄g+1)).

5. Poincaré series of the graded algebra

5.1. General case. For a while, we consider a non-necessarily plane valuation ν. The
Poincaré series (of the graded algebra) of ν is the formal power series in the indeterminate
t:

HgrνR(t) :=
∑
α∈S

dimk
Pα

P+
α
tα,

which, according Proposition 3.1, belongs to the power series ring on S.
Let us assume that the value group of ν is isomorphic to the integer numbers. This

is equivalent to say that the ring Rν is Noetherian [52], however the algebra grνR may
be non-Noetherian and its Poincaré series a non-rational function, even grνR might be
non-Noetherian but HgrνR(t) a rational function. When the ring R is 2-dimensional and
normal and ν is a divisorial valuation, this series is the generating function of a sequence
of integers which is residually equal to the sum of a polynomial with a periodic function
(see [16] and [13]). An explicit computation for the plane divisorial case can be found in
[25]; as we shall see, the Poincaré series is very close to that attached to the semigroup
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of the valuation or to the Poincaré series of the analytically irreducible germ of curve
provided by a general element of the valuation [30]. One can found many papers studying
Poincaré series for singularities (which need not to correspond to the irreducible case),
some of them are [8, 9, 15, 28, 40, 45].

5.2. The plane case. An important concept for studying plane valuations is that of
generating sequence. This concept was introduced in [46] and the existence of those
sequences is discussed in [29]. Notice that the hypothesis of 2-dimensionality of R is not
necessary to define this concept.

Definition 5.1. A sequence {rj}j∈J of elements in the maximal ideal m of R is called to
be a generating sequence (relative to R) of a valuation ν if, for any element α ∈ S, Pα is
spanned by the set

(3)

 ∏
j∈J0⊆J ,J0 finite

r
aj
j | aj ∈ N, aj > 0 and

∑
j∈J0

ajν(rj) ≥ α

 .

Assume that the Hamburger-Noether expansion of ν is that given in Figure 2. Set
q0 = u, q1 = v and, for 1 < j < g + 2, let qj be the defining equation of some analytically
irreducible germ of curve on Spec R whose Hamburger-Noether expansion in the basis
{ū = u+ (qj), v̄ = v + (qj)} of R̂/(qj) [5], R̂ being the m-adic completion of R, is

v̄ = a01ū+ a02ū
2 + · · ·+ a0h0 ū

h0 + ūh0w̄1

ū = w̄h1
1 w̄2

...
...

w̄sj−1−1 = asj−1kj−1
w̄
kj−1
sj−1 + · · ·+ asj−1hsj−1

w̄
hsj−1
sj−1 + · · · .

In [46] it is proved that any generating sequence of a divisorial valuation contains a
subsequence {qj}gj=0. Moreover, this set is a minimal generating sequence (no subset of it

is a generating sequence) whenever the dual graph of ν (Figure 1) contains no subgraph

Γg+1 (or equivalently hsg − kg = 0); otherwise, {qj}g+1
j=0 is a minimal generating sequence.

Now, let ν be a valuation of type C or D. In both cases a minimal generating sequence
of ν is of the form {qj}g+1

j=0 . In the first type of valuations ν(qj) (0 ≤ j < g + 1) are

data lying on the line that joins the origin to ν(q0), but ν(qg+1) does not satisfy this
property. With respect to the second type, ν(qj) ∈ Q whenever 0 ≤ j < g + 1, but
ν(qg+1) ∈ R \ Q. Whenever ν is a type E valuation, a minimal generating sequence of
ν is an infinite sequence of the form {qj}0≤j . However not all valuations have minimal
generating sequences. Valuations of type B-II which admit them are called of type B-II-
a and the remaining ones will be of type B-II-b. Neither valuations of type B-II-b nor
those of type B-I admit minimal generating sequences. To understand this fact, we have to
consider an element qg+1 which, in general, will be in R̂. qg+1 will be the defining equation
of ν. If qg+1, up to multiplication by an unit, belongs to R, then we are speaking about a

valuation of type B-II-a and {qj}g+1
j=0 is a minimal generating sequence of ν. When there

exists an element in R which factorizes in R̂ as a product which contains qg+1 as a factor,
ν is of type B-II-a and otherwise it is of type B-I.

One important property for the generating sequences is given in the next
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Theorem 5.1. [25, 26] Let ν be a type A, B-II-a, C or D plane valuation. Then a set
{rj}j∈J of elements in the maximal ideal m of R is a generating sequence of ν if, and
only if, the k-algebra grνR is spanned by the classes defined by the elements rj in grνR.
In addition, when ν is of type E, it is also true that the classes defined by the elements rj
in grνR span that algebra whenever {rj}j∈J is a generating sequence.

5.2.1. The divisorial case. Assume that ν is a divisorial plane valuation and pick a generat-
ing sequence of r+1 elements. Recalling Section 3, consider the ring A[ν] = k[X0, . . . , Xr]

and the exact sequence of graded algebras 0→ I0 → A[ν]
φ0→ grνR→ 0 which gives rise to

the following equality of Poincaré series of graded algebras HgrνR(t) = HA[ν](t)−HI0(t).
With the help of generating sequences and making use of the Hamburger-Noether expan-
sion properties, one can get the following result proved in [25].

Theorem 5.2. Let ν be a plane divisorial valuation, {β̄j}g+1
j=0 its maximal contact values,

ej = gcd(β̄0, β̄1, . . . , β̄j) and nj = ej−1/ej. Then, HgrνR(t) = HS(t)H ′(t), where

HS(t) :=
∑
α∈S

tα =
1

1− tβ̄0

g∏
j=1

1− tnj β̄j

1− tβ̄j

is the Poincaré series of the value semigroup of the valuation and H ′(t) = 1

1−tβ̄g+1
if

hsg − kg 6= 0 and H ′(t) = 1

1−tngβ̄g
otherwise.

As a consequence the Poincaré series and the dual graph of a plane divisorial valuation
are equivalent data.

The case when k is infinite but it needs not to be algebraically closed has been recently
treated in [36] where it is also introduced a motivic Poincaré series.

5.2.2. The remaining plane cases. Assume now that ν is a non-divisorial plane valuation.
Then, dimPα/P

+
α = 1 for any α ∈ S and then grνR is a k-algebra isomorphic to the

algebra of the semigroup S. Thus the Poincaré series for S and grνR coincide. With
notations as in Section 4, from [18, 1.10.5] it is not difficult to prove that

HgrνR(t) =
1

1− tβ̄0

g∏
j=1

1− tnj β̄j

1− tβ̄j
1

1− tβ̄g+1
,

except in cases B-I and E. In these cases

HgrνR(t) =
1

1− tβ̄0

g∏
j=1

1− tnj β̄j

1− tβ̄j
,

and g =∞ whenever ν is of type E.

6. Graded algebra and Poincaré series of finite families valuations

6.1. Families of valuations whose value group is Z. Throughout this sub-section,
we consider a family V = {νi}mi=1 of valuations of the quotient field K of a Noetherian
local domain (R,m) centered at R such that Z is the value group of each νi, i ≤ i ≤ m.
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It is known that these valuations are of rank 1. For α, β ∈ Nm, we say α ≥ β whenever
α− β ∈ Nm. Write ν(f) = (ν1(f), ν2(f), . . . , νm(f)) for f ∈ K and define the ideal in R,

P Vα := {f ∈ R|ν(f) ≥ α} ∪ {0}.

Now we introduce the concepts of graded algebra and Poincaré series for our family V
of valuations. Set ei ∈ Nm, the m-tuple such that all its coordinates are zero but the ith

one which is 1, furthermore e≤i :=
∑i

j=0 ej , e≤0 := 0 ∈ Nm and e := e≤m.

Definition 6.1. We define the graded algebra associated with the family V as the graded
k-algebra

grVR =:=
⊕
α∈Nm

P Vα

P Vα+e

.

Since
PVα
PVα+e

· P
V
α

PVβ+e

⊆
PVα+β

PVα+β+e

when α, β ∈ Nm, grVR is a well-defined Nm-graded algebra.

On the other hand, Nakayama’s Lemma proves that, for each α ∈ Nm,
PVα
PVα+e

is a finite

dimensional k-vector space. Denote t = (t1, t2, . . . , tm) and tα = tα1
1 tα2

2 · · · tαmm .

Definition 6.2. The multi-graded (or multi-index) Poincaré series of the graded algebra
grVR is defined to be

HgrV R(t1, t2, . . . , tm) = HgrV R(t) :=
∑
α∈Nm

dimk(Pα/Pα+e)t
α ∈ Z[[t1, . . . , tm]],

where dimk means dimension as k-vector space.

Definition 5.1 can be extended by stating that a family Λ = {rj}j∈J of elements in m is

a generating sequence (or a generating set) of V whenever P Vα is spanned by the set given

in (3) but replacing ν with ν and α with α. This allows us to give the following definition
for families of valuations V = {νi}mi=1 as above.

Definition 6.3. A finite family of valuations V is said to be monomial with respect to
some system of generators Λ = {rj}j∈J of the maximal ideal m of R if Λ is a generating
set of V .

In these conditions, we have the following extended version of Theorem 5.1:

Proposition 6.1. Let V = {νi}mi=1 be a family of valuations of K centered at R whose
value group is Z. Assume that there exists a finite generating sequence for some valuation
of V . Then, a system of generators Λ = {rj}j∈J of the maximal ideal m is a generating
set of the family V if, and only if, the k-algebra grVR is generated by the set {[rj ]}j∈J ,
where [rj ] denotes the coset that rj defines in grVR.

Proof. [12] Along this proof, we set P instead P V , γ will denote elements in Ns, s ≥ 0,
whose jth component is γj , r

γ will stand for
∏s
j=1 r

γj
j and [r]γ will be

∏s
j=1[rj ]

γj . Assume
that Λ is a generating set for V . Let f +Pα+e be a nonzero element in grVR, then f ∈ Pα
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and so f is in the ideal generated by the set given in (3) –with α and ν instead of α and
ν– which we denote by P ′α . Therefore,

(4) f =
∑

γ∈Q0⊆Qα,Q0 finite

aγr
γ ,

where aγ ∈ k and Qα = {γ|s ∈ N, ν(rγ) ≥ α}. As a consequence, f+Pα+e =
∑

γ∈Q′0
aγ [r]γ ,

where Q′0 = {γ ∈ Q0|ν(rγ) ≥ α and the equality holds for some component}.
Conversely, consider α ∈ Nm. We only need to prove that Pα ⊆ P ′α. Let f ∈ Pα be

such that ν(f) = β0 ≥ α. {[rj ]}j∈J generates grVR, therefore f + Pβ0+e =
∑

γ∈Q′ aγ [r]γ .

Thus f −
∑

γ∈Q′ aγr
γ ∈ Pβ0+e and as a consequence, f + f0 ∈ Pβ0+e for some f0 ∈ P ′β0 .

Analogously, we can get β1 ∈ Nm, such that β1 > β0 and f + f0 ∈ P ′β1 +Pβ1+e. Iterating,

it holds that

f ∈
∞⋂
j=0

(
P ′β0 + Pβj+e

)
,

where β0 < β1 < · · · < βi < · · · are elements in Nm. Assume that there exists a finite
generating sequence for the valuation ν1. Then, the equality (4) for the set {ν1} proves that

P
{ν1}
α1 ⊆ mµα and that α′ > α implies µα′ > µα, whenever µα := min

{∑s
j=1 γj |γ ∈ Qα

}
.

Thus, Pβj+e ⊆ P
{ν1}
βj1+1

⊆ m
µ
β
j
1 . So

∞⋂
j=0

(
P ′β0 + Pβj+e

)
⊆
∞⋂
j=0

(
P ′β0 +mj

)
.

Furthermore, the opposite inclusion also happens becauseR is a Noetherian domain and Pβ
an m-primary ideal. Finally considering the ideal of the quotient ring R/P ′β0 , m+P ′β0 = m̄,
one gets

∞⋂
j=0

(
P ′β0 + Pβj+e

)
=
∞⋂
j=0

m̄j = P ′β0 .

Hence f ∈ P ′α because f ∈ P ′β0 . 2

Remark. Notice that if r ∈ m and α = ν(r), then r ∈ P Vβ for any β ≤ α. Denote

[r]β := r + Pβ+e. So, [r]β 6= 0 if, and only if, β + e 6≤ α. That is [r] in Proposition 6.1

means [r] := {[r]β | β ≤ α and β + e 6≤ α} , although for simplicity’s sake, in the above

proof, it means [r]β for suitable β.

The main result for the Poincaré series of these families V is the following (see [12]).

Theorem 6.1. Let V = {vi}mi=1 be a family of monomial valuations (of K centered at R)
with respect to a finite system Λ = {rj}nj=1 of generators of m. Then, the multi-graded

Poincaré series of grVR, HgrV R(t), is a rational function. Moreover, a denominator of
HgrV R(t) is given by ∏(

1− (tδ11 )αj1(tδ22 )αj2 · · · (tδmm )αjm
)
,
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where we have written νi(rj) = αji, (1 ≤ i ≤ m; 1 ≤ j ≤ n) and the product runs over all

expressions (1 − (tδ11 )αj1(tδ22 )αj2 · · · (tδmm )αjm) with 1 ≤ j ≤ n, δi ∈ {0, 1} (1 ≤ i ≤ m) and
not all the δi’s are equal to 0.

Theorem 6.1 can be proved taking into account that HgrV R(t) =
∑m−1

i=0 hi, where

hi =
∑
α∈Nm

dimk

(
P Vα+e≤i

/P Vα+e≤i+1

)
tα

is the Poincaré series of the graded algebra ⊕α∈NmP Vα+e≤i
/P Vα+e≤i+1

. Interesting families of

valuations satisfy the requirements of Theorem 6.1 as one can see in the following result.

Theorem 6.2. [12] Let R be either a two-dimensional regular local ring or the local ring
of a rational surface singularity. Let V = {νi}mi=1 be a family of divisorial valuations of K
centered at R. Then V has a finite generating set.

Proof. Let π : Y → SpecR = X be a resolution of singularities of X such that if {Ej}qj=1

are the irreducible components of the exceptional divisor of π, then the center of each
valuation νi, i ≤ i ≤ m, is some of the Ej ’ that we denote by Ei and π is minimal with
that property. Let E� := ⊕qj=1ZEj be the group of the divisors {Ej}qj=1 and T the set of
m-primary complete ideals I ⊂ R such that IOY is an invertible sheaf. For those ideals
I, denote by DI ∈ E� the unique exceptional divisor such that IOY = OY (−DI). T is a
finitely generated semigroup because T is isomorphic to the sub-semigroup of E� of lattice
points D which are inside the rational polyhedral in E� ⊗Z Q given by the constrains
(−D)Ej ≥ 0 for all j.

Consider generators {Il}tl=1 of the semigroup T . For each l, pick a set of generators
of Il and denote by Λ = {rs}ns=1 the set union of the above chosen sets of generators
for all integers l. Λ is a generating set of the set V and to prove it we only need to
check that every ideal P Vα is generated by the monomials in the rs’s. Consider the divisor

D′α =
∑m

i=1 αiEi and apply the Laufer algorithm to find another divisor Dα ∈ E� with

(−Dα)Ej ≥ 0 for all j and such that

P Vα = π∗
(
OY (−D′α)

)
= π∗

(
OY (−Dα)

)
.

As a consequence, for suitable nonnegative integers al, P
V
α =

∏t
l=1 I

al
l and since each ideal

Ij is spanned by monomials in the set {rs}ns=1, P Vα is also generated by monomials in the
rs’s. 2

6.2. Families of plane divisorial valuations.

6.2.1. Semigroup of values and graded algebra. Along this section V = {νi}mi=1 will be a
finite family of plane divisorial valuations and we shall assume that R is complete; we
know that its Poincaré series is a rational function and our goal is to compute this series
and to give more information about its value semigroup. We also relate these data with
the corresponding data for the close and rather studied families of valuations attached to
plane curve singularities [6, 8].

The semigroup of values of V is defined to be the additive sub-semigroup SV of Zm
given by

SV = {ν(f) := (ν1(f), . . . , νm(f) | f ∈ R \ {0}}.
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We also need to consider the minimal resolution of V , which is a modification π : X →
SpecR such that νi is the Ea(i)-valuation for an irreducible component of the exceptional
divisor E given by π, 1 ≤ i ≤ m, and π is minimal with this property.

On the other hand, let C =
⋃m
i=1Ci be a reduced germ of curve, with irreducible

components C1, . . . , Cm, defined by an element f ∈ R, and denote by R/(f)∗ the set of
nonzero divisors of the ring OC := R/(f). The semigroup of values SC of C is the additive
sub-semigroup of Zm given by

SC := {v(g) = (v1(g), . . . , vm(g)) | g ∈ R/(f)∗},

where each vi is the valuation corresponding to Ci. The dual graph of C, denoted by
G, is the dual graph of its minimal embedded resolution, attaching an arrow, for each
irreducible component Ci of C, to the vertex corresponding to the exceptional component
which meets the strict transform on X of Ci. Here, we can also consider the valuation
ideals PCα := {g ∈ OC |v(g) ≥ α} ∪ {0} and the corresponding graded algebra

grOC :=
⊕

α∈(Z≥0)m

PCα

PCα+e

,

and we shall say that Λ ⊂ m is a generating sequence of C whenever the ideals PCα
are generated by the images in OC of the monomials in Λ. For convenience, we set

C(α) :=
PCα
PCα+e

and c(α) := dimk C(α).

Let G denote the dual graph (defined as in the case of a unique valuation) attached to
V . For each vertex a ∈ G, Qa denotes some irreducible element of m such that the strict
transform of the associated germ of curve CQa on X is smooth and meets Ea transversely.
A general curve C of V is a reduced plane curve with m branches defined by m different
equations given by general elements of each valuation νi. An element α ∈ SV is said to be
indecomposable if we cannot write α = β+γ with β, γ ∈ SV \{0}. In both cases (V and C)
G is a tree, 1 denotes the vertex corresponding to the first exceptional divisor, E the set of
dead ends (those which have only one adjacent vertex, where, to count adjacency, arrows
must also be taken into account) and [a, b] the path joining the vertices a and b in G. In
the case of plane valuations, for 1 ≤ i ≤ m, a(i) denotes the vertex of G corresponding
to the defining divisor of νi and otherwise the a(i)’s are the vertices with arrow of the
dual graph of C; finally, for each vertex r ∈ E , denote by br the nearest vertex to r in
Ω =

⋃m
i=1[1, a(i)]. Define

H := {1} ∪ E ∪ (Ω \ {Γ ∪ {br | r ∈ E}}) ,

where Γ =
r⋂
i=1

[1, α(i)]. The following result, which holds for a a reduced germ of curve C

as above, is proved in [6].

Theorem 6.3. The set of indecomposable elements of the semigroup SC is

{v(Qa) | a ∈ H} ∪ {v(Qa(i)) + (0, . . . , 0, l, 0, . . . , 0) | i = 1, . . . ,m l ≥ 1},

This theorem allows us to prove the following one concerning the set V [19].
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Theorem 6.4. The set of indecomposable elements of the semigroup of values SV is the
set {ν(Qa) | a ∈ H}. In particular, SV is finitely generated.

Proof. If C =
m⋃
i=1

Ci is any general curve of V , then SV ⊆ SC , therefore, by Theorem 6.3,

the elements in the set {ν(Qa)|a ∈ H} are indecomposable. Conversely, given h ∈ R such
that ν(h) is indecomposable in SV , choose a general curve C of V such that the strict
transforms of C and Ch by the minimal resolution of V do not intersect. Consider the
map v given by the valuations associated with C, then ν(h) = v(h) and ν(Qa) = v(Qa)
for any vertex a. h must be irreducible and by the proof of Theorem 6.3, v(h) decomposes
in SC as sum of elements v(Qb) with b ∈ H, which proves that ν(h) = ν(Qa) for some
a ∈ H. 2

Now we can say that the semigroup SV has no conductor whenever m > 1, that is,
there is no element δ ∈ SV such that δ+Zm≥0 ⊆ SV . However, the semigroup of values of a
curve with m branches does have a conductor δ and thus, it cannot be finitely generated
if m > 1. In particular, if C is any general curve of V , SV 6= SC when m > 1 (recall that
SV = SC when m = 1).

In the sequel, we shall use the following notations: for J ⊂ I := {1, 2, . . . ,m}, eJ is
the element of Zm whose jth component is 1 whenever j ∈ J and 0 otherwise, D(α) =
P Vα /P

V
α+e, Di(α) = P Vα /P

V
α+ei

, d(α) = dimkD(α) and di(α) = dimkDi(α) when 1 ≤
i ≤ m. Also, we shall write Bi = ν(Qa(i)). We summarize in the following propositions
some results concerning those vector spaces and dimensions. As we shall see, interesting
results can be deduced from them. Firstly, we shall give a theorem containing an explicit
description of the semigroup SV (see [19] for proofs).

Proposition 6.2. With the above notations assume i ∈ I and α ∈ Zm, then the following
properties hold:

(1) The natural homomorphism D(Bi)→ Di(B
i) is an isomorphism.

(2) di(α) ≥ 2 if and only if di(α−Bi) ≥ 1.
(3) Assume that di(α) 6= 0 then di(α+Bi) = 1 + di(α).

Proposition 6.3. In this proposition, we assume i ∈ I and α ∈ SV , then

(1) di(α) ≥ 2 if and only if α−Bi ∈ SV .
(2) If I 3 j 6= i, then di(α+Bj) = di(α).

Theorem 6.5. Let α ∈ SV , then there exist unique nonnegative integers zi, 1 ≤ i ≤ m,
and a unique value β ∈ SV such that

• α = β +
∑m

i=1 ziB
i.

• di(β) = 1 for every i.

Each value zi satisfies the following equality zi = max{l ∈ Z, l ≥ 0 | α − lBi ∈ SV } =
di(α)− 1.

Proof. First, let us prove that there exist the values zi and β. Indeed, define zi = max{l ∈
Z, l ≥ 0 | α− lBi ∈ SV } and β = α−

∑m
i=1 ziB

i. It suffices to show that α−Bi ∈ SV and

α−Bj ∈ SV imply α−Bi−Bj ∈ SV . Indeed, propositions 6.2 and 6.3 allows us to state that
dj(α−Bi) = dj(α) ≥ 2 and hence that α−Bi−Bj ∈ SV . To finish we prove uniqueness:
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Proposition 6.3 proves 1 = di(β) = di(α − ziBi) = di(α) − zi, and by Proposition 6.3 it

holds that β −Bi /∈ SV , thus zi = max{l ∈ Z, l ≥ 0 | α− lBi ∈ SV } = di(α)− 1. 2

Proposition 6.1 proves that V has a finite minimal generating sequence. Next result,
proved in [19], shows how minimal generating sequences for V and for general curves C of
V are. As above G denotes the dual graph attached either to V or to C, consider fi ∈ R
which gives an equation for Ci and fix an element Qr ∈ R for each r ∈ E . Set

ΛE := {Qr | r ∈ E} and ΛE := {Qr | r ∈ E} ∪ {fi}mi=1,

where we do not include f = f1 whenever m = 1, then,

Theorem 6.6. The set ΛE (ΛE , respectively) is a minimal generating sequence of V (C,
respectively). Moreover, any minimal generating sequence for V and C is of the described
form.

6.2.2. Poincaré series. In this subsection, we shall introduce a Poincaré series for finite
families V of plane divisorial valuations (and also for general elements attached to those
families) that contains the same information provided for the Poincaré series attached to
their corresponding graded algebras. In this form it is easier to compute those series.
Assume m > 1 and set L := Z[[t1, t

−1
1 , . . . , tm, t

−1
m ]]. As above t = (t1, . . . , tm) and

tα := tα1
1 · · · tαmm , for α = (α1, . . . , αm) ∈ Zm. Clearly L is a Z[t1, . . . , tr]–module and a

Z[t1, t
−1
1 , . . . , tr, t

−1
r ]–module.

For a reduced plane curve C with m branches, the formal Laurent series LC(t) :=∑
α∈Zm c(α)tα ∈ L was introduced in [8]. There, the authors showed that P ′C(t) =

LC(t)
∏m
i=1(ti−1) is a polynomial that is divisible by t1 · · · tm−1. The Poincaré series for

the curve C is defined as the polynomial with integer coefficients PC(t) = P ′C(t)/(t1 · · · tm−
1). In our case, a finite family V of plane divisorial valuations, we define

LV (t1, . . . , tm) =
∑
α∈Zm

d(α)tα ∈ L.

LV is a Laurent series, but, since d(α) can be positive even if α have some negative
component αi, it is not a power series. It can be proved [19] that P ′V (t) := LV (t)

∏m
i=1(ti−

1) ∈ Z [[t1, . . . , tm]] . We define the Poincaré series of V as

PV (t1 . . . , tm) =
P ′V (t1, . . . , tm)

t1 · · · tm − 1
,

which is also a formal power series. Write P̃ ′V (t) = HgrV R(t)
∏m
i=1(ti − 1), then

P̃ ′V (t1, . . . , tm) =
∑
J⊂I

(−1)card(J) P ′V (t)|{ti=1 for i∈J}.

So one can compute HgrV R(t) from P ′V (t). HgrV R(t) determines the series LV (t) since
d(α) = d(max(α1, 0), . . . ,max(αm, 0)) for α 6≤ −1 = (−1, . . . ,−1) and d(α) = 0 for
α ≤ −1. The next result shows the relation between the Poincaré series of V and a
general curve for it.
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Theorem 6.7. [19] Let V = {νi}mi=1 be a finite family of plane divisorial valuations and
C a general curve for V , then the following equality holds.

PV (t1, . . . , tm) =
PC(t1, . . . , tm)∏r
i=1(1− tBi)

.

For a vertex a of the dual graph G of a set of valuations V as above, we denote by
•
Ea = Ea \ (E − Ea) the smooth part of an irreducible component Ea in the exceptional

divisor E of the minimal resolution of V and by χ(
•
Ea) its Euler characteristic. In addition,

set νa := ν(Qa). When the field k is the field of complex numbers and R = OC2,O is
the local ring of germs of holomorphic functions at the origin of the complex plane, the
following formula of A’Campo’s type [1] holds. (See [19, 20]).

Theorem 6.8.

PV (t1, . . . , tm) =
∏
Ea⊂E

(
1− tνa

)−χ(
•
Ea)

.

6.2.3. Families of plane valuations. The Poincaré series for families of plane valuations of
the fraction field of R = OC2,O, centered at R, has been treated in [10]. Consider a finite
family V = {ν1, . . . , νm} of plane valuations, denote by Si the value semigroup of νi, set
S := S1×· · ·×Sm and, for any α ∈ S, define P Vα as above and P Vα+ := {f ∈ R|ν(f) > α}.
One can define the Poincaré series for the family V as above and then, it is not difficult
to prove that

PV (t1, . . . , tm) =
∑
α∈S

∑
J⊆I

(−1)card(J) dim
P Vα ∩ P

VJ
αJ+

P Vα+

 tα,

where for J ⊆ I we have written VJ := {νj |j ∈ J} and αJ is the projection of α preserving
only the coordinates corresponding to J . With the help of projective limits and as in the
case of a unique valuation, it is possible to introduce a notion of resolution π : X → C2 of
V . Assuming that the valuations of type B-I are exactly νi, 1 ≤ i ≤ r, and denoting by
fi a qg+1-element of a generating sequence of each one of these valuations νi, it happens
the following result, proved in [7] with the help of integration with respect to the Euler
characteristic over the projectivization PR of R.

Proposition 6.4. Let V = {νi}mi=1 be a finite family of plane valuations ordered as we
have said. Then the Poincaré series PV (t) determines the types of the involved valuations,
the dual graph of its minimal resolution up to combinatorial equivalence and divisors and
sequences of divisors corresponding to valuations. Furthermore, a formula of A’Campo’s
type for PV (t) is

PV (t) =
∏
Ea⊂E

(
1− tνa

)−χ(
•
Ea) ×

r∏
i=1

1− t(1,0)
i

∏
j 6=i

t
νj(fi)
j

−1

.
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7. An application: Poincaré series of multiplier ideals of a plane
divisorial valuation

An important tool in singularity theory and birational geometry is the concept of mul-
tiplier ideal. Multiplier ideals provide information on the type of singularity attached to
an ideal, divisor or metric, see for instance [39]. Although this tool is very useful, explicit
computations are hard (see [4, 32, 33, 43]). In this section, we summarize the results in
[27] that provide an specific calculation of a Poincaré series containing the essential in-
formation corresponding to jumping numbers and dimensions of quotients of consecutive
multiplier ideals of the primary simple complete ideal attached to a plane valuation in
the complex case. So, with the above notation, assume that k = C, C being the field
of complex numbers, and let ν be a plane divisorial valuation of K centered at R. It
is known [46] that ν determines (and it is determined by) a simple complete m-primary
ideal of R, Iν , and we define jumping numbers and multiplier ideals attached to ν as
the same objects corresponding to Iν . Consider the blowing-up sequence (1) given by

ν, being πN : X = XN → XN−1 the last blowing-up, and set D =
∑N

i=1 aiEi the ef-
fective divisor such that IνOX = OX(−D), then for any positive rational number ι, the
multiplier ideal of ν and ι is defined as J (νι) := π∗OX(KX|X0

− bιDc), where KX|X0
is

the relative canonical divisor and b·c represents the round-down or the integral part of
the corresponding divisor. The family of multiplier ideals is totally ordered by inclusion
and parameterized by non-negative rational numbers. Furthermore, there is an increas-
ing sequence ι0 < ι1 < · · · of positive rational numbers, called jumping numbers, such
that J (νι) = J (νιl) for ιl ≤ ι < ιl+1 and J (νιl+1)  J (νιl) for each l ≥ 0; ι0, usually
named the log-canonical threshold of Iν , is the least positive rational number such that
J (νι0) 6= R.

The star vertices of the dual graph (labelled with the symbols stj in Figure 1) will
be those whose associated exceptional divisors Estj meet three distinct prime exceptional
divisors. From now on, we shall denote by g∗ the number of star vertices. Write

Hj :=

{
ι(j, p, q, r) :=

p

ej−1
+

q

β̄j
+

r

ej
| p

ej−1
+

q

β̄j
≤ 1

ej
; p, q ≥ 1, r ≥ 0

}

whenever 1 ≤ j ≤ g∗, and

Hg∗+1 :=

{
ι(g∗ + 1, p, q) :=

p

eg∗
+

q

β̄g∗+1
| p, q ≥ 1

}
,

p, q and r being integer numbers. In [35], it is proved that the set H of jumping numbers

of ν can be computed as H = ∪g
∗+1
i=j Hj .

Assume ι ∈ H and ι 6= ι0 = minH. We denote by ι< the largest jumping number which

is less than ι. By convention we set J (νι
<
0 ) = R. Nakayama’s Lemma proves that, for any

ι ∈ H, J (νι
<

)/J (νι) is a finitely generated C-vector space. Thus, the Poincaré series we
referred to will be defined as follows.
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Definition 7.1. Let ν be a plane divisorial valuation. The Poincaré series of multiplier
ideals of ν is defined to be the following fractional power series:

PJ ,ν(t) :=
∑
ι∈H

dimC

(
J (νι

<
)

J (νι)

)
tι,

t being an indeterminate.

The main result of this section is to give an explicit computation of the series PJ ,ν
which also proves that it is a rational function in certain sense that we shall clarify. The
proof is supported in three interesting facts. On the one hand, results and proofs of
propositions 6.2 and 6.3, where the family V of involved plane divisorial valuations is
given by the N exceptional divisors Ei appearing in (1), and, on the other hand, the next
two propositions. To state the first one, we need the concept introduced in Definition 7.2,
where π and D =

∑N
i=1 aiEi are, respectively, the sequence of point blowing-ups and the

divisor attached to ν.

Definition 7.2. A candidate jumping number from a prime exceptional divisor Ei given
by π is a positive rational number ι such that ιai is an integer number. We shall say
that Ei contributes ι whenever ι is a candidate jumping number from Ei and J (νι) (
π∗OX(−bιDc+KX|X0

+ Ei).

Proposition 7.1. A jumping number ι of a plane divisorial valuation ν belongs to the set
Hj (1 ≤ j ≤ g∗+ 1) if and only if the prime exceptional divisor Fj contributes ι, where Fj
is defined to be Estj if 1 ≤ j ≤ g∗ and EN (the last obtained exceptional divisor) whenever
j = g∗ + 1.

Jumping numbers and multiplier ideals can also be introduced for analytically irre-
ducible plane curves and for them a similar result to Proposition 7.1 is proved in [48] and
[44]. Our proof [27] and the previous ones are independent and use different arguments.
Now, we state the second result.

Proposition 7.2. Let ι be a jumping number of a plane divisorial valuation ν. Then

π∗OX

(
−bιDc+KX|X0

+

s∑
l=1

Fjl

)
= J

(
νι
<
)
,

where {j1, j2, . . . , js} is the set of indexes j, 1 ≤ j ≤ g∗ + 1, such that ι ∈ Hj.

We end this paper by stating the mentioned main result.

Theorem 7.1. The Poincaré series PJ ,ν(t) can be expressed as

PJ ,ν(t) =
1

1− t

g∗∑
j=1

∑
ι∈Hj ,ι<1

tι +
1

(1− t)2

∑
ι∈Ω

tι,

where
Ω := {ι ∈ Hg∗+1 | ι ≤ 2 and ι− 1 6∈ Hg∗+1}.

Notice that if one considers the indeterminates zj = t
1

ej−1β̄j , then PJ ,ν(t) belongs to
the field of rational functions C(z1, z2, . . . , zg∗+1).
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[36] K. Kiyek, J.J. Moyano-Fernández, The Poincaré series of a simple complete ideal of a two-dimensional

regular local ring, J. Pure Appl. Algebra 213 (2009), 1777—1787.
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